DECEMBER 2021 GROUNDWATER MONITORING REPORT

FOR FORMER MOBIL SERVICE STATION 99-MST - 979 MAIN STREET (1001 MAIN STREET) BCP SITE No. C915260 CITY OF BUFFALO, ERIE COUNTY, NEW YORK

Prepared by:

C&S Engineers, Inc.

141 ELM STREET BUFFALO, NEW YORK 14203

Prepared on Behalf of:

SEAVEST CORE BUFFALO CONVENTUS, LLC
CENTERPOINTE CORPORATE PARK
350 ESSJAY ROAD
WILLIAMSVILLE, NEW YORK 14221

DECEMBER 2021

TABLE OF CONTENTS

<u>1.</u>	INTRODUCTION	1
1.2.	GEOLOGY HYDROGEOLOGY CONTAMINANT TRANSPORT	1 2 2
<u>2.</u>	ISCO TREATMENT	2
<u>3.</u>	GROUNDWATER MONITORING	4
3.2. 3.3.	GROUNDWATER SAMPLING EVENTS GROUNDWATER SAMPLING METHODS GROUNDWATER LEVELS BTEX MONITORING	4 4 4 2
<u>4.</u>	CONCLUSION AND RECOMMENDATIONS	4
	URES TRE 1 – SITE LOCATION	
FIGU	re 2 – Offsite and Onsite Groundwater Wells	
FIGU	re 3 – Groundwater Contour	
FIGU	re 4 – Historic Groundwater Sample Results	
GRAF	PH 1 – GROUNDWATER TREATMENT MONITORING – TOTAL BTEX	
	BLES	

APPENDICES

APPENDIX A – LABORATORY ANALYTICAL RESULTS

APPENDIX B – GROUNDWATER MONITORING CONSTRUCTION & SAMPLING LOGS

APPENDIX C - IN-SITU PRODUCT INFORMATION

December 2021 Page ii

ACRONYM LIST

C&S ENGINEERS, INC.

NYSDEC New York State Department of Environmental Conservation

LUST LEAKING UNDERGROUND STORAGE TANK

BCP BROWNFIELD CLEANUP PROGRAM
SPH SEPARATE PHASE HYDROCARBONS

RI/IRM REMEDIAL INVESTIGATION / INTERIM REMEDIAL MEASURES

BTEX BENZENE, TOLUENE, ETHYLBENZENE AND TOLUENE

LNAPL LIGHT NON AQUEOUS PHASE LIQUID

VOC VOLATILE ORGANIC COMPOUNDS

SCO SOIL CLEANUP OBJECTIVES

PID PHOTO-IONIZATION DETECTOR

December 2021 Page iii

1. Introduction

C&S Engineers, Inc. (C&S) has prepared this Groundwater Monitoring Report for the former Mobil Service Station 99-MST - 979 Main Street (1001 Main Street) (hereinafter referred to as the Site) located at 1001 Main Street in Buffalo, New York.

The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index #C915260-03-12, Site #C915260, which was executed on June 15, 2012 and last amended on August 7, 2012. A figure showing the Site location and boundaries is provided in **Figure 1** and **Figure 2**.

Remedial activities consisted of installing steel shoring around the property and removing contaminated soil and groundwater to 26 – 40 feet below ground surface. After completion of the remedial work, some contamination remained in the subsurface at this Site. A Site Management Plan (SMP) was prepared on November 28, 2014 to manage remaining groundwater contamination at the Site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36.

Petroleum contaminated groundwater is present within a discontinuous layer of coarse sand and gravel located between 32 and 35 feet below ground surface. This layer generally ranges from 6 inches to three feet thick, provides a preferential pathway for groundwater flow, and is confined within dense silt and fine sand present above and below the groundwater bearing zone.

During the remedial efforts, seven groundwater monitoring wells were installed prior to the installation of the two floors of underground parking. These monitoring wells were used to monitor the effectiveness of in-situ chemical injections.

SUBSURFACE CONDITIONS

1.1. Geology

Geologic information is based on observations made during site excavations for the Site remedial efforts, as well as numerous previous studies such as the <u>Supplemental Subsurface Investigation and Quarterly Groundwater Monitoring Report</u>, (December 9, 2008, Groundwater & Environmental Service, Inc.) and the <u>Geotechnical Engineering Report</u>, 1001 <u>Main Street Medical Office Building, Buffalo New York</u>; (November 2010; McMahon and Mann Consulting Engineers).

The Site contained urban fill of varying depths. Fill depths ranged from 3 feet of parking lot subgrade and mixed stone to more urban fill ranging from 6 -12 feet of bricks concrete and miscellaneous building rubble, which at times was contained within old building basements.

Underlying the fill were native deposits of fine dense sand with silt with discrete clay lenses. Within this formation is a discrete, discontinuous water bearing zone comprised of coarse sand and fine to medium gravel. This zone is generally found between 32 and 35 feet bgs and ranging in thickness between 6-inches to several feet (GES, 2008).

Below this zone is the dry to moist fine sand and silt formation extends to nearly 70 feet bgs. Below this massive sand and silt formation is a coarse sand and gravel layer that grades to a sand, gravel; and clay till formation. Underlying the overburden is a grey cherty limestone formation at approximately 90 feet bgs (M&M, 2010).

1.2. Hydrogeology

The principal groundwater bearing zone beneath the Site is located within the coarse sand and gravel layer that is generally present between 32 and 35 feet bgs. This layer is of variable thickness (generally six inches to three feet) but is horizontally discontinuous. The layer is located within the central and northeastern portions of the Site, but does not extend completely to the southern, northwestern or southeastern areas of the Site (GES, 2008) and is confined by the dense fine sands and silt above and below the groundwater bearing zone.

Groundwater beneath the Site flows from the west to the northeast, following the depositional area of the confined groundwater bearing zone.

1.3. Contaminant Transport

Petroleum from leaking underground storage tanks (LUSTs) formerly located at a Mobil Service Station at the corner of Main and High Streets spilled petroleum products into the subsurface soils and groundwater for over 30 years. The main release area is located in the approximate area of the former LUSTs where contaminated soils were observed from 10 feet below ground surface (BGS) to approximately 20 feet BGS grade.

From the main release area, historic migration of petroleum product entered into a semi-confined coarse sand and gravel lens observed approximately 32 to 35 feet BGS. The water table is present within this semi-confined coarse sand and gravel lens. This lens varies in thickness (1/2 to 3 feet) and extends to the northeast, confined laterally to the east and west. Petroleum product within this lens generally moved horizontally across the Site with groundwater flow.

Because of low carbon in the fine sand silt and gravel formations, breakdown of benzene, toluene, ethylbenzene and xylene (BTEX) compounds was slow. Dissolved BTEX, once entering the groundwater bearing zone was transported via localized, preferential groundwater flow to the northeast corner of the Site (following the location of the sand/gravel lens).

2. ISCO TREATMENT

The remedial method selected for the Site was in-situ chemical oxidation (ISCO) using RegenOX manufactured by Regenesis. RegenOX is sodium percarbonate formulated to degrade petroleum hydrocarbons through direct oxidation and through the generation of free radical compounds which will also oxidize contaminants. RegenOx produces minimal heat and pressure and is non-corrosive, making it a relatively safe chemical oxidant that is compatible for use in direct contact with underground infrastructure such as utilities, tanks, piping, and communication lines. This was an important characteristic when selecting the ISCO product due to the close proximity of the monitoring wells to the earth retention sheeting for the Conventus Building.

The amount of RegenOX used was calculated based on Conventus Site specific data and professional experience of C&S and Regenesis. RegenOX was mixed with tap water in 55 gallon drums at a concentration of 100 pounds of RegenOX with 110 gallons of water for each location.

In-situ treatment consisted of gravity-feeding a chemical oxidizer mixed with water directly into monitoring wells, BCP-MW-3, BCP-MW-4, BCP-MW-5, and BCP-MW-6,. Groundwater samples were collected approximately three months after treatment. The first ISCO treatment was conducted on December 12, 2013.

Evaluation of the gravity fed treatments determined this method was not effective at reducing groundwater contaminants. A work plan for increasing the amount of treatment solution using pressure injections was developed. Borings were advanced in the lower floor of underground parking to apply in-situ treatments under pressure directly into the contaminated sand and gravel lens. The sections below describe the methods used to conduct two in-situ treatment events on October 13 and October 14 of 2021.

The ISCO solution was directly injected into the soil in 12 borings in the sub-basement. Three borings were advanced adjacent to each monitoring wells listed below:

- BCP-MW-3
- BCP-MW-5
- BCP-MW-4
- BCP-MW-6

Each injection boring had to be carefully located to avoid hitting utilities located underneath the floor, with the intent of being within 10 to 15 feet of each monitoring well. Each injection boring was advanced into the coarse sand and gravel layer, approximately 15 feet below the concrete floor.

The ISCO solution was pumped from the mixing station to a truck mounted geo-probe and into the subsurface. The mix of RegenOX and water was injected under pressure in each boring, and the 12 injection borings received approximately 100 pounds of RegenOx. Additionally, 100 pounds of ISCO material was gravity fed directly into each monitoring well. A total of 1,600 pounds of RegenOx was used for each treatment event. For two treatments, a total of 3,200 pounds of RegenOX was used. These large treatment events resulted in mixed results; some locations showed an increase in contaminant concentrations, likely due to additional petroleum desorption, other locations indicated a significant decrease of petroleum contaminants.

The current ISCO treatment method is smaller pressurized injections around each target location on a quarterly schedule. A total of six temporary PVC injection points were installed around BCP-MW-6 and BCP-MW-5. Each quarterly treatment injects a total of 800 pounds (130 pounds per injection point) of chemical oxidant. Groundwater monitoring is conducted biannually.

For this reporting period, the last in-situ treatment was completed on October 13 and October 14 of 2021.

GROUNDWATER MONITORING

2.1. Groundwater Sampling Events

Previously, groundwater samples were collected from the wells on following dates:

- September 20, 2013
- March 19, 2014
- May 22, 2014
- March 11, 2015
- June 17, 2015
- August 3, 2015
- October 7, 2015
- December 14, 2015
- January 27, 2016
- March 22, 2016
- June 3, 2016
- October 25, 2016
- December 8, 2016

- January 20, 2017
- May 17, 2017
- July 5, 2017
- November 2, 2017
- August 18, 2018
- November 30, 2018
- July 30, 2019
- December 4, 2019
- March 31, 2020
- November 25, 2020
- May 14, 2021
- December 14, 2021

For this reporting period, the groundwater sampling was completed on December 14, 2021.

2.2. Groundwater Sampling Methods

Before purging the wells, water levels were measured using an electric water level sounder capable of measuring to the 0.01-foot accuracy. Peristaltic or bladder pumps using manufacturer-specified tubing was used for purging and sampling groundwater. Calibration, purging and sampling procedures was performed as specified by the USEPA¹ for low-flow sampling. Decontamination was conducted after each well is sampled to reduce the likelihood of cross contamination. Groundwater sampling equipment including the in-well pump, flow cell and water level meter was cleaned with Alconox, a phosphate free cleaner.

Samples were collected for VOCs in three 40 ml glass vials. Groundwater filled each vial until it formed a meniscus and no air bubbles were inside the vial. The cap was placed on the vial and turned over to check if any air bubbles were in the sample. Groundwater samples were kept at 4° C until the laboratory took custody of the samples.

2.3. Groundwater Levels

Groundwater levels were measured from the top of the monitoring well casing an electric water level sounder capable of measuring to the 0.01-foot accuracy. Lidar data, downloaded from the New York State GIS Clearinghouse, was used to obtain ground elevations for each monitoring well. The Lidar dataset, developed in 2008, covers Erie County and achieves a

¹ U.S. EPA Region 1 Low Stress (low-flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, January 19, 2010.

vertical accuracy of 18.5 cm on open bare terrain and 37.0 cm for obscured areas. Groundwater elevations for each monitoring well are provided in **Table 3-1** below.

Table 3-1: Monitoring Well Ground Elevations

MONITORING WELL ID	GROUND ELEVATION (FT.)	WATER LEVEL (FT.)	GROUNDWATER ELEVATION (FT.)
BCP-MW-1	663.465	32.6	630.865
BCP-MW-3	663.465	33.2	630.265
BCP-MW-4	663.465	33.0	630.465
BCP-MW-5	663.465	32.2	631.265
BCP-MW-6	663.465	32.6	630.865
BCP-MW-7	663.465	29.9	633.565

Note: Ground elevations from Lidar Dataset.

Figure 3 presents groundwater elevation contours.

2.4. BTEX Monitoring

Table 3-2 attached to the end of this report presents detected VOC concentrations from December 2012 to December 2021. **Figure 4** presents total BTEX concentrations from each monitoring well. Lab analytical reports are provided in **Appendix A**.

BCP-MW-1

Total BTEX concentrations in this well after sampling showed 0 ug/L. This trend has been consistent since the sampling event that took place in October of 2016.

BCP-MW-2

BCP-MW-2 was installed adjacent to the source area that was backfilled with flowable fill. Since its installation, this well has been dry. NYSDEC requested the well be modified to evaluate if groundwater underneath the flowable fill mass contains residual contamination. On October 7, 2015 Nature's Way Environmental installed a 1-inch PVC well through the existing BCP-MW-2 to a final depth of 50 feet bgs. The modified well has remained dry.

BCP-MW-3

MW-3 had a total VOC concentration of 174.9 ug/l which is a significant increase from the previous sampling event that had a total VOC concentration of 4.8 ug/l. The total BTEX concentration in MW-3 increased from 0 ug/l during the May sampling event, to 126.49 ug/l for the most recent December sampling event. The BTEX and total VOC concentrations reached their highest levels since the 2017 sampling events.

BCP-MW-4

The December 14, 2021 sampling event for MW-4 showed a slight increase in total VOC levels as well as total BTEX concentrations. The total VOC concentration for MW-4 was 2,659 ug/L and total BTEX showed a concentration of 2,020 ug/L compared to the previous sampling event that showed a total VOC concentration of 2,100.5 ug/l and total BTEX concentration of 1,548.50 ug/l.

BCP-MW-5

The initial BTEX concentration of MW-5 was 17,670 ug/L in September of 2013. The December 14, 2021 sampling event for MW-5 showed a significant decrease in total VOC levels as well as total BTEX concentrations but showed an increase in total VOC and total BTEX concentrations from the previous sampling event in May of 2021. The total VOC concentration for MW-5 was 8,403 ug/l and total BTEX showed a concentration of 6,920 ug/l compared to the previous May 2021 sampling event that showed a total VOC concentration of 2.864 ug/l and total BTEX concentration of 2,325 ug/l. The December 14, 2021 sampling event shows concentrations that are similar to the concentrations that were sampled in November of 2020.

BCP-MW-6

This sampling event showed a decrease in concentrations from the previous sampling event. The total VOC concentration for MW-6 was 0 ug/L and total BTEX showed a concentration of 0 ug/L compared to the previous sampling event that showed a total VOC concentration of 5 ug/l and total BTEX concentration of 0 ug/l. This is the first sampling event from MW-6 that resulted in total VOCs and total BTEX concentrations of 0 ug/l, since sampling events were initiated in 2013.

BCP-MW-7

In the most recent sampling event on December 14, 2021 the decreasing concentration trend continued with total VOC concentrations as well as total BTEX concentrations, which both had concentrations of 0 ug/l. This sampling event is consistent with the previous sampling events in December of 2019 and in November of 2020 that also had a total BTEX and total VOC concentration of 0 ug/l.

