2018

PERIODIC REVIEW REPORT

FOR FORMER MOBIL SERVICE STATION 99-MST 979 MAIN STREET (1001 MAIN STREET) NYSDEC SITE #C915260 CITY OF BUFFALO, ERIE COUNTY, NEW YORK

Prepared by:

C&S Engineers, Inc.

141 ELM STREET BUFFALO, NEW YORK 14203

Prepared on Behalf of:

CONVENTUS PARTNERS, LLC
KALEIDA HEALTH
KALEIDA PROPERTIES, INC.

TABLE OF CONTENTS

EXE	CUTI	VE SUMMARY	1
<u>1</u>	SITE	OVERVIEW	2
1.1	SITE	DESCRIPTION	2
1.2	GEO	LOGY AND HYDROGEOLOGY	2
1.3	NATU	JRE AND EXTENT OF CONTAMINATION	3
1.4	SITE	HISTORY	3
1.4.1	IN-S	SITU INJECTIONS	5
<u>2</u>	REM	EDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS	6
<u>3</u>	IC/E	C PLAN COMPLIANCE REPORT	8
3.1	IC/E	C REQUIREMENTS AND COMPLIANCE	8
_		TITUTIONAL CONTROLS	8
		GINEERING CONTROLS	9
3.2	IC/E	C CERTIFICATION	9
<u>4</u>	MON	NITORING PLAN COMPLIANCE REPORT	9
<u>5</u>	<u>OPE</u>	RATION AND MAINTENANCE PLAN COMPLIANCE	10
<u>6</u>	CON	CLUSIONS	10
<u>7</u>	REC	OMMENDATIONS	10
FIG	URE	S	
Figu	re 1	SITE LOCATION	
Figu	TRE 2	Project Boundaries	
Figu	JRE 3	HISTORIC BTEX CONCENTRATIONS	
Figu	re 4	Injection Borings	
TAE	BLES		
TAB	LE 1	GROUNDWATER ANALYTICAL RESULTS	
GRA	APHS		

GRAPH 1 GROUNDWATER TREATMENT MONITORING – TOTAL BTEX

APPENDICES

ACRONYM LIST

C&S ENGINEERS, INC.

BGS BELOW GROUND SURFACE

BCP BROWNFIELD CLEANUP PROGRAM

BCA BROWNFIELD CLEANUP AGREEMENT

BTEX BENZENE, TOLUENE, ETHYLBENZENE AND XYLENE

DUSR DATA USABILITY AND SUMMARY REPORT

LNAPL LIGHT NON-AQUEOUS PHASE LIQUID

IRM INTERIM REMEDIAL MEASURES

NYSDEC NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL

CONSERVATION

PCOC PRIMARY CONTAMINATE OF CONCERN

PID PHOTO-IONIZATION DETECTOR

PPM PARTS PER MILLION

RI REMEDIAL INVESTIGATION
SCO SOIL CLEANUP OBJECTIVES

SMP SITE MANAGEMENT PLAN

SVOC SEMI-VOLATILE ORGANIC COMPOUNDS

VOC VOLATILE ORGANIC COMPOUNDS

July 2018 Page iii

EXECUTIVE SUMMARY

C&S Engineers, Inc. (C&S) has prepared this 2017 Periodic Review Report for the former Mobil Service Station 99-MST - 979 Main Street (1001 Main Street) (hereinafter referred to as the Site) located at 1001 Main Street in Buffalo, New York.

The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index #C915260-03-12, Site #C915260, which was executed on June 15, 2012 and last amended on August 7, 2012. A figure showing the Site location and boundaries is provided in **Figure 1** and **Figure 2**.

Remedial activities consisted of installing steel shoring around the property and removing contaminated soil and groundwater to 26 - 40 feet below ground surface. After completion of the remedial work, some contamination remained in the subsurface at this Site. A Site Management Plan (SMP) was prepared on November 28, 2014 to manage remaining groundwater contamination at the Site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36.

Petroleum contaminated groundwater is present within a discontinuous layer of coarse sand and gravel located between 32 and 35 feet below ground surface. This layer generally ranges from 6 inches to three feet thick, provides a preferential pathway for groundwater flow, and is confined within dense silt and fine sand present above and below the groundwater bearing zone.

During the remedial efforts, seven groundwater monitoring wells were installed prior to the installation of the two floors of underground parking. These monitoring wells were used to conduct in-situ injections by gravity feeding chemical oxidants into the groundwater bearing zone. A total of 2,480 pounds of chemical oxidant was used over three treatment events. Treatments occurred from December 2013 to June 2015. Groundwater samples following the in-situ injections show minor reductions in petroleum compounds.

In 2016, C&S conducted a limited groundwater extraction on the wells with the highest contaminant levels. Contaminated groundwater was pumped from the wells and treated with 200 pounds of activated carbon before discharging into the sanitary sewer. A total of 4,762.2 gallons of contaminated groundwater was removed. Groundwater samples collected in December 2015, January 2016 and March 2016 showed a slight reduction in petroleum compound concentrations.

All institutional and engineering controls are in compliance with the SMP. To address the continued elevated concentrations of petroleum compounds in the groundwater, C&S recommends the completion of additional treatment methods, including the implementation of a slow release chemical oxidation method.

The Institutional and Engineering Controls Certification form is provided in Appendix B.

1 SITE OVERVIEW

1.1 Site Description

The Site is located in the City of Buffalo County of Erie County, New York and is identified below on the Erie County Tax Map.

SBL: 100.79 – 1-1.1

Street Number: 1001 Main Street, Buffalo

(formerly 979 Main Street)

Owner: Kaleida Properties, Inc.

SBL: 100.79-1-2.11

Street Number: 818 Ellicott Street, Buffalo

Owner: Kaleida Health

The Site is an approximately 1.72-acre area bounded by Goodrich Street to the north, High Street to the south, parking lot to the east, and Main Street to the west (see **Figure 1** and 2).

1.2 Geology and Hydrogeology

The Conventus Medical Office Building currently occupies the Site. During remedial activities, steel shoring was installed to a depth of 40 to 50 feet below grade around the Site. Across the majority of the Site, soils were excavated to 26 feet below ground surface (bgs). Two floors of underground parking were constructed underneath the Conventus building.

The Site geology begins at 26 feet bgs. Subsurface soils consist of dry to moist fine sand and silt formation extends to nearly 70 feet bgs. Below this massive sand and silt formation is a coarse sand and gravel layer that grades to a sand, gravel; and clay till formation. Underlying the overburden is a grey cherty limestone formation at approximately 90 feet bgs.

The principal groundwater bearing zone beneath the site is located within the coarse sand and gravel layer between 32 and 35 feet bgs. This layer is of variable thickness (generally 6 inches to three feet) but is horizontally discontinuous. The layer is located within the central and northeastern portions of the Site, but does not extend completely to the southern, northwestern or southeastern areas of the Site and is confined by the dense fine sands and silt above and below the groundwater bearing zone.

1.3 Nature and Extent of Contamination

During the Interim Remedial Measure (IRM), grossly contaminated soil and groundwater were removed from the Site. In total, 67,458 tons of soils were sent for disposal or treatment due to gasoline contamination. The remaining contamination left on-site consists of petroleum impacted groundwater. Groundwater sampling that occurred prior to the IRM confirmed that the Primary Contaminants of Concern (PCOCs) are limited to petroleum hydrocarbons.

Groundwater flows within the coarse sand/gravel groundwater bearing zone to the northeast. Groundwater recharge from the surface has been eliminated due to the concrete floor of the parking garage, which effectively covers 100% of the Site recharge area. Additionally, below grade migration has been effectively stopped by the presence of deep sheet piling that cuts off the groundwater bearing zone from the remaining off-site formation around the majority of the Site. The lack of a vertical recharge from the surface and the horizontal containment in the groundwater bearing zone was designed to contain the remaining groundwater on-site and reduces the future contaminant loading into the surrounding off-site formation. However, a small gap in the sheet piling along the southwestern corner may provide a route for off-site contamination to impact the Site's groundwater.

1.4 Site History

Contamination is related to the historic use of the property as a gas station and originally was sourced from leaking underground storage tanks located above the "Deep Excavation Area" (see **Figure 3**).

For over 40 years, the light non-aqueous phase liquid (LNAPL) filtered downward from the base of the tank to a depth of approximately 40 feet bgs. LNAPL intercepted the groundwater at approximately 32 feet bgs. The water table is present within a semi-confined coarse sand and gravel lens. This lens varies in thickness (1/2 to 3 feet) and extends to the northeast, confined laterally to the east and west. Because of low carbon in the fine sand silt and gravel formations, breakdown of benzene, toluene, ethylbenzene and xylene (BTEX) compounds was slow. This resulted in high volatile organic compounds (VOC) soil gas in the unsaturated zone below the release area and the continual loading of BTEX into the groundwater from the LNAPL. Soil Contamination (exceeding Residential Use SCOs), below the LNAPL layer was noted to extend to a depth of 35 to 40 feet bgs. This area has been identified as the Source Area for groundwater contamination.

Dissolved BTEX, once entering the groundwater bearing zone was transported via localized, preferential groundwater flow to the northeast corner of the Site (Following the location of the coarse sand/gravel lens).

To redevelop the property into a medical office building, the Applicants (BCP F..L.C. 50 High Street, Corporation, Kaleida Health, Kaleida Properties, Inc. and Conventus Partners, LLC) acting as Brownfield Cleanup Program (BCP) Volunteers, submitted a

BCP Application for the Site on November 28, 2011. The Applicants and the New York State Department of Environmental Conservation (NYSDEC) signed the Brownfield Cleanup Agreement (BCA) on June 15, 2012.

The NYSDEC approved IRM was implemented on January 2013. The following is a summary of the IRM performed at the Site:

- 1. Excavation of soil/fill exceeding restricted residential SCOs to 26 feet bgs;
- 2. Excavation of soil from the source area to 40 feet bgs;
- 3. Removal of LNAPL and contaminated groundwater;
- 4. Backfilling with clean fill and construction of concrete floor;
- 5. Backfilling the source area with flowable fill; and
- 6. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the Site.

The removal of soils in the source area ("Area of Deep Excavation" in **Figure 3**) also included the removal of the groundwater bearing zone. During soil removal, 1997 tons of groundwater and LNAPL was removed from the excavation and properly disposed off-site. The groundwater bearing zone within the source area was replaced with flowable fill, sealing this area off from the adjacent groundwater bearing zone beneath the Site.

Remedial activities were completed at the Site in October 2013. Implementation of the IRM, including source removal, was effective in removing any remaining free product grossly contaminated soils and the groundwater containing the highest dissolved BTEX. However, residual groundwater contamination remains on-site.

Following mass excavation activities, seven new wells were installed on-site.

Table 1-1: Post-Remediation Wells

Well ID	Diameter
BCP-MW-1	2"
BCP-MW-2	8"
BCP-MW-3	8"
BCP-MW-4	2"
BCP-MW-5	2"
BCP-MW-6	8"
BCP-MW-7	2"

Note that one well (BCP-MW-2) was installed adjacent to the flowable fill within the Source Area. This well did not produce water. A second well, BCP-MW-6, was installed along the western side of the deep excavation, along the tiered excavation area and did

intercept the portion of the groundwater bearing zone remaining along the shoring. This well did produce water for sampling. All other wells were installed through native materials and the gravel water bearing layer. All wells were installed to an approximate depth of 43 feet below surrounding grade (approximately 16 feet below basement floor elevation).

The monitoring well locations were located in areas of previously identified groundwater contamination and to the south of the plume to confirm that contamination had not moved off-site to the south.

BCP-MW-2 was installed adjacent to the source area that was backfilled with flowable fill. Since its installation, this well has been dry. NYSDEC requested the well be modified to evaluate if groundwater underneath the flowable fill mass contains residual contamination. On October 7, 2015 Nature's Way Environmental installed a 1-inch PVC well through the existing BCP-MW-2 to a final depth of 50 feet bgs. The modified well has remained dry. This provides additional evidence that groundwater and petroleum contamination are limited to the coarse sand and gravel layer 32 to 35 feet bgs.

1.4.1 In-situ Injections

Considering that gravity fed treatments were not reducing groundwater contaminants, during the reporting period pressure injections were completed to continue to reduce contaminant concentrations. Borings were advanced in the lower floor of underground parking to apply in-situ treatments under pressure directly into the contaminated sand and gravel lens. The sections below describe the methods used to conduct two in-situ treatment events on May 24-25, 2017 and September 13-15, 2017.

In situ Chemical Oxidizer (ISCO)

The remedial method conducted during this reporting period is chemical oxidation using sodium percarbonate (Na₂CO₃ • 3 H₂O₂). Sodium percarbonate is a common oxidant and has demonstrated significant effectiveness in oxidizing petroleum hydrocarbons. Byproducts from the reaction include carbon dioxide, sodium chloride, water and carbonic acid; these by-products are non-toxic at the levels produced.

Sodium percarbonate has the potential to be the most persistent oxidant within the subsurface and thus can travel with groundwater to reach areas not accessible via surface injection.

The ISCO product is RegenOX manufactured by Regenesis. RegenOX is formulated to degrade petroleum hydrocarbons through direct oxidation and through the generation of free radical compounds which will also oxidize contaminants. RegenOx is a granulated crystalline that is mixed in water prior to subsurface injection. RegenOx was shipped in 40-pound plastic bags.

RegenOx produces minimal heat and pressure and is non-corrosive, making it a relatively safe chemical oxidant that is compatible for use in direct contact with underground infrastructure such as utilities, tanks, piping, and communication lines. This was an

important characteristic when selecting the ISCO product due to the close proximity of the monitoring wells to the earth retention sheeting for the Conventus Building.

Mixing of ISCO Chemicals

Tree Environmental, Inc. was contracted to perform the in situ injections. Injections were conducted on May 24 - 25, 2017 and September 13 - 15, 2017. RegenOX was mixed in steel, 55-gallon drums. Bags of ISCO product were carried to a trailer mounted mixing station.

ISCO product and water was mixed according to manufacturer's specifications. Injection borings received a 6% ISCO solution. RegenOX was mixed with tap water in 55 gallon drums at a concentration of 100 pounds of RegenOX with 110 gallons of water for each location.

Injection Borings

The ISCO solution was directly injected into the soil in 12 borings in the sub-basement. Three borings were advanced adjacent to each monitoring wells listed below:

BCP-MW-3 BCP-MW-5 BCP-MW-4

Injection borings (IB-01 through IB-12) are shown in **Figure 4**. Each injection boring had to be carefully located to avoid hitting utilities located underneath the floor, with the intent of being within 10 to 15 feet of each monitoring well. Each injection boring was advanced into the coarse sand and gravel layer, approximately 15 feet below the concrete floor.

The ISCO solution was pumped from the mixing station to a truck mounted geo-probe and into the subsurface. The mix of RegenOX and water was injected under pressure in each boring, and the 12 injection borings received approximately 100 pounds of RegenOx. Additionally, 100 pounds of ISCO material was gravity fed directly into each monitoring well. A total of 1,600 pounds of RegenOx was used for each treatment event. For two treatments, a total of 3,200 pounds of RegenOX was used.

2 REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

The table below presents a comparison of total VOC and BTEX concentrations from each monitoring well and the percent change from pre-treatment and post-treatment groundwater monitoring.

Table 2-1: VOC Concentration Change

Monitoring Well	Percent Change	Percent Change	Percent Change
-	Post Injections	Post Injections	Post Remediation
	May 2017 to	May 2017 to	Maximum to
	July 2017	November 2017	November 2017
BCP MW-1			-99.4
BCP MW-3	-83.5	+44.4	-81.0
BCP MW-4	-82.6	-96	-97.5
BCP MW-5	+66.9	+121.8	-50.1
BCP MW-6	+39.9	+736	+22.6
BCP MW-7			-96.1

Note: Negative value indicates decrease in concentration and positives value indicates increase in concentration BCP-MW-2 was dry. No samples were collected.

Table 2-2: BTEX Concentration Change

		<u> </u>	
Monitoring Well	Percent Change	Percent Change	Percent Change
	Post Injections	Post Injections	Post Remediation
	May 2017 to	May 2017 to	Maximum to
	July 2017	November 2017	November 2017
BCP MW-1			-100
BCP MW-3	-98.9	+30.8	-85.2
BCP MW-4	-97.6	-96.2	-97.6
BCP MW-5	+41.4	+90.3	-56.8
BCP MW-6	+8.1	+762.3	+31.7
BCP MW-7			-96.6

Note: Negative value indicates decrease in concentration and positives value indicates increase in concentration BCP-MW-2 was dry. No samples were collected.

Post-treatment samples collected on July 2017 shows a significant decrease in VOC concentrations in monitoring wells BCP-MW-3 and BCP-MW-4. Other monitoring wells show an increase in concentrations. Post-treatment samples collected in November 2017 demonstrate a rebound of contaminant concentrations in three of the four treated monitoring wells.

The likely reason for this rebound is the desorption of petroleum contaminants previously adhered to the sand / gravel material. As groundwater concentrations decrease, any organic compounds adhered to the saturated media will become soluble, thus increasing groundwater contaminant concentrations. Any future monitoring events would provide additional information regarding this observation, but it is expected that these desorbed contaminants will be oxidized over time, thereby reducing contaminant concentrations.

Despite the recent increases in concentrations in three of the monitoring wells, overall contaminant concentrations are significantly lower than the maximum concentrations recorded following the soil and groundwater removal efforts. Although concentrations are higher in BCP-MW-6 than during previous sampling events, total VOC concentrations in other five monitoring wells have experienced decreases ranging from

50 to 99.4 percent, and the range in BTEX concentration decreases is 56.8 to 100 percent in these wells.

The poor response of BCP-MW-6 to past in-situ treatments and from pump/treat pilot tests may be related to the hydraulic communication between this monitoring well and the higher levels of contamination observed on the Main Street R.O.W.

The cleanup of groundwater contamination along Main Street continues to be addressed under the NYSDEC Spills Program (NYSDEC Spill #9500234) with a Stipulation Agreement between the NYSDEC and Kaleida Health. Kaleida Health is actively remediating the Main Street contamination with in-situ oxidative treatments.

Graph 1 shows total BTEX concentrations over time. **Figure 3** shows the historic BTEX concentrations from each well.

3 IC/EC PLAN COMPLIANCE REPORT

3.1 IC/EC Requirements and Compliance

As stated in the 2014 Decision Document, the remedial action objectives (RAO) selected for this Site are:

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of volatiles, from contaminated groundwater.

RAOs for Environmental Protection

- Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Prevent the discharge of contaminants to surface water.

3.1.1 Institutional Controls

The institutional controls for this Site are:

- The Site may only be used for restricted residential use provided that the long-term Engineering and Institutional Controls included in this SMP are employed;
- The Site may not be used for a higher level of use, unrestricted or residential use, without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the Site that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- The use of the groundwater underlying the Site is prohibited by the City of Buffalo; and

• Vegetable gardens and farming on the Site are prohibited.

The Site has not changed owners and the land use of the Site has not change. All intuitional controls for this Site are in accordance with requirements of the Environmental Easement.

3.1.2 Engineering Controls

The engineering controls for this Site are:

 Groundwater treatment and monitoring using the seven wells installed in the subbasement of the building

All engineering controls for this Site are in accordance with requirements of the Environmental Easement.

3.2 IC/EC Certification

As required, the Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certificate Form has been completed and a copy is provided in **Appendix B**.

4 MONITORING PLAN COMPLIANCE REPORT

The SMP identified the need for continued monitoring of groundwater conditions at the Site, including the periodic measuring of water levels and collecting groundwater samples for VOC analysis.

The following monitoring wells are included in the groundwater monitoring plan:

- BCP-MW-1
- BCP-MW-2
- BCP-MW-3
- BCP-MW-4
- BCP-MW-5
- BCP-MW-6

All monitoring wells were sampled with the exception of BCP-MW-2, which has remained dry since its installation.

The groundwater monitoring activities included the collection of depth-to-water measurements at each monitoring well and the collection of groundwater samples for laboratory analysis. Groundwater sampling was conducted in accordance with the U.S.

Environmental Protection Agency Low flow sample procedure. Groundwater sample occurred on the dates below:

September 20, 2013	October 7, 2015	December 8, 2016
March 19, 2014	December 14, 2015	January 20, 2017
May 22, 2014	January 27, 2016	May 17, 2017
March 11, 2015	March 22, 2016	July 5, 2017
June 17, 2015	June 3, 2016	November 2, 2017
August 3, 2015	October 25, 2016	

Figure 3 shows the location of the groundwater wells in the sub-basement of the Conventus building.

Table 1 presents detected compounds over all monitoring events.

5 OPERATION AND MAINTENANCE PLAN COMPLIANCE

The only maintenance items are those associated with the monitoring wells. Minor maintenance to the well caps, PVC risers and road boxes is recommended for some of the monitoring wells. These issues do not interfere will groundwater monitoring or the integrity of the samples.

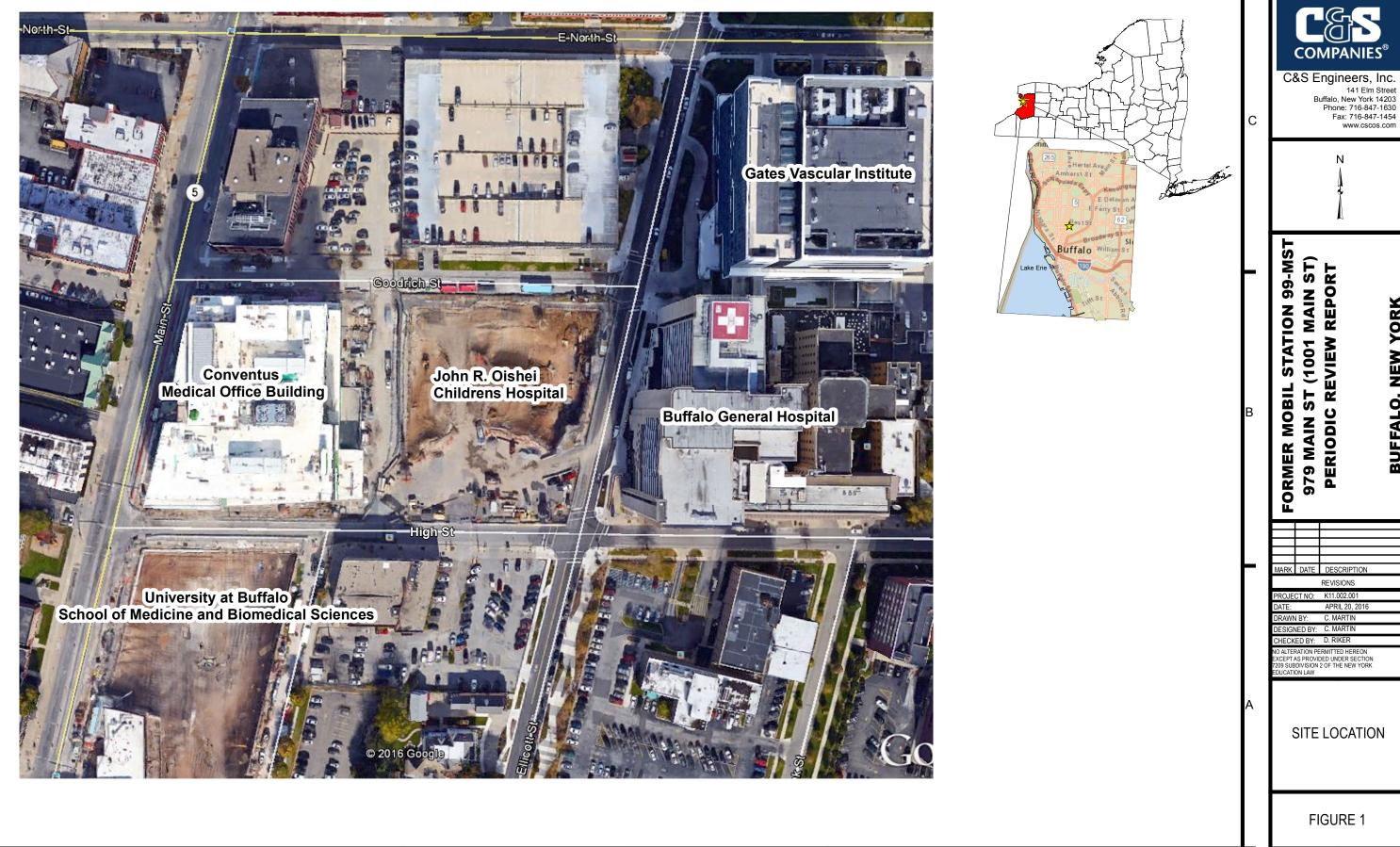
6 CONCLUSIONS

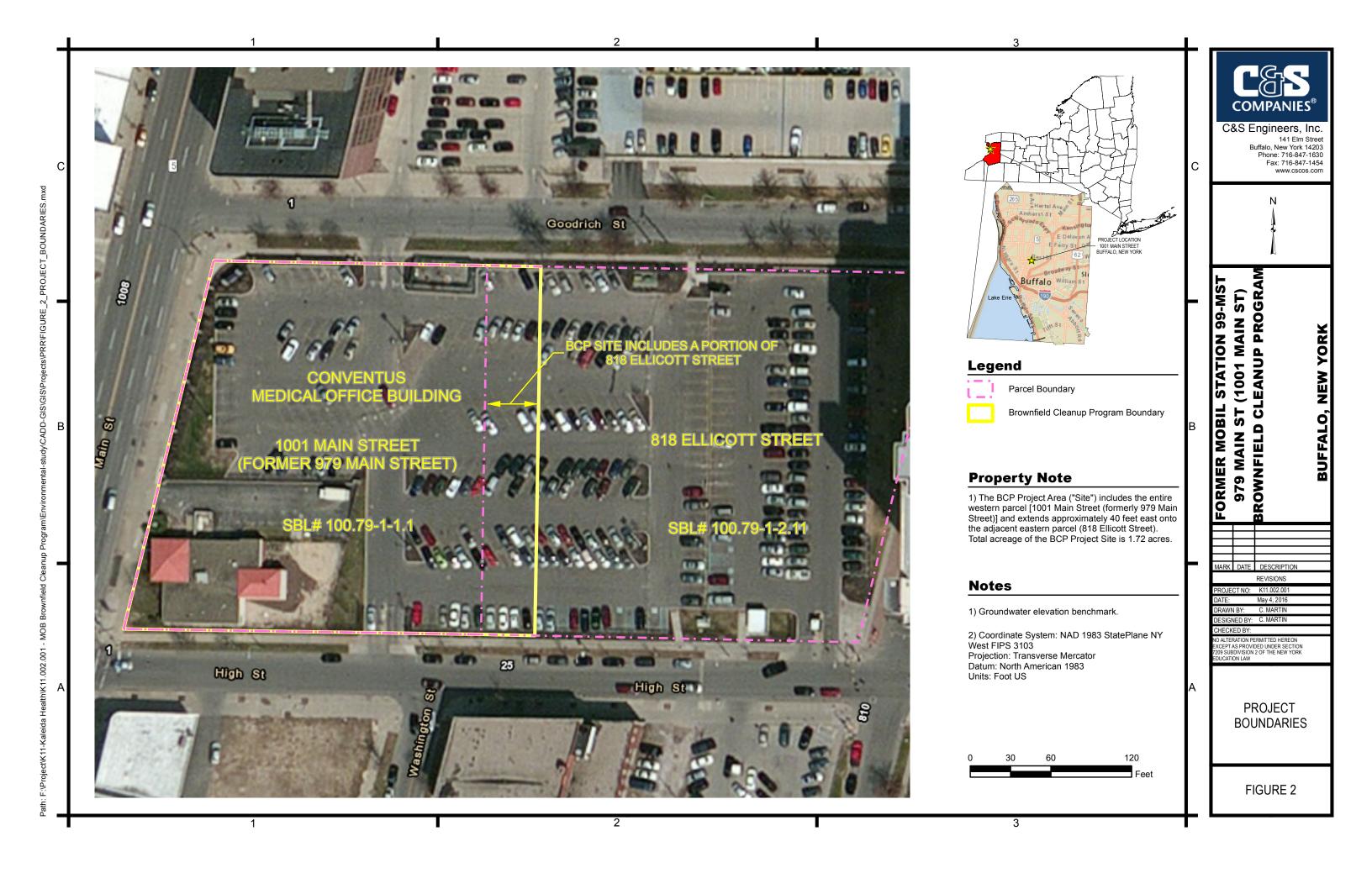
Based upon the remedial activities performed, the following conclusions have been formulated:

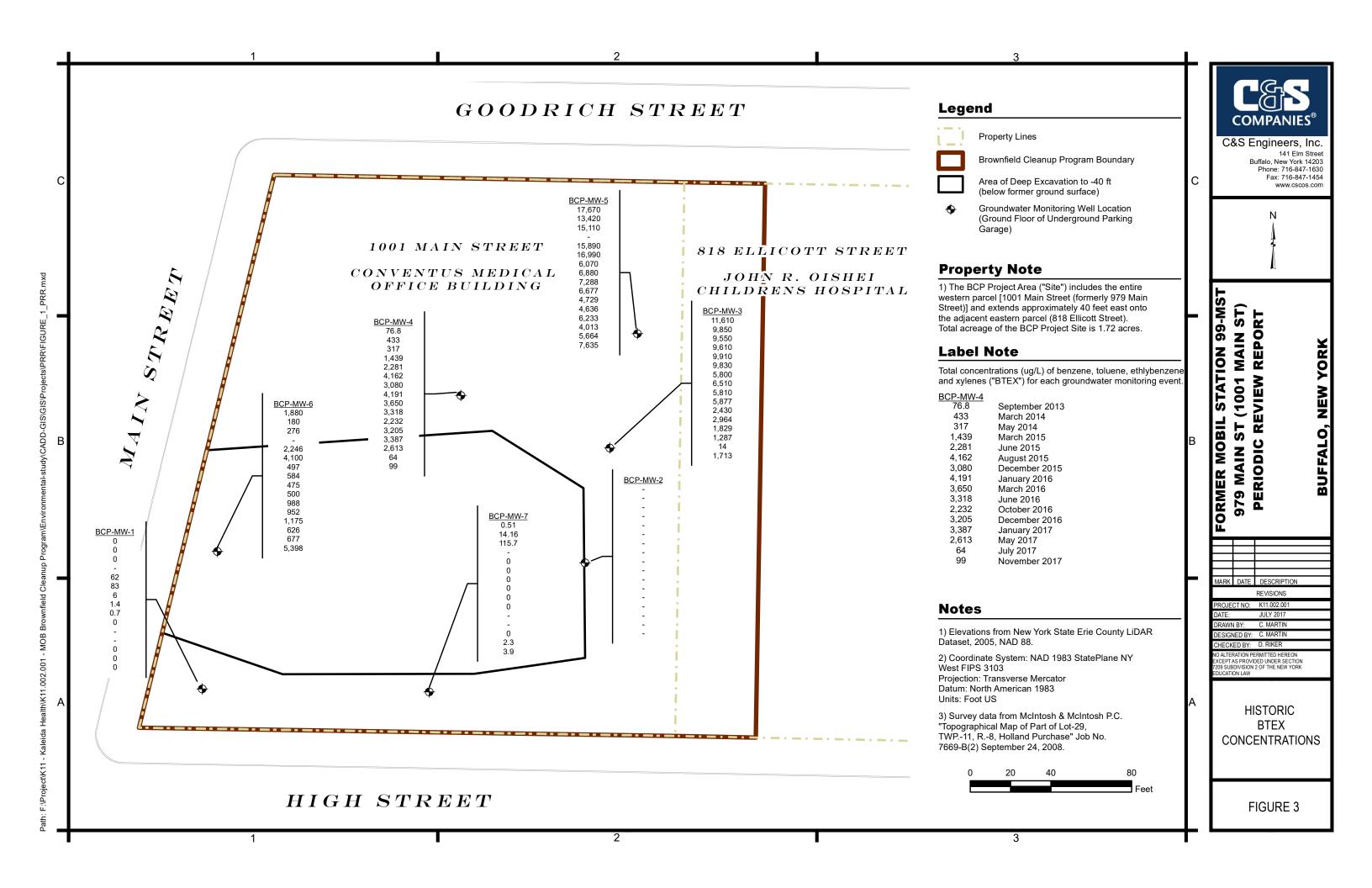
- All of the required work was completed and is reported herein.
- The remedial activities performed at the Site have prevented any adverse risk to human health and the environment.

