2021

PERIODIC REVIEW REPORT

FOR FORMER MOBIL SERVICE STATION 99-MST 979 MAIN STREET (1001 MAIN STREET) NYSDEC SITE #C915260 CITY OF BUFFALO, ERIE COUNTY, NEW YORK

Prepared by:

C&S Engineers, Inc.

141 ELM STREET BUFFALO, NEW YORK 14203

Prepared on Behalf of:

CONVENTUS PARTNERS, LLC

KALEIDA HEALTH

KALEIDA PROPERTIES, INC.

SEAVEST CORE BUFFALO CONVENTUS, LLC

APRIL 2021

TABLE OF CONTENTS

EXE	CUTIV	/E SUMMARY	1
<u>1</u>	SITE	OVERVIEW	2
1.2 1.3 1.4	GEOI NATU SITE	DESCRIPTION OGY AND HYDROGEOLOGY JRE AND EXTENT OF CONTAMINATION HISTORY SITU INJECTIONS	2 2 3 3 6
<u>2</u>	<u>REM</u>	EDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS	7
<u>3</u>	IC/E	C PLAN COMPLIANCE REPORT	8
3.1.1 3.1.2	INS En	C REQUIREMENTS AND COMPLIANCE TITUTIONAL CONTROLS GINEERING CONTROLS C CERTIFICATION	8 9 9 9
<u>4</u>	MON	IITORING PLAN COMPLIANCE REPORT	9
<u>5</u>	<u>OPE</u>	RATION AND MAINTENANCE PLAN COMPLIANCE	10
<u>6</u>	<u>CON</u>	CLUSIONS	10
<u>7</u>	REC	OMMENDATIONS	11
FIGU	JRES		
Figu Figu Figu Figu	RE 2 RE 3	SITE LOCATION PROJECT BOUNDARIES HISTORIC BTEX CONCENTRATIONS INJECTION BORINGS	
TAB	LES		

TABLE 1 GROUNDWATER ANALYTICAL RESULTS

Periodic Review Report Former Mobil Service Station 99-MST 979 Main Street (1001 Main Street), BCP No. C915260

GRAPHS

GRAPH 1 GROUNDWATER TREATMENT MONITORING - TOTAL BTEX

APPENDICES

ACRONYM LIST

C&S ENGINEERS, INC.

BGS BELOW GROUND SURFACE

BCP Brownfield Cleanup Program

BCA BROWNFIELD CLEANUP AGREEMENT

BTEX BENZENE, TOLUENE, ETHYLBENZENE AND XYLENE

DUSR DATA USABILITY AND SUMMARY REPORT

LNAPL LIGHT NON-AQUEOUS PHASE LIQUID

IRM INTERIM REMEDIAL MEASURES

NYSDEC New York State Department of Environmental Conservation

PCOC PRIMARY CONTAMINATE OF CONCERN

PID PHOTO-IONIZATION DETECTOR

PPM PARTS PER MILLION

RI REMEDIAL INVESTIGATION
SCO SOIL CLEANUP OBJECTIVES
SMP SITE MANAGEMENT PLAN

SVOC SEMI-VOLATILE ORGANIC COMPOUNDS

VOC VOLATILE ORGANIC COMPOUNDS

EXECUTIVE SUMMARY

C&S Engineers, Inc. (C&S) has prepared this 2020 Periodic Review Report for the former Mobil Service Station 99-MST - 979 Main Street (1001 Main Street) (hereinafter referred to as the Site) located at 1001 Main Street in Buffalo, New York.

The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index #C915260-03-12, Site #C915260, which was executed on June 15, 2012 and last amended on August 7, 2012. BCA Volunteers included Kaleida Properties Inc., Kaleida Health and F.L.C 50 High Street Corporation. The BCA was amended for a change in ownership from F.L.C 50 High Street Corporation to Conventus Partners, LLC in August 2013. In December 2020, Conventus Partners, LLC and Kaleida Properties Inc. entered a ground lease for the property with Seavest Core Buffalo Conventus LLC to operate and maintain the property. A figure showing the Site location and boundaries is provided in **Figure 1** and **Figure 2**.

Remedial activities consisted of installing steel shoring around the property and removing contaminated soil and groundwater to 26 – 40 feet below ground surface. After completion of the remedial work, some contamination remained in the subsurface at this Site. A Site Management Plan (SMP) was prepared on November 28, 2014 to manage remaining groundwater contamination at the Site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36.

Petroleum contaminated groundwater is present within a discontinuous layer of coarse sand and gravel located between 32 and 35 feet below ground surface. This layer generally ranges from 6 inches to three feet thick, provides a preferential pathway for groundwater flow, and is confined within dense silt and fine sand present above and below the groundwater bearing zone.

During the remedial efforts, seven groundwater monitoring wells were installed prior to the installation of the two floors of underground parking. These monitoring wells were used to conduct in-situ injections by gravity feeding chemical oxidants into the groundwater bearing zone. A total of 2,480 pounds of chemical oxidant was used over three treatment events. Treatments occurred from December 2013 to June 2015. Groundwater samples following the in-situ injections show minor reductions in petroleum compounds.

In 2016, C&S conducted a limited groundwater extraction on the wells with the highest contaminant levels. Contaminated groundwater was pumped from the wells and treated with 200 pounds of activated carbon before discharging into the sanitary sewer. A total of 4,762.2 gallons of contaminated groundwater was removed. Groundwater samples collected in December 2015, January 2016 and March 2016 showed a slight reduction in petroleum compound concentrations.

The current ISCO treatment method is smaller pressurized injections around each target location on a quarterly schedule. A total of six temporary PVC injection points were installed around BCP-MW-6 and BCP-MW-5. Each quarterly treatment injects a total of 800 pounds (130 pounds per injection point) of chemical oxidant. Groundwater monitoring is conducted biannually.

All institutional and engineering controls are in compliance with the SMP. To address the continued elevated concentrations of petroleum compounds in the groundwater, C&S recommends the completion of additional treatment methods, including the implementation of a slow release chemical oxidation method.

The Institutional and Engineering Controls Certification form is provided in **Appendix B**.

1 SITE OVERVIEW

1.1 Site Description

The Site is located in the City of Buffalo County of Erie County, New York and is identified below on the Erie County Tax Map.

SBL: 100.79 - 1-1.1

Street Number: 1001 Main Street, Buffalo

(formerly 979 Main Street)

Owner: Kaleida Properties, Inc.

SBL: 100.79-1-2.11

Street Number: 818 Ellicott Street, Buffalo

Owner: Kaleida Health

The Site is an approximately 1.72-acre area bounded by Goodrich Street to the north, High Street to the south, parking lot to the east, and Main Street to the west (see **Figure 1 and 2**).

1.2 Geology and Hydrogeology

The Conventus Medical Office Building currently occupies the Site. During remedial activities, steel shoring was installed to a depth of 40 to 50 feet below grade around

the Site. Across the majority of the Site, soils were excavated to 26 feet below ground surface (bgs). Two floors of underground parking were constructed underneath the Conventus building.

The Site geology begins at 26 feet bgs. Subsurface soils consist of dry to moist fine sand and silt formation extends to nearly 70 feet bgs. Below this massive sand and silt formation is a discontinuous coarse sand and gravel layer that grades to a sand, gravel; and clay till formation. Underlying the overburden is a grey cherty limestone formation at approximately 90 feet bgs.

The principal groundwater bearing zone beneath the Site is located within the coarse sand and gravel layer between 32 and 35 feet bgs. This layer is of variable thickness (generally 6 inches to three feet) but is horizontally discontinuous. The layer is located within the central and northeastern portions of the Site, but does not extend completely to the southern, northwestern or southeastern areas of the Site and is confined by the dense fine sands and silt above and below the groundwater bearing zone.

1.3 Nature and Extent of Contamination

During the Interim Remedial Measure (IRM), grossly contaminated soil and groundwater were removed from the Site. In total, 67,458 tons of soils were sent for disposal or treatment due to gasoline contamination. The remaining contamination left on-site consists of petroleum impacted groundwater. Groundwater sampling that occurred prior to the IRM confirmed that the Primary Contaminants of Concern (PCOCs) are limited to petroleum hydrocarbons.

Groundwater flows within the coarse sand/gravel groundwater bearing zone to the northeast. Groundwater recharge from the surface has been eliminated due to the concrete floor of the parking garage, which effectively covers 100% of the Site recharge area. Additionally, below grade migration has been effectively stopped by the presence of deep sheet piling that cuts off the groundwater bearing zone from the remaining off-site formation around the majority of the Site. The lack of a vertical recharge from the surface and the horizontal containment in the groundwater bearing zone was designed to contain the remaining groundwater onsite and reduces the future contaminant loading into the surrounding off-site formation. However, a small gap in the sheet piling along the southwestern corner may provide a route for off-site contamination to impact the Site's groundwater.

1.4 Site History

Contamination is related to the historic use of the property as a gas station and originally was sourced from leaking underground storage tanks located above the "Deep Excavation Area" (see **Figure 3**).

For over 40 years, the light non-aqueous phase liquid (LNAPL) filtered downward from the base of the tank to a depth of approximately 40 feet bgs. LNAPL intercepted the groundwater at approximately 32 feet bgs. The water table is present within a semi-confined coarse sand and gravel lens. This lens varies in thickness (1/2 to 3 feet) and extends to the northeast, confined laterally to the east and west. Because of low carbon in the fine sand silt and gravel formations, breakdown of benzene, toluene, ethylbenzene and xylene (BTEX) compounds was slow. This resulted in high volatile organic compounds (VOC) soil gas in the unsaturated zone below the release area and the continual loading of BTEX into the groundwater from the LNAPL. Soil Contamination (exceeding Residential Use SCOs), below the LNAPL layer was noted to extend to a depth of 35 to 40 feet bgs. This area has been identified as the Source Area for groundwater contamination.

Dissolved BTEX, once entering the groundwater bearing zone was transported via localized, preferential groundwater flow to the northeast corner of the Site (Following the location of the coarse sand/gravel lens).

To redevelop the property into a medical office building, the Applicants (BCP F..L.C. 50 High Street, Corporation, Kaleida Health, Kaleida Properties, Inc. and Conventus Partners, LLC) acting as Brownfield Cleanup Program (BCP) Volunteers, submitted a BCP Application for the Site on November 28, 2011. The Applicants and the New York State Department of Environmental Conservation (NYSDEC) signed the Brownfield Cleanup Agreement (BCA) on June 15, 2012.

The NYSDEC approved IRM was implemented on January 2013. The following is a summary of the IRM performed at the Site:

- Excavation of soil/fill exceeding restricted residential SCOs to 26 feet bgs;
- 2. Excavation of soil from the Source Area to 40 feet bgs;
- 3. Removal of LNAPL and contaminated groundwater;
- 4. Backfilling with clean fill and construction of concrete floor;
- 5. Backfilling the Source Area with flowable fill; and
- 6. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the Site.

The removal of soils in the Source Area ("Area of Deep Excavation" in **Figure 3**) also included the removal of the groundwater bearing zone. During soil removal, 1,997 tons of groundwater and LNAPL was removed from the excavation and properly disposed off-site. The groundwater bearing zone within the Source Area was replaced with flowable fill, sealing this area off from the adjacent groundwater bearing zone beneath the Site.

Remedial activities were completed at the Site in October 2013. Implementation of the IRM, including source removal, was effective in removing any remaining free product grossly contaminated soils and the groundwater containing the highest dissolved BTEX. However, residual groundwater contamination remains on-site.

Following mass excavation activities, seven new wells were installed on-site.

Table 1-1: Post-Remediation Wells

Tubic 1 1:1 05t it	cinculation wens
Well ID	Diameter
BCP-MW-1	2"
BCP-MW-2	8"
BCP-MW-3	8"
BCP-MW-4	2"
BCP-MW-5	2"
BCP-MW-6	8"
BCP-MW-7	2"

Note that one well (BCP-MW-2) was installed adjacent to the flowable fill within the Source Area. This well did not produce water. A second well, BCP-MW-6, was installed along the western side of the deep excavation, along the tiered excavation area and did intercept the portion of the groundwater bearing zone remaining along the shoring. This well did produce water for sampling. All other wells were installed through native materials and the gravel water bearing layer. All wells were installed to an approximate depth of 43 feet below surrounding grade (approximately 16 feet below basement floor elevation).

The monitoring well locations were located in areas of previously identified groundwater contamination and to the south of the plume to confirm that contamination had not moved off-site to the south.

BCP-MW-2 was installed adjacent to the Source Area that was backfilled with flowable fill. Since its installation, this well has been dry. NYSDEC requested the well be modified to evaluate if groundwater underneath the flowable fill mass contains residual contamination. On October 7, 2015 Nature's Way Environmental installed a 1-inch PVC well through the existing BCP-MW-2 to a final depth of 50 feet bgs. The modified well has remained dry. This provides additional evidence that

groundwater and petroleum contamination are limited to the coarse sand and gravel layer 32 to 35 feet bgs.

1.4.1 In-situ Injections

The remedial method selected for the Site was in-situ chemical oxidation (ISCO) using RegenOX manufactured by Regenesis. RegenOX is sodium percarbonate formulated to degrade petroleum hydrocarbons through direct oxidation and through the generation of free radical compounds which will also oxidize contaminants. RegenOx produces minimal heat and pressure and is non-corrosive, making it a relatively safe chemical oxidant that is compatible for use in direct contact with underground infrastructure such as utilities, tanks, piping, and communication lines. This was an important characteristic when selecting the ISCO product due to the close proximity of the monitoring wells to the earth retention sheeting for the Conventus Building.

The amount of RegenOX used was calculated based on Site specific data and professional experience of C&S and Regenesis. RegenOX was mixed with tap water in 55 gallon drums at a concentration of 100 pounds of RegenOX with 110 gallons of water for each location.

In-situ treatment consisted of gravity-feeding a chemical oxidizer mixed with water directly into monitoring wells, BCP-MW-3, BCP-MW-4, BCP-MW-5, and BCP-MW-6,. Groundwater samples were collected approximately three months after treatment. The first ISCO treatment was conducted on December 12, 2013.

Evaluation of the gravity fed treatments determined this method was not effective at reducing groundwater contaminants. A work plan for increasing the amount of treatment solution using pressure injections was developed. Borings were advanced in the lower floor of underground parking to apply in-situ treatments under pressure directly into the contaminated sand and gravel lens.

The ISCO solution was directly injected into the soil in 12 borings in the sub-basement. Three borings were advanced adjacent to each monitoring wells listed below:

- BCP-MW-3
- BCP-MW-5
- BCP-MW-4
- BCP-MW-6

Each injection boring had to be carefully located to avoid hitting utilities located underneath the floor, with the intent of being within 10 to 15 feet of each monitoring well. Each injection boring was advanced into the coarse sand and gravel layer, approximately 15 feet below the concrete floor.

The ISCO solution was pumped from the mixing station to a truck mounted geoprobe and into the subsurface. The mix of RegenOX and water was injected under pressure in each boring, and the 12 injection borings received approximately 100 pounds of RegenOx. Additionally, 100 pounds of ISCO material was gravity fed directly into each monitoring well. A total of 1,600 pounds of RegenOx was used for each treatment event. For two treatments, a total of 3,200 pounds of RegenOX was used. These large treatment events resulted in mixed results; some locations showed an increase in contaminant concentrations, likely due to additional petroleum desorption, other locations indicated a significant decrease of petroleum contaminants.

The current ISCO treatment method is smaller pressurized injections around each target location on a quarterly schedule. A total of six temporary PVC injection points were installed around BCP-MW-6 and BCP-MW-5. Each quarterly treatment injects a total of 800 pounds (130 pounds per injection point) of chemical oxidant. Groundwater monitoring is conducted biannually. ISCO injections occurred on the following dates:

March 31, 2020 to April 1, 2020 June 23, 2020 to June 24, 2020 September 21, 2020 to September 24, 2020 January 5, 2021 to January 8, 2021

The current ISCO treatment method has injected a total of 2,400 pounds of oxidant into the subsurface.

2 Remedy Performance, Effectiveness and Protectiveness

The table below presents a comparison of total VOC and BTEX concentrations from each monitoring well and the percent change from pre-treatment and post-treatment groundwater monitoring.

Table 2-1: VOC Concentration Change

Monitoring Well	Percent Change	Percent Change	Percent Change Post Remediation
	Post Injections	Post Injections	Post Remediation
	December 2019 to	May 2020 to	Maximum to
	May 2020	November 2020	November 2020
BCP MW-1	-100	-100	-100
BCP MW-3	-100	-100	-100
BCP MW-4	+116	-4	-63
BCP MW-5	+33	-11	-60
BCP MW-6	-96	+262	-99

BCP MW-7	-100	-100	-100

Note:

Negative value indicates decrease in concentration and positives value indicates increase in concentration BCP-MW-2 was dry. No samples were collected.

Table 2-2: BTEX Concentration Change

Monitoring Well	Percent Change	Percent Change	Percent Change
	Post Injections	Post Injections	Post Remediation
	December 2019 to	May 2020 to	Maximum to
	May 2020	November 2020	November 2020
BCP MW-1	-100	-100	-100
BCP MW-3	-100	-100	-100
BCP MW-4	+119	-9	-70
BCP MW-5	+48	-12	-66
BCP MW-6	-100	-100	-100
BCP MW-7	-100	-100	-100

Note:

Negative value indicates decrease in concentration and positives value indicates increase in concentration BCP-MW-2 was dry. No samples were collected.

Post-treatment samples collected on November 2020 show a significant decrease in petroleum contamination in all monitoring wells from the historic maximum concentration. Groundwater samples indicate a 66% to 100% decrease in BTEX compounds and a 60% to 100% decrease in overall VOC concentrations. ISCO treatments have been effective in keeping contaminants of concern to a practical minimum.

Table 2-1 and **Table 2-2** shows several spikes in contaminant concentrations from December 2019 to November 2020. The tables indicate the percent change increased significantly, BCP-MW-4 and BCP-MW-5.

- BCP-MW-4: Total VOCs increased from 821.7 ug/l to 1,777.6 ug/l and total BTEX increased from 634.7 ug/l to 1,397.6 ug/l.
- BCP-MW-5: Total VOCs increased from 6,160.9 ug/l to 8,170.8 ug/l and total BTEX increased from 4,623.9 ug/l to 6,840.8 ug/l.

Graph 1 shows total BTEX concentrations over time. **Figure 3** shows the historic BTEX concentrations from each well.

3 IC/EC PLAN COMPLIANCE REPORT

3.1 IC/EC Requirements and Compliance

As stated in the 2014 Decision Document, the remedial action objectives (RAO) selected for this Site are:

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of volatiles, from contaminated groundwater.

RAOs for Environmental Protection

- Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Prevent the discharge of contaminants to surface water.

3.1.1 Institutional Controls

The institutional controls for this Site are:

- The Site may only be used for restricted residential use provided that the longterm Engineering and Institutional Controls included in this SMP are employed;
- The Site may not be used for a higher level of use, unrestricted or residential use, without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the Site that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- The use of the groundwater underlying the Site is prohibited by the City of Buffalo; and
- Vegetable gardens and farming on the Site are prohibited.

The Site has not changed owners and the land use of the Site has not change. All intuitional controls for this Site are in accordance with requirements of the Environmental Easement.

3.1.2 Engineering Controls

The engineering controls for this Site are:

• Groundwater treatment and monitoring using the seven wells installed in the sub-basement of the building

All engineering controls for this Site are in accordance with requirements of the Environmental Easement.

3.2 IC/EC Certification

As required, the Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certificate Form has been completed and a copy is provided in **Appendix B**.

4 MONITORING PLAN COMPLIANCE REPORT

The SMP identified the need for continued monitoring of groundwater conditions at the Site, including the periodic measuring of water levels and collecting groundwater samples for VOC analysis.