3. CONCLUSION AND RECOMMENDATIONS

The October 2021 injection event appeared to be successful in most wells but slightly inefficient in three of the other wells. This could have a correlation with the time period between when the wells were injected and when the samples were collected from the wells. C&S recommends the following:

• Bi-annual groundwater sampling on all monitoring wells located on the Conventus site in 2022.

 $F:\ Project \ U86 - Seavest\ Core\ Buffalo\ Conventus,\ LLC \ U86001004 - Conventus\ 2021\ Groundwater\ remediation \ Planning Study \ Reports \ December\ 2021 - Conventus\ Groundwater\ Monitoring\ Report.docx$

TABLES

		Sample Name	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2014	12/15/2015	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019	3/31/2020	11/25/2020	5/14/2021	12/14/2021
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Qual	lity Standards &	Guidance Values																							
Volatile Organic Compound	Surface Water	Groundwater																							
1,2-DICHLOROBENZENE	3	3	ND	ND	ND			ND		ND										ND		ND		ND	
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND			ND		ND										.15 J		ND		ND	
1,2-DICHLOROPROPANE	1	1	ND	ND	ND			ND		ND												ND		ND	
1,3-DICHLOROBENZENE	3	3	ND	ND	ND			ND		ND										ND		ND		ND	
2-HEXANONE	50	50	ND	ND	ND		ND	ND	3.5	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	5.1	ND	ND	1.8J	2.4 J	1.7	ND	ND	1.8	ND
BENZENE	1	1	ND	ND	ND		35	39	5.7	1.4	0.72	ND			ND	ND	0.33	ND	ND	ND	ND	ND	ND	ND	ND
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND			ND		ND		ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND			ND		ND		ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ETHYLBENZENE	5	5	ND	ND	ND		2	1.5	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ISOPROPYLBENZENE (CUMENE)	5	5	ND	ND	ND		1.3	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYL ETHYL KETONE (2-BUTANONE)	50	50	ND	ND	ND		ND	45	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	ND	ND	ND		19	38	0.55	ND	ND	ND			ND	ND	1.1	ND	ND	ND	ND	ND	ND	ND	ND
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND		ND	ND	ND	0.33 J	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	ND	ND	ND		6.4	4.2	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NAPHTHALENE	10	10	ND	ND	ND		ND	ND	ND	0.33 J	ND	ND			ND	ND	ND	ND	4.3	ND	ND	ND	ND	1.4	ND
No Standard																									
CARBON DISULFIDE			ND	ND	0.94		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			ND	ND	ND		35	59	61	51	72	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYL ISOBUTYL KETONE			ND	ND	ND		ND	13	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			ND	ND	0.47		3.2	17	15	11	ND	ND			ND	ND	ND	1.5	.88J	ND	ND	ND	ND	ND	ND
Total VOCs			0	0	1.41	-	101.90	216.70	85.75	63.40	72.72	0			-	5.1	1.4	1.5	6.98	2.55	1.7	0	0	0	0
Total BTEX			0	0	0	-	62	83	6	1.4	0.7	0			0.0	0	0	0	0	0	0	0	0	0	0
Non-Standard VOC List																									
1,3,5-TRIMETHYLBENZENE	5	5														ND	ND		ND		ND		ND	ND	ND
1,2,4,5-TETRAMETHYLBENZENE	5	5														ND	ND		ND		ND		ND	ND	ND
1,2,4-TRIMETHYLBENZENE	5	5														ND	ND		ND		ND		ND	1.6	ND
SEC-BUTYLBENZENE	5	5														ND	ND		ND		ND		ND	ND	ND
N-PROPYLBENZENE	5	5														ND	ND		ND		ND		ND	ND	ND
N-BUTYLBENZENE	5	5														ND	ND		ND		ND		ND	ND	ND
P-ISOPROPYLTOLUENE																ND	ND		ND		ND		ND	ND	ND
1,4-DIETHYLBENZENE																ND	ND		ND		ND		ND	ND	ND

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

		Sample Name	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	1/27/2015	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019	3/31/2020	11/25/2020	5/14/2021	12/14/2021
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Qualit	y Standards & G	uidance Values																								
Volatile Organic Compound	Surface Water	Groundwater																								4
1,2-DICHLOROBENZENE	3	3	ND	ND	ND																					
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND																					4
1,2-DICHLOROPROPANE	1	1	ND	ND	ND																					
1,3-DICHLOROBENZENE	3	3	ND	ND	ND																					
2-HEXANONE	50	50	ND	ND	ND	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	ND	98	ND	17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	166	ND	2.3	24.0	2.1 J	ND	ND	ND	3.8	6.2
BENZENE	1	1	6,600	4,500	4,700	3,700	4,300	4,100	2,100	2,200	1,900	3,100	1,390	635	363	451	3	364	ND	ND	ND	0.2J	ND	ND	ND	0.49 J
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND
ETHYLBENZENE	5	5	1,200	1,600	1,500	1,600	1,500	1,700	1,400	1,600	1,600	610	194	899	517	197	2.4	384	ND	ND	ND	1.1 J	ND	ND	ND	42
ISOPROPYLBENZENE (CUMENE)	5	5	ND	37	ND	32	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.7	ND	ND	ND	ND	ND	ND	ND	ND
METHYL ETHYL KETONE (2- BUTANONE)	50	50	ND	71	ND	6.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	201	51.4	51.4	ND	ND	ND	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	110	150	150	110	110	130	100	110	110	67	39.4	74.5	38.4	22.6	1.6	34.8		ND		ND		ND		4.8
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	3,700	3,600	3,200	4200	4000	3900	2200	2600	2200	2100	806.3	1430	949	639	7.1	930.0	ND	ND	ND	1.3 J	ND	ND	ND	79.2 J
NAPHTHALENE	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14	357	ND	ND	ND	ND	ND	1.5 J	ND	18
No Standard																										
CARBON DISULFIDE			ND	ND	ND	0.31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			120	320	270	390	330	210	100	93	110	170	ND	ND	ND	ND	ND	60.5	ND	ND	ND	ND	ND	3.4 J	1	16
METHYL ISOBUTYL KETONE			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			ND	130	150	120	160	96	34	33	36 J	170	47.7	ND	ND	29.5	ND	33.4	ND	ND	ND	ND	ND	ND	ND	8.2 J
Total VOCs			11,730	10,506	9,970	10,179	10,400	10,136	5,934	6,636	5,920	6,252	2,477	3,038	1,867	1,540	254	2,224	2.3	24.0	2.1	2.6	0	4.9	4.8	174.9
Total BTEX			11,610	9,850	9,550	9,610	9,910	9,830	5,800	6,510	5,810	5,877	2,430	3,038	1,867	1,310	14	1,713	-	-	-	2.6	0	0	0.0	126.49
Non-Standard VOC List																										
1,3,5-TRIMETHYLBENZENE	5	5															ND	133	133	ND	ND	ND	ND	ND	ND	6.5
1,2,4,5-TETRAMETHYLBENZENE	5	5															ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-TRIMETHYLBENZENE	5	5															4.9	737	737	ND	ND	1.2 J	0.88J	ND	ND	68
SEC-BUTYLBENZENE	5	5															ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-PROPYLBENZENE	5	5															ND	ND	ND	ND	ND	ND	ND	ND	ND	2.3 J
N-BUTYLBENZENE	5	5															ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
P-ISOPROPYLTOLUENE																	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-DIETHYLBENZENE																	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

-		Sample Name	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	1/27/2016	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/17/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019	3/31/2020	11/25/2020	5/14/2021	12/14/2021
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Qual	lity Standards & G	Guidance Values																								
Volatile Organic Compound	Surface Water	Groundwater																								
1,2-DICHLOROBENZENE	3	3	ND	ND	ND																					
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND																					
1,2-DICHLOROPROPANE	1	1	ND	ND	ND																	1.0 J		ND		ND
1,3-DICHLOROBENZENE	3	3	ND	ND	ND																					ND
2-HEXANONE	50	50	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	10	250	170	67	ND	210	ND	ND	ND	ND	ND	ND	ND	ND	38.2	10	1.6	ND	ND	ND	ND	ND	ND	ND
BENZENE	1	1	42	29	15	26	24	242	ND	21	ND	21	9.57	12.8	10.2	10.8	1.3	97.0	45.0	36.0	6.7	6.4	7.6	7.8	8.5	5.0
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND																	ND	ND	ND	ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND																	ND	ND	ND	ND	ND
ETHYLBENZENE	5	5	4.7	34	32	560	1,000	680	1,100	1300	1,400	1400	1,000	1170	1,300	1220	28	1.8	ND	170	2.0 J	460	810	870	1100	1100
ISOPROPYLBENZENE (CUMENE)	5	5	ND	ND	ND	9.8	15.0	26	ND	ND	ND	ND	19	30.3	28.7	ND	2.3	ND	ND	8.3	1.3 J	19	28	34	28	35
METHYL ETHYL KETONE (2- BUTANONE)	50	50	ND	ND		ND	8.50	ND		ND		ND		ND		ND	6.9	ND		ND		ND		ND		ND
METHYLENE CHLORIDE	5	5	ND	ND	1 J	ND	ND	ND	ND	52	ND	42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	1.1	190	110	53	57	140	180	270	150	97	62.4	130	133	92.2	9.8	ND	ND	15	ND	11	46	29	22	64
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				ND	ND	ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	29	180	160	800	1,200	3100	1,800	2600	2,100	1800	1,160	1892	1,944	1289.7	24.5	ND	ND	83.6	ND	157.3	534 J	358 J	418	651 J
NAPHTHALENE	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND	ND	36	ND	99	230	230	320	360
No Standard																										
CARBON DISULFIDE			ND	ND	1.9 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			8.2	11	7	170	170	110	160	220	250	340	189	259	276	235	276	5.5	ND	24	.41 J	60	100	140	160	190
METHYL ISOBUTYL KETONE			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			7.5	3.7	3.1	87	92	69	86	100	110	140	85.1	110	123	99.7	123	2.4	0.47	8.9	ND	8	22J	38 J	44	54 J
Total VOCs			102.5	697.7	497.1	1,774.5	2,566.5	4,577.0	3,326.0	4,563.0	4,010.0	3,840.0	2,525.5	3,604.1	3,814.9	2,947.4	511.9	116.7	47.1	381.8	10.4	821.7	1,777.6	1,706.8	2,100.5	2,659.0
Total BTEX			76.8	433	317	1,439	2,281	4,162	3,080	4,191	3,650	3,318	2,232	3,205	3,387	2,613	64	99	45	304.6	8.7	634.7	1,397.60	1,264.80	1,548.50	2,020.0
Non-Standard VOC List																										
1,3,5-TRIMETHYLBENZENE	5	5															2	ND	ND	1.4 J	ND	ND	7.0J	11 J	8.4	13 J
1,2,4,5-TETRAMETHYLBENZENE	5	5															1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-TRIMETHYLBENZENE	5	5															1.1	ND	ND	150	ND	470	1100	1300	1500	1500
SEC-BUTYLBENZENE	5	5															ND	ND	ND	1.5 J	ND	2.9 J	ND	ND	ND	ND
N-PROPYLBENZENE	5	5															2.3	ND	ND	37	ND	86	150	170	160	200
N-BUTYLBENZENE	5	5															1.7	ND	ND	2.2 J	ND	4.1 J	10J	12 J	9.7	14 J
P-ISOPROPYLTOLUENE																	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-DIETHYLBENZENE																	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
,																										

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

		Sample Name	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	1/27/2016	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019	3/31/2020	11/25/2020	5/14/2021	12/14/2021
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Qual	lity Standards & G	uidance Values																								
Volatile Organic Compound	Surface Water	Groundwater																								
1,2-DICHLOROBENZENE	3	3	ND	ND	ND																					
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND																					
1,2-DICHLOROPROPANE	1	1	ND	ND	ND																					
1,3-DICHLOROBENZENE	3	3	ND	ND	ND																					
2-HEXANONE	50	50	11	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		2.7 J	ND	ND	ND	ND	ND
ACETONE	50	50	ND	520	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	15.3	ND	41	69 J	44	97 J	ND	43 J	45 J	ND
BENZENE	1	1	5,600	4,800	4,900		3,700	4,100	1,800	1,800	1,700	1,600	899	949	682	428	574	283	86	26	3.3	8.9 J	5.8J	3.4 J	5.8J	ND
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND		ND	,	ND		ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND
ETHYLBENZENE	5	5	1,900	1,600	1,600		2,800	2,600	1,600	1,900	2,200	2,200	1,490	1,450	2,070	584	534	1,660	1,500	810	520 E	1200	1,700	1,700	770	1800
ISOPROPYLBENZENE (CUMENE)	5	5	28	29	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13.6	ND	20	16 J	23	24 J	30J	33 J	13 J	33 J
METHYL ETHYL KETONE (2-BUTANONE)	50	50	10	350	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.1	ND	ND		ND	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	77	96	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
TOLUENE	5	5	170	220	310		290	290	70	80	88	77	68.5	84.9	86.6	ND	36.2	82.0	66.0	39 J	38.0	42 J	49J	48 J	16 J	44 J
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		.22 J	ND	ND	ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	10,000	6,800	8,300		9,100	10,000	2,600	3,100	3,300	2,800	2,271.3	2,152.2	3,394.7	3,000.7	4,520.0	5,610.0	5,461.0	4,066.0	1879 E	3373	5,086.0	4,275	1,534.0	5,076
NAPHTHALENE	10	10	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	730	1,030	620	1,100		1100	940	820	430	1000
No Standard																										
CARBON DISULFIDE			ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.1	ND	ND		1.2 J	ND	ND	ND	ND	ND
CYCLOHEXANE			230	340	240		430	260	230	250	280	430	198	148	257	ND	257	238	150	130 J	140	220	250	240	130	330
METHYL ISOBUTYL KETONE			23	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		3.0 J	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			100	170	150		190	130	92	100	100	140	67.5	58.4	92.8	49	92.8	106	70	82 J	65	96	110Ј	110 J	60 J	120 J
Total VOCs			18,072	14,829	15,500	-	16,510	17,380	6,392	7,230	7,745	7,343	4,994	4,843	6,583	4,062	6,780	9,009	8,014	6,338	2,718.72	6,160.9	8,170.80	7.272.4	2,864.00	8,403.0
Total BTEX			17,670	13,420	15,110	-	15,890	16,990	6,070	6,880	7,288	6,677	4,729	4,636	6,233	4,013	5,664	7,635	7,113	4,941	2,440.30	4,623.90	6,840.80	6,026.40	2,325.80	6,920.00
Non-Standard VOC List																										
1,3,5-TRIMETHYLBENZENE	5	5															823	ND	ND	630	ND	480	520	400	99	430
1,2,4,5-TETRAMETHYLBENZENE	5	5															135	ND	ND		ND	ND	ND	ND	ND	ND
1,2,4-TRIMETHYLBENZENE	5	5							,								2,280	2,490	2,400	2,300	ND	2200	2500	2500	1200	2500
SEC-BUTYLBENZENE	5	5							,								3.2	ND	ND		ND	ND	ND	ND	ND	ND
N-PROPYLBENZENE	5	5															34.8	ND	110	69	ND	110	140	150	64	170
N-BUTYLBENZENE	5	5															43.3	ND	ND		ND	4.1 J	ND	ND	ND	ND
P-ISOPROPYLTOLUENE									-								5.7	ND	ND		ND	ND	ND	ND	ND	ND
1,4-DIETHYLBENZENE																	347	ND	ND		ND	ND	ND	ND	ND	ND

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7 $\,$

were dry or not enough water was inside the well for a representative sample.

