ATTACHMENT 05

PREVIOUS ENVIRONMENTAL INVESTIGATION

LCS INC. SUPPLEMENTAL PHASE II ENVIRONMENTAL SITE ASSESSMENT, LIMITED FOCUSED SUBSURFACE SOIL & INVESTIGATION, 300 OHIO STREET, BUFFALO, NEW YORK, NYSDEC SPILL NUMBER 0904777. PREPARED FOR THE NYSDEC, SEPTEMBER 2010.

LCS INC. PHASE II ENVIRONMENTAL SITE ASSESSMENT, LIMITED FOCUSED SUBSURFACE SOIL & INVESTIGATION, 300 OHIO STREET, BUFFALO, NEW YORK, NYSDEC SPILL NUMBER 0904777. PREPARED FOR THE NYSDEC, MAY 2010.

Attachment 5

Previous Environmental Investigations 300 Ohio Street Site Brownfield Cleanup Program Application

A summary of the previous environmental site investigation completed for the Site is presented below.

<u>September 2010 – Supplemental Phase II Environmental Site Assessment,</u> <u>Limited Focused Subsurface Soil & Investigation</u>

LCS Inc. (LCS) conducted a limited site investigation of a portion of the subject property, and the findings are summarized below. Note that the initial May 2010 investigation results were incorporated into the findings of the September 2010 report.

- Visual and olfactory evidence of impacted soil/fill was noted in multiple soil boring locations by field personnel. Elevated photoionization detector (PID) readings for volatile organic compounds (VOCs) were detected in multiple locations across the site, with readings as high as 1,897 ppm being detected.
- Petroleum-impacted soil exceeding NYSDEC Part 375 Industrial SCOs and NYSDEC CP-51 SSCOs for volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) were detected at multiple soil boring locations across the site.
- Elevated PID readings were noted in 280 out of 301 soil sample locations.

The former Petroleum Sales and Services, Inc site is listed on the NYSDEC Petroleum Bulk Storage Record (PBS No. 9-383511) as containing at least 12 underground storage tanks (USTs) and one above-ground storage tank (AST). City of Buffalo Municipal records indicate that several of the tanks have been replaced due to former leaking USTs.

This portion of the Site is also listed on the NYSDEC Spills Database including at least 12 spill events between 1988 and 2010.

Facility Information

Site No.: 9-383511 Status: Active Expiration Date: 08/17/2007 Site Type: PBS Site Name: SAM'S TRUCK STOP #110 Address: 300 OHIO ST Locality: BUFFALO State: NY Zipcode: 14204 County: Erie

Owner(s) Information

Owner: PETROLEUM SALES & SERVICE 300 OHIO ST . BUFFALO, NY. 14204 Mail Contact: PETROLEUM SALES & SERVICE 300 OHIO ST . BUFFALO, NY. 14204

Tank Information

13 Tanks Found

Tank No	Tank Location	Status	Capacity (Gal.)
1	Underground	In Service	10000
10	Underground	In Service	6000
11	Underground	Closed - Removed	12000
12	Underground	Closed - In Place	20000
13	Aboveground - in contact with soil	Closed - Removed	1000
2	Underground	In Service	3000
3	Underground	In Service	6000
4	Underground	Closed - Removed	11000
5	Underground	Closed - Removed	2000
6	Underground	In Service	11000
7	Underground	Closed - In Place	20000
8	Underground	In Service	10000
9	Underground	In Service	10000

Spill Incidents Database Search Results

Record Count: 13 Rows: 1 to 13 Export CSV Export XLS Date Spill Spill **County City/Town** Spill Name Address Number Reported 300 OHIO 1. 8804555 08/25/1988 PETROLEUM SALES Erie BUFFALO STREET OIL IN NFG 300 OHIO 2. 9009917 12/12/1990 Erie **BUFFALO** STREET EXCAVATION **PETROLEUM SALES &** 300 OHIO Erie 3. 9104400 07/24/1991 **BUFFALO** STREET SERVICE **PETROLEUM SALES &** 300 OHIO 4. 9110763 01/16/1992 Erie BUFFALO SERVICE STREET 300 OHIO 5. 9302663 05/27/1993 SAM'S TRUCK STOP Erie **BUFFALO** STREET 300 OHIO SAM'S TRUCK STOP Erie **BUFFALO** 6. 9302840 05/27/1993 STREET 300 OHIO 7. 9510010 11/11/1995 SAM'S TRUCK STOP Erie **BUFFALO** STREET 300 OHIO PETRO USA Erie **BUFFALO** 8. 9610492 11/15/1996 STREET 300 OHIO 9. 9709878 11/24/1997 SAM'S TRUCK STOP Erie **BUFFALO** STREET PETROLEUM SALES & 300 OHIO Erie **BUFFALO** 10.9800568 04/14/1998 SERVICE STREET PETROLEUM SALES 300 OHIO 11.9805444 07/31/1998 Erie BUFFALO STREET AND SERVI FORMER SAM'S TRUCK Erie 300 OHIO **BUFFALO** 12.0904777 07/24/2009 STOP STREET 300 OHIO 13.0911296 01/15/2010 ROADSIDE Erie **BUFFALO** STREET