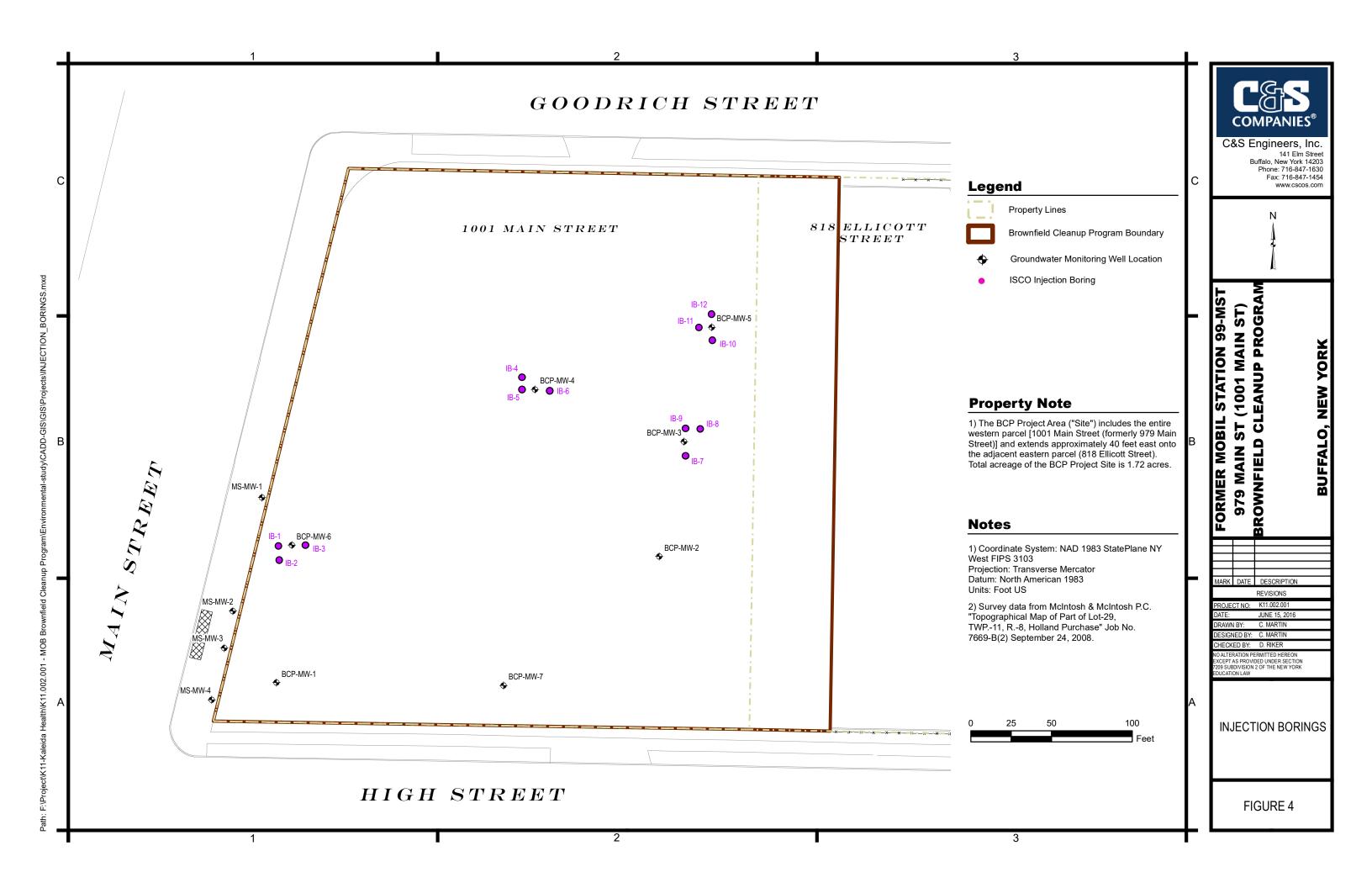
7 RECOMMENDATIONS

At this time, pressurized in-situ injections are the most efficient method to apply chemical oxidants into the subsurface. Additional treatment events are planned for the Site and on the Main Street R.O.W.


Based on the results described above, it appears that significant onsite groundwater remediation has reduced BTEX concentrations 56.8 to 100 percent in five monitoring wells. Results for one monitoring well, BCP-MW-6, lag behind the other wells due to offsite contaminant loading to the Site. Given that offsite efforts are being addressed under a different NYSDEC Program and responsible party, we request to meet with the NYSDEC to discuss these findings and their implications on deeming the remediation complete.


The additional in-situ treatment will consist of the following:


- C&S will subcontract to perform the drilling and injections.
- A total of six to ten borings will be advanced: three to five borings each around BCP-MW-5 and BCP-MW-6. Borings will be advanced to approximately 15 feet below the parking floor surface (30 feet below ground surface).
 - The borings proximal to BCP-MW-5 and BCP-MW6 will make use of borings created during the previous injection events.
- Borings will be advanced through the concrete floor of the parking garage to a depth that targets the saturated sand / gravel layer.
- The ISCO product will be mixed with water onsite using 55-gallon steel drums.
- The ISCO solution will be injected into the sand / gravel layer under pressure.
- BCP-MW-5 and BCP-MW-6 will each receive 400 pounds of ISCO product; a total of 800 pounds of ISCO product will be injected per event. A total of 3,200 pounds in four events throughout the year.
- Following injection, soils removed from the borings will be placed back into the borehole from which it came and a high strength concrete mix will be used to repair the parking garage surface.
- Groundwater sampling will be conducted semi-annually on the all monitoring wells in the sub-basement of the Conventus Site. All groundwater samples will be collected for VOCs and analyzed using EPA Method 8260.


F:\Project\N46 - Conventus\N46001003 - Conventus PRR\Planning-Study\Reports\2018 PERIODIC REVIEW REPORT.docx

TABLES

		~) (IV)	Mar. :) (DV)	2077.1) (TYY 1	1077.1) (CV)	Mary :) (IV)) (TY 1) (CV)) (T) 1) (IV) 1) (T) 1) CYL 1
		Sample Name	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2014	12/15/2015	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Qual	lity Standards & G	uidance Values															
Volatile Organic Compound	Surface Water	Groundwater															
2-HEXANONE	50	50	ND	ND	ND		ND	ND	3.5	ND	ND	ND			ND	ND	ND
ACETONE	50	50	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	5.1	ND
BENZENE	1	1	ND	ND	ND		35	39	5.7	1.4	0.72	ND			ND	ND	0.33
ETHYLBENZENE	5	5	ND	ND	ND		2	1.5	ND	ND	ND	ND			ND	ND	ND
ISOPROPYLBENZENE (CUMENE)	5	5	ND	ND	ND		1.3	ND	ND	ND	ND	ND			ND	ND	ND
METHYL ETHYL KETONE (2- BUTANONE)	50	50	ND	ND	ND		ND	45	ND	ND	ND	ND			ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND
TOLUENE	5	5	ND	ND	ND		19	38	0.55	ND	ND	ND			ND	ND	1.1
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND		ND	ND	ND	0.33 J	ND	ND			ND	ND	ND
XYLENES, TOTAL	5	5	ND	ND	ND		6.4	4.2	ND	ND	ND	ND			ND	ND	ND
NAPHTHALENE	10	10	ND	ND	ND		ND	ND	ND	0.33 J	ND	ND			ND	ND	ND
No Standard																	
CARBON DISULFIDE			ND	ND	0.94		ND	ND	ND	ND	ND	ND			ND	ND	ND
CYCLOHEXANE			ND	ND	ND		35	59	61	51	72	ND			ND	ND	ND
METHYL ISOBUTYL KETONE			ND	ND	ND		ND	13	ND	ND	ND	ND			ND	ND	ND
METHYLCYCLOHEXANE			ND	ND	0.47		3.2	17	15	11	ND	ND			ND	ND	ND
Total VOC	Cs		0	0	1.41	-	101.90	216.70	85.75	63.40	72.72	0			-	5.1	1.4
Total BTE	X		0	0	0	-	62	83	6	1.4	0.7	0			0.0	0	0
Non-Standard VOC List																	
1,3,5-TRIMETHYLBENZENE	5	5														ND	ND
1,2,4,5-TETRAMETHYLBENZENE	5	5														ND	ND
1,2,4-TRIMETHYLBENZENE	5	5														ND	ND
SEC-BUTYLBENZENE	5	5														ND	ND
N-PROPYLBENZENE	5	5														ND	ND
N-BUTYLBENZENE	5	5														ND	ND
P-ISOPROPYLTOLUENE																ND	ND
1,4-DIETHYLBENZENE																ND	ND

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7 $\,$

were dry or not enough water was inside the well for a representative sample.

		Sample Name	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	1/27/2015	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/201
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Qual	ity Standards & Gi	uidance Values																
Volatile Organic Compound	Surface Water	Groundwater																
2-HEXANONE	50	50	ND	ND	ND	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8	ND
ACETONE	50	50	ND	98	ND	17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	166	ND
BENZENE	1	1	6,600	4,500	4,700	3,700	4,300	4,100	2,100	2,200	1,900	3,100	1,390	635	363	451	3	364
ETHYLBENZENE	5	5	1,200	1,600	1,500	1,600	1,500	1,700	1,400	1,600	1,600	610	194	899	517	197	2.4	384
ISOPROPYLBENZENE (CUMENE)	5	5	ND	37	ND	32	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.7
METHYL ETHYL KETONE (2- BUTANONE)	50	50	ND	71	ND	6.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	201	51.4	51.4
METHYLENE CHLORIDE	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	110	150	150	110	110	130	100	110	110	67	39.4	74.5	38.4	22.6	1.6	34.8
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	3,700	3,600	3,200	4200	4000	3900	2200	2600	2200	2100	806.3	1430	949	639	7.1	930.0
NAPHTHALENE	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14	357
No Standard																		
CARBON DISULFIDE			ND	ND	ND	0.31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			120	320	270	390	330	210	100	93	110	170	ND	ND	ND	ND	ND	60.5
METHYL ISOBUTYL KETONE			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			ND	130	150	120	160	96	34	33	36 J	170	47.7	ND	ND	29.5	ND	33.4
Total VOC	's		11,730	10,506	9,970	10,179	10,400	10,136	5,934	6,636	5,920	6,252	2,477	3,038	1,867	1,540	254	2,22
Total BTE	X		11,610	9,850	9,550	9,610	9,910	9,830	5,800	6,510	5,810	5,877	2,430	3,038	1,867	1,310	14	1,71
Non-Standard VOC List																		
1,3,5-TRIMETHYLBENZENE	5	5															ND	133
1,2,4,5-TETRAMETHYLBENZENE	5	5															ND	ND
1,2,4-TRIMETHYLBENZENE	5	5															4.9	737
SEC-BUTYLBENZENE	5	5															ND	ND
N-PROPYLBENZENE	5	5															ND	ND
N-BUTYLBENZENE	5	5					_										ND	ND
P-ISOPROPYLTOLUENE																	ND	ND
1,4-DIETHYLBENZENE																	ND	ND

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7 $\,$

were dry or not enough water was inside the well for a representative sample.

		Sample Name	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	1/27/2016	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/17/2017
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quali	ity Standards & G	uidance Values																
Volatile Organic Compound	Surface Water	Groundwater																
2-HEXANONE	50	50	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	10	250	170	67	ND	210	ND	ND	ND	ND	ND	ND	ND	ND	38.2	10
BENZENE	1	1	42	29	15	26	24	242	ND	21	ND	21	9.57	12.8	10.2	10.8	1.3	97.0
ETHYLBENZENE	5	5	4.7	34	32	560	1,000	680	1,100	1300	1,400	1400	1,000	1170	1,300	1220	28	1.8
ISOPROPYLBENZENE (CUMENE)	5	5	ND	ND	ND	9.8	15.0	26	ND	ND	ND	ND	19	30.3	28.7	ND	2.3	ND
METHYL ETHYL KETONE (2-BUTANONE)	50	50	ND	ND	ND	ND	8.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.9	ND
METHYLENE CHLORIDE	5	5	ND	ND	1 J	ND	ND	ND	ND	52	ND	42	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	1.1	190	110	53	57	140	180	270	150	97	62.4	130	133	92.2	9.8	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	29	180	160	800	1,200	3100	1,800	2600	2,100	1800	1,160	1892	1,944	1289.7	24.5	ND
NAPHTHALENE	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND
No Standard																		
CARBON DISULFIDE			ND	ND	1.9 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			8.2	11	7	170	170	110	160	220	250	340	189	259	276	235	276	5.5
METHYL ISOBUTYL KETONE			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			7.5	3.7	3.1	87	92	69	86	100	110	140	85.1	110	123	99.7	123	2.4
Total VOC	s		102.5	697.7	497.1	1,774.5	2,566.5	4,577.0	3,326.0	4,563.0	4,010.0	3,840.0	2,525.5	3,604.1	3,814.9	2,947.4	511.9	116.7
Total BTEX	K		76.8	433	317	1,439	2,281	4,162	3,080	4,191	3,650	3,318	2,232	3,205	3,387	2,613	64	99
Non-Standard VOC List																		
1,3,5-TRIMETHYLBENZENE	5	5															2	ND
1,2,4,5-TETRAMETHYLBENZENE	5	5															1.1	ND
1,2,4-TRIMETHYLBENZENE	5	5															1.1	ND
SEC-BUTYLBENZENE	5	5															ND	ND
N-PROPYLBENZENE	5	5															2.3	ND
N-BUTYLBENZENE	5	5															1.7	ND
P-ISOPROPYLTOLUENE																	ND	ND
1,4-DIETHYLBENZENE																	ND	ND

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

		Sample Name	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	1/27/2016	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Qual	lity Standards & G			Ü	C	Č	Ü	Ü	Ü		Č		Ü			Ü	Ü	
Volatile Organic Compound	Surface Water	Groundwater																
2-HEXANONE	50	50	11	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	ND	520	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	15.3	ND
BENZENE	1	1	5,600	4,800	4,900		3,700	4,100	1,800	1,800	1,700	1,600	899	949	682	428	574	283
ETHYLBENZENE	5	5	1,900	1,600	1,600		2,800	2,600	1,600	1,900	2,200	2,200	1,490	1,450	2,070	584	534	1,660
ISOPROPYLBENZENE (CUMENE)	5	5	28	29	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13.6	ND
METHYL ETHYL KETONE (2-BUTANONE)	50	50	10	350	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.1	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	77	96	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	170	220	310		290	290	70	80	88	77	68.5	84.9	86.6	ND	36.2	82.0
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	10,000	6,800	8,300		9,100	10,000	2,600	3,100	3,300	2,800	2,271.3	2,152.2	3,394.7	3,000.7	4,520.0	5,610.0
NAPHTHALENE	10	10	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	730	1,030
No Standard																		
CARBON DISULFIDE			ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.1	ND
CYCLOHEXANE			230	340	240		430	260	230	250	280	430	198	148	257	ND	257	238
METHYL ISOBUTYL KETONE			23	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			100	170	150		190	130	92	100	100	140	67.5	58.4	92.8	49	92.8	106
Total VOC	Cs		18,072	14,829	15,500	-	16,510	17,380	6,392	7,230	7,745	7,343	4,994	4,843	6,583	4,062	6,780	9,009
Total BTE	X		17,670	13,420	15,110	-	15,890	16,990	6,070	6,880	7,288	6,677	4,729	4,636	6,233	4,013	5,664	7,635
Non-Standard VOC List																		
1,3,5-TRIMETHYLBENZENE	5	5															823	ND
1,2,4,5-TETRAMETHYLBENZENE	5	5															135	ND
1,2,4-TRIMETHYLBENZENE	5	5															2,280	2,490
SEC-BUTYLBENZENE	5	5															3.2	ND
N-PROPYLBENZENE	5	5															34.8	ND
N-BUTYLBENZENE	5	5															43.3	ND
P-ISOPROPYLTOLUENE																	5.7	ND
1,4-DIETHYLBENZENE																	347	ND

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

		~	MWI 6	NOW 6	MOVI 6	MW 6	MW C	MW 6	MW C	MW 6	MOV. C) MV C	MOVI 6	MW 6	MW	MOV. 6	MW	NOV. 6
		Sample Name	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/14/2015	1/27/2016	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Qual	ity Standards & G	uidance Values																
Volatile Organic Compound	Surface Water	Groundwater																
2-HEXANONE	50	50	ND	ND	ND		190	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	ND	ND	ND		480	340	ND	ND	ND	ND	ND	ND	ND	ND	102	ND
BENZENE	1	1	190	33	16		470	890	250	230	200	120	302	168	200	113	131	774
ETHYLBENZENE	5	5	130	20	31		36	210	22	44	67	50	163	169	173	175	85.5	154.0
ISOPROPYLBENZENE (CUMENE)	5	5	4.4	ND	1.9 J			ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND
METHYL ETHYL KETONE (2- BUTANONE)	50	50	ND	ND	ND		110	ND	ND	ND	ND	ND	ND	ND	ND	ND	19.6	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	810	42	79		1,000	1,900	85	120	78	120	130	255	351	147	22.5	2,970.0
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	750	85	150		740	1,100	140	190	130	210	393	360	451	190.7	438	1,500
NAPHTHALENE	10	10	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	86.6	ND
No Standard																		
CARBON DISULFIDE			ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			68	ND	130		270	41	62	110	110	91	81.5	ND	ND	ND	ND	84
METHYL ISOBUTYL KETONE			ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			46	16	18		170	27	24	21	10	24	32.2	30.2	36.9	35.3	36.9	44
Total VOC	Cs .		1,998.4	196	424	-	3,466	4,508	583	715	595	615	1,101	983	1,212	661	925	5,526
Total BTE	X		1,880	180	276	-	2,246	4,100	497	584	475	500	988	952	1,175	626	677	5,398
Non-Standard VOC List																		
1,3,5-TRIMETHYLBENZENE	5	5															74.3	ND
1,2,4,5-TETRAMETHYLBENZENE	5	5															14.3	ND
1,2,4-TRIMETHYLBENZENE	5	5															134	ND
SEC-BUTYLBENZENE	5	5																
N-PROPYLBENZENE	5	5															11.3	ND
N-BUTYLBENZENE	5	5															4.6	ND
P-ISOPROPYLTOLUENE																	1.6	1.6
1,4-DIETHYLBENZENE																	32.9	32.9

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

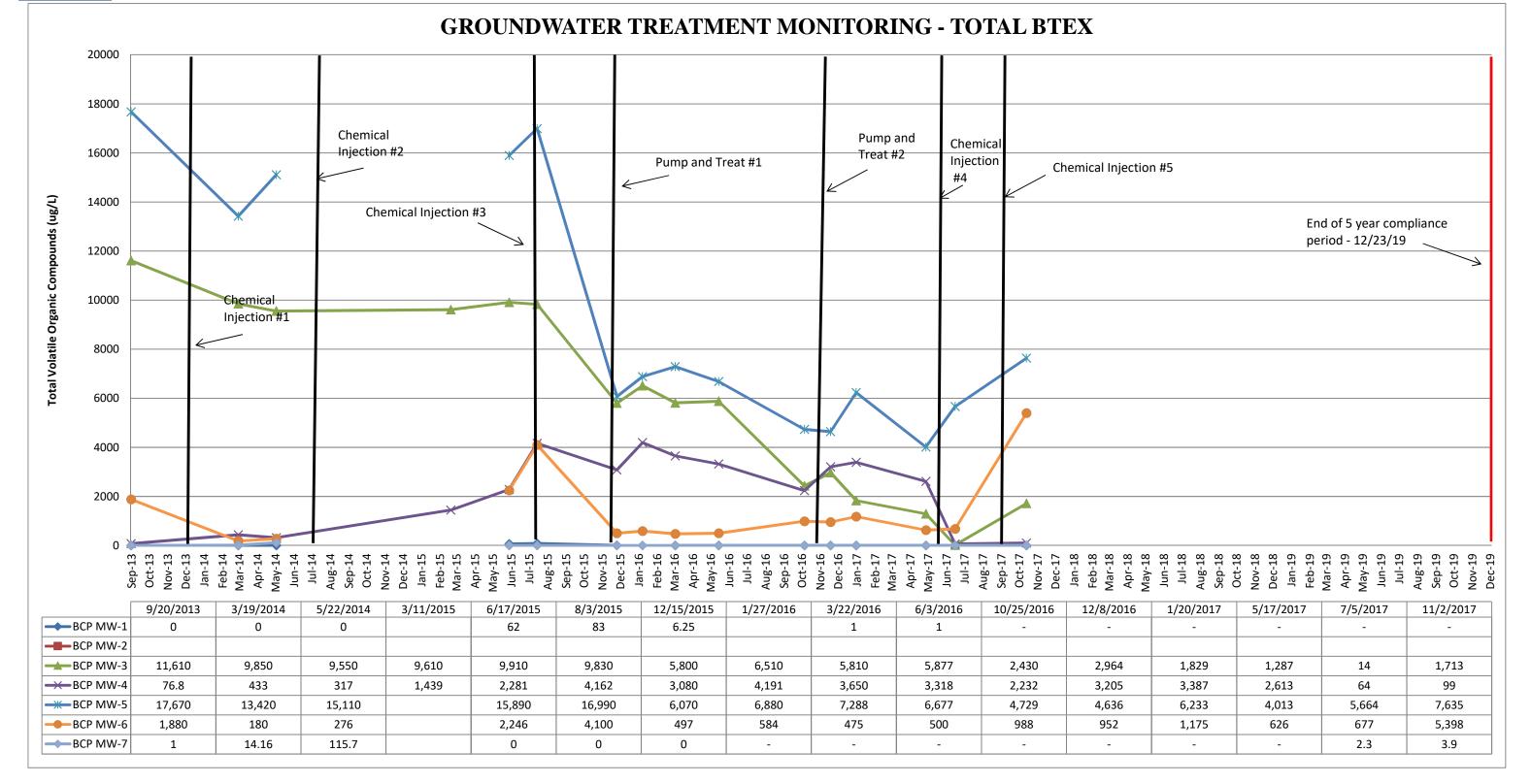
were dry or not enough water was inside the well for a representative sample.

		Sample Name	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quali	ty Standards & G	uidance Values															
Volatile Organic Compound	Surface Water	Groundwater															
2-HEXANONE	50	50	ND	ND	4.8		ND	ND	ND	ND	ND	ND			ND	ND	ND
ACETONE	50	50	ND	3	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND
BENZENE	1	1	0.51	8.8	14		ND	ND	ND	ND	ND	ND			ND	2.3	2.81
ETHYLBENZENE	5	5	ND	ND	3		ND	ND	ND	ND	ND	ND			ND	ND	0
ISOPROPYLBENZENE (CUMENE)	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	0.45
METHYL ETHYL KETONE (2-BUTANONE)	50	50	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND
TOLUENE	5	5	ND	0.56	4.7		ND	ND	ND	ND	ND	ND			ND	ND	1.1
1,1,2-TRICHLOROETHANE	1	1															
XYLENES, TOTAL	5	5	0.96	4.8	94		ND	ND	ND	0.99 J	ND	ND			ND	ND	ND
NAPHTHALENE	10	10															
No Standard																	
CARBON DISULFIDE			ND	ND	0.97		ND	ND	ND	ND	ND	ND			ND	ND	ND
CYCLOHEXANE			ND	4.3	9.6		ND	ND	0.71	ND	ND	ND			ND	ND	0.99
METHYL ISOBUTYL KETONE			ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND
METHYLCYCLOHEXANE			ND	1.7	5.1		0.18	ND	ND	ND	ND	ND			ND	ND	ND
Total VOCs	s		1.47	23.16	136.17	-	0.18	-	0.71	-	-	-	-	-	-	2.30	5.35
Total BTEX	(0.51	14.16	115.7	-	-	-	-	-	-	-	-	-	-	2.3	3.9
Non-Standard VOC List																	
1,3,5-TRIMETHYLBENZENE	5	5														ND	ND
1,2,4,5-TETRAMETHYLBENZENE	5	5														ND	ND
1,2,4-TRIMETHYLBENZENE	5	5														ND	ND
SEC-BUTYLBENZENE	5	5															
N-PROPYLBENZENE	5	5															
N-BUTYLBENZENE	5	5															
P-ISOPROPYLTOLUENE																	
1,4-DIETHYLBENZENE		·															

Notes:

Not Sampled

1) Blank space = analyte concentration not reported


2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

GRAPHS

APPENDIX A LABORATORY ANALYTICAL RESULTS

ANALYTICAL REPORT

Lab Number: L1742555

Client: C&S Companies

141 Elm Street, Suite 100

Buffalo, NY 14203

ATTN: Cody Martin
Phone: (716) 847-1630

Project Name: (N46) CONVENTUS

Project Number: N46.001.001 Report Date: 11/30/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:11301713:48

Project Name: (N46) CONVENTUS

Project Number: N46.001.001

Lab Number:

L1742555

Report Date:

11/30/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1742555-01	BCP-MW-4	WATER	CONVENTUS	11/17/17 11:50	11/17/17

Serial_No:11301713:48

Project Name: (N46) CONVENTUS Lab Number: L1742555

Project Number: N46.001.001 Report Date: 11/30/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	Please	contact	Client	Services	at 8	800-624-9220	with an	y questions.
--	--------	---------	--------	----------	------	--------------	---------	--------------

Serial_No:11301713:48

Project Name: (N46) CONVENTUS Lab Number: L1742555

Project Number: N46.001.001 **Report Date:** 11/30/17

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1742555-01: The sample was collected in a pre-preserved vial; however, the pH of the sample was determined to be greater than two. Samples that have a pH of greater than two should be analyzed within 7 days of collection; therefore, the sample was analyzed with the method required holding time exceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 11/30/17

ORGANICS

VOLATILES

Project Name: (N46) CONVENTUS

Project Number: N46.001.001

Lab Number: L1742555

Report Date: 11/30/17

SAMPLE RESULTS

Lab ID: L1742555-01 Date Collected: 11/17/17 11:50

Client ID: Date Received: 11/17/17 BCP-MW-4 Sample Location: Field Prep: **CONVENTUS** Not Specified

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 11/29/17 11:30

Analyst: BD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	1.0	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	0.20	J	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.48	J	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	97		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	1.8	J	ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L1742555

Project Name: (N46) CONVENTUS Lab Number:

Project Number: N46.001.001 **Report Date:** 11/30/17

SAMPLE RESULTS

Lab ID: Date Collected: 11/17/17 11:50

Client ID: BCP-MW-4 Date Received: 11/17/17
Sample Location: CONVENTUS Field Prep: Not Specified

Result ugh Lab ND	Qualifier	Units ug/l	RL	MDL	Dilution Factor
ND		ug/l			
		ua/l			
ND		M M/ I	2.5	0.70	1
		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	5.0	1.0	1
10		ug/l	5.0	1.5	1
ND		ug/l	5.0	1.0	1
ND		ug/l	5.0	1.9	1
ND		ug/l	5.0	1.0	1
ND		ug/l	5.0	1.0	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.0	0.65	1
ND		ug/l	2.5	0.70	1
0.74	J	ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.0	0.23	1
5.5	J	ug/l	10	0.27	1
ND		ug/l	250	61.	1
ND		ug/l	2.5	0.70	1
2.4	J	ug/l	10	0.40	1
	ND N	ND N	ND ug/l ND ug	ND ug/l 2.5 ND ug/l 2.5 ND ug/l 2.5 ND ug/l 5.0 ND ug/l 2.5 ND ug/l 2.5	ND ug/l 2.5 0.70 ND ug/l 2.5 0.70 ND ug/l 2.5 0.70 ND ug/l 2.5 0.70 ND ug/l 5.0 1.0 10 ug/l 5.0 1.5 ND ug/l 5.0 1.9 ND ug/l 5.0 1.9 ND ug/l 5.0 1.0 ND ug/l 5.0 1.0 ND ug/l 2.5 0.70 ND ug/l 2.5

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	109	70-130	
Dibromofluoromethane	84	70-130	

Project Name: (N46) CONVENTUS

Project Number: N46.001.001

Lab Number: L1742555

Report Date: 11/30/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 11/29/17 09:23

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 01	Batch:	WG1067184-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: (N46) CONVENTUS

Project Number: N46.001.001

Lab Number: L1742555

Report Date: 11/30/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 11/29/17 09:23

Analyst: PD

arameter	Result	Qualifier U	nits	RL	MDL
olatile Organics by GC/MS - V	estborough La	o for sample(s	s): 01	Batch:	WG1067184-5
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
Methyl Acetate	ND		ug/l	2.0	0.23
Cyclohexane	ND		ug/l	10	0.27
1,4-Dioxane	ND		ug/l	250	61.
Freon-113	ND		ug/l	2.5	0.70
Methyl cyclohexane	ND		ug/l	10	0.40

Tentatively Identified Compounds			
Total TIC Compounds	1.08	J	ug/l
Sulfur Dioxide	1.08	NJ	ug/l

L1742555

Lab Number:

Project Name: (N46) CONVENTUS

Project Number: N46.001.001 **Report Date:** 11/30/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 11/29/17 09:23

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough La	ab for sampl	le(s): 01	Batch: WG	G1067184-5

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
1.2-Dichloroethane-d4	102	70-130		
Toluene-d8	98	70-130		
4-Bromofluorobenzene	105	70-130		
Dibromofluoromethane	96	70-130		