		Sample Name	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/14/2015	1/27/2016	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019	3/31/2020	11/25/2020	5/14/2021	12/14/2021
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quality	y Standards & C	Guidance Values																								
Volatile Organic Compound	Surface Water	Groundwater																								·
1,2-DICHLOROBENZENE	3	3	ND	ND	ND																ND	ND	ND	ND	ND	ND
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND																ND	ND	ND	ND	ND	ND
1,2-DICHLOROPROPANE	1	1	ND	ND	ND																ND	.20 J	ND	ND	ND	ND
1,3-DICHLOROBENZENE	3	3	ND	ND	ND																ND	ND	ND	ND	ND	ND
2-HEXANONE	50	50	ND	ND	ND		190	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	ND	ND	ND		480	340	ND	ND	ND	ND	ND	ND	ND	ND	102	ND	17	4.5 J	ND	6.4	1.6J	ND	ND	ND
BENZENE	1	1	190	33	16		470	890	250	230	200	120	302	168	200	113	131	774	ND	0.82	ND	4	ND	7.5	ND	ND
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ETHYLBENZENE	5	5	130	20	31		36	210	22	44	67	50	163	169	173	175	85.5	154.0	3.3	1.7 J	ND	2.4 J	ND	2.7	ND	ND
ISOPROPYLBENZENE (CUMENE)	5	5	4.4	ND	1.9 J			ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	1.3	ND	ND	.90 J	ND	ND	ND	ND
METHYL ETHYL KETONE (2- BUTANONE)	50	50	ND	ND	ND		110	ND	ND	ND	ND	ND	ND	ND	ND	ND	19.6	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	810	42	79		1,000	1,900	85	120	78	120	130	255	351	147	22.5	2,970.0	ND	ND	ND	6.7	ND	9	ND	ND
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	750	85	150		740	1,100	140	190	130	210	393	360	451	190.7	438	1,500	ND	2 J	ND	8	ND	10	1.1 J	ND
NAPHTHALENE	10	10	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	86.6	ND	1	.8 J	ND	4.8	ND	2.6	3.9	ND
No Standard																										
CARBON DISULFIDE			ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			68	ND	130		270	41	62	110	110	91	81.5	ND	ND	ND	ND	84	7.4	3.7 J	.60 J	6.6 J	ND	7.2 J	ND	ND
METHYL ISOBUTYL KETONE			ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			46	16	18		170	27	24	21	10	24	32.2	30.2	36.9	35.3	36.9	44	4.3	3.8 J	ND	4.5 J	ND	4.6 J	ND	ND
Total VOCs			1,998.4	196	424	-	3,466	4,508	583	715	595	615	1,101	983	1,212	661	925	5,526	35	17.32	0.6	44.5	1.6	43.6	5	0
Total BTEX			1,880	180	276		2,246	4,100	497	584	475	500	988	952	1,175	626	677	5,398	3	4.52	-	21.10	0	21.70	0	0
Non-Standard VOC List																										
1,3,5-TRIMETHYLBENZENE	5	5															74.3	ND	ND	5.1	ND	1.4 J	ND	2.0 J	ND	ND
1,2,4,5-TETRAMETHYLBENZENE	5	5															14.3	ND	ND	ND	ND	ND	ND	ND	2 J	ND
1,2,4-TRIMETHYLBENZENE	5	5															134	ND	ND	ND	ND	2.2 J	ND	2.8	ND	ND
SEC-BUTYLBENZENE	5	5																		ND	ND	0.88 J	ND	ND	ND	ND
N-PROPYLBENZENE	5	5															11.3	ND	4.7	1.7 J	ND	1.3 J	ND	1.2 J	ND	ND
N-BUTYLBENZENE	5	5															4.6	ND	0.72	ND	ND	4.1 J	ND	ND	ND	ND
P-ISOPROPYLTOLUENE					,												1.6	1.6	1.6	ND	ND	ND	ND	ND	ND	ND
1,4-DIETHYLBENZENE		-															32.9	32.9	32.9	ND	ND	ND	ND	ND	ND	ND

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

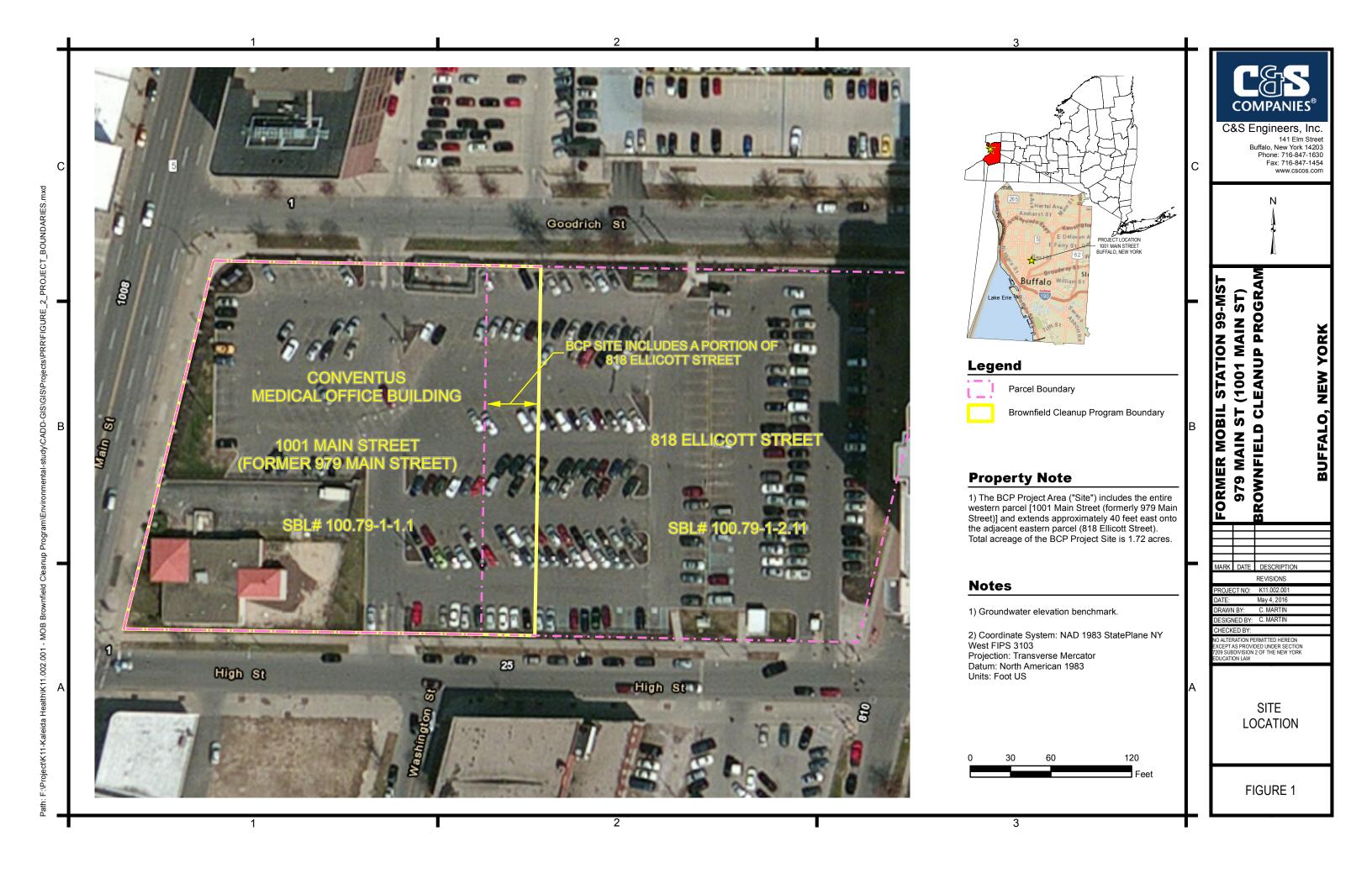
3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

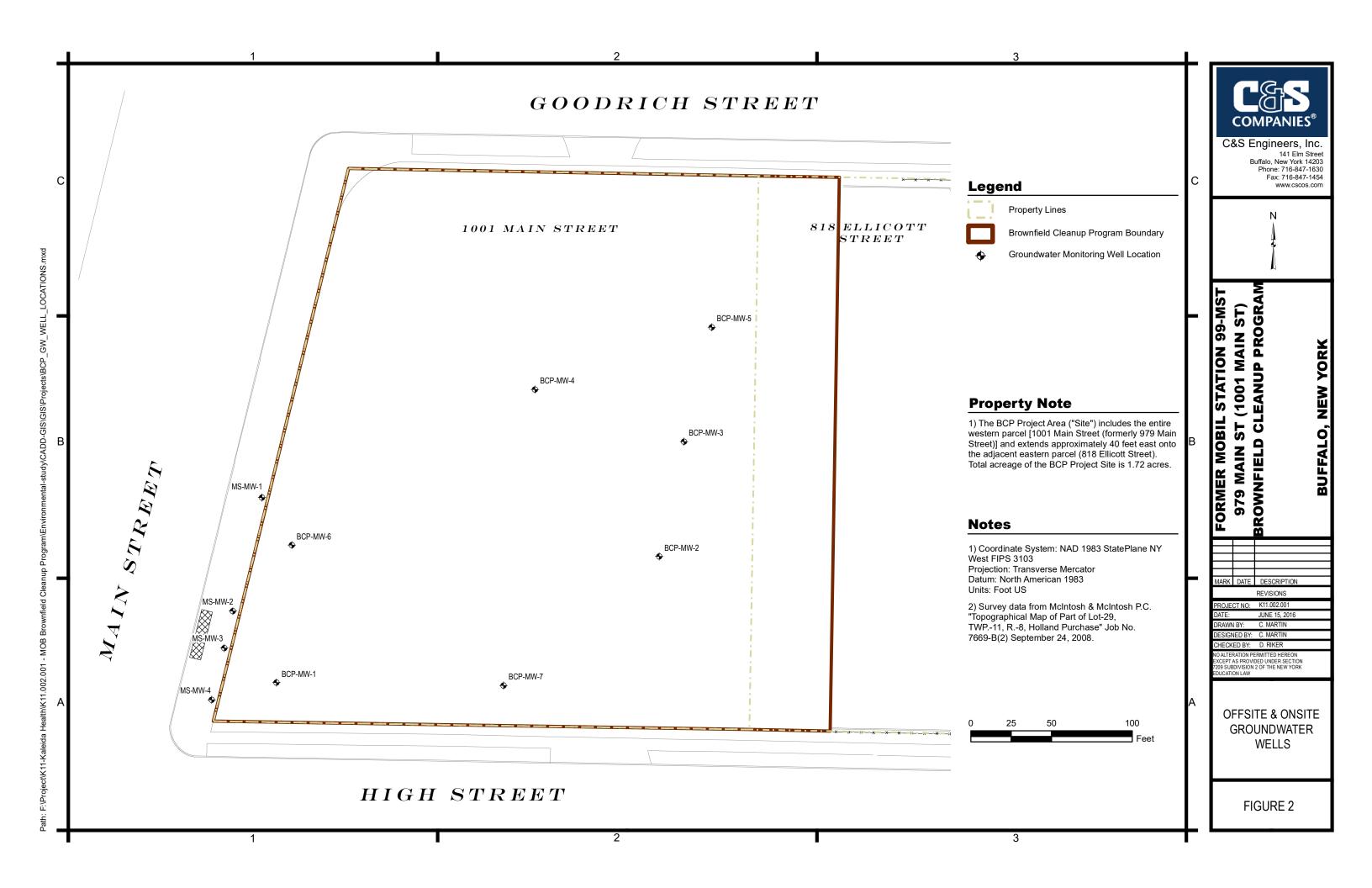
were dry or not enough water was inside the well for a representative sample.