The following monitoring wells are included in the groundwater monitoring plan:

- BCP-MW-1
- BCP-MW-2
- BCP-MW-3
- BCP-MW-4
- BCP-MW-5
- BCP-MW-6

All monitoring wells were sampled with the exception of BCP-MW-2, which has remained dry since its installation.

The groundwater monitoring activities included the collection of depth-to-water measurements at each monitoring well and the collection of groundwater samples for laboratory analysis. Groundwater sampling was conducted in accordance with the U.S. Environmental Protection Agency Low flow sample procedure. Groundwater sample occurred on the dates below:

September 20, 2013	March 22, 2016	November 30, 2018
March 19, 2014	June 3, 2016	July 30, 2019
May 22, 2014	October 25, 2016	December 4, 2019
March 11, 2015	December 8, 2016	May 13, 2020
June 17, 2015	January 20, 2017	November 25, 2020
August 3, 2015	May 17, 2017	
October 7, 2015	July 5, 2017	
December 14, 2015	November 2, 2017	
January 27, 2016	August 18, 2018	

Figure 3 shows the location of the groundwater wells in the sub-basement of the Conventus building.

Table 1 presents detected compounds over all monitoring events.

5 OPERATION AND MAINTENANCE PLAN COMPLIANCE

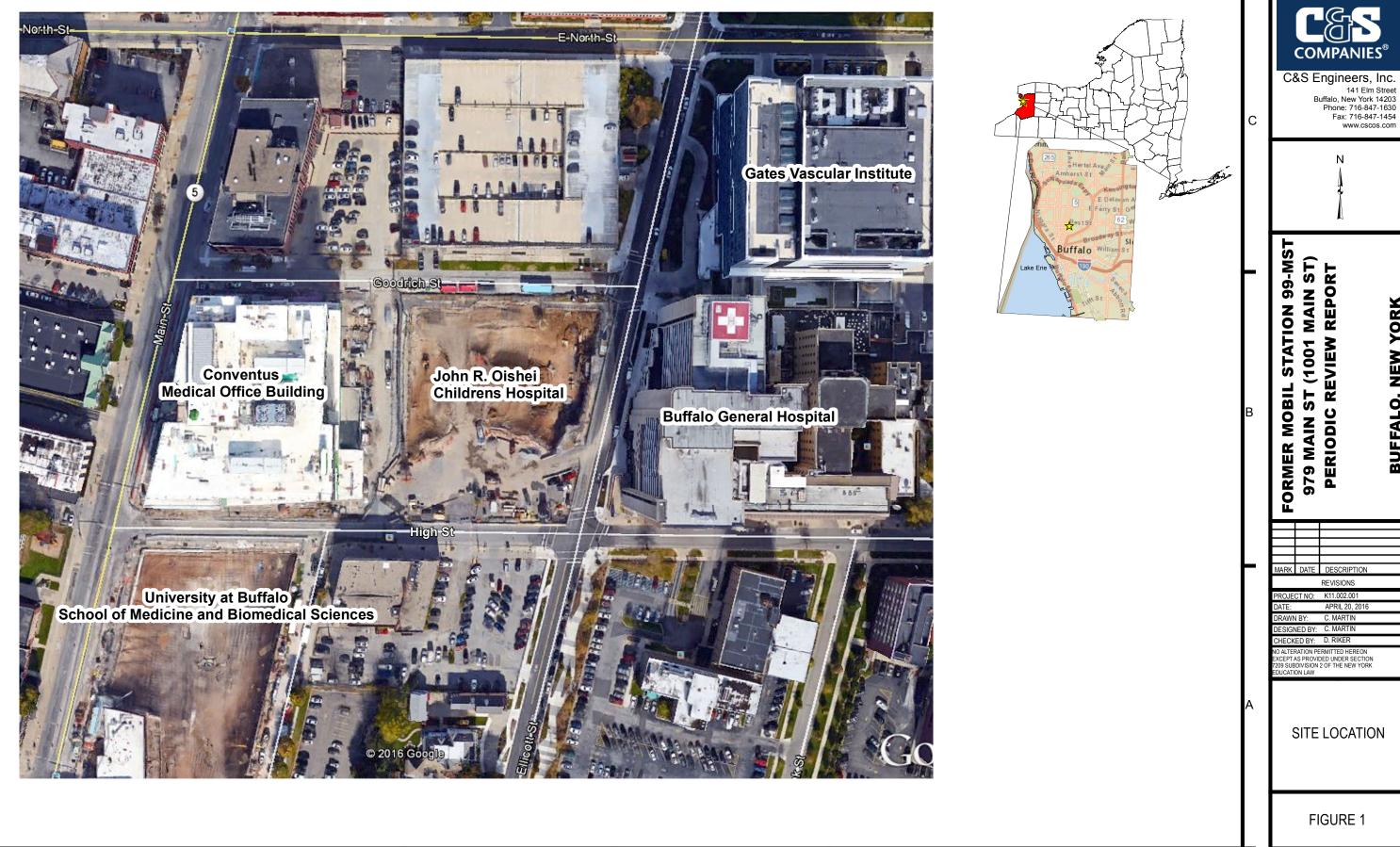
The only maintenance items are those associated with the monitoring wells. Minor maintenance to the well caps, PVC risers and road boxes is recommended for some of the monitoring wells. These issues do not interfere will groundwater monitoring or the integrity of the samples.

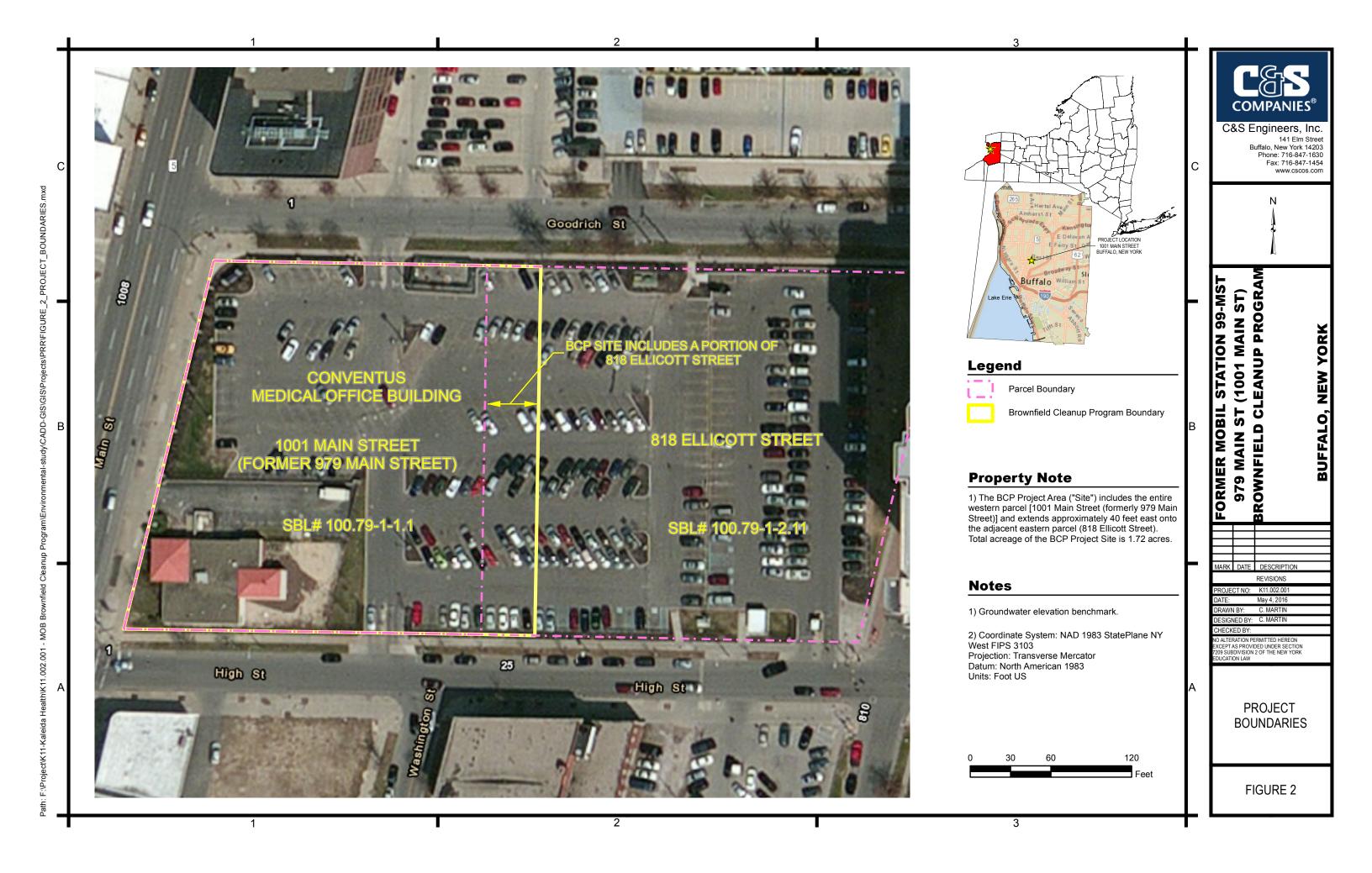
6 **CONCLUSIONS**

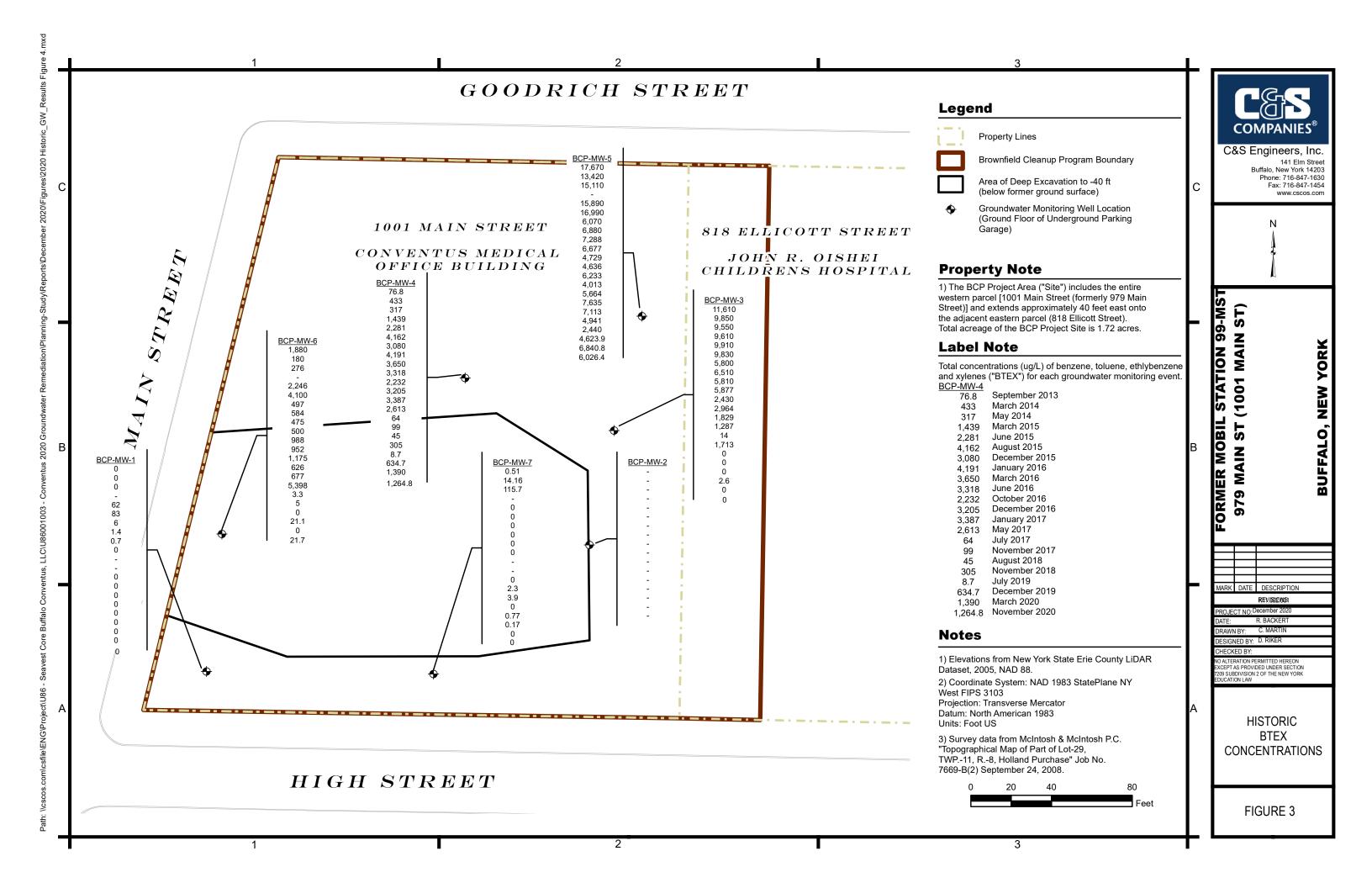
Based upon the remedial activities performed, the following conclusions have been formulated:

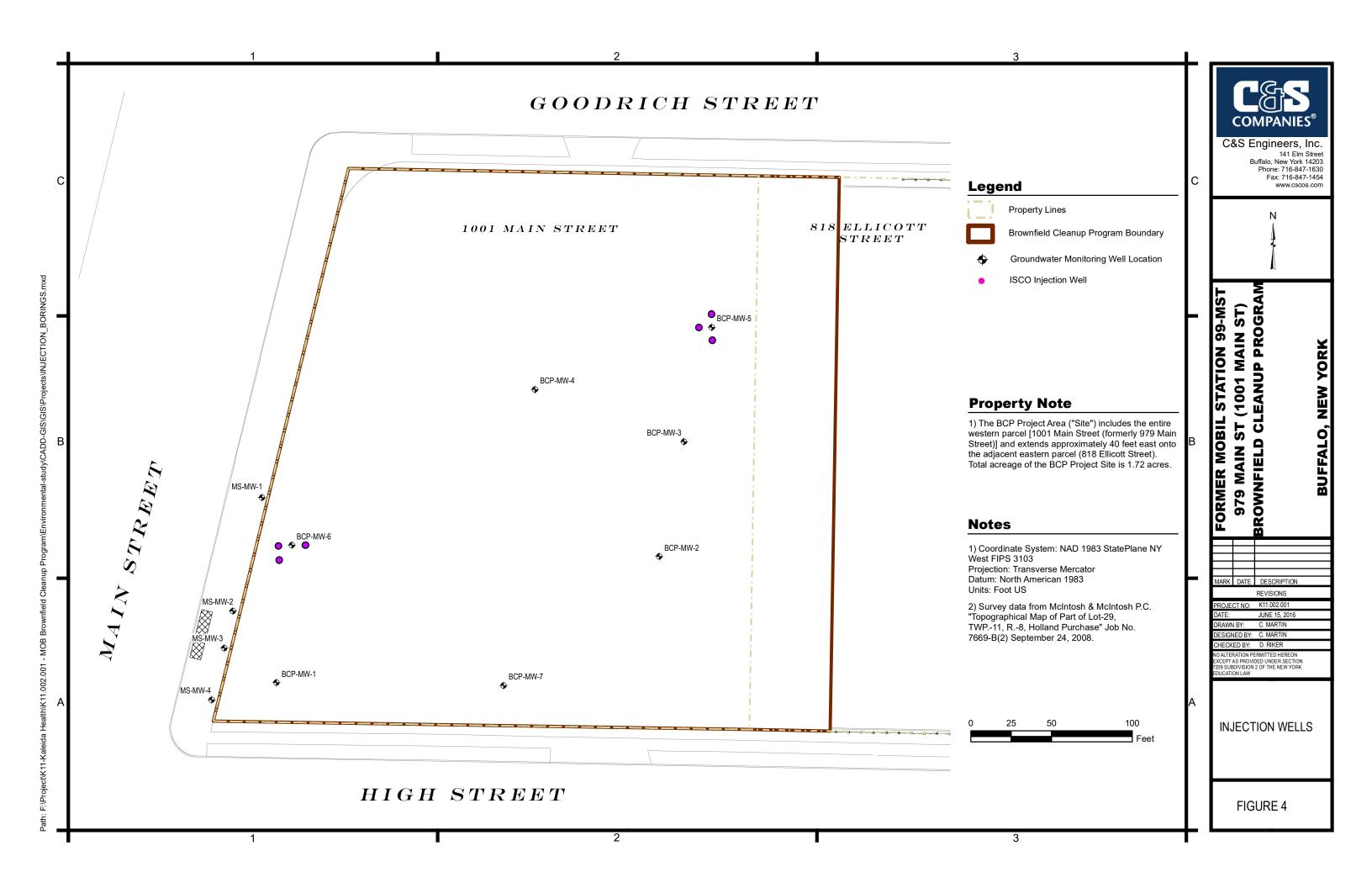
- All of the required work was completed and is reported herein.
- The remedial activities performed at the Site have prevented any adverse risk to human health and the environment.

7 RECOMMENDATIONS


At this time, pressurized in-situ injections are the most efficient method to apply chemical oxidants into the subsurface. Additional treatment events are planned for the Site.


Based on the results described above, it appears that significant onsite groundwater remediation has reduced BTEX concentrations 60% to 100% in five monitoring wells. Results for two monitoring wells, BCP-MW-4 and BCP-MW-5, lag behind the other wells.


The additional in-situ treatment will consist of the following:


- C&S will subcontract to perform the drilling and injections.
- Utilize existing three injection wells around BCP-MW-4 and three existing injection wells around BCP-MW-5.
- The ISCO product will be mixed with water onsite using 55-gallon steel drums.
- The ISCO solution will be injected into the sand / gravel layer under pressure.
- BCP-MW-5 and BCP-MW-6 will each receive 400 pounds of ISCO product; a total of 800 pounds of ISCO product will be injected per event. A total of 3,200 pounds in four events throughout the year.
- Groundwater sampling will be conducted semi-annually on the all monitoring wells in the sub-basement of the Site. All groundwater samples will be collected for VOCs and analyzed using EPA Method 8260.