Lab Control Sample Analysis Batch Quality Control

Project Name: (N46) CONVENTUS

Project Number: N46.001.001

Lab Number: L1742555

Report Date: 11/30/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	067184-3	WG1067184-4		
Methylene chloride	92		90		70-130	2	20
1,1-Dichloroethane	95		95		70-130	0	20
Chloroform	90		90		70-130	0	20
Carbon tetrachloride	83		80		63-132	4	20
1,2-Dichloropropane	95		94		70-130	1	20
Dibromochloromethane	85		82		63-130	4	20
1,1,2-Trichloroethane	97		97		70-130	0	20
Tetrachloroethene	81		80		70-130	1	20
Chlorobenzene	92		90		75-130	2	20
Trichlorofluoromethane	93		91		62-150	2	20
1,2-Dichloroethane	94		92		70-130	2	20
1,1,1-Trichloroethane	88		86		67-130	2	20
Bromodichloromethane	86		85		67-130	1	20
trans-1,3-Dichloropropene	83		81		70-130	2	20
cis-1,3-Dichloropropene	80		78		70-130	3	20
Bromoform	84		82		54-136	2	20
1,1,2,2-Tetrachloroethane	100		98		67-130	2	20
Benzene	95		94		70-130	1	20
Toluene	95		94		70-130	1	20
Ethylbenzene	95		94		70-130	1	20
Chloromethane	110		110		64-130	0	20
Bromomethane	91		90		39-139	1	20
Vinyl chloride	120		120		55-140	0	20

Lab Control Sample Analysis Batch Quality Control

Project Name: (N46) CONVENTUS

Project Number: N46.001.001

Lab Number: L1742555

Report Date: 11/30/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	.ab Associated	sample(s): 0	1 Batch: WG1	067184-3	WG1067184-4			
Chloroethane	120		110		55-138	9		20
1,1-Dichloroethene	99		98		61-145	1		20
trans-1,2-Dichloroethene	91		90		70-130	1		20
Trichloroethene	87		89		70-130	2		20
1,2-Dichlorobenzene	92		89		70-130	3		20
1,3-Dichlorobenzene	92		90		70-130	2		20
1,4-Dichlorobenzene	89		87		70-130	2		20
Methyl tert butyl ether	98		91		63-130	7		20
p/m-Xylene	95		95		70-130	0		20
o-Xylene	90		90		70-130	0		20
cis-1,2-Dichloroethene	88		91		70-130	3		20
Styrene	90		90		70-130	0		20
Dichlorodifluoromethane	100		99		36-147	1		20
Acetone	83		80		58-148	4		20
Carbon disulfide	97		96		51-130	1		20
2-Butanone	82		87		63-138	6		20
4-Methyl-2-pentanone	85		85		59-130	0		20
2-Hexanone	65		62		57-130	5		20
Bromochloromethane	90		90		70-130	0		20
1,2-Dibromoethane	94		92		70-130	2		20
1,2-Dibromo-3-chloropropane	76		71		41-144	7		20
Isopropylbenzene	86		85		70-130	1		20
1,2,3-Trichlorobenzene	91		73		70-130	22	Q	20

Lab Control Sample Analysis Batch Quality Control

Project Name: (N46) CONVENTUS

Project Number: N46.001.001

Lab Number: L1742555

Report Date: 11/30/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limit	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 01	Batch: WG	31067184-3	WG1067184-4			
1,2,4-Trichlorobenzene	84		76		70-130	10	20	
Methyl Acetate	88		85		70-130	3	20	
Cyclohexane	93		93		70-130	0	20	
1,4-Dioxane	110		100		56-162	10	20	
Freon-113	100		99		70-130	1	20	
Methyl cyclohexane	87		88		70-130	1	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	101	99	70-130
Toluene-d8	100	98	70-130
4-Bromofluorobenzene	107	107	70-130
Dibromofluoromethane	94	93	70-130

Lab Number: L1742555

Report Date: 11/30/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

(N46) CONVENTUS

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: N46.001.001

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1742555-01A	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260(14)
L1742555-01B	Vial HCI preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260(14)
L1742555-01C	Vial HCI preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260(14)

Project Name: (N46) CONVENTUS Lab Number: L1742555

Project Number: N46.001.001 **Report Date:** 11/30/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

В

Project Name:(N46) CONVENTUSLab Number:L1742555Project Number:N46.001.001Report Date:11/30/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:(N46) CONVENTUSLab Number:L1742555Project Number:N46.001.001Report Date:11/30/17

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:11301713:48

ID No.:17873 Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cod Project Information Project Name: NH 6 Project Location: CON	oper Ave, Suite 10	uS	Page		Deliver	ate Rec'o in Lab ables SP-A QuIS (1 F	11		ASP-E	3 S (4 File)	ALPHA Job# C 1742555 Billing Information Same as Client Info
	2-1630 2-1654 6 cscos.com een previously analyz	Project # NH0. 001 (Use Project name as Project Manager: C0) ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved	oject#) 🗆 dy Mar	(11)	nfy w	avtin)	Regula N A	other Lory Requ Y TOGS WQ Standa Y Restricte Y Unrestric YC Sewer	irds d Use ted Use	N D		+375 -51	Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other: Sample Filtration
Please specify Metals ALPHA Lab ID (Lab Use Only)	or TAL.	ample ID	Colle	ection Time	Sample Matrix	Sampler's Initials	VOLSEL						Done Lab to do Preservation Lab to do (Please Specify below)
42555 - 61	BCP-MW-4			11:50 am	GW	AS	X						
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification N Mansfield: Certification N Relinquished	o: MA015 By:	Date/ ///17// ////7//7	Fime 7 4:31		V B Receive	i By:	4c	11/17			TIMO NEAD AND MONEES

V	Final Report
	Revised Report
Rei	nort Date:

08-Nov-17 15:45

Laboratory Report SC41135

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, NY 14203

Project: Conventus - 1001 Main Street, NY

Project #: N46.001.001

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Kimberly Laplante Quality Assurance Manager

94 Fa Plante

Eurofins Spectrum Analytical holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 35 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC41135

Project: Conventus - 1001 Main Street, NY

Project Number: N46.001.001

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC41135-01	BCP-MW-6	Ground Water	02-Nov-17 10:50	04-Nov-17 10:20
SC41135-02	BCP-MW-1	Ground Water	02-Nov-17 11:35	04-Nov-17 10:20
SC41135-03	BCP-MW-7	Ground Water	02-Nov-17 12:25	04-Nov-17 10:20
SC41135-04	BCP-MW-3	Ground Water	02-Nov-17 13:50	04-Nov-17 10:20
SC41135-05	BCP-MW-5	Ground Water	02-Nov-17 14:45	04-Nov-17 10:20
SC41135-06	Trip Blank	Aqueous	02-Nov-17 00:00	04-Nov-17 10:20

CASE NARRATIVE:

Data has been reported to the RDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 2.6 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Calibration:

1710027

Analyte quantified by quadratic equation type calibration.

- 1,2,4-Trichlorobenzene
- 1,2,4-Trimethylbenzene
- 1,2-Dibromo-3-chloropropane
- $1,\!3,\!5\text{-}Trimethyl benzene$
- 1,3-Dichlorobenzene

Bromoform

cis-1,3-Dichloropropene

Ethylbenzene

Naphthalene

Styrene

trans-1,3-Dichloropropene

This affected the following samples:

1718835-BLK1

1718835-BLK2

1718835-BS1

1718835-BS2

1718835-BSD1

1718835-BSD2

1718908-BLK1

1718908-BS1

1718908-BS2

1718908-BSD1

1718908-BSD2

BCP-MW-1

BCP-MW-3

BCP-MW-5

BCP-MW-6

BCP-MW-7

S709132-ICV1

S709835-CCV1 S709877-CCV1

Trip Blank

Laboratory Control Samples:

1718835 BS/BSD

1718835-BS1

1718835 BS/BSD
1,1,2-Trichlorotrifluoroethane (Freon 113) percent recoveries (123/135) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bia
BCP-MW-1 BCP-MW-5
BCP-MW-6
BCP-MW-7
Trip Blank
Bromomethane percent recoveries (65/82) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:
BCP-MW-1
BCP-MW-5 BCP-MW-6
BCP-MW-7
Trip Blank
Methyl acetate percent recoveries (157/163) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:
BCP-MW-1
BCP-MW-5
BCP-MW-6 BCP-MW-7
Trip Blank
Methyl acetate percent recoveries (64/93) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:
BCP-MW-1
BCP-MW-5 BCP-MW-6
BCP-MW-7
Trip Blank
Methylene chloride percent recoveries (126/133) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:
BCP-MW-1
BCP-MW-5
BCP-MW-6 BCP-MW-7
Trip Blank
1718835 BSD
Bromomethane RPD 23% (20%) is outside individual acceptance criteria.
Carbon disulfide RPD 28% (20%) is outside individual acceptance criteria.
Methyl acetate RPD 38% (30%) is outside individual acceptance criteria.
Methylene chloride RPD 27% (20%) is outside individual acceptance criteria.

08-Nov-17 15:45 Page 4 of 35

SW846 8260C

Laboratory Control Samples:

1718835-BS1

Analyte is found in the associated blank as well as in the sample (CLP B-flag).

1,2,4-Trichlorobenzene

Methyl acetate

1718835-BS2

Analyte is found in the associated blank as well as in the sample (CLP B-flag).

1,2,4-Trichlorobenzene

Methyl acetate

1718835-BSD1

Analyte is found in the associated blank as well as in the sample (CLP B-flag).

1,2,4-Trichlorobenzene

Methyl acetate

1718835-BSD2

Analyte is found in the associated blank as well as in the sample (CLP B-flag).

1,2,4-Trichlorobenzene

Methyl acetate

1718908 BS/BSD

1,1-Dichloroethene percent recoveries (130/135) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

BCP-MW-3

Methyl acetate percent recoveries (263/278) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

BCP-MW-3

Samples:

S709835-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,1-Trichloroethane (21.1%)

Bromomethane (-24.1%)

Carbon tetrachloride (27.4%)

Methyl acetate (-36.5%)

Methylcyclohexane (20.7%)

Tetrachloroethene (23.4%)

Trichlorofluoromethane (Freon 11) (24.8%)

SW846 8260C

Samples:

S709835-CCV1

This affected the following samples:

1718835-BLK1

1718835-BLK2

1718835-BS1

1718835-BS2

1718835-BSD1

1718835-BSD2

BCP-MW-1

BCP-MW-5

BCP-MW-6

BCP-MW-7

Trip Blank

S709877-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,2-Trichlorotrifluoroethane (Freon 113) (25.3%)

1,1-Dichloroethene (30.4%)

Bromomethane (-28.9%)

Carbon disulfide (20.8%)

Methylene chloride (24.2%)

This affected the following samples:

1718908-BLK1

1718908-BS1

1718908-BS2

1718908-BSD1

1718908-BSD2

BCP-MW-3

SC41135-01 BCP-MW-6

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC41135-02 *BCP-MW-1*

Non-target concentration sufficient to be reported as one of the highest TICs.

Tert-Butanol / butyl alcohol

SC41135-03 *BCP-MW-7*

Non-target concentration sufficient to be reported as one of the highest TICs.

Tert-Butanol / butyl alcohol

SC41135-04 BCP-MW-3

Non-target concentration sufficient to be reported as one of the highest TICs.

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Naphthalene

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC41135-05 BCP-MW-5

SW846 8260C

Samples:

SC41135-05 BCP-MW-5

Non-target concentration sufficient to be reported as one of the highest TICs.

1,2,4-Trimethylbenzene

Naphthalene

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SW846 8260C TICs

Samples:

SC41135-02 BCP-MW-1

(Tentatively Identified Compounds) reported values are estimated concentrations of non-target analytes identified at greater than 10% of the nearest internal standard.

SC41135-04 BCP-MW-3

(Tentatively Identified Compounds) reported values are estimated concentrations of non-target analytes identified at greater than 10% of the nearest internal standard.

SC41135-05 BCP-MW-5

(Tentatively Identified Compounds) reported values are estimated concentrations of non-target analytes identified at greater than 10% of the nearest internal standard.

08-Nov-17 15:45 Page 7 of 35

Sample Acceptance Check Form

Client:	C&S Engineers, Inc Buffalo, NY
Project:	Conventus - 1001 Main Street, NY / N46.001.001
Work Order:	SC41135
Sample(s) received on:	11/4/2017

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	res	110	IN/A
Were custody seals present?	$\overline{\checkmark}$		
Were custody seals intact?	\checkmark		
Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples cooled on ice upon transfer to laboratory representative?	\checkmark		
Were sample containers received intact?	$\overline{\checkmark}$		
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	✓		
Were samples accompanied by a Chain of Custody document?	\checkmark		
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?		V	
Did sample container labels agree with Chain of Custody document?	\checkmark		
Were samples received within method-specific holding times?		П	П

Summary of Hits

Lab ID: SC41135-01			Client ID: BCP-M	W-6	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Benzene	774	D	50.0	μg/l	SW846 8260C
Cyclohexane	84.0	J, D	250	μg/l	SW846 8260C
Ethylbenzene	154	D	50.0	$\mu g/l$	SW846 8260C
Methylcyclohexane	44.0	J, D	250	$\mu g/l$	SW846 8260C
Toluene	2970	D	50.0	$\mu g/l$	SW846 8260C
Total Xylenes	1500	D	150	$\mu g/l$	SW846 8260C
Lab ID: SC41135-02			Client ID: BCP-M	W-1	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Benzene	0.33	J	1.00	μg/l	SW846 8260C
Ethylbenzene	0.40	J	1.00	$\mu g/l$	SW846 8260C
Tert-Butanol / butyl alcohol	15.6	NonT	R·10.0	$\mu g/l$	SW846 8260C
Toluene	1.10		1.00	$\mu g/l$	SW846 8260C
Lab ID: SC41135-03			Client ID: BCP-M	W-7	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Benzene	2.81		1.00	$\mu g/l$	SW846 8260C
Cyclohexane	0.99	J	5.00	$\mu g/l$	SW846 8260C
Ethylbenzene	0.45	J	1.00	$\mu g/l$	SW846 8260C
Isopropylbenzene	0.38	J	1.00	$\mu g/l$	SW846 8260C
Tert-Butanol / butyl alcohol	37.6	NonT	R·10.0	$\mu g/l$	SW846 8260C
Toluene	0.61	J	1.00	$\mu g/l$	SW846 8260C
Lab ID: SC41135-04			Client ID: BCP-M	W-3	
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
1,2,4-Trimethylbenzene	737	NonT	R10.0	μg/l	SW846 8260C
1,3,5-Trimethylbenzene	133	NonT	R·10.0	$\mu g/l$	SW846 8260C
Benzene	364	D	10.0	$\mu g/l$	SW846 8260C
Cyclohexane	60.5	D	50.0	$\mu g/l$	SW846 8260C
Ethylbenzene	384	D	10.0	$\mu g/l$	SW846 8260C
Isopropylbenzene	8.70	J, D	10.0	$\mu g/l$	SW846 8260C
Methyl acetate	31.9	J, D	50.0	$\mu g/l$	SW846 8260C
Methylcyclohexane	33.4	J, D	50.0	$\mu g/l$	SW846 8260C
Naphthalene	357	NonT	R·10.0	$\mu g/l$	SW846 8260C
Toluene	34.8	D	10.0	$\mu g/l$	SW846 8260C
Total Xylenes	930	D	30.0	$\mu g/l$	SW846 8260C

08-Nov-17 15:45 Page 9 of 35

Lab ID: SC41135-05 Client ID: BCP-MW-5

Parameter	Result	Flag Reporting Limit	Units	Analytical Method
1,2,4-Trimethylbenzene	2490	NonTR/100	$\mu g/l$	SW846 8260C
Benzene	283	D 100	$\mu g/l$	SW846 8260C
Cyclohexane	238	J, D 500	$\mu g/l$	SW846 8260C
Ethylbenzene	1660	D 100	$\mu g/l$	SW846 8260C
Methylcyclohexane	106	J, D 500	$\mu g/l$	SW846 8260C
Naphthalene	1030	NonTR/100	$\mu g/l$	SW846 8260C
Toluene	82.0	J, D 100	$\mu g/l$	SW846 8260C
Total Xylenes	5610	D 300	$\mu g/l$	SW846 8260C

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Identification BCP-MW-6 SC41135-01			Client Project # N46.001.001			Matrix Ground Water		Collection Date/Time 02-Nov-17 10:50		Received 04-Nov-17			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
Volatile Or	rganic Compounds by SV	V846 8260	GS1										
75-69-4	Trichlorofluoromethane (Freon 11)	< 50.0	U, D	μg/l	50.0	24.4	50	SW846 8260C	07-Nov-17	07-Nov-17	GMA	1718835	Х
75-01-4	Vinyl chloride	< 50.0	U, D	μg/l	50.0	23.6	50	"	"	"	"	"	Χ
1330-20-7	Total Xylenes	1,500	D	μg/l	150	150	50		"	"	"	"	Χ
110-82-7	Cyclohexane	84.0	J, D	μg/l	250	39.4	50		"	"	"	"	Χ
79-20-9	Methyl acetate	< 250	U, D	μg/l	250	32.4	50		"	"	"	"	Χ
108-87-2	Methylcyclohexane	44.0	J, D	μg/l	250	37.1	50	"	"	"	"	"	Х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	104			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	101			70-13	0 %		"	u u	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	95			70-13	0 %		"	u u	"	"	"	
1868-53-7	Dibromofluoromethane	99			70-13	0 %		"	n n	"	"	"	
Tentatively	/ Identified Compounds b	y GC/MS											
	Tentatively Identified Compounds	None found		μg/l			50	SW846 8260C TICs	n	"	GMA	"	

08-Nov-17 15:45 Page 12 of 35

Sample Identification BCP-MW-1 SC41135-02			<u>Client Project #</u> N46.001.001			<u>Matrix</u> Ground Wa		Collection Date/Time 02-Nov-17 11:35			<u>Received</u> 04-Nov-17		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	<u>846 8260</u>											
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.00	U	μg/l	1.00	0.49	1	SW846 8260C	07-Nov-17	07-Nov-17	GMA	1718835	X
75-01-4	Vinyl chloride	< 1.00	U	μg/l	1.00	0.47	1	"	"	"	"		Х
75-65-0	Tert-Butanol / butyl alcohol	15.6	NonTR G TIC	μg/l	10.0	5.90	1	"	II	"	"	"	Х
1330-20-7	Total Xylenes	< 3.00	U	μg/l	3.00	3.00	1	"	"	"	"	"	Х
110-82-7	Cyclohexane	< 5.00	U	μg/l	5.00	0.79	1	"	"	"	"		Х
79-20-9	Methyl acetate	< 5.00	U	μg/l	5.00	0.65	1	"	"	"	"	"	Х
108-87-2	Methylcyclohexane	< 5.00	U	μg/l	5.00	0.74	1	u u	n	"	"	"	X
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	103			70-13	0 %		"	"	"	"		
2037-26-5	Toluene-d8	103			70-13	0 %		"	"	"	"		
17060-07-0	1,2-Dichloroethane-d4	99			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	101			70-13	0 %		"	"	"	"		
Tentatively	y Identified Compounds by	GC/MS	JN										
79-29-8	Butane, 2,3-dimethyl-	18		μg/l			1	SW846 8260C TICs	"	"	GMA	"	
004850-28-6	Cyclopentane, 1,2,4-trimeth	7.5		μg/l			1	"	"	"	"	"	
565-59-3	Pentane, 2,3-dimethyl-	15		μg/l			1	"	"	"	"	"	

08-Nov-17 15:45 Page 14 of 35

Sample Identification BCP-MW-7 SC41135-03			<u>Client Project #</u> N46.001.001		Matrix Ground Water		Collection Date/Time 02-Nov-17 12:25		Received 04-Nov-17				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SW	846 8260											
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.00	U	μg/l	1.00	0.49	1	SW846 8260C	07-Nov-17	07-Nov-17	GMA	1718835	Х
75-01-4	Vinyl chloride	< 1.00	U	μg/l	1.00	0.47	1	"	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	37.6	NonTR G TIC	μg/l	10.0	5.90	1	п	"	u	"	"	Х
1330-20-7	Total Xylenes	< 3.00	U	μg/l	3.00	3.00	1	"	"	"	"	"	Χ
110-82-7	Cyclohexane	0.99	J	μg/l	5.00	0.79	1	"	"	"	"	"	Χ
79-20-9	Methyl acetate	< 5.00	U	μg/l	5.00	0.65	1	"	"	"	"	"	Χ
108-87-2	Methylcyclohexane	< 5.00	U	μg/l	5.00	0.74	1	"	"	"	"	"	Х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	105			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	103			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	100			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	102			70-13	0 %		"	"	"	"	"	
Tentatively	y Identified Compounds by	GC/MS											
	Tentatively Identified Compounds	None found		μg/l			1	SW846 8260C TICs	n	"	GMA	"	

08-Nov-17 15:45 Page 16 of 35

Sample Identification

Client Project # N46.001.001 Matrix Ground Water Collection Date/Time 02-Nov-17 13:50 Received 04-Nov-17

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile Or	rganic Compounds												
Volatile Or	rganic Compounds by SW	/846 8260	GS1										
79-00-5	1,1,2-Trichloroethane	< 10.0	U, D	μg/l	10.0	3.30	10	SW846 8260C	08-Nov-17	08-Nov-17	GMA	1718908	Х
79-01-6	Trichloroethene	< 10.0	U, D	μg/l	10.0	4.97	10	"	u u	n n	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 10.0	U, D	μg/l	10.0	4.87	10	u	n .	"	"	"	X
95-63-6	1,2,4-Trimethylbenzene	737	NonTR G TIC, D	μg/l	10.0	3.55	10	"	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	133	NonTR G TIC, D	μg/l	10.0	4.31	10	п	"	u	"	"	Х
75-01-4	Vinyl chloride	< 10.0	U, D	μg/l	10.0	4.72	10	"	"	"	"	"	Х
1330-20-7	Total Xylenes	930	D	μg/l	30.0	30.0	10	"	"	"	"	"	Х
110-82-7	Cyclohexane	60.5	D	μg/l	50.0	7.87	10	"	"	"	"	"	Χ
79-20-9	Methyl acetate	31.9	J, D	μg/l	50.0	6.47	10	"	"	"	"	"	Χ
108-87-2	Methylcyclohexane	33.4	J, D	μg/l	50.0	7.42	10	· ·	"	"	"	"	Х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	105			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	102			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	96			70-13	0 %		"	u u	n n	"	"	
1868-53-7	Dibromofluoromethane	101			70-13	0 %		"	n n	n	"	"	
Tentatively	/ Identified Compounds by	y GC/MS	JN										
	3-Phenylbut-1-ene	160	D	μg/l			10	SW846 8260C TICs	u	H	GMA	"	
95-36-3	Benzene, 1,2,3-trimethyl-	150	D	μg/l			10	"	"	"	"	"	
611-14-3	Benzene, 1-ethyl-2-methyl-	190	D	μg/l			10	"	"	"	"	"	
622-96-8	Benzene, 1-ethyl-4-methyl-	270	D	μg/l			10	n .	"	"	"	"	
000527-84-4	Benzene, 1-methyl-2- (1-meth	150	D	μg/l			10	n .	"	"	"	"	
96-37-7	Cyclopentane, methyl-	140	D	μg/l			10	"	"	"	"	"	
000930-18-7	Cyclopropane, 1,2-dimethyl	99	D	μg/l			10	u	u	II	"	"	
496-11-7	Indane	200	D	μg/l			10	"	"	"	"	"	
109-66-0	Pentane	110	D	μg/l			10		"	"	"	"	

Sample Identification

Sample Identification BCP-MW-5 SC41135-05				<u>Client Project #</u> N46.001.001					lection Date/Time 2-Nov-17 14:45		Received 04-Nov-17		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
Volatile O	rganic Compounds by SV	V846 8260	GS1										
79-00-5	1,1,2-Trichloroethane	< 100	U, D	μg/l	100	33.0	100	SW846 8260C	07-Nov-17	07-Nov-17	GMA	1718835	5 X
79-01-6	Trichloroethene	< 100	U, D	μg/l	100	49.7	100	·	"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	< 100	U, D	μg/l	100	48.7	100	"	"	"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	2,490	NonTR G TIC, D	μg/l	100	35.5	100	"	n	u	"	u	Х
75-01-4	Vinyl chloride	< 100	U, D	μg/l	100	47.2	100		n n	"		"	Х
1330-20-7	Total Xylenes	5,610	D	μg/l	300	300	100	"	n n	"		"	Х
110-82-7	Cyclohexane	238	J, D	μg/l	500	78.7	100	"	n n	"		"	Х
79-20-9	Methyl acetate	< 500	U, D	μg/l	500	64.7	100	"	n n	"		"	Х
108-87-2	Methylcyclohexane	106	J, D	μg/l	500	74.2	100	"	"	"	"	"	X
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	104	70-130 9			0 %		"	n n	"		"	
2037-26-5	Toluene-d8	104		70-130 %				"	n n	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	96			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	103		70-130 %					"	"	"		

100

100

100

100

SW846 8260C

TICs

GMA

JΝ

μg/l

μg/l

μg/l

μg/l

D

D

D

D

630

840

550

550

Tentatively Identified Compounds by GC/MS

Benzene, 1,2,3-trimethyl-

Benzene,

Indane

1-ethyl-2-methyl-

Cyclopentane, methyl-

95-36-3

611-14-3

96-37-7

496-11-7

08-Nov-17 15:45 Page 20 of 35

Sample Identification Trip Blank SC41135-06			<u>Client Project #</u> N46.001.001				llection Date/Time 2-Nov-17 00:00		Received 04-Nov-17				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
Volatile Or	rganic Compounds by SV	V846 8260											
75-69-4	Trichlorofluoromethane (Freon 11)	< 1.00	U	μg/l	1.00	0.49	1	SW846 8260C	07-Nov-17	07-Nov-17	GMA	1718835	Х
75-01-4	Vinyl chloride	< 1.00	U	μg/l	1.00	0.47	1	"	"	"	"	"	Χ
1330-20-7	Total Xylenes	< 3.00	U	μg/l	3.00	3.00	1	"	"	"	"	"	Χ
110-82-7	Cyclohexane	< 5.00	U	μg/l	5.00	0.79	1	"	"	"	"	"	Χ
79-20-9	Methyl acetate	< 5.00	U	μg/l	5.00	0.65	1	"	"	"	"	"	Χ
108-87-2	Methylcyclohexane	< 5.00	U	μg/l	5.00	0.74	1	"	"	"	"	"	Х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	104			70-13	0 %		"	u u	"	"	"	
2037-26-5	Toluene-d8	102			70-13	0 %		"	u u	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	96			70-13	0 %		"	u u	"	"	"	
1868-53-7	Dibromofluoromethane	100			70-13	0 %			n n	u u	"	"	
Tentatively	/ Identified Compounds b	y GC/MS											
	Tentatively Identified Compounds	None found		µg/l			1	SW846 8260C TICs	"	"	GMA	"	