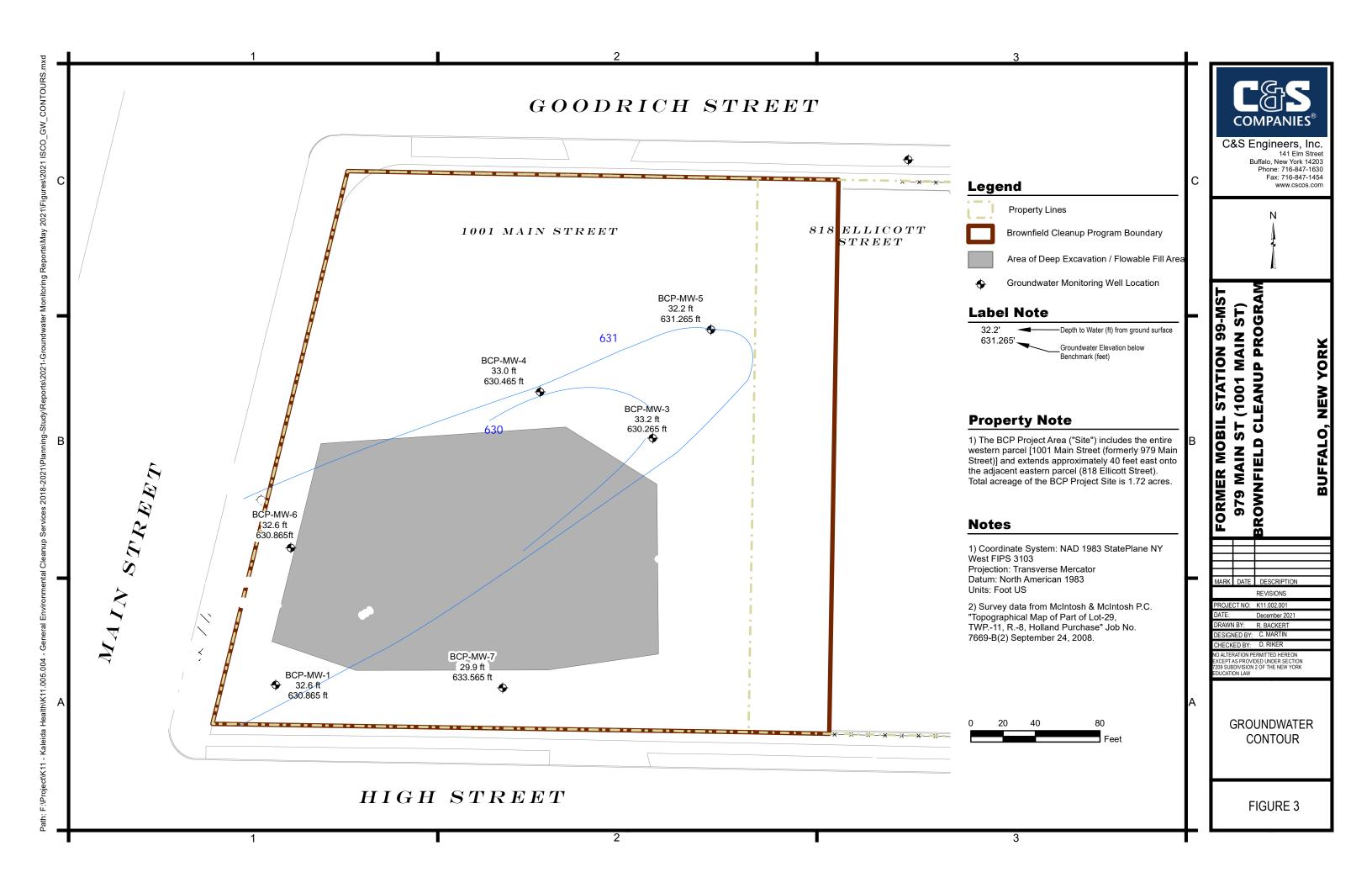
	S	Sample Name	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7
	I	Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019	3/31/2020	11/25/2020	5/14/2021	12/14/2021
	N	Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
	τ	Jnit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quali	ty Standards & Gu	idance Values																							
Volatile Organic Compound	Surface Water	Groundwater																							
1,2-DICHLOROBENZENE	3	3	ND	ND	ND															ND	ND	ND	ND	ND	ND
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND															ND	ND	ND	ND	ND	ND
1,2-DICHLOROPROPANE	1	1	ND	ND	ND															ND	ND	ND	ND	ND	ND
1,3-DICHLOROBENZENE	3	3	ND	ND	ND															ND	ND	ND	ND	ND	ND
2-HEXANONE	50	50	ND	ND	4.8		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	ND	3	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	1.5	ND	4.2 J	ND	ND	ND	ND	ND
BENZENE	1	1	0.51	8.8	14		ND	ND	ND	ND	ND	ND			ND	2.3	2.81	1.8	.18 J	.77	.17 J	ND	ND	ND	ND
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND		ND		ND		ND				ND		ND			ND	ND	ND	ND	ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND		ND		ND		ND				ND		ND			ND	ND	ND	ND	ND	ND
ETHYLBENZENE	5	5	ND	ND	3		ND	ND	ND	ND	ND	ND			ND	ND	0	ND	ND	ND	ND	ND	ND	ND	ND
ISOPROPYLBENZENE (CUMENE)	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	0.45	ND	ND	ND	ND	ND	ND	ND	ND
METHYL ETHYL KETONE (2- BUTANONE)	50	50	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	ND	0.56	4.7		ND	ND	ND	ND	ND	ND			ND	ND	1.1	ND	ND	ND	ND	ND	ND	ND	ND
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND		ND		ND		ND				ND		ND			ND	ND	ND	ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1																		ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	0.96	4.8	94		ND	ND	ND	0.99 J	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NAPHTHALENE	10	10																1.50	.86 J	ND	ND	ND	ND	1 J	ND
No Standard																									
CARBON DISULFIDE			ND	ND	0.97		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			ND	4.3	9.6		ND	ND	0.71	ND	ND	ND			ND	ND	0.99	0.66	ND	ND	ND	ND	ND	ND	ND
METHYL ISOBUTYL KETONE			ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			ND	1.7	5.1		0.18	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total VOCs			1.47	23.16	136.17		0.18		0.71	-	-	-	-	-		2.30	5.35	3.66	1.04	4.97	0.17	0	0	1	0
Total BTEX			0.51	14.16	115.7	-	-	-		-		-	-	-	-	2.3	3.9	1.8	0.18	0.77	0.17	0	0	0	0
Non-Standard VOC List																									
1,3,5-TRIMETHYLBENZENE	5	5														ND	ND	3.2		3.2	ND	ND	ND	ND	ND
1,2,4,5-TETRAMETHYLBENZENE	5	5														ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-TRIMETHYLBENZENE	5	5														ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEC-BUTYLBENZENE	5	5														ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-PROPYLBENZENE	5	5														ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-BUTYLBENZENE	.5	5														ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
P-ISOPROPYLTOLUENE																ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-DIETHYLBENZENE																ND		ND		ND		ND	2.775	ND	NID

Notes

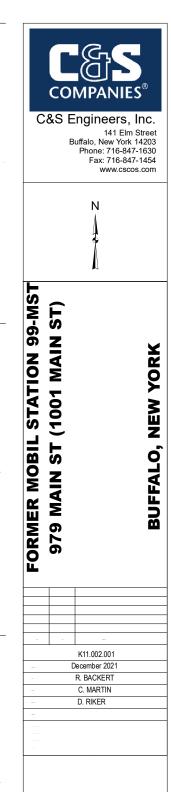
Not Sampled

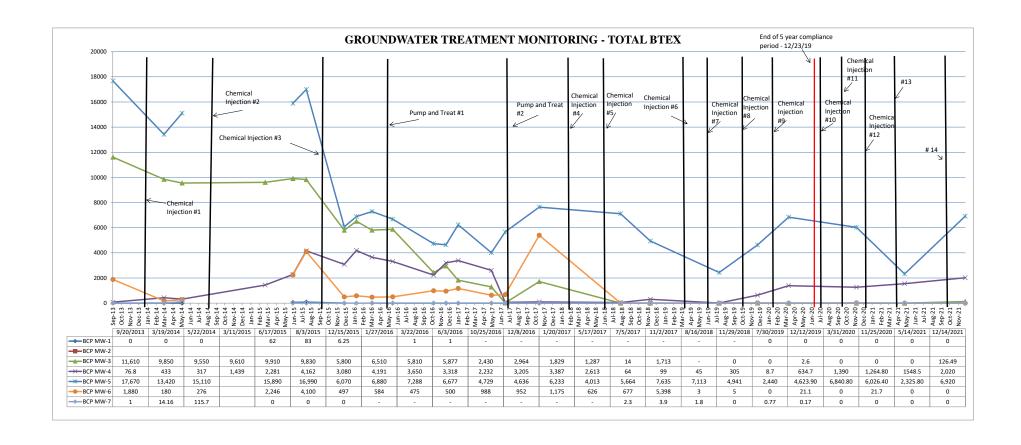

1) Blank space = analyte concentration not reported


2) BCP MW-2 was dry and not sampled


3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.





GUUDKIUH STKEET

APPENDIX A LABORATORY ANALYTICAL RESULTS

ANALYTICAL REPORT

Lab Number: L2168683

Client: C&S Companies

141 Elm Street, Suite 100

Buffalo, NY 14203

ATTN: Cody Martin
Phone: (716) 847-1630

Project Name: CONVENTUS

Project Number: 1186
Report Date: 12/29/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CONVENTUS

Project Number: 1186

Lab Number: L2168683 **Report Date:** 12/29/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2168683-01	BCP-MW01	WATER	CONVENTUS 1 MAIN ST. BUFFALO NY	12/14/21 09:50	12/14/21
L2168683-02	BCP-MW07	WATER	CONVENTUS 1 MAIN ST. BUFFALO NY	12/14/21 10:40	12/14/21
L2168683-03	BCP-MW04	WATER	CONVENTUS 1 MAIN ST. BUFFALO NY	12/14/21 11:35	12/14/21
L2168683-04	BCP-MW03	WATER	CONVENTUS 1 MAIN ST. BUFFALO NY	12/14/21 12:00	12/14/21
L2168683-05	BCP-MW06	WATER	CONVENTUS 1 MAIN ST. BUFFALO NY	12/14/21 12:35	12/14/21
L2168683-06	BCP-MW05	WATER	CONVENTUS 1 MAIN ST. BUFFALO NY	12/14/21 13:10	12/14/21
L2168683-07	TRIP BLANK	WATER	CONVENTUS 1 MAIN ST. BUFFALO NY	12/14/21 00:00	12/14/21

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:

CONVENTUS

Lab Number:

L2168683

Project Number:

1186

Report Date:

12/29/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2168683-05 and -06D: The sample was received in the proper acid-preserved containers; however, upon analysis, the pH was determined to be greater than 2, and thus the method required holding time was exceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 12/29/21

ORGANICS

VOLATILES

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

SAMPLE RESULTS

Lab ID: L2168683-01 Date Collected: 12/14/21 09:50

Client ID: BCP-MW01 Date Received: 12/14/21
Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/24/21 09:49

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

SAMPLE RESULTS

Lab ID: L2168683-01 Date Collected: 12/14/21 09:50

Client ID: BCP-MW01 Date Received: 12/14/21

Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY Field Prep: Not Specified

Sample Depth:

No	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4-Dichlorobenzene ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - West	tborough Lab					
1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromothane ND ug/l 2.5 0.70 1 1,2-Bitybenzene	1,3-Dichlorobenzene	ND		ua/l	2.5	0.70	1
Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-12-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-2-Dibromoethane ND ug/l 2.0 0.65 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 <td< td=""><td>1,4-Dichlorobenzene</td><td>ND</td><td></td><td></td><td>2.5</td><td>0.70</td><td>1</td></td<>	1,4-Dichlorobenzene	ND			2.5	0.70	1
p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Hexanone ND ug/l 2.0 0.65 1 1,2-Distromoethane ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-Eventylbenzene ND ug/l 2.5 0.70 1 1-Ley-Dibrome-	Methyl tert butyl ether	ND			2.5	0.70	1
o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.9 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-2-Ditormoethane ND ug/l 2.0 0.65 1 1-2-Ditormoethane ND ug/l 2.5 0.70 1 ter-Butylbenzene ND ug/l 2.5 0.70 1	p/m-Xylene	ND			2.5	0.70	1
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrane ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1,2-Dibromone ND ug/l 2.0 0.65 1 1,2-Dibromothane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1	o-Xylene	ND			2.5	0.70	1
Dichlorodifluoromethane ND	cis-1,2-Dichloroethene	ND			2.5	0.70	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	Acetone	ND		ug/l	5.0	1.5	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 </td <td>2-Butanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.9</td> <td>1</td>	2-Butanone	ND		ug/l	5.0	1.9	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1 Freon-113 ND ug/l 2.5 0.70 1	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Freon-113 ND ug/l 2.5 0.70 1	2-Hexanone	ND		ug/l	5.0	1.0	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Kethyl Acetate ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 2.0 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Sopropylbenzene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
	Cyclohexane	ND		ug/l	10	0.27	1
Methyl cyclohexane ND ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	112		70-130	

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

SAMPLE RESULTS

Lab ID: L2168683-02 Date Collected: 12/14/21 10:40

Client ID: BCP-MW07 Date Received: 12/14/21

Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/24/21 10:12

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

SAMPLE RESULTS

Lab ID: L2168683-02 Date Collected: 12/14/21 10:40

Client ID: BCP-MW07 Date Received: 12/14/21 Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	114		70-130	

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

SAMPLE RESULTS

Lab ID: L2168683-03 D Date Collected: 12/14/21 11:35

Client ID: BCP-MW04 Date Received: 12/14/21

Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/24/21 11:21

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	5.0		ug/l	5.0	1.6	10
Toluene	64		ug/l	25	7.0	10
Ethylbenzene	1100		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Trichloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

SAMPLE RESULTS

Lab ID: L2168683-03 D Date Collected: 12/14/21 11:35

Client ID: BCP-MW04 Date Received: 12/14/21

Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	630		ug/l	25	7.0	10
o-Xylene	21	J	ug/l	25	7.0	10
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	ND		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
n-Butylbenzene	14	J	ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
tert-Butylbenzene	ND		ug/l	25	7.0	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Isopropylbenzene	35		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	360		ug/l	25	7.0	10
n-Propylbenzene	200		ug/l	25	7.0	10
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
1,3,5-Trimethylbenzene	13	J	ug/l	25	7.0	10
1,2,4-Trimethylbenzene	1500		ug/l	25	7.0	10
Methyl Acetate	ND		ug/l	20	2.3	10
Cyclohexane	190		ug/l	100	2.7	10
Freon-113	ND		ug/l	25	7.0	10
Methyl cyclohexane	54	J	ug/l	100	4.0	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	94	70-130	

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

SAMPLE RESULTS

Lab ID: L2168683-04 Date Collected: 12/14/21 12:00

Client ID: BCP-MW03 Date Received: 12/14/21

Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/24/21 10:58

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.49	J	ug/l	0.50	0.16	1
Toluene	4.8		ug/l	2.5	0.70	1
Ethylbenzene	42		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: **CONVENTUS** L2168683

Project Number: Report Date: 1186 12/29/21

SAMPLE RESULTS

Lab ID: L2168683-04 Date Collected: 12/14/21 12:00

Date Received: Client ID: BCP-MW03 12/14/21 Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY Field Prep: Not Specified

Sample Depth:

ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Methyl tert butyl ether	Volatile Organics by GC/MS - Westb	oorough Lab					
1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 prim-Xylene 77 ug/l 2.5 0.70 1 co-Xylene 2.2 J ug/l 2.5 0.70 1 co-Xylene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.0 1 Acetone 6.2 ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hakanone ND ug/l 5.0 1.0 1 2-Hakanone ND ug/l 5.0 1.0 1 2-Hakanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene 77 ug/l 2.5 0.70 1 o-Xylene 2.2 J ug/l 2.5 0.70 1 cist-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichloroedfiluoromethane ND ug/l 5.0 1.0 1 Acetorne 6.2 ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Hexthyl-2-pentanone ND ug/l 2.0 0.65 1 4-Lebutyl-2-pentanone ND ug/l 2.5 0.70 1	1,4-Dichlorobenzene	ND			2.5	0.70	1
p/m-Xylene 77 ug/l 2.5 0.70 1 o-Xylene 2.2 J ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 6.2 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.0 0.65 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1	Methyl tert butyl ether	ND			2.5	0.70	1
2.2 J ug/l 2.5 0.70 1 1 1 1 1 1 1 1 1	p/m-Xylene	77			2.5	0.70	1
ND	o-Xylene	2.2	J		2.5	0.70	1
Dichlorodifluoromethane ND	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Actione 6.2 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1.0 1 1.2-Dibromoethane ND ug/l 5.0 1.0 1 1.2-Dibromoethane ND ug/l 2.0 0.65 1 1.12-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Lerrichlorobenzene ND ug/l 2.5 0.70 1 1.3-S-Trimethylbenzene 6.5 ug/l 2.5 0.70 1 1.3-S-Trimethylbenzene 6.8 ug/l 2.5 0.70 1 1.2-Lerrichlorobenzene ND ug/l 2.5 0.70 1 1.2-Lerrichlorobenzene ND ug/l 2.5 0.70 1 1.2-Lerrichlorobenzene ND ug/l 2.5 0.70 1 1.3-S-Trimethylbenzene 6.8 ug/l 2.5 0.70 1 1.3-S-Trimethylbenzene 6.8 ug/l 2.5 0.70 1 1.3-S-Trimethylbenzene 1.6 ug/l 1.0 0.27 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Issopropylbenzene ND ug/l 2.5 0.70 1 Issopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene 18 ug/l 2.5 0.70 1 n-Propylbenzene 2.3 J ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene 6.5 ug/l 2.5 0.70 <	Acetone	6.2		ug/l	5.0	1.5	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1.0 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND u	Carbon disulfide	ND		ug/l	5.0	1.0	1
ND	2-Butanone	ND		ug/l	5.0	1.9	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1 1 1 1 1 1 1 1 1 1 1	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
ND	2-Hexanone	ND		ug/l	5.0	1.0	1
ND	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
ND	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene 18 ug/l 2.5 0.70 1 Naphthalene 18 ug/l 2.5 0.70 1 Naphthalene 2.3 J ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene 6.5 ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene 68 ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene 68 ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 16 ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
ND	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene 18 ug/l 2.5 0.70 1 n-Propylbenzene 2.3 J ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene 6.5 ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene 68 ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane 16 ug/l 2.5 0.70 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene 18 ug/l 2.5 0.70 1 n-Propylbenzene 2.3 J ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene 6.5 ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene 68 ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 16 ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
ND Ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND Ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene 6.5 Ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene 6.5 Ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene 68 Ug/l 2.5 0.70 1 1 1,2,4-Trimethylbenzene ND Ug/l 2.5 0.70 1 1 1 1 1 1 1 1 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene 1,3,5-Trimethylbenzene 6.5 ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene 68 ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 16 ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	18		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene 6.5 ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene 68 ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 16 ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	2.3	J	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene 68 ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 16 ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 16 ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	6.5		ug/l	2.5	0.70	1
Cyclohexane 16 ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	68		ug/l	2.5	0.70	1
Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
	Cyclohexane	16		ug/l	10	0.27	1
Methyl cyclohexane 8.2 J ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	8.2	J	ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	98		70-130	