FIGURES

TABLES

		Sample Name	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2014	12/15/2015	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019	3/31/2020	11/25/2020
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quality	Standards & C		-5-	-9	-9-	-5	-5-	-5-	-5-	-9-	-9-	-6-	-9-	-5-	-9	-5-	-9-	-9	-9	-9-	-5-	-9	-5-
Volatile Organic Compound																							
1.2-DICHLOROBENZENE	Surface Water	Groundwater	NID	ND	NID			ND		ND										ND		ND	
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND			ND		ND										.15 J		ND	
1,2-DICHLOROPROPANE	1	1	ND	ND	ND			ND		ND										.157		ND	
1.3-DICHLOROBENZENE	3	3	ND	ND	ND			ND		ND										ND		ND	
2-HEXANONE	50	50	ND	ND	ND		ND	ND	3.5	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	ND	ND	ND		ND	ND	NID	ND	ND	ND			ND	5.1	ND	ND	1.8J	2.4 J	1.7	ND	ND
BENZENE	1	1	ND	ND	ND		35	39	5.7	1.4	0.72	ND			ND	ND.	0.33	ND	NID.	ND.	NID.	ND	ND
DIBROMOCHLOROMETHANE	50	50	ND	ND ND	ND		33	ND	5.7	ND	0.72	ND			ND	ND	ND	ND	ND	ND	ND	ND ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND			ND		ND		ND				ND	ND	ND	ND	ND	ND	ND	ND
ETHYLBENZENE	5	5	ND	ND	ND		2	1.5	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
ISOPROPYLBENZENE (CUMENE)	5	5	ND	ND	ND		1.3	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYL ETHYL KETONE (2-BUTANONE)	50	50	ND	ND	ND		ND	45	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	ND	ND	ND		19	38	0.55	ND	ND	ND			ND	ND	1.1	ND	ND	ND	ND	ND	ND
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND		ND	ND	ND	0.33 J	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	ND	ND	ND		6.4	4.2	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
NAPHTHALENE	10	10	ND	ND	ND		ND	ND	ND	0.33 J	ND	ND			ND	ND	ND	ND	4.3	ND	ND	ND	ND
No Standard																							
CARBON DISULFIDE			ND	ND	0.94		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			ND	ND	ND		35	59	61	51	72	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYL ISOBUTYL KETONE			ND	ND	ND		ND	13	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			ND	ND	0.47		3.2	17	15	11	ND	ND			ND	ND	ND	1.5	.88J	ND	ND	ND	ND
Total VOCs			0	0	1.41	-	101.90	216.70	85.75	63.40	72.72	0			-	5.1	1.4	1.5	6.98	2.55	1.7	0	0
Total BTEX			0	0	0	-	62	83	6	1.4	0.7	0			0.0	0	0	0	0	0	0	0	0
Non-Standard VOC List																							
1,3,5-TRIMETHYLBENZENE	5	5														ND	ND		ND		ND		ND
1,2,4,5-TETRAMETHYLBENZENE	5	5														ND	ND		ND		ND		ND
1,2,4-TRIMETHYLBENZENE	5	5														ND	ND		ND		ND		ND
SEC-BUTYLBENZENE	5	5			,											ND	ND		ND		ND		ND
N-PROPYLBENZENE	5	5														ND	ND		ND		ND		ND
N-BUTYLBENZENE	5	5			,											ND	ND		ND		ND		ND
P-ISOPROPYLTOLUENE																ND	ND		ND		ND		ND
1,4-DIETHYLBENZENE	-															ND	ND		ND		ND		ND

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

	Sample Name	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3
	Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	1/27/2015	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019	3/31/2020	11/25/202
	Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
	Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
ındards & Gı	uidance Values																						
urface Water	Groundwater																						
3	3	ND	ND	ND																			
0.6	0.6	ND	ND	ND																			
1	1	ND	ND	ND																			
3	3	ND	ND	ND																			
50	50	ND	ND	ND	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8	ND	ND	ND	ND	ND	ND	ND
50	50	ND	98	ND	17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	166	ND	2.3	24.0	2.1 J	ND	ND	ND
1	1	6,600	4,500	4,700	3,700	4,300	4,100	2,100	2,200	1,900	3,100	1,390	635	363	451	3	364	ND	ND	ND	0.2J	ND	ND
50	50	ND	ND	ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND
5	5	ND	ND	ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND
5	5	1,200	1,600	1,500	1,600	1,500	1,700	1,400	1,600	1,600	610	194	899	517	197	2.4	384	ND	ND	ND	1.1 J	ND	ND
5	5	ND	37	ND	32	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.7	ND	ND	ND	ND	ND	ND
50	50	ND	71	ND	6.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	201	51.4	51.4	ND	ND	ND	ND	ND	ND
5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	5	110	150	150	110	110	130	100	110	110	67	39.4	74.5	38.4	22.6	1.6	34.8	ND	ND	ND	ND	ND	ND
5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	5	3,700	3,600	3,200	4200	4000	3900	2200	2600	2200	2100	806.3	1430	949	639	7.1	930.0	ND	ND	ND	1.3 J	ND	ND
10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14	357	ND	ND	ND	ND	ND	1.5 J
		ND	ND	ND	0.31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		120	320	270	390	330	210	100	93	110	170	ND	ND	ND	ND	ND	60.5	ND	ND	ND	ND	ND	3.4 J
		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		ND	130	150	120	160	96	34	33	36 J	170	47.7	ND	ND	29.5	ND	33.4	ND	ND	ND	ND	ND	ND
		11,730	10,506	9,970	10,179	10,400	10,136	5,934	6,636	5,920	6,252	2,477	3,038	1,867	1,540	254	2,224	2.3	24.0	2.1	2.6	0	4.
								5,800	6.510									_				0	0
																							_
5	5															ND	133	133	ND	ND	ND	ND	ND
5	5															ND	ND	ND	ND	ND	ND	ND	ND
5	5															4.9		737	ND	ND			ND
5	5															ND	ND	ND	ND	ND	ND	ND	ND
																ND.		ND.		ND.			ND
																ND.		ND		ND			ND
-																ND		ND		ND			ND
																							1417
	Surface Water 3 0.6 1 3 50 50 50 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5	Date Collected Matrix	Date Collected Matrix Unit Un	Date Collected Marix WG WG WG WG WG WG WG wg/L wg/	Date Collected 9/20/2013 3/19/2014 5/22/2014 WG WG WG WG WG Unit Unit	Date Collected Matrix WG WG WG WG WG WG WG W	Date Collected Marrix WG WG WG WG WG WG WG W	Date Collected Matrix WG WG WG WG WG WG WG W	Date Collected Matrix WG WG WG WG WG WG WG W	Date Collected Marrix WG WG WG WG WG WG WG W	Date Collected 9/20/2013 3/19/2014 \$722/2014 3/11/2015 6/17/2015 8/3/2015 12/15/2015 12/17/2015 3/22/2016 Matrix WG WG WG WG WG WG WG W	Date Collected Mariax WG	Date Collected Matrix WG	Description Page Collected Mairis WG WG WG WG WG WG WG W	Date Collected Main; WG WG WG WG WG WG WG W	Description	Description Page Page	Part	Part Part		Part	Part	Part

Notes:
Not Sampled

Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

		Sample Name	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	1/27/2016	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/17/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019	3/31/2020	11/25/202
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quality S	andards & Gu	idance Values																						
Volatile Organic Compound	Surface Water	Groundwater																						
1,2-DICHLOROBENZENE	3	3	ND	ND	ND																			
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND																			
1,2-DICHLOROPROPANE	1	1	ND	ND																		1.0 J		ND
1,3-DICHLOROBENZENE	3	3	ND	ND	ND																			
2-HEXANONE	50	50	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	10	250	170	67	ND	210	ND	ND	ND	ND	ND	ND	ND	ND	38.2	10	1.6	ND	ND	ND	ND	ND
BENZENE	1	1	42	29	15	26	24	242	ND	21	ND	21	9.57	12.8	10.2	10.8	1.3	97.0	45.0	36.0	6.7	6.4	7.6	7.8
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND																	ND	ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND																	ND	ND	ND
ETHYLBENZENE	5	5	4.7	34	32	560	1,000	680	1,100	1300	1,400	1400	1,000	1170	1,300	1220	28	1.8	ND	170	2.0 J	460	810	870
ISOPROPYLBENZENE (CUMENE)	5	5	ND	ND	ND	9.8	15.0	26	ND	ND	ND	ND	19	30.3	28.7	ND	2.3	ND	ND	8.3	1.3 J	19	28	34
METHYL ETHYL KETONE (2-BUTANONE)	50	50	ND	ND		ND	8.50	ND		ND		ND		ND		ND	6.9	ND		ND		ND		ND
METHYLENE CHLORIDE	5	5	ND	ND	1 J	ND	ND	ND	ND	52	ND	42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	1.1	190	110	53	57	140	180	270	150	97	62.4	130	133	92.2	9.8	ND	ND	15	ND	11	46	29
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	29	180	160	800	1,200	3100	1,800	2600	2,100	1800	1,160	1892	1,944	1289.7	24.5	ND	ND	83.6	ND	157.3	534 J	358 J
NAPHTHALENE	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND	ND	36	ND	99	230	230
No Standard																								
CARBON DISULFIDE			ND	ND	1.9 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			8.2	11	7	170	170	110	160	220	250	340	189	259	276	235	276	5.5	ND	24	.41 J	60	100	140
METHYL ISOBUTYL KETONE			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			7.5	3.7	3.1	87	92	69	86	100	110	140	85.1	110	123	99.7	123	2.4	0.47	8.9	ND	8	22J	38 J
Total VOCs			102.5	697.7	497.1	1,774.5	2,566.5	4,577.0	3,326.0	4,563.0	4,010.0	3,840.0	2,525.5	3,604.1	3,814.9	2,947.4	511.9	116.7	47.1	381.8	10.4	821.7	1,777.6	1,70
Total BTEX			76.8	433	317	1,439	2,281	4,162	3,080	4,191	3,650	3,318	2,232	3,205	3,387	2,613	64	99	45	304.6	8.7	634.7	1,397.60	1,26
Non-Standard VOC List																								
1,3,5-TRIMETHYLBENZENE	5	5															2	ND	ND	1.4 J	ND	ND	7.0J	11 J
1,2,4,5-TETRAMETHYLBENZENE	5	5															1.1	ND	ND	ND	ND	ND	ND	ND
1,2,4-TRIMETHYLBENZENE	5	5															1.1	ND	ND	150	ND	470	1100	1300
SEC-BUTYLBENZENE	5	5															ND	ND	ND	1.5 J	ND	2.9 J	ND	ND
N-PROPYLBENZENE	5	5															2.3	ND	ND	37	ND	86	150	170
N-BUTYLBENZENE	5	5															1.7	ND	ND	2.2 J	ND	4.1 J	10J	12 J
P-ISOPROPYLTOLUENE																	ND	ND	ND	ND	ND	ND	ND	ND
1,4-DIETHYLBENZENE																	NID	ND	NID	ND	NID	ND	2.772	ND

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

			MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5
		Sample Name	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	1/27/2016	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019	3/31/2020	11/25/2020
		Date Collected	9/20/2013 WG	3/19/2014 WG	WG	3/11/2013 WG	WG	WG	WG	WG	3/22/2016 WG	WG	WG	WG	WG	WG	WG	WG	8/10/2018 WG	WG	WG	WG	WG	WG
		Matrix	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quality	C4	Unit	ug/L	ugL	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ugil	ug/L	ug/L	ug/L	ug/L	ugL	ug/L	ugL	ug/L	ug/L	ug/L	ug/L	ugiL
Volatile Organic Compound																								
1,2-DICHLOROBENZENE	Surface Water	Groundwater	AID	ND	MD																			
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND																			
1,2-DICHLOROPROPANE	1	1	ND	ND	ND																			
1,3-DICHLOROBENZENE	3	3	ND	ND	ND																			
2-HEXANONE	50	50	11	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		2.7 J	ND	ND	ND
ACETONE	50	50	ND.	520	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	15.3	ND	41	69 J	44	97 J	ND	43 J
BENZENE	1	1	5,600	4,800	4,900		3,700	4,100	1,800	1,800	1,700	1,600	899	949	682	428	574	283	86	26	3,3	8.9 J	5.8J	3.4 J
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND		ND ND	-,100	ND	2,000	ND	2,000	ND	,47	ND ND	-20	ND	200	ND	20	ND .	ND	ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND
ETHYLBENZENE	5	5	1,900	1,600	1,600		2,800	2,600	1,600	1,900	2,200	2,200	1,490	1,450	2,070	584	534	1,660	1,500	810	520 E	1200	1,700	1,700
ISOPROPYLBENZENE (CUMENE)	5	5	28	29	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13.6	ND	20	16 J	23	24 J	30J	33 J
METHYL ETHYL KETONE (2-BUTANONE)	50	50	10	350	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.1	ND	ND		ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	77	96	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
TOLUENE	5	5	170	220	310		290	290	70	80	88	77	68.5	84.9	86.6	ND	36.2	82.0	66.0	39 J	38.0	42 J	49J	48 J
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		.22 J	ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
XYLENES, TOTAL	5	5	10,000	6,800	8,300		9,100	10,000	2,600	3,100	3,300	2,800	2,271.3	2,152.2	3,394.7	3,000.7	4,520.0	5,610.0	5,461.0	4,066.0	1879 E	3373	5,086.0	4,275
NAPHTHALENE	10	10	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	730	1,030	620	1,100		1100	940	820
No Standard																								ND
CARBON DISULFIDE			ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.1	ND	ND		1.2 J	ND	ND	ND
CYCLOHEXANE			230	340	240		430	260	230	250	280	430	198	148	257	ND	257	238	150	130 J	140	220	250	240
METHYL ISOBUTYL KETONE			23	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		3.0 J	ND	ND	ND
METHYLCYCLOHEXANE			100	170	150		190	130	92	100	100	140	67.5	58.4	92.8	49	92.8	106	70	82 J	65	96	110J	110 J
Total VOCs			18,072	14,829	15,500	-	16,510	17,380	6,392	7,230	7,745	7,343	4,994	4,843	6,583	4,062	6,780	9,009	8,014	6,338	2,718.72	6,160.9	8,170.80	7.272.4
Total BTEX			17,670	13,420	15,110	-	15,890	16,990	6,070	6,880	7,288	6,677	4,729	4,636	6,233	4,013	5,664	7,635	7,113	4,941	2,440.30	4,623.90	6,840.80	6,026.4
Non-Standard VOC List																								
1,3,5-TRIMETHYLBENZENE	5	5															823	ND	ND	630	ND	480	520	400
1,2,4,5-TETRAMETHYLBENZENE	5	5															135	ND	ND		ND	ND	ND	ND
1,2,4-TRIMETHYLBENZENE	5	5															2,280	2,490	2,400	2,300	ND	2200	2500	2500
SEC-BUTYLBENZENE	5	5															3.2	ND	ND		ND	ND	ND	ND
N-PROPYLBENZENE	5	5															34.8	ND	110	69	ND	110	140	150
N-BUTYLBENZENE	5	5															43.3	ND	ND		ND	4.1 J	ND	ND
P-ISOPROPYLTOLUENE																	5.7	ND	ND		ND	ND	ND	ND
1,4-DIETHYLBENZENE																	347	ND	ND		ND	ND	ND	ND

Notes:
Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

		Sample Name	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/14/2015	1/27/2016	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019	3/31/2020	11/25/2020
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quality	Standards & G	Guidance Values																						
Volatile Organic Compound	Surface Water	Groundwater																						
1,2-DICHLOROBENZENE	3	3	ND	ND	ND																ND	ND	ND	ND
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND																ND	ND	ND	ND
1,2-DICHLOROPROPANE	1	1	ND	ND	ND																ND	.20 J	ND	ND
1,3-DICHLOROBENZENE	3	3	ND	ND	ND																ND	ND	ND	ND
2-HEXANONE	50	50	ND	ND	ND		190	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	ND	ND	ND		480	340	ND	ND	ND	ND	ND	ND	ND	ND	102	ND	17	4.5 J	ND	6.4	1.6J	ND
BENZENE	1	1	190	33	16		470	890	250	230	200	120	302	168	200	113	131	774	ND	0.82	ND	4	ND	7.5
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ETHYLBENZENE	5	5	130	20	31		36	210	22	44	67	50	163	169	173	175	85.5	154.0	3.3	1.7 J	ND	2.4 J	ND	2.7
ISOPROPYLBENZENE (CUMENE)	5	5	4.4	ND	1.9 J			ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	1.3	ND	ND	.90 J	ND	ND
METHYL ETHYL KETONE (2-BUTANONE)	50	50	ND	ND	ND		110	ND	ND	ND	ND	ND	ND	ND	ND	ND	19.6	ND	ND	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	810	42	79		1,000	1,900	85	120	78	120	130	255	351	147	22.5	2,970.0	ND	ND	ND	6.7	ND	9
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	750	85	150		740	1,100	140	190	130	210	393	360	451	190.7	438	1,500	ND	2 J	ND	8	ND	10
NAPHTHALENE	10	10	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	86.6	ND	1	.8 J	ND	4.8	ND	2.6
No Standard																								
CARBON DISULFIDE			ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			68	ND	130		270	41	62	110	110	91	81.5	ND	ND	ND	ND	84	7.4	3.7 J	.60 J	6.6 J	ND	7.2 J
METHYL ISOBUTYL KETONE			ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			46	16	18		170	27	24	21	10	24	32.2	30.2	36.9	35.3	36.9	44	4.3	3.8 J	ND	4.5 J	ND	4.6 J
Total VOCs			1,998.4	196	424	-	3,466	4,508	583	715	595	615	1,101	983	1,212	661	925	5,526	35	17.32	0.6	44.5	1.6	43.6
Total BTEX			1,880	180	276	-	2,246	4,100	497	584	475	500	988	952	1,175	626	677	5,398	3	4.52	-	21.10	0	21.70
Non-Standard VOC List																								
1,3,5-TRIMETHYLBENZENE	5	5															74.3	ND	ND	5.1	ND	1.4 J	ND	2.0 J
1,2,4,5-TETRAMETHYLBENZENE	5	5															14.3	ND	ND	ND	ND	ND	ND	ND
1,2,4-TRIMETHYLBENZENE	5	5															134	ND	ND	ND	ND	2.2 J	ND	2.8
SEC-BUTYLBENZENE	5	5																		ND	ND	0.88 J	ND	ND
N-PROPYLBENZENE	5	5															11.3	ND	4.7	1.7 J	ND	1.3 J	ND	1.2 J
N-BUTYLBENZENE	5	5															4.6	ND	0.72	ND	ND	4.1 J	ND	ND
P-ISOPROPYLTOLUENE																	1.6	1.6	1.6	ND	ND	ND	ND	ND
1.4-DIETHYLBENZENE																	32.9	32.9	32.9	ND	ND	ND	ND	ND

Notes: Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

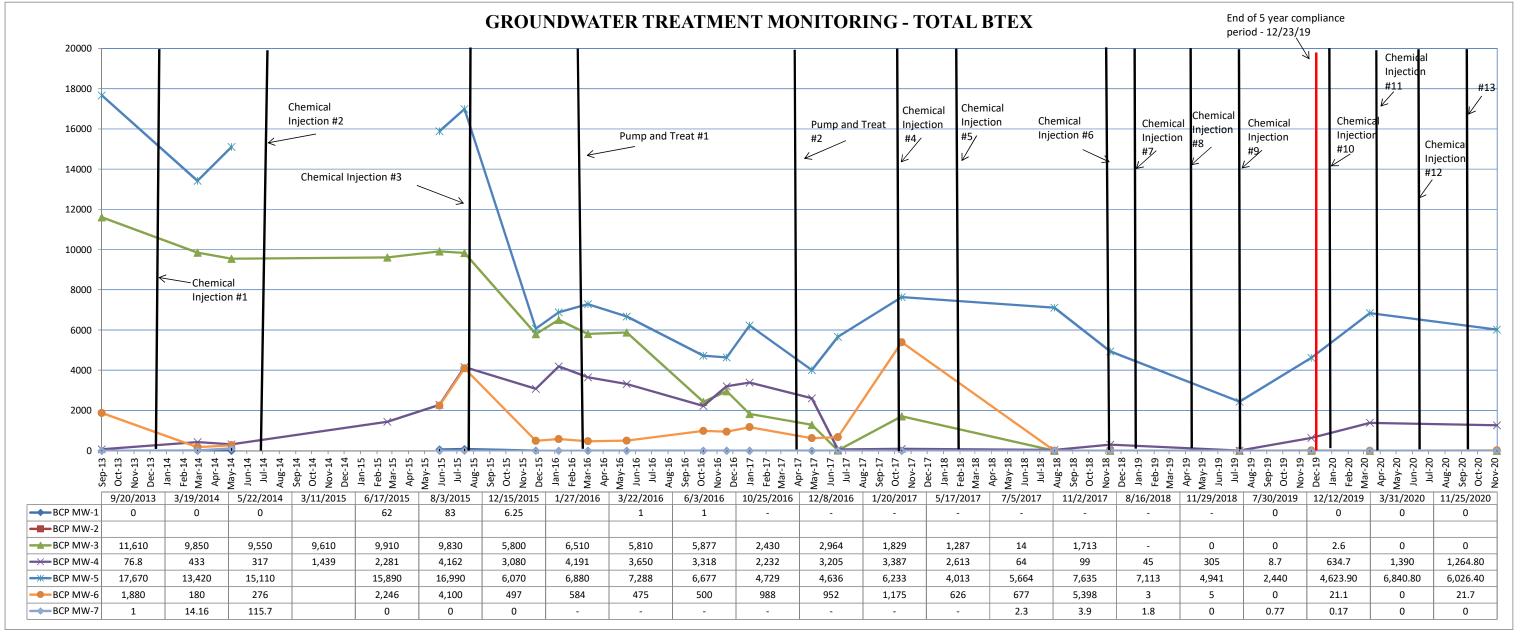
		Sample Name	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019	3/31/2020	11/25/202
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quality S	tandards & G	uidance Values																					
Volatile Organic Compound	Surface Water	Groundwater																					
1,2-DICHLOROBENZENE	3	3	ND	ND	ND															ND	ND	ND	ND
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND															ND	ND	ND	ND
1,2-DICHLOROPROPANE	1	1	ND	ND	ND															ND	ND	ND	ND
1,3-DICHLOROBENZENE	3	3	ND	ND	ND															ND	ND	ND	ND
2-HEXANONE	50	50	ND	ND	4.8		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	ND	3	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	1.5	ND	4.2 J	ND	ND	ND
BENZENE	1	1	0.51	8.8	14		ND	ND	ND	ND	ND	ND			ND	2.3	2.81	1.8	.18 J	.77	.17 J	ND	ND
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND		ND		ND		ND				ND		ND			ND	ND	ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND		ND		ND		ND				ND		ND			ND	ND	ND	ND
ETHYLBENZENE	5	5	ND	ND	3		ND	ND	ND	ND	ND	ND			ND	ND	0	ND	ND	ND	ND	ND	ND
ISOPROPYLBENZENE (CUMENE)	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	0.45	ND	ND	ND	ND	ND	ND
METHYL ETHYL KETONE (2-BUTANONE)	50	50	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	ND	0.56	4.7		ND	ND	ND	ND	ND	ND			ND	ND	1.1	ND	ND	ND	ND	ND	ND
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND		ND		ND		ND				ND		ND			ND	ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1																		ND	ND	ND	ND
XYLENES, TOTAL	5	5	0.96	4.8	94		ND	ND	ND	0.99 J	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
NAPHTHALENE	10	10																1.50	.86 J	ND	ND	ND	ND
No Standard																							
CARBON DISULFIDE			ND	ND	0.97		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			ND	4.3	9.6		ND	ND	0.71	ND	ND	ND			ND	ND	0.99	0.66	ND	ND	ND	ND	ND
METHYL ISOBUTYL KETONE			ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			ND	1.7	5.1		0.18	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND
Total VOCs			1.47	23.16	136.17		0.18		0.71		-		-	-		2.30	5.35	3.66	1.04	4.97	0.17	0	0
Total BTEX			0.51	14.16	115.7	-	-	-	-	-	-	-	-		-	2.3	3.9	1.8	0.18	0.77	0.17	0	0
Non-Standard VOC List																							
1,3,5-TRIMETHYLBENZENE	5	5														ND	ND	3.2		3.2	ND	ND	ND
1,2,4,5-TETRAMETHYLBENZENE	5	5														ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-TRIMETHYLBENZENE	5	5														ND	ND	ND	ND	ND	ND	ND	ND
SEC-BUTYLBENZENE	5	5																			ND		ND
N-PROPYLBENZENE	5	5																			ND		ND
N-BUTYLBENZENE	5	5																			ND		ND
P-ISOPROPYLTOLUENE																					ND		ND
1,4-DIETHYLBENZENE																					ND		ND

Notes:

Not Sampled

1) Blank space = analyte concentration not reported
. . .

2) BCP MW-2 was dry and not sampled


3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

GRAPHS

Former Mobil Station 99-MST 979 Main Street (1001 Main Street) Conventus Groundwater Remediation

APPENDICES

APPENDIX A

LABORATORY ANALYTICAL RESULTS

ANALYTICAL REPORT

Lab Number: L2052906

Client: C&S Companies

141 Elm Street

Suite 100

Buffalo, NY 14203

ATTN: Richard Backert Phone: (716) 955-3024

Project Name: CONVENTUS

Project Number: U86
Report Date: 12/03/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CONVENTUS

Project Number: U86

Lab Number: L2052906 **Report Date:** 12/03/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2052906-01	MSMW01	WATER	CONVENTUS/MAIN ST.	11/24/20 10:35	11/25/20
L2052906-02	MSMW02	WATER	CONVENTUS/MAIN ST.	11/24/20 11:20	11/25/20
L2052906-03	MSMW03	WATER	CONVENTUS/MAIN ST.	11/24/20 12:30	11/25/20
L2052906-04	MSMW04	WATER	CONVENTUS/MAIN ST.	11/24/20 13:00	11/25/20
L2052906-05	BCPMW01	WATER	CONVENTUS/MAIN ST.	11/25/20 10:15	11/25/20
L2052906-06	BCPMW07	WATER	CONVENTUS/MAIN ST.	11/25/20 10:50	11/25/20
L2052906-07	BCPMW04	WATER	CONVENTUS/MAIN ST.	11/25/20 11:30	11/25/20
L2052906-08	BCPMW03	WATER	CONVENTUS/MAIN ST.	11/25/20 12:00	11/25/20
L2052906-09	BCPMW06	WATER	CONVENTUS/MAIN ST.	11/25/20 12:30	11/25/20
L2052906-10	BCPMW05	WATER	CONVENTUS/MAIN ST.	11/25/20 13:00	11/25/20
L2052906-11	TRIP BLANK	WATER	CONVENTUS/MAIN ST.	11/25/20 14:00	11/25/20

Serial No:12032020:15

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:12032020:15

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2052906-02, -03, -04, -08, and -09 was received in the proper acid-preserved containers; however, upon analysis, the pH was determined to be greater than 2, and thus the method required holding time was exceeded.

L2052906-03: The sample has elevated detection limits due to the dilution required by the sample matrix (high sediment).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

M 2 M Jennifer L Clements

Authorized Signature:

Title: Technical Director/Representative

Date: 12/03/20

ORGANICS

VOLATILES

L2052906

Project Name: CONVENTUS

L2052906-01

CONVENTUS/MAIN ST.

MSMW01

Project Number: U86

SAMPLE RESULTS

Report Date: 12/03/20

Date Collected: 11/24/20 10:35

Lab Number:

Date Received: 11/25/20 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/03/20 00:38

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

SAMPLE RESULTS

Lab ID: L2052906-01 Date Collected: 11/24/20 10:35

Client ID: MSMW01 Date Received: 11/25/20 Sample Location: CONVENTUS/MAIN ST. Field Prep: Not Specified

No	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.4-Dichlorobenzene ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Westk	oorough Lab					
1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.6 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl terib bulyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Syrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-2-Dibromoethane ND ug/l 5.0 1.0 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-Er-Butylbenzene </td <td>1,4-Dichlorobenzene</td> <td>ND</td> <td></td> <td></td> <td>2.5</td> <td>0.70</td> <td>1</td>	1,4-Dichlorobenzene	ND			2.5	0.70	1
o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.0 0.65 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoe	Methyl tert butyl ether	ND			2.5	0.70	1
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-2-bitromora ND ug/l 2.0 0.65 1 1-2-Dibromethane ND ug/l 2.5 0.70 1 1-2-Dibromethane ND ug/l 2.5 0.70 1 1-2-Dibromethane ND ug/l 2.5 0.70 1	p/m-Xylene	ND		ug/l	2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1-2-Disromoethane ND ug/l 2.5 0.70 1 1-2-Distromoethane ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1	o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 <t< td=""><td>cis-1,2-Dichloroethene</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></t<>	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 <t< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.0</td><td>1</td></t<>	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	Acetone	ND		ug/l	5.0	1.5	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1sopropylbenzene ND ug/l 2.5 0.70 1 1sopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND	2-Butanone	ND		ug/l	5.0	1.9	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1 </td <td>4-Methyl-2-pentanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.0</td> <td>1</td>	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trinchlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	2-Hexanone	ND		ug/l	5.0	1.0	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 2.0 0.27 1 Freon-113	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.0 0.23 1 Freon-113 ND ug/l 10 0.27 1 Freon-113	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
	Cyclohexane	ND		ug/l	10	0.27	1
Methyl cyclohexane ND ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	99	70-130	

L2052906

11/24/20 11:20

Not Specified

11/25/20

Project Name: CONVENTUS

Project Number: U86

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 12/03/20

SAMPLE RESULTS

Lab ID: L2052906-02 D

Client ID: MSMW02

Sample Location: CONVENTUS/MAIN ST.

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/03/20 01:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	12	3.5	5	
1,1-Dichloroethane	ND		ug/l	12	3.5	5	
Chloroform	ND		ug/l	12	3.5	5	
Carbon tetrachloride	ND		ug/l	2.5	0.67	5	
1,2-Dichloropropane	ND		ug/l	5.0	0.68	5	
Dibromochloromethane	ND		ug/l	2.5	0.74	5	
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5	
Tetrachloroethene	ND		ug/l	2.5	0.90	5	
Chlorobenzene	ND		ug/l	12	3.5	5	
Trichlorofluoromethane	ND		ug/l	12	3.5	5	
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5	
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5	
Bromodichloromethane	ND		ug/l	2.5	0.96	5	
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5	
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5	
Bromoform	ND		ug/l	10	3.2	5	
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5	
Benzene	62		ug/l	2.5	0.80	5	
Toluene	490		ug/l	12	3.5	5	
Ethylbenzene	100		ug/l	12	3.5	5	
Chloromethane	ND		ug/l	12	3.5	5	
Bromomethane	ND		ug/l	12	3.5	5	
Vinyl chloride	ND		ug/l	5.0	0.36	5	
Chloroethane	ND		ug/l	12	3.5	5	
1,1-Dichloroethene	ND		ug/l	2.5	0.84	5	
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5	
Trichloroethene	ND		ug/l	2.5	0.88	5	
1,2-Dichlorobenzene	ND		ug/l	12	3.5	5	

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

SAMPLE RESULTS

Lab ID: L2052906-02 D Date Collected: 11/24/20 11:20

Client ID: MSMW02 Date Received: 11/25/20 Sample Location: CONVENTUS/MAIN ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	12	3.5	5
1,4-Dichlorobenzene	ND		ug/l	12	3.5	5
Methyl tert butyl ether	ND		ug/l	12	3.5	5
p/m-Xylene	1100		ug/l	12	3.5	5
o-Xylene	1400		ug/l	12	3.5	5
cis-1,2-Dichloroethene	ND		ug/l	12	3.5	5
Styrene	ND		ug/l	12	3.5	5
Dichlorodifluoromethane	ND		ug/l	25	5.0	5
Acetone	26		ug/l	25	7.3	5
Carbon disulfide	ND		ug/l	25	5.0	5
2-Butanone	ND		ug/l	25	9.7	5
4-Methyl-2-pentanone	ND		ug/l	25	5.0	5
2-Hexanone	ND		ug/l	25	5.0	5
1,2-Dibromoethane	ND		ug/l	10	3.2	5
n-Butylbenzene	ND		ug/l	12	3.5	5
sec-Butylbenzene	ND		ug/l	12	3.5	5
tert-Butylbenzene	ND		ug/l	12	3.5	5
1,2-Dibromo-3-chloropropane	ND		ug/l	12	3.5	5
Isopropylbenzene	3.6	J	ug/l	12	3.5	5
p-Isopropyltoluene	ND		ug/l	12	3.5	5
Naphthalene	140		ug/l	12	3.5	5
n-Propylbenzene	6.3	J	ug/l	12	3.5	5
1,2,4-Trichlorobenzene	ND		ug/l	12	3.5	5
1,3,5-Trimethylbenzene	350		ug/l	12	3.5	5
1,2,4-Trimethylbenzene	320		ug/l	12	3.5	5
Methyl Acetate	ND		ug/l	10	1.2	5
Cyclohexane	71		ug/l	50	1.4	5
Freon-113	ND		ug/l	12	3.5	5
Methyl cyclohexane	51		ug/l	50	2.0	5

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	92	70-130	

L2052906

Project Name: CONVENTUS

Lab Number:

Project Number: Report Date: U86 12/03/20

SAMPLE RESULTS

Lab ID: L2052906-03 D Date Collected: 11/24/20 12:30

Client ID: Date Received: 11/25/20 MSMW03

Sample Location: Field Prep: CONVENTUS/MAIN ST. Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/03/20 04:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	ND		ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Trichloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

SAMPLE RESULTS

Lab ID: L2052906-03 D Date Collected: 11/24/20 12:30

Client ID: MSMW03 Date Received: 11/25/20 Sample Location: CONVENTUS/MAIN ST. Field Prep: Not Specified

ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.4-Dichlorobenzene	Volatile Organics by GC/MS - Westl	oorough Lab					
1.4-Dichlorobenzene ND ug/l 25 7.0 10 Methyl tert butyl ether ND ug/l 25 7.0 10 p/m-Xylene ND ug/l 25 7.0 10 o-Xylene ND ug/l 25 7.0 10 cis-1,2-Dichloroethene ND ug/l 25 7.0 10 Styrene ND ug/l 25 7.0 10 Dichlorodifluoromethane ND ug/l 50 10 10 Acetone 19 J ug/l 50 10 10 Carbon disulfide ND ug/l 50 10 10 2-Butanone ND ug/l 50 10 10 2-Hexanone ND ug/l 50 10 10 1,2-Dibromoethane ND ug/l 25 7.0 10 1,2-Dibromoethane ND ug/l 25 7.0 10	1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether ND ug/l 25 7.0 10 p/m-Xylene ND ug/l 25 7.0 10 o-Xylene ND ug/l 25 7.0 10 cis-1,2-Dichloroethene ND ug/l 25 7.0 10 Styrene ND ug/l 25 7.0 10 Dichlorodifluoromethane ND ug/l 50 10 10 Acetone 19 J ug/l 50 10 10 Carbon disulfide ND ug/l 50 10 10 2-Butanone ND ug/l 50 10 10 2-Butanone ND ug/l 50 10 10 1-2-Dibromoethane ND ug/l 25 7.0 10 1-2-Dibromoethane ND ug/l 25 7.0 10 1-2-Dibromoethane ND ug/l 25 7.0 10 1-	1,4-Dichlorobenzene	ND			25	7.0	10
p/m-Xylene ND ug/l 25 7.0 10 o-Xylene ND ug/l 25 7.0 10 cis-1,2-Dichloroethene ND ug/l 25 7.0 10 Styrene ND ug/l 25 7.0 10 Dichlorodifluoromethane ND ug/l 50 10. 10 Acetone 19 J ug/l 50 15. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 10. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Butanone ND ug/l 20 6.5 10 1,2-Distromethane ND ug/l 20 6.5 10 1,2-Distromethane ND ug/l 25 7.0 10 1,2-Distromethane ND ug/l 25 7.0 10	Methyl tert butyl ether	ND			25	7.0	10
cis-1,2-Dichloroethene ND ug/l 25 7.0 10 Styrene ND ug/l 25 7.0 10 Dichlorodifluoromethane ND ug/l 50 10. 10 Acetone 19 J ug/l 50 15. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 10. 10 4-Methyl-2-pentanone ND ug/l 20 6.5 10 1-2-Dibromo-3-chaloroe ND ug/l 25 7.0 10 1-2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 1-2-Dibromo-3-chloropropane ND ug/l 25 7.0	p/m-Xylene	ND		ug/l	25	7.0	10
Styrene ND ug/l 25 7.0 10 Dichlorodiffluoromethane ND ug/l 50 10. 10 Acetone 19 J ug/l 50 15. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 10. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 1,2-Disromoethane ND ug/l 20 6.5 10 n-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10	o-Xylene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane ND	cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Acetone 19 J ug/l 50 15. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 1,2-Dibromoethane ND ug/l 20 6.5 10 n-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 lscopropylbenzene ND ug/l 25 7.0 10 lscopropylbenzene ND ug/l 25 7.0 10	Styrene	ND		ug/l	25	7.0	10
Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 1,2-Dibromoethane ND ug/l 20 6.5 10 n-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 Naphthalene 28 ug/l 25 7.0 10	Dichlorodifluoromethane	ND		ug/l	50	10.	10
2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 1,2-Dibromoethane ND ug/l 20 6.5 10 n-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 Naphthalene 28 ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10	Acetone	19	J	ug/l	50	15.	10
4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 1,2-Dibromoethane ND ug/l 20 6.5 10 n-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 lsopropylbenzene ND ug/l 25 7.0 10 sportopylbenzene ND ug/l 25 7.0 10Propylbenzene ND ug/l 25 7.0 10	Carbon disulfide	ND		ug/l	50	10.	10
2-Hexanone ND ug/l 50 10. 10 1,2-Dibromoethane ND ug/l 20 6.5 10 n-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 P-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 28 ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 25 7.0 10	2-Butanone	ND		ug/l	50	19.	10
1,2-Dibromoethane ND ug/l 20 6.5 10 n-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 P-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 28 ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 25 7.0 10	4-Methyl-2-pentanone	ND		ug/l	50	10.	10
n-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 lsopropylbenzene ND ug/l 25 7.0 10 Naphthalene 28 ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 25 7.0 10 Freon-113 ND ug/l 20 2.3 10 Freon-113	2-Hexanone	ND		ug/l	50	10.	10
sec-Butylbenzene ND ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 p-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 28 ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 25 7.0 10 Cyclohexane ND ug/l 20 2.3 10 Freon-113 ND ug/l 25 7.0 10 <td>1,2-Dibromoethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>20</td> <td>6.5</td> <td>10</td>	1,2-Dibromoethane	ND		ug/l	20	6.5	10
tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 p-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 28 ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 25 7.0 10 Cyclohexane ND ug/l 20 2.3 10 Cyclohexane ND ug/l 20 2.7 10 Freon-113	n-Butylbenzene	ND		ug/l	25	7.0	10
1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 p-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 28 ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 25 7.0 10 Cyclohexane ND ug/l 100 2.7 10 Freon-113 ND ug/l 25 7.0 10	sec-Butylbenzene	ND		ug/l	25	7.0	10
Isopropylbenzene ND ug/l 25 7.0 10	tert-Butylbenzene	ND		ug/l	25	7.0	10
p-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 28 ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 100 2.7 10 Freon-113 ND ug/l 25 7.0 10	1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Naphthalene 28 ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 100 2.7 10 Freon-113 ND ug/l 25 7.0 10	Isopropylbenzene	ND		ug/l	25	7.0	10
n-Propylbenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 100 2.7 10 Freon-113 ND ug/l 25 7.0 10	p-Isopropyltoluene	ND		ug/l	25	7.0	10
1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 100 2.7 10 Freon-113 ND ug/l 25 7.0 10	Naphthalene	28		ug/l	25	7.0	10
1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 100 2.7 10 Freon-113 ND ug/l 25 7.0 10	n-Propylbenzene	ND		ug/l	25	7.0	10
1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 100 2.7 10 Freon-113 ND ug/l 25 7.0 10	1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 100 2.7 10 Freon-113 ND ug/l 25 7.0 10	1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10
Cyclohexane ND ug/l 100 2.7 10 Freon-113 ND ug/l 25 7.0 10	1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10
Freon-113 ND ug/l 25 7.0 10	Methyl Acetate	ND		ug/l	20	2.3	10
	Cyclohexane	ND		ug/l	100	2.7	10
Methyl cyclohexane ND ug/l 100 4.0 10	Freon-113	ND		ug/l	25	7.0	10
	Methyl cyclohexane	ND		ug/l	100	4.0	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	99	70-130	

L2052906

11/24/20 13:00

Project Name: CONVENTUS

Project Number: U86

SAMPLE RESULTS

Lab Number:

Date Collected:

Report Date: 12/03/20

Lab ID: L2052906-04

Client ID: MSMW04

Sample Location: CONVENTUS/MAIN ST. Date Received: 11/25/20 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/03/20 01:25

Volatile Organics by GC/MS - Westborough La Methylene chloride 1,1-Dichloroethane Chloroform	ND ND ND ND ND		ug/l ug/l	2.5	0.70	1
1,1-Dichloroethane Chloroform	ND ND				0.70	1
Chloroform	ND		ua/l	0.5		
			~ g, .	2.5	0.70	1
On the section of the	ND		ug/l	2.5	0.70	1
Carbon tetrachloride			ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	0.18	J	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.21	J	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.40	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

SAMPLE RESULTS

Lab ID: L2052906-04 Date Collected: 11/24/20 13:00

Client ID: MSMW04 Date Received: 11/25/20 Sample Location: CONVENTUS/MAIN ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	0.90	J	ug/l	2.5	0.70	1
o-Xylene	1.0	J	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.3	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	1.9	J	ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	2.9	J	ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.41	J	ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	98		70-130	

Project Name: CONVENTUS

Project Number: U86

SAMPLE RESULTS

Report Date: 12/03/20

Lab ID:

L2052906-05 Client ID: BCPMW01

Sample Location: CONVENTUS/MAIN ST. Date Received: Field Prep:

Date Collected:

Lab Number:

11/25/20 10:15 11/25/20 Not Specified

L2052906

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/03/20 01:49

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2052906-05 Date Collected: 11/25/20 10:15

Client ID: BCPMW01 Date Received: 11/25/20 Sample Location: CONVENTUS/MAIN ST. Field Prep: Not Specified

Result

Sample Depth:

Parameter

raiailletei	Nesuit	Qualifier	Ullita	NL.	WIDE	Dilution i actor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	99	70-130	

11/25/20 10:50

Project Name: CONVENTUS

Project Number: U86

SAMPLE RESULTS

Lab Number: L2052906

Date Collected:

Report Date: 12/03/20

Lab ID: L2052906-06

Client ID: Date Received: 11/25/20 BCPMW07 Field Prep: Not Specified

Sample Location: CONVENTUS/MAIN ST.

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/03/20 02:12

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

SAMPLE RESULTS

Lab ID: L2052906-06 Date Collected: 11/25/20 10:50

Client ID: BCPMW07 Date Received: 11/25/20 Sample Location: CONVENTUS/MAIN ST. Field Prep: Not Specified

No	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.4-Dichlorobenzene ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Westk	oorough Lab					
1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.6 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl terib bulyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Syrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-2-Dibromoethane ND ug/l 5.0 1.0 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-Er-Butylbenzene </td <td>1,4-Dichlorobenzene</td> <td>ND</td> <td></td> <td></td> <td>2.5</td> <td>0.70</td> <td>1</td>	1,4-Dichlorobenzene	ND			2.5	0.70	1
o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.0 0.65 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoe	Methyl tert butyl ether	ND			2.5	0.70	1
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-2-bitromora ND ug/l 2.0 0.65 1 1-2-Dibromethane ND ug/l 2.5 0.70 1 1-2-Dibromethane ND ug/l 2.5 0.70 1 1-2-Dibromethane ND ug/l 2.5 0.70 1	p/m-Xylene	ND		ug/l	2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1-2-Disromoethane ND ug/l 2.5 0.70 1 1-2-Distromoethane ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1	o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 <t< td=""><td>cis-1,2-Dichloroethene</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></t<>	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 <t< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.0</td><td>1</td></t<>	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	Acetone	ND		ug/l	5.0	1.5	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1sopropylbenzene ND ug/l 2.5 0.70 1 1sopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND	2-Butanone	ND		ug/l	5.0	1.9	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1 </td <td>4-Methyl-2-pentanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.0</td> <td>1</td>	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trinchlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	2-Hexanone	ND		ug/l	5.0	1.0	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 2.0 0.27 1 Freon-113	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.0 0.23 1 Freon-113 ND ug/l 10 0.27 1 Freon-113	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
	Cyclohexane	ND		ug/l	10	0.27	1
Methyl cyclohexane ND ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	99	70-130	

L2052906

11/25/20 11:30

Project Name: CONVENTUS

Project Number: U86

SAMPLE RESULTS

Report Date: 12/03/20

Lab Number:

Date Collected:

Lab ID: L2052906-07 D

Client ID: BCPMW04

Sample Location: CONVENTUS/MAIN ST. Date Received: 11/25/20 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/03/20 02:36

Volatile Organics by GC/MS - Westborough	n Lab				
Methylene chloride	ND	ug/l	25	7.0	10
1,1-Dichloroethane	ND	ug/l	25	7.0	10
Chloroform	ND	ug/l	25	7.0	10
Carbon tetrachloride	ND	ug/l	5.0	1.3	10
1,2-Dichloropropane	ND	ug/l	10	1.4	10
Dibromochloromethane	ND	ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND	ug/l	15	5.0	10
Tetrachloroethene	ND	ug/l	5.0	1.8	10
Chlorobenzene	ND	ug/l	25	7.0	10
Trichlorofluoromethane	ND	ug/l	25	7.0	10
1,2-Dichloroethane	ND	ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND	ug/l	25	7.0	10
Bromodichloromethane	ND	ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND	ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND	ug/l	5.0	1.4	10
Bromoform	ND	ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND	ug/l	5.0	1.7	10
Benzene	7.8	ug/l	5.0	1.6	10
Toluene	29	ug/l	25	7.0	10
Ethylbenzene	870	ug/l	25	7.0	10
Chloromethane	ND	ug/l	25	7.0	10
Bromomethane	ND	ug/l	25	7.0	10
Vinyl chloride	ND	ug/l	10	0.71	10
Chloroethane	ND	ug/l	25	7.0	10
1,1-Dichloroethene	ND	ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND	ug/l	25	7.0	10
Trichloroethene	ND	ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND	ug/l	25	7.0	10

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

SAMPLE RESULTS

Lab ID: L2052906-07 D Date Collected: 11/25/20 11:30

Client ID: BCPMW04 Date Received: 11/25/20 Sample Location: CONVENTUS/MAIN ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	340		ug/l	25	7.0	10
o-Xylene	18	J	ug/l	25	7.0	10
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	ND		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
n-Butylbenzene	12	J	ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
tert-Butylbenzene	ND		ug/l	25	7.0	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Isopropylbenzene	34		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	230		ug/l	25	7.0	10
n-Propylbenzene	170		ug/l	25	7.0	10
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
1,3,5-Trimethylbenzene	11	J	ug/l	25	7.0	10
1,2,4-Trimethylbenzene	1300		ug/l	25	7.0	10
Methyl Acetate	ND		ug/l	20	2.3	10
Cyclohexane	140		ug/l	100	2.7	10
Freon-113	ND		ug/l	25	7.0	10
Methyl cyclohexane	38	J	ug/l	100	4.0	10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	96		70-130	

L2052906

11/25/20 12:00

Not Specified

11/25/20

Project Name: CONVENTUS

Project Number: U86

SAMPLE RESULTS

Report Date: 12/03/20

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2052906-08

Client ID: BCPMW03

Sample Location: CONVENTUS/MAIN ST.

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/03/20 02:59

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

ug/l

2.5

0.70

ND

1

1,2-Dichlorobenzene

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

SAMPLE RESULTS

Lab ID: L2052906-08 Date Collected: 11/25/20 12:00

Client ID: BCPMW03 Date Received: 11/25/20 Sample Location: CONVENTUS/MAIN ST. Field Prep: Not Specified

ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.4-Dichlorobenzene	Volatile Organics by GC/MS - Westl	oorough Lab					
1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 prim-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cxylene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 1.0 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hoxanone ND ug/l 2.5 0.70 1 1,2-Dibromethane	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichloroethane ND ug/l 5.0 1.0 1 Styrene ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1,2-Dibromorbane ND ug/l 2.5 0.70 1 1,2-Dibromorbane	1,4-Dichlorobenzene	ND			2.5	0.70	1
p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.0 0.65 1 1.2-Distromoethane ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-Etert-Butylbenzene ND ug/l 2.5 0.70 1 1-Lett-Ebu	Methyl tert butyl ether	ND			2.5	0.70	1
c-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1-Butylbenzene	p/m-Xylene	ND			2.5	0.70	1
ND	o-Xylene	ND		ug/l	2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Patriblenzene ND ug/l 2.5 0.70 1 1,2-Patri	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1.2-Dibromoethane ND ug/l 5.0 1.0 1 1.2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-Leyphylbenzene ND ug/l 2.5 0.70 1	Styrene	ND			2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 Isporpoylbenzene ND ug/l 2.5 0.70 1 Naphthalene 1.5 J ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1	Acetone	ND		ug/l	5.0	1.5	1
4-Methyl-2-pentanone	Carbon disulfide	ND		ug/l	5.0	1.0	1
ND	2-Butanone	ND		ug/l	5.0	1.9	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 nn-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1sopropylbenzene ND ug/l 2.5 0.70 1 1sopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene 1.5 J ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane 3.4 J ug/l 2.5	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
ND	2-Hexanone	ND		ug/l	5.0	1.0	1
ND	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene 1.5 J ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane 3.4 J ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene 1.5 J ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 3.4 J ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Sopropylbenzene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene 1.5 J ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 3.4 J ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene 1.5 J ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 3.4 J ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 3.4 J ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 3.4 J ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	1.5	J	ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 3.4 J ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 3.4 J ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane 3.4 J ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane 3.4 J ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
-0	Cyclohexane	3.4	J	ug/l	10	0.27	1
Methyl cyclohexane ND ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	98	70-130	

L2052906

11/25/20 12:30

Project Name: CONVENTUS

Project Number: U86

SAMPLE RESULTS

Report Date: 12/03/20

Lab Number:

Date Collected:

Lab ID: L2052906-09

> Date Received: 11/25/20 Field Prep:

Sample Location: CONVENTUS/MAIN ST.

BCPMW06

Not Specified

Sample Depth:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/03/20 03:23

Volatile Organics by GC/MS - Westboroug	h Lab				
Methylene chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	7.5	ug/l	0.50	0.16	1
Toluene	9.0	ug/l	2.5	0.70	1
Ethylbenzene	2.7	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

SAMPLE RESULTS

Lab ID: L2052906-09 Date Collected: 11/25/20 12:30

Client ID: BCPMW06 Date Received: 11/25/20 Sample Location: CONVENTUS/MAIN ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	5.0		ug/l	2.5	0.70	1
o-Xylene	5.0		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	2.6		ug/l	2.5	0.70	1
n-Propylbenzene	1.2	J	ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	2.0	J	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	2.8		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	7.2	J	ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	4.6	J	ug/l	10	0.40	1

Surrogate	% Recovery	A Qualifier	cceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	96		70-130	

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

SAMPLE RESULTS

Lab ID: L2052906-10 D Date Collected: 11/25/20 13:00

Client ID: BCPMW05 Date Received: 11/25/20

Sample Location: CONVENTUS/MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/03/20 03:46

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	50	14.	20	
1,1-Dichloroethane	ND		ug/l	50	14.	20	
Chloroform	ND		ug/l	50	14.	20	
Carbon tetrachloride	ND		ug/l	10	2.7	20	
1,2-Dichloropropane	ND		ug/l	20	2.7	20	
Dibromochloromethane	ND		ug/l	10	3.0	20	
1,1,2-Trichloroethane	ND		ug/l	30	10.	20	
Tetrachloroethene	ND		ug/l	10	3.6	20	
Chlorobenzene	ND		ug/l	50	14.	20	
Trichlorofluoromethane	ND		ug/l	50	14.	20	
1,2-Dichloroethane	ND		ug/l	10	2.6	20	
1,1,1-Trichloroethane	ND		ug/l	50	14.	20	
Bromodichloromethane	ND		ug/l	10	3.8	20	
trans-1,3-Dichloropropene	ND		ug/l	10	3.3	20	
cis-1,3-Dichloropropene	ND		ug/l	10	2.9	20	
Bromoform	ND		ug/l	40	13.	20	
1,1,2,2-Tetrachloroethane	ND		ug/l	10	3.3	20	
Benzene	3.4	J	ug/l	10	3.2	20	
Toluene	48	J	ug/l	50	14.	20	
Ethylbenzene	1700		ug/l	50	14.	20	
Chloromethane	ND		ug/l	50	14.	20	
Bromomethane	ND		ug/l	50	14.	20	
Vinyl chloride	ND		ug/l	20	1.4	20	
Chloroethane	ND		ug/l	50	14.	20	
1,1-Dichloroethene	ND		ug/l	10	3.4	20	
trans-1,2-Dichloroethene	ND		ug/l	50	14.	20	
Trichloroethene	ND		ug/l	10	3.5	20	
1,2-Dichlorobenzene	ND		ug/l	50	14.	20	

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

SAMPLE RESULTS

Lab ID: L2052906-10 D Date Collected: 11/25/20 13:00

Client ID: BCPMW05 Date Received: 11/25/20 Sample Location: CONVENTUS/MAIN ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene	ND		ug/l	50	14.	20
1,4-Dichlorobenzene	ND		ug/l	50	14.	20
Methyl tert butyl ether	ND		ug/l	50	14.	20
p/m-Xylene	4200		ug/l	50	14.	20
o-Xylene	75		ug/l	50	14.	20
cis-1,2-Dichloroethene	ND		ug/l	50	14.	20
Styrene	ND		ug/l	50	14.	20
Dichlorodifluoromethane	ND		ug/l	100	20.	20
Acetone	43	J	ug/l	100	29.	20
Carbon disulfide	ND		ug/l	100	20.	20
2-Butanone	ND		ug/l	100	39.	20
4-Methyl-2-pentanone	ND		ug/l	100	20.	20
2-Hexanone	ND		ug/l	100	20.	20
1,2-Dibromoethane	ND		ug/l	40	13.	20
n-Butylbenzene	ND		ug/l	50	14.	20
sec-Butylbenzene	ND		ug/l	50	14.	20
tert-Butylbenzene	ND		ug/l	50	14.	20
1,2-Dibromo-3-chloropropane	ND		ug/l	50	14.	20
Isopropylbenzene	33	J	ug/l	50	14.	20
p-Isopropyltoluene	ND		ug/l	50	14.	20
Naphthalene	820		ug/l	50	14.	20
n-Propylbenzene	150		ug/l	50	14.	20
1,2,4-Trichlorobenzene	ND		ug/l	50	14.	20
1,3,5-Trimethylbenzene	400		ug/l	50	14.	20
1,2,4-Trimethylbenzene	2500		ug/l	50	14.	20
Methyl Acetate	ND		ug/l	40	4.7	20
Cyclohexane	240		ug/l	200	5.4	20
Freon-113	ND		ug/l	50	14.	20
Methyl cyclohexane	110	J	ug/l	200	7.9	20

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	96		70-130	

L2052906

Project Name: CONVENTUS

Project Number: U86

SAMPLE RESULTS

12/03/20

Report Date:

Lab Number:

Lab ID: L2052906-11 Date Collected: 11/25/20 14:00

Client ID: Date Received: 11/25/20 TRIP BLANK Sample Location: Field Prep: CONVENTUS/MAIN ST. Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/02/20 17:17

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

SAMPLE RESULTS

Lab ID: L2052906-11 Date Collected: 11/25/20 14:00

Client ID: TRIP BLANK Date Received: 11/25/20 Sample Location: CONVENTUS/MAIN ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	94	70-130	

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/02/20 09:35

Analyst: PD

arameter	Result	Qualifier Ur	nits	RL	MDL
olatile Organics by GC/MS - \	Westborough Lab	for sample(s): 11	Batch:	WG1440455-5
Methylene chloride	ND	ι	ıg/l	2.5	0.70
1,1-Dichloroethane	ND	l	ıg/l	2.5	0.70
Chloroform	ND	l	ıg/l	2.5	0.70
Carbon tetrachloride	ND	l	ıg/l	0.50	0.13
1,2-Dichloropropane	ND	l	ıg/l	1.0	0.14
Dibromochloromethane	ND	l	ıg/l	0.50	0.15
1,1,2-Trichloroethane	ND	ι	ıg/l	1.5	0.50
Tetrachloroethene	ND	ι	ıg/l	0.50	0.18
Chlorobenzene	ND	ι	ıg/l	2.5	0.70
Trichlorofluoromethane	ND	l	ıg/l	2.5	0.70
1,2-Dichloroethane	ND	l	ıg/l	0.50	0.13
1,1,1-Trichloroethane	ND	l	ıg/l	2.5	0.70
Bromodichloromethane	ND	l	ıg/l	0.50	0.19
trans-1,3-Dichloropropene	ND	l	ıg/l	0.50	0.16
cis-1,3-Dichloropropene	ND	l	ıg/l	0.50	0.14
Bromoform	ND	l	ıg/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	l	ıg/l	0.50	0.17
Benzene	ND	l	ıg/l	0.50	0.16
Toluene	ND	l	ıg/l	2.5	0.70
Ethylbenzene	ND	l	ıg/l	2.5	0.70
Chloromethane	ND	l	ıg/l	2.5	0.70
Bromomethane	0.78	Jι	ıg/l	2.5	0.70
Vinyl chloride	ND	l	ıg/l	1.0	0.07
Chloroethane	ND	l	ıg/l	2.5	0.70
1,1-Dichloroethene	ND	l	ıg/l	0.50	0.17
trans-1,2-Dichloroethene	ND	l	ıg/l	2.5	0.70
Trichloroethene	ND	l	ıg/l	0.50	0.18
1,2-Dichlorobenzene	ND	l	ıg/l	2.5	0.70
1,3-Dichlorobenzene	ND	L	ıg/l	2.5	0.70

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/02/20 09:35

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - We	stborough Lab	for sample(s): 11	Batch:	WG1440455-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/02/20 09:35

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 11 Batch: WG1440455-5

		Acceptance
Surrogate	%Recovery C	Qualifier Criteria
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	107	70-130
Dibromofluoromethane	97	70-130

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/02/20 20:20

Analyst: LAC

arameter	Result	Qualifier Uni	ts	RL	MDL
olatile Organics by GC/MS - \	Westborough Lab	for sample(s):	01-10	Batch:	WG1440766-5
Methylene chloride	ND	ug	/I	2.5	0.70
1,1-Dichloroethane	ND	ug	/I	2.5	0.70
Chloroform	ND	uç	/I	2.5	0.70
Carbon tetrachloride	ND	uç	/I	0.50	0.13
1,2-Dichloropropane	ND	uç	/I	1.0	0.14
Dibromochloromethane	ND	uç	/I	0.50	0.15
1,1,2-Trichloroethane	ND	uç	/I	1.5	0.50
Tetrachloroethene	ND	uç	/I	0.50	0.18
Chlorobenzene	ND	uç	/I	2.5	0.70
Trichlorofluoromethane	ND	uç	/I	2.5	0.70
1,2-Dichloroethane	ND	uç	/I	0.50	0.13
1,1,1-Trichloroethane	ND	ug	/I	2.5	0.70
Bromodichloromethane	ND	ug	/I	0.50	0.19
trans-1,3-Dichloropropene	ND	ug	/I	0.50	0.16
cis-1,3-Dichloropropene	ND	ug	/I	0.50	0.14
Bromoform	ND	ug	/I	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	นดู	/I	0.50	0.17
Benzene	ND	นดู	/I	0.50	0.16
Toluene	ND	ug	/I	2.5	0.70
Ethylbenzene	ND	นดู	/I	2.5	0.70
Chloromethane	ND	ug	/I	2.5	0.70
Bromomethane	ND	ug	/I	2.5	0.70
Vinyl chloride	ND	ug	/I	1.0	0.07
Chloroethane	ND	ug	/I	2.5	0.70
1,1-Dichloroethene	ND	ug	/I	0.50	0.17
trans-1,2-Dichloroethene	ND	ug	/I	2.5	0.70
Trichloroethene	ND	ug	/I	0.50	0.18
1,2-Dichlorobenzene	ND	ug	/I	2.5	0.70
1,3-Dichlorobenzene	ND	ug	ı/I	2.5	0.70