08-Nov-17 15:45 Page 22 of 35

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
SW846 8260C										
Batch 1718835 - SW846 5030 Water MS										
Blank (1718835-BLK1)					Pre	epared & Ai	nalyzed: 07-	Nov-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.00	U	μg/l	1.00			-			
Acetone	< 10.0	U	μg/l	10.0						
Benzene	< 1.00	U	μg/l	1.00						
Bromodichloromethane	< 0.50	U	μg/l	0.50						
Bromoform	< 1.00	U	μg/l	1.00						
Bromomethane	< 2.00	U	μg/l	2.00						
2-Butanone (MEK)	< 2.00	U	μg/l	2.00						
Carbon disulfide	< 2.00	U	μg/l	2.00						
Carbon tetrachloride	< 1.00	U	μg/l	1.00						
Chlorobenzene	< 1.00	U	μg/l	1.00						
Chloroethane	< 2.00	U	μg/l	2.00						
Chloroform	< 1.00	U	μg/l	1.00						
Chloromethane	< 2.00	U	μg/l	2.00						
1,2-Dibromo-3-chloropropane	< 2.00	U	μg/l	2.00						
Dibromochloromethane	< 0.50	U	μg/l	0.50						
1,2-Dibromoethane (EDB)	< 0.50	U	μg/l	0.50						
1,2-Dichlorobenzene	< 1.00	U	μg/l	1.00						
1,3-Dichlorobenzene	< 1.00	U	μg/l	1.00						
1,4-Dichlorobenzene	< 1.00	U	μg/l	1.00						
Dichlorodifluoromethane (Freon12)	< 2.00	U	μg/l	2.00						
1,1-Dichloroethane	< 1.00	U	μg/l	1.00						
1,2-Dichloroethane	< 1.00	U	μg/l	1.00						
1,1-Dichloroethene	< 1.00	U	μg/l	1.00						
cis-1,2-Dichloroethene	< 1.00	U		1.00						
	< 1.00	U	μg/l							
trans-1,2-Dichloroethene		U	μg/l	1.00						
1,2-Dichloropropane	< 1.00	U	μg/l	1.00						
cis-1,3-Dichloropropene	< 0.50 < 0.50	U	μg/l	0.50						
trans-1,3-Dichloropropene		U	μg/l	0.50						
Ethylbenzene	< 1.00	U	μg/l	1.00						
2-Hexanone (MBK)	< 2.00	U	μg/l	2.00						
Isopropylbenzene	< 1.00	U	μg/l	1.00						
Methyl tert-butyl ether	< 1.00		μg/l	1.00						
4-Methyl-2-pentanone (MIBK)	< 2.00	U	μg/l	2.00						
Methylene chloride	< 2.00	U	μg/l	2.00						
Styrene	< 1.00	U	μg/l	1.00						
1,1,2,2-Tetrachloroethane	< 0.50	U	μg/l	0.50						
Tetrachloroethene	< 1.00	U	μg/l	1.00						
Toluene	< 1.00	U	μg/l	1.00						
1,2,4-Trichlorobenzene	< 1.00	U	μg/l	1.00						
1,1,1-Trichloroethane	< 1.00	U	μg/l	1.00						
1,1,2-Trichloroethane	< 1.00	U	μg/l	1.00						
Trichloroethene	< 1.00	U	μg/l	1.00						
Trichlorofluoromethane (Freon 11)	< 1.00	U	μg/l	1.00						
Vinyl chloride	< 1.00	U	μg/l	1.00						
Total Xylenes	< 3.00	U	μg/l	3.00						
Cyclohexane	< 5.00	U	μg/l	5.00						
Methyl acetate	< 5.00	U	μg/l	5.00						
Methylcyclohexane	< 5.00	U	μg/l	5.00						
Surrogate: 4-Bromofluorobenzene	50.3		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	50.9		μg/l		50.0		102	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260 <u>C</u>										
Batch 1718835 - SW846 5030 Water MS										
Blank (1718835-BLK1)					Pre	epared & Ar	nalyzed: 07-	-Nov-17		
Surrogate: 1,2-Dichloroethane-d4	48.8		μg/l		50.0		98	70-130		
Surrogate: Dibromofluoromethane	50.3		μg/l		50.0		101	70-130		
Blank (1718835-BLK2)					Pre	epared & Ar	nalyzed: 07-	-Nov-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 5.00	U, D	μg/l	5.00						
Acetone	< 50.0	U, D	μg/l	50.0						
Benzene	< 5.00	U, D	μg/l	5.00						
Bromodichloromethane	< 2.50	U, D	μg/l	2.50						
Bromoform	< 5.00	U, D	μg/l	5.00						
Bromomethane	< 10.0	U, D	μg/l	10.0						
2-Butanone (MEK)	< 10.0	U, D	μg/l	10.0						
Carbon disulfide	< 10.0	U, D	μg/l	10.0						
Carbon tetrachloride	< 5.00	U, D	μg/l	5.00						
Chlorobenzene	< 5.00	U, D	μg/l	5.00						
Chloroethane	< 10.0	U, D	μg/l	10.0						
Chloroform	2.95	J, D	μg/l	5.00						
Chloromethane	< 10.0	U, D	μg/l	10.0						
1,2-Dibromo-3-chloropropane	< 10.0	U, D	μg/l	10.0						
Dibromochloromethane	< 2.50	U, D	μg/l	2.50						
1,2-Dibromoethane (EDB)	< 2.50	U, D	μg/l	2.50						
1,2-Dichlorobenzene	< 5.00	U, D	μg/l	5.00						
1,3-Dichlorobenzene	< 5.00	U, D	μg/l	5.00						
1,4-Dichlorobenzene	< 5.00	U, D	μg/l	5.00						
Dichlorodifluoromethane (Freon12)	< 10.00	U, D	μg/l	10.0						
1,1-Dichloroethane	< 5.00	U, D	μg/l	5.00						
1,2-Dichloroethane	< 5.00	U, D	μg/l	5.00						
1,1-Dichloroethene	< 5.00	U, D		5.00						
cis-1,2-Dichloroethene	< 5.00	U, D	μg/l μg/l	5.00						
trans-1,2-Dichloroethene	< 5.00	U, D		5.00						
	< 5.00	U, D	μg/l	5.00						
1,2-Dichloropropane		U, D	μg/l							
cis-1,3-Dichloropropene	< 2.50	U, D	μg/l	2.50						
trans-1,3-Dichloropropene	< 2.50		μg/l	2.50						
Ethylbenzene	< 5.00	U, D	μg/l	5.00						
2-Hexanone (MBK)	< 10.0	U, D	μg/l	10.0						
Isopropylbenzene	< 5.00	U, D	μg/l	5.00						
Methyl 2 postenogo (MIRK)	< 5.00	U, D	μg/l	5.00						
4-Methyl-2-pentanone (MIBK)	< 10.0	U, D	μg/l	10.0						
Methylene chloride	< 10.0	U, D	μg/l	10.0						
Styrene	< 5.00	U, D	μg/l	5.00						
1,1,2,2-Tetrachloroethane	< 2.50	U, D	μg/l	2.50						
Tetrachloroethene	< 5.00	U, D	μg/l	5.00						
Toluene	< 5.00	U, D	μg/l	5.00						
1,2,4-Trichlorobenzene	5.55	D =	μg/l	5.00						
1,1,1-Trichloroethane	< 5.00	U, D	μg/l	5.00						
1,1,2-Trichloroethane	< 5.00	U, D	μg/l	5.00						
Trichloroethene	< 5.00	U, D	μg/l	5.00						
Trichlorofluoromethane (Freon 11)	< 5.00	U, D	μg/l	5.00						
Vinyl chloride	< 5.00	U, D	μg/l	5.00						
Total Xylenes	< 15.0	U, D	μg/l	15.0						
Cyclohexane	< 25.0	U, D	μg/l	25.0						
Methyl acetate	115	D	μg/l	25.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
W846 8260C										
atch 1718835 - SW846 5030 Water MS										
Blank (1718835-BLK2)					Pre	epared & Ar	nalyzed: 07-	Nov-17		
Methylcyclohexane	< 25.0	U, D	μg/l	25.0						
Surrogate: 4-Bromofluorobenzene	51.3		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	51.0		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.3		μg/l		50.0		99	70-130		
Surrogate: Dibromofluoromethane	51.2		μg/l		50.0		102	70-130		
LCS (1718835-BS1)			1-3			enared & Ar	nalyzed: 07-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.4		μg/l		20.0	cparca a 7 ti	102	70-130		
Acetone	18.8		μg/l		20.0		94	70-130		
Benzene	23.8		μg/l		20.0		119	70-130		
Bromodichloromethane	22.8		μg/l		20.0		114	70-130		
Bromoform	21.4		μg/l		20.0		107	70-130		
Bromomethane	15.2		μg/l		20.0		76	70-130		
2-Butanone (MEK)	18.0		μg/l		20.0		90	70-130		
Carbon disulfide	17.3		μg/l		20.0		86	70-130		
Carbon tetrachloride	25.5		μg/l		20.0		127	70-130		
Chlorobenzene	22.0		μg/l		20.0		110	70-130		
Chloroethane	21.6		μg/l		20.0		108	70-130		
Chloroform	21.6				20.0		112	70-130		
Chloromethane	16.9		μg/l		20.0		85	70-130		
1,2-Dibromo-3-chloropropane	18.9		μg/l		20.0		95	70-130		
Dibromochloromethane	23.5		μg/l		20.0		95 118	70-130		
	23.5 22.2		μg/l		20.0		111	70-130		
1,2-Dibromoethane (EDB)			μg/l		20.0		109	70-130		
1,2-Dichlorobenzene	21.7		μg/l				109	70-130		
1,3-Dichlorobenzene	20.8		μg/l		20.0		104	70-130 70-130		
1,4-Dichlorobenzene	20.8		μg/l		20.0					
Dichlorodifluoromethane (Freon12)	23.1		μg/l		20.0		116	70-130		
1,1-Dichloroethane	23.0		μg/l		20.0		115	70-130		
1,2-Dichloroethane	22.5		μg/l		20.0		112	70-130		
1,1-Dichloroethene	23.6		μg/l		20.0		118	70-130		
cis-1,2-Dichloroethene	23.2		μg/l		20.0		116	70-130		
trans-1,2-Dichloroethene	23.6		μg/l		20.0		118	70-130		
1,2-Dichloropropane	21.9		μg/l		20.0		109	70-130		
cis-1,3-Dichloropropene	21.1		μg/l		20.0		106	70-130		
trans-1,3-Dichloropropene	22.8		μg/l		20.0		114	70-130		
Ethylbenzene 2 Hovenene (MRK)	21.3		μg/l		20.0		107	70-130		
2-Hexanone (MBK)	19.5		μg/l		20.0		98	70-130		
Isopropylbenzene Methyl tert butyl other	22.5		μg/l		20.0		112	70-130		
Methyl contanana (MIRK)	21.5		μg/l		20.0		107	70-130		
4-Methyl-2-pentanone (MIBK)	19.6		μg/l		20.0		98	70-130		
Methylene chloride	19.0		μg/l		20.0		95	70-130		
Styrene	20.4		μg/l		20.0		102	70-130		
1,1,2,2-Tetrachloroethane	20.3		μg/l		20.0		101	70-130		
Tetrachloroethene	24.7		μg/l		20.0		123	70-130 70-130		
Toluene	23.3	D	μg/l		20.0		116	70-130		
1,2,4-Trichlorobenzene	19.0	В	μg/l		20.0		95	70-130		
1,1,1-Trichloroethane	24.2		μg/l		20.0		121	70-130		
1,1,2-Trichloroethane	21.6		μg/l		20.0		108	70-130		
Trichloroethene	23.0		μg/l		20.0		115	70-130		
Trichlorofluoromethane (Freon 11)	25.0		μg/l 		20.0		125	70-130		
Vinyl chloride	21.8		μg/l		20.0		109	70-130		

.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
W846 8260C										
atch 1718835 - SW846 5030 Water MS										
LCS (1718835-BS1)					Pre	enared & Ar	nalyzed: 07-	Nov-17		
Cyclohexane	23.4		μg/l		20.0	500100 0711	117	70-130		
Methyl acetate	12.7	QM9, B	μg/l		20.0		64	70-130		
Methylcyclohexane	24.1	, -	μg/l		20.0		121	70-130		
Surrogate: 4-Bromofluorobenzene	51.2		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	52.7		μg/l		50.0		105	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.5		μg/l		50.0		97	70-130		
Surrogate: Dibromofluoromethane	50.2		μg/l		50.0		100	70-130		
LCS (1718835-BS2)					Pre	epared & Ar	nalyzed: 07-	Nov-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	24.7	D	μg/l		20.0		123	70-130		
Acetone	20.0	D	μg/l		20.0		100	70-130		
Benzene	22.1	D	μg/l		20.0		111	70-130		
Bromodichloromethane	21.3	D	μg/l		20.0		106	70-130		
Bromoform	20.7	D	μg/l		20.0		103	70-130		
Bromomethane	13.0	D	μg/l		20.0		65	70-130		
2-Butanone (MEK)	19.5	D	μg/l		20.0		98	70-130		
Carbon disulfide	24.1	D	μg/l		20.0		120	70-130		
Carbon tetrachloride	23.2	D	μg/l		20.0		116	70-130		
Chlorobenzene	21.0	D	μg/l		20.0		105	70-130		
Chloroethane	19.7	D	μg/l		20.0		98	70-130		
Chloroform	22.3	D			20.0		112	70-130		
Chloromethane	16.4	D	µg/l		20.0		82	70-130		
		D	µg/l		20.0		96			
1,2-Dibromo-3-chloropropane	19.3		μg/l					70-130		
Dibromochloromethane	22.1	D	μg/l "		20.0		111	70-130		
1,2-Dibromoethane (EDB)	21.0	D	μg/l		20.0		105	70-130		
1,2-Dichlorobenzene	20.8	D	μg/l		20.0		104	70-130		
1,3-Dichlorobenzene	20.4	D	μg/l		20.0		102	70-130		
1,4-Dichlorobenzene	20.4	D	μg/l		20.0		102	70-130		
Dichlorodifluoromethane (Freon12)	21.5	D	μg/l		20.0		108	70-130		
1,1-Dichloroethane	21.6	D	μg/l		20.0		108	70-130		
1,2-Dichloroethane	21.8	D	μg/l		20.0		109	70-130		
1,1-Dichloroethene	25.2	D	μg/l		20.0		126	70-130		
cis-1,2-Dichloroethene	22.2	D	μg/l		20.0		111	70-130		
trans-1,2-Dichloroethene	21.6	D	μg/l		20.0		108	70-130		
1,2-Dichloropropane	20.6	D	μg/l		20.0		103	70-130		
cis-1,3-Dichloropropene	21.7	D	μg/l		20.0		108	70-130		
trans-1,3-Dichloropropene	22.4	D	μg/l		20.0		112	70-130		
Ethylbenzene	20.5	D	μg/l		20.0		102	70-130		
2-Hexanone (MBK)	19.5	D	μg/l		20.0		97	70-130		
Isopropylbenzene	21.2	D	μg/l		20.0		106	70-130		
Methyl tert-butyl ether	20.4	D	μg/l		20.0		102	70-130		
4-Methyl-2-pentanone (MIBK)	19.6	D	μg/l		20.0		98	70-130		
Methylene chloride	25.3	D	μg/l		20.0		126	70-130		
•	20.3	D			20.0		101	70-130		
Styrene 1,1,2,2-Tetrachloroethane		D	µg/l		20.0		101	70-130 70-130		
	20.1		µg/l							
Tetrachloroethene	22.4	D	μg/l		20.0		112	70-130		
Toluene	22.0	D	μg/l		20.0		110	70-130		
1,2,4-Trichlorobenzene	19.9	D, B	μg/l		20.0		99	70-130		
1,1,1-Trichloroethane	22.5	D	μg/l		20.0		113	70-130		
1,1,2-Trichloroethane	21.2	D	μg/l		20.0		106	70-130		
Trichloroethene	21.4	D	μg/l		20.0		107	70-130		

			_		Spike	Source		%REC	_	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW846 8260C										
Batch 1718835 - SW846 5030 Water MS										
LCS (1718835-BS2)					Pre	epared & Ar	nalyzed: 07-	-Nov-17		
Trichlorofluoromethane (Freon 11)	22.8	D	μg/l		20.0		114	70-130		
Vinyl chloride	19.8	D	μg/l		20.0		99	70-130		
Cyclohexane	22.0	D	μg/l		20.0		110	70-130		
Methyl acetate	31.4	D, B	μg/l		20.0		157	70-130		
Methylcyclohexane	23.0	D	μg/l		20.0		115	70-130		
Surrogate: 4-Bromofluorobenzene	51.3		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	52.5		μg/l		50.0		105	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.2		μg/l		50.0		96	70-130		
Surrogate: Dibromofluoromethane	49.8		μg/l		50.0		100	70-130		
LCS Dup (1718835-BSD1)					Pre	epared & Ar	nalvzed: 07-	-Nov-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	23.1		μg/l		20.0		116	70-130	13	20
Acetone	19.9		μg/l		20.0		100	70-130	6	20
Benzene	22.1		μg/l		20.0		110	70-130	8	20
Bromodichloromethane	21.4		μg/l		20.0		107	70-130	7	20
Bromoform	21.9		μg/l		20.0		109	70-130	2	20
Bromomethane	14.9		μg/l		20.0		75	70-130	2	20
2-Butanone (MEK)	20.1		μg/l		20.0		101	70-130	11	20
Carbon disulfide	23.0	QR2	μg/l		20.0		115	70-130	28	20
Carbon tetrachloride	22.7		μg/l		20.0		113	70-130	12	20
Chlorobenzene	21.4		μg/l		20.0		107	70-130	3	20
Chloroethane	18.9		μg/l		20.0		95	70-130	13	20
Chloroform	21.8		μg/l		20.0		109	70-130	3	20
Chloromethane	16.4		μg/l		20.0		82	70-130	3	20
1,2-Dibromo-3-chloropropane	19.9		μg/l		20.0		100	70-130	5	20
Dibromochloromethane	22.2		μg/l		20.0		111	70-130	6	20
1,2-Dibromoethane (EDB)	21.9		μg/l		20.0		110	70-130	1	20
1,2-Dichlorobenzene	21.1		μg/l		20.0		106	70-130	3	20
1,3-Dichlorobenzene	20.4		μg/l		20.0		102	70-130	2	20
1,4-Dichlorobenzene	20.8		μg/l		20.0		104	70-130	0.3	20
Dichlorodifluoromethane (Freon12)	20.4		μg/l		20.0		102	70-130	13	20
1,1-Dichloroethane	21.3		μg/l		20.0		106	70-130	8	20
1,2-Dichloroethane	21.6		μg/l		20.0		108	70-130	4	20
1,1-Dichloroethene	20.9		μg/l		20.0		104	70-130	12	20
cis-1,2-Dichloroethene	22.3		μg/l		20.0		112	70-130	4	20
trans-1,2-Dichloroethene	22.2		μg/l		20.0		111	70-130	6	20
1,2-Dichloropropane	19.9		μg/l		20.0		100	70-130	9	20
cis-1,3-Dichloropropene	20.6		μg/l		20.0		103	70-130	3	20
trans-1,3-Dichloropropene	21.6		μg/l		20.0		108	70-130	6	20
Ethylbenzene	20.4		μg/l		20.0		102	70-130	4	20
2-Hexanone (MBK)	22.0		μg/l		20.0		110	70-130	12	20
Isopropylbenzene	21.0		μg/l		20.0		105	70-130	7	20
Methyl tert-butyl ether	20.9		μg/l		20.0		105	70-130	3	20
4-Methyl-2-pentanone (MIBK)	20.4		μg/l		20.0		102	70-130	4	20
Methylene chloride	24.8	QR2	μg/l		20.0		124	70-130	27	20
Styrene	20.1		μg/l		20.0		101	70-130	1	20
1,1,2,2-Tetrachloroethane	20.3		μg/l		20.0		101	70-130	0.1	20
Tetrachloroethene	22.6		μg/l		20.0		113	70-130	9	20
Toluene	22.0		μg/l		20.0		110	70-130	6	20
1,2,4-Trichlorobenzene	19.0	В	μg/l		20.0		95	70-130	0.1	20
1,1,1-Trichloroethane	22.2		μg/l		20.0		111	70-130	9	20

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C										
atch 1718835 - SW846 5030 Water MS										
LCS Dup (1718835-BSD1)					Pre	enared & Ar	nalyzed: 07-	-Nov-17		
1,1,2-Trichloroethane	22.4		μg/l		20.0	, , , , , , , , , , , , , , , , , , , 	112	70-130	4	20
Trichloroethene	21.6		μg/l		20.0		108	70-130	6	20
Trichlorofluoromethane (Freon 11)	21.8		μg/l		20.0		109	70-130	13	20
Vinyl chloride	19.8		μg/l		20.0		99	70-130	9	20
Cyclohexane	21.4		μg/l		20.0		107	70-130	9	30
Methyl acetate	18.6	QR5, B	μg/l		20.0		93	70-130	38	30
Methylcyclohexane	21.2		μg/l		20.0		106	70-130	13	30
Surrogate: 4-Bromofluorobenzene	52.2		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	52.0		μg/l		50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.8		μg/l		50.0		98	70-130		
Surrogate: Dibromofluoromethane	50.6		μg/l		50.0		101	70-130		
•	30.0		μул			anarod & Ar				
LCS Dup (1718835-BSD2)	27.0	D	uc/I			spareu & Al	nalyzed: 07-		0	20
1,1,2-Trichlorotrifluoroethane (Freon 113)	27.0	D	µg/l		20.0		135	70-130 70-130	9	20
Acetone	21.4	D	µg/l		20.0		107		7	20
Benzene	23.4	D	μg/l		20.0		117	70-130	6	20
Bromodichloromethane	22.6		μg/l		20.0		113	70-130	6	20
Bromoform	22.2	D	μg/l		20.0		111	70-130	7	20
Bromomethane	16.4	D	μg/l		20.0		82	70-130	23	20
2-Butanone (MEK)	20.3	D	μg/l "		20.0		101	70-130	4	20
Carbon disulfide	25.7	D	μg/l "		20.0		128	70-130	7	20
Carbon tetrachloride	25.0	D	μg/l "		20.0		125	70-130	7	20
Chlorobenzene	21.8	D	μg/l "		20.0		109	70-130	3	20
Chloroethane	20.7	D	μg/l 		20.0		104	70-130	5	20
Chloroform	23.2	D -	μg/l		20.0		116	70-130	4	20
Chloromethane	17.4	D	μg/l		20.0		87	70-130	6	20
1,2-Dibromo-3-chloropropane	19.3	D	μg/l		20.0		96	70-130	0.1	20
Dibromochloromethane	23.4	D	μg/l		20.0		117	70-130	5	20
1,2-Dibromoethane (EDB)	22.2	D	μg/l		20.0		111	70-130	6	20
1,2-Dichlorobenzene	21.7	D	μg/l		20.0		108	70-130	4	20
1,3-Dichlorobenzene	21.7	D	μg/l		20.0		108	70-130	6	20
1,4-Dichlorobenzene	21.2	D	μg/l		20.0		106	70-130	4	20
Dichlorodifluoromethane (Freon12)	23.1	D	μg/l		20.0		116	70-130	7	20
1,1-Dichloroethane	23.0	D	μg/l		20.0		115	70-130	6	20
1,2-Dichloroethane	22.2	D	μg/l		20.0		111	70-130	2	20
1,1-Dichloroethene	23.6	D	μg/l		20.0		118	70-130	7	20
cis-1,2-Dichloroethene	23.3	D	μg/l		20.0		116	70-130	5	20
trans-1,2-Dichloroethene	23.2	D	μg/l		20.0		116	70-130	7	20
1,2-Dichloropropane	21.6	D	μg/l		20.0		108	70-130	5	20
cis-1,3-Dichloropropene	22.7	D	μg/l		20.0		113	70-130	5	20
trans-1,3-Dichloropropene	22.6	D	μg/l		20.0		113	70-130	1	20
Ethylbenzene	21.4	D	μg/l		20.0		107	70-130	4	20
2-Hexanone (MBK)	20.1	D	μg/l		20.0		101	70-130	3	20
Isopropylbenzene	22.4	D	μg/l		20.0		112	70-130	5	20
Methyl tert-butyl ether	21.3	D	μg/l		20.0		106	70-130	4	20
4-Methyl-2-pentanone (MIBK)	20.7	D	μg/l		20.0		104	70-130	6	20
Methylene chloride	26.7	D	μg/l		20.0		133	70-130	5	20
Styrene	21.8	D	μg/l		20.0		109	70-130	7	20
1,1,2,2-Tetrachloroethane	20.9	D	μg/l		20.0		104	70-130	4	20
Tetrachloroethene	24.3	D	μg/l		20.0		122	70-130	8	20
Toluene	23.4	D	μg/l		20.0		117	70-130	6	20

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW846 8260C										
Batch 1718835 - SW846 5030 Water MS										
LCS Dup (1718835-BSD2)					Pre	epared & A	nalyzed: 07-	-Nov-17		
1,2,4-Trichlorobenzene	20.7	D, B	μg/l		20.0		103	70-130	4	20
1,1,1-Trichloroethane	24.2	D	μg/l		20.0		121	70-130	7	20
1,1,2-Trichloroethane	22.0	D	μg/l		20.0		110	70-130	3	20
Trichloroethene	23.3	D	μg/l		20.0		116	70-130	9	20
Trichlorofluoromethane (Freon 11)	24.7	D	μg/l		20.0		123	70-130	8	20
Vinyl chloride	21.0	D	μg/l		20.0		105	70-130	6	20
Cyclohexane	23.9	D	μg/l		20.0		120	70-130	8	30
Methyl acetate	32.6	D, B	μg/l		20.0		163	70-130	4	30
Methylcyclohexane	24.8	D.	μg/l		20.0		124	70-130	8	30
Surrogate: 4-Bromofluorobenzene	52.4				50.0		105	70-130		
Surrogate: 4-Bromondorobenzene Surrogate: Toluene-d8	52.4 52.6		μg/l		50.0		105	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	49.5		μg/l		50.0		99	70-130 70-130		
Surrogate: 1,2-Dicnioroetnane-a4 Surrogate: Dibromofluoromethane	49.5 49.7		μg/l				99 99	70-130 70-130		
	49.7		μg/l		50.0		99	10-130		
Batch 1718908 - SW846 5030 Water MS										
Blank (1718908-BLK1)					Pre	epared & A	nalyzed: 08-	-Nov-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 1.00	U	μg/l	1.00						
Acetone	< 10.0	U	μg/l	10.0						
Benzene	< 1.00	U	μg/l	1.00						
Bromodichloromethane	< 0.50	U	μg/l	0.50						
Bromoform	< 1.00	U	μg/l	1.00						
Bromomethane	< 2.00	U	μg/l	2.00						
2-Butanone (MEK)	< 2.00	U	μg/l	2.00						
Carbon disulfide	< 2.00	U	μg/l	2.00						
Carbon tetrachloride	< 1.00	U	μg/l	1.00						
Chlorobenzene	< 1.00	U	μg/l	1.00						
Chloroethane	< 2.00	U	μg/l	2.00						
Chloroform	< 1.00	U	μg/l	1.00						
Chloromethane	< 2.00	U	μg/l	2.00						
1,2-Dibromo-3-chloropropane	< 2.00	U	μg/l	2.00						
Dibromochloromethane	< 0.50	U	μg/l	0.50						
1,2-Dibromoethane (EDB)	< 0.50	U	μg/l	0.50						
1,2-Dichlorobenzene	< 1.00	U	μg/l	1.00						
1,3-Dichlorobenzene	< 1.00	U	μg/l	1.00						
1,4-Dichlorobenzene	< 1.00	U	μg/l	1.00						
Dichlorodifluoromethane (Freon12)	< 2.00	U	μg/l	2.00						
1,1-Dichloroethane	< 1.00	U	μg/l	1.00						
1,2-Dichloroethane	< 1.00	U	μg/l	1.00						
1,1-Dichloroethene	< 1.00	U	μg/l	1.00						
cis-1,2-Dichloroethene	< 1.00	U	μg/l	1.00						
trans-1,2-Dichloroethene	< 1.00	U	μg/l	1.00						
1,2-Dichloropropane	< 1.00	U	μg/l	1.00						
cis-1,3-Dichloropropene	< 0.50	U	μg/l	0.50						
trans-1,3-Dichloropropene	< 0.50	U	μg/l	0.50						
Ethylbenzene	< 1.00	U	μg/l	1.00						
2-Hexanone (MBK)	< 2.00	U	μg/l	2.00						
Isopropylbenzene	< 1.00	U	μg/l	1.00						
Methyl tert-butyl ether	0.37	J	μg/l	1.00						
4-Methyl-2-pentanone (MIBK)	< 2.00	U	μg/l	2.00						
Methylene chloride	< 2.00	U	μg/l	2.00						
Styrene	< 1.00	U	μg/l	1.00						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1718908 - SW846 5030 Water MS										
Blank (1718908-BLK1)					Pre	epared & Ai	nalyzed: 08-	Nov-17		
1,1,2,2-Tetrachloroethane	< 0.50	U	μg/l	0.50			-			
Tetrachloroethene	< 1.00	U	μg/l	1.00						
Toluene	< 1.00	U	μg/l	1.00						
1,2,4-Trichlorobenzene	< 1.00	U	μg/l	1.00						
1,1,1-Trichloroethane	< 1.00	U	μg/l	1.00						
1,1,2-Trichloroethane	< 1.00	U	μg/l	1.00						
Trichloroethene	< 1.00	U	μg/l	1.00						
Trichlorofluoromethane (Freon 11)	< 1.00	U	μg/l	1.00						
Vinyl chloride	< 1.00	U	μg/l	1.00						
Total Xylenes	< 3.00	U	μg/l	3.00						
Cyclohexane	< 5.00	U	μg/l	5.00						
Methyl acetate	< 5.00	U		5.00						
Methylcyclohexane	< 5.00 < 5.00	U	μg/l μg/l	5.00						
				5.00						
Surrogate: 4-Bromofluorobenzene	51.9		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	51.6		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.0		μg/l		50.0		102	70-130		
Surrogate: Dibromofluoromethane	51.3		μg/l		50.0		103	70-130		
LCS (1718908-BS1)					Pre	epared & Ai	nalyzed: 08-	Nov-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	25.0		μg/l		20.0		125	70-130		
Acetone	19.7		μg/l		20.0		98	70-130		
Benzene	21.9		μg/l		20.0		109	70-130		
Bromodichloromethane	21.6		μg/l		20.0		108	70-130		
Bromoform	21.5		μg/l		20.0		107	70-130		
Bromomethane	14.2		μg/l		20.0		71	70-130		
2-Butanone (MEK)	19.7		μg/l		20.0		99	70-130		
Carbon disulfide	24.2		μg/l		20.0		121	70-130		
Carbon tetrachloride	23.6		μg/l		20.0		118	70-130		
Chlorobenzene	21.0		μg/l		20.0		105	70-130		
Chloroethane	18.7		μg/l		20.0		93	70-130		
Chloroform	21.4		μg/l		20.0		107	70-130		
Chloromethane	16.8		μg/l		20.0		84	70-130		
1,2-Dibromo-3-chloropropane	18.1		μg/l		20.0		90	70-130		
Dibromochloromethane	22.9		μg/l		20.0		115	70-130		
1,2-Dibromoethane (EDB)	20.6		μg/l		20.0		103	70-130		
1,2-Dichlorobenzene	20.4		μg/l		20.0		102	70-130		
1,3-Dichlorobenzene	20.7		μg/l		20.0		104	70-130		
1,4-Dichlorobenzene	19.4		μg/l		20.0		97	70-130		
Dichlorodifluoromethane (Freon12)	20.6		μg/l		20.0		103	70-130		
1,1-Dichloroethane	21.2		μg/l		20.0		106	70-130		
1,2-Dichloroethane	22.0		μg/l		20.0		110	70-130		
1,1-Dichloroethene	26.1		μg/l		20.0		130	70-130		
cis-1,2-Dichloroethene	22.2		μg/l		20.0		111	70-130		
trans-1,2-Dichloroethene	22.0		μg/l		20.0		110	70-130		
1,2-Dichloropropane	20.1		μg/l		20.0		100	70-130		
cis-1,3-Dichloropropene	20.1		μg/l		20.0		100	70-130		
trans-1,3-Dichloropropene	21.5				20.0		101	70-130		
Ethylbenzene	20.5		μg/l		20.0		108	70-130 70-130		
•			μg/l							
2-Hexanone (MBK)	18.9		μg/l		20.0		95 107	70-130 70-130		
Isopropylbenzene Methyl tert-butyl ether	21.5 20.2		μg/l μg/l		20.0 20.0		107 101	70-130 70-130		