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

SAMPLE RESULTS

Lab ID: L2168683-05 Date Collected: 12/14/21 12:35

Client ID: BCP-MW06 Date Received: 12/14/21

Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/24/21 10:35

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2168683-05 Date Collected: 12/14/21 12:35

Client ID: BCP-MW06 Date Received: 12/14/21

Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY Field Prep: Not Specified

Result

Sample Depth:

Parameter

raiailletei	Nesuit	Qualifier	Ullita	NL.	WIDE	Dilution i actor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	119	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	114	70-130	

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

SAMPLE RESULTS

Lab ID: L2168683-06 D Date Collected: 12/14/21 13:10

Client ID: BCP-MW05 Date Received: 12/14/21

Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/24/21 11:44

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	50	14.	20	
1,1-Dichloroethane	ND		ug/l	50	14.	20	
Chloroform	ND		ug/l	50	14.	20	
Carbon tetrachloride	ND		ug/l	10	2.7	20	
1,2-Dichloropropane	ND		ug/l	20	2.7	20	
Dibromochloromethane	ND		ug/l	10	3.0	20	
1,1,2-Trichloroethane	ND		ug/l	30	10.	20	
Tetrachloroethene	ND		ug/l	10	3.6	20	
Chlorobenzene	ND		ug/l	50	14.	20	
Trichlorofluoromethane	ND		ug/l	50	14.	20	
1,2-Dichloroethane	ND		ug/l	10	2.6	20	
1,1,1-Trichloroethane	ND		ug/l	50	14.	20	
Bromodichloromethane	ND		ug/l	10	3.8	20	
trans-1,3-Dichloropropene	ND		ug/l	10	3.3	20	
cis-1,3-Dichloropropene	ND		ug/l	10	2.9	20	
Bromoform	ND		ug/l	40	13.	20	
1,1,2,2-Tetrachloroethane	ND		ug/l	10	3.3	20	
Benzene	ND		ug/l	10	3.2	20	
Toluene	44	J	ug/l	50	14.	20	
Ethylbenzene	1800		ug/l	50	14.	20	
Chloromethane	ND		ug/l	50	14.	20	
Bromomethane	ND		ug/l	50	14.	20	
Vinyl chloride	ND		ug/l	20	1.4	20	
Chloroethane	ND		ug/l	50	14.	20	
1,1-Dichloroethene	ND		ug/l	10	3.4	20	
trans-1,2-Dichloroethene	ND		ug/l	50	14.	20	
Trichloroethene	ND		ug/l	10	3.5	20	
1,2-Dichlorobenzene	ND		ug/l	50	14.	20	

MDL

Dilution Factor

Project Name: Lab Number: **CONVENTUS** L2168683

Project Number: Report Date: 1186 12/29/21

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: D Date Collected: 12/14/21 13:10 L2168683-06

Date Received: Client ID: 12/14/21 BCP-MW05 Not Specified

Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY Field Prep:

Result

Sample Depth:

Parameter

raiailletei	Kesuit	Qualifier	Ullita	INL.	WIDE	Dilution Lactor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3-Dichlorobenzene	ND		ug/l	50	14.	20	
1,4-Dichlorobenzene	ND		ug/l	50	14.	20	
Methyl tert butyl ether	ND		ug/l	50	14.	20	
p/m-Xylene	5000		ug/l	50	14.	20	
o-Xylene	76		ug/l	50	14.	20	
cis-1,2-Dichloroethene	ND		ug/l	50	14.	20	
Styrene	ND		ug/l	50	14.	20	
Dichlorodifluoromethane	ND		ug/l	100	20.	20	
Acetone	ND		ug/l	100	29.	20	
Carbon disulfide	ND		ug/l	100	20.	20	
2-Butanone	ND		ug/l	100	39.	20	
4-Methyl-2-pentanone	ND		ug/l	100	20.	20	
2-Hexanone	ND		ug/l	100	20.	20	
1,2-Dibromoethane	ND		ug/l	40	13.	20	
n-Butylbenzene	ND		ug/l	50	14.	20	
sec-Butylbenzene	ND		ug/l	50	14.	20	
tert-Butylbenzene	ND		ug/l	50	14.	20	
1,2-Dibromo-3-chloropropane	ND		ug/l	50	14.	20	
Isopropylbenzene	33	J	ug/l	50	14.	20	
p-Isopropyltoluene	ND		ug/l	50	14.	20	
Naphthalene	1000		ug/l	50	14.	20	
n-Propylbenzene	170		ug/l	50	14.	20	
1,2,4-Trichlorobenzene	ND		ug/l	50	14.	20	
1,3,5-Trimethylbenzene	430		ug/l	50	14.	20	
1,2,4-Trimethylbenzene	2500		ug/l	50	14.	20	
Methyl Acetate	ND		ug/l	40	4.7	20	
Cyclohexane	330		ug/l	200	5.4	20	
Freon-113	ND		ug/l	50	14.	20	
Methyl cyclohexane	120	J	ug/l	200	7.9	20	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	97	70-130	

Project Name: CONVENTUS

Lab Number: Report Date:

L2168683

12/29/21

Project Number: 1186

SAMPLE RESULTS

Date Collected: 12/14/21 00:00

Lab ID: L2168683-07

Date Received: 12/14/21

Client ID: TRIP BLANK

Field Prep: Not Specified

Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/24/21 09:26

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

SAMPLE RESULTS

Lab ID: L2168683-07 Date Collected: 12/14/21 00:00

Client ID: TRIP BLANK Date Received: 12/14/21

Result

Sample Location: CONVENTUS 1 MAIN ST. BUFFALO NY Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

raiailletei	Nesuit	Qualifier	Ullita	NL.	WIDE	Dilution i actor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	112	70-130	

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 12/24/21 09:03

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-07 Batch:	WG1587543-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 12/24/21 09:03

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s): 01-07	Batch:	WG1587543-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: CONVENTUS Lab Number: L2168683

Project Number: 1186 Report Date: 12/29/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/24/21 09:03

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-07 Batch: WG1587543-5

Acceptance Surrogate %Recovery Qualifier Criteria 1,2-Dichloroethane-d4 115 70-130 Toluene-d8 100 70-130 4-Bromofluorobenzene 97 70-130 Dibromofluoromethane 112 70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: CONVENTUS

Project Number: 1186

Lab Number: L2168683

Report Date: 12/29/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-07 Batch: W	G1587543-3	WG1587543-4		
Methylene chloride	100		100		70-130	0	20
1,1-Dichloroethane	120		120		70-130	0	20
Chloroform	100		100		70-130	0	20
Carbon tetrachloride	94		93		63-132	1	20
1,2-Dichloropropane	120		120		70-130	0	20
Dibromochloromethane	87		93		63-130	7	20
1,1,2-Trichloroethane	89		97		70-130	9	20
Tetrachloroethene	96		97		70-130	1	20
Chlorobenzene	100		100		75-130	0	20
Trichlorofluoromethane	120		120		62-150	0	20
1,2-Dichloroethane	110		110		70-130	0	20
1,1,1-Trichloroethane	99		98		67-130	1	20
Bromodichloromethane	95		96		67-130	1	20
trans-1,3-Dichloropropene	81		86		70-130	6	20
cis-1,3-Dichloropropene	88		92		70-130	4	20
Bromoform	77		83		54-136	8	20
1,1,2,2-Tetrachloroethane	91		100		67-130	9	20
Benzene	100		100		70-130	0	20
Toluene	100		100		70-130	0	20
Ethylbenzene	100		100		70-130	0	20
Chloromethane	140	Q	140	Q	64-130	0	20
Bromomethane	98		85		39-139	14	20
Vinyl chloride	140		140		55-140	0	20

Lab Control Sample Analysis Batch Quality Control

Project Name: CONVENTUS

Project Number: 1186

Lab Number: L2168683

Report Date: 12/29/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - W	estborough Lab Associated	sample(s):	01-07 Batch:	WG1587543-3	WG1587543-4				
Chloroethane	130		130		55-138	0		20	
1,1-Dichloroethene	110		110		61-145	0		20	
trans-1,2-Dichloroethene	100		100		70-130	0		20	
Trichloroethene	98		100		70-130	2		20	
1,2-Dichlorobenzene	95		96		70-130	1		20	
1,3-Dichlorobenzene	97		96		70-130	1		20	
1,4-Dichlorobenzene	95		96		70-130	1		20	
Methyl tert butyl ether	89		98		63-130	10		20	
p/m-Xylene	100		100		70-130	0		20	
o-Xylene	100		100		70-130	0		20	
cis-1,2-Dichloroethene	100		100		70-130	0		20	
Styrene	100		100		70-130	0		20	
Dichlorodifluoromethane	100		100		36-147	0		20	
Acetone	100		110		58-148	10		20	
Carbon disulfide	120		110		51-130	9		20	
2-Butanone	100		120		63-138	18		20	
4-Methyl-2-pentanone	85		95		59-130	11		20	
2-Hexanone	95		110		57-130	15		20	
1,2-Dibromoethane	86		94		70-130	9		20	
n-Butylbenzene	100		100		53-136	0		20	
sec-Butylbenzene	100		100		70-130	0		20	
tert-Butylbenzene	98		96		70-130	2		20	
1,2-Dibromo-3-chloropropane	75		81		41-144	8		20	

Lab Control Sample Analysis Batch Quality Control

Project Name: CONVENTUS

Project Number: 1186

Lab Number: L2168683

Report Date: 12/29/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	⁄ Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborou	gh Lab Associated	sample(s):	01-07 Batch:	WG1587543-3	WG1587543-4			
Isopropylbenzene	100		100		70-130	0		20
p-Isopropyltoluene	98		96		70-130	2		20
Naphthalene	76		86		70-130	12		20
n-Propylbenzene	110		100		69-130	10		20
1,2,4-Trichlorobenzene	84		86		70-130	2		20
1,3,5-Trimethylbenzene	97		95		64-130	2		20
1,2,4-Trimethylbenzene	97		95		70-130	2		20
Methyl Acetate	110		120		70-130	9		20
Cyclohexane	140	Q	140	Q	70-130	0		20
Freon-113	110		110		70-130	0		20
Methyl cyclohexane	98		100		70-130	2		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	112	115	70-130
Toluene-d8	104	104	70-130
4-Bromofluorobenzene	102	99	70-130
Dibromofluoromethane	107	106	70-130

Project Name: CONVENTUS **Lab Number:** L2168683 Project Number: 1186

Report Date: 12/29/21

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Container Information

Custody Seal Cooler

Α Absent

Container into	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2168683-01A	Vial HCI preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-01B	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-01C	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-02A	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-02B	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-02C	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-03A	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-03B	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-03C	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-04A	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-04B	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-04C	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-05A	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-05B	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-05C	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-06A	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-06B	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-06C	Vial HCl preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-07A	Vial HCI preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)
L2168683-07B	Vial HCI preserved	Α	NA		3.0	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: CONVENTUS L2168683

Report Date: Project Number: 1186 12/29/21

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

> - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:CONVENTUSLab Number:L2168683Project Number:1186Report Date:12/29/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:CONVENTUSLab Number:L2168683Project Number:1186Report Date:12/29/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:CONVENTUSLab Number:L2168683Project Number:1186Report Date:12/29/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Page 1 of 1

Revision 19 Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client Information Client: CES Engineer Address: 141 EUN ST.	Mahwah, NJ 07430: 35 Wh Albany, NY 12205: 14 Walk Y Tonawanda, NY 14150: 279 Project Information Project Name: CA	S Project #)	Min ST.	Page 1 °	f	Deliverab ASI ASI CONTROL Regulato	P-A ulS (1 File)	□ Ec	1775835	ALPHA Job # LD1 (868) Billing Information Same as Client Info Po# Disposal Site Information	of
Phone: (714)-1794.3520 Fax: Email: Rbackert @Csws.wi These samples have been previously an	ALPHAQuote #: Turn-Around Time Stand Rush (only if pre appro	dard 🔊	Due Date # of Days		No.	NY	Q Standards Restricted Use Unrestricted U Sewer Disch	Ot se	CP-51	applicable disposal facilities. Disposal Facility: NJ NY Other: Sample Filtration	T
Other project specific requirements/c Please specify Metals or TAL. ALPHA Lab ID	Sample ID	Colle	ection	Sample	Sampler's	VOX5 8260				Done Lab to do Preservation Lab to do (Please Specify below)	t a l B o t t l
(Lab Use Only) 88683 ~ 1 BCP-MWC -CZ BCP-MWC	7	Date 12/14/21 12/14/21		Onw Gw	Initials VB	*				Sample Specific Comments	3
- 3 3CP- MWC - 47 3CP- MWC - 5 BCP- MWC - 6 BCP- MWC - 74 TC: P BLA	3	12/14/21 (2/14/2)	11:35 12:00 12:35 1:10	6 W 6 W 6 W	(28) (28) (28) (28)	у х х				Promon	3 3 2 2
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH C = NaHSO ₄ D = Na ₂ S ₂ O ₃ C = NaOH C = Cube C = NaOH C = Cube C = NaHSO ₄ D = BOD Bottle C = Code C = Dode C = Cube C = Cube C = Dode C = Cube C = Cube C = Dode C = Cube C = Cube C = Dode C = Dode C = Cube C = Cube C = Dode C = Dode C = Cube	Westboro: Certification Mansfield: Certification Relinguish	n No: MA015	Date 12/14/21	/Time	Preservative	V Becgived	By:	12/10	ate/Time 1/2/(50%	THO THE MID MOTILE	ill not es are NG T ES

APPENDIX B

GROUNDWATER MONITORING CONSTRUCTION & SAMPLING LOGS

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Casing Unit Volume

(gal/l.f.)