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/02/20 20:20

Analyst: LAC

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - \	Westborough Lab	for sample(s):	01-10 Batch:	WG1440766-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/02/20 20:20

Analyst: LAC

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-10 Batch: WG1440766-5

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	103		70-130		
Toluene-d8	101		70-130		
4-Bromofluorobenzene	105		70-130		
Dibromofluoromethane	99		70-130		

Project Name: CONVENTUS

Project Number: U86

Lab Number: L2052906

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 1	1 Batch: WG	1440455-3	WG1440455-4		
Methylene chloride	110		110		70-130	0	20
1,1-Dichloroethane	120		120		70-130	0	20
Chloroform	120		120		70-130	0	20
Carbon tetrachloride	110		110		63-132	0	20
1,2-Dichloropropane	120		110		70-130	9	20
Dibromochloromethane	97		98		63-130	1	20
1,1,2-Trichloroethane	97		98		70-130	1	20
Tetrachloroethene	100		100		70-130	0	20
Chlorobenzene	110		110		75-130	0	20
Trichlorofluoromethane	110		110		62-150	0	20
1,2-Dichloroethane	120		120		70-130	0	20
1,1,1-Trichloroethane	110		110		67-130	0	20
Bromodichloromethane	110		110		67-130	0	20
trans-1,3-Dichloropropene	100		100		70-130	0	20
cis-1,3-Dichloropropene	110		110		70-130	0	20
Bromoform	86		86		54-136	0	20
1,1,2,2-Tetrachloroethane	91		91		67-130	0	20
Benzene	110		110		70-130	0	20
Toluene	110		100		70-130	10	20
Ethylbenzene	110		110		70-130	0	20
Chloromethane	110		110		64-130	0	20
Bromomethane	140	Q	130		39-139	7	20
Vinyl chloride	110		110		55-140	0	20

Project Name: CONVENTUS

Project Number: U86

Lab Number: L2052906

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 11	Batch: WG	1440455-3	WG1440455-4		
Chloroethane	110		110		55-138	0	20
1,1-Dichloroethene	100		100		61-145	0	20
trans-1,2-Dichloroethene	120		120		70-130	0	20
Trichloroethene	110		110		70-130	0	20
1,2-Dichlorobenzene	100		100		70-130	0	20
1,3-Dichlorobenzene	110		110		70-130	0	20
1,4-Dichlorobenzene	110		110		70-130	0	20
Methyl tert butyl ether	110		110		63-130	0	20
p/m-Xylene	105		105		70-130	0	20
o-Xylene	105		105		70-130	0	20
cis-1,2-Dichloroethene	110		110		70-130	0	20
Styrene	105		100		70-130	5	20
Dichlorodifluoromethane	120		120		36-147	0	20
Acetone	97		99		58-148	2	20
Carbon disulfide	120		120		51-130	0	20
2-Butanone	97		100		63-138	3	20
4-Methyl-2-pentanone	78		79		59-130	1	20
2-Hexanone	96		98		57-130	2	20
1,2-Dibromoethane	95		96		70-130	1	20
n-Butylbenzene	110		110		53-136	0	20
sec-Butylbenzene	110		100		70-130	10	20
tert-Butylbenzene	110		110		70-130	0	20
1,2-Dibromo-3-chloropropane	54		54		41-144	0	20

Project Name: CONVENTUS

Project Number: U86

Lab Number: L2052906

arameter	LCS %Recovery	Qual	LCSE %Recov		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	.ab Associated	sample(s): 1	1 Batch:	WG1440455-3	WG1440455-4			
Isopropylbenzene	110		110		70-130	0		20
p-Isopropyltoluene	110		110		70-130	0		20
Naphthalene	42	Q	44	Q	70-130	5		20
n-Propylbenzene	110		110		69-130	0		20
1,2,4-Trichlorobenzene	64	Q	66	Q	70-130	3		20
1,3,5-Trimethylbenzene	110		110		64-130	0		20
1,2,4-Trimethylbenzene	110		110		70-130	0		20
Methyl Acetate	90		94		70-130	4		20
Cyclohexane	120		120		70-130	0		20
Freon-113	120		110		70-130	9		20
Methyl cyclohexane	120		110		70-130	9		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	103	102	70-130
Toluene-d8	99	98	70-130
4-Bromofluorobenzene	108	106	70-130
Dibromofluoromethane	99	99	70-130

Project Name: CONVENTUS

Project Number: U86

Lab Number: L2052906

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-10 Batch: W	G1440766-3 WG1440766-4		
Methylene chloride	88		84	70-130	5	20
1,1-Dichloroethane	98		91	70-130	7	20
Chloroform	94		89	70-130	5	20
Carbon tetrachloride	83		77	63-132	8	20
1,2-Dichloropropane	99		92	70-130	7	20
Dibromochloromethane	94		88	63-130	7	20
1,1,2-Trichloroethane	99		94	70-130	5	20
Tetrachloroethene	90		84	70-130	7	20
Chlorobenzene	99		92	75-130	7	20
Trichlorofluoromethane	78		73	62-150	7	20
1,2-Dichloroethane	97		92	70-130	5	20
1,1,1-Trichloroethane	88		81	67-130	8	20
Bromodichloromethane	92		88	67-130	4	20
trans-1,3-Dichloropropene	94		90	70-130	4	20
cis-1,3-Dichloropropene	92		87	70-130	6	20
Bromoform	87		83	54-136	5	20
1,1,2,2-Tetrachloroethane	99		96	67-130	3	20
Benzene	96		90	70-130	6	20
Toluene	98		93	70-130	5	20
Ethylbenzene	97		90	70-130	7	20
Chloromethane	90		85	64-130	6	20
Bromomethane	55		62	39-139	12	20
Vinyl chloride	87		80	55-140	8	20

Project Name: CONVENTUS

Project Number: U86

Lab Number: L2052906

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-10 Batch: W	G1440766-3 WG1440766-4		
Chloroethane	100		94	55-138	6	20
1,1-Dichloroethene	87		81	61-145	7	20
trans-1,2-Dichloroethene	94		87	70-130	8	20
Trichloroethene	91		82	70-130	10	20
1,2-Dichlorobenzene	97		93	70-130	4	20
1,3-Dichlorobenzene	99		94	70-130	5	20
1,4-Dichlorobenzene	98		94	70-130	4	20
Methyl tert butyl ether	92		87	63-130	6	20
p/m-Xylene	100		90	70-130	11	20
o-Xylene	100		90	70-130	11	20
cis-1,2-Dichloroethene	96		90	70-130	6	20
Styrene	100		95	70-130	5	20
Dichlorodifluoromethane	69		64	36-147	8	20
Acetone	100		94	58-148	6	20
Carbon disulfide	85		79	51-130	7	20
2-Butanone	95		91	63-138	4	20
4-Methyl-2-pentanone	100		95	59-130	5	20
2-Hexanone	98		95	57-130	3	20
1,2-Dibromoethane	97		92	70-130	5	20
n-Butylbenzene	94		88	53-136	7	20
sec-Butylbenzene	94		88	70-130	7	20
tert-Butylbenzene	95		90	70-130	5	20
1,2-Dibromo-3-chloropropane	83		83	41-144	0	20

Project Name: CONVENTUS

Project Number: U86

Lab Number: L2052906

Report Date:

12/03/20

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-10	Batch:	WG1440766-3	WG1440766-4			
Isopropylbenzene	98			92		70-130	6	1	20
p-Isopropyltoluene	95			89		70-130	7		20
Naphthalene	72			74		70-130	3		20
n-Propylbenzene	99			93		69-130	6		20
1,2,4-Trichlorobenzene	81			79		70-130	3		20
1,3,5-Trimethylbenzene	99			93		64-130	6		20
1,2,4-Trimethylbenzene	99			94		70-130	5		20
Methyl Acetate	96			92		70-130	4		20
Cyclohexane	86			81		70-130	6		20
Freon-113	82			77		70-130	6		20
Methyl cyclohexane	79			74		70-130	7		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qu	Acceptance ual Criteria
1,2-Dichloroethane-d4	103	104	70-130
Toluene-d8	104	104	70-130
4-Bromofluorobenzene	105	105	70-130
Dibromofluoromethane	99	99	70-130

Project Name: CONVENTUS

Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information				Initial	Final	Temp	emp		Frozen	
	Container ID	Container Type	Cooler	рН	pН	-	Pres	Seal	Date/Time	Analysis(*)
	L2052906-01A	Vial HCI preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-01B	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-01C	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-02A	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-02B	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-02C	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-03A	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-03B	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-03C	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-04A	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-04B	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-04C	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-05A	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-05B	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-05C	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-06A	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-06B	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-06C	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-07A	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-07B	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-07C	Vial HCI preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-08A	Vial HCI preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
	L2052906-08B	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2052906

Report Date: 12/03/20

Project Number: U86

CONVENTUS

Project Name:

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2052906-08C	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2052906-09A	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2052906-09B	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2052906-09C	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2052906-10A	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2052906-10B	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2052906-10C	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2052906-11A	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2052906-11B	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)

Project Name: CONVENTUS Lab Number: L2052906

Project Number: U86 Report Date: 12/03/20

GLOSSARY

Acronyms

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:CONVENTUSLab Number:L2052906Project Number:U86Report Date:12/03/20

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$ Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:CONVENTUSLab Number:L2052906Project Number:U86Report Date:12/03/20

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:CONVENTUSLab Number:L2052906Project Number:U86Report Date:12/03/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 17

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Διрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Way	05	Page / o	e f 2	PA-23039	e Rec'd n Lab	12/11	20	ALPHA Job# L205290	0(0
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	MILE SAND		No. in case	MIEN B	Deliverat	iles	THE PARTY NAMED IN		Billing Information	CP .
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Cowa	Cares				A STATE OF THE PARTY OF THE PAR	P-A	ASP	.B	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288			1,	cor		-	ulS (1 File)		IS (4 File)		es:
Client Information	The State of the last	Project # 1/91	wholes	1 vers	131		-			15 (4 File)	PO#	
	.h. ~!	V 0 V					Ott	100				
Client: CES Cou		(Use Project name as P	Management of the Control of the Con				Regulato	ry Requireme		1000	Disposal Site Information	וו
Address: [41 KL		Project Manager: NU	4 PACKEN				☐ NY	TOGS	Y NY P	art 375	Please identify below locatio	on of
BURGATO M		ALPHAQuote #:					☐ AW	Q Standards	NY C	P-51	applicable disposal facilities.	63
Phone: 71 6 796	3520	Turn-Around Time			Reside	2018	NY NY	Restricted Use	Other		Disposal Facility:	
Fax:	_	Standard	d 🔽	Due Date:		-	□ NY	Unrestricted Us	ie —		□ NJ De NY	
Email: Nouchet	Drawl tou	Rush (only if pre approved		# of Days:	77			Sewer Discha			Other:	
These samples have b				ir or bays.	10		ANALYS		age			10570
Other project specific		THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.					ANALTS	15			Sample Filtration	
Please specify Metals							usido				□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	t a l B o t
ALPHA Lab ID	Sa	ample ID	Colle	ection	Sample	Sampler's	0					- 1
(Lab Use Only)	-	enterent :	Date	Time	Matrix	Initials	2				Sample Specific Comment	ts e
52906-01	MSMWOI	×:	18/24/20	10:35	600	RIR	vo					3
-02	vrsrwo2		11/21/10	11:20	GW	VUS	4					3
-03	MINWU3	14	144/20	12:30	GW	1203	V					3
-04	HIMWOY		11/24/20	1:00	Qw	WB		++-		_		-
	BCPHWOI		144/20				9	+				2
-05			1	10:15	GW	03	Y	-				3
-06	BCPYWOZ		11/28/20	10:50	GW	1203	6					3
-07	BUPTUNOY		Masso	11:30	aw	NB	X					3
-08	8crotwo3	,	11/20/10	12:00	GW	Ref	\v					3
-09	Bus orwo 6	•	11/2/20	12:30	GW	NZ	X					3
-10	BURNWOS		likshe	1:00	GW	W	×					7
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore	Mansfield: Certification Mansfield: Certification Mansfield: Certification Mansfield: Relinquished	No: MA015	Date/	F Time	Preservative	B Heceived B	By:		e/Time	Please print clearly, let and completely. Samp not be logged in and turnaround time clock start until any ambiguit resolved. BY EXECUT THIS COC, THE CLIE	will not ties are TING
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 3	D = BOD Bottle	Tall of	AAL	11/25/76		J'h	Sign.	Mary C	The same of the sa	00:46	HAS READ AND AGR TO BE BOUND BY AL TERMS & CONDITION (See reverse side.)	REES LPHA'S

Address: /4/ W Puchaca Phone: Hu 74 Fax:		Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cod Project Information Project Name: Cod Project Location: Cod (Use Project name as Propect Manager: ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved)	oject #)	S) TO A; Due Date			Delive	rables ASP-A EQUIS (1 F Other alony Requ NY TOGS AWQ Standa NY Restricte NY Unrestrict NYC Sewer	File) ards d Use ded Use	ASI NY NY Oth	ulS (4 File) Part 375 CP-51	ALPHA Job # L20:53 906 Billing Information Same as Client Info Po# Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other:	
These samples have b	Rush (only if pre approved) # of Days: amples have been previously analyzed by Alpha roject specific requirements/comments:						ANAL	YSIS				Sample Filtration	T
Other project specific		nents:			6.5		O-824co					□ Done □ Lab to do Preservation □ Lab to do	0 1 a 1 B 0 .
ALPHA Lab ID (Lab Use Only)	Sa	ample ID	Colle Date	ection	Sample Matrix	Sampler's Initials	3					Cample Cassific Comments	1
52906 -11	TRIP BLAN	A	11/25/20	2:00	GW	RB	P		\vdash	+			2
	-						\square		\vdash	_	\perp		_
							\vdash	_		_			_
					-		\vdash	_		+			_
							\vdash	_	-	_	+		_
							\vdash			_			_
Preservative Code: Container Code Westboro: Certification No: MA935 A = None P = Plastic Mansfield: Certification No: MA015 B = HCI A = Amber Glass Mansfield: Certification No: MA015 C = HNO3 V = Vial G = Glass G = Glass G = Glass G = Glass E = NaOH B = Bacteria Cup Mansfield: Certification No: MA015			Container Type Preservative							Please print clearly, legibly and completely. Samples on not be logged in and turnaround time clock will re			
F = MeOH $G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquistifed I		Date/ 11/2//20	0 2:10	al	Receive	Alp Alp		1/25/	te/Time 20 1410 20 40	TO BE BOUND BY ALPHA' TERMS & CONDITIONS.	
Form No: 01-25 HC (rev. 3	0-Sept-2013)				,							(See reverse side.)	

ANALYTICAL REPORT

Lab Number: L2013949

Client: C&S Companies

141 Elm Street

Suite 100

Buffalo, NY 14203

ATTN: Richard Backert Phone: (716) 955-3024

Project Name: CONVENTUS

Project Number: K11
Report Date: 04/03/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CONVENTUS

Project Number: K11

Lab Number: L2013949 **Report Date:** 04/03/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2013949-01	BCPMW01033120	WATER	K11.002.001 1001 MAIN ST.	03/31/20 09:50	03/31/20
L2013949-02	BCPMW07033120	WATER	K11.002.001 1001 MAIN ST.	03/31/20 10:35	03/31/20
L2013949-03	BCPMW004033120	WATER	K11.002.001 1001 MAIN ST.	03/31/20 11:05	03/31/20
L2013949-04	BCPMW03033120	WATER	K11.002.001 1001 MAIN ST.	03/31/20 11:35	03/31/20
L2013949-05	BCPMW06033120	WATER	K11.002.001 1001 MAIN ST.	03/31/20 12:05	03/31/20
L2013949-06	BCPMW05033120	WATER	K11.002.001 1001 MAIN ST.	03/31/20 12:35	03/31/20
L2013949-07	TRIP BLANK	WATER	K11.002.001 1001 MAIN ST.	03/31/20 00:00	03/31/20

Project Name:CONVENTUSLab Number:L2013949Project Number:K11Report Date:04/03/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.							

Project Name: CONVENTUS Lab Number: L2013949

Project Number: K11 Report Date: 04/03/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/03/20

Michelle M. Morris

ORGANICS

VOLATILES

L2013949

Project Name: CONVENTUS Lab Number:

Project Number: Report Date: K11 04/03/20

SAMPLE RESULTS

Lab ID: L2013949-01 Date Collected: 03/31/20 09:50

Client ID: Date Received: 03/31/20 BCPMW01033120 Sample Location: Field Prep: K11.002.001 1001 MAIN ST. Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 04/02/20 21:26

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: Lab Number: **CONVENTUS** L2013949

Project Number: Report Date: K11 04/03/20

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2013949-01 Date Collected: 03/31/20 09:50

Date Received: Client ID: BCPMW01033120 03/31/20

Sample Location: K11.002.001 1001 MAIN ST. Field Prep: Not Specified

Result

Sample Depth:

Parameter

raiaillelei	Nesuit	Qualifier	iilo i	C MD	L Dilution i at	,101
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND	u	g/l 2	2.5 0.7	70 1	
1,4-Dichlorobenzene	ND	u	g/l 2	2.5 0.7	70 1	
Methyl tert butyl ether	ND			2.5 0.7	70 1	
p/m-Xylene	ND	u	g/l 2	2.5 0.7	70 1	
o-Xylene	ND	u	g/l 2	2.5 0.7	70 1	
cis-1,2-Dichloroethene	ND	u	g/l 2	2.5 0.7	70 1	
Styrene	ND	u	g/l 2	2.5 0.7	70 1	
Dichlorodifluoromethane	ND	u	g/l 5	5.0 1.0	0 1	
Acetone	ND	u	g/l 5	5.0 1.5	5 1	
Carbon disulfide	ND	u	g/l 5	5.0 1.0	0 1	
2-Butanone	ND	u	g/l t	5.0 1.9	9 1	
4-Methyl-2-pentanone	ND	u	g/l t	5.0 1.0	0 1	
2-Hexanone	ND	u	g/l t	5.0 1.0	0 1	
1,2-Dibromoethane	ND	u	g/l 2	2.0 0.6	55 1	
n-Butylbenzene	ND	u	g/l 2	2.5 0.7	70 1	
sec-Butylbenzene	ND	u	g/l 2	2.5 0.7	70 1	
tert-Butylbenzene	ND	u	g/l 2	2.5 0.7	70 1	
1,2-Dibromo-3-chloropropane	ND	u	g/l 2	2.5 0.7	70 1	
Isopropylbenzene	ND	u	g/l 2	2.5 0.7	70 1	
p-Isopropyltoluene	ND	u	g/l 2	2.5 0.7	70 1	
Naphthalene	ND	u	g/l 2	2.5 0.7	70 1	
n-Propylbenzene	ND	u	g/l 2	2.5 0.7	70 1	
1,2,4-Trichlorobenzene	ND	u	g/l 2	2.5 0.7	70 1	
1,3,5-Trimethylbenzene	ND	u	g/l 2	2.5 0.7	70 1	
1,2,4-Trimethylbenzene	ND	u	g/l 2	2.5 0.7	70 1	
Methyl Acetate	ND	u	g/l 2	2.0 0.2	23 1	
Cyclohexane	ND	u	g/l	10 0.2	27 1	
Freon-113	ND	u	g/l 2	2.5 0.7	70 1	
Methyl cyclohexane	ND	u	g/l	10 0.4	10 1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	97	70-130	

Project Name: CONVENTUS

Lab Number:

L2013949

Project Number: K11

Report Date:

Date Collected:

04/03/20

03/31/20 10:35

SAMPLE RESULTS

Lab ID: L2013949-02

Client ID: BCPMW07033120

Sample Location: K11.002.001 1001 MAIN ST.

Date Received: 03/31/20
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/02/20 14:50

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L2013949

Project Number: K11 Report Date: 04/03/20

SAMPLE RESULTS

Lab ID: L2013949-02 Date Collected: 03/31/20 10:35

Client ID: BCPMW07033120 Date Received: 03/31/20 Sample Location: K11.002.001 1001 MAIN ST. Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

raiailletei	Nesuit	Qualifier	Ullita	NL.	WIDE	Dilution i actor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	98	70-130	

Project Name: CONVENTUS Lab Number: L2013949

Project Number: K11 Report Date: 04/03/20

SAMPLE RESULTS

Lab ID: L2013949-03 D Date Collected: 03/31/20 11:05

Client ID: BCPMW004033120 Date Received: 03/31/20 Sample Location: K11.002.001 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/02/20 13:34

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	25	7.0	10	
1,1-Dichloroethane	ND		ug/l	25	7.0	10	
Chloroform	ND		ug/l	25	7.0	10	
Carbon tetrachloride	ND		ug/l	5.0	1.3	10	
1,2-Dichloropropane	ND		ug/l	10	1.4	10	
Dibromochloromethane	ND		ug/l	5.0	1.5	10	
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10	
Tetrachloroethene	ND		ug/l	5.0	1.8	10	
Chlorobenzene	ND		ug/l	25	7.0	10	
Trichlorofluoromethane	ND		ug/l	25	7.0	10	
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10	
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10	
Bromodichloromethane	ND		ug/l	5.0	1.9	10	
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10	
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10	
Bromoform	ND		ug/l	20	6.5	10	
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10	
Benzene	7.6		ug/l	5.0	1.6	10	
Toluene	46		ug/l	25	7.0	10	
Ethylbenzene	810		ug/l	25	7.0	10	
Chloromethane	ND		ug/l	25	7.0	10	
Bromomethane	ND		ug/l	25	7.0	10	
Vinyl chloride	ND		ug/l	10	0.71	10	
Chloroethane	ND		ug/l	25	7.0	10	
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10	
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10	
Trichloroethene	ND		ug/l	5.0	1.8	10	
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10	

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L2013949

Project Number: K11 Report Date: 04/03/20

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2013949-03 D Date Collected: 03/31/20 11:05

Client ID: BCPMW004033120 Date Received: 03/31/20 Sample Location: K11.002.001 1001 MAIN ST. Field Prep: Not Specified

Result

Sample Depth:

Parameter

raiailletei	Result	Qualifie	Ullita	IX.L	MIDE	Dilution i actor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10	
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10	
Methyl tert butyl ether	ND		ug/l	25	7.0	10	
p/m-Xylene	520		ug/l	25	7.0	10	
o-Xylene	14	J	ug/l	25	7.0	10	
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10	
Styrene	ND		ug/l	25	7.0	10	
Dichlorodifluoromethane	ND		ug/l	50	10.	10	
Acetone	ND		ug/l	50	15.	10	
Carbon disulfide	ND		ug/l	50	10.	10	
2-Butanone	ND		ug/l	50	19.	10	
4-Methyl-2-pentanone	ND		ug/l	50	10.	10	
2-Hexanone	ND		ug/l	50	10.	10	
1,2-Dibromoethane	ND		ug/l	20	6.5	10	
n-Butylbenzene	10	J	ug/l	25	7.0	10	
sec-Butylbenzene	ND		ug/l	25	7.0	10	
tert-Butylbenzene	ND		ug/l	25	7.0	10	
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10	
Isopropylbenzene	28		ug/l	25	7.0	10	
p-Isopropyltoluene	ND		ug/l	25	7.0	10	
Naphthalene	230		ug/l	25	7.0	10	
n-Propylbenzene	150		ug/l	25	7.0	10	
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,3,5-Trimethylbenzene	7.0	J	ug/l	25	7.0	10	
1,2,4-Trimethylbenzene	1100		ug/l	25	7.0	10	
Methyl Acetate	ND		ug/l	20	2.3	10	
Cyclohexane	100		ug/l	100	2.7	10	
Freon-113	ND		ug/l	25	7.0	10	
Methyl cyclohexane	22	J	ug/l	100	4.0	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	96	70-130	

L2013949

Project Name: Lab Number: **CONVENTUS**

Project Number: Report Date: K11 04/03/20

SAMPLE RESULTS

Lab ID: L2013949-04 Date Collected: 03/31/20 11:35

Client ID: Date Received: 03/31/20 BCPMW03033120 Field Prep: Sample Location: K11.002.001 1001 MAIN ST. Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/02/20 15:16

Analyst: AD

Wolatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,1,2-Trichloropropane ND ug/l 0.50 0.15 1 1,1,2-Trichloropropane ND ug/l 0.50 0.15 1 1,1,2-Trichloropropene ND ug/l 0.50 0.18 1 1,1,2-Trichloropropene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 1,2-Dichloropropenehane ND ug/l 0.50 0.13 1 1,1,1,2-Trich	
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 1-Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloropthane ND ug/l 0.50 0.13 1 1,1,1-Trichloroptopene ND ug/l 0.50 0.19 1 1 trans-1,3-Dichloropropene ND ug/l 0.50 <td></td>	
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 1,1,2-Trichloroethane ND ug/l 2.5 0.70 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 Eis-1,3-Dichloropropene ND ug/l 0.5	
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.17 1 Bromoform ND ug/l 0.50	
1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.17 1 Bromoform ND ug/l 0.50	
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.13 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16	
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 2.5 0.70 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.16 1 Benzene ND ug/l 0.50 0.1	
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1<	
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	
Chloromethane ND ug/l 2.5 0.70 1	
Bromomethane ND ug/l 2.5 0.70 1	
Vinyl chloride ND ug/l 1.0 0.07 1	
Chloroethane ND ug/l 2.5 0.70 1	
1,1-Dichloroethene ND ug/l 0.50 0.17 1	
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	
Trichloroethene ND ug/l 0.50 0.18 1	
1,2-Dichlorobenzene ND ug/l 2.5 0.70 1	

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L2013949

Project Number: K11 Report Date: 04/03/20

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2013949-04 Date Collected: 03/31/20 11:35

Client ID: BCPMW03033120 Date Received: 03/31/20 Sample Location: K11.002.001 1001 MAIN ST. Field Prep: Not Specified

Result

Sample Depth:

Parameter

raidilletei	Nesuit	Qualifier	Ullita	INL.	MIDL	Dilution i actor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	0.88	J	ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	99		70-130	

Project Name: CONVENTUS

Project Number: K11

SAMPLE RESULTS

Lab Number: L2013949

Report Date: 04/03/20

Lab ID: L2013949-05

Client ID: BCPMW06033120

Sample Location: K11.002.001 1001 MAIN ST.

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/02/20 15:42

Analyst: PD

Date Collected:	03/31/20 12:05
Date Received:	03/31/20
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L2013949

Project Number: K11 Report Date: 04/03/20

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2013949-05 Date Collected: 03/31/20 12:05

Client ID: BCPMW06033120 Date Received: 03/31/20 Sample Location: K11.002.001 1001 MAIN ST. Field Prep: Not Specified

Result

Sample Depth:

Parameter

raidilletei	Nesuit	Qualifier	Ullita	IX.L	MIDE	Dilution i actor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	1.6	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	101	70-130	

Project Name: CONVENTUS Lab Number: L2013949

Project Number: K11 Report Date: 04/03/20

SAMPLE RESULTS

Lab ID: L2013949-06 D Date Collected: 03/31/20 12:35

Client ID: BCPMW05033120 Date Received: 03/31/20

Sample Location: K11.002.001 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/02/20 13:59

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	62	18.	25
1,1-Dichloroethane	ND		ug/l	62	18.	25
Chloroform	ND		ug/l	62	18.	25
Carbon tetrachloride	ND		ug/l	12	3.4	25
1,2-Dichloropropane	ND		ug/l	25	3.4	25
Dibromochloromethane	ND		ug/l	12	3.7	25
1,1,2-Trichloroethane	ND		ug/l	38	12.	25
Tetrachloroethene	ND		ug/l	12	4.5	25
Chlorobenzene	ND		ug/l	62	18.	25
Trichlorofluoromethane	ND		ug/l	62	18.	25
1,2-Dichloroethane	ND		ug/l	12	3.3	25
1,1,1-Trichloroethane	ND		ug/l	62	18.	25
Bromodichloromethane	ND		ug/l	12	4.8	25
trans-1,3-Dichloropropene	ND		ug/l	12	4.1	25
cis-1,3-Dichloropropene	ND		ug/l	12	3.6	25
Bromoform	ND		ug/l	50	16.	25
1,1,2,2-Tetrachloroethane	ND		ug/l	12	4.2	25
Benzene	5.8	J	ug/l	12	4.0	25
Toluene	49	J	ug/l	62	18.	25
Ethylbenzene	1700		ug/l	62	18.	25
Chloromethane	ND		ug/l	62	18.	25
Bromomethane	ND		ug/l	62	18.	25
Vinyl chloride	ND		ug/l	25	1.8	25
Chloroethane	ND		ug/l	62	18.	25
1,1-Dichloroethene	ND		ug/l	12	4.2	25
trans-1,2-Dichloroethene	ND		ug/l	62	18.	25
Trichloroethene	ND		ug/l	12	4.4	25
1,2-Dichlorobenzene	ND		ug/l	62	18.	25

Project Name: CONVENTUS Lab Number: L2013949

Project Number: K11 Report Date: 04/03/20

SAMPLE RESULTS

Lab ID: L2013949-06 D Date Collected: 03/31/20 12:35

Client ID: BCPMW05033120 Date Received: 03/31/20 Sample Location: K11.002.001 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND	Volatile Organics by GC/MS - Wes	tborough Lab					
1.4-Dichlorobenzene ND ug/l 62 18. 25 Methyl tert buyl ether ND ug/l 62 18. 25 prim-Yylene 5000 ug/l 62 18. 25 cxylene 86 ug/l 62 18. 25 cxylene ND ug/l 62 18. 25 Styrene ND ug/l 62 18. 25 Styrene ND ug/l 120 25. 25 Acetone ND ug/l 120 25. 25 Acetone ND ug/l 120 25. 25 Carbon disulfide ND ug/l 120 25. 25 2-Butanone ND ug/l 120 25. 25 2-Hawanone ND ug/l 120 25. 25 2-Levanone ND ug/l 62 18. 25 2-Levanone ND ug/l <td>1,3-Dichlorobenzene</td> <td>ND</td> <td></td> <td>ua/l</td> <td>62</td> <td>18.</td> <td>25</td>	1,3-Dichlorobenzene	ND		ua/l	62	18.	25
Methyl tert butyl ether ND ug/l 62 18. 25 p/m-Xylene 5000 ug/l 62 18. 25 p/m-Xylene 5000 ug/l 62 18. 25 p/m-Xylene 86 ug/l 62 18. 25 cist,1,2-Dichloroethene ND ug/l 62 18. 25 Styrene ND ug/l 120 25. 25 Dichlorodifluoromethane ND ug/l 120 25. 25 Acetone ND ug/l 120 25. 25 Carbon disulfide ND ug/l 120 48. 25 2-Butanone ND ug/l 120 48. 25 2-Butanone ND ug/l 120 48. 25 2-Butanone ND ug/l 62 18. 25 1-2-Dibromodethane ND ug/l 62 18. 25 1-2-Dibromo-3-ch	1,4-Dichlorobenzene	ND			62	18.	25
p/m-Xylene 5000 ug/l 62 18. 25 o-Xylene 86 ug/l 62 18. 25 cis-1,2-Dichloroethene ND ug/l 62 18. 25 Styrene ND ug/l 62 18. 25 Dichlorodifluoromethane ND ug/l 120 25. 25 Acetone ND ug/l 120 26. 25 Carbon disulfide ND ug/l 120 25. 25 2-Butanone ND ug/l 120 25. 25 2-Hexanone ND ug/l 120 25. 25 2-Hexanone ND ug/l 50 16. 25 2-Hexanone ND ug/l 62 18. 25 2-Hexanone ND ug/l 62 18. 25 2-Hexanone ND ug/l 62 18. 25 2-Hexanone ND	Methyl tert butyl ether	ND			62	18.	25
Second S	p/m-Xylene	5000			62	18.	25
Styrene ND Ug/l 62 18. 25 25 25 25 25 25 25 2	o-Xylene	86		ug/l	62	18.	25
Dichlorodifluoromethane ND ug/l 120 25. 25 Acetone ND ug/l 120 36. 25 Carbon disulfide ND ug/l 120 25. 25 25 24-Methyl-2-pentanone ND ug/l 120 25. 25 25 24-Methyl-2-pentanone ND ug/l 120 25. 25 25 25 24-Methyl-2-pentanone ND ug/l 120 25. 25 25 25 27 28 28-Lexanone ND ug/l 120 25. 25 25 25 26 27 28 28-Lexanone ND ug/l 120 25. 25 25 26 27 28 28 28 28 28 28 28 28 28	cis-1,2-Dichloroethene	ND		ug/l	62	18.	25
Acetone ND ug/l 120 36. 25 Carbon disulfide ND ug/l 120 25. 25 Carbon disulfide ND ug/l 120 48. 25 Carbon disulfide ND ug/l 120 48. 25 Carbon disulfide ND ug/l 120 25. 25 Carbon disulfide ND ug/l 120 25. 25 Carbon disulfide ND ug/l 120 25. 25 Carbon disulfide Ug/l 120 25. 25 Carbon disulfies Ug/l 120 25 Carbon disulfie	Styrene	ND		ug/l	62	18.	25
Carbon disulfide ND ug/l 120 25. 25 2-Butanone ND ug/l 120 48. 25 4-Methyl-2-pentanone ND ug/l 120 25. 25 2-Hexanone ND ug/l 120 25. 25 1,2-Dibromoethane ND ug/l 50 16. 25 n-Butylbenzene ND ug/l 62 18. 25 sec-Butylbenzene ND ug/l 62 18. 25	Dichlorodifluoromethane	ND		ug/l	120	25.	25
2-Butanone ND ug/l 120 48. 25 4-Methyl-2-pentanone ND ug/l 120 25. 25 2-Hexanone ND ug/l 120 25. 25 1,2-Dibromoethane ND ug/l 62 18. 25 Naphthalene 940 ug/l 62 18. 25	Acetone	ND		ug/l	120	36.	25
ND	Carbon disulfide	ND		ug/l	120	25.	25
ND	2-Butanone	ND		ug/l	120	48.	25
1,2-Dibromoethane ND	4-Methyl-2-pentanone	ND		ug/l	120	25.	25
ND	2-Hexanone	ND		ug/l	120	25.	25
ND Ug/l 62 18. 25 18.	1,2-Dibromoethane	ND		ug/l	50	16.	25
ND Ug/l 62 18. 25 25 25 25 25 25 25 2	n-Butylbenzene	ND		ug/l	62	18.	25
1,2-Dibromo-3-chloropropane ND ug/l 62 18. 25 Isopropylbenzene 30 J ug/l 62 18. 25 Isopropylbenzene ND ug/l 62 18. 25 Isopropylbenzene ND ug/l 62 18. 25 Naphthalene 940 ug/l 62 18. 25 Naphthalene 140 ug/l 62 18. 25 Naphthalene ND ug/l 62 18. 25 1,2,4-Trichlorobenzene ND ug/l 62 18. 25 1,3,5-Trimethylbenzene 520 ug/l 62 18. 25 1,2,4-Trimethylbenzene 2500 ug/l 62 18. 25 Methyl Acetate ND ug/l 50 5.8 25 Cyclohexane 250 ug/l 250 6.8 25 Freon-113 ND ug/l 62 18. 25 Sopropylbenzene 250 ug/l 250 6.8 25	sec-Butylbenzene	ND		ug/l	62	18.	25
Sepropylbenzene 30	tert-Butylbenzene	ND		ug/l	62	18.	25
P-Isopropyltoluene ND ug/I 62 18. 25 Naphthalene 940 ug/I 62 18. 25 n-Propylbenzene 140 ug/I 62 18. 25 1,2,4-Trichlorobenzene ND ug/I 62 18. 25 1,3,5-Trimethylbenzene 520 ug/I 62 18. 25 1,2,4-Trimethylbenzene 2500 ug/I 62 18. 25 Methyl Acetate ND ug/I 62 18. 25 Cyclohexane 250 ug/I 62 18. 25 Freon-113 ND ug/I 62 18. 25 Freon-113 ND ug/I 50 5.8 25	1,2-Dibromo-3-chloropropane	ND		ug/l	62	18.	25
Naphthalene 940 ug/l 62 18. 25 n-Propylbenzene 140 ug/l 62 18. 25 1,2,4-Trichlorobenzene ND ug/l 62 18. 25 1,3,5-Trimethylbenzene 520 ug/l 62 18. 25 1,2,4-Trimethylbenzene 2500 ug/l 62 18. 25 Methyl Acetate ND ug/l 50 5.8 25 Cyclohexane 250 ug/l 250 6.8 25 Freon-113 ND ug/l 62 18. 25	Isopropylbenzene	30	J	ug/l	62	18.	25
n-Propylbenzene 140 ug/l 62 18. 25 1,2,4-Trichlorobenzene ND ug/l 62 18. 25 1,3,5-Trimethylbenzene 520 ug/l 62 18. 25 1,2,4-Trimethylbenzene 2500 ug/l 62 18. 25 Methyl Acetate ND ug/l 50 5.8 25 Cyclohexane 250 ug/l 250 6.8 25 Freon-113 ND ug/l 62 18. 25	p-Isopropyltoluene	ND		ug/l	62	18.	25
1,2,4-Trichlorobenzene ND ug/l 62 18. 25 1,3,5-Trimethylbenzene 520 ug/l 62 18. 25 1,2,4-Trimethylbenzene 2500 ug/l 62 18. 25 Methyl Acetate ND ug/l 50 5.8 25 Cyclohexane 250 ug/l 250 6.8 25 Freon-113 ND ug/l 62 18. 25	Naphthalene	940		ug/l	62	18.	25
1,3,5-Trimethylbenzene 520 ug/l 62 18. 25 1,2,4-Trimethylbenzene 2500 ug/l 62 18. 25 Methyl Acetate ND ug/l 50 5.8 25 Cyclohexane 250 ug/l 250 6.8 25 Freon-113 ND ug/l 62 18. 25	n-Propylbenzene	140		ug/l	62	18.	25
1,2,4-Trimethylbenzene 2500 ug/l 62 18. 25 Methyl Acetate ND ug/l 50 5.8 25 Cyclohexane 250 ug/l 250 6.8 25 Freon-113 ND ug/l 62 18. 25	1,2,4-Trichlorobenzene	ND		ug/l	62	18.	25
Methyl Acetate ND ug/l 50 5.8 25 Cyclohexane 250 ug/l 250 6.8 25 Freon-113 ND ug/l 62 18. 25	1,3,5-Trimethylbenzene	520		ug/l	62	18.	25
Cyclohexane 250 ug/l 250 6.8 25 Freon-113 ND ug/l 62 18. 25	1,2,4-Trimethylbenzene	2500		ug/l	62	18.	25
Freon-113 ND ug/l 62 18. 25	Methyl Acetate	ND		ug/l	50	5.8	25
<u> </u>	Cyclohexane	250		ug/l	250	6.8	25
Methyl cyclohexane 110 J ug/l 250 9.9 25	Freon-113	ND		ug/l	62	18.	25
	Methyl cyclohexane	110	J	ug/l	250	9.9	25

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	97		70-130	

L2013949

Project Name: CONVENTUS Lab Number:

Project Number: K11 Report Date: 04/03/20

SAMPLE RESULTS

Lab ID: L2013949-07 Date Collected: 03/31/20 00:00

Client ID: TRIP BLANK Date Received: 03/31/20
Sample Location: K11.002.001 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/02/20 13:08

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L2013949

Project Number: K11 Report Date: 04/03/20

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2013949-07 Date Collected: 03/31/20 00:00

Client ID: TRIP BLANK Date Received: 03/31/20 Sample Location: K11.002.001 1001 MAIN ST. Field Prep: Not Specified

Result

Sample Depth:

Parameter

- arameter			••				
Volatile Organics by GC/MS - We	stborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	4.2	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	101		70-130	

Project Number: K11 Report Date: 04/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/02/20 11:51

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	02-07 Batch:	WG1357767-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2013949

Lab Number:

Project Name: CONVENTUS

Project Number: K11 Report Date: 04/03/20

Method Blank Analysis Batch Quality Control

Batch Quality Control

1,8260C

04/02/20 11:51

Analyst: PD

Analytical Method:

Analytical Date:

Parameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	02-07 Batch:	WG1357767-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Number: K11 Report Date: 04/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/02/20 11:51

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02-07 Batch: WG1357767-5

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	105		70-130		
Toluene-d8	97		70-130		
4-Bromofluorobenzene	102		70-130		
Dibromofluoromethane	100		70-130		

Project Number: K11 Report Date: 04/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/02/20 19:58

Analyst: AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	01 Batch:	WG1357940-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: K11 Report Date: 04/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/02/20 19:58

Analyst: AJK

arameter	Result	Qualifier Unit	s	RL	MDL
olatile Organics by GC/MS - V	Westborough Lab	for sample(s):	01	Batch:	WG1357940-5
1,4-Dichlorobenzene	ND	ug	/I	2.5	0.70
Methyl tert butyl ether	ND	ug	/I	2.5	0.70
p/m-Xylene	ND	ug	/I	2.5	0.70
o-Xylene	ND	ug	/I	2.5	0.70
cis-1,2-Dichloroethene	ND	ug	/I	2.5	0.70
Styrene	ND	ug	/I	2.5	0.70
Dichlorodifluoromethane	ND	ug	/I	5.0	1.0
Acetone	ND	ug	/I	5.0	1.5
Carbon disulfide	ND	ug	/I	5.0	1.0
2-Butanone	ND	ug	/I	5.0	1.9
4-Methyl-2-pentanone	ND	ug	/I	5.0	1.0
2-Hexanone	ND	ug	/I	5.0	1.0
1,2-Dibromoethane	ND	ug	/I	2.0	0.65
n-Butylbenzene	ND	ug	/I	2.5	0.70
sec-Butylbenzene	ND	ug	/I	2.5	0.70
tert-Butylbenzene	ND	ug	/I	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug	/I	2.5	0.70
Isopropylbenzene	ND	ug	/I	2.5	0.70
p-Isopropyltoluene	ND	ug	/I	2.5	0.70
Naphthalene	ND	ug	/I	2.5	0.70
n-Propylbenzene	ND	ug	/I	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug	/I	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug	/I	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug	/I	2.5	0.70
Methyl Acetate	ND	ug	/I	2.0	0.23
Cyclohexane	ND	ug	/I	10	0.27
Freon-113	ND	ug	/I	2.5	0.70
Methyl cyclohexane	ND	ug	/I	10	0.40

Project Number: K11 Report Date: 04/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/02/20 19:58

Analyst: AJK

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1357940-5

		Acceptance
Surrogate	%Recovery Qu	ualifier Criteria
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	97	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: CONVENTUS

Project Number: K11

Lab Number: L2013949

Report Date: 04/03/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-07 Batch: W0	G1357767-	3 WG1357767-4		
Methylene chloride	92		92		70-130	0	20
1,1-Dichloroethane	98		97		70-130	1	20
Chloroform	95		100		70-130	5	20
Carbon tetrachloride	100		100		63-132	0	20
1,2-Dichloropropane	98		96		70-130	2	20
Dibromochloromethane	92		96		63-130	4	20
1,1,2-Trichloroethane	96		93		70-130	3	20
Tetrachloroethene	97		97		70-130	0	20
Chlorobenzene	93		97		75-130	4	20
Trichlorofluoromethane	96		98		62-150	2	20
1,2-Dichloroethane	100		100		70-130	0	20
1,1,1-Trichloroethane	100		100		67-130	0	20
Bromodichloromethane	100		100		67-130	0	20
trans-1,3-Dichloropropene	99		100		70-130	1	20
cis-1,3-Dichloropropene	100		100		70-130	0	20
Bromoform	97		98		54-136	1	20
1,1,2,2-Tetrachloroethane	94		97		67-130	3	20
Benzene	100		100		70-130	0	20
Toluene	92		94		70-130	2	20
Ethylbenzene	91		96		70-130	5	20
Chloromethane	130		120		64-130	8	20
Bromomethane	170	Q	180	Q	39-139	6	20
Vinyl chloride	110		110		55-140	0	20

Lab Control Sample Analysis Batch Quality Control

Project Name: CONVENTUS

Project Number: K11

Lab Number: L2013949

Report Date: 04/03/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-07 Batch: W0	G1357767-3 WG1357767-4		
Chloroethane	100		100	55-138	0	20
1,1-Dichloroethene	91		91	61-145	0	20
trans-1,2-Dichloroethene	95		91	70-130	4	20
Trichloroethene	99		99	70-130	0	20
1,2-Dichlorobenzene	88		95	70-130	8	20
1,3-Dichlorobenzene	91		96	70-130	5	20
1,4-Dichlorobenzene	92		98	70-130	6	20
Methyl tert butyl ether	100		98	63-130	2	20
p/m-Xylene	90		95	70-130	5	20
o-Xylene	95		95	70-130	0	20
cis-1,2-Dichloroethene	96		97	70-130	1	20
Styrene	95		95	70-130	0	20
Dichlorodifluoromethane	120		120	36-147	0	20
Acetone	110		92	58-148	18	20
Carbon disulfide	92		90	51-130	2	20
2-Butanone	100		98	63-138	2	20
4-Methyl-2-pentanone	90		99	59-130	10	20
2-Hexanone	95		96	57-130	1	20
1,2-Dibromoethane	90		93	70-130	3	20
n-Butylbenzene	90		93	53-136	3	20
sec-Butylbenzene	88		94	70-130	7	20
tert-Butylbenzene	92		94	70-130	2	20
1,2-Dibromo-3-chloropropane	85		91	41-144	7	20

Lab Control Sample Analysis Batch Quality Control

Project Name: CONVENTUS

Project Number: K11

Lab Number: L2013949

Report Date: 04/03/20

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough La	b Associated	sample(s):	02-07	Batch:	WG1357767-3	WG1357767-4			
Isopropylbenzene	91			94		70-130	3		20
p-Isopropyltoluene	92			94		70-130	2		20
Naphthalene	83			93		70-130	11		20
n-Propylbenzene	92			94		69-130	2		20
1,2,4-Trichlorobenzene	88			96		70-130	9		20
1,3,5-Trimethylbenzene	92			96		64-130	4		20
1,2,4-Trimethylbenzene	92			96		70-130	4		20
Methyl Acetate	100			96		70-130	4		20
Cyclohexane	92			92		70-130	0		20
Freon-113	92			94		70-130	2		20
Methyl cyclohexane	93			94		70-130	1		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery G	Acceptance Qual Criteria
1,2-Dichloroethane-d4	112	111	70-130
Toluene-d8	98	98	70-130
4-Bromofluorobenzene	102	102	70-130
Dibromofluoromethane	104	105	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: CONVENTUS

Project Number: K11

Lab Number: L2013949

Report Date: 04/03/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westboro	ugh Lab Associated	sample(s): 0	1 Batch: WG1	1357940-3	WG1357940-4			
Methylene chloride	95		96		70-130	1	20	
1,1-Dichloroethane	94		98		70-130	4	20	
Chloroform	92		95		70-130	3	20	
Carbon tetrachloride	90		94		63-132	4	20	
1,2-Dichloropropane	97		100		70-130	3	20	
Dibromochloromethane	90		96		63-130	6	20	
1,1,2-Trichloroethane	94		100		70-130	6	20	
Tetrachloroethene	91		94		70-130	3	20	
Chlorobenzene	94		100		75-130	6	20	
Trichlorofluoromethane	100		100		62-150	0	20	
1,2-Dichloroethane	96		100		70-130	4	20	
1,1,1-Trichloroethane	91		94		67-130	3	20	
Bromodichloromethane	93		96		67-130	3	20	
trans-1,3-Dichloropropene	88		95		70-130	8	20	
cis-1,3-Dichloropropene	90		93		70-130	3	20	
Bromoform	84		93		54-136	10	20	
1,1,2,2-Tetrachloroethane	93		100		67-130	7	20	
Benzene	94		95		70-130	1	20	
Toluene	94		99		70-130	5	20	
Ethylbenzene	96		100		70-130	4	20	
Chloromethane	88		87		64-130	1	20	
Bromomethane	89		95		39-139	7	20	
Vinyl chloride	100		100		55-140	0	20	

Lab Control Sample Analysis Batch Quality Control

Project Name: CONVENTUS

Project Number: K11

Lab Number: L2013949

Report Date: 04/03/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1:	357940-3	WG1357940-4		
Chloroethane	100		110		55-138	10	20
1,1-Dichloroethene	92		91		61-145	1	20
trans-1,2-Dichloroethene	92		96		70-130	4	20
Trichloroethene	98		99		70-130	1	20
1,2-Dichlorobenzene	96		100		70-130	4	20
1,3-Dichlorobenzene	97		100		70-130	3	20
1,4-Dichlorobenzene	94		100		70-130	6	20
Methyl tert butyl ether	89		94		63-130	5	20
p/m-Xylene	95		100		70-130	5	20
o-Xylene	95		100		70-130	5	20
cis-1,2-Dichloroethene	92		92		70-130	0	20
Styrene	95		100		70-130	5	20
Dichlorodifluoromethane	94		93		36-147	1	20
Acetone	96		110		58-148	14	20
Carbon disulfide	93		95		51-130	2	20
2-Butanone	82		100		63-138	20	20
4-Methyl-2-pentanone	90		100		59-130	11	20
2-Hexanone	90		100		57-130	11	20
1,2-Dibromoethane	93		100		70-130	7	20
n-Butylbenzene	96		100		53-136	4	20
sec-Butylbenzene	98		100		70-130	2	20
tert-Butylbenzene	83		87		70-130	5	20
1,2-Dibromo-3-chloropropane	82		92		41-144	11	20

Lab Control Sample Analysis Batch Quality Control

Project Name: CONVENTUS

Project Number: K11

Lab Number: L2013949

Report Date: 04/03/20

arameter	LCS %Recovery	Qual	LCSD %Recov		%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch:	WG1357940-3	WG1357940-4				
Isopropylbenzene	95		100		70-130	5		20	
p-Isopropyltoluene	96		100		70-130	4		20	
Naphthalene	82		91		70-130	10		20	
n-Propylbenzene	98		100		69-130	2		20	
1,2,4-Trichlorobenzene	84		92		70-130	9		20	
1,3,5-Trimethylbenzene	96		100		64-130	4		20	
1,2,4-Trimethylbenzene	93		99		70-130	6		20	
Methyl Acetate	91		96		70-130	5		20	
Cyclohexane	97		100		70-130	3		20	
Freon-113	96		99		70-130	3		20	
Methyl cyclohexane	94		100		70-130	6		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	101	104	70-130
Toluene-d8	99	104	70-130
4-Bromofluorobenzene	99	100	70-130
Dibromofluoromethane	98	99	70-130

Serial_No:04032012:01

Project Name: CONVENTUS Lab Number: L2013949

Project Number: K11 Report Date: 04/03/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container into	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2013949-01A	Vial HCI preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-01B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-01C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-02A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-02B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-02C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-03A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-03B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-03C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-04A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-04B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-04C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-05A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-05B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-05C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-06A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-06B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-06C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-07A	Vial HCI preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)
L2013949-07B	Vial HCI preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: CONVENTUS L2013949

Project Number: Report Date: K11 04/03/20

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:CONVENTUSLab Number:L2013949Project Number:K11Report Date:04/03/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name:CONVENTUSLab Number:L2013949Project Number:K11Report Date:04/03/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- $\boldsymbol{RE} \quad$ Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:04032012:01

Project Name:CONVENTUSLab Number:L2013949Project Number:K11Report Date:04/03/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:04032012:01

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Page 1 of 1

Revision 16 Published Date: 2/17/2020 10:46:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ENFERTIO MY	51. Sutclob 14203 7. 1(e30	ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved	vay oper Ave, Suite 1	1 /00/	100 (State)	f y	Delivera AS AS CONTROL	bles SP-A QuIS (1 File) ther ory Requirem / TOGS VQ Standards / Restricted Us / Unrestricted U	nent le	ASP-B EQuIS	(4 File)	ALPHA Job # L 2013949 Billing Information Same as Client Info PO# Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other: Sample Filtration	T
Other project specific	requirements/comm						Prino					□ Done □ Lab to do Preservation □ Lab to do	t a l
ALPHA Lab ID (Lab Use Only)	15550	mple ID	Date	ection Time	Sample Matrix	Sampler's Initials	Tallas					(Please Specify below) Sample Specific Comments	0 t t - e
13949 01	BUTWO1033	120	3/31/20	9:50	GW	NB	>			-			3
	BUMW07033		3/3/120	10:35	GN	128	Y						3
73	BUMW00403		3/31/20	11:05	GW	nB	Y						3
74	RUMWO3 033	120	3/31/20	11:38	6W	DB	*						7
38	BCPVW06033	120	3/21/20	12:05	GW	23	7						1
76	BCP 5W05033	120	3/31/20	12:35	GW	23	x						3
707	TRIP BLANK	,	3/31/20	2:00	GW	RB	>						2
			1		Care								
									1	\neg			
										\neg			
D = H_2SO_4 E = NaOH F = MeOH G = NsHSO ₄ H = Na ₂ S ₂ O ₃	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore	Westboro: Certification N Mansfield: Certification N Philippuished	lo: MA015			Kin	B		3/3//	Date/T	ime	Please print clearly, legible and completely. Samples not be logged in and turnaround time clock will start until any ambiguities resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREE	I not s are G
K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 30	D = BOD Bottle	Gn		3/31/20	3:40	J. W.	y Ll	enez	79	11/20	00:15	TO BE BOUND BY ALPH TERMS & CONDITIONS. (See reverse side.)	HA'S

APPENDIX B

INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C915260	Site Details		Box 1	
Sit	e Name Fo	ormer Mobil Servic	e Station 99-MST			
City Co	e Address: y/Town: Bu unty: Erie e Acreage:		Zip Code: 14203			
Re	porting Peri	iod: March 24, 202	0 to March 24, 2021			
					YES	NO
1.	Is the info	rmation above corre	ect?		X	
	If NO, incl	ude handwritten abo	ove or on a separate sheet.			
2.	. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?					
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? □					X
4.	Have any for or at th		X			
			estions 2 thru 4, include docunen previously submitted with t			
5.	Is the site	currently undergoin	g development?			X
					Box 2	
					YES	NO
6.			ent with the use(s) listed below? nercial, and Industrial		X	
7.	Are all ICs	in place and function	oning as designed?	X		
	IF T		THER QUESTION 6 OR 7 IS NO.	_	and	
AC	Corrective N	Measures Work Plan	n must be submitted along with	this form to address the	nese iss	ues.
Sig	inature of Ov	wner, Remedial Part	v or Designated Representative	Date		

		Box 2	A
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)		X
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		

SITE NO. C915260 Box 3

Description of Institutional Controls

Parcel **Institutional Control** Owner

Kaleida Properties, Inc. 100.79-1-1.1

> Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

- 1. Prohibition of use of groundwater.
- 2. Landuse Restriction for Restricted Residential, Commercial or Industrial use.
- 3. Soil Management or Excavation Work Plan for any future intrusive work.
- 4. Groundwater Monitoring Plan.

Seavest Core Buffalo Conventus, LLC 100.79-1-1.1/2

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

- 1. Prohibition of use of groundwater.
- 2. Landuse Restriction for Restricted Residential, Commercial or Industrial use.
- 3. Soil Management or Excavation Work Plan for any future intrusive work.
- 4. Groundwater Monitoring Plan.

100.79-1-2.11 Kaleida Health

> Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

- 1. Prohibition of use of groundwater.
- 2. Landuse Restriction for Restricted Residential, Commercial or Industrial use.
- 3. Soil Management or Excavation Work Plan for any future intrusive work.
- 4. Groundwater Monitoring Plan.

Box 4

Description of Engineering Controls

Parcel	Engineering Control						
100.79-1-1.1	Groundwater Treatment System						
Groundwater will be treated in-situ by injections of oxygen release compounds (ORC) to degrade petroleum hydrocarbons to harmless compounds.							
100.79-1-1.1/2							
	Groundwater Treatment System ections of oxygen release compounds (ORC) to degrade						
	etroleum hydrocarbons to harmless compounds. 00.79-1-2.11						
	Groundwater Treatment System						
petroleum hydrocarbons to harmless com	ections of oxygen release compounds (ORC) to degrade apounds						
		Box 5					
Periodic Review Report	(PRR) Certification Statements						
•							
I certify by checking "YES" below that							
· · · · · · · · · · · · · · · · · · ·	and all attachments were prepared under the direction of, the Engineering Control certification;	and					
 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. 							
engineering practices, and the into	YES	NO					
	$[\![\mathbf{X}\!]$						
For each Engineering control listed in following statements are true:	n Box 4, I certify by checking "YES" below that all of the						
) employed at this site is unchanged was put in-place, or was last approved by the Departmen	t;					
(b) nothing has occurred that the environment;	would impair the ability of such Control, to protect public h	ealth and					
	inue to be provided to the Department, to evaluate the valuate the continued maintenance of this Control;						
(d) nothing has occurred that some Site Management Plan for this	would constitute a violation or failure to comply with the Control; and						
	echanism is required by the oversight document for the sit sufficient for its intended purpose established in the docu						
	YES	NO					
	[X]						
	O QUESTION 2 IS NO, sign and date below and ETHE REST OF THIS FORM. Otherwise continue.						
A Corrective Measures Work Plan mus	st be submitted along with this form to address these iss	sues.					

Date

Signature of Owner, Remedial Party or Designated Representative

IC CERTIFICATIONS SITE NO. C915260

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Timothy F. Hug	yhes	at C&S Engineers, Inc. 141 Elm St	treet, Buffalo, New York 14203
print	name	print business addr	ess
am certifying as _		nc.; Kaleida Health and Conventus	(Owner or Remedial Party)
		ection of this form. r Designated Representative	4/16/2/ Date

EC CERTIFICATIONS

Box 7

Date

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Timothy F. Hughes print name	at <u>C&S Engineers</u> , Inc. 141 Elm Street, Buffalo, New York 14203, print business address
am certifying as a Professional Engineer	
	Owner or Renedial Party)
1 4/1/1	10.0848 ²)
CAL STANK	MOFESSIONAL 4/16/71

Stamp

(Required for PE)

Signature of Professional Engineer for the Owner or

Remedial Party, Rendering Certification