A malasta(a)	D 1/	T21_	T T :>	*DD1	Spike	Source	0/DEC	%REC	מממ	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW846 8260C										
Batch 1718908 - SW846 5030 Water MS										
LCS (1718908-BS1)					Pre	epared & Ar	nalyzed: 08-	Nov-17		
4-Methyl-2-pentanone (MIBK)	18.1		μg/l		20.0		91	70-130		
Methylene chloride	24.8		μg/l		20.0		124	70-130		
Styrene	19.7		μg/l		20.0		98	70-130		
1,1,2,2-Tetrachloroethane	19.4		μg/l		20.0		97	70-130		
Tetrachloroethene	23.1		μg/l		20.0		116	70-130		
Toluene	22.4		μg/l		20.0		112	70-130		
1,2,4-Trichlorobenzene	18.2		μg/l		20.0		91	70-130		
1,1,1-Trichloroethane	23.0		μg/l		20.0		115	70-130		
1,1,2-Trichloroethane	22.1		μg/l		20.0		111	70-130		
Trichloroethene	22.2		μg/l		20.0		111	70-130		
Trichlorofluoromethane (Freon 11)	22.9		μg/l		20.0		115	70-130		
Vinyl chloride	20.0		μg/l		20.0		100	70-130		
Cyclohexane	21.7		μg/l		20.0		100	70-130		
Methyl acetate	21.7				20.0		110	70-130		
Methylcyclohexane	23.2		μg/l		20.0		116	70-130 70-130		
			μg/l							
Surrogate: 4-Bromofluorobenzene	52.5		μg/l		50.0		105	70-130		
Surrogate: Toluene-d8	51.8		μg/l		50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.6		μg/l		50.0		97	70-130		
Surrogate: Dibromofluoromethane	49.5		μg/l		50.0		99	70-130		
LCS (1718908-BS2)					Pre	epared & Ar	nalyzed: 08-	Nov-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	24.0	D	μg/l		20.0		120	70-130		
Acetone	21.1	D	μg/l		20.0		105	70-130		
Benzene	21.8	D	μg/l		20.0		109	70-130		
Bromodichloromethane	21.3	D	μg/l		20.0		106	70-130		
Bromoform	21.2	D	μg/l		20.0		106	70-130		
Bromomethane	14.3	D	μg/l		20.0		71	70-130		
2-Butanone (MEK)	19.6	D	μg/l		20.0		98	70-130		
Carbon disulfide	21.8	D	μg/l		20.0		109	70-130		
Carbon tetrachloride	23.0	D	μg/l		20.0		115	70-130		
Chlorobenzene	20.7	D	μg/l		20.0		104	70-130		
Chloroethane	17.4	D	μg/l		20.0		87	70-130		
Chloroform	22.0	D	μg/l		20.0		110	70-130		
Chloromethane	15.2	D	μg/l		20.0		76	70-130		
1,2-Dibromo-3-chloropropane	20.0	D	μg/l		20.0		100	70-130		
Dibromochloromethane	20.0	D	μg/l		20.0		112	70-130		
1,2-Dibromoethane (EDB)	22.6	D	μg/l		20.0		113	70-130		
1,2-Dichlorobenzene	20.8	D			20.0		104	70-130		
		D	μg/l		20.0		104	70-130 70-130		
1,3-Dichlorobenzene	20.2	D	μg/l							
1,4-Dichlorobenzene	20.3		μg/l		20.0		101	70-130		
Dichlorodifluoromethane (Freon12)	18.0	D	μg/l		20.0		90	70-130		
1,1-Dichloroethane	21.2	D	μg/l		20.0		106	70-130		
1,2-Dichloroethane	22.0	D	μg/l		20.0		110	70-130		
1,1-Dichloroethene	23.3	D	μg/l		20.0		116	70-130		
cis-1,2-Dichloroethene	21.9	D	μg/l		20.0		110	70-130		
trans-1,2-Dichloroethene	21.1	D -	μg/l		20.0		106	70-130		
1,2-Dichloropropane	20.7	D	μg/l		20.0		104	70-130		
cis-1,3-Dichloropropene	21.7	D	μg/l		20.0		108	70-130		
trans-1,3-Dichloropropene	22.9	D	μg/l		20.0		115	70-130		
Ethylbenzene	19.9	D	μg/l		20.0		99	70-130		
2-Hexanone (MBK)	20.6	D	μg/l		20.0		103	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1718908 - SW846 5030 Water MS										
LCS (1718908-BS2)					Pre	epared & Ar	nalyzed: 08-	Nov-17		
Isopropylbenzene	21.3	D	μg/l		20.0		106	70-130		
Methyl tert-butyl ether	21.0	D	μg/l		20.0		105	70-130		
4-Methyl-2-pentanone (MIBK)	21.0	D	μg/l		20.0		105	70-130		
Methylene chloride	23.7	D	μg/l		20.0		118	70-130		
Styrene	20.2	D	μg/l		20.0		101	70-130		
1,1,2,2-Tetrachloroethane	20.3	D	μg/l		20.0		101	70-130		
Tetrachloroethene	23.4	D	μg/l		20.0		117	70-130		
Toluene	22.3	D	μg/l		20.0		112	70-130		
1,2,4-Trichlorobenzene	19.8	D	μg/l		20.0		99	70-130		
1,1,1-Trichloroethane	22.5	D	μg/l		20.0		113	70-130		
1,1,2-Trichloroethane	21.8	D	μg/l		20.0		109	70-130		
Trichloroethene	21.6	D	μg/l		20.0		108	70-130		
Trichlorofluoromethane (Freon 11)	21.6	D	μg/l		20.0		108	70-130		
Vinyl chloride	17.4	D	μg/l		20.0		87	70-130		
Cyclohexane	21.3	D	μg/l		20.0		107	70-130		
Methyl acetate	52.5	D	μg/l		20.0		263	70-130		
Methylcyclohexane	22.2	D	μg/l		20.0		111	70-130		
Surrogate: 4-Bromofluorobenzene	51.8		μg/l 		50.0		104	70-130		
Surrogate: Toluene-d8	51.8		μg/l		50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.0		μg/l		50.0		100	70-130		
Surrogate: Dibromofluoromethane	50.2		μg/l		50.0		100	70-130		
LCS Dup (1718908-BSD1)						epared & Ar	nalyzed: 08-	Nov-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	23.9		μg/l		20.0		119	70-130	5	20
Acetone	20.2		μg/l		20.0		101	70-130	2	20
Benzene	21.8		μg/l		20.0		109	70-130	0.4	20
Bromodichloromethane	21.7		μg/l		20.0		109	70-130	0.6	20
Bromoform	20.5		μg/l		20.0		102	70-130	5	20
Bromomethane	14.4		μg/l		20.0		72	70-130	2	20
2-Butanone (MEK)	18.9		μg/l		20.0		95	70-130	4	20
Carbon disulfide	23.5		μg/l		20.0		117	70-130	3	20
Carbon tetrachloride	23.7		μg/l		20.0		119	70-130	0.5	20
Chlorobenzene	20.6		μg/l		20.0		103	70-130	2	20
Chloroethane	19.6		μg/l		20.0		98	70-130	5	20
Chloroform	21.4		μg/l		20.0		107	70-130	0.2	20
Chloromethane	16.3		μg/l		20.0		82	70-130	3	20
1,2-Dibromo-3-chloropropane	17.8		μg/l		20.0		89	70-130	2	20
Dibromochloromethane	22.9		μg/l		20.0		115	70-130	0	20
1,2-Dibromoethane (EDB)	20.9		μg/l		20.0		104	70-130	2	20
1,2-Dichlorobenzene	20.2		μg/l		20.0		101	70-130	1	20
1,3-Dichlorobenzene	19.7		μg/l		20.0		98	70-130	5	20
1,4-Dichlorobenzene	20.0		μg/l		20.0		100	70-130	3	20
Dichlorodifluoromethane (Freon12)	20.8		μg/l		20.0		104	70-130	1	20
1,1-Dichloroethane	20.9		μg/l		20.0		104	70-130	1	20
1,2-Dichloroethane	21.8		μg/l		20.0		109	70-130	0.9	20
1,1-Dichloroethene	27.1	QM9	μg/l		20.0		135	70-130	4	20
cis-1,2-Dichloroethene	21.6		μg/l		20.0		108	70-130	3	20
trans-1,2-Dichloroethene	22.2		μg/l		20.0		111	70-130	1	20
1,2-Dichloropropane	20.0		μg/l		20.0		100	70-130	0.4	20
cis-1,3-Dichloropropene	20.1		μg/l		20.0		100	70-130	0.4	20
trans-1,3-Dichloropropene	21.1		μg/l		20.0		106	70-130	2	20

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C										
atch 1718908 - SW846 5030 Water MS										
LCS Dup (1718908-BSD1)					Pre	epared & Ar	nalyzed: 08-	-Nov-17		
Ethylbenzene	19.8		μg/l		20.0	, , , , , , , , , , , , , , , , , , , 	99	70-130	3	20
2-Hexanone (MBK)	18.8		μg/l		20.0		94	70-130	0.7	20
Isopropylbenzene	20.6		μg/l		20.0		103	70-130	4	20
Methyl tert-butyl ether	20.1		μg/l		20.0		100	70-130	0.5	20
4-Methyl-2-pentanone (MIBK)	18.2		μg/l		20.0		91	70-130	0.3	20
Methylene chloride	25.4		μg/l		20.0		127	70-130	2	20
Styrene	19.8		μg/l		20.0		99	70-130	0.5	20
1,1,2,2-Tetrachloroethane	18.6		μg/l		20.0		93	70-130	5	20
Tetrachloroethene	22.8				20.0		114	70-130	1	20
Toluene	21.6		μg/l		20.0		108	70-130	3	20
1,2,4-Trichlorobenzene	18.5		μg/l		20.0		92	70-130	2	20
, ,			μg/l							
1,1,1-Trichloroethane	23.0		μg/l		20.0		115 107	70-130 70-130	0.2	20 20
1,1,2-Trichloroethane Trichloroethene	21.4		μg/l		20.0		107	70-130 70-130	3	
	22.0		μg/l		20.0		110	70-130	1	20
Trichlorofluoromethane (Freon 11)	21.8		μg/l		20.0		109	70-130	5	20
Vinyl chloride	19.2		μg/l		20.0		96	70-130	4	20
Cyclohexane	21.9		μg/l 		20.0		109	70-130	0.6	30
Methyl acetate	20.1		μg/l "		20.0		101	70-130	9	30
Methylcyclohexane	22.1		μg/l		20.0		110	70-130	5	30
Surrogate: 4-Bromofluorobenzene	51.5		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	51.7		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.6		μg/l		50.0		99	70-130		
Surrogate: Dibromofluoromethane	50.0		μg/l		50.0		100	70-130		
LCS Dup (1718908-BSD2)					Pre	epared & Ar	nalyzed: 08-	Nov-17		
1,1,2-Trichlorotrifluoroethane (Freon 113)	25.8	D	μg/l		20.0		129	70-130	7	20
Acetone	21.5	D	μg/l		20.0		108	70-130	2	20
Benzene	22.4	D	μg/l		20.0		112	70-130	3	20
Bromodichloromethane	22.7	D	μg/l		20.0		114	70-130	7	20
Bromoform	22.1	D	μg/l		20.0		110	70-130	4	20
Bromomethane	15.3	D	μg/l		20.0		76	70-130	7	20
2-Butanone (MEK)	21.9	D	μg/l		20.0		109	70-130	11	20
Carbon disulfide	23.0	D	μg/l		20.0		115	70-130	6	20
Carbon tetrachloride	24.2	D	μg/l		20.0		121	70-130	5	20
Chlorobenzene	21.3	D	μg/l		20.0		107	70-130	3	20
Chloroethane	18.8	D	μg/l		20.0		94	70-130	8	20
Chloroform	22.3	D	μg/l		20.0		112	70-130	1	20
Chloromethane	16.2	D	μg/l		20.0		81	70-130	6	20
1,2-Dibromo-3-chloropropane	19.1	D	μg/l		20.0		95	70-130	5	20
Dibromochloromethane	23.9	D	μg/l		20.0		119	70-130	6	20
1,2-Dibromoethane (EDB)	22.4	D	μg/l		20.0		112	70-130	0.7	20
1,2-Dichlorobenzene	21.4	D	μg/l		20.0		107	70-130	3	20
1,3-Dichlorobenzene	20.8	D	μg/l		20.0		107	70-130	3	20
1,4-Dichlorobenzene	20.8	D	μg/l		20.0		104	70-130	3	20
Dichlorodifluoromethane (Freon12)	19.1	D	μg/l		20.0		95	70-130	6	20
1,1-Dichloroethane	21.6	D			20.0		108	70-130	2	20
		D	μg/l							
1,2-Dichloroethane	22.9	D	μg/l		20.0		115 106	70-130 70-130	4	20
1,1-Dichloroethene	21.2	D	μg/l		20.0		106	70-130	9	20
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	22.9 21.2	D	μg/l μg/l		20.0 20.0		115 106	70-130 70-130	4 0.6	20 20
		1.1	HOU							.71

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW846 8260C										
Batch 1718908 - SW846 5030 Water MS										
LCS Dup (1718908-BSD2)					Pre	epared & Ai	nalyzed: 08-	Nov-17		
cis-1,3-Dichloropropene	22.9	D	μg/l		20.0		114	70-130	5	20
trans-1,3-Dichloropropene	23.9	D	μg/l		20.0		120	70-130	4	20
Ethylbenzene	20.8	D	μg/l		20.0		104	70-130	4	20
2-Hexanone (MBK)	22.2	D	μg/l		20.0		111	70-130	7	20
Isopropylbenzene	21.5	D	μg/l		20.0		108	70-130	1	20
Methyl tert-butyl ether	21.2	D	μg/l		20.0		106	70-130	1	20
4-Methyl-2-pentanone (MIBK)	22.4	D	μg/l		20.0		112	70-130	6	20
Methylene chloride	26.0	D	μg/l		20.0		130	70-130	9	20
Styrene	21.0	D	μg/l		20.0		105	70-130	4	20
1,1,2,2-Tetrachloroethane	20.6	D	μg/l		20.0		103	70-130	2	20
Tetrachloroethene	23.6	D	μg/l		20.0		118	70-130	0.8	20
Toluene	22.6	D	μg/l		20.0		113	70-130	1	20
1,2,4-Trichlorobenzene	21.1	D	μg/l		20.0		106	70-130	7	20
1,1,1-Trichloroethane	23.0	D	μg/l		20.0		115	70-130	2	20
1,1,2-Trichloroethane	22.2	D	μg/l		20.0		111	70-130	2	20
Trichloroethene	23.0	D	μg/l		20.0		115	70-130	6	20
Trichlorofluoromethane (Freon 11)	22.4	D	μg/l		20.0		112	70-130	3	20
Vinyl chloride	18.1	D	μg/l		20.0		90	70-130	4	20
Cyclohexane	22.6	D	μg/l		20.0		113	70-130	6	30
Methyl acetate	55.6	D	μg/l		20.0		278	70-130	6	30
Methylcyclohexane	23.7	D	μg/l		20.0		119	70-130	7	30
Surrogate: 4-Bromofluorobenzene	51.0		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	52.0		μg/l		50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.7		μg/l		50.0		101	70-130		
Surrogate: Dibromofluoromethane	49.5		μg/l		50.0		99	70-130		
SW846 8260C TICs										
Batch 1718835 - SW846 5030 Water MS										
Blank (1718835-BLK1)					Pre	epared & Ai	nalyzed: 07-	Nov-17		
Tentatively Identified Compounds	None found		μg/l							
Batch 1718908 - SW846 5030 Water MS										
Blank (1718908-BLK1)					Pre	epared & A	nalyzed: 08-	Nov-17		
Tentatively Identified Compounds	None found		μg/l							

Notes and Definitions

B Analyte is found in the associated blank as well as in the sample (CLP B-flag).

D Data reported from a dilution

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

J N (Tentatively Identified Compounds) reported values are estimated concentrations of non-target analytes identified at greater than 10% of the nearest internal standard.

NonTRG TICNon-target concentration sufficient to be reported as one of the highest TICs.

QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

QR5 RPD out of acceptance range.

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

eurofins

Report To:

THE

Site Name:

vooi Main Street

State: WY

Project No:

N46.001.00 Conventus

All TATs subject to laboratory approval
Min. 24-hr notification needed for rushes
Samples disposed after 30 days unless otherwise instructed.

Spectrum Analytical

CHAIN OF CUSTODY RECORD

Page	
_	-
l of	
_	•

CUSTODY	
Special Handling: X Standard TAT - 7 to 10 business days Rush TAT - Date Needed:	Z 4135. En

Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid 2 H 8=NaHSO ₄ 9=Deionized Water 10=H ₂ PO ₄ 11= 12= 12= 12= 11		Compared				
Filtered 1=%0,800, 2=16C 3=15.00, 4=100.5 \$NaOH 6=Ascorbic Acid \$11= \$12= \$11			10:20	C. Her	do A	J.
Elitered 1=Na,520, 2=HCl 3=H,50, 4=HN0, 5=NaOH 6=Nacorbic Acid 12=		7.0	0000	South Las III	in to	amay
Filtered 1-Na,S2O, 2-HCl 3-H,SO, 4-HNO, 5-NaOH 6-Ascorbic Acid List Preservative Code below: DH 8-NaHSO, 9-Delimized Water 10-H,PO, 1 11-1 12-1				Received by:	Relinquished by:	
Filtered 1-Na,S2O, 2-HC 3-H ₂ SO, 4-HNO, 5-NaOH 6-Ascorbic Acid 11- 12- 12- 13- 13- 13- 13- 13- 13- 13- 13						
Filtered I=Na;S2O; 2=HCI 3=HSO; 4=HNO; 5=NaOH 6-Ascorbic Acid List Preservative Code below: Discorbinated Water 10=H;PO; Hi= 12=						
Filtered 1=Na ₂ S2O ₃ 2=HC 3=H ₃ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid List Preservative Code below: OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ 11=	,				•	
Filtered 1=NabS2O ₂ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid Hered 1=NabS2O ₂ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid Hered 1=NabS2O ₂ 9=Deionized Water 10=H ₂ PO ₄ Hered 1=NabSO ₄ 9=Deionized Water 10=H ₂ PO ₄ Hered 1=NabSO ₄ 9=Deionized Water 10=H ₂ PO ₄ Responsible Water 10=H ₂ PO ₄						•
Filtered 1-Na ₂ S2O ₃ 2-HCl 3-H ₂ SO ₄ 4-HNO ₃ 5-NaOH 6-Ascorbic Acid List Preservative Code below: OH 8-NaHSO ₄ 9-Deionized Water 10-H ₃ PO ₄ 11= 12= 12=						
Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid DH 8=NaHSO ₄ 9=Deionized Water 10+H ₂ PO ₄ 11= 12= Tinking Water GW=Groundwater SW=Surface Water Ww=Waste Water SO=Soil Gas SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas X2= X3=		×		2:45pm	BCP-MN-5	5
Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid DH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ 11= 12= Tinking Water GW=Groundwater SW=Surface Water WW=Waste Water 12= SO=Soil SL-Sludge A=Indoor/Ambient Air SG=Soil Gas ST=C Sample ID: Date: Time: Type Matrix SO=Soil SCP-NW-ID 11 2/17 11:350 nm GW 3 # of Clear Glass ## of Cle		×		1:50 pm	SCP-MW-3	o L
Filtered 1=Na;S2O ₃ 2=HCl 3=H ₃ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid DH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ 11= 12= 12= 12= 12= 12= 12= 12= 12= 12=		×		12:25pm	BCP-MW-7	8,
Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid DH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ 11= 12= 12= 12= 12= 12= 12= 12= 12= 12=		×		117 11:35 am	BCP-NW-I	-
A=HNO ₃ 5=NaOH 6=Ascorbic Acid List Preservative Code below: 11= 12=		×		117 10:50 am	13CP-MW-LO	41135-
4=HNO ₃ 5=NaOH 6=Ascorbic Acid List Preservative Code below: 11= 12= Containers Analysis C=Compsite Partix VOA Vials Amber Glass Plastic C+Compsite Partix C-Compsite Partix C-Compsite C-Compsite Partix C-Compsite Partix C-Compsite Partix C-Compsite C-Compsite Partix C-Compsite C-C		(8)	# of # of # of	Time:	Sample ID:	Lab ID:
### A=HNO3	□ □ Reduced □	2.60	VOA Ambe	ype	G= Grab	
### A=HNO3	ASP A*	(A)	er Glass Glass	X3=	X2=	X1=
4=HNO3 5=NaOH 6=Ascorbic Acid List Preservative Code below: 11= 12=	Standard No QQ	s-attached	,		SL=Sludge	0=0il so
4=HNO ₃ 5=NaOH 6=Ascorbic Acid 11=	Ceport?	Analysis	Containers		GW=Groundwater	DW=Drinking
	QA/QC Reporting Note * additional charges may ap	List Preservative Code below:	cid	4=HNO ₃ 5=NaOH 11=	d 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ S =NaHSO ₄ 9=Deionized Water 10=H ₃ F	F=Field Filtere 7=CH3OH

(TCL VOCs)

- 1,1,1-Trichloroethane
- 1,1,2,2-Tetrachloroethane
- 1,1,2-Trichloro-1,2,2-

trifluoroethane

- 1,1,2-Trichloroethane
- 1,1-Dichloroethane
- 1,1-Dichloroethene
- 1,2,4-Trichlorobenzene
- 1,2-Dibromo-3-Chloropropane
- 1,2-Dibromoethane
- 1,2-Dichlorobenzene
- 1,2-Dichloroethane
- 1,2-Dichloropropane
- 1,3-Dichlorobenzene
- 1,4-Dichlorobenzene
- 2-Butanone (MEK)
- 2-Hexanone
- 4-Methyl-2-pentanone (MIBK)

Acetone

Benzene

Bromodichloromethane

Bromoform

Bromomethane

Carbon disulfide

Carbon tetrachloride

Chlorobenzene

Chloroethane

Chloroform

Chloromethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Cyclohexane

Dibromochloromethane

Dichlorodifluoromethane

Ethylbenzene

Isopropylbenzene

Methyl acetate

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Styrene

Tetrachloroethene

Toluene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichloroethene

Trichlorofluoromethane

Vinyl chloride

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Xylenes, Total

Territorio, estimaterio dell'interiore, proprietto della compania dell'interiore della compania della compania	APPROXIMATION OF THE PERSON.	entransia, d'entransia, pe		ω	2	Martin and Martin Andrews	Angelon, Allerton Control of			-	
City St ate ZIP	TRESS Itse for the HOLD location address or for continuation of your shipping address.	Address	Company ELIRCHIES SPECTRUM MEXICANTER TOC.	Recipient's Phorie	Your Internal Billing Reference	City Bulfalo, State NI ZIP 14303	Address L. Depth	Company Teld Cess Company	Sender's Phone	From Date	Express US.Airbill Tracking 8106 0271 86
Sender School Recipient Third Party Credit Card Cash/Check Access No. 1 Cash/Check Access No. 1 Cash/Check Access No. 1 Cash/Check C	ne current FedEx Service Buide.	Does this shipment contain dangerous goods? One box must be checked. Ves. Shoot's Development Contained. Shoot's Development Contained. Dry Ice University Contained. Dry Ice University Contained.	No Signature Required Direct Signature Package may be elt without Someone at respents address, smeen at neighboring obtaining a signature for delivery, may sign for delivery, resident address may sign for delivery, for resident address smy sign for delivery.	6 Special Handling and Delivery Signature Uptions: Fees may apply, See the FedEx Service Gode. Saturday Delivery. NOT mailable for FedEx Standard Overnight, FedEx 2Day A.M. or FedEx Express Saver.	FedEx Envelope* FedEx Pak* Box Tube	* Declared value limit \$500.	tandard Overnight ss attempon.* sattempon.* servery NOT evoluble.	FedEX 2Day FedEX Priority Overnight Next beginness enroring, "Triggs signments will be define red on Monday unless Saturday believery before seeded. Another unless Saturday believery before seeded.	ht ing delivery to select will be delivered on	4 Express Package Service *To most toutions. Packages up to 150 lbs. *To most toutions. Further passes on 150 lbs. *To most toutions. Further passes for parties are full for the passes for passes	8210 mm 0200

Special Handling! X Standard TAT - 7 to 10 business days	C41135 . By
	2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

ed Refrigerated DI VOA Frozen Soil Spectrum Rev. Nov 2016	Ambient Wiced	1R 10 A 01001 • 413-789-9018	Drive • Agawam, M/	Sample shipping address: 11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • www.EurofinsUS.com/Spectrum	Sample sh		
ipt Custody Seals: Present	Condition upon receipt	Сопр		1		\$	
	cerion Factor	Corr	C114/11	A. A.	4 (G	N CO	
	E-mail to:	0000	11/3/2017	MUS	7 Out	Mr.	aman
	Temp °C	Time: 1	Date:	Received by:		Relinquished by:	Rı
					si i		
					rada 6		
		-		12117	Blank 11	Trip	06
	_		SW 3	12/17 2:45pm	5	BCP-MW-5	0)-
		Y	GW 3	12/17 1:50 pm	1-3	BCP-MW-3	o4
			6W 3	2/17 12:25pm	1 4	BCP-MW-7	03
		×		1/2/17 11:35 am	V-1	BCP-NW-	1 2
		Y	GW 3	1/2/17 10:50 am	V-10 1	13CP-MW-	41135-21
Che	(8)	-	Ma # of	Date: Time:	Sample ID:	Sa	Lab ID:
	260	Clear Plasti	voa	C=Compsite		G= Grab	
hlori			Vials	X3=	X2=		X1=
nated	ics latingly	7/ 6	S	SG=Soil Gas	A=Indoor/Ambient Air	ioil SL=Sludge	0=0il S0 =Soil
	Analysis	Containers	Cc	Water WW=Waste Water	ındwater SW=Surface Water	ater GW=Groundwater	DW=Drinking Water
					, and the second		1
e below:	List Preservative Code below:		6=Ascorbic Acid 12=	4=HNO ₃	9=Deionized Water 10=H ₂ PO ₄ 4	red 1=Na ₂ S2O ₃ 8=NaHSO ₄ 9=Deion	F=Field Filtered 7=CH3OH 8=
	Sampler(s):	Quote #:	0	acscus componen	n cmartin	HAMM KRU	Telephone #: {
Toot I will will		C07761	MINIO, M		4 14112	MINITED IN	b
Conventus	Site Name:	et Suite 11	415/11/21/11		eet Suite 100	I EIM ST	7
N46.001.00	Project No:	ers, Inc.	\$5 Engine	Invoice To:	neers, Inc.	S Fnair	Report To:
All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise instructed.			Page of	rtical	Spectrum Analytical	E-,	
☐ Rush TAT - Date Needed:	大臣のこれこ		HAIN OF CUSTOLY				CUIOIIIS

Batch Summary

1718835

Volatile Organic Compounds

1718835-BLK1

1718835-BLK2

1718835-BS1

1718835-BS2

1718835-BSD1

1718835-BSD2

SC41135-01 (BCP-MW-6)

SC41135-02 (BCP-MW-1)

SC41135-03 (BCP-MW-7)

SC41135-05 (BCP-MW-5)

SC41135-06 (Trip Blank)

1718908

Volatile Organic Compounds

1718908-BLK1

1718908-BS1

1718908-BS2

1718908-BSD1

1718908-BSD2

SC41135-04 (BCP-MW-3)

S709132

Volatile Organic Compounds

S709132-CAL1

S709132-CAL2

S709132-CAL3

S709132-CAL4

S709132-CAL5

S709132-CAL6

S709132-CAL7

S709132-CAL8

S709132-CAL9

S709132-CALA

S709132-CALB

S709132-ICV1

S709132-LCV1

S709132-LCV2

S709132-TUN1

S709835

Volatile Organic Compounds

S709835-CCV1

S709835-TUN1

S709877

Volatile Organic Compounds

S709877-CCV1

S709877-TUN1

Analytical Report For

C&S Companies

For Lab Project ID

172147

Referencing

Conventus

Prepared

Friday, May 26, 2017

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>C&S Companies</u>

Project Reference: Conventus

Sample Identifier: BCP-MW-1-051717

Lab Sample ID:172147-01Date Sampled:5/17/2017Matrix:GroundwaterDate Received:5/22/2017

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L	5/25/2017 16:34
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	5/25/2017 16:34
1,1,2-Trichloroethane	< 2.00	ug/L	5/25/2017 16:34
1,1-Dichloroethane	< 2.00	ug/L	5/25/2017 16:34
1,1-Dichloroethene	< 2.00	ug/L	5/25/2017 16:34
1,2,3-Trichlorobenzene	< 5.00	ug/L	5/25/2017 16:34
1,2,4-Trichlorobenzene	< 5.00	ug/L	5/25/2017 16:34
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	5/25/2017 16:34
1,2-Dibromoethane	< 2.00	ug/L	5/25/2017 16:34
1,2-Dichlorobenzene	< 2.00	ug/L	5/25/2017 16:34
1,2-Dichloroethane	< 2.00	ug/L	5/25/2017 16:34
1,2-Dichloropropane	< 2.00	ug/L	5/25/2017 16:34
1,3-Dichlorobenzene	< 2.00	ug/L	5/25/2017 16:34
1,4-Dichlorobenzene	< 2.00	ug/L	5/25/2017 16:34
1,4-dioxane	< 20.0	ug/L	5/25/2017 16:34
2-Butanone	< 10.0	ug/L	5/25/2017 16:34
2-Hexanone	< 5.00	ug/L	5/25/2017 16:34
4-Methyl-2-pentanone	< 5.00	ug/L	5/25/2017 16:34
Acetone	< 10.0	ug/L	5/25/2017 16:34
Benzene	< 1.00	ug/L	5/25/2017 16:34
Bromochloromethane	< 5.00	ug/L	5/25/2017 16:34
Bromodichloromethane	< 2.00	ug/L	5/25/2017 16:34
Bromoform	< 5.00	ug/L	5/25/2017 16:34
Bromomethane	< 2.00	ug/L	5/25/2017 16:34
Carbon disulfide	< 2.00	ug/L	5/25/2017 16:34
Carbon Tetrachloride	< 2.00	ug/L	5/25/2017 16:34
Chlorobenzene	< 2.00	ug/L	5/25/2017 16:34
Chloroethane	< 2.00	ug/L	5/25/2017 16:34
Chloroform	< 2.00	ug/L	5/25/2017 16:34

Client: C&S Companies

Project Reference: Conventus

Sample Identifier:	BCP-MW-1-051717					
Lab Sample ID:	172147-01		Date	Sampled:	5/17/2017	
Matrix:	Groundwater		Date	Received:	5/22/2017	
Chloromethane	< 2.00	ug/L			5/25/2017	16:34
cis-1,2-Dichloroethene	< 2.00	ug/L			5/25/2017	16:34
cis-1,3-Dichloropropene	< 2.00	ug/L			5/25/2017	16:34
Cyclohexane	< 10.0	ug/L			5/25/2017	16:34
Dibromochloromethane	< 2.00	ug/L			5/25/2017	16:34
Dichlorodifluoromethan	e < 2.00	ug/L			5/25/2017	16:34
Ethylbenzene	< 2.00	ug/L			5/25/2017	16:34
Freon 113	< 2.00	ug/L			5/25/2017	16:34
Isopropylbenzene	< 2.00	ug/L			5/25/2017	16:34
m,p-Xylene	< 2.00	ug/L			5/25/2017	16:34
Methyl acetate	< 2.00	ug/L			5/25/2017	16:34
Methyl tert-butyl Ether	< 2.00	ug/L			5/25/2017	16:34
Methylcyclohexane	< 2.00	ug/L			5/25/2017	16:34
Methylene chloride	< 5.00	ug/L			5/25/2017	16:34
o-Xylene	< 2.00	ug/L			5/25/2017	16:34
Styrene	< 5.00	ug/L			5/25/2017	16:34
Tetrachloroethene	< 2.00	ug/L			5/25/2017	16:34
Toluene	< 2.00	ug/L			5/25/2017	16:34
trans-1,2-Dichloroethen	e < 2.00	ug/L			5/25/2017	16:34
trans-1,3-Dichloroprope	ne < 2.00	ug/L			5/25/2017	16:34
Trichloroethene	< 2.00	ug/L			5/25/2017	16:34
Trichlorofluoromethane	< 2.00	ug/L			5/25/2017	16:34
Vinyl chloride	< 2.00	ug/L			5/25/2017	16:34
<u>Surrogate</u>	Pe	ercent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		101	77.8 - 124		5/25/2017	16:34
4-Bromofluorobenzene		97.5	78 - 117		5/25/2017	16:3
Pentafluorobenzene		102	83.2 - 118		5/25/2017	16:34
Toluene-D8		101	83.7 - 116		5/25/2017	16:34

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Data File:

Method Reference(s):