Well Sampling Field Data Sheet

Client Name: CONVENTUS	
Site Name:	
Project No.: USU	
Field Staff: WICH BACKENT	

WELL DATA

Date	12/14/21 12/14/21 12/14/21 12/14/21 12/14/21
Well Number	BERNWOL BERNOT SCHWOOL BERNWOOD BERNWOOD BERNWOOD
Diameter (inches)	2" 2" 2" 8" 2"
Total Sounded Depth (feet)	15' 15' 14.8' 15' 15' 15'
Static Water Level (feet)	7.4' 10.1' 7.0' 6.8' 7.4' 7.8'
H ₂ O Column (feet)	7.4 4.9 8.0 8.2 7.2
Pump Intake (feet)	
Well Volume (gallons)	
Amount to Evacuate (gallons)	59al Egul 2gal 2gal 2gal 2gal
Amount Evacuated (gallons)	59 al. 59 al 29 al 29 al 29 al 29 al

FIELD READINGS

Date Time pH (Std. Units)	Stabilization Criteria +/-0.1	12/14/21	10:40	12/4/21	12/14/21	12/14/21	12/14/21	
Time	Criteria	-		11:35	12.00	12:35	1:10	
pH (Std. Units)	±/ ∩ 1	0			-			
	T/-U.1	7.25	7.34	8.07	9.15	10.08	9.94	
Conductivity (mS/cm)	3%	10.1	5.10	4.07	le.lele	14.4	11,7	
Turbidity (NTU)	10%	12.7	55.9	4.6	5.6	0.5	14.4	
D.O. (mg/L)	10%	le.le2	0.84		0.72	3.43	0.92	
Temperature (°C) (°F)	3%	14070	14.850€	15.3ce	15.980		15.67	
ORP ³ (mV)	+/-10 mv	5	48	-176	-95	24	-222	
Appearance		CLEAR	CLEGE	CLARR	CLEAR	CURAR	CLEAR	
Free Product (Yes/No)		NONE	NONE	NONE	NOME	NUME	NONE	
Odor			NONE		NONE	NONE	YES	
Comments								

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

				&S Enç Broadwa	gineers, Inc.					В	oring No.	MW-01
	3		But	ffalo, Ne	ew York 14203 -847-1630	В	ORING LOG				heet 1 of:	1
C	OMP/	ANIE	S Fax	x: 716-84	17-1454					_	oject No.:	K11.002.001
Proje	ct Nam	e: Ma	ain St RO	w.cscos.co W Inve							ace Elev.:	1(11.002.001
			OB - Buffa								Datum:	6. Surface
	Clier	t: Ka	aleida Hea	lth						S	tart Date:	8/15/13
Drilli	ng Firr	n: SJ	IB			Driller:	Tony	/		Fin	ish Date:	8/15/13
	Grou			Depth	Date & Time		CME 45C			li	nspector:	N. Wohlabaugh
			Drilling:			Casing:			k Core:		Undist:	
			Removal:			Sampler: Hammer:	Auto	Other:				
Ai	ter Cas	illy K		No. of	blows to drive sam		mer falling 30" ASTM	D-1586.	Standard	Penetra	tion Test)	
t			•	110.01	blowe to drive barri	PIOT 12 W/ 1 TO 10. Hall	mior raining oo 7.01m	2 1000,				COMMENTS
h (f	ımple No.	위 왕	lows on ampler	c - coars m - med		ΜΔΤΕΡΙΔΙ Γ	DESCRIPTION	5	a - and - 35 s - some - 20)-35%	(e.g.,	N-value, recovery,
Depth (ft)	Sample No.	= 1	per 6"	f - fine		<u></u>			I - little - 10 t - trace - 0			moisture, core run,
Ľ	,	Sound, County,										D, % recovered) tart: 12:15 PM
1		5 4 Crushed Stone (dry)									3	12" rec
		9				<u>-11.</u>						0.2 ppm
2		10)									
			6									
3		6 Crushed Stone (dry)										15" rec
4			8 Silt (red/brown - dry) 8									0.2 ppm
			11									
5			12		Silt (red/brown - r	noist)						13" rec
			15									2.5 ppm
6		-	18									
7			16 22		Silt (red/brown - s	eaturated)						24" rec
<u>'</u>			22			lium grey - saturated)					0 ppm
8			24		-		<u>-</u>					
		13										
9		19			Gravel (medium f Silt (saturated)	ine - medium grey - s	saturated)					18" rec
10		19 22			Siit (Saturated)							15.3 ppm
- 10		==	7									
11			18			ine - medium grey - s	aturated)					17" rec
			18		Silt (saturated)							229 ppm
12		\vdash	28									
13		\vdash	50/4		Gravel (medium f	ine - medium grey - s	saturated)					5" rec
												163 ppm
14												
		16										
15		24 14			Gravel (medium f	ine - medium grey - s	saturated)					17" rec 140 ppm
16		16										14υ ρμπ
17												
18		\vdash										
19		-										
-13												
20												
21		<u> </u>										

	C&S Engineers, Inc. 499 Col. Eileen Collins Blvd.	GF	ROUND	WATER	₹		Well No.	MW-01
	Syracuse, New York 13212	OBSI	ERVAT	ION WE	ELL			
COMPANIES	Phone: 315-455-2000 Fax: 315-455-9667			TION L			Project No.:	K11.002.001
Project Name: Main S	www.cscos.com	COIN	SINOC	TION	-00	Sui	rface Elev.: Datum:	OG! has
	Buffalo, NY						Start Date:	26' bgs 8/15/13
Client: Kaleida						.	inish Date:	8/15/13
Drilling Firm: SJB			Driller:	0			Inspector:	0,10,10
	2'-9" Top Protective Ca	sing		CME 45C			Casing:	0
	2'-6" Top of Riser	- J	Notes:	(provide des developmen	nt method ar	d any other in	ell location, r	nethod of construction,
	O'-0" 26' bgs. Surface Backfill Materia X Sand X Bentonite Slurry Cement/Bentonite Concrete	_	soil boring Augers (HS augers. Fi the inside taken to as	to depth of SA) were used ter pack made the auger aure that neithe well and h	25 feet belowed as the canterial and so while the ther the filte	ow ground so sing and the eal material augers were er pack or se	urface (bgs) well was cowere poured retracted.	on completing the Hollow Stem constructed inside the d separately down Measurements were were bridging mping to remove
	6" Bore Hole Diameter 2" Well Diameter Well Material x PVC Stainless Steel	er						
	Backfill Material			Groundwa	ter Measur	ement Data	3	
	x Soil Cuttings				Depth to	Water	Tide	
	Bentonite Slurry		Date	Time	Water	Elevation	Status	
	Cement/Bentonite (Grout						
	Concrete							
	Depth To:							
	29' Top of Seal							
	Seal Material x Bentonite Chips/Pe	lloto						
	Bentonite Slurry	illets						
	Cement/Bentonite (Grout						
	Cernent/Dentonite (Siout						
	39' Top of Filter Pa	ack						
	29' Top of Screen							
	Screen Slot Size							
	010 in							
	015 in							
	x 020 in							
	025 in							
	<u>Filter Material</u>							
	00 Sand Pack							
	0 Sand Pack							
	1 Sand Pack							
	2 Sand Pack							
	3 Sand Pack							
	4 Sand Pack 39' Bottom of Scre	von						
	42' Bottom of Screen							

	1 @	Z	90	Broadwa	gineers, Inc. ay ew York 14203	D/				Borir	ng No.	MW-02
C		NUES	Pho	one: 716	6-847-1630	D/	ORING LOG			Shee	et 1 of:	1
C	ОМРА	INIE2		c: 716-84 w.cscos.co						Projec	ct No.:	K11.002.001
					estigation					Surface	Elev.:	
L		_	3 - Buffa							D	atum:	6. Surface
			ida Hea	lth						Start	t Date:	8/16/13
Drilli	ng Firm					Driller:	Tony	/		Finish		8/16/13
	Groun			Depth	Date & Time	Drill Rig:	CME 45C	1			ector:	N. Wohlabaugh
			rilling:			Casing:		Rock C	ore:	Ur	ndist:	
	re Casi					Sampler:		Other:				
Af	ter Casi	ing Rei		No. of		Hammer:	Auto	D 4500 Ctor	مام ما	Donotrotion	Tast\	
<u> </u>		1	(11	NO. OI	blows to drive sam	pler 12" w/140 lb. ham	mer falling 30 ASTM	D-1586, Star	naara	Penetration		COMMENTS
Depth (ft)	Sample No.	01	ws on	c - coars					and - 35 ome - 20			N-value, recovery,
t t	a a	E Sar	mpler er 6"	m - med f - fine			ESCRIPTION	I - I	little - 10 trace - 0	-20%		moisture, core run,
۵	Š	n pe	er 6"		S - Sa	nd, \$ - Silt, G - Gravel, C	- Clay, cly - clayey	[-1	trace - 0	-10%	RQ	D, % recovered)
		7									S	tart: 9:20 AM
1		7			Crushed Stone (g	grey - dry)						6" rec
_		15 17										0.2 ppm
2			40									
3			10		Flowable Fill (bla	ok dry/dama)						6" rec
			23		Flowable Fill (bla	ck - dry/dampj						0.2 ppm
4			26									0.2 pp
			3									
5			3		Flowable Fill (bla	ck - dry/damp)						24" rec
			12									3.1 ppm
6			10									
l _			13									0.411
7			15 22		Flowable Fill (bla	ck - dry/damp)						24" rec
8			23									5.6 ppm
9		4			Flowable Fill (bla	ck - damp/moist)						24" rec
		5			1 TOWADIC T III (DIA	ok damp/moist/						4.3 ppm
10		8										
			5									
11			9		Flowable Fill (bla							20" rec
12			14 48		Medium Sand (Ca	aorse - gray - moist)						1.5 ppm
12			10									
13		3-	-May		2" of Slough							N/A
14		-										N/A
					B.44. 40.45	01 401:						
15		\vdash			Bottom of @ 13'+	·3' = 16' bg						
16												
17												
18		F										
19		-										
20												
21												
22												
23												

	C&S Engineers, Inc.	GF	ROUND	WATER	2	Ī		
	499 Col. Eileen Collins Blvd. Syracuse, New York 13212				=		Well No.	MW-02
COMPANIES	Phone: 315-455-2000		ERVAT	_		Р	roject No.:	K11.002.001
COMPANIES	Fax: 315-455-9667 www.cscos.com	CON	<u>STRUC</u>	TION L	<u>.OG</u>	Sur	face Elev.:	
Project Name: Main							Datum:	26' bgs
Location: MOB							Start Date:	8/16/13
	da Health		T =	I -		F		8/16/13
Drilling Firm: SJB			+				-	
l —		sing	Drill Rig:					(
Client: Kaleid Drilling Firm: SJB		al Grout Grout	Notes: The observe soil boring Augers (HS augers. Fit the inside taken to as between the fine material states and the inside of	CME 45C (provide des developmer vation well w to depth of 6A) were used ter pack may of the augerure that neite well and Hals.	nt method and vas construct 25 feet belowed as the case terial and see while the see where the filter the see where wher	bservation we d any other in cted in Bore w ground su sing and the eal material augers were or pack or se	inish Date: Inspector: Casing: ell location, raformation) Hole B-3 upurface (bgs) well was cover poured retracted. I all materials loped by pu	8/16/13 8/16/13 (nethod of construction, on completing the Hollow Stem onstructed inside the diseparately down Measurements were were bridging mping to remove
	Top or screen							
	Screen Slot Size							
	010 in							
	015 in							
	x 020 in							
	025 in							•
	Filter Material 00 Sand Pack 0 Sand Pack 1 Sand Pack 2 Sand Pack 3 Sand Pack 4 Sand Pack 4 Sand Pack 4 Sand Pack Bottom of Screen							

			90	Broadwa						В	oring No.	MW-03
6		1	Pho	none: 716	ew York 14203 6-847-1630	Bi	ORING LOG			SI	heet 1 of:	1
Newwest	ОМРА		www	x: 716-84 w.cscos.co	com					Pro	oject No.:	K11.002.001
_			Main St RO							Surfa	ce Elev.:	
L		_	MOB - Buffa								Datum:	26' - Surface
<u> </u>			Kaleida Hea	ılth							tart Date:	9/12/13
Drilli	ing Firn			T	<u> </u>	Driller:		y			ish Date:	9/12/13
<u> </u>	Grour		vater ile Drilling:	Depth	Date & Time	Drill Rig: Casing:	CME 45C	Pos	k Core:	Ir	nspector:	N. Wohlabaugh
Bef			g Removal:	$\vdash \vdash$		Sampler:	<u> </u>	Other:			Undist:	
		_	g Removal:	$\vdash \vdash$		Hammer:	Auto	Other.	J			
\vdash				- No. of	blows to drive sam	npler 12" w/140 lb. ham		D-1586, S	Standard	Penetrat	tion Test)	
£	4)	٦	Blows on				-		a - and - 3			COMMENTS
Depth (ft)	Sample No.	Symbol	Sampler	c - coars m - med		MATERIAL !	DESCRIPTION	ε	s - some - 20	0-35%		N-value, recovery,
)e b	San	Syr	per 6"	f - fine		ınd, \$ - Silt, G - Gravel, C			I - little - 10 t - trace - 0			moisture, core run, D, % recovered)
<u> </u>	اللبيا	Н				Ια, ψ Οικ, Ο Οιαιοι, ο	, - Olay, Oly Olayo,					Start: 8:30 AM
1	'	1 L	4 7	\vdash	Sand (med brown	n - fine sand - moist)					3	12" rec
<u> </u>	∮ '	1 1	10	_	some Silt	1- line sand - moiss,						0.2 ppm
2	'	1 H	12		30						<u> </u>	0.2 pp
	1 '		17									
3	'		17		Silt (med brown -		<u> </u>	15" rec				
	'		18		some Fine Sand a	and Clay			-	-		0.4 ppm
4	ן '		17	<u> </u>								
	'		6								<u> </u>	
5			8	4	Sand (black - med	d grained - sheen - sa	<u>iturated)</u>				1	14" rec
6	'		7	4							 	415 ppm
0	·		9									
7	'		10	\vdash	Sand (black - me	d grained - sheen - sa	aturated)					16"
	1 '		10			<u>* 9</u>						0 ppm
8] '		11								<u> </u>	
	'		2	\Box								
9		1 4	4		Sand (med grey -							20" rec
40	'	I L	5	ــــــ	4" of Clay at the r	bottom (red/brown)					-	175 ppm
10	∤ '		15	.—								
11	'		16 35		Sand (unner 10"	- black - wet to moist)	1					20" rec
<u> </u>	1 '		50/3			- coarse - with agular		st)				305 ppm
12	'				<u> </u>		910.0.	<u>,,, </u>				000 PP
	'		27									
13] '		50/4		Sand (med grey -	- coarse - with angula	r gravel - moist)					8" rec
	'											19.4 ppm
14	↓ '			4							<u> </u>	
1,5	'	1 L	13	ــــــ	2: 1/ d mma	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				-	450 _
15	∤ ′		19 37	—	Sand (med grey -	- coarse - with angula	r gravei - moistj					15" rec 12 ppm
16	'		30								1	12 μμπ
<u> </u>	1 '		-	<u> </u>		-	-					
17	'											
	'										<u></u>	
18												
	'		·	ــــــ								
19	↓ '			↓								
20	'	1)		—							-	
20	∫ '			 							-	
21	1		<u></u>									
	J '	1 /										