Corporati Offices 40 La Riviere Drive, Schie 120 Buttalo, New York 14202

> TEE: 800.474.6802 716.845.6145 Fax: 716.845.6164

Offices

BUFFALO September 17, 2010 - Revised NEW YORK Mr. Eric Warren Russo Development, Inc. ROCHESTER 535 East Main Street NEW YORK Springville, New York 14141 Re: Supplemental Phase II Environmental Site Assessment SYRACUSE Limited and Focused Subsurface Soil & Investigation NEW YORK 300 Ohio Street Buffalo, New York LCS Project #10B667.22 ALBANY NYSDEC Spill Number 0904777 NEW YORK Dear Mr. Warren: NEW YORK CITY NEW YORK Background At your request, Lender Consulting Services, Inc. (LCS) documented site investigation activities completed on March 31 through April 2, 2010 at 300 Ohio Street, Buffalo, New York (See Figure VALLEY The results of that investigation are summarized in LCS' Phase II Environmental Site 1). COTTAGE Assessment Report dated May 7, 2010. NEW YORK Subsequently, at your request, LCS documented additional site investigation activities completed on July 26 and July 27, 2010. All test boring locations and soil sampling was completed at the HARRISBURG direction of the New York State Department of Environmental Conservation (NYSDEC) and/or PENNSYLVANIA their contractors. For the ease of the reader, the results of the field activates summarized in LCS' Phase II PITTSBURGH Environmental Site Assessment Report dated May 7, 2010, have been included within this report. PENNSYLVANIA **Site Description** ALTOONA The subject property was historically utilized as a gasoline and diesel filling station and petroleum PENNSYL VANIA distribution operation. Multiple gasoline, diesel, #2 heating oil and kerosene underground storage tanks (USTs) are currently or were historically located on the subjected property. Five inoperative pump islands are currently located west and south of the subject structure. The topography of BALTIMORE the site is generally level at grade. The Buffalo River is located approximately 250 feet from the MARYLAND subject property; although, does not border the subject property. The subject property is located in a primarily industrial setting. SALISBURY Introduction MARYLAND The purpose of this intrusive study was to better assess the environmental quality of on-site soils in accessible locations of the subject property. Soil samples were collected for stratigraphic CLEVELAND characterization and field monitoring. Select soil samples were submitted for laboratory analysis 01110 to supplement field observations. The following is a summary of the methods and results of the investigation.

Mr. Eric Warren – Page 2 September 17, 2010

Methods of Investigation

Soil

Soil samples were collected on March 31 through April 2, July 26 and July 27, 2010 with a track-mounted percussion and hydraulically driven drive system equipped with an approximate 2-inch diameter, approximate 48-inch long macro-core sampler. Soil samples were collected within each borehole continuously from the ground surface until a depth of between approximately eight and 16 feet below the ground surface (ft. bgs). Any downhole equipment was decontaminated with an Alconox and tap water wash and tap water rinse between boreholes. The cutting shoes were decontaminated in a similar manner between collection of each sample.

The physical characteristics of all soil samples were classified using the Unified Soil Classification System (USCS) (Visual-Manual Method) and placed in separate sealable containers to allow any vapors to accumulate in the headspace. After several minutes, the container was opened slightly and total volatile organic compound (VOC) concentrations in air within the sample container were measured using a photoionization detector (PID). (The PID is designed to detect VOCs, such as those associated with petroleum.) Based on the field observations and/or screening results, soils were selected for analysis (see below).

Sample Analysis

Following labeling of the laboratory-supplied sample containers, selected samples were placed on ice. The samples were then submitted, under standard chain-of-custody, to a New York State Department of Health (NYSDOH) approved laboratory for analysis in accordance with the United States Environmental Protection agency (USEPA) SW-846 Methods as summarized below.

The following table summarizes the specific analytical testing performed and their respective sample locations.

Mr. Eric Warren – Page 3 September 17, 2010

O amala la sette	Avaluation Teating Destanced
Sample Location	Analytical Testing Performed
BH1 (8-10 ft. bgs)	
BH10 (0-2 ft. bgs)	
BH11 (4-8 ft. bgs)	
BH13 (4-8 ft. bgs)	
BH15 (0-2 ft. bgs)	
BH18 (0-4 ft. bgs)	
BH19 (2-4 ft. bgs)	
BH21 (6-8 ft. bgs)	
BH23 (6-8 ft. bgs)	
BH24 (2-4 ft. bgs)	
BH25 (0-4 ft. bgs)	
BH26 (8-10 ft. bgs)	
BH27 (8-10 ft. bgs)	
BH28 (6-8 ft. bgs)	
BH29 (10-12 ft. bgs)	
BH30 (8-12 ft. bgs)	
BH31 (8-10 ft. bgs)	
BH34 (6-8 ft. bgs)	
BH37 (0-4 ft. bgs)	
BH38 (6-8 ft. bgs)	
BH40 (8-10 ft. bgs)	
BH41 (4-8 ft. bgs)	
BH42 (2-4 ft. bgs)	VOCs (STARS List), SVOCs (STARS List)
BH43 (2-4 ft. bgs)	
BH44 (2-4 ft. bgs)	
BH45 (4-6 ft. bgs)	
BH46 (8-10 ft. bgs)	
BH47 (2-4 ft. bgs)	
BH48 (4-6 ft. bgs)	
BH50 (4-6 ft. bgs)	
BH51 (2-4 ft. bgs)	
BH52 (0-4 ft. bgs)	
BH53 (4-6 ft. bgs)	
BH54 (4-8 ft. bgs)	
BH55 (4-8 ft. bgs)	
BH56 (8-10 ft. bgs)	
BH58 (0-4 ft. bgs)	
BH59 (8-10 ft. bgs)	
BH60 (8-10 ft. bgs)	
BH61 (0-2 ft. bgs)	
BH62 (4-8 ft. bgs)	
BH63 (4-8 ft. bgs)	
BH64 (4-8 ft. bgs)	
BH65 (2-4 ft. bgs)	
BH66 (4-8 ft. bgs)	
	() has = fact helpy around surface

ft. bgs = feet below ground surface VOCs (STARS List+ 10 TICs) = Spill Technology and Remediation Series volatile organic compounds + 10 Tentatively Identified Compounds via USEPA Test Method 8260 SVOCs (STARS List + 20 TICs) = Spill Technology and Remediation Series semi-volatile organic compounds + 20 Tentatively Identified Compound via USEPA Test Method 8270

Mr. Eric Warren – Page 4 September 17, 2010

Results of Field Investigation

Sixty-six boreholes (BH1 through BH35 and BH37 through BH66) were completed in accessible areas of the subject property proximate to the environmental concerns. Test boring BH36 was not completed due to its proximity to two natural gas utility lines. (See Figure 2.) A total of 301 soil samples were collected for geologic description. Fill material consisting of asphalt, brick, gravel, clay, sand and silt was noted within all of the test borings with the exception of BH26, BH31, BH40 through BH42, BH52, BH55, BH57, BH62 and BH66 to a maximum depth of approximately eight ft. bgs. Generally, the native soils encountered consisted of varying mixtures of gravel, sand, silt and clay to the bottom of the test borings. Apparent groundwater was encountered in BH1, BH4, BH7, BH12, BH18, BH20, BH25, BH29 through BH34, BH37, BH56 and BH58 between approximately four and 12 ft. bgs. Equipment refusal was encountered within test boring BH7, BH49, BH61 and BH65 between approximately two and eight ft. bgs. The cause of the equipment refusal could not be determined; however, is suspected to be due to urban fill materials on-site.