EPA 8260C EPA 5030C

x41780.D

Client: <u>C&S Companies</u>

Project Reference: Conventus

Sample Identifier: BCP-MW-7-051717

Lab Sample ID:172147-02Date Sampled:5/17/2017Matrix:GroundwaterDate Received:5/22/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L	5/25/2017 16:58
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	5/25/2017 16:58
1,1,2-Trichloroethane	< 2.00	ug/L	5/25/2017 16:58
1,1-Dichloroethane	< 2.00	ug/L	5/25/2017 16:58
1,1-Dichloroethene	< 2.00	ug/L	5/25/2017 16:58
1,2,3-Trichlorobenzene	< 5.00	ug/L	5/25/2017 16:58
1,2,4-Trichlorobenzene	< 5.00	ug/L	5/25/2017 16:58
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	5/25/2017 16:58
1,2-Dibromoethane	< 2.00	ug/L	5/25/2017 16:58
1,2-Dichlorobenzene	< 2.00	ug/L	5/25/2017 16:58
1,2-Dichloroethane	< 2.00	ug/L	5/25/2017 16:58
1,2-Dichloropropane	< 2.00	ug/L	5/25/2017 16:58
1,3-Dichlorobenzene	< 2.00	ug/L	5/25/2017 16:58
1,4-Dichlorobenzene	< 2.00	ug/L	5/25/2017 16:58
1,4-dioxane	< 20.0	ug/L	5/25/2017 16:58
2-Butanone	< 10.0	ug/L	5/25/2017 16:58
2-Hexanone	< 5.00	ug/L	5/25/2017 16:58
4-Methyl-2-pentanone	< 5.00	ug/L	5/25/2017 16:58
Acetone	< 10.0	ug/L	5/25/2017 16:58
Benzene	< 1.00	ug/L	5/25/2017 16:58
Bromochloromethane	< 5.00	ug/L	5/25/2017 16:58
Bromodichloromethane	< 2.00	ug/L	5/25/2017 16:58
Bromoform	< 5.00	ug/L	5/25/2017 16:58
Bromomethane	< 2.00	ug/L	5/25/2017 16:58
Carbon disulfide	< 2.00	ug/L	5/25/2017 16:58
Carbon Tetrachloride	< 2.00	ug/L	5/25/2017 16:58
Chlorobenzene	< 2.00	ug/L	5/25/2017 16:58
Chloroethane	< 2.00	ug/L	5/25/2017 16:58
Chloroform	< 2.00	ug/L	5/25/2017 16:58

Client: <u>C&S Companies</u>

Project Reference: Conventus

Sample Identifier:	BCP-MW-7-051717				
Lab Sample ID:	172147-02		Date Sample	d: 5/17/2017	
Matrix:	Groundwater		Date Receive	d: 5/22/2017	
Chloromethane	< 2.00	ug/L		5/25/2017	16:58
cis-1,2-Dichloroethene	< 2.00	ug/L		5/25/2017	16:58
cis-1,3-Dichloropropene	< 2.00	ug/L		5/25/2017	16:58
Cyclohexane	< 10.0	ug/L		5/25/2017	16:58
Dibromochloromethane	< 2.00	ug/L		5/25/2017	16:58
Dichlorodifluoromethan	e < 2.00	ug/L		5/25/2017	16:58
Ethylbenzene	< 2.00	ug/L		5/25/2017	16:58
Freon 113	< 2.00	ug/L		5/25/2017	16:58
Isopropylbenzene	< 2.00	ug/L		5/25/2017	16:58
m,p-Xylene	< 2.00	ug/L		5/25/2017	16:58
Methyl acetate	< 2.00	ug/L		5/25/2017	16:58
Methyl tert-butyl Ether	< 2.00	ug/L		5/25/2017	16:58
Methylcyclohexane	< 2.00	ug/L		5/25/2017	16:58
Methylene chloride	< 5.00	ug/L		5/25/2017	16:58
o-Xylene	< 2.00	ug/L		5/25/2017	16:58
Styrene	< 5.00	ug/L		5/25/2017	16:58
Tetrachloroethene	< 2.00	ug/L		5/25/2017	16:58
Toluene	< 2.00	ug/L		5/25/2017	16:58
trans-1,2-Dichloroethen	e < 2.00	ug/L		5/25/2017	16:58
trans-1,3-Dichloroprope	ne < 2.00	ug/L		5/25/2017	16:58
Trichloroethene	< 2.00	ug/L		5/25/2017	16:58
Trichlorofluoromethane	< 2.00	ug/L		5/25/2017	16:58
Vinyl chloride	< 2.00	ug/L		5/25/2017	16:58
<u>Surrogate</u>	P	ercent Recovery	<u>Limits</u> <u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		99.8	77.8 - 124	5/25/2017	16:58
4-Bromofluorobenzene		87.8	78 - 117	5/25/2017	16:58
Pentafluorobenzene		96.9	83.2 - 118	5/25/2017	16:58
Toluene-D8		90.9	83.7 - 116	5/25/2017	16:58

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x41781.D

Client: <u>C&S Companies</u>

Project Reference: Conventus

Sample Identifier: BCP-MW-6-051717

Lab Sample ID:172147-03Date Sampled:5/17/2017Matrix:GroundwaterDate Received:5/22/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 20.0	ug/L	5/25/2017 17:22
1,1,2,2-Tetrachloroethane	< 20.0	ug/L	5/25/2017 17:22
1,1,2-Trichloroethane	< 20.0	ug/L	5/25/2017 17:22
1,1-Dichloroethane	< 20.0	ug/L	5/25/2017 17:22
1,1-Dichloroethene	< 20.0	ug/L	5/25/2017 17:22
1,2,3-Trichlorobenzene	< 50.0	ug/L	5/25/2017 17:22
1,2,4-Trichlorobenzene	< 50.0	ug/L	5/25/2017 17:22
1,2-Dibromo-3-Chloropropane	< 100	ug/L	5/25/2017 17:22
1,2-Dibromoethane	< 20.0	ug/L	5/25/2017 17:22
1,2-Dichlorobenzene	< 20.0	ug/L	5/25/2017 17:22
1,2-Dichloroethane	< 20.0	ug/L	5/25/2017 17:22
1,2-Dichloropropane	< 20.0	ug/L	5/25/2017 17:22
1,3-Dichlorobenzene	< 20.0	ug/L	5/25/2017 17:22
1,4-Dichlorobenzene	< 20.0	ug/L	5/25/2017 17:22
1,4-dioxane	< 200	ug/L	5/25/2017 17:22
2-Butanone	< 100	ug/L	5/25/2017 17:22
2-Hexanone	< 50.0	ug/L	5/25/2017 17:22
4-Methyl-2-pentanone	< 50.0	ug/L	5/25/2017 17:22
Acetone	< 100	ug/L	5/25/2017 17:22
Benzene	113	ug/L	5/25/2017 17:22
Bromochloromethane	< 50.0	ug/L	5/25/2017 17:22
Bromodichloromethane	< 20.0	ug/L	5/25/2017 17:22
Bromoform	< 50.0	ug/L	5/25/2017 17:22
Bromomethane	< 20.0	ug/L	5/25/2017 17:22
Carbon disulfide	< 20.0	ug/L	5/25/2017 17:22
Carbon Tetrachloride	< 20.0	ug/L	5/25/2017 17:22
Chlorobenzene	< 20.0	ug/L	5/25/2017 17:22
Chloroethane	< 20.0	ug/L	5/25/2017 17:22
Chloroform	< 20.0	ug/L	5/25/2017 17:22

Client: C&S Companies

Project Reference: Conventus

Sample Identifier:	BCP-MW-6-051	1717					
Lab Sample ID:	172147-03			Dat	te Sampled:	5/17/2017	
Matrix:	Groundwater			Dat	te Received:	5/22/2017	
Chloromethane	<	20.0	ug/L			5/25/2017	17:22
cis-1,2-Dichloroethene	<	20.0	ug/L			5/25/2017	17:22
cis-1,3-Dichloropropen	e <	20.0	ug/L			5/25/2017	17:22
Cyclohexane	<	100	ug/L			5/25/2017	17:22
Dibromochloromethane	? <	20.0	ug/L			5/25/2017	17:22
Dichlorodifluoromethar	ne <	20.0	ug/L			5/25/2017	17:22
Ethylbenzene	1	.75	ug/L			5/25/2017	17:22
Freon 113	<	20.0	ug/L			5/25/2017	17:22
Isopropylbenzene	<	20.0	ug/L			5/25/2017	17:22
m,p-Xylene	1	.35	ug/L			5/25/2017	17:22
Methyl acetate	<	20.0	ug/L			5/25/2017	17:22
Methyl tert-butyl Ether	<	20.0	ug/L			5/25/2017	17:22
Methylcyclohexane	3	5.3	ug/L			5/25/2017	17:22
Methylene chloride	<	50.0	ug/L			5/25/2017	17:22
o-Xylene	5	55.7	ug/L			5/25/2017	17:22
Styrene	<	50.0	ug/L			5/25/2017	17:22
Tetrachloroethene	<	20.0	ug/L			5/25/2017	17:22
Toluene	1	47	ug/L			5/25/2017	17:22
trans-1,2-Dichloroether	ne <	20.0	ug/L			5/25/2017	17:22
trans-1,3-Dichloroprop	ene <	20.0	ug/L			5/25/2017	17:22
Trichloroethene	<	20.0	ug/L			5/25/2017	17:22
Trichlorofluoromethane	e <	20.0	ug/L			5/25/2017	17:22
Vinyl chloride	<	20.0	ug/L			5/25/2017	17:22
<u>Surrogate</u>		<u>Pe</u>	rcent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			96.7	77.8 - 124		5/25/2017	17:22
4-Bromofluorobenzene			93.1	78 - 117		5/25/2017	17:22
Pentafluorobenzene			99.5	83.2 - 118		5/25/2017	17:22
Toluene-D8			95.4	83.7 - 116		5/25/2017	17:22

EPA 8260C EPA 5030C

x41782.D

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Data File:

Method Reference(s):

Client: <u>C&S Companies</u>

Project Reference: Conventus

Sample Identifier: BCP-MW-3-051717

Lab Sample ID:172147-04Date Sampled:5/17/2017Matrix:GroundwaterDate Received:5/22/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 20.0	ug/L	5/25/2017 17:46
1,1,2,2-Tetrachloroethane	< 20.0	ug/L	5/25/2017 17:46
1,1,2-Trichloroethane	< 20.0	ug/L	5/25/2017 17:46
1,1-Dichloroethane	< 20.0	ug/L	5/25/2017 17:46
1,1-Dichloroethene	< 20.0	ug/L	5/25/2017 17:46
1,2,3-Trichlorobenzene	< 50.0	ug/L	5/25/2017 17:46
1,2,4-Trichlorobenzene	< 50.0	ug/L	5/25/2017 17:46
1,2-Dibromo-3-Chloropropane	< 100	ug/L	5/25/2017 17:46
1,2-Dibromoethane	< 20.0	ug/L	5/25/2017 17:46
1,2-Dichlorobenzene	< 20.0	ug/L	5/25/2017 17:46
1,2-Dichloroethane	< 20.0	ug/L	5/25/2017 17:46
1,2-Dichloropropane	< 20.0	ug/L	5/25/2017 17:46
1,3-Dichlorobenzene	< 20.0	ug/L	5/25/2017 17:46
1,4-Dichlorobenzene	< 20.0	ug/L	5/25/2017 17:46
1,4-dioxane	< 200	ug/L	5/25/2017 17:46
2-Butanone	201	ug/L	5/25/2017 17:46
2-Hexanone	< 50.0	ug/L	5/25/2017 17:46
4-Methyl-2-pentanone	< 50.0	ug/L	5/25/2017 17:46
Acetone	< 100	ug/L	5/25/2017 17:46
Benzene	451	ug/L	5/25/2017 17:46
Bromochloromethane	< 50.0	ug/L	5/25/2017 17:46
Bromodichloromethane	< 20.0	ug/L	5/25/2017 17:46
Bromoform	< 50.0	ug/L	5/25/2017 17:46
Bromomethane	< 20.0	ug/L	5/25/2017 17:46
Carbon disulfide	< 20.0	ug/L	5/25/2017 17:46
Carbon Tetrachloride	< 20.0	ug/L	5/25/2017 17:46
Chlorobenzene	< 20.0	ug/L	5/25/2017 17:46
Chloroethane	< 20.0	ug/L	5/25/2017 17:46
Chloroform	< 20.0	ug/L	5/25/2017 17:46

Client: <u>C&S Companies</u>

Project Reference: Conventus

Toject Reference.	Gonventus						
Sample Identifier:	BCP-MW-3-0517	717					
Lab Sample ID:	172147-04			Date	Sampled:	5/17/2017	
Matrix:	Groundwater			Date	Received:	5/22/2017	
Chloromethane	< 2	20.0	ug/L			5/25/2017	17:46
cis-1,2-Dichloroethene	< 2	20.0	ug/L			5/25/2017	17:46
cis-1,3-Dichloropropene	< 2	20.0	ug/L			5/25/2017	17:46
Cyclohexane	< 1	.00	ug/L			5/25/2017	17:46
Dibromochloromethane	< 2	20.0	ug/L			5/25/2017	17:46
Dichlorodifluoromethan	e < 2	20.0	ug/L			5/25/2017	17:46
Ethylbenzene	19	7	ug/L			5/25/2017	17:46
Freon 113	< 2	20.0	ug/L			5/25/2017	17:46
Isopropylbenzene	< 2	20.0	ug/L			5/25/2017	17:46
m,p-Xylene	63	9	ug/L			5/25/2017	17:46
Methyl acetate	< 2	20.0	ug/L			5/25/2017	17:46
Methyl tert-butyl Ether	< 2	20.0	ug/L			5/25/2017	17:46
Methylcyclohexane	29	.5	ug/L			5/25/2017	17:46
Methylene chloride	< 5	0.0	ug/L			5/25/2017	17:46
o-Xylene	< 2	20.0	ug/L			5/25/2017	17:46
Styrene	< 5	0.0	ug/L			5/25/2017	17:46
Tetrachloroethene	< 2	20.0	ug/L			5/25/2017	17:46
Toluene	22	.6	ug/L			5/25/2017	17:46
trans-1,2-Dichloroethen	e < 2	0.0	ug/L			5/25/2017	17:46
trans-1,3-Dichloroprope	ne < 2	20.0	ug/L			5/25/2017	17:46
Trichloroethene	< 2	20.0	ug/L			5/25/2017	17:46
Trichlorofluoromethane	< 2	20.0	ug/L			5/25/2017	17:46
Vinyl chloride	< 2	20.0	ug/L			5/25/2017	17:46
<u>Surrogate</u>		<u>Percer</u>	t Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			98.5	77.8 - 124		5/25/2017	17:40
4-Bromofluorobenzene			95.9	78 - 117		5/25/2017	17:46
Pentafluorobenzene			98.7	83.2 - 118		5/25/2017	17:46
Toluene-D8			93.7	83.7 - 116		5/25/2017	17:46

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x41783.D

Client: <u>C&S Companies</u>

Project Reference: Conventus

Sample Identifier: BCP-MW-4-051717

Lab Sample ID:172147-05Date Sampled:5/17/2017Matrix:GroundwaterDate Received:5/22/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 20.0	ug/L	5/25/2017 18:10
1,1,2,2-Tetrachloroethane	< 20.0	ug/L	5/25/2017 18:10
1,1,2-Trichloroethane	< 20.0	ug/L	5/25/2017 18:10
1,1-Dichloroethane	< 20.0	ug/L	5/25/2017 18:10
1,1-Dichloroethene	< 20.0	ug/L	5/25/2017 18:10
1,2,3-Trichlorobenzene	< 50.0	ug/L	5/25/2017 18:10
1,2,4-Trichlorobenzene	< 50.0	ug/L	5/25/2017 18:10
1,2-Dibromo-3-Chloropropane	< 100	ug/L	5/25/2017 18:10
1,2-Dibromoethane	< 20.0	ug/L	5/25/2017 18:10
1,2-Dichlorobenzene	< 20.0	ug/L	5/25/2017 18:10
1,2-Dichloroethane	< 20.0	ug/L	5/25/2017 18:10
1,2-Dichloropropane	< 20.0	ug/L	5/25/2017 18:10
1,3-Dichlorobenzene	< 20.0	ug/L	5/25/2017 18:10
1,4-Dichlorobenzene	< 20.0	ug/L	5/25/2017 18:10
1,4-dioxane	< 200	ug/L	5/25/2017 18:10
2-Butanone	< 100	ug/L	5/25/2017 18:10
2-Hexanone	< 50.0	ug/L	5/25/2017 18:10
4-Methyl-2-pentanone	< 50.0	ug/L	5/25/2017 18:10
Acetone	< 100	ug/L	5/25/2017 18:10
Benzene	10.8	ug/L	5/25/2017 18:10
Bromochloromethane	< 50.0	ug/L	5/25/2017 18:10
Bromodichloromethane	< 20.0	ug/L	5/25/2017 18:10
Bromoform	< 50.0	ug/L	5/25/2017 18:10
Bromomethane	< 20.0	ug/L	5/25/2017 18:10
Carbon disulfide	< 20.0	ug/L	5/25/2017 18:10
Carbon Tetrachloride	< 20.0	ug/L	5/25/2017 18:10
Chlorobenzene	< 20.0	ug/L	5/25/2017 18:10
Chloroethane	< 20.0	ug/L	5/25/2017 18:10
Chloroform	< 20.0	ug/L	5/25/2017 18:10

Client: C&S Companies

Project Reference: Conventus

Sample Identifier:	BCP-MW-4-051717	7				
Lab Sample ID:	172147-05		Date Sar	npled:	5/17/2017	
Matrix:	Groundwater		Date Re	ceived:	5/22/2017	
Chloromethane	< 20.0	ug/L			5/25/2017	18:10
cis-1,2-Dichloroethene	< 20.0	ug/L			5/25/2017	18:10
cis-1,3-Dichloropropene	< 20.0	ug/L			5/25/2017	18:10
Cyclohexane	235	ug/L			5/25/2017	18:10
Dibromochloromethane	< 20.0	ug/L			5/25/2017	18:10
Dichlorodifluoromethan	e < 20.0	ug/L			5/25/2017	18:10
Ethylbenzene	1220	ug/L			5/25/2017	18:10
Freon 113	< 20.0	ug/L			5/25/2017	18:10
Isopropylbenzene	< 20.0	ug/L			5/25/2017	18:10
m,p-Xylene	1260	ug/L			5/25/2017	18:10
Methyl acetate	< 20.0	ug/L			5/25/2017	18:10
Methyl tert-butyl Ether	< 20.0	ug/L			5/25/2017	18:10
Methylcyclohexane	99.7	ug/L			5/25/2017	18:10
Methylene chloride	< 50.0	ug/L			5/25/2017	18:10
o-Xylene	29.7	ug/L			5/25/2017	18:10
Styrene	< 50.0	ug/L			5/25/2017	18:10
Tetrachloroethene	< 20.0	ug/L			5/25/2017	18:10
Toluene	92.2	ug/L			5/25/2017	18:10
trans-1,2-Dichloroethen	e < 20.0	ug/L			5/25/2017	18:10
trans-1,3-Dichloroprope	ene < 20.0	ug/L			5/25/2017	18:10
Trichloroethene	< 20.0	ug/L			5/25/2017	18:10
Trichlorofluoromethane	< 20.0	ug/L			5/25/2017	18:10
Vinyl chloride	< 20.0	ug/L			5/25/2017	18:10
<u>Surrogate</u>]	Percent Recovery	<u>Limits</u> Ou	<u>ıtliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		95.5	77.8 - 124		5/25/2017	18:10
4-Bromofluorobenzene		98.8	78 - 117		5/25/2017	18:10
Pentafluorobenzene		102	83.2 - 118		5/25/2017	18:10
Toluene-D8		99.0	83.7 - 116		5/25/2017	18:10

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x41784.D

Client: <u>C&S Companies</u>

Project Reference: Conventus

Sample Identifier: BCP-MW-5-051717

Lab Sample ID:172147-06Date Sampled:5/17/2017Matrix:GroundwaterDate Received:5/22/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 40.0	ug/L	5/25/2017 18:33
1,1,2,2-Tetrachloroethane	< 40.0	ug/L	5/25/2017 18:33
1,1,2-Trichloroethane	< 40.0	ug/L	5/25/2017 18:33
1,1-Dichloroethane	< 40.0	ug/L	5/25/2017 18:33
1,1-Dichloroethene	< 40.0	ug/L	5/25/2017 18:33
1,2,3-Trichlorobenzene	< 100	ug/L	5/25/2017 18:33
1,2,4-Trichlorobenzene	< 100	ug/L	5/25/2017 18:33
1,2-Dibromo-3-Chloropropane	< 200	ug/L	5/25/2017 18:33
1,2-Dibromoethane	< 40.0	ug/L	5/25/2017 18:33
1,2-Dichlorobenzene	< 40.0	ug/L	5/25/2017 18:33
1,2-Dichloroethane	< 40.0	ug/L	5/25/2017 18:33
1,2-Dichloropropane	< 40.0	ug/L	5/25/2017 18:33
1,3-Dichlorobenzene	< 40.0	ug/L	5/25/2017 18:33
1,4-Dichlorobenzene	< 40.0	ug/L	5/25/2017 18:33
1,4-dioxane	< 400	ug/L	5/25/2017 18:33
2-Butanone	< 200	ug/L	5/25/2017 18:33
2-Hexanone	< 100	ug/L	5/25/2017 18:33
4-Methyl-2-pentanone	< 100	ug/L	5/25/2017 18:33
Acetone	< 200	ug/L	5/25/2017 18:33
Benzene	428	ug/L	5/25/2017 18:33
Bromochloromethane	< 100	ug/L	5/25/2017 18:33
Bromodichloromethane	< 40.0	ug/L	5/25/2017 18:33
Bromoform	< 100	ug/L	5/25/2017 18:33
Bromomethane	< 40.0	ug/L	5/25/2017 18:33
Carbon disulfide	< 40.0	ug/L	5/25/2017 18:33
Carbon Tetrachloride	< 40.0	ug/L	5/25/2017 18:33
Chlorobenzene	< 40.0	ug/L	5/25/2017 18:33
Chloroethane	< 40.0	ug/L	5/25/2017 18:33
Chloroform	< 40.0	ug/L	5/25/2017 18:33

Client: <u>C&S Companies</u>

Project Reference: Conventus

10,000 110101 011001	GOII / CIICUS						
Sample Identifier:	BCP-MW-5-0	51717					
Lab Sample ID:	172147-06			Date	e Sampled:	5/17/2017	
Matrix:	Groundwater	•		Date	e Received:	5/22/2017	
Chloromethane		< 40.0	ug/L			5/25/2017	18:33
cis-1,2-Dichloroethene		< 40.0	ug/L			5/25/2017	18:33
cis-1,3-Dichloropropen	e	< 40.0	ug/L			5/25/2017	18:33
Cyclohexane		< 200	ug/L			5/25/2017	18:33
Dibromochloromethan	e	< 40.0	ug/L			5/25/2017	18:33
Dichlorodifluorometha	ne	< 40.0	ug/L			5/25/2017	18:33
Ethylbenzene		584	ug/L			5/25/2017	18:33
Freon 113		< 40.0	ug/L			5/25/2017	18:33
Isopropylbenzene		< 40.0	ug/L			5/25/2017	18:33
m,p-Xylene		2930	ug/L			5/25/2017	18:33
Methyl acetate		< 40.0	ug/L			5/25/2017	18:33
Methyl tert-butyl Ether		< 40.0	ug/L			5/25/2017	18:33
Methylcyclohexane		49.0	ug/L			5/25/2017	18:33
Methylene chloride		< 100	ug/L			5/25/2017	18:33
o-Xylene		70.7	ug/L			5/25/2017	18:33
Styrene		< 100	ug/L			5/25/2017	18:33
Tetrachloroethene		< 40.0	ug/L			5/25/2017	18:33
Toluene		< 40.0	ug/L			5/25/2017	18:33
trans-1,2-Dichloroether	ne	< 40.0	ug/L			5/25/2017	18:33
trans-1,3-Dichloroprop	ene	< 40.0	ug/L			5/25/2017	18:33
Trichloroethene		< 40.0	ug/L			5/25/2017	18:33
Trichlorofluoromethan	e	< 40.0	ug/L			5/25/2017	18:33
Vinyl chloride		< 40.0	ug/L			5/25/2017	18:33
<u>Surrogate</u>		Pe	ercent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			95.1	77.8 - 124		5/25/2017	18:33
4-Bromofluorobenzene			95.7	78 - 117		5/25/2017	18:33
Pentafluorobenzene			99.5	83.2 - 118		5/25/2017	18:33
Toluene-D8			95.7	83.7 - 116		5/25/2017	18:33

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x41785.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on th final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

10+2

See additional page for sample conditions.	See additio	
litions (reverse).	Other Other EDD Other EDD needed: S'C [ced 5/19/17 1678] By signing this form, client agrees to Paradigm Terms and Conditions (reverse).	Other please indicate date needed:
	ceived @ Lab'By Date/Time	Rush 1 day
10; 48	S/22/17	Rush 2 day
	Category A NYSDEC EDD	Rush 3 day
1	Batch QC Basic EDD Refinquished By Bate/Time	10 day
Total Cost:	None Required None Required Sappfied By Sa	Standard 5 day
Spire	Availability contingent upon lab approval; additional fees may apply. $ig(W / W / W / W) = 0$	Availability
2500	d Time Report Supplements	Turnaround Time
		1
90	11.05 X BCD MW-5-051717 / X	
o S	13:17 X BCP-MW-4-051717 X	
104	12:36 XIBCP-MW-3-051717 X	
03	11:45 X BCP-WW-16-051717 X 24:11	7
O2	10:23 XBRN11-7-051717 11X	1 1
01	5:45 1 BCP-MW-1-051717 WG ZX	5/17/17
REMARKS PARADIGM LAB SAMPLE NUMBER	COLLECTED O A A SAMPLE IDENTIFIER X SAMPLE IDENTIFIER	DATE COLLECTED C
SD - Solid WP - Wipe OL - Oil PT - Paint CK - Caulk AR - Air	AQ - Aqueous Liquid WA - Water DW - Drinking Water SO - Soil NQ - Non-Aqueous Liquid WG - Groundwater WW - Wastewater SL - Sludge	Conventus
	and Mathy	PROJECT
Email:	PHONE THE STORY STORY	1
Quotation #:	STATE: NY ZIP MA ZCITY: STATE: ZIP:	
17217	ADDRESS: LANCETTE ADDRESS:	
LAB PROJECT ID	PARADIGM CLIENTY AS A CLIENTY Same	PARA
	DEBORT TO:	

Chain of Custody Supplement

C+S Engineers	Completed by:	Glenn Perry
172147	Date:	5/22/17
Sample Condit Per NELAC/ELAP 2	ion Requirements 210/241/242/243/244	
ELAC compliance with the sample Yes	e condition requirements upo No	n receipt N/A
5°C:Cel		
	Sample Condit Per NELAC/ELAP Z ELAC compliance with the sample Yes	Date: Sample Condition Requirements Per NELAC/ELAP 210/241/242/243/244 ELAC compliance with the sample condition requirements upo Yes No

July 18, 2017

Cody Martin C&S Companies 141 Elm Street Suite 100 Buffalo, NY 14203

RE: Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Dear Cody Martin:

Enclosed are the analytical results for sample(s) received by the laboratory on July 08, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

James Murphy

james.murphy@pacelabs.com

(518)346-4592 Project Manager

Enclosures

Pace Analytical www.pacelabs.com

Melville, NY 11747 (631)694-3040

CERTIFICATIONS

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Long Island Certification IDs

575 Broad Hollow Rd, Melville, NY 11747

New York Certification #: 10478 Primary Accrediting Body

New Jersey Certification #: NY158 Pennsylvania Certification #: 68-00350 Connecticut Certification #: PH-0435 Maryland Certification #: 208

Rhode Island Certification #: LAO00340 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

Sample: BCP-MW-1-070517	Lab ID: 702	3628001	Collected: 07/05/1	7 09:15	Received:	07/08/17 10:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Met	nod: EPA 8	260C/5030C					
Acetone	5.1	ug/L	5.0	1		07/12/17 22:0	5 67-64-1	CC
Benzene	ND	ug/L	1.0	1		07/12/17 22:0	5 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		07/12/17 22:0	5 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		07/12/17 22:0	5 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/12/17 22:0	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		07/12/17 22:0	5 75-25-2	
Bromomethane	ND	ug/L	1.0	1		07/12/17 22:0	5 74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		07/12/17 22:0	5 78-93-3	IL
n-Butylbenzene	ND	ug/L	1.0	1		07/12/17 22:0	5 104-51-8	
sec-Butylbenzene	ND	ug/L	1.0	1		07/12/17 22:0	5 135-98-8	
ert-Butylbenzene	ND	ug/L	1.0	1		07/12/17 22:0	5 98-06-6	
Carbon disulfide	ND	ug/L	1.0	1		07/12/17 22:0	5 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/12/17 22:0	5 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/12/17 22:0	5 108-90-7	
Chlorodifluoromethane	ND	ug/L	1.0	1		07/12/17 22:0	5 75-45-6	N3
Chloroethane	ND	ug/L	1.0	1		07/12/17 22:0		
Chloroform	ND	ug/L	1.0	1		07/12/17 22:0		
Chloromethane	ND	ug/L	1.0	1		07/12/17 22:0		
2-Chlorotoluene	ND	ug/L	1.0	1		07/12/17 22:0		
4-Chlorotoluene	ND	ug/L	1.0	1		07/12/17 22:0		
Dibromochloromethane	ND	ug/L	1.0	1		07/12/17 22:0		
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		07/12/17 22:0		
Dibromomethane	ND	ug/L	1.0	1		07/12/17 22:0		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/12/17 22:0		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		07/12/17 22:0		
1,4-Dichlorobenzene	ND	ug/L ug/L	1.0	1		07/12/17 22:0		
rans-1,4-Dichloro-2-butene	ND ND	ug/L ug/L	1.0	1		07/12/17 22:0		
Dichlorodifluoromethane	ND ND	ug/L ug/L	1.0	1		07/12/17 22:0		
1,1-Dichloroethane	ND ND	ug/L ug/L	1.0	1		07/12/17 22:0		
1,2-Dichloroethane	ND		1.0	1		07/12/17 22:0		
1,1-Dichloroethene	ND	ug/L	1.0	1		07/12/17 22:0		
•	ND ND	ug/L	1.0	1		07/12/17 22:0		
cis-1,2-Dichloroethene rans-1,2-Dichloroethene	ND ND	ug/L	1.0	1		07/12/17 22:0		
·		ug/L				07/12/17 22:0		
1,2-Dichloropropane	ND	ug/L	1.0	1				
I,3-Dichloropropane	ND	ug/L	1.0	1		07/12/17 22:0		
2,2-Dichloropropane	ND	ug/L	1.0	1		07/12/17 22:0		
I,1-Dichloropropene	ND	ug/L	1.0	1		07/12/17 22:0		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-02-6	L1
1,4-Diethylbenzene	ND	ug/L	1.0	1		07/12/17 22:0		N3
Ethanol	ND	ug/L	250	1		07/12/17 22:0		
Ethylbenzene	ND	ug/L	1.0	1		07/12/17 22:0		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		07/12/17 22:0		
2-Hexanone	ND	ug/L	5.0	1		07/12/17 22:0		
sopropylbenzene (Cumene)	ND	ug/L	1.0	1		07/12/17 22:0		
o-Isopropyltoluene	ND	ug/L	1.0	1		07/12/17 22:0		
Methylene Chloride	ND	ug/L	1.0	1		07/12/17 22:0	5 75-09-2	