	C&S Engineers, Inc. 499 Col. Eileen Collins Blvd.	•		WATE	_		Well No.	MW-03
	Syracuse, New York 13212 Phone: 315-455-2000	OBSI	ERVAT	ION WI	ELL		roject No.:	K11.002.001
COMPANIES	Fax: 315-455-9667 www.cscos.com	CON	STRUC	TION L	_OG		face Elev.:	1(11.002.001
Project Name: Main	St ROW Investigation						Datum:	26' bgs
Location: MOB	s - Buffalo, NY						Start Date:	9/12/13
	ida Health					F	inish Date:	9/12/13
Drilling Firm: SJB			Driller:				Inspector:	
	2'-9" Top Protective Cas	sing	Drill Rig:	CME 45C			Casing:	C
	2'-6" Top of Riser 0'-0" 26' bgs.			developmer	nt method an	d any other in	nformation) Hole B-3 up	nethod of construction, oon completing the . Hollow Stem
	Surface Backfill Materia X Sand Bentonite Slurry X Cement/Bentonite Concrete		augers. Fi the inside taken to as	Iter pack ma of the auger sure that nei ne well and h	aterial and so s while the a ther the filte	eal material augers were r pack or se	were poure retracted. I al materials	onstructed inside the d separately down Measurements were were bridging imping to remove
	8" Well Diameter Well Material PVC Stainless Steel	er						
	♣. Backfill Material			Groundwa	ter Measur	ement Data	,	1
	X Soil Cuttings			l	Depth to	Water	Tide	
	Bentonite Slurry		Date	Time	Water	Elevation	Status	
	X Cement/Bentonite (Grout						
	Concrete							
	<u>~1</u> —							
	X Depth To:							
	30 Top of Seal							
	Seal Material	llata						
	X Bentonite Chips/Pe	liets						
	Bentonite Slurry x Cement/Bentonite (Prout						
	Cement/Bentonite C	Jiout						
	40 Top of Filter Pa	ıck						
	30' Top of Screen							
	Screen Slot Size							
	010 in							
	015 in							
	x 020 in 025 in							i
	025 III							
	Filter Material 00 Sand Pack 0 Sand Pack 1 Sand Pack 2 Sand Pack 3 Sand Pack 4 Sand Pack 40 Bottom of Screen							
		. 11016						

	-	7	90 Broadw	gineers, Inc. ay ew York 14203	D.			В	oring No.	MW-04
			Phone: 716	6-847-1630	B	ORING LOG		S	heet 1 of:	1
Ü	OMPA		Fax: 716-8 www.cscos.c						oject No.:	K11.002.001
Proie	ct Name	: Main St							ace Elev.:	
		: MOB - B		3					Datum:	6. Surface
		: Kaleida I						S	tart Date:	8/15/13
Drilli	ng Firm				Driller:	Ton	/	Fin	ish Date:	8/15/13
	Groun		Depth	Date & Time	Drill Rig:	CME 45C		lı	nspector:	N. Wohlabaugh
	V	/hile Drillin			Casing:		Rock Core:		Undist:	
Bef	ore Casi	ng Remov	al:		Sampler:		Other:		1	
Af	ter Casi	ng Remov	al:		Hammer:	Auto				
		1)	V No. of	blows to drive sam	pler 12" w/140 lb. ham	mer falling 30" ASTM	D-1586, Standard	Penetra	tion Test)	
Depth (ft)	Sample No.	Blows of Sample	m - med		MATERIAL D	<u>PESCRIPTION</u>	a - and - 35 s - some - 20 I - little - 10)-35%)-20%	(e.g., 1	COMMENTS N-value, recovery, moisture, core run,
ద్ది	ကို မြိ	ກ per 6"		S - Sar	nd, \$ - Silt, G - Gravel, C	- Clay, cly - clayey	t - trace - (0-10%		O, % recovered)
		9							Si	tart: 7:20 AM
1]	12		Crushed Stone (d	lry)					12" rec
		13								0.2 ppm
2		10							1	
_		15		0 1 10 10						4511
3		21		Crushed Stone (d	iry)				 	15" rec 0.2 ppm
4		25							<u>'</u>	5.2 ppm
	1		20							
5			19	Crushed Stone (d	lry)					16" rec
			19	Bottom 2" Flowal	ole Fill					0.5 ppm
6			20							
7		13		Flamela Fill /bla	-1!()					24" rec
7		16 19		Flowable Fill (bla	<u>ck - moist)</u>					0 ppm
8		40								о ррпі
	1	12								
9		13		Flowable Fill (bla	ck - moist)					24" rec
4.0		15								0 ppm
10		19	7							
11			8	Flowable Fill (bla	ck - moist)					24" rec
	1		9	Sand (medium br						517 ppm
12			9							
		5								
13	1 1	9		Sand (medium br						16" rec
14		6 14		Clay (red/brown -	moist)					59 ppm
		6								
15		4 7		Clay (red/brown -	moist)					23" rec
16		7 15								1.2 ppm
	1									
17]									
40										
18										
19										
20]									
∠∪										
21										
22			+							
	1									
23]									
							·			

	C&S Engineers, Inc.	GF	ROUND	WATER	₹		Well No.	MW-04
	499 Col. Eileen Collins Blvd. Syracuse, New York 13212	OBSI	ERVAT	ION WE	ELL			
COMPANIES	Phone: 315-455-2000 Fax: 315-455-9667			TION L			roject No.:	K11.002.001
Businest Name Main C	www.cscos.com	CON	SINUC	I ION L	.00	Sur	face Elev.:	001 h
Project Name: Main S	Buffalo, NY						Datum:	26' bgs
Location: MOB -							Start Date:	8/15/13 8/15/13
Drilling Firm: SJB	a i lealili		Driller:	lo			Inspector:	0/13/13
Drilling Firm. Cob	2'-9" Top Protective Cas	sina		CME 45C			Casing:	(
		Silig		(provide des	scription of o	bservation we		
	2'-6" Top of Riser 0'-0" 26' bgs. Surface Backfill Materia x Sand x Bentonite Slurry cement/Bentonite Concrete 6" Bore Hole Diameter Well Material x PVC Stainless Steel	Grout	soil boring Augers (HS augers. Fi the inside taken to as	developmer vation well we to depth of 6A) were used ter pack made of the augerure that neither well and he	nt method and as construct 25 feet belowed as the cauterial and so while the state of the filter the filter the filter as while the state of the sta	d any other in cted in Bore w ground su sing and the eal material augers were or pack or se	nformation) Hole B-3 up urface (bgs) well was co were poured retracted. I al materials	nethod of construction, on completing the . Hollow Stem onstructed inside the d separately down Measurements were were bridging mping to remove
			-					İ
	Backfill Material			Groundwat		ement Data		
	Soil Cuttings		5.4	-	Depth to	Water	Tide	
	Bentonite Slurry Cement/Bentonite 0	Croud.	Date	Time	Water	Elevation	Status	
	Concrete	Jiout						
	Concrete							
	Depth To:							
	29' Top of Seal							
	Seal Material							
	x Bentonite Chips/Pe	llets						
	Bentonite Slurry							
	Cement/Bentonite (Grout						
	39' Top of Filter Pa	nck						
	29' Top of Screen							
	Screen Slot Size							
	010 in							
	015 in							
	x 020 in							
	025 in							•
	<u>Filter Material</u>							
	00 Sand Pack							
	0 Sand Pack							
	1 Sand Pack							
	2 Sand Pack							
	3 Sand Pack							
	4 Sand Pack							
	39' Bottom of Scre	en						
	42' Bottom of Bore	Hole						

C&S Engineers, Inc. 90 Broadway Buffalo, New York 14203 Phone: 716-847-1454 www.cscos.com Project Name: Main St ROW Investigation Location: MOB - Buffalo, NY Client: Kaleida Health Drilling Firm: SJB Driller: Tony Groundwater Depth Date & Time Drill Rig: CME 45C While Drilling: Casing: Rock Core: Before Casing Removal: Sampler: Auto (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P	50% 35% (e.g., 20% relative 10% RQ	MW-05 1 K11.002.001 26' - Surface 9/12/13 9/12/12 N. Wohlabaugh COMMENTS N-value, recovery,
Project Name: Main St ROW Investigation Location: MOB - Buffalo, NY Client: Kaleida Health Drilling Firm: SJB Groundwater Depth Date & Time Drill Rig: CME 45C While Drilling: Casing: Casing: Rock Core: Before Casing Removal: After Casing Removal: After Casing Removal: After Casing Removal: MATERIAL DESCRIPTION S - Samd - 35-5 S - Some - 20-3 I - little - 10-2 I - trace - 0-1	Surface Elev.: Datum: Start Date: Finish Date: Inspector: Undist: Penetration Test) 50% 35% (e.g., relative RQ	26' - Surface 9/12/13 9/12/12 N. Wohlabaugh
Project Name: Main St ROW Investigation Location: MOB - Buffalo, NY Client: Kaleida Health Drilling Firm: SJB Driller: Tony	Start Date: Finish Date: Inspector: Undist: Penetration Test) 50% 35% (e.g., relative RQ	9/12/13 9/12/12 N. Wohlabaugh
Client: Kaleida Health Drilling Firm: SJB Groundwater Depth Date & Time Drill Rig: CME 45C While Drilling: Casing: Rock Core: Before Casing Removal: After Casing Removal: After Casing Removal: (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P Blows on Sampler per 6" S - Sand, \$ - Silt, G - Gravel, C - Clay, cly - clayey 2	Start Date: Finish Date: Inspector: Undist: Penetration Test) 50% 35% (e.g., relative RQ	9/12/13 9/12/12 N. Wohlabaugh
Drilling Firm: SJB Driller: Tony Groundwater Depth Date & Time Drill Rig: CME 45C While Drilling: Casing: Rock Core: Before Casing Removal: Sampler: Other: After Casing Removal: Hammer: Auto (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P Blows on Sampler per 6" S- Sampler S- some 20:3 l- little -10-2 s- some 20:3 l- little -10-2 t- trace - 0-1	Finish Date: Inspector: Undist: Penetration Test) 50% 35% (e.g., relative RQ	9/12/12 N. Wohlabaugh
Groundwater Depth Date & Time Drill Rig: CME 45C While Drilling: Casing: Rock Core: Before Casing Removal: Sampler: Other: After Casing Removal: Hammer: Auto (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P Blows on Sampler per 6" S - some 203 I - little -10-2 S - Sand, \$ - Silt, G - Gravel, C - Clay, cly - clayey 2	Inspector: Undist: Penetration Test) 50% 35% (e.g., relative 10% RQ	N. Wohlabaugh COMMENTS
While Drilling: Before Casing Removal: After Casing Removal: (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (Blows on Sampler per 6"	Penetration Test) 50% 35% (e.g., relative RQ	COMMENTS
Before Casing Removal: After Casing Removal: (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to dri	Penetration Test) 50% 35% (e.g., 20% relative RQ	
After Casing Removal: (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb.	50% 35% (e.g., 20% relative 10% RQ	
(N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard P Blows on Sampler per 6" C - coarse m - medium f - fine S - Sand, \$ - Silt, G - Gravel, C - Clay, cly - clayey 2	50% 35% (e.g., 20% relative 10% RQ	
## A part of the p	50% 35% (e.g., 20% relative 10% RQ	
	50% 35% (e.g., 20% relative 10% RQ	
2	relative RQ	N-value, recovery,
	10% RQ	moisture, core run,
2		D, % recovered)
		tart: 12:35 PM
1		19" rec
5 Sand (med - red/brown - mile - moist)		0.6 ppm
2 11		о.о ррш
12		
3 Sand (med - red/brown - fine - moist)		16" rec
16 some clay		0.9 ppm
4 20		
6		
5 Sand (top 8" - med - brown - coarse - saturated)		16" rec
10 Sand (bottom 8" - grey/black - coarse/gravely - product sheet)		382 ppm
6 9		
6		
7 Sand (med - black - product sheen - saturated)		21" rec
		1628 ppm
8 8		
5		001
9 8 Sand (upper 12" - grey/black - wet) 12 Sand (lower 8" - red/brown - clay - wet)		20" rec
10 Sand (lower 8" - red/brown - clay - wet) 50/4		17.2 ppm
10		
11 16 Sand (grey - round and angular gravel - saturated)		11" rec
47		12 pmm
12 50/2		
50/3 Sand (coarse - grey - angular gravel - saturated)		3" rec
		4.2 ppm
14		
15		
15 <u>Gravel (angular gravel - grey - moist to saturated)</u>		14" rec
50/4 <u>some Sand</u>		10.5 ppm
16		
17		
18		
19		
 '` 		
20		

	-20	C&S Engineers, Inc.	GF	ROUND	WATER	2	Ī		
	4	499 Col. Eileen Collins Blvd. Syracuse, New York 13212	-			=		Well No.	MW-05
CONABANI		Phone: 315-455-2000		ERVAT	_		Р	roject No.:	K11.002.001
COMPANI	ES	Fax: 315-455-9667 www.cscos.com	CON	<u>STRUC</u>	TION L	<u>.OG</u>	Sur	face Elev.:	
		ROW Investigation						Datum:	26' bgs
Location: M								Start Date:	9/12/13
		Health		T =	T.		F		9/12/13
Drilling Firm: S	JB							-	
_	_		sing	Drill Rig:					(
Client: K Drilling Firm: S	aleida IJB	Top Protective Care 2'-6" Top of Riser	al Grout Grout	Notes: The observe soil boring Augers (HS augers. Fit the inside taken to as between the fine material states and the inside of	CME 45C (provide des developmer vation well w to depth of 6A) were used the pack may be the augeroure that neither well and Hals.	nt method and vas construct 25 feet belowed as the case terial and see while the see where the filter the see where wher	bservation we d any other in cted in Bore w ground su sing and the eal material augers were or pack or se	inish Date: Inspector: Casing: ell location, raformation) Hole B-3 upurface (bgs) well was cover poured retracted. I all materials loped by pu	9/12/13 9/12/13 9/12/13 onethod of construction, on completing the Hollow Stem onstructed inside the d separately down Measurements were were bridging mping to remove
		30' Top of Screen							
		Screen Slot Size							
		010 in 015 in							
		x 020 in							
		025 in							
		Filter Material 00 Sand Pack 0 Sand Pack 1 Sand Pack 2 Sand Pack 3 Sand Pack 4 Sand Pack 4 Sand Pack 4 Sand Pack Bottom of Screen							

Ī													
	T C		90	Broadwa	gineers, Inc. ay ew York 14203	D.				В	oring No.	MW-06	
C	<u></u>		Ph	one: 716	-847-1630	D.	ORING LOG			SI	heet 1 of:	1	
577	OMP		ww	x: 716-84 w.cscos.co	om					Pro	oject No.:	K11.002.001	
		_	Main St RO		stigation					Surfa	ace Elev.:		
L		_	MOB - Buffa								Datum:	6. Surface	
2.00			Kaleida Hea	ılth		Daille					tart Date:	8/14/13	
Drilli	ng Firn Grour			D4h	Date & Time	Driller: Drill Rig:	Tony CME 45C	/			ish Date:	8/14/13 N. Wohlabaugh	
-			le Drilling:	Depth	Date & Time	Casing:	CIVIE 45C	Poc	k Core:	11	Undist:	N. Woniabaugh	
Befo			Removal:			Sampler:		Other:			Officiat.		
		_	Removal:			Hammer:	Auto	Other.					
				No. of	blows to drive sam		mer falling 30" ASTM	D-1586,	Standard	Penetra	tion Test)		
£	0	_	Blows on				-		a - and - 3	5-50%		COMMENTS	
Depth (ft)	Sample No.	립	Sampler	c - coars m - med		MATERIAL I	DESCRIPTION	\$	a - and - 30 s - some - 20 I - little - 10	0-35%		N-value, recovery,	
)ep	Sar	Blows on Sampler per 6" Blows on S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - clayey S - Sand S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clay, \$ cly - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clayey S - Sand, \$ - Silt, \$ G - Gravel, \$ C - Clayey S - Sand, \$ - Silt, \$ C -										moisture, core run, D, % recovered)	
F		8										Start: 8:15 AM	
1		7 Crushed Stone (dry)										12" rec	
		6 Crushed Stone (dry)										0.6 ppm	
2		Ŀ	16										
		ļ	9										
3		ŀ	10 <u>Crushed Stone (dry)</u>									15" rec	
4		ŀ	10									0.0 ppm	
-	1	ŀ	5										
5		ŀ	6		Sand(medium/da	rk grey/brown - mois	<u>t)</u>					10" rec	
	1		6									33.4	
6			8										
_		ŀ	11		0114 01 437 (1/1							401	
7	,	ŀ	9		Silty CLAY (red/b Sand(brown - fine							18" rec 43.0 ppm	
8		ŀ	14		<u>oand(brown - nne</u>	<u>; - moist)</u>						40.0 ppm	
	1	4	4									10" rec	
9			5			brown - wet/saturate	<u>d)</u>					53.0 ppm	
		_	13		Sand(brown - fine	e - wet/saturated)							
10		Š	38										
11		ŀ	1		Medium Sand (da	rk grey - saturated)						11" rec	
<u> </u>		ŀ	3		Some Silt/Gravel							1.8 ppm	
12		ŀ	7									- 11	
		Ĺ	5										
13		L	8			edium grey - saturate	<u>ed)</u>					24" rec	
4.4		L	10 11		Sand (lower 6" bl	ack- saturated)						2.9 ppm	
14		-	1 1										
15			2		Medium Sand (bla	ack - degraded oil sn	nell - saturated)					24" rec	
			4			rotten - saturated)							
16		ţ	5										
									_	_			
17		-											
18		-											
10		ŀ											
19		ŀ		l									
		ľ											
20													
21		L											