PID measurements were above total ambient air background VOC measurements (i.e., 0.0 parts per million, ppm) in 280 of the 301 soil samples collected. These elevated concentrations ranged from 0.1 parts per million (ppm) to 1,897 ppm (BH11, ~2-4 ft. bgs). Petroleum-type odors were detected in soil samples collected from test borings BH1, BH12, BH12, BH15, BH18, BH19, BH23 through BH29, BH31, BH37, BH38, BH41, BH45, BH51 through BH56, and BH58 through BH63 between approximately the ground surface and 16 ft. bgs. Petroleum-type staining was observed in soil samples collected from test borings BH38, BH41, BH53, BH62 and BH63 between approximately two and eight ft. bgs. In LCS' experience, the PID measurements and field observations (i.e., odors/staining) suggest petroleum-type impact located west, south and east of the subject structure.

Refer to the attached subsurface logs for soil classification for each sample interval, field observations and PID measurements.

Investigation Analytical Results

The soil samples collected and analyzed detected the following analytes. The respective concentrations as well as applicable regulatory guidance values are also listed for comparison. Analytes not detected are not shown.

Sample ID	BH1	BH10	BH11	BH13	BH15	BH18	BH19	BH21	BH23	BH24	BH25	TAGM	Part 375
Date Sampled	3/31/10	3/31/10	3/31/10	3/31/10	4/1/10	4/1/10	4/1/10	4/1/10	4/1/10	4/1/10	4/1/10	Recommended Soil	(Unrestricted) Soil
Sample Depth	8-10 ft. bgs	0-2 ft. bgs	4-8 ft. bgs	4-8 ft. bgs	0-2 ft. bgs	0-4 ft. bgs	2-4 ft. bgs	6-8 ft. bgs	6-8 ft. bgs	2-4 ft. bgs	0-4 ft. bgs	Cleanup Objectives	Cleanup Objectives
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg	ng/kg	ng/kg	ug/kg	ng/kg
Benzene	<34	10.1	6009	<22	<1,700	750	2,000	1,200	<41,000	<1,900	<740	80	60
[oluene	<34	19	<2,100	<22	<1,700	400 J	r 002	<410	<41,000	<1,900	<740	1.500	200
Ethylbenzene	<34	140	2.000 J	22	<1,700	960	5,300	2,200	<41,000	<1,900	<740	5,500	1,000
m.pXvlene	<34	68	4,900	110	<1,700	1,500	3,200	1,900	<41,000	<1,900	<740	1.200*	260*
o-Xylene	<34	L 7	1,000 J	27	<1,700	400 J	<780	200 J	<41,000	<1,900	<740	1,200*	260*
sopropylbenzene	<34	92	<2,100	<22	<1,700	4,900	3,000	400 J	<41,000	<1,900	<740	2,300	NL
n-Propvibenzene	\$34	230	2,000 J	22	<1,700	3,300	2.400	300 J	<41,000	2,000 J	400 J	3,700	3,900
.3.5-Trimethylbenzene	<34	360	3,500	69	<1,700	2,900	3,300	200 J	<41,000	L 006	<740	3,300	8,400
.2.4-Trimethylbenzene	<34	450	12,000	240	<1,700	2,600	1,200	630	<41,000	1,000 J	L 007	10,000	3,600
tert-Butyl Benzene	34	<18	<2,100	<22	<1.700	<750	<780	<410	<41,000	<1,900	<740	10,000	11,000
sec-Butylbenzene	<34	50	<2,100	<22	<1,700	600 J	L 007	<410	<41,000	<1,900	<740	10,000	5,900
4-Isopropyltoluene	<34	51	<2,100	<22	<1,700	500 J	500 J	<410	<41,000	<1,900	<740	10,000	NL
n-Butylbenzene	<34	130	1,000 J	<22	<1,700	1,500	1,400	<410	<41,000	L 000.1	<740	10,000	12.000
Nanhthalene	<34	210	2 900	36	0 300	2 800	3 200	580	<41 000	2 100	020	13 000	12 000

0078	õ	N-846 Method 8260	USEPA SW-846 Method 8260	A SVV-040 INICUTO

Sample ID	BH26	BH27	BH28	BH29	BH30	BH31	BH34	BH37	BH38	BH40	BH41	BH42	TAGM	Part 375
Date Sampled	4/1/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	Recommended Soil	(Unrestricted) Soil
Sample Depth	8-10 ft. bgs	8-10 ft. bgs	6-8 ft. bgs	10-12 ft. bgs	8-12 ft. bgs	8-10 ft. bgs	6-8 ft. bgs	0-4 ft. bgs	6-8 ft. bgs	8-10 ft. bgs	4-8 ft. bgs	2-4 ft. bgs	Cleanup Objectives	Cleanup Objectives
Units	uq/kg	uq/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg	ng/kg	ng/kg	ug/kg	ug/kg	ng/kg	ug/kg	ug/kg
Benzene	<710	<1.800	<1,800	<36,000	<750	<770	<700	<1,700	<860	<780	<1,900	<390	80	60
Toluene	<710	<1.800	<1,800	<36,000	<750	<770	<700	<1,700	<860	<780	<1,900	<390	1,500	700
Ethvlbenzene	<710	2.000 J	<1.800	<36,000	<750	<770	<700	3,700	<860	<780	<1,900	<390	5,500	1.000
m.pXvlene	<710	2.400	<1,800	<36,000	<750	1,300	<700	4,700	<860	<780	<1,900	<390	1.200*	260*
o-Xvlene	<710	<1,800	<1,800	<36,000	<750	<770	<700	<1.700	<860	<780	<1,900	<390	1,200*	260*
Isopropylbenzene	<710	<1.800	<1,800	<36.000	<750	<770	<700	1.000 J	<860	<780	<1,900	<390	2,300	NL
n-Propvlbenzene	<710	2.000 J	1.000 J	<36.000	<750	<770	400 J	1.800	<860	<780	1,000 J	<390	3,700	3,900
1.3.5-Trimethvlbenzene	<710	2,400	<1,800	<36,000	<750	400 J	<700	3.000	<860	<780	<1,900	<390	3,300	8,400
1.2.4-Trimethylbenzene	<710	4,600	<1,800	<36,000	<750	1,200	<700	13,000	<860	<780	1.900	<390	10,000	3,600
sec-Butvibenzene	<710	<1,800	<1,800	<36,000	<750	<770	<700	<1,700	<860	<780	<1,900	<390	10,000	11,000
tert-Butvi Benzene	<710	<1,800	<1,800	<36,000	<750	<770	<700	<1.700	<860	<780	<1,900	<390	10,000	5,900
4-Isopropyltoluene	<710	<1.800	<1,800	<36,000	<750	<770	<700	<1,700	<860	<780	<1,900	<390	10,000	NL
n-Butylbenzene	<710	<1,800	<1,800	<36,000	<750	<770	<700	<1,700	<860	<780	<1,900	<390	10,000	12,000
Naphthalene	<710	1,000 J	3.100	<36.000	<750	<770	<700	4,500	<860	<780	<1,900	1.800	13,000	12,000

ughq = micrograms per kilogram ughq = micrograms per kilogram the pase lefe tobew ground surface = Based on the sum of the Tatal Xytenes. = Analyte detected below quantitation limits STARS = Sulf Technologra and Randum Astrative Guidance Memorandum (TAGM Recommended Soli Cleanup Objectives and Cleanup Cupicatives and Landum Astratis. 2001) Underlinder Analyte that is detected above the Part 375 (Unrestricted) Soli Cleanup Cupicatives.

Sample ID	BH43	BH44	BH45	BH46	BH47	BH48	BH50	BH51	BH52	BH53	BH54	BH55	TAGM	Part 375
Date Sampled	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	Recommended Soil	(Unrestricted) Soil
Sample Depth	2-4 ft. bgs	2-4 ft. bgs	4-6 ft. bgs	8-10 ft. bgs	2-4 ft. bgs	4-6 ft. bgs	4-6 ft. bgs	2-4 ft. bgs	0-4 ft. bgs	4-6 ft. bgs	4-8 ft. bgs	4-8 ft. bgs	Cleanup Objectives	Cleanup Objectives
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg	ug/kg
Benzene	<3.5	<370	<4,700	<2.200	3.6	<370	<330	64	<3,400	7,500	14,000	<1,800	80	60
Toluene	<3.5	<370	<4,700	<2,200	<3.6	<370	<330	<36	<3.400	<3.800	43,000	<1,800	1.500	200
Ethylbenzene	<3.5	<370	<4,700	<2.200	<3.6	<370	<330	280	<3,400	32,000	52,000	5,100	5,500	1.000
m,p,-Xylene	<3.5	<370	<4.700	<2,200	<3.6	<370	<330	110	44,000	58,000	170,000	<1,800	1,200*	260*
o-Xylene	<3.5	<370	<4,700	<2,200	<3.6	<370	<330	45	<3,400	13,000	66,000	<1,800	1.200*	260*
Isopropylbenzene	<3.5	<370	7,100	<2.200	<3.6	<370	<330	200	<3,400	21,000	41,000	5,100	2,300	NL
n-Propylbenzene	<3.5	<370	7,600	<2,200	<3.6	<370	<330	200	<3,400	20,000	39,000	6,900	3.700	3,900
1.3.5-Trimethylbenzene	<3.5	<370	<4,700	<2,200	<3.6	<370	<330	120	16,000	20,000	51,000	<1,800	3,300	8,400
1,2,4-Trimethylbenzene	<3.5	<370	<4,700	<2,200	<3.6	<370	<330	130	43,000	70,000	150,000	<1,800	10,000	3,600
sec-Butylbenzene	<3.5	<370	<4.700	<2,200	<3.6	<370	<330	<36	<3,400	<3,800	<9,200	<1.800	10.000	11,000
tert-Butyl Benzene	<3.5	<370	<4.700	<2,200	<3.6	<370	<330	<36	<3,400	<3,800	<9.200	<1,800	10.000	5,900
4-Isopropyltoluene	<3.5	<370	<4,700	<2.200	<3.6	<370	<330	<36	<3,400	<3.800	<9.200	<1,800	10,000	NL
n-Butylbenzene	<3.5	<370	6,000	<2,200	<3.6	<370	<330	56	<3,400	11,000	10,000	4,600	10,000	12,000
Naphthalene	18	<370	<4.700	<2.200	<3.6	<370	<330	92	<3.400	8.400	<9.200	<1.800	13.000	12.000

VOCs by USEPA SW-846 Method 8260 (STARS List)

Sample ID	BH56	BH58	BH59	BH60	BH61	BH62	BH63	BH64	BH65	BH66	TAGM	Part 375
Date Sampled	7/27/10	7/27/10	7/27/10	7/27/10	7/27/10	7/27/10	7/27/10	7/27/10	7/27/10	7/27/10	Recommended Soil	(Unrestricted) Soil
Sample Depth	8-10 ft. bgs	0-4 ft. bgs	8-10 ft. bgs	8-10 ft. bgs	0-2 ft. bgs	4-8 ft. bgs	4-8 ft. bgs	4-8 ft. bgs	2-4 ft. bgs	6-8 ft. bgs	Cleanup Objectives	Cleanup Objectives
Units	ng/kg	ng/kg	ug/kg	ug/kg	ng/kg	ng/kg	ug/kg	ng/kg	ug/kg	ug/kg	ug/kg	ng/kg
Benzene	<40	<7,400	<3,700	<35	<3.300	<400	<410	<49	<340	<36	80	60
Toluene	<40	<7,400	<3,700	<35	<3.300	<400	510	<49	<340	<36	1,500	200
Ethylbenzene	<40	<7,400	<3,700	<35	<3,300	<400	<410	<49	<340	<36	5,500	1,000
m.pXylene	60	12,000	<3,700	<35	<3,300	<400	710	<49	<340	<36	1,200*	260*
o-Xylene	49	13,000	<3,700	<35	<3,300	<400	530	<49	<340	<36	1,200*	260*
Isopropylbenzene	71	7,600	<3.700	35	<3,300	970	2,200	<49	<340	<36	2,300	NL
n-Propylbenzene	73	<7,400	<3,700	<35	<3,300	1,100	5,100	<49	<340	<36	3.700	3,900
1.3.5-Trimethylbenzene	130	170,000	<3.700	<35	<3,300	<400	610	<49	<340	<36	3,300	8,400
1,2,4-Trimethylbenzene	220	38,000	<3.700	<35	<3,300	<400	570	<49	<340	<36	10,000	3,600
sec- Butylbenzene	45	<7,400	<3,700	<35	<3,300	1,200	2,100	<49	<340	<36	10,000	11,000
tert-Butyl Benzene	<40	<7,400	<3,700	<35	<3,300	<400	<410	<49	<340	<36	10,000	5,900
4-Isopropyltoluene	50	<7,400	<3,700	<35	<3,300	<400	<410	<49	<340	<36	10,000	NL
n-Butylbenzene	58	<7,400	<3,700	<35	<3,300	1,600	4,500	<49	<340	<36	10,000	12,000
Naphthalene	<40	15,000	<3.700	<35	3,800	<400	<410	620	<340	<36	13,000	12,000

ugRq = micrograms per kilogram ugRq = micrograms per kilogram the set eleterolow ground eurideo = Based on the sum of the Total Xytemes. = Analyte detected below quantitation limits STARS = Suill Technoloy and Remediation Series STARS = Suill Technoloy and Remediation Series STARS = Suill Technoloy and Remediation Series TAGM Recommended Soil Cleanup Objectives and Cleanup Covels and addimdum (TAGM 4445): Determination of Soil Cleanup Objectives and Cleanup Covels and Addiments = Analyte that is detected above the Part 375 (Unrestricted) Soil Cleanup Objectives.

Sample ID	BH1	BH10	BH11	BH13	BH15	BH18	BH19	BH21	BH23	BH24	BH25	TAGM	Part 375
Date Sampled	3/31/10	3/31/10	3/31/10	3/31/10	4/1/10	4/1/10	4/1/10	4/1/10	4/1/10	4/1/10	4/1/10	Recommended Soil	(Unrestricted) Soil
Sample Depth	8-10 ft. bgs	8-10 ft. bgs 0-2 ft. bgs	4-8 ft. bgs	4-8 ft. bgs	0-2 ft. bgs	0-4 ft. bgs	2-4 ft. bgs	6-8 ft. bgs	6-8 ft. bgs	2-4 ft. bgs	0-4 ft. bgs	Cleanup Objectives	Cleanup Objectives
Units	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg	ug/kg	ng/kg	ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Acenaphthene	<3.700	<40,000	<460	<4.900	<37,000	<41.000	<43.000	<450	<460	<42.000	<810	50,000*	20,000
Fluorene	<3.700	<40.000	200 J	<4.900	<37,000	<41.000	8,000 J	<450	<460	L 000,8	<810	50°000*	30,000
Phenanthrene	<3.700	<40,000	630	<4.900	10,000 J	20,000 J	30,000 J	<450	870	40.000 J	5,000	50,000*	100,000
Anthracene	<3.700	<40,000	100 J	<4.900	<37,000	<41,000	F 000'6	<450	<460	10,000 J	<810	50,000*	100,000
Fluoanthene	<3.700	<40.000	730	<4.900	5,000 J	8,000 J	40,000 J	<450	100 J	40,000 J	890	50,000*	100,000
Pyrene	<3.700	<40.000	550	<4,900	6,000 J	L 000.8	C 000,05	<450	100 J	30,000 J	860	50,000*	100,000
Benzo(a)anthracene	<3.700	<40,000	1 T 00E	<4.900	<37,000	5,000 J	20,000 J	<450	<460	20,000 J	300 J	224 or MDL	1.000
Chrysene	<3,700	<40.000	300 J	<4,900	<37,000	6,000,3	20,000 J	<450	<460	10,000 J	300 J	400	1.000
Benzo(b)fluoranthene	<3.700	<40,000	300 J	<4.900	<37,000	<41.000	10,000 J	<450	<460	8,000 J	<810	220 or MDL	1.000
Benzo(k)fluoranthene	<3.700	4.000 J	300 J	<4.900	<37,000	C 000'2	10,000 J	<450	<460	10,000 J	<810	220 or MDL	800
Benzo(a)pvrene	F 008	4,000 J	200 J	<4,900	<37,000	5,000 J	20,000 J	1,900	<460	10,000 J	<810	61 or MDL	1.000
Indeno(1,2,3-cd)pyrene	<3.700	4,000 J	<460	<4,900	<37,000	<41.000	<43,000	<450	<460	<42,000	<810	3,200	500
Benzola h iheadene	<3 700	5 000 1	<abd< td=""><td><1 000</td><td>~27 000</td><td>11 000</td><td>10001</td><td>~15U</td><td>~ABD</td><td>C000 CV></td><td><810</td><td>\$0 000 ¥</td><td>100 000</td></abd<>	<1 000	~27 000	11 000	10001	~15U	~ABD	C000 CV>	<810	\$0 000 ¥	100 000

	L
list)	ł
RSS	
(STARS	
8270	ŀ
Method	
Me	
SW-846	ŀ
USEPA	
à	ł
'OCs	

SVOCs by USEPA SW-846 Method 8270 (STARS list)

		20100	0,100	00110	0000		Dinamore a	2010	0010	0000	1110	CYNO	TAGW	Dont 275
Sample ID	BHZB	BH2/	BH28	BHZY	BHSU	DH31	1224	1000	0200	0400	1700	7400	WOXI	Lairoid
Date Sampled	4/1/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	4/2/10	Recommended Soil	(Unrestricted) Soil
Sample Depth	8-10 ft. bqs		8-10 ft. bqs 6-8 ft. bqs	10-12 ft. bgs	8-12 ft. bgs	8-10 ft. bgs	6-8 ft. bgs	0-4 ft. bgs	6-8 ft. bgs	8-10 ft. bgs	4-8 ft. bgs	2-4 ft. bgs	Cleanup Objectives	Cleanup Objectives
Units	uq/ka	uq/ka	uq/ka	uq/ka	uq/kq	ug/kg	ug/kg	ug/kg	ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Acenaphthene	<390	<400	<3,900	<390	<410	L 009	<380	<3,600	<4,700	<4,300	<41.000	200,000 J	50,000*	20,000
Fluorene	<390	<400	<3.900	<390	<410	C 008	<380	<3,600	<4,700	<4,300	L 000,7	200,000 J	50,000*	30,000
Phenanthrene	60 J	<400	14.000	L 07	1 300 J	9.400	60 J	L 000.1	f 009	L 000,01	30,000 J	1,900,000	50,000*	100,000
Anthracene	<390	F 06	<3.900	<390	<410	2,000 J	C 02	<3,600	<4.700	<4.300	20,000 J	660,000	50,000*	100,000
Fluoanthene	<390	40 J	<3.900	<390	300 J	12.000	<380	L 007	3,000 J	10.000 J	91,000	2.600.000	50,000*	100,000
Pvrene	<390	<400	3,000 J	<390	200 J	10.000	<380	L 000.1	2,000 J	L 000.01	84,000	2,200,000	50.000*	100,000
Benzo(a)anthracene	<390	<400	<3.900	<390	100 J	5,400	<380	<3,600	3,000 J	<4.300	53,000	1,100,000	224 or MDL	1,000
Chrysene	<390	<400	<3.900	<390	L 001	5,100	<380	<3,600	3,000 J	<4.300	72,000	1,300,000	400	1,000
Benzo(b)fluoranthene	<390	<400	<3.900	<390	۲ O6	4,000 J	<380	<3,600	3,000 J	<4.300	98,000	970,000	220 or MDL	1.000
Benzo(k)fluoranthene	<390	<400	<3.900	<390	۲ O6	3,000 J	<380	<3,600	2,000 J	<4.300	95,000	1,900,000	220 or MDL	800
Benzo(a)pyrene	<390	<400	<3,900	<390	100 J	5,000	<380	<3,600	2,000 J	<4.300	120,000	1,800,000	61 or MDL	1.000
Indeno(1,2,3-cd)pyrene	<390	<400	<3.900	<390	<410	3,000 J	<380	<3,600	2,000 J	<4.300	81,000	1,000,000	3,200	500
Benzo(a,h,i)pervlene	<390	<400	<3,900	<390	<410	4,000 J	<380	<3,600	2.000 J	<4.300	100,000	1,200,000	50.000*	100.000

Ugikg = micrograms per kliogram
Ugikg = micrograms per kliogram
J = Analytic detected below quantitation limits
J = Analytic detected below quantitation limits
TABR = Soil Technology and Romadation Series
Tables SVOCs must be 5 50,000 ugikg
TAGM Recommended Soil Technology and Romadation Series
TAGM Recommended Soil Technology and Romadation Series
TAGM Recommended Soil Cleanup Objectives and Catevaria Administration (August, 2001)
B = This analyte was also detected within the laboratory's method blank and may be the restoring contamination.
Underlined = Analyte that is detected above the Part 375 (Unrestoricid) Soil Cleanup Objectives.

Sample ID	BH43	BH44	BH45	BH46	BH47	BH48	BH50	BH51	BH52	BH53	BH54	BH55	TAGM	Part 375
Date Sampled	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	7/26/10	Recommended Soil	(Unrestricted) Soil
Sample Depth	2-4 ft. bgs	2-4 ft. bgs	2-4 ft. bgs 4-6 ft. bgs	8-10 ft. bgs	2-4 ft. bgs	4-6 ft. bgs	4-6 ft. bgs	2-4 ft. bgs	0-4 ft. bgs	4-6 ft. bgs	4-8 ft. bgs	4-8 ft. bgs	Cleanup Objectives	Cleanup Objectives
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg	ug/kg	ug/kg	ug/kg	ng/kg	ng/kg	ug/kg	ug/kg	ug/kg
Acenaphthene	<3,800	<4.100	<5.100	<480	<4,000	<4.100	<3,700	<400	<3,700	<420	<5,100	<3,900	50,000 ⁺	20,000
Fluorene	<3,800	<4,100	<5,100	<480	<4,000	<4,100	<3,700	<400	<3.700	<420	<5,100	<3,900	50,000*	30,000
Phenanthrene	<3,800	5,200	16.000	<480	<4,000	8,000	<3,700	<400	15,000	1,400	<5,100	5,900	50,000*	100,000
Anthracene	<3,800	<4.100	<5,100	<480	<4,000	<4.100	<3,700	<400	<3,700	<420	<5,100	<3,900	50,000*	100,000
Fluoanthene	<3.800	6,100	16.000	<480	5,100	7,400	<3,700	<400	17.000	<420	<5,100	<3,900	50,000*	100,000
Pyrene	<3,800	5,900	15.000	<480	4,900	6,300	<3.700	<400	16,000	<420	<5,100	<3,900	50,000*	100,000
Benzo(a)anthracene	<3,800	<4,100	6,000	<480	<4,000	<4.100	<3,700	<400	8,300	<420	<5.100	<3,900	224 or MDL	1.000
Chrysene	<3,800	<4.100	6,800	<480	<4,000	<4,100	<3,700	<400	7,300	<420	<5,100	<3,900	400	1,000
Benzo(b)fluoranthene	<3.800	<4,100	<5,100	<480	<4.000	<4,100	<3,700	<400	6,300	<420	<5,100	<3,900	220 or MDL	1,000
Benzo(k)fluoranthene	<3,800	<4,100	7,700	<480	<4,000	<4.100	<3.700	<400	6,200	<420	<5,100	<3,900	220 or MDL	800
Benzo(a)pyrene	<3.800	<4.100	5,700	<480	<4,000	<4,100	<3,700	<400	6,300	<420	<5,100	<3,900	61 or MDL	1,000
Indeno(1,2,3-cd)pyrene	<3,800	<4,100	<5,100	<480	<4,000	<4,100	<3,700	<400	<3,700	<420	<5,100	<3,900	3,200	500
Benzo(a h i)pervlene	<3.800	<4.100	<5.100	<480	<4.000	<4.100	<3 700	<400	<3 700	<420	<5 100	<3 900	50.000*	100.000

Sample ID	BH56	BH58	BH59	BH60	BH61	BH62	BH63	BH64	BH65	BH66	TAGM	Part 375
Date Sampled	7/27/10	7/27/10	7/27/10	7/27/10	7/27/10	7/27/10	7/27/10	7/27/10	7/27/10	7/27/10	Recommended Soil	(Unrestricted) Soil
Sample Depth	8-10 ft. bgs	0-4 ft. bgs	8-10 ft. bgs	8-10 ft. bgs	0-2 ft. bgs	4-8 ft. bgs	4-8 ft. bgs	4-8 ft. bgs	2-4 ft. bgs	6-8 ft. bgs	Cleanup Objectives	Cleanup Objectives
Jnits	uq/ka	uq/kq	ng/ke	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg	ng/kg	ng/kg	ug/kg	ug/kg
Acenaphthene	<440	<4,100	<410	<380	<3,700	<4,400	<4,500	<5,400	<3,800	<4,000	50.000*	20,000
Fluorene	<440	<4,100	<410	<380	<3,700	4,600	<4,500	<5,400	<3,800	<4.000	50.000*	30,000
Phenanthrene	<440	13.000	<410	<380	<3,700	13,000	16,000	6,800	<3,800	<4,000	50,000*	100,000
Anthracene	<440	<4.100	<410	<380	<3.700	<4,400	<4,500	<5,400	<3,800	<4,000	50,000*	100,000
Fluoanthene	<440	<4.100	<410	<380	<3,700	5,200	20,000	7,900	<3,800	<4,000	50,000*	100,000
Pyrene	<440	<4.100	<410	<380	<3,700	4,900	17,000	7,100	<3.800	<4,000	50,000*	100,000
Benzo(a)anthracene	<440	<4,100	<410	<380	<3.700	<4,400	9,000	<5,400	<3,800	<4,000	224 or MDL	1,000
Chrysene	<440	<4,100	<410	<380	<3,700	<4,400	8,500	<5,400	<3,800	<4,000	400	1,000
Benzo(b)fluoranthene	<440	<4.100	<410	<380	<3,700	<4,400	7,400	<5,400	<3,800	<4,000	220 or MDL	1,000
Benzo(k)fluoranthene	<440	<4.100	<410	<380	<3.700	<4,400	2,900	<5,400	<3,800	<4,000	220 or MDL	800
Benzo(a)pvrene	<440	<4,100	<410	<380	<3,700	<4,400	8,200	<5,400	<3,800	<4,000	61 or MDL	1,000
Indeno(1,2,3-cd)pyrene	<440	<4.100	<410	<380	<3.700	<4,400	<4,500	<5,400	<3,800	<4,000	3.200	500
Renzola h ihrendene	<440	<4.100	<410	<380	<3.700	<4.400	<4.500	<5,400	<3.800	<4.000	50.000*	100,000

upide a microgram upide a microgram 1, bgs = feet below grand surface 1 = Analyte detected below grand surface 1 = Analyte detected below grand stratectoring STARS = Solin Technology and internation finals TAGM Recommended Sol Cleanup Dispetives = Division Technical and Administrative Guidance Windowndum (TAGM 448): Detected within the laboratory's method bank and Administratives Guidance Windowndum (TAGM 448): Detected within the laboratory's method bank and Administratives (1 aboratory contamination of the analyte that is detected above the PAT 375 (Ummethod Sol Cleanup Objectives. B = This analyte that is detected above the PAT 375 (Ummethod Sol Cleanup Objectives.

Mr. Eric Warren - Page 9 September 17, 2010

Conclusions

The purpose of this intrusive study was to better assess the environmental quality of on-site soils in accessible locations of the subject property proximate to the historic pump islands and the current and historic USTs. All test boring locations and soil sampling was completed at the direction of the New York State Department of Environmental Conservation (NYSDEC) and/or their contractors.

The following tables summarize the field observations and the laboratory results.

Sample ID	Depth of Refusal ft. bgs	Depth of Groundwater ft. bgs	Highest PID Reading		Petroleum- Type Odors	Petroleum- Type Staining	Free Product	Analytes Detected Above Regulatory Criteria
			ppm	ft. bgs	ft. bgs	ft. bgs	ft. bgs	
BH1	None	12	1,541	8-10	8-10	None	None	Yes
BH2	None	None	1.7	0-4	None	None	None	NA
BH3	None	None	0.4	0-2	None	None	None	NA
BH4	None	8	None	None	None	None	None	NA
BH5	None	None	0.6	2-4	None	None	None	NA
BH6	None	None	3.5	0-4	None	None	None	NA
BH7	8	4	2.9	2-4	None	None	None	NA
BH8	None	None	1.8	0-4	None	None	None	NA
BH9	None	None	3.2	0-2	None	None	None	NA
BH10	None	None	35.1	0-2	None	None	None	Yes
BH11	None	None	1,897	4-8	1-11	None	None	Yes
BH12	None	8	583	8-12	3-4	None	None	NA
BH13	None	None	13.2	4-8	None	None	None	No**
BH14	None	None	1.5	8-10	None	None	None	NA
BH15	None	None	52.3	0.4-2	0-5	None	None	No**
BH16	None	None	2.7	10-12	None	None	None	NA
BH17	None	None	1.8	2-4	None	None	None	NA
BH18	None	8	527	0.4-4	3-10	None	None	Yes
BH19	None	None	923	2-4	1-10	None	None	Yes
BH20	None	9	2.8	8-10	None	None	None	NA
BH21	None	None	21.3	6-8	None	None	None	Yes
BH22	None	None	6.8	6-8	None	None	None	NA
BH23	None	None	303	6-8	3-8	None	None	No**
BH24	None	None	616	2-4	3-5.5	None	None	No**
BH25	None	8	157	0.4-4	0-10	None	None	Yes
BH26	None	None	175	8-10	8-10	None	None	No
BH27	None	None	998	8-10	2-12	None	None	Yes
BH28	None	None	523	6-8	1-8	None	None	No**
BH29	None	8	>999	10-12	8-12	None	None	No**
BH30	None	11	26	8-12	None	None	None	Yes
BH31	None	8	663	8-10	8-11	None	None	Yes
BH32	None	9	6	4-8	None	None	None	NA
BH33	None	10	3	0.4-12	None	None	None	NA
BH34	None	8	22.5	6-8	None	None	None	No
BH35	None	None	5	4-8	None	None	None	NA
BH36	*	*	*	*	*	*	*	*
BH37	None	10	>999	0.4-8, 12-16	0.4-16	None	None	Yes
BH38	None	None	>999	4-8	6-8	6-8	None	Yes
BH39	None	None	8	0-4	None	None	None	No**
BH40	None	None	27	0-4	None	None	None	No**
BH41	None	None	392	4-8	4-8	4-8	None	Yes
BH42	None	None	10	2-4	None	None	None	Yes

NA = not analyzed * = test boring was not completed due to proximity to natural gas utility lines ** = elevated laboratory method detection limit

Mr. Eric Warren – Page 10 September 17, 2010

Sample ID	Depth of Refusal ft. bgs	Depth of Groundwater ft. bgs	Highest PID Reading		Petroleum- Type Odors	Petroleum- Type Staining	Free Product	Analytes Detected Above Regulatory Criteria
			ppm	ft. bgs	ft. bgs	ft. bgs	ft. bgs	Above Regulatory official
BH43	None	None	6	2-4	None	None	None	No**
BH44	None	None	40	2-4	None	None	None	No**
BH45	None	None	810	4-6	4-7	None	None	Yes
BH46	None	None	172	8-10	None	None	None	No**
BH47	None	None	6	2-4	None	None	None	No**
BH48	None	None	2	0-8, 10-12	None	None	None	No**
BH49	4	None	1	0-4	None	None	None	NA
BH50	None	None	1	0-6	None	None	None	No**
BH51	None	None	339	2-4	2-8	None	None	No
BH52	None	None	>999	0-4	0-8	None	None	Yes
BH53	None	None	>999	0-8	2-10	2-8	None	Yes
BH54	None	None	>999	2-8	2-8	None	None	Yes
BH55	None	None	668	4-8	4-10	None	None	No**
BH56	None	12	>999	8-10	8-12	None	None	No
BH57	NR	NR	NR	NR	NR	NR	NR	NR
BH58	None	8	>999	0-4	1-10	None	None	Yes
BH59	None	None	448	8-10	1-10	None	None	No**
BH60	None	None	336	8-10	8-12	None	None	No
BH61	2	None	672	0-2	0.4-2	None	None	No**
BH62	None	None	>999	0-2, 4-8	4-8	4-8	None	No**
BH63	None	None	>999	4-8	4-8	4-8	None	Yes
BH64	None	None	9	0-2	None	None	None	No**
BH65	7	None	25	2-4	None	None	None	No**
BH66	None	None	2	4-12	None	None	None	No**

NA = not analyzed NR = no recovery

* = test boring was not completed due to proximity to natural gas utility lines

** = elevated laboratory method detection limit

Based on the analytical results, analytes were detected at concentrations above TAGM Recommended Soil Cleanup Objectives and Part 375 (Unrestricted) Soil Cleanup Objectives in soil samples collected from west, south and east of the subject structure. Analytes were not detected at concentrations above TAGM Recommended Soil Cleanup Objectives or Part 375 (Unrestricted) Soil Cleanup Objectives in soil samples collected from test borings BH15, BH23, BH28, BH29, BH40, BH46, BH55, BH59, BH61 and BH62. Based on the field observations (i.e. elevated PID readings, odors, staining) analytes may be present in soil samples collected from those test borings; however, were not detected due to elevated laboratory method detection limits.

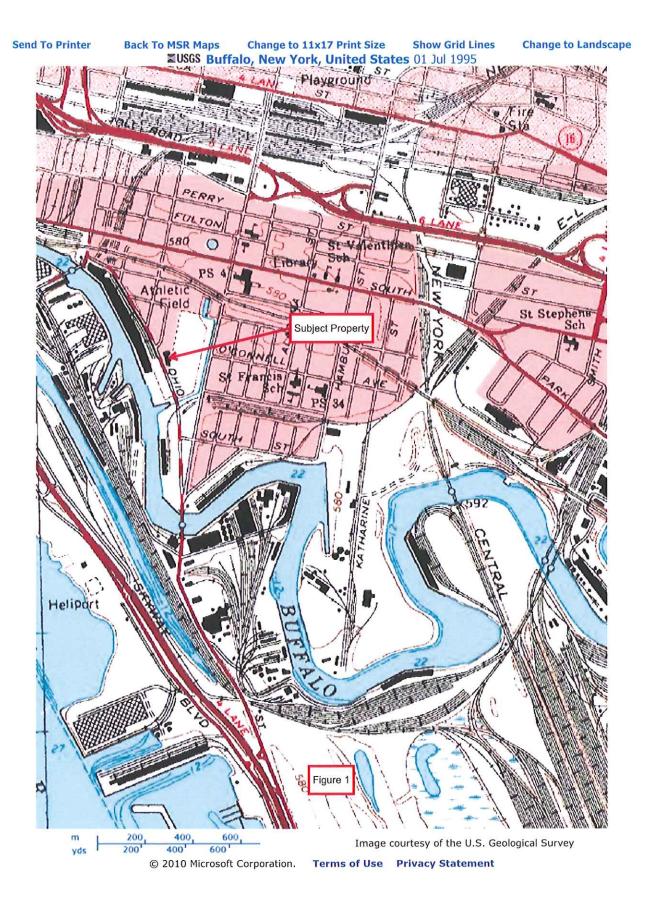
Recommendations

Contaminated soil and groundwater (if any) should be remediated in accordance with the requirements of the NYSDEC. Similarly, non compliant UST systems should be properly abandoned (i.e., closed-in-place or excavated and removed).

Thank you for allowing LCS to service your environmental needs. If you have any questions or require additional information, please do not hesitate to call our office.

Sincerely,

Adam Zelson


Adam Zebrowski Environmental Analyst

Reviewed by:

Danf B.C

Douglas B. Reid Sr. VP, Environmental Services Sr. Environmental Scientist

SITE LOCATION MAP

SUBSURFACE INVESTIGATION MAP