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

Sample: BCP-MW-1-070517	Lab ID: 702	3628001	Collected: 07/05/1	7 09:15	Received: 0	7/08/17 10:20 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/12/17 22:05	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		07/12/17 22:05	1634-04-4	
Naphthalene	ND	ug/L	1.0	1		07/12/17 22:05	91-20-3	CC
n-Propylbenzene	ND	ug/L	1.0	1		07/12/17 22:05	103-65-1	
Styrene	ND	ug/L	1.0	1		07/12/17 22:05	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/12/17 22:05	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/12/17 22:05	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/12/17 22:05	127-18-4	
1,2,4,5-tetramethylbenzene	ND	ug/L	1.0	1		07/12/17 22:05	95-93-2	N3
Toluene	ND	ug/L	1.0	1		07/12/17 22:05	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		07/12/17 22:05	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		07/12/17 22:05	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/12/17 22:05	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/12/17 22:05	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		07/12/17 22:05	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		07/12/17 22:05	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/12/17 22:05	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		07/12/17 22:05	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		07/12/17 22:05	108-67-8	
Vinyl chloride	ND	ug/L	1.0	1		07/12/17 22:05	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		07/12/17 22:05	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		07/12/17 22:05	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		07/12/17 22:05	95-47-6	
Surrogates		-						
1,2-Dichloroethane-d4 (S)	90	%.	68-153	1		07/12/17 22:05	17060-07-0	
4-Bromofluorobenzene (S)	97	%.	79-124	1		07/12/17 22:05	460-00-4	
Toluene-d8 (S)	91	%.	69-124	1		07/12/17 22:05	2037-26-5	

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

Sample: BCP-MW-7-070517	Lab ID:	7023628002	Collected: 07/05/1	7 09:58	Received:	07/08/17 10:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260C Volatile Organics	Analytical N	Method: EPA 82	260C/5030C					
Acetone	ND	ug/L	5.0	1		07/12/17 22:24	67-64-1	CC
Benzene	2.3	ug/L	1.0	1		07/12/17 22:24	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		07/12/17 22:24	108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		07/12/17 22:24	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/12/17 22:24	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/12/17 22:24	75-25-2	
Bromomethane	ND	ug/L	1.0	1		07/12/17 22:24	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		07/12/17 22:24	78-93-3	IL
n-Butylbenzene	ND	ug/L	1.0	1		07/12/17 22:24	104-51-8	
sec-Butylbenzene	ND	ug/L	1.0	1		07/12/17 22:24	135-98-8	
ert-Butylbenzene	ND	ug/L	1.0	1		07/12/17 22:24	98-06-6	
Carbon disulfide	ND	_	1.0	1		07/12/17 22:24	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/12/17 22:24	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/12/17 22:24	108-90-7	
Chlorodifluoromethane	ND	-	1.0	1		07/12/17 22:24	75-45-6	N3
Chloroethane	ND	-	1.0	1		07/12/17 22:24	75-00-3	
Chloroform	ND	_	1.0	1		07/12/17 22:24	67-66-3	
Chloromethane	ND	-	1.0	1		07/12/17 22:24	74-87-3	
2-Chlorotoluene	ND	ū	1.0	1		07/12/17 22:24		
-Chlorotoluene	ND	Ū	1.0	1		07/12/17 22:24	106-43-4	
Dibromochloromethane	ND		1.0	1		07/12/17 22:24	124-48-1	
,2-Dibromoethane (EDB)	ND	_	1.0	1		07/12/17 22:24		
Dibromomethane	ND	J	1.0	1		07/12/17 22:24		
,2-Dichlorobenzene	ND	Ū	1.0	1		07/12/17 22:24		
,3-Dichlorobenzene	ND	-	1.0	1		07/12/17 22:24		
,4-Dichlorobenzene	ND	-	1.0	1		07/12/17 22:24		
rans-1,4-Dichloro-2-butene	ND	_	1.0	1		07/12/17 22:24		
Dichlorodifluoromethane	ND	J	1.0	1		07/12/17 22:24		
,1-Dichloroethane	ND	ū	1.0	1		07/12/17 22:24		
,2-Dichloroethane	ND	Ū	1.0	1		07/12/17 22:24		
,1-Dichloroethene	ND		1.0	1		07/12/17 22:24		
cis-1,2-Dichloroethene	ND	_	1.0	1		07/12/17 22:24		
rans-1,2-Dichloroethene	ND	J	1.0	1		07/12/17 22:24		
,2-Dichloropropane	ND	Ū	1.0	1		07/12/17 22:24		
,3-Dichloropropane	ND	J	1.0	1		07/12/17 22:24		
2,2-Dichloropropane	ND	- 3	1.0	1		07/12/17 22:24		
,1-Dichloropropene	ND	•	1.0	1		07/12/17 22:24		
sis-1,3-Dichloropropene	ND	ū	1.0	1		07/12/17 22:24		
rans-1,3-Dichloropropene	ND	ū	1.0	1		07/12/17 22:24		L1
,4-Diethylbenzene	ND	ū	1.0	1		07/12/17 22:24		N3
Ethanol	ND	ū	250	1		07/12/17 22:24		
Ethylbenzene	ND ND	•	1.0	1		07/12/17 22:24		
Hexachloro-1,3-butadiene	ND	ū	1.0	1		07/12/17 22:24		
?-Hexanone	ND ND	ū	5.0	1		07/12/17 22:24		
sopropylbenzene (Cumene)	ND ND	ū	1.0	1		07/12/17 22:24		
-Isopropyltoluene		ū				07/12/17 22:22		
-isopropyitoluene Methylene Chloride	ND ND	•	1.0 1.0	1 1		07/12/17 22:22		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

Sample: BCP-MW-7-070517	Lab ID: 7023628002		Collected: 07/05/1	7 09:58	Received: 0	7/08/17 10:20 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/12/17 22:24	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		07/12/17 22:24	1634-04-4	
Naphthalene	ND	ug/L	1.0	1		07/12/17 22:24	91-20-3	CC
n-Propylbenzene	ND	ug/L	1.0	1		07/12/17 22:24	103-65-1	
Styrene	ND	ug/L	1.0	1		07/12/17 22:24	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/12/17 22:24	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/12/17 22:24	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/12/17 22:24	127-18-4	
1,2,4,5-tetramethylbenzene	ND	ug/L	1.0	1		07/12/17 22:24	95-93-2	N3
Toluene	ND	ug/L	1.0	1		07/12/17 22:24	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		07/12/17 22:24	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		07/12/17 22:24	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/12/17 22:24	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/12/17 22:24	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		07/12/17 22:24	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		07/12/17 22:24	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/12/17 22:24	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		07/12/17 22:24	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		07/12/17 22:24	108-67-8	
Vinyl chloride	ND	ug/L	1.0	1		07/12/17 22:24	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		07/12/17 22:24	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		07/12/17 22:24	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		07/12/17 22:24	95-47-6	
Surrogates								
1,2-Dichloroethane-d4 (S)	91	%.	68-153	1		07/12/17 22:24		
4-Bromofluorobenzene (S)	97	%.	79-124	1		07/12/17 22:24		
Toluene-d8 (S)	92	%.	69-124	1		07/12/17 22:24	2037-26-5	

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

Sample: BCP-MW-6-070517	Lab ID: 7	7023628003	Collected: 07/05/1	7 11:10	Received:	07/08/17 10:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical M	Method: EPA 82	260C/5030C					
Acetone	102	ug/L	5.0	1		07/12/17 22:42	2 67-64-1	CC
Benzene	131	ug/L	1.0	1		07/12/17 22:42	2 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		07/12/17 22:42	2 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		07/12/17 22:42	2 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/12/17 22:42	2 75-27-4	
Bromoform	ND	ug/L	1.0	1		07/12/17 22:42	2 75-25-2	
Bromomethane	ND	ug/L	1.0	1		07/12/17 22:42	2 74-83-9	
2-Butanone (MEK)	19.6	ug/L	5.0	1		07/12/17 22:42	2 78-93-3	IL
n-Butylbenzene	4.6	ug/L	1.0	1		07/12/17 22:42	2 104-51-8	
sec-Butylbenzene	ND	ug/L	1.0	1		07/12/17 22:42	135-98-8	
ert-Butylbenzene	ND	ug/L	1.0	1		07/12/17 22:42	98-06-6	
Carbon disulfide	ND	ug/L	1.0	1		07/12/17 22:42	2 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/12/17 22:42	2 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/12/17 22:42	108-90-7	
Chlorodifluoromethane	ND	ug/L	1.0	1		07/12/17 22:42	2 75-45-6	N3
Chloroethane	ND	ug/L	1.0	1		07/12/17 22:42	2 75-00-3	
Chloroform	ND	ug/L	1.0	1		07/12/17 22:42	2 67-66-3	
Chloromethane	ND	ug/L	1.0	1		07/12/17 22:42	2 74-87-3	
2-Chlorotoluene	ND	ug/L	1.0	1		07/12/17 22:42	95-49-8	
I-Chlorotoluene	ND	ug/L	1.0	1		07/12/17 22:42	2 106-43-4	
Dibromochloromethane	ND	ug/L	1.0	1		07/12/17 22:42	2 124-48-1	
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		07/12/17 22:42	2 106-93-4	
Dibromomethane	ND	ug/L	1.0	1		07/12/17 22:42	2 74-95-3	
,2-Dichlorobenzene	ND	ug/L	1.0	1		07/12/17 22:42	95-50-1	
,3-Dichlorobenzene	ND	ug/L	1.0	1		07/12/17 22:42	2 541-73-1	
,4-Dichlorobenzene	ND	ug/L	1.0	1		07/12/17 22:42	2 106-46-7	
rans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/12/17 22:42	2 110-57-6	
Dichlorodifluoromethane	ND	ug/L	1.0	1		07/12/17 22:42	2 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		07/12/17 22:42	2 75-34-3	
,2-Dichloroethane	ND	ug/L	1.0	1		07/12/17 22:42	2 107-06-2	
,1-Dichloroethene	ND	ug/L	1.0	1		07/12/17 22:42		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/12/17 22:42		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/12/17 22:42	2 156-60-5	
,2-Dichloropropane	ND	ug/L	1.0	1		07/12/17 22:42	2 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		07/12/17 22:42		
2,2-Dichloropropane	ND	ug/L	1.0	1		07/12/17 22:42		
,1-Dichloropropene	ND	ug/L	1.0	1		07/12/17 22:42		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/12/17 22:42		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/12/17 22:42		L1
,4-Diethylbenzene	32.9	_	1.0	1		07/12/17 22:42		N3
Ethanol	ND	ug/L	250	1		07/12/17 22:42		
Ethylbenzene	85.5	-	1.0	1		07/12/17 22:42		
Hexachloro-1,3-butadiene	ND	ŭ	1.0	1		07/12/17 22:42		
2-Hexanone	ND	ŭ	5.0	1		07/12/17 22:42		
sopropylbenzene (Cumene)	2.5	•	1.0	1		07/12/17 22:42		
p-Isopropyltoluene	1.6	-	1.0	1		07/12/17 22:42		
Methylene Chloride	ND	•	1.0	1		07/12/17 22:42		

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

Sample: BCP-MW-6-070517	Lab ID: 702	3628003	Collected: 07/05/1	7 11:10	Received: 0	7/08/17 10:20 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
4-Methyl-2-pentanone (MIBK)	6.2	ug/L	5.0	1		07/12/17 22:42	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		07/12/17 22:42	1634-04-4	
Naphthalene	86.6	ug/L	1.0	1		07/12/17 22:42	91-20-3	CC
n-Propylbenzene	11.3	ug/L	1.0	1		07/12/17 22:42	103-65-1	
Styrene	ND	ug/L	1.0	1		07/12/17 22:42	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/12/17 22:42	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/12/17 22:42	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/12/17 22:42	127-18-4	
1,2,4,5-tetramethylbenzene	14.3	ug/L	1.0	1		07/12/17 22:42	95-93-2	N3
Toluene	22.5	ug/L	4.0	4		07/13/17 16:11	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		07/12/17 22:42	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		07/12/17 22:42	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/12/17 22:42	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/12/17 22:42	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		07/12/17 22:42	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		07/12/17 22:42	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/12/17 22:42	96-18-4	
1,2,4-Trimethylbenzene	134	ug/L	1.0	1		07/12/17 22:42	95-63-6	
1,3,5-Trimethylbenzene	74.3	ug/L	1.0	1		07/12/17 22:42	108-67-8	
Vinyl chloride	ND	ug/L	1.0	1		07/12/17 22:42	75-01-4	
Xylene (Total)	438	ug/L	8.0	4		07/13/17 16:11	1330-20-7	
m&p-Xylene	361	ug/L	2.0	1		07/12/17 22:42	179601-23-1	
o-Xylene	77.4	ug/L	4.0	4		07/13/17 16:11	95-47-6	
Surrogates								
1,2-Dichloroethane-d4 (S)	95	%.	68-153	1		07/12/17 22:42	17060-07-0	
4-Bromofluorobenzene (S)	94	%.	79-124	1		07/12/17 22:42	460-00-4	
Toluene-d8 (S)	93	%.	69-124	1		07/12/17 22:42	2037-26-5	

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

Sample: BCP-MW-3-070517	Lab ID: 702	3628004	Collected: 07/05/1	17 12:00	Received:	07/08/17 10:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 8	260C/5030C					
Acetone	166	ug/L	10.0	2		07/13/17 17:23	8 67-64-1	
Benzene	3.3	ug/L	1.0	1		07/12/17 23:00	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		07/12/17 23:00	108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		07/12/17 23:00	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/12/17 23:00	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/12/17 23:00	75-25-2	
Bromomethane	ND	ug/L	1.0	1		07/12/17 23:00	74-83-9	
2-Butanone (MEK)	51.4	ug/L	5.0	1		07/12/17 23:00	78-93-3	IL
n-Butylbenzene	ND	ug/L	1.0	1		07/12/17 23:00	104-51-8	
sec-Butylbenzene	ND	ug/L	1.0	1		07/12/17 23:00	135-98-8	
ert-Butylbenzene	ND	ug/L	1.0	1		07/12/17 23:00	98-06-6	
Carbon disulfide	ND	ug/L	1.0	1		07/12/17 23:00	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/12/17 23:00	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/12/17 23:00		
Chlorodifluoromethane	ND	ug/L	1.0	1		07/12/17 23:00		N3
Chloroethane	ND	ug/L	1.0	1		07/12/17 23:00		
Chloroform	ND	ug/L	1.0	1		07/12/17 23:00		
Chloromethane	ND	ug/L	1.0	1		07/12/17 23:00		
2-Chlorotoluene	ND	ug/L	1.0	1		07/12/17 23:00		
I-Chlorotoluene	ND	ug/L	1.0	1		07/12/17 23:00		
Dibromochloromethane	ND	ug/L	1.0	1		07/12/17 23:00		
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		07/12/17 23:00		
Dibromomethane	ND	ug/L	1.0	1		07/12/17 23:00		
,2-Dichlorobenzene	ND	ug/L	1.0	1		07/12/17 23:00		
,,2-Dichlorobenzene	ND ND	-	1.0	1		07/12/17 23:00		
,,4-Dichlorobenzene	ND	ug/L	1.0	1		07/12/17 23:00		
rans-1,4-Dichloro-2-butene	ND ND	ug/L	1.0	1		07/12/17 23:00		
Dichlorodifluoromethane	ND ND	ug/L	1.0	1		07/12/17 23:00		
		ug/L	1.0	1		07/12/17 23:00		
1,1-Dichloroethane	ND	ug/L						
,2-Dichloroethane	ND	ug/L	1.0	1		07/12/17 23:00		
,1-Dichloroethene	ND	ug/L	1.0	1		07/12/17 23:00		
sis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/12/17 23:00		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/12/17 23:00		
,2-Dichloropropane	ND	ug/L	1.0	1		07/12/17 23:00		
,3-Dichloropropane	ND	ug/L	1.0	1		07/12/17 23:00		
2,2-Dichloropropane	ND	ug/L	1.0	1		07/12/17 23:00		
,1-Dichloropropene	ND	ug/L	1.0	1		07/12/17 23:00		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/12/17 23:00		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/12/17 23:00		L1
,4-Diethylbenzene	ND	ug/L	1.0	1		07/12/17 23:00		N3
Ethanol	ND	ug/L	250	1		07/12/17 23:00		
Ethylbenzene	2.4	ug/L	1.0	1		07/12/17 23:00		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		07/12/17 23:00		
2-Hexanone	8.0	ug/L	5.0	1		07/12/17 23:00	591-78-6	CC
sopropylbenzene (Cumene)	ND	ug/L	1.0	1		07/12/17 23:00	98-82-8	
o-Isopropyltoluene	ND	ug/L	1.0	1		07/12/17 23:00	99-87-6	
Methylene Chloride	ND	ug/L	1.0	1		07/12/17 23:00	75-09-2	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

Sample: BCP-MW-3-070517	Lab ID: 7023628004		Collected: 07/05/1	7 12:00	Received: 07	7/08/17 10:20 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
4-Methyl-2-pentanone (MIBK)	5.0	ug/L	5.0	1		07/12/17 23:00	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		07/12/17 23:00	1634-04-4	
Naphthalene	14.0	ug/L	1.0	1		07/12/17 23:00	91-20-3	CC
n-Propylbenzene	ND	ug/L	1.0	1		07/12/17 23:00	103-65-1	
Styrene	ND	ug/L	1.0	1		07/12/17 23:00	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/12/17 23:00	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/12/17 23:00	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/12/17 23:00	127-18-4	
1,2,4,5-tetramethylbenzene	1.1	ug/L	1.0	1		07/12/17 23:00	95-93-2	N3
Toluene	1.6	ug/L	1.0	1		07/12/17 23:00	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		07/12/17 23:00	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		07/12/17 23:00	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/12/17 23:00	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/12/17 23:00	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		07/12/17 23:00	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		07/12/17 23:00	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/12/17 23:00	96-18-4	
1,2,4-Trimethylbenzene	4.9	ug/L	1.0	1		07/12/17 23:00	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		07/12/17 23:00	108-67-8	
Vinyl chloride	ND	ug/L	1.0	1		07/12/17 23:00	75-01-4	
Xylene (Total)	7.1	ug/L	2.0	1		07/12/17 23:00	1330-20-7	
m&p-Xylene	5.8	ug/L	2.0	1		07/12/17 23:00	179601-23-1	
o-Xylene	1.3	ug/L	1.0	1		07/12/17 23:00	95-47-6	
Surrogates		-						
1,2-Dichloroethane-d4 (S)	103	%.	68-153	1		07/12/17 23:00	17060-07-0	
4-Bromofluorobenzene (S)	92	%.	79-124	1		07/12/17 23:00	460-00-4	
Toluene-d8 (S)	92	%.	69-124	1		07/12/17 23:00	2037-26-5	

Project: CONVENTUS #N46001001

Date: 07/18/2017 05:28 PM

Sample: BCP-MW-4-070517	Lab ID: 702	3628005	Collected: 07/05/1	7 13:00	Received:	07/08/17 10:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meti	nod: EPA 8	260C/5030C					
Acetone	38.2	ug/L	5.0	1		07/12/17 23:1	8 67-64-1	CC
Benzene	1.3	ug/L	1.0	1		07/12/17 23:1	8 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		07/12/17 23:1	8 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		07/12/17 23:1	8 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/12/17 23:1	8 75-27-4	
Bromoform	ND	ug/L	1.0	1		07/12/17 23:1	8 75-25-2	
Bromomethane	ND	ug/L	1.0	1		07/12/17 23:1	8 74-83-9	
2-Butanone (MEK)	6.9	ug/L	5.0	1		07/12/17 23:1	8 78-93-3	IL
n-Butylbenzene	1.7	ug/L	1.0	1		07/12/17 23:1	8 104-51-8	
sec-Butylbenzene	ND	ug/L	1.0	1		07/12/17 23:1	8 135-98-8	
ert-Butylbenzene	ND	ug/L	1.0	1		07/12/17 23:1	8 98-06-6	
Carbon disulfide	ND	ug/L	1.0	1		07/12/17 23:1	8 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/12/17 23:1	8 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/12/17 23:1		
Chlorodifluoromethane	ND	ug/L	1.0	1		07/12/17 23:1		N3
Chloroethane	ND	ug/L	1.0	1		07/12/17 23:1		
Chloroform	ND	ug/L	1.0	1		07/12/17 23:1		
Chloromethane	ND	ug/L	1.0	1		07/12/17 23:1		
-Chlorotoluene	ND	ug/L	1.0	1		07/12/17 23:1		
-Chlorotoluene	ND	ug/L	1.0	1		07/12/17 23:1		
Dibromochloromethane	ND	ug/L	1.0	1		07/12/17 23:1		
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		07/12/17 23:1		
Dibromomethane	ND	ug/L	1.0	1		07/12/17 23:1		
,2-Dichlorobenzene	ND	ug/L	1.0	1		07/12/17 23:1		
,3-Dichlorobenzene	ND	ug/L	1.0	1		07/12/17 23:1		
,4-Dichlorobenzene	ND ND	ug/L ug/L	1.0	1		07/12/17 23:1		
rans-1,4-Dichloro-2-butene	ND ND	ug/L ug/L	1.0	1		07/12/17 23:1		
Dichlorodifluoromethane	ND	-	1.0	1		07/12/17 23:1		
	ND ND	ug/L	1.0	1		07/12/17 23:1		
,1-Dichloroethane		ug/L						
,2-Dichloroethane	ND	ug/L	1.0	1		07/12/17 23:1		
,1-Dichloroethene	ND	ug/L	1.0	1		07/12/17 23:1		
sis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/12/17 23:1		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/12/17 23:1		
,2-Dichloropropane	ND	ug/L	1.0	1		07/12/17 23:1		
,3-Dichloropropane	ND	ug/L	1.0	1		07/12/17 23:1		
2,2-Dichloropropane	ND	ug/L	1.0	1		07/12/17 23:1		
,1-Dichloropropene	ND	ug/L	1.0	1		07/12/17 23:1		
is-1,3-Dichloropropene	ND	ug/L	1.0	1			8 10061-01-5	
ans-1,3-Dichloropropene	ND	ug/L	1.0	1			8 10061-02-6	L1
,4-Diethylbenzene	2.5	ug/L	1.0	1		07/12/17 23:1		N3
thanol	ND	ug/L	250	1		07/12/17 23:1		
Ethylbenzene	28.0	ug/L	1.0	1		07/12/17 23:1		
lexachloro-1,3-butadiene	ND	ug/L	1.0	1		07/12/17 23:1		
2-Hexanone	ND	ug/L	5.0	1		07/12/17 23:1		
sopropylbenzene (Cumene)	ND	ug/L	1.0	1		07/12/17 23:1		
-Isopropyltoluene	ND	ug/L	1.0	1		07/12/17 23:1	8 99-87-6	
Methylene Chloride	ND	ug/L	1.0	1		07/12/17 23:1	8 75-09-2	

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

Sample: BCP-MW-4-070517	Lab ID: 7023628005		Collected: 07/05/1	7 13:00	Received: 07	7/08/17 10:20 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
4-Methyl-2-pentanone (MIBK)	9.8	ug/L	5.0	1		07/12/17 23:18	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		07/12/17 23:18	1634-04-4	
Naphthalene	1.9	ug/L	1.0	1		07/12/17 23:18	91-20-3	CC
n-Propylbenzene	2.3	ug/L	1.0	1		07/12/17 23:18	103-65-1	
Styrene	ND	ug/L	1.0	1		07/12/17 23:18	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/12/17 23:18	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/12/17 23:18	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/12/17 23:18	127-18-4	
1,2,4,5-tetramethylbenzene	1.1	ug/L	1.0	1		07/12/17 23:18	95-93-2	N3
Toluene	9.8	ug/L	1.0	1		07/12/17 23:18	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		07/12/17 23:18	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		07/12/17 23:18	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/12/17 23:18	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/12/17 23:18	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		07/12/17 23:18	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		07/12/17 23:18	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/12/17 23:18	96-18-4	
1,2,4-Trimethylbenzene	1.1	ug/L	1.0	1		07/12/17 23:18	95-63-6	
1,3,5-Trimethylbenzene	2.0	ug/L	1.0	1		07/12/17 23:18	108-67-8	
Vinyl chloride	ND	ug/L	1.0	1		07/12/17 23:18	75-01-4	
Xylene (Total)	24.5	ug/L	2.0	1		07/12/17 23:18	1330-20-7	
m&p-Xylene	22.1	ug/L	2.0	1		07/12/17 23:18	179601-23-1	
o-Xylene	2.4	ug/L	1.0	1		07/12/17 23:18	95-47-6	
Surrogates								
1,2-Dichloroethane-d4 (S)	91	%.	68-153	1		07/12/17 23:18	17060-07-0	
4-Bromofluorobenzene (S)	97	%.	79-124	1		07/12/17 23:18	460-00-4	
Toluene-d8 (S)	92	%.	69-124	1		07/12/17 23:18	2037-26-5	

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

Sample: BCP-MW-5-070517	Lab ID: 7	7023628006	Collected: 07/05/1	7 14:15	Received: (07/08/17 10:20 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical M	/lethod: EPA 82	260C/5030C					
Acetone	15.3	ug/L	5.0	1		07/12/17 23:36	67-64-1	CC
Benzene	574	ug/L	25.0	25		07/13/17 16:29	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		07/12/17 23:36	108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		07/12/17 23:36	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/12/17 23:36	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/12/17 23:36	75-25-2	
Bromomethane	ND	ug/L	1.0	1		07/12/17 23:36	74-83-9	
2-Butanone (MEK)	5.1	ug/L	5.0	1		07/12/17 23:36	78-93-3	IL
n-Butylbenzene	43.3	ug/L	1.0	1		07/12/17 23:36	104-51-8	
sec-Butylbenzene	3.2	ug/L	1.0	1		07/12/17 23:36	135-98-8	
tert-Butylbenzene	ND		1.0	1		07/12/17 23:36	98-06-6	
Carbon disulfide	2.1	_	1.0	1		07/12/17 23:36	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/12/17 23:36	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/12/17 23:36	108-90-7	
Chlorodifluoromethane	ND	_	1.0	1		07/12/17 23:36	75-45-6	N3
Chloroethane	ND	_	1.0	1		07/12/17 23:36	75-00-3	
Chloroform	ND	ug/L	1.0	1		07/12/17 23:36	67-66-3	
Chloromethane	ND	ug/L	1.0	1		07/12/17 23:36	74-87-3	
2-Chlorotoluene	ND	-	1.0	1		07/12/17 23:36		
1-Chlorotoluene	ND	Ū	1.0	1		07/12/17 23:36	106-43-4	
Dibromochloromethane	ND		1.0	1		07/12/17 23:36	124-48-1	
I,2-Dibromoethane (EDB)	ND	_	1.0	1		07/12/17 23:36		
Dibromomethane	ND	0	1.0	1		07/12/17 23:36		
1,2-Dichlorobenzene	ND	Ū	1.0	1		07/12/17 23:36		
1,3-Dichlorobenzene	ND	_	1.0	1		07/12/17 23:36		
1,4-Dichlorobenzene	ND	_	1.0	1		07/12/17 23:36		
rans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/12/17 23:36		
Dichlorodifluoromethane	ND	-	1.0	1		07/12/17 23:36		
1,1-Dichloroethane	ND	•	1.0	1		07/12/17 23:36		
1,2-Dichloroethane	ND	Ū	1.0	1		07/12/17 23:36		
1,1-Dichloroethene	ND		1.0	1		07/12/17 23:36		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/12/17 23:36		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/12/17 23:36		
1,2-Dichloropropane	ND	ug/L	1.0	1		07/12/17 23:36		
1,3-Dichloropropane	ND	-	1.0	1		07/12/17 23:36		
2,2-Dichloropropane	ND	- 3	1.0	1		07/12/17 23:36		
I,1-Dichloropropene	ND	•	1.0	1		07/12/17 23:36		
cis-1,3-Dichloropropene	ND	•	1.0	1		07/12/17 23:36		
rans-1,3-Dichloropropene	ND	•	1.0	1		07/12/17 23:36		L1
1,4-Diethylbenzene	347	•	25.0	25		07/13/17 16:29		N3
Ethanol	ND	•	250	1		07/12/17 23:36		
Ethylbenzene	534	•	25.0	25		07/13/17 16:29		
Hexachloro-1,3-butadiene	ND	0	1.0	1		07/13/17 10:29		
2-Hexanone	5.9	•	5.0	1		07/12/17 23:36		СС
sopropylbenzene (Cumene)	13.6	-	1.0	1		07/12/17 23:36		00
o-Isopropyltoluene	5.7	•	1.0	1		07/12/17 23:36		
Methylene Chloride	5.7 ND	U	1.0	1		07/12/17 23:36		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

Sample: BCP-MW-5-070517	Lab ID: 702	3628006	Collected: 07/05/1	7 14:15	Received: 0	7/08/17 10:20 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/12/17 23:36	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		07/12/17 23:36	1634-04-4	
Naphthalene	730	ug/L	25.0	25		07/13/17 16:29	91-20-3	
n-Propylbenzene	34.8	ug/L	1.0	1		07/12/17 23:36	103-65-1	
Styrene	ND	ug/L	1.0	1		07/12/17 23:36	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/12/17 23:36	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/12/17 23:36	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/12/17 23:36	127-18-4	
1,2,4,5-tetramethylbenzene	135	ug/L	1.0	1		07/12/17 23:36	95-93-2	N3
Toluene	36.2	ug/L	1.0	1		07/12/17 23:36	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		07/12/17 23:36	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		07/12/17 23:36	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/12/17 23:36	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/12/17 23:36	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		07/12/17 23:36	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		07/12/17 23:36	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/12/17 23:36	96-18-4	
1,2,4-Trimethylbenzene	2280	ug/L	25.0	25		07/13/17 16:29	95-63-6	
1,3,5-Trimethylbenzene	823	ug/L	25.0	25		07/13/17 16:29	108-67-8	
Vinyl chloride	ND	ug/L	1.0	1		07/12/17 23:36	75-01-4	
Xylene (Total)	4520	ug/L	50.0	25		07/13/17 16:29	1330-20-7	
m&p-Xylene	4350	ug/L	50.0	25		07/13/17 16:29	179601-23-1	
o-Xylene	171	ug/L	1.0	1		07/12/17 23:36	95-47-6	
Surrogates		-						
1,2-Dichloroethane-d4 (S)	106	%.	68-153	1		07/12/17 23:36	17060-07-0	
4-Bromofluorobenzene (S)	93	%.	79-124	1		07/12/17 23:36	460-00-4	
Toluene-d8 (S)	88	%.	69-124	1		07/12/17 23:36	2037-26-5	