		C&S Engineers, Inc.	GF	ROUND	WATER	2			
		499 Col. Eileen Collins Blvd. Syracuse, New York 13212	-			=		Well No.	MW-06
COMPANIE		Phone: 315-455-2000		ERVAT	_		Р	roject No.:	K11.002.001
COMPANIE	:3	Fax: 315-455-9667 www.cscos.com	CON	<u>STRUC</u>	TION L	<u>.OG</u>	Sur	face Elev.:	
		ROW Investigation						Datum:	26' bgs
Location: Mo								Start Date:	8/14/13
		Health			T.		F		8/14/13
Drilling Firm: SJ	JB							-	
l —	_		sing	Drill Rig:					(
Client: Ka Drilling Firm: SJ	aleida JB		al Grout Grout	Notes: The observe soil boring Augers (HS augers. Fill the inside of taken to as between the fine material solutions of the inside of taken to as the tween the fine material solutions of the so	CME 45C (provide des developmer vation well w to depth of 6A) were used the pack may be the augeroure that neither well and Hals.	nt method and vas construct 25 feet belowed as the case terial and see while the see where the filter the see where wher	bservation we d any other in cted in Bore w ground su sing and the eal material augers were or pack or se	inish Date: Inspector: Casing: ell location, raformation) Hole B-3 upurface (bgs) well was cover poured retracted. I all materials loped by pu	8/14/13 8/14/13 method of construction, on completing the Hollow Stem onstructed inside the d separately down Measurements were were bridging mping to remove
		29' Top of Screen							
		Screen Slot Size							
		010 in							
		015 in							
		x 020 in							
		025 in							
		Filter Material 00 Sand Pack 0 Sand Pack 1 Sand Pack 2 Sand Pack 3 Sand Pack 4 Sand Pack 4 Sand Pack 4 Sand Pack Bottom of Screen							

	C&S Engineers, Inc.	GF	ROUND	WATF	₹			1414.07
	499 Col. Eileen Collins Blvd. Syracuse, New York 13212		ERVAT		=		Well No.	MW-07
COMPANIES	Phone: 315-455-2000 Fax: 315-455-9667			_		P	roject No.:	K11.002.001
	www.cscos.com	CON	STRUC	HON L	<u>.OG</u>	Sur	face Elev.:	
Project Name: Main							Datum:	26' bgs
	la Health		T	I a		F		8/16/13
Drilling Firm: SJB	21.0" Tan Dantastina Os	-1	4			1	-	
l —		sing	Drill Rig:		arintian of a	hoom totion with		nothed of construction
Location: MOB Client: Kaleic Drilling Firm: SJB	2'-9" Top Protective Car 2'-6" Top of Riser 26' bgs Surface Backfill Materia X Sand X Bentonite Slurry Cement/Bentonite Concrete 6" Bore Hole Diameter	al Grout Grout	Notes: The observe soil boring Augers (HS augers. Fit the inside taken to as between the fine material states and the inside taken to as the t	CME 45C (provide des developmer ation well w to depth of 6A) were use ter pack ma of the augerure that neite well and Fals.	nt method and vas construct 25 feet belowed as the case terial and see while the see where the filter the see where wher	bservation we d any other in cted in Bore w ground su sing and the eal material augers were or pack or se	nformation) Hole B-3 up urface (bgs) well was co were poured retracted. I al materials loped by pu	8/16/13 8/16/13 (nethod of construction, con completing the Hollow Stem Constructed inside the disparately down Measurements were were bridging mping to remove
	025 in Filter Material 00 Sand Pack 0 Sand Pack 1 Sand Pack 2 Sand Pack 3 Sand Pack 4 Sand Pack 4 Sand Pack Bottom of Screen							

		S	90	Broadwa	gineers, Inc.	R/	ORING LOG			В	oring No.	MW-07
C	DMP/	NIE	Pho		-847-1630	D,	JKING LOG			_	heet 1 of:	1
			WWV	w.cscos.co	om						oject No.:	K11.002.001
_			in St RO DB - Buffa		stigation					Surfa	ace Elev.: Datum:	6. Surface
┝─┶			leida Hea							9	tart Date:	8/16/13
Drilli	ng Firn					Driller:	Tony	,			nish Date:	8/16/13
	Grour			Depth	Date & Time	Drill Rig:					nspector:	N. Wohlabaugh
	١	Vhile	Drilling:			Casing:		Rock	Core:		Undist:	
			emoval:			Sampler:		Other:				
Aft	ter Cas	ing R	emoval:			Hammer:	Auto					
			(N	No. of	blows to drive sam	pler 12" w/140 lb. ham	mer falling 30" ASTM	D-1586, S	tandard	Penetra		COMMENTS
Depth (ft)	<u>e</u> .	В	ows on	c - coars					a - and - 35 - some - 20			COMMENTS N-value, recovery,
þth	Sample No.	= 1	ampler per 6"	m - med f - fine			DESCRIPTION		I - little - 10 t - trace - 0)-20%	relative	moisture, core run,
۵	Ø	<i>S</i>	per 6		S - Sar	nd, \$ - Silt, G - Gravel, C	C - Clay, cly - clayey		t - trace - t	J-1U%	RQ	D, % recovered)
		3									S	Start: 2:45 PM
1		5 5			Crushed Stone (g	<u> rey - dry)</u>						12" rec
2		9										0.4 ppm
		_	19									
3			16		Sand (fine - red/b	rown - dry to moist)						15" rec
			18		Silt (red/brown - o	dry to moist)						1.0 ppm
4		_	18									
5		-	12 17		Sand (fine - red/b	rown - moist)						16" rec
Ť			18		Silt (red/brown - r							0.2 ppm
6			20									
			24									
7			24			rown - wet to saturate	<u>ed)</u>					23" rec
8		-	28 37		Silt (red/brown - v	wet to saturated)						0.5 ppm
		14	37									
9		16			Sand (fine - red/b	rown - saturated)						21" rec
		22			Silt (red/brown - s	saturated)						0.8 ppm
10		39										
11		-	16 28		Silt (red/brown - v	wot)						18" rec
11		\vdash	32		Clay (red/brown -						+	0.1 ppm
12			31									
			25									
13		<u> </u>	17		Silt (red/brown - s							24" rec
14		\vdash	26 33		Clay (red/brown -	saturated)					1	0.0 ppm
14		20	33								1	
15		19			Silt (red/brown - r	noist to wet)						19" rec
		19			Gravel (red/brown	n - moist to wet)						0.0 ppm
16		21									1	
<u> </u>		-										
											1	
17		-										
		F										
17												

APPENDIX C
IN SITU PRODUCT INFORMATION

RegenOx[™] is an advanced in situ chemical oxidation technology* designed to treat organic contaminants including high concentration source areas in the saturated and vadose zones

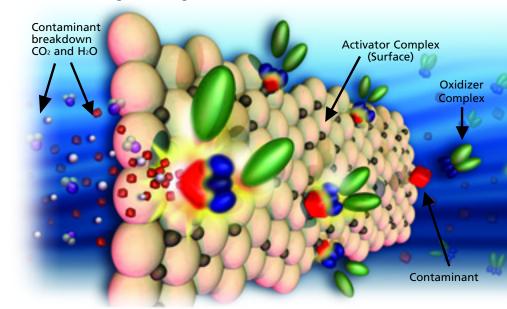
PRODUCT FEATURES:

- Rapid and sustained oxidation of target compounds
- Easily applied with readily available equipment
- Destroys a broad range of contaminants
- More efficient than other solid oxidants
- Enhances subsequent bioremediation
- Avoids detrimental impacts to groundwater aquifers

RegenOx product application

HOW IT WORKS:

RegenOx maximizes in situ performance using a solid alkaline oxidant that employs a sodium percarbonate complex with a multi-part catalytic formula. The product is delivered as two parts that are combined and injected into the subsurface using common drilling or direct-push equipment. Once in the subsurface, the combined product produces an effective oxidation reaction comparable to that of Fenton's Reagent without a violent exothermic reaction. RegenOx safely, effectively and rapidly destroys a wide range of contaminants in both soil and groundwater (Table 1).


ACHIEVES RAPID OXIDATION VIA A NUMBER OF MECHANISMS

RegenOx directly oxidizes contaminants while its unique catalytic complex generates a suite of highly charged, oxidative free radicals that are responsible for the rapid destruction of contaminants. The mechanisms by which RegenOx operates are:

- Surface- Mediated Oxidation: (see Figure 1 and description below)
- Direct Oxidation: C₂Cl₄ + 2 Na₂CO₃ 3 H₂O₂ + 2 H₂O ←→ 2CO₂ + 4 NaCl + 4 H₂O + 2 H₂CO₃
- Free Radical Oxidation:
 - Perhydroxyl Radical (HO₂ •)
 - Hydroxyl Radical (OH•)
 - Superoxide Radical (O₂•)

Figure 1. Surface-Mediated Oxidation is responsible for the majority of RegenOx contaminant destruction. This process takes place in two stages. First, the RegenOx activator complex coats the subsurface. Second, the oxidizer complex and contaminant react with the activator complex surface destroying the contaminant.

Figure 1. RegenOx™ Surface-Mediated Oxidation

From Mass Reduction to Bioremediation:

RegenOx™ is an effective and rapid contaminant mass reduction technology. A single injection will remove significant amounts of target contaminants from the subsurface. Strategies employing multiple Regenox injections coupled with follow-on accelerated bioremediation can be used to treat highly contaminated sites to regulatory closure. In fact, RegenOx was designed specifically to allow for a seamless transition to low-cost accelerated bioremediation using any of Regenesis controlled release compounds.

Significant Longevity:

RegenOx has been shown to destroy contaminants for periods of up to one month.

Product Application Made Safe and Easy:

RegenOx produces minimal heat and as with all oxidants proper health and safety procedures must be followed. The necessary safety guidance accompanies all shipments of RegenOx and additional resources are available on request. Through the use of readily available, highly mobile, direct-push equipment and an array of pumps, RegenOx has been designed to be as easy to install as other Regenesis products like ORC® and HRC®.

Effective on a Wide Range of Contaminants:

RegenOx has been rigorously tested in both the laboratory and the field on petroleum hydrocarbons (aliphatics and aromatics), gasoline oxygenates (e.g., MTBE and TAME), polyaromatic hydrocarbons (e.g., naphthalene and phenanthrene) and chlorinated hydrocarbons (e.g., PCE, TCA).

Oxidant Effectiveness vs. Contaminant Type:

		Та	ble 1			
Contaminant	RegenOx™	Fenton's Reagent	Permanganate	Persulfate	Activated Persulfate	Ozone
Petroleum Hydrocarbons	Α	Α	В	В	В	Α
Benzene	Α	Α	D	В	В	Α
MTBE	Α	В	В	С	В	В
Phenols	Α	Α	В	С	В	Α
Chlorinated Ethenes (PCE, TCE, DCE, VC)	Α	Α	Α	В	Α	Α
Chlorinated Ethanes (TCA, DCA)	Α	В	С	D	С	В
Polycyclic Aromatic Hydrocarbons (PAHs)	Α	Α	В	В	А	Α
Polychlorinated Biphenyls (PCBs)	В	С	D	D	D	В
Explosives (RDX, HMX)	Α	Α	Α	Α	Α	Α

Based on laboratory kinetic data, thermodynamic calculations, and literature reports.

Oxidant Effectiveness Key:

- A = Short half life, low free energy (most energetically favored), most complete
- \boldsymbol{B} = Intermediate half life, low free energy, intermediate degree of completion
- C = Intermediate half life, intermediate free energy, low degree of completion
- D = Long half life, high free energy (least favored), very low degree of completion

Advanced Technologies for Groundwater Resources

1011 Calle Sombra / San Clemente / California 92673-6244 Tel: 949/366-8000 / Fax: 949/366-8090 / www.regenesis.com

Controlled-Release Oxygen for Enhanced Aerobic Biodegradation

The original Oxygen Release Compound (ORC®) is a fine, powdery material comprised of a patented formulation of phosphate-intercalated magnesium peroxide. The intercalation or embedding of phosphates within the magnesium peroxide is Regenesis' patented, controlled-release mechanism. Upon hydration, ORC is designed to produce a controlled-release of oxygen (10% by weight) into the subsurface in accordance with the following reaction:

$$\mathrm{MgO_2} + \mathrm{H_2O} \rightarrow \mathrm{1/2~O_2} + \mathrm{Mg(OH)_2}$$

This process can proceed for periods of up to one year depending on site conditions. In the presence of this long-lasting oxygen source, aerobic microbes flourish - accelerating the naturally slow rates of aerobic biodegradation.

Product Benefits

By enhancing bioremediation using ORC, in-situ treatment of contaminants can result in an efficient, simple and costeffective alternative to traditional technologies. With low capital costs, no operations and maintenance, minimal site disturbance and proven effectiveness, ORC can restore water quality and property values at a reasonable cost.

Subsurface Emplacement

- Direct Push Injection
- Hollow Stem Augers
- Replaceable Filter Socks (existing wells)
- Excavations

- Trenches
- Ex Situ biophiles

Treatable Contaminants

ORC can treat a wide range of contaminants and most any aerobically degradable compound including: gasoline and fuel additives (BTEX and MTBE), diesel, kerosene, jet fuel, gas condensates, fuel oils, lubricants, bunker oil, PAHs, certain pesticides/herbicides and certain industrial solvents (alcohols and ketones).

Material Application

Most contaminated sites are treated using ORC slurry which is a prescribed and easily injectable water and ORC mixture (Figure 2). The direct-push injection of ORC slurry maximizes ORC and oxygen distribution in the subsurface increasing the range of enhanced biodegradation. ORC is dosed in pounds per vertical foot of material treated. The amount of ORC recommended depends greatly on various factors such as contaminant concentrations, oxygen sinks, groundwater flow rates and subsurface geology. It is recommended that a Regenesis Technical Services Representative be contacted for detailed design information. ORC treatment approaches or designs may consist of one, or combinations of the following: Source Area Grids, Plume Area Grids or Barriers, Excavations and Biopiles.