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

QC Batch: 31241 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Associated Lab Samples: 7023628001, 7023628002, 7023628003, 7023628004, 7023628005, 7023628006

METHOD BLANK: 144636 Matrix: Water

Associated Lab Samples: 7023628001, 7023628002, 7023628003, 7023628004, 7023628005, 7023628006

		Blank	Reporting	,	
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND -	1.0	07/12/17 17:32	·
1,1,1-Trichloroethane	ug/L	ND	1.0	07/12/17 17:32	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	07/12/17 17:32	
1,1,2-Trichloroethane	ug/L	ND	1.0	07/12/17 17:32	
1,1-Dichloroethane	ug/L	ND	1.0	07/12/17 17:32	
1,1-Dichloroethene	ug/L	ND	1.0	07/12/17 17:32	
1,1-Dichloropropene	ug/L	ND	1.0	07/12/17 17:32	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	07/12/17 17:32	
1,2,3-Trichloropropane	ug/L	ND	1.0	07/12/17 17:32	
1,2,4,5-tetramethylbenzene	ug/L	ND	1.0	07/12/17 17:32	N3
1,2,4-Trichlorobenzene	ug/L	ND	1.0	07/12/17 17:32	
1,2,4-Trimethylbenzene	ug/L	ND	1.0	07/12/17 17:32	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	07/12/17 17:32	
1,2-Dichlorobenzene	ug/L	ND	1.0	07/12/17 17:32	
1,2-Dichloroethane	ug/L	ND	1.0	07/12/17 17:32	
1,2-Dichloropropane	ug/L	ND	1.0	07/12/17 17:32	
1,3,5-Trimethylbenzene	ug/L	ND	1.0	07/12/17 17:32	
1,3-Dichlorobenzene	ug/L	ND	1.0	07/12/17 17:32	
1,3-Dichloropropane	ug/L	ND	1.0	07/12/17 17:32	
1,4-Dichlorobenzene	ug/L	ND	1.0	07/12/17 17:32	
1,4-Diethylbenzene	ug/L	ND	1.0	07/12/17 17:32	N3
2,2-Dichloropropane	ug/L	ND	1.0	07/12/17 17:32	-
2-Butanone (MEK)	ug/L	ND	5.0	07/12/17 17:32	IL
2-Chlorotoluene	ug/L	ND	1.0	07/12/17 17:32	
2-Hexanone	ug/L	ND	5.0	07/12/17 17:32	
4-Chlorotoluene	ug/L	ND	1.0	07/12/17 17:32	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	07/12/17 17:32	
Acetone	ug/L	ND	5.0	07/12/17 17:32	
Benzene	ug/L	ND	1.0	07/12/17 17:32	
Bromobenzene	ug/L	ND	1.0	07/12/17 17:32	
Bromochloromethane	ug/L	ND	1.0	07/12/17 17:32	
Bromodichloromethane	ug/L	ND	1.0	07/12/17 17:32	
Bromoform	ug/L	ND	1.0	07/12/17 17:32	
Bromomethane	ug/L	ND	1.0	07/12/17 17:32	
Carbon disulfide	ug/L	ND	1.0	07/12/17 17:32	
Carbon tetrachloride	ug/L	ND	1.0	07/12/17 17:32	
Chlorobenzene	ug/L	ND	1.0	07/12/17 17:32	
Chlorodifluoromethane	ug/L	ND	1.0	07/12/17 17:32	N3
Chloroethane	ug/L	ND	1.0	07/12/17 17:32	
Chloroform	ug/L	ND	1.0	07/12/17 17:32	
Chloromethane	ug/L	ND	1.0	07/12/17 17:32	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

METHOD BLANK: 144636 Matrix: Water

Associated Lab Samples: 7023628001, 7023628002, 7023628003, 7023628004, 7023628005, 7023628006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/L	ND	1.0	07/12/17 17:32	·
cis-1,3-Dichloropropene	ug/L	ND	1.0	07/12/17 17:32	
Dibromochloromethane	ug/L	ND	1.0	07/12/17 17:32	
Dibromomethane	ug/L	ND	1.0	07/12/17 17:32	
Dichlorodifluoromethane	ug/L	ND	1.0	07/12/17 17:32	
Ethanol	ug/L	ND	250	07/12/17 17:32	
Ethylbenzene	ug/L	ND	1.0	07/12/17 17:32	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	07/12/17 17:32	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	07/12/17 17:32	
m&p-Xylene	ug/L	ND	2.0	07/12/17 17:32	
Methyl-tert-butyl ether	ug/L	ND	1.0	07/12/17 17:32	
Methylene Chloride	ug/L	ND	1.0	07/12/17 17:32	
n-Butylbenzene	ug/L	ND	1.0	07/12/17 17:32	
n-Propylbenzene	ug/L	ND	1.0	07/12/17 17:32	
Naphthalene	ug/L	ND	1.0	07/12/17 17:32	CC
o-Xylene	ug/L	ND	1.0	07/12/17 17:32	
p-Isopropyltoluene	ug/L	ND	1.0	07/12/17 17:32	
sec-Butylbenzene	ug/L	ND	1.0	07/12/17 17:32	
Styrene	ug/L	ND	1.0	07/12/17 17:32	
tert-Butylbenzene	ug/L	ND	1.0	07/12/17 17:32	
Tetrachloroethene	ug/L	ND	1.0	07/12/17 17:32	
Toluene	ug/L	ND	1.0	07/12/17 17:32	
trans-1,2-Dichloroethene	ug/L	ND	1.0	07/12/17 17:32	
trans-1,3-Dichloropropene	ug/L	ND	1.0	07/12/17 17:32	
trans-1,4-Dichloro-2-butene	ug/L	ND	1.0	07/12/17 17:32	
Trichloroethene	ug/L	ND	1.0	07/12/17 17:32	
Trichlorofluoromethane	ug/L	ND	1.0	07/12/17 17:32	
Vinyl chloride	ug/L	ND	1.0	07/12/17 17:32	
Xylene (Total)	ug/L	ND	2.0	07/12/17 17:32	
1,2-Dichloroethane-d4 (S)	%.	87	68-153	07/12/17 17:32	
4-Bromofluorobenzene (S)	%.	98	79-124	07/12/17 17:32	
Toluene-d8 (S)	%.	94	69-124	07/12/17 17:32	

LABORATORY CONTROL SAMPLE:	144637					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	54.2	108	74-113	
1,1,1-Trichloroethane	ug/L	50	53.4	107	65-118	
1,1,2,2-Tetrachloroethane	ug/L	50	46.0	92	74-121	
1,1,2-Trichloroethane	ug/L	50	49.9	100	80-117	
1,1-Dichloroethane	ug/L	50	51.5	103	83-151	
1,1-Dichloroethene	ug/L	50	53.4	107	45-146	
1,1-Dichloropropene	ug/L	50	52.5	105	59-127	
1,2,3-Trichlorobenzene	ug/L	50	42.4	85	67-103	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

LABORATORY CONTROL SAMPLE:	144637	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
1,2,3-Trichloropropane	ug/L		45.1	90	71-123	
1,2,4,5-tetramethylbenzene	ug/L	50	37.0	74	66-103	N3
1,2,4-Trichlorobenzene	ug/L	50	44.3	89	66-116	
1,2,4-Trimethylbenzene	ug/L	50	43.9	88	68-116	
1,2-Dibromoethane (EDB)	ug/L	50	53.8	108	83-115	
1,2-Dichlorobenzene	ug/L	50	45.6	91	74-113	
1,2-Dichloroethane	ug/L	50	48.8	98	74-129	
1,2-Dichloropropane	ug/L	50	50.5	101	75-117	
1,3,5-Trimethylbenzene	ug/L	50	44.0	88	67-116	
1,3-Dichlorobenzene	ug/L	50	45.0	90	71-112	
1,3-Dichloropropane	ug/L	50	49.7	99	74-112	
1,4-Dichlorobenzene	ug/L	50	44.9	90	71-113	
I,4-Diethylbenzene	ug/L	50	46.2	92	56-130	NI3
2,2-Dichloropropane	ug/L	50	58.1	116	63-133	140
2,2-Dictilotoproparie 2-Butanone (MEK)	ug/∟ ug/L	50 50	50.7	101	44-162	п
2-Chlorotoluene	_	50 50	43.0	86	74-102	IL
2-Chlorotoldene 2-Hexanone	ug/L				32-183	00
	ug/L	50	59.0	118		CC
4-Chlorotoluene	ug/L	50	43.4	87	74-101	
4-Methyl-2-pentanone (MIBK)	ug/L	50	54.6	109	69-132	00
Acetone	ug/L	50	53.6	107	23-188	CC
Benzene	ug/L	50	51.7	103	73-119	
Bromobenzene	ug/L	50	46.6	93	72-102	
Bromochloromethane	ug/L	50	55.2	110	81-116	
Bromodichloromethane	ug/L	50	51.6	103	78-117	
Bromoform	ug/L	50	53.7	107	65-122	
Bromomethane	ug/L	50	55.0	110	52-147	
Carbon disulfide	ug/L	50	46.6	93	41-144	
Carbon tetrachloride	ug/L	50	56.6	113	59-120	
Chlorobenzene	ug/L	50	50.6	101	75-113	
Chlorodifluoromethane	ug/L	50	48.4	97	43-140	N3
Chloroethane	ug/L	50	47.2	94	49-151	
Chloroform	ug/L	50	50.5	101	72-122	
Chloromethane	ug/L	50	46.2	92	46-144	
cis-1,2-Dichloroethene	ug/L	50	51.6	103	72-121	
cis-1,3-Dichloropropene	ug/L	50	55.9	112	78-116	
Dibromochloromethane	ug/L	50	54.4	109	70-120	
Dibromomethane	ug/L	50	50.0	100	75-125	
Dichlorodifluoromethane	ug/L	50	65.8	132	22-154	CC
Ethanol	ug/L	1250	1150	92	10-151	
Ethylbenzene	ug/L	50	51.3	103	70-113	
Hexachloro-1,3-butadiene	ug/L	50	54.3	109	59-121	
sopropylbenzene (Cumene)	ug/L	50	45.0	90	67-115	
m&p-Xylene	ug/L	100	106	106	72-115	
Methyl-tert-butyl ether	ug/L	50	50.4	101	72-131	
Methylene Chloride	ug/L	50	49.1	98	61-142	
n-Butylbenzene	ug/L	50	45.4	91	73-107	
n-Propylbenzene	ug/L	50	44.1	88	68-116	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

BORATORY CONTROL SAMPLE:	144637					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
ohthalene	ug/L	50	35.3	71	70-118	CC
ylene	ug/L	50	52.1	104	73-117	
propyltoluene	ug/L	50	46.2	92	73-101	
Butylbenzene	ug/L	50	45.6	91	72-103	
ene	ug/L	50	51.8	104	72-118	
Butylbenzene	ug/L	50	45.7	91	68-100	
chloroethene	ug/L	50	46.7	93	60-128	
ne	ug/L	50	51.3	103	72-119	
,2-Dichloroethene	ug/L	50	53.5	107	56-142	
1,3-Dichloropropene	ug/L	50	59.1	118	79-116	L1
,4-Dichloro-2-butene	ug/L	50	46.3	93	71-121	
proethene	ug/L	50	50.7	101	69-117	
orofluoromethane	ug/L	50	52.6	105	27-173	
chloride	ug/L	50	51.1	102	43-143	
ne (Total)	ug/L	150	159	106	71-109	
ichloroethane-d4 (S)	%.			87	68-153	
mofluorobenzene (S)	%.			99	79-124	
ne-d8 (S)	%.			93	69-124	

MATRIX SPIKE SAMPLE:	146135						
		7023780002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<1.0	50	50.2	100	74-113	
1,1,1-Trichloroethane	ug/L	<1.0	50	50.9	102	65-118	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	50	47.0	94	74-121	
1,1,2-Trichloroethane	ug/L	<1.0	50	50.9	102	80-117	
1,1-Dichloroethane	ug/L	<1.0	50	51.9	104	83-151	
1,1-Dichloroethene	ug/L	<1.0	50	56.1	112	45-146	
1,1-Dichloropropene	ug/L	<1.0	50	51.1	102	59-127	
1,2,3-Trichlorobenzene	ug/L	<1.0	50	42.4	85	67-103	
1,2,3-Trichloropropane	ug/L	<1.0	50	46.2	92	71-123	
1,2,4,5-tetramethylbenzene	ug/L	<1.0	50	38.6	77	66-103 I	٧3
1,2,4-Trichlorobenzene	ug/L	<1.0	50	44.2	88	66-116	
1,2,4-Trimethylbenzene	ug/L	<1.0	50	51.5	103	68-116	
1,2-Dibromoethane (EDB)	ug/L	<1.0	50	54.2	108	83-115	
1,2-Dichlorobenzene	ug/L	<1.0	50	45.5	91	74-113	
1,2-Dichloroethane	ug/L	<1.0	50	50.2	100	74-129	
1,2-Dichloropropane	ug/L	<1.0	50	49.0	98	75-117	
1,3,5-Trimethylbenzene	ug/L	<1.0	50	47.4	95	67-116	
1,3-Dichlorobenzene	ug/L	<1.0	50	43.8	88	71-112	
1,3-Dichloropropane	ug/L	<1.0	50	49.5	99	74-112	
1,4-Dichlorobenzene	ug/L	<1.0	50	43.7	87	71-113	
1,4-Diethylbenzene	ug/L	<1.0	50	51.0	102	56-130 I	N 3
2,2-Dichloropropane	ug/L	<1.0	50	51.0	102	63-133	
2-Butanone (MEK)	ug/L	<5.0	50	48.9	98	44-162 I	L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

MATRIX SPIKE SAMPLE:	146135						
Parameter	Units	7023780002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
							Qualifiers
2-Chlorotoluene	ug/L		50	42.4	85	74-101	00
2-Hexanone	ug/L	<5.0	50	60.3	121	32-183	CC
4-Chlorotoluene	ug/L	<1.0	50	41.5	83	74-101	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	58.6	117	69-132	00
Acetone	ug/L	41.8	50	64.9	46	23-188	CC
Benzene	ug/L	<1.0	50	51.4	103	73-119	
Bromobenzene	ug/L	<1.0	50	45.1	90	72-102	
Bromochloromethane	ug/L	<1.0	50	56.6	113	81-116	
Bromodichloromethane	ug/L	<1.0	50	49.1	98	78-117	
Bromoform	ug/L	<1.0	50	49.4	99	65-122	
Bromomethane	ug/L	<1.0	50	54.0	108	52-147	
Carbon disulfide	ug/L	<1.0	50	47.3	95	41-144	
Carbon tetrachloride	ug/L	<1.0	50	50.5	101	59-120	
Chlorobenzene	ug/L	<1.0	50	49.1	98	75-113	
Chlorodifluoromethane	ug/L	<1.0	50	48.1	96	43-140	N3
Chloroethane	ug/L	<1.0	50	46.5	93	49-151	
Chloroform	ug/L	<1.0	50	50.9	102	72-122	
Chloromethane	ug/L	<1.0	50	46.1	92	46-144	
is-1,2-Dichloroethene	ug/L	<1.0	50	51.2	102	72-121	
is-1,3-Dichloropropene	ug/L	<1.0	50	53.3	107	78-116	
Dibromochloromethane	ug/L	<1.0	50	49.9	100	70-120	
Pibromomethane	ug/L	<1.0	50	51.6	103	75-125	
ichlorodifluoromethane	ug/L	<1.0	50	61.7	123	22-154	CC
thanol	ug/L	<250	1250	1190	95	10-151	
thylbenzene	ug/L	<1.0	50	50.5	101	70-113	
lexachloro-1,3-butadiene	ug/L	<1.0	50	45.4	91	59-121	CC
sopropylbenzene (Cumene)	ug/L	<1.0	50	43.2	86	67-115	
n&p-Xylene	ug/L	<2.0	100	119	119	72-115	M1
Methyl-tert-butyl ether	ug/L	<1.0	50	52.7	105	72-131	
Methylene Chloride	ug/L	<1.0	50	49.5	99	61-142	
-Butylbenzene	ug/L	<1.0	50	43.1	86	73-107	
-Propylbenzene	ug/L	<1.0	50	42.3	85	68-116	
laphthalene	ug/L	<1.0	50	63.1	126	70-118	CC,M1
-Xylene	ug/L	<1.0	50	61.6	123	73-117	M1
-Isopropyltoluene	ug/L	<1.0	50	42.7	85	73-101	
ec-Butylbenzene	ug/L	<1.0	50	43.3	87	72-103	
Styrene	ug/L	<1.0	50	50.2	100	72-118	
ert-Butylbenzene	ug/L	<1.0	50	43.8	88	68-100	
etrachloroethene	ug/L	<1.0	50	44.7	89	60-128	
oluene	ug/L	<1.0	50	52.5	105	72-119	
rans-1,2-Dichloroethene	ug/L	<1.0	50	53.5	107	56-142	
rans-1,3-Dichloropropene	ug/L	<1.0	50	55.7	111	79-116	
rans-1,4-Dichloro-2-butene	ug/L	<1.0	50	43.4	87	71-121	
richloroethene	ug/L	<1.0	50	49.9	100	69-117	
richlorofluoromethane	ug/∟ ug/L	<1.0	50 50	52.6	105	27-173	
/inyl chloride	ug/L	<1.0	50 50	52.0	103	43-143	
Kylene (Total)	ug/∟ ug/L	<2.0	150	180	120	71-109	MC

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

MATRIX SPIKE SAMPLE:	146135						
		7023780002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethane-d4 (S)	<u></u> %.				87	68-153	
4-Bromofluorobenzene (S)	%.				99	79-124	
Toluene-d8 (S)	%.				93	69-124	

		7023780001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<1.0	ND		
1,1,1-Trichloroethane	ug/L	<1.0	ND		
1,1,2,2-Tetrachloroethane	ug/L	<1.0	ND		
1,1,2-Trichloroethane	ug/L	<1.0	ND		
1,1-Dichloroethane	ug/L	<1.0	ND		
1,1-Dichloroethene	ug/L	<1.0	ND		
1,1-Dichloropropene	ug/L	<1.0	ND		
1,2,3-Trichlorobenzene	ug/L	<1.0	ND		
1,2,3-Trichloropropane	ug/L	<1.0	ND		
1,2,4,5-tetramethylbenzene	ug/L	<1.0	ND		N3
1,2,4-Trichlorobenzene	ug/L	<1.0	ND		
1,2,4-Trimethylbenzene	ug/L	<1.0	ND		
1,2-Dibromoethane (EDB)	ug/L	<1.0	ND		
1,2-Dichlorobenzene	ug/L	<1.0	ND		
,2-Dichloroethane	ug/L	<1.0	ND		
1,2-Dichloropropane	ug/L	<1.0	ND		
,3,5-Trimethylbenzene	ug/L	<1.0	ND		
I,3-Dichlorobenzene	ug/L	<1.0	ND		
,3-Dichloropropane	ug/L	<1.0	ND		
,4-Dichlorobenzene	ug/L	<1.0	ND		
,4-Diethylbenzene	ug/L	<1.0	ND		N3
,2-Dichloropropane	ug/L	<1.0	ND		
2-Butanone (MEK)	ug/L	<5.0	ND		IL
2-Chlorotoluene	ug/L	<1.0	ND		
2-Hexanone	ug/L	<5.0	ND		
1-Chlorotoluene	ug/L	<1.0	ND		
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	ND		
Acetone	ug/L	<5.0	ND		
Benzene	ug/L	<1.0	ND		
Bromobenzene	ug/L	<1.0	ND		
Bromochloromethane	ug/L	<1.0	ND		
Bromodichloromethane	ug/L	<1.0	ND		
Bromoform	ug/L	<1.0	ND		
Bromomethane	ug/L	<1.0	ND		
Carbon disulfide	ug/L	<1.0	ND		
Carbon tetrachloride	ug/L	<1.0	ND		
Chlorobenzene	ug/L	<1.0	ND		
Chlorodifluoromethane	ug/L	<1.0	ND		N3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

SAMPLE DUPLICATE: 146134 7023780001 Dup Parameter Units Result Result **RPD** Qualifiers Chloroethane ug/L <1.0 ND <1.0 Chloroform ug/L ND Chloromethane ug/L <1.0 ND cis-1,2-Dichloroethene <1.0 ND ug/L <1.0 ND cis-1,3-Dichloropropene ug/L Dibromochloromethane ug/L <1.0 ND <1.0 Dibromomethane ug/L ND Dichlorodifluoromethane <1.0 ND ug/L Ethanol <250 ND ug/L <1.0 Ethylbenzene ug/L ND <1.0 Hexachloro-1,3-butadiene ug/L ND <1.0 Isopropylbenzene (Cumene) ug/L ND m&p-Xylene ug/L <2.0 ND Methyl-tert-butyl ether <1.0 ND ug/L Methylene Chloride <1.0 ND ug/L n-Butylbenzene <1.0 ND ug/L n-Propylbenzene <1.0 ND ug/L CC Naphthalene ug/L <1.0 ND <1.0 o-Xylene ug/L ND <1.0 p-Isopropyltoluene ug/L ND <1.0 ND sec-Butylbenzene ug/L <1.0 Styrene ug/L ND <1.0 tert-Butylbenzene ug/L ND ug/L Tetrachloroethene <1.0 ND Toluene ug/L <1.0 ND trans-1,2-Dichloroethene ug/L <1.0 ND <1.0 ND trans-1,3-Dichloropropene ug/L <1.0 trans-1,4-Dichloro-2-butene ug/L ND Trichloroethene <1.0 ND ug/L Trichlorofluoromethane <1.0 ND ug/L <1.0 ND Vinyl chloride ug/L <2.0 Xylene (Total) ug/L ND 1,2-Dichloroethane-d4 (S) 88 %. 89 1 4-Bromofluorobenzene (S) %. 96 96 0 Toluene-d8 (S) %. 92 92 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 07/18/2017 05:28 PM

CC	The continuing calibration for this compound is outside of method control limits. The result is estimated.
IL	This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
MS	Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result.
N3	Accreditation is not offered by the relevant laboratory accrediting body for this parameter.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CONVENTUS #N46001001

Pace Project No.: 7023628

Date: 07/18/2017 05:28 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
7023628001	BCP-MW-1-070517	EPA 8260C/5030C	31241		
7023628002	BCP-MW-7-070517	EPA 8260C/5030C	31241		
7023628003	BCP-MW-6-070517	EPA 8260C/5030C	31241		
7023628004	BCP-MW-3-070517	EPA 8260C/5030C	31241		
7023628005	BCP-MW-4-070517	EPA 8260C/5030C	31241		
7023628006	BCP-MW-5-070517	EPA 8260C/5030C	31241		

Pace Project No./ Lab I.D. (N/A) DRINKING WATER 1 Samples Intact SAMPLE CONDITIONS OTHER (N/Y) Custody Sealed Cooler 2 Received on Ice (Y/N) 5 GROUND WATER Residual Chlorine (Y/N) J. ul dmeT WO#:7023628 B 10:30 1039 REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) TIME 0 Site Location STATE NPDES DATE 1 CHAIN-OF-CUSTODY / Analytical Request Possimons UST -ACCEPTED BY / AFFILIATION The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must **↓** test **↓** test N/A Other Methanol Na₂S₂O₃ Preservatives NaOH HCI Invoice Information HNO³ Company Name Reference:
Pace Project
Manager:
Pace Profile #: [⊅]OS^ZH 700 Section C TIME Unpreserved Pace Quote Address: Attention # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION SIGNATURE of SAMPLER 30. 8,0 DATE TIME COMPCSITE END/GRAB DATE COLLECTED TIME COMPOSITE RELIMQUISHED BY onvent DATE Section B Required Project Information **SAMPLE TYPE** (G=GRAB C=COMP) urchase Order No.: Project Number: (see valid codes to left) MATRIX CODE roject Name; ORIGINAL Report To: Copy To: Matrix Codes Drinking Water Water Waste Water Product Soil/Solid Oil Wipe Air Tissue Other 705 into/cscos. ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Pace Analytical SAMPLE ID Required Client Information Section A Required Client Information: Requested Due Date/TAT: Section D Company: Page 24 of 25 œ 6 10 7 12 # M3TI

F-ALL-Q-020rev.07, 15-May-2007

ces not paid withir 30 days.

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per months for any invo

Sample Condition Upon Rec W0#:7023628 Proje PM: JM1 Due Date: 07/19/17 **Client Name** CLIENT: CSC Courier: Fed Ex UPS USPS Client Commercial Page Other Seals Intact. Yes No Custody Seal on Cooler/Box Present: Yes Type of Ice (Wet) Blue None Packing Material: ☐Bubble Wrap Ø Bubble Bags Ø Donc Samples on ice, cooling process has begun **Correction Factor:** Thermometer Used: TH092 Cooler Temperature Corrected (°C): Date/Time 5035A kits placed in freezer Cooler Temperature (°C): Temp should be above freezing to 6.0°C Dato and Initials of person examining contents: USDA Regulated Soil (N/A, water sample) Did samples orignate from a foreign source (internationally, Did samples originate in a quarantine zone within the United States: AL, AR, CA, FL, GA, ID, LA, MS, NC, including Hawaii and Puerto Rico)? Yes No YES NO NM, NY, OK, OR, SC, TN, TX, or VA (check map)? If Yes to either question, fill out a Regulated Soil Checklist (F-LI-C-010) and include with SCUR/COC paperwork. COMMENTS: Yes □No Chain of Custody Present: Yes □No Chain of Custody Filled Out: □No Yes Chain of Custody Relinquished: □N/A ∃Yes □No Sampler Name & Signature on COC: Yes □No Samples Arrived within Hold Time: MNo □Yes Short Hold Time Analysis (<72hr): No Rush Turn Around Time Requested: □Yes Sufficient Volume: (Triple volume provided for MS/MSD Pres □No □No Tyes Correct Containers Used: □No □Yes -Pace Containers Used: 10. □No □Yes Containers Intact: Note if sediment is visible in the dissolved container. DNA 11. □Yes □No Filtered volume received for Dissolved tests Yes 12. ПИО Sample Labels match COC: Matrix: OIL -Includes date/time/ID/Analysis All containers needing preservation have been checked ☐ HNO₃ ☐ H₂SO₄ □ NaOH ☐ HCI DIV/A 13. □No □Yes pH paper Lot # Sample # All containers needing preservation are found to be in compliance with EPA recommendation? □N/A □No □Yes (HNO3, H2SO4, HCI, NaOH>9 Sulfide, NAOH>12 Cyanide) Exceptions: VOA, Coliform, TOC/DOC, Oil and Grease, Lot # of added preservative: Date/Time preservative added Initial when completed: DRO/8015 (water). Per Method, VOA pH is checked after analysis N/A 14. □No □Yes Samples checked for dechlorination: Positive for Res. Chlorine? Y N Residual chlorine strips Lot # 15. □N/A □No Headspace in VOA Vials (>6mm): □Yes 16. □No □N/A □Yes Trip Blank Present:

Pace Trip Blank Lot # (if applicable):

Client Notification/ Resolution:

Person Contacted:

Comments/ Resolution:

Date/Time:

□N/A

□No

Trip Blank Custody Seals Present

□Yes

^{*} PM (Project Manager) review is documented electronically in LIMS.

APPENDIX B

INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details ite No. C915260				Box 1		
Sit	te Name Fo	rmer Mobil Servic	e Station 9	9-MST			
Cit Co	e Address: 9 sy/Town: Bu bunty: Erie e Acreage:		Zip Code	: 14203		,	
Re	porting Perio	od: March 24, 2017	7 to March 2	4, 2018			
						YES	NO
1.	Is the inform	mation above correc	ct?			X	
	If NO, inclu	de handwritten abo	ove or on a s	separate sheet.			
2.		or all of the site prop nendment during thi			nerged, or underg	one a	X
3.		peen any change of RR 375-1.11(d))?	f use at the s	site during this Re	porting Period		¥
[*] 4.		ederal, state, and/or property during thi			discharge) been is	ssued	×
		vered YES to ques nentation has bee					
5.	Is the site o	urrently undergoing	g developme	ent?			×
						-	
						Box 2	•
						YES	NO
6.		nt site use consiste Residential, Comme		• •	1?	X	
7.	Are all ICs/	ECs in place and fu	unctioning as	s designed?		X	
	IF TH	IE ANSWER TO EIT DO NOT COMPLET					
A C	Corrective M	easures Work Plan	must be su	bmitted along wit	h this form to add	Iress these iss	ues.
Sig	nature of Ow	ner, Remedial Party	or Designate	ed Representative		 Date	

8. Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid? If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form. 9. Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years) If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.

SITE NO. C915260 Box 3

Description of Institutional Controls

Parcel

Owner

100.79-1-1.1

Kaleida Properties, Inc.

Institutional Control

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

- 1. Prohibition of use of groundwater.
- 2. Landuse Restriction for Restricted Residential, Commercial or Industrial use.
- 3. Soil Management or Excavation Work Plan for any future intrusive work.
- 4. Groundwater Monitoring Plan.

100.79-1-2.11

Kaleida Health

Ground Water Use Restriction
Soil Management Plan
Landuse Restriction
Monitoring Plan
Site Management Plan

IC/EC Plan

- 1. Prohibition of use of groundwater.
- 2. Landuse Restriction for Restricted Residential, Commercial or Industrial use.
- 3. Soil Management or Excavation Work Plan for any future intrusive work.
- 4. Groundwater Monitoring Plan.

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

100.79-1-1.1

Groundwater Treatment System

Groundwater will be treated in-situ by injections of oxygen release compounds (ORC) to degrade petroleum hydrocarbons to harmless compounds.

100.79-1-2.11

Groundwater Treatment System

Groundwater will be treated in-situ by injections of oxygen release compounds (ORC) to degrade petroleum hydrocarbons to harmless compounds

_		_
н	ΛV	-

Periodic Review Report (PRR) Certification Statements

	, chodic fevica report (rink) continued on characteristic			
1.	I certify by checking "YES" below that:			
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification; 			
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. 			
	YES NO			
2.	is site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the owing statements are true:			
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;			
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;			
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;			
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and			
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.			
	YES NO			
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.			
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.			
	Signature of Owner, Remedial Party or Designated Representative Date			

IC CERTIFICATIONS SITE NO. C915260

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

at 141 Elm St. Buffalo, NV 1403, print name print business address

am certifying as Kaleida Properties, Trc.; Kaleida Healthowner or Remedial Party)

for the Site named in the Site Details Section of this form.

Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

at 14 Em St. Buffalo, NY 14203

print name print business address

am certifying as a Professional Engineer for the Kalerda Heafth; Kal

emedial Party

r

Stamp (Required for PE)

A OFESSION

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification