716.836.4506 tel 716.834.8785 fax

October 4, 2013

Mr. Glenn May New York State Department of Environmental Conservation Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Subject: Soil Vapor Intrusion Evaluation – Supplemental Soil and Groundwater Data Report Former Scott Aviation Facility Area 1 BCP Site NYSDEC Site Code No. C915233, Lancaster, New York

Dear Mr. May:

On behalf of Tyco International (Tyco), AECOM Technical Services, Inc. (AECOM) is pleased to provide you with this letter-report summarizing the results of the groundwater and soil sampling program that was recently completed at the Brownfield Cleanup Program's (BCP) Former Scott Aviation Facility Area 1 Site (the Site). The Site is identified as New York State Department of Environmental Conservation (NYSDEC) Site Code No. C915233 and is located west of AVOX Systems Inc. (AVOX) Plant 1 in Lancaster, New York.

The groundwater and soil investigation was completed along the northwestern edge of the AVOX property, adjacent to the residence at 205 Erie Street, which is located hydraulically downgradient of the Site's presumed volatile organic compound (VOC) groundwater plume. This work was conducted in an effort to collect additional data to supplement the results of the July 2013 limited-scope evaluation of the potential for soil vapor intrusion (SVI).

This letter-report discusses the project intent, field methodology, field and analytical results, findings, and conclusions.

Background

The Site is characterized by a groundwater plume that is presumably impacted by chlorinated VOCs (CVOCs), which led to the July 2013 evaluation of the potential for SVI. The purpose of the SVI evaluation was to assess whether soil vapor in the vicinity of the residence at 205 Erie Street contained CVOCs at concentrations sufficiently elevated to represent a potential indoor air quality issue for the nearby buildings (house and garage/shop). Freon-12 (SVI-3R) and TCE (SVI-1) were the only chlorinated Constituents of Potential Concern (COPCs) reported in soil vapor during the July 2013 SVI investigation, and the TCE detection specifically resulted in NYSDEC's request that sub-slab vapor and indoor air sampling be conducted at the residence.

For the purposes of this letter report, AECOM will focus on the following eight site-related CVOCs that should be considered as part of an SVI analysis for the residence: 1,1,1-trichloroethane; 1,1-dichloroethane; 1,1-dichloroethane; cis-1,2-dichloroethane; trichloroethane; and vinyl chloride. These compounds, which have all been reported in Site groundwater, will be referred to as key CVOCs and will be reported as a total concentration.

The results of the July 2013 soil vapor sampling event identified TCE in SVI-1 at a fairly low concentration (6.2 μ g/m³) but it was absent in SVI-3(R), collected closest to the Site's groundwater plume. No other key CVOC was detected in either soil vapor sample. The soil at SVI-2 was so tight that no soil vapor sample could be obtained.

Based on these results, Tyco authorized collection of soil and groundwater samples in the vicinity of the SVI sample locations, to further assess the presence of TCE and the remaining key CVOCs in other nearby media. The purpose of the additional sampling was to determine whether soil and groundwater in the vicinity of the residence contained key CVOCs at concentrations sufficiently elevated to represent a potential indoor air quality issue when all available data was considered collectively.

Field Activities

On September 16, 2013, Matrix Environmental Technologies, Inc. (Matrix, Orchard Park, New York), under the direct supervision of an AECOM geologist, completed six soil borings and installed six temporary well points (a photograph log is provided as **Attachment 1**). Sampling locations are approximated on **Figure 1** and are briefly summarized in the following table:

Sample ID	Location
B-1	East of 205 Erie Street home; north of SVI-1
B-2	East of 205 Erie Street home/garage/shop; south of SVI-1
B-3	East of 205 Erie Street garage/shop; north of SVI-2
B-4	East of 205 Erie Street back yard; south of SVI-2
B-5	East of 205 Erie Street back yard; west of SVI-3
B-6	East of 205 Erie Street back yard; between SVI-3 and CB-1

Soil samples were collected during the completion of the six soil borings. Groundwater samples were collected on the next day (September 17, 2013) and on September 25, 2013, as further discussed below.

Soil Boring and Sampling Methodology

Soil borings were completed by Matrix on September 16, 2013, using direct-push techniques, to an approximate depth of 16 feet (ft) below ground surface (bgs) at location B-1 and 15 ft bgs at locations B-2 through B-6. Two-inch diameter, four-foot long Macro-Core® soil samples were continuously collected. Soil was characterized and screened both visually and with a MultiRae Model PGM-7240 photoionization detector (PID) for signs of impact (refer to **Attachment 2** – Soil Boring Logs). No signs of impacted soil were observed; therefore, a soil sample was collected from the 10.5 to 11 ft bgs interval, immediately above the interpreted water table (~11 ft bgs).

Soil samples were collected using Terra Core soil sampling techniques (methanol preservation technique for low level VOC analysis). Samples were packaged and hand delivered to TestAmerica Laboratories, Inc. (Amherst, NY) under standard chain-of-custody procedures. All samples were analyzed for TCL VOCs using USEPA Method 8260B. A Category B deliverable package was requested for the data and included the following elements: analytical report; quality assurance/quality control summary; chain of custody; method blank; laboratory control samples – control limits; reporting limits; and, surrogate recoveries for gas chromatograph/mass spectrometer analysis with control limits.

Temporary Well Installation and Groundwater Sampling Methodology

Once the desired depth was reached and the drive rod was retracted, a temporary Schedule 40 one-inch diameter PVC well point was installed at each location. A 5-foot (0.010 inch slotted) screen was installed at location B-1 at 10 to 15 ft bgs and 10-foot screens were installed at locations B-2 through B-6 at 5 to 15 ft bgs. A sand pack was installed to approximately one foot above the screen and the remainder of the annulus was filled with bentonite chips. Refer to **Attachment 3** for well construction logs.

The temporary well points were allowed to sit overnight. On September 17, 2013, AECOM returned to the Site to attempt to collect a groundwater grab sample from each location. Due to insufficient recharge (very tight soils), a groundwater sample was only able to be collected from location B-1 on September 17, 2013. This sample was collected using a peristaltic pump and dedicated polyethylene/silicon tubing. The sample was submitted along with a trip blank to the laboratory with the soil samples, as described previously.

AECOM returned to the Site on September 25, 2013 to attempt to collect groundwater grab samples from locations B-2 through B-6. Samples were successfully collected from each location and submitted along with a trip blank to the laboratory as described above.

Field Observations

No petroleum or chemical odors were noted in soils recovered during the completion of the soil borings. In addition, all PID readings were at background during the screening of soils (i.e., 0.1 to 0.2 ppm). In general, shallow site soils consisted of approximately six inches of topsoil above reddish-brown silt with clay followed by pinkish gray to gray silty clay with trace fine to coarse sand. Shallow groundwater was observed at approximately 11 ft bgs.

Analytical Results

A more detailed summary of contaminants in site groundwater and stormwater is provided in the Draft Alternatives Analysis Report (AAR) dated April 30, 2013. As indicated previously, this report will focus on key CVOCs.

According to the analytical results, no key CVOCs were reported in any of the soil or groundwater samples. Acetone was the only VOC reported in soil (12 μ g/kg in B-5). Acetone was also reported in five of the six groundwater samples and in the trip blank. The only other VOC reported was 2-butanone in B-6 at 4.1 μ g/L. The laboratory summary sheets are included as **Attachment 4**. The full analytical reports (Category B deliverable package) with QA/QC data are available upon request.

Findings/Discussion

Figure 1 presents the total key CVOC concentrations in soil, groundwater, stormwater, soil vapor, and ambient air based on data collected between 2010 and 2013. With the exception of the recent data, all data has been previously provided to NYSDEC. Groundwater samples with the "TP" prefix were collected within the storm sewer bedding.

As is shown in the figure, no key CVOCs, including TCE, were reported in soil or groundwater between contaminated location A1-GP07 and the structures at 205 Erie Street (a distance of 200 to 250 feet). Furthermore, no key CVOCs were reported in soil or groundwater between the residence and the storm sewer that flows alongside AVOX Plant 1 (a distance of approximately 100 feet).

No key CVOCs were reported in soil vapor sample SVI-3(R), which is located approximately 75 feet from both the storm sewer and the nearest groundwater sample with elevated key CVOCs. SV-1 is

further from these site features and the only key CVOC in sample SV-1 was TCE at 6.2 μ g/m³. It is also relevant to mention the June 2010 sub-slab vapor sampling performed at AVOX Plant 1, since contaminants can be expected to behave similarly with the same subsurface soil and soil vapor conditions. Sample SS-3 exhibited a similarly low concentration of TCE at 4.3 μ g/m³, but was located even closer to the storm sewer and groundwater source, which suggests that significant attenuation occurs in soil vapor in Area 1 within a fairly short distance. SS-3 was situated approximately 60 feet from A1-GP13 (5,270 μ g/L key CVOCs) and 50 feet from CB-E (1,735 μ g/L key CVOCs).

AECOM is also aware that the garage at 205 Erie Street is used to perform limited auto repair activities, and does not discount the possibility that the low level VOCs detected in SV-1 are related to those maintenance operations rather than the Area 1 impacts.

Conclusions

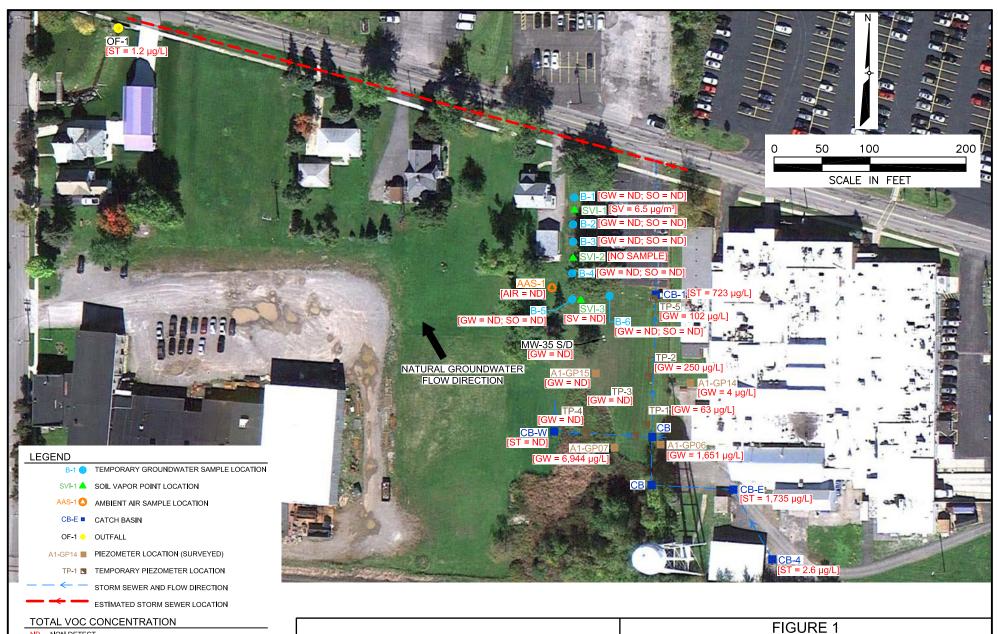
Based on the information collected, AECOM provides the following conclusions:

- In September 2013, six soil borings were advanced 15 to 16 ft bgs to assess soil and groundwater conditions along the property boundary between AVOX Area 1 and the residence at 205 Erie Street. Site soils are comprised of silt and clay; consistent with elsewhere in Area 1. One soil sample was collected from each boring. Groundwater was observed at approximately 11 feet below grade, and one grab groundwater sample was collected from each boring. No key CVOCs were reported in any of the samples.
- AECOM reviewed historical soil, groundwater, soil vapor, and stormwater data from the
 northern portion of the Area 1 Site to assess the potential relationship between the low level
 TCE concentration reported in SV-1 in July 2013 and the Area 1 contamination. The
 collective data does not identify a clear relationship between the two that would warrant
 further SVI sampling at the residential property. Multiple media have been evaluated. The
 property boundary between AVOX and 205 Erie Street appears to not be impacted by the
 BCP Site.

If you have any questions regarding this submission, please do not hesitate to contact me at (716) 836-4506 ext. 15 or via email.

Yours sincerely,

Dino L. Zack, P.G. Proiect Manager


Dino J. Jack

dino.zack@aecom.com

Enclosures

Cc: Gregory Sutton (NYSDEC) – electronic copy
Deanna Ripstein (NYSDOH) – electronic copy
Stuart Rixman (Tyco International) – electronic copy
Joseph Janeczek (Tyco International) – electronic copy
Jennifer Davide (AVOX Systems Inc.) – electronic copy
AECOM Project File – electronic copy

FIGURE

TOTAL KEY CHLORINATED VOCs IN ALL MEDIA **AREA 1 NORTH**

FORMER SCOTT AVIATION FACILITY BCP SITE LANCASTER, NEW YORK

- NON DETECT
- GW GROUNDWATER IN µg/L
- SOIL IN μg/kg
- STORMWATER IN µg/L
- SV SOIL VAPOR IN µg/m³

ATTACHMENT 1

Photograph Log

AECOM Technical Services, Inc.

PHOTOGRAPH LOG

Client Name: Tyco International

Site Location: Former Scott Aviation BCP

AECOM Project #60155991

Photo No.

Date: 9/16/13

Direction Photo Taken:

Northwest

Description:

Matrix (AECOM subcontractor) completing boring at location B-2. Note SVI-1 and B-1 to the north (right in photo).

Photo No.

Date: 9/16/13

Direction Photo Taken:

North

Description:

Line of borings (white PVC stickups) between AVOX Systems Inc. property and residence to the west. Note SVI-3 in foreground.

Photo No. Date: 9/16/13

Direction Photo Taken:

West

Description:

Catch basin CB-1 in foreground and boring B-6 in the background (i.e., where Geoprobe is set-up). Note temporary well point installed in the pipe bedding at CB-1 during SRI.

Photo No. Date: 9/16/13

Direction Photo Taken:

North

Description:

Typical 0-4' bgs soil profile (0-0.5' topsoil, 0.5-4' silt with trace clay, fine sand, and rootlets).

Photo No. Date: 5 9/16/13

Direction Photo Taken:

North

Description:
Typical 8-12' bgs soil profile (clay with trace silt and fine sand)

Photo No. Date: 9/16/13 6 **Direction Photo**

Taken:

North

Description:

Typical color gradation from brown to gray with increasing moisture content (approximately at 9' bgs).

ATTACHMENT 2

Soil Boring Logs

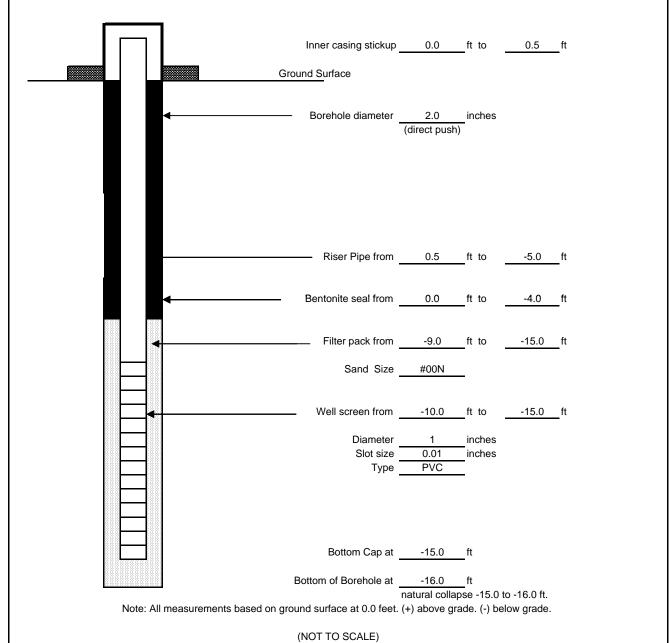
_					Tyco Int					BORING ID: 1	B- <i>1</i>	
Λ	=($\boldsymbol{\Lambda}$		Number.	<u>:</u>	60155991-3			_ Doming ib. I		
	_		//!	Site Loc			Former Scott Aviation Facil	ity BCP				
				Boring I	Location	: West s	ide of property			Sheet: 1 of 1		
					Method		Geoprobe			Monitoring Well I		
					Type(s):	Macroc	ore	Boring Diameter:		Screened Interval		gs
Weather	:: 60 deg	grees F,	overcast, l	ight bree	ze		Logged By: TR	Date/Time Started:		Depth of Boring:	16' bgs	
Drilling		tor:	Matrix				Ground Elevation: ~688	Date/Time Finished	d: 9/16/13 9:15	Water Level: Wat	ter Table -	~11' bgs
Depth (ft)	Geologic sample ID	Sample Depth (ft)	Blows per 6"	Recovery (feet)	Headspace (ppm)	U.S.C.S	MATERIALS: Color, size moisture content, struc		aximum grain s		Lab Sample ID	Lab Sample Depth (Ft.)
1 2 3		0-4	NA	3.8	0.2		0-0.5' Brown TOPSOIL, rootlet 0.5-3.8' Tan SILT with gray and dry/moist, crumbles.			ganics (rootlets),		
4							4 0 8 0' Sama as abaya with ina	massing alors contant				
5							4.0-8.0' Same as above with inc	reasing clay content.				
6		4-8	NA	4.0	0.1							
7												
9		8-12	NA	4.0	0.1		8.0-10.5' Same as above. 10.5-12' Pinkish gray/brown CL wet. Water table at ~11'.	AY, trace silt, fine to c	oarse Sand, and fin	e Gravel, moist to		
							12.0-16.0' Same as above, gradi	ng to gray.				
13 14 15 16		12-16	NA	4.0	0.1							
17												
18												
19												
20			1	ı	<u> </u>	<u> </u>	1		Date Time	Depth to groundwater	while drilling	<u> </u>
NOTE	S:									io giodilawatei		
	Soil samp		ted @10.5-		oratory an	alysis of:						
	TCL list	t OLM04	.2 VOCs (8	260)								
				(10.6	1							

TCL list OLM04.2 VOCs (8260) Checked by _____DLZ

Λ				Client: Project	Tyco Int Number.		nal 60155991-3			BORING ID: B	3-2	
A		0	/VI	Site Loc			Former Scott Aviation Facil	lity BCP		1		
						: West s	ide of property	, 201		Sheet: 1 of 1		
					Method		Geoprobe			Monitoring Well I	nstalled:	Temn
					Type(s):		*	Boring Diameter: 2	2"	Screened Interval		
Weather	· 60 deo	rees F	overcast, i		1 ypc(s).	mucroc	Logged By: TR	Date/Time Started:		Depth of Boring:		,5
Drilling Driver			Matrix	um			Ground Elevation: ~688	Date/Time Finished: 9		Water Level: Wat		~11' has
Drilling			marix		$\overline{}$		Ground Lievation.	Date/Time Timisnea.	710/13 10:13	Water Bevet. Wat		11 083
Depth (ft)	Geologic sample ID	Sample Depth (ft)	Blows per 6"	Recovery (feet)	Headspace (ppm)	U.S.C.S	MATERIALS: Color, size moisture content, struc		ximum grain s		Lab Sample ID	Lab Sample Depth (Ft.)
2 3		0-4	NA	3.8	0.1		0-0.5' Brown TOPSOIL, rootlet 0.5-3.8' Tan SILT with gray and dry/moist, crumbles.		lay, fine Sand, Or	ganics (rootlets),		
5 6 7 8		4-8	NA	4.0	0.1		4.0-7.8' Same as above with inc 7.8-8.0 Brown Silty CLAY, mo					
9		8-12	NA	4.0	0.1		8.0-9.0' Same as above. 9.0-12.0' Pinkish gray/brown C. wet. Water table at ~11'.	LAY, trace silt, fine to co	parse Sand, and fi	ne Gravel, moist to		
13 14 15		12-15	NA	3.0	0.1		12.0-15.0' Same as above, gradi	ing to gray, no Gravel ob	served.			
16 17 18 19 20												
20		1	1	ı	1	1	<u> </u>		Date Time	Depth to groundwater	while drilling	
NOTE	S:							F		Span 12 ground and to	3119	•
		ole collect	ted @10.5-	11' for labo	oratory an	alysis of:						
			.2 VOCs (8		•	-						

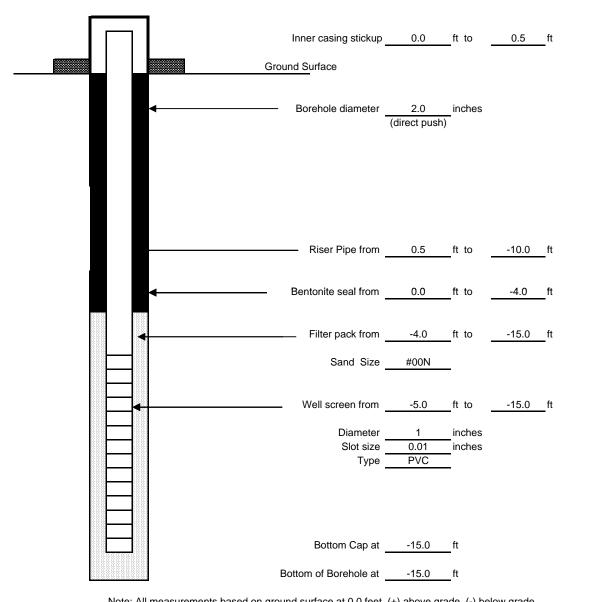
Λ	=/			Client: Project	Tyco Int Number		nal 60155991-3			BORING ID: H	3-3	
A				Site Loc			Former Scott Aviation Faci	lity BCP		1		
-			•			· West s	side of property	, 201		Sheet: 1 of 1		
					Method		Geoprobe			Monitoring Well I	nstalled:	Temn
					Type(s):			Boring Diameter:	2"	Screened Interval		
Weather	· 60 des	rees F	overcast, i		1) p c (5).	1,100,00	Logged By: TR	Date/Time Started: 9/		Depth of Boring:		,,,
Drilling			Matrix	um			Ground Elevation: ~688	Date/Time Startea: 97		Water Level: Wat		~11' has
Druing			mantx				Ground Lievation. "000	Date/Time Timsnea.	7/10/13 11.23	Water Level. Wat		11 083
Depth (ft)	Geologic sample ID	Sample Depth (ft)	Blows per 6"	Recovery (feet)	Headspace (ppm)	U.S.C.S	MATERIALS: Color, size moisture content, stru		aximum grain s		Lab Sample ID	Lab Sample Depth (Ft.)
1 2 3		0-4	NA	3.8	0.1		0-0.5' Brown TOPSOIL, rootlet 0.5-3.8' Tan SILT with gray/bla dry/moist, crumbles.			Organics (rootlets),		
5 6 7 8		4-8	NA	4.0	0.1		4.0-7.8' Same as above with inc 7.8-8.0' Orangish-brown CLAY		Sand and Silt, mois	st.		
9		8-12	NA	4.0	0.1		8.0-12.0' Same as above gradin	g to pinkish gray. Wate	r table at ~11' bgs.			
13 14 15		12-15	NA	3.0	0.1		12.0-15.0' Same as above, softe	r with depth, grayer with	h depth.			
16 17 18 19												
20			<u> </u>	1				-	Date Time	Denth to groundwater	while drilling	<u> </u>
NOTE	ç.								Date Time	Depth to groundwater	wniie afilling	l
		ole collect	ted @10.5-	11' for labo	oratory an	alvsis of						
			.2 VOCs (8		,	, 011						
	102 110			_00)								

_				Client:	Tyco Int	ternation	nal			noniva in		
Λ			AA	Project	Number.	:	60155991-3			BORING ID: 1	5-4	
A	_		//!	Site Loc	ation:		Former Scott Aviation Facili	lity BCP				
				Boring I	Location	: West s	side of property	•		Sheet: 1 of 1		
					Method		Geoprobe			Monitoring Well I	nstalled:	Тетр
					Type(s):			Boring Diameter:	2"	Screened Interval		
Weather	: 60 des	rees F,	overcast, i				Logged By: TR	Date/Time Started: 9		Depth of Boring:		
Drilling			Matrix				Ground Elevation: ~688	Date/Time Finished:		Water Level: Wa		~11' bgs
					Ē			1		•		
Depth (ft)	Geologic sample ID	Sample Depth (ft)	Blows per 6"	Recovery (feet)	Headspace (ppm)	U.S.C.S	MATERIALS: Color, size moisture content, struc		aximum gra		Lab Sample ID	Lab Sample Depth (Ft.)
1 2 3 4		0-4	NA	3.7	0.1		0-0.5' Brown TOPSOIL, rootlet 0.5-3.8' Tan SILT with gray/bla dry/moist, crumbles.			d, Organics (rootlets),		
5 6 7 8		4-8	NA	4.0	0.1		4.0-8.0' Same as above with inc thick).	reasing clay content. V	ery fine sand le	ense at 7.5' (~1-inch		
9		8-12	NA	4.0	0.1		8.0-12.0' Brownish gray CLAY	, trace fine Sand and Si	lt, moist. Water	table at ~11'.		
13 14 15		12-15	NA	3.0	0.1		12.0-15.0' Same as above, gradi	ing to grayish brown.				
16 17 18 19												
20	<u> </u>	<u> </u>	I	1	1	l	1		Date Ti	me Depth to groundwater	while drilling	<u> </u>
NOTE	S:								54.0	Dopar to groundwater	o arming	1
	Soil sam		ted @10.5-		oratory an	alysis of:						
			.2 VOCs (8									


A		.U	W	Project .			60155991-3				
_				Site Loc	ation:		Former Scott Aviation Facil	lity BCP			
			•			· West s	ide of property	, 201	Sheet: 1 of 1		
				Drilling			Geoprobe		Monitoring Well	Installed:	Temn
				Sample			*	Boring Diameter: 2"	Screened Interva		
Weather:	60 deg	rees F. o	overcast, 1		1) p c (b) .	11111111111	Logged By: TR	Date/Time Started: 9/16/1			55
Drilling C			Matrix	Citi			Ground Elevation: ~688	Date/Time Started: 9/16/1			~11' has
Druing C			Intuitio				Ground Lievation.	Date/Time Timsnea. 9/10/	Water Eevet. We		11 085
Depth (ft)	Geologic sample ID	Sample Depth (ft)	Blows per 6"	Recovery (feet)	Headspace (ppm)	U.S.C.S	moisture content, stru		NENT, minor component(s) num grain size, odor, and n)	Lab Sample ID	Lab Sample Depth (Ft.)
2 3		0-4	NA	3.8	0.1		0-0.5' Brown TOPSOIL, rootlet 0.5-3.8' Tan SILT with gray/bla dry/moist, crumbles.		, fine Sand, Organics (rootlets),		
5 6 7 8		4-8	NA	4.0	0.1		4.0-7.2' Same as above. 7.2-7.5' Brown fine SAND, mo 7.5-8.0' Brown CLAY, trace Sil				
9		8-12	NA	4.0	0.1		8.0-12.0' Same as above, gradin table at ~11'	g to pinkish gray with increa	sing moisture content. Water		
13 14 15		12-15	NA	3.0	0.1		12.0-15.0 Same as above, gradi	ng to gray.			
16 17 18 19 20											
20			1	1		L	1	n	ate Time Depth to groundwate	r while drilling	 1
NOTES	S:								ato Timo Deptirio groundwate	· minic unitility	,
		ole collect	ed @10.5-	11' for labo	oratory an	alysis of:					
			2 VOCs (8		,	,					

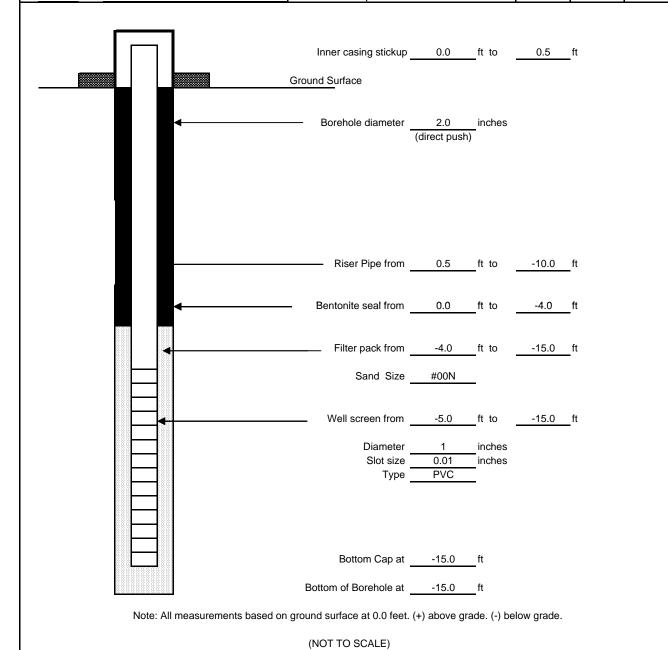
_				Client:	Tyco Int	ternatio	nal			DODING ID.		
Λ			AA	Project	Number.	:	60155991-3			BORING ID: B	5-0	
A	_	J	//!	Site Loc	ation:		Former Scott Aviation Facil	lity BCP				
				Boring	Location	: West s	side of property	•		Sheet: 1 of 1		
					Method		Geoprobe			Monitoring Well I	nstalled:	Тетр
					Type(s):			Boring Diameter:	2"	Screened Interval		_
Weather	: 60 des	erees F.	overcast, i		21 (/		Logged By: TR	Date/Time Started: 9.		Depth of Boring:		
Drilling			Matrix				Ground Elevation: ~688	Date/Time Finished:		Water Level: Wat		~11' bgs
					~					1		
Depth (ft)	Geologic sample ID	Sample Depth (ft)	Blows per 6"	Recovery (feet)	Headspace (ppm)	U.S.C.S	MATERIALS: Color, size moisture content, struc		aximum grain s		Lab Sample ID	Lab Sample Depth (Ft.)
2 3 4		0-4	NA	3.8	0.1		0-0.5' Brown TOPSOIL, rootlet 0.5-3.8' Tan SILT with gray/bla dry/moist, crumbles.			Organics (rootlets),		
5 6 7 8		4-8	NA	4.0	0.1		4.0-8.0' Same as above, grades stringers.	to reddish brown Silty C	CLAY with trace f	ine Sand		
9		8-12	NA	4.0	0.1		8.0-12.0' Same as above, gradin Water table at ~11'	g to gray and pinkish g	ay Silty CLAY w	ith Silt stringers.		
131415		12-15	NA	3.0	0.1		12.0-15.0' Same as above, all pi	nkish gray.				
16 17 18 19												
20		l	1	1	I	I			Date Time	Depth to groundwater	while drilling	<u> </u>
NOTE	S:								Date Time	Depar to groundwater	e uriiirig	
		ple collec	ted @10.5-	11' for labo	oratory an	alvsis of						
			2 VOCs (8		y dii		•			+		

ATTACHMENT 3 Well Construction Logs


Project: Former Scott Aviation Facility BCP	Location: Lancaster, NY	Page 1 of 1	
AECOM Project No.: 60155991	Subcontractor: Matrix	Water Level	s
Surface Elevation: ~688 ft AMSL	Driller: Mark Janus	Date Time	Depth
Top of PVC	Well Permit No.: NA	9/17/13	14.10
Casing Elevation: ~688.5 ft AMSL	AECOM Rep.: Tamara Raby	9/25/13	13.80
Datum: NGVD 1988	Date of Completion: 9/16/2013		

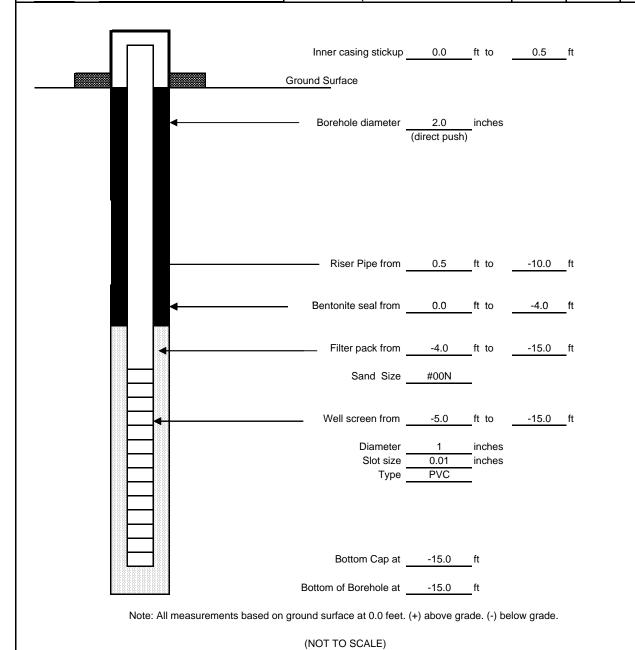
Well No. B-2

Project: Former Scott Aviation Facility BCP	Location: Lancaster, NY	Page 1 of 1	
AECOM Project No.: 60155991	Subcontractor: Matrix	Water Leve	els
Surface Elevation: ~688 ft AMSL	Driller: Mark Janus	Date Time	Depth
Top of PVC	Well Permit No.: NA	9/17/13	14.50
Casing Elevation: ~688.5 ft AMSL	AECOM Rep.: Tamara Raby	9/25/13	13.80
Datum: NGVD 1988	Date of Completion: 9/16/2013		

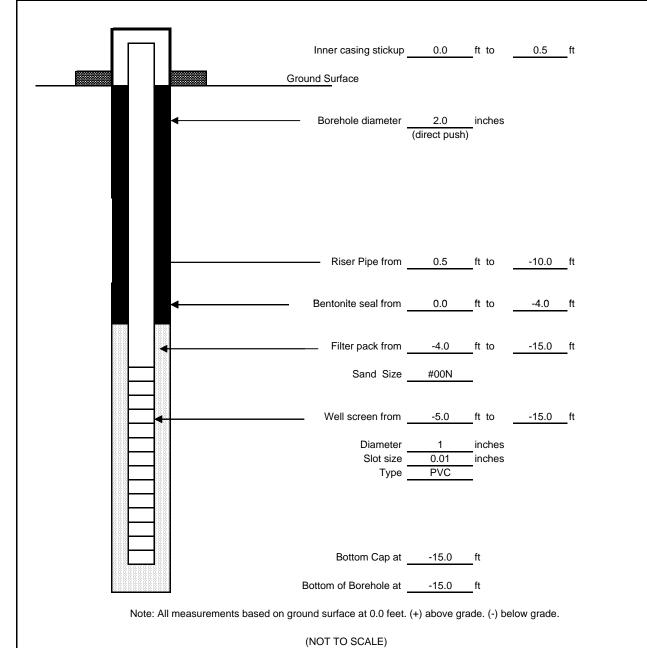


Note: All measurements based on ground surface at 0.0 feet. (+) above grade. (-) below grade.

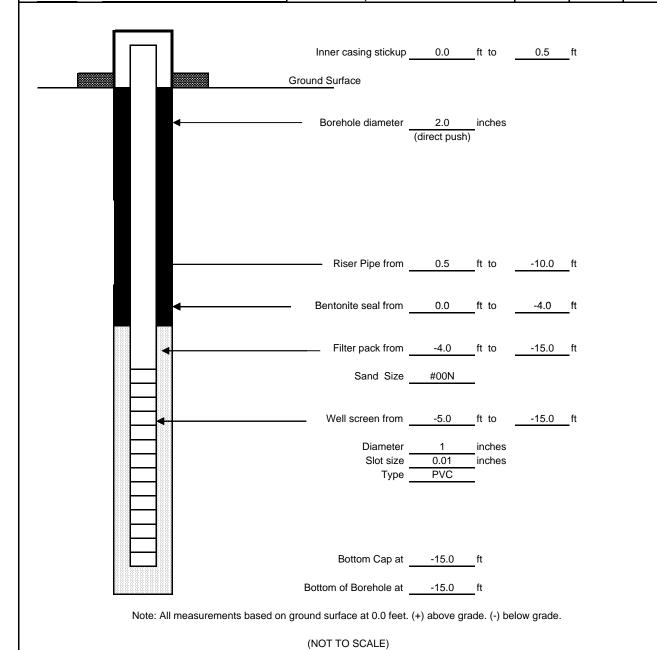
(NOT TO SCALE)



Project: Former Scott Aviation Facility BCP	Location: Lancaster, NY	Page 1 of 1
AECOM Project No.: 60155991	Subcontractor: Matrix	Water Levels
Surface Elevation: ~688 ft AMSL	Driller: Mark Janus	Date Time Depth
Top of PVC	Well Permit No.: NA	9/17/13 14.40
Casing Elevation: ~688.5 ft AMSL	AECOM Rep.: Tamara Raby	9/25/13 10.65
Datum: NGVD 1988	Date of Completion: 9/16/2013	



Project: Former Scott Aviation Facility BCP	Location: Lancaster, NY	Page 1 of 1	
AECOM Project No.: 60155991	Subcontractor: Matrix	Water Levels	
Surface Elevation: ~688 ft AMSL	Driller: Mark Janus	Date Time	Depth
Top of PVC	Well Permit No.: NA	9/17/13	14.30
Casing Elevation: ~688.5 ft AMSL	AECOM Rep.: Tamara Raby	9/25/13	13.15
Datum: NGVD 1988	Date of Completion: 9/16/2013		



Project: Former Scott Aviation Facility BCI	Location: Lancaster, NY	Page 1 of 1	
AECOM Project No.: 60155991	Subcontractor: Matrix	Water Level	ls
Surface Elevation: ~688 ft AMSL	Driller: Mark Janus	Date Time	Depth
Top of PVC	Well Permit No.: NA	9/17/13	14.50
Casing Elevation: ~688.5 ft AMSL	AECOM Rep.: Tamara Raby	9/25/13	14.10
Datum: NGVD 1988	Date of Completion: 9/16/2013		

Project: Former Scott Aviation Facility BCF	Location: Lancaster, NY	Page 1 of 1
AECOM Project No.: 60155991	Subcontractor: Matrix	Water Levels
Surface Elevation: ~688 ft AMSL	Driller: Mark Janus	Date Time Depth
Top of PVC	Well Permit No.: NA	9/17/13 14.30
Casing Elevation: ~688.5 ft AMSL	AECOM Rep.: Tamara Raby	9/25/13 13.95
_		
Datum: NGVD 1988	Date of Completion: 9/16/2013	

ATTACHMENT 4

Analytical Laboratory Summary Sheets (Full data reports available upon request)

ANALYTICAL REPORT

Job Number: 480-45961-1

Job Description: Tyco Int'l Facility-BCP(AECOM# 60155991)

For:
AECOM, Inc.
100 Corporate Parkway
Suite 341
Amherst, NY 14226

Attention: Mr. Dino Zack

Approved for release Brian J Fischer Project Manager II 9/30/2013 6:00 PM

Brian J Fischer, Project Manager II 10 Hazelwood Drive, Amherst, NY, 14228-2298 (716)504-9835 brian.fischer@testamericainc.com 09/30/2013

cc: Ms. Helen Jones

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project Manager who has signed this report. TestAmerica Buffalo NELAC Certifications: CADPH 01169CA, FLDOH E87672, ILEPA 200003, KSDOH E-10187, LADEQ 30708, MDH 036-999-337, NHELAP 2973, NJDEP NY455, NHDOH 10026, ORELAP NY200003, PADEP 68-00281, TXCEQ T-104704412-10-1

Job Narrative 480-45961-1

Comments

No additional comments.

Receipt

The samples were received on 9/17/2013 4:20 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 3.9° C and 4.3° C.

GC/MS VOA

Method(s) 8260B: The following volatiles sample(s) was diluted due to foaming at the time of purging during the original sample analysis: B-1 GW 09172013 (480-45961-8). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

SAMPLE SUMMARY

Client: AECOM, Inc. Job Number: 480-45961-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
480-45961-1	B-1 (10.5-11)	Solid	09/16/2013 0900	09/17/2013 1620
480-45961-2	B-2 (10.5-11)	Solid	09/16/2013 0930	09/17/2013 1620
480-45961-3	B-3 (10.5-11)	Solid	09/16/2013 1030	09/17/2013 1620
480-45961-4	B-4 (10.5-11)	Solid	09/16/2013 1140	09/17/2013 1620
480-45961-5	B-5 (10.5-11)	Solid	09/16/2013 1215	09/17/2013 1620
480-45961-6	B-6 (10.5-11)	Solid	09/16/2013 1300	09/17/2013 1620
480-45961-7	TRIP BLANK	Water	09/16/2013 0000	09/17/2013 1620
480-45961-8	B-1 GW 09172013	Water	09/17/2013 1315	09/17/2013 1620

EXECUTIVE SUMMARY - Detections

Client: AECOM, Inc. Job Number: 480-45961-1

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
480-45961-1	D 4 (40 5 44)					
Percent Moisture	B-1 (10.5-11)	15		0.10	%	Moisture
Percent Solids		85		0.10	%	Moisture
reicent Solids		03		0.10	70	Wolstule
480-45961-2	B-2 (10.5-11)					
Percent Moisture	D-2 (10.5-11)	17		0.10	%	Moisture
Percent Solids		83		0.10	%	Moisture
reitent sollas		03		0.10	76	MOISTUIC
480-45961-3	B-3 (10.5-11)					
Percent Moisture		17		0.10	%	Moisture
Percent Solids		83		0.10	%	Moisture
480-45961-4	B-4 (10.5-11)					
Percent Moisture		17		0.10	%	Moisture
Percent Solids		83		0.10	%	Moisture
480-45961-5	B-5 (10.5-11)					
Acetone		12	J	22	ug/Kg	8260B
Percent Moisture		18		0.10	%	Moisture
Percent Solids		82		0.10	%	Moisture
480-45961-6	B-6 (10.5-11)					
Percent Moisture	,	18		0.10	%	Moisture
Percent Solids		82		0.10	%	Moisture
		~ _			, -	

METHOD SUMMARY

Client: AECOM, Inc. Job Number: 480-45961-1

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Volatile Organic Compounds (GC/MS)	TAL BUF	SW846 8260B	
Closed System Purge and Trap	TAL BUF		SW846 5035
Percent Moisture	TAL BUF	EPA Moisture	
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL BUF	SW846 8260B	
Purge and Trap	TAL BUF		SW846 5030B

Lab References:

TAL BUF = TestAmerica Buffalo

Method References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: AECOM, Inc. Job Number: 480-45961-1

Method	Analyst	Analyst ID	
SW846 8260B	Brandt, Todd R	TRB	
SW846 8260B	Quirk, Patrick J	PJQ	
EPA Moisture	Cwiklinski, Charles D	CDC	

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-1 (10.5-11)

Lab Sample ID: 480-45961-1 Date Sampled: 09/16/2013 0900

Client Matrix: Solid % Moisture: 15.0 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-139832 Instrument ID: HP5973F Prep Method: 5035 Prep Batch: 480-139845 Lab File ID: F1426.D Dilution: Initial Weight/Volume: 7.2 g 1.0 Final Weight/Volume: 5 g

Analysis Date: 09/19/2013 0154 Prep Date: 09/18/2013 2252

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
1,1,1-Trichloroethane		ND		0.30	4.1	
1,1,2,2-Tetrachloroethane	1,1,2,2-Tetrachloroethane			0.66	4.1	
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND		0.93	4.1	
1,1,2-Trichloroethane		ND		0.53	4.1	
1,1-Dichloroethane		ND		0.50	4.1	
1,1-Dichloroethene		ND		0.50	4.1	
1,2,4-Trichlorobenzene		ND		0.25	4.1	
1,2-Dibromo-3-Chloropropar	ne	ND		2.0	4.1	
1,2-Dibromoethane		ND		0.52	4.1	
1,2-Dichlorobenzene		ND		0.32	4.1	
1,2-Dichloroethane		ND		0.21	4.1	
1,2-Dichloropropane		ND		2.0	4.1	
1,3-Dichlorobenzene		ND		0.21	4.1	
1,4-Dichlorobenzene		ND		0.57	4.1	
2-Butanone (MEK)		ND		1.5	20	
2-Hexanone		ND		2.0	20	
4-Methyl-2-pentanone (MIBK	()	ND		1.3	20	
Acetone		ND		3.4	20	
Benzene		ND		0.20	4.1	
Bromodichloromethane		ND		0.55	4.1	
Bromoform		ND		2.0	4.1	
Bromomethane		ND		0.37	4.1	
Carbon disulfide		ND		2.0	4.1	
Carbon tetrachloride		ND		0.40	4.1	
Chlorobenzene		ND		0.54	4.1	
Chloroethane		ND		0.92	4.1	
Chloroform		ND		0.25	4.1	
Chloromethane		ND		0.25	4.1	
cis-1,2-Dichloroethene		ND		0.52	4.1	
cis-1,3-Dichloropropene		ND		0.59	4.1	
Cyclohexane		ND		0.57	4.1	
Dibromochloromethane		ND		0.52	4.1	
Dichlorodifluoromethane		ND		0.34	4.1	
Ethylbenzene		ND		0.28	4.1	
Isopropylbenzene		ND		0.62	4.1	
Methyl acetate		ND		0.76	4.1	
Methyl tert-butyl ether		ND		0.40	4.1	
Methylcyclohexane		ND		0.62	4.1	
Methylene Chloride		ND		1.9	4.1	
Styrene		ND		0.20	4.1	
Tetrachloroethene		ND		0.55	4.1	
Toluene		ND		0.31	4.1	
trans-1,2-Dichloroethene		ND		0.42	4.1	
trans-1,3-Dichloropropene		ND		1.8	4.1	
Trichloroethene		ND		0.90	4.1	

Analytical Data

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-1 (10.5-11)

Lab Sample ID: 480-45961-1 Date Sampled: 09/16/2013 0900

Client Matrix: Solid % Moisture: 15.0 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5035

Analysis Batch: 480-139832 Prep Batch: 480-139845

Instrument ID: HP5973F Lab File ID: F1426.D

Dilution: 1.0 Initial Weight/Volume: 7.2 g

Analysis Date: 09/19/2013 0154

Final Weight/Volume:

5 g

Prep Date: 09/18/2013 2252

Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RLVinyl chloride ND 4.1 0.50 Xylenes, Total ND 0.69 8.2

%Rec Qualifier Surrogate Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 104 64 - 126 4-Bromofluorobenzene (Surr) 104 72 - 126 Toluene-d8 (Surr) 103 71 - 125

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-2 (10.5-11)

Lab Sample ID: 480-45961-2 Date Sampled: 09/16/2013 0930

Client Matrix: Solid % Moisture: 16.6 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-139832 Instrument ID: HP5973F 8260B Prep Method: 5035 Prep Batch: 480-139845 Lab File ID: F1427.D Dilution: Initial Weight/Volume: 1.0 6.54 g Analysis Date: 09/19/2013 0220 Final Weight/Volume: 5 g

Prep Date: 09/18/2013 2252

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		ND		0.33	4.6
1,1,2,2-Tetrachloroethane		ND		0.74	4.6
1,1,2-Trichloro-1,2,2-trifluoi	roethane	ND		1.0	4.6
1,1,2-Trichloroethane		ND		0.60	4.6
1,1-Dichloroethane		ND		0.56	4.6
1,1-Dichloroethene		ND		0.56	4.6
1,2,4-Trichlorobenzene		ND		0.28	4.6
1,2-Dibromo-3-Chloropropa	ane	ND		2.3	4.6
1,2-Dibromoethane		ND		0.59	4.6
1,2-Dichlorobenzene		ND		0.36	4.6
1,2-Dichloroethane		ND		0.23	4.6
1,2-Dichloropropane		ND		2.3	4.6
1,3-Dichlorobenzene		ND		0.24	4.6
1,4-Dichlorobenzene		ND		0.64	4.6
2-Butanone (MEK)		ND		1.7	23
2-Hexanone		ND		2.3	23
4-Methyl-2-pentanone (MIE	3K)	ND		1.5	23
Acetone		ND		3.9	23
Benzene		ND		0.22	4.6
Bromodichloromethane		ND		0.61	4.6
Bromoform		ND		2.3	4.6
Bromomethane		ND		0.41	4.6
Carbon disulfide		ND		2.3	4.6
Carbon tetrachloride		ND		0.44	4.6
Chlorobenzene		ND		0.61	4.6
Chloroethane		ND		1.0	4.6
Chloroform		ND		0.28	4.6
Chloromethane		ND		0.28	4.6
cis-1,2-Dichloroethene		ND		0.59	4.6
cis-1,3-Dichloropropene		ND		0.66	4.6
Cyclohexane		ND		0.64	4.6
Dibromochloromethane		ND		0.59	4.6
Dichlorodifluoromethane		ND		0.38	4.6
Ethylbenzene		ND		0.32	4.6
Isopropylbenzene		ND		0.69	4.6
Methyl acetate		ND		0.85	4.6
Methyl tert-butyl ether		ND		0.45	4.6
Methylcyclohexane		ND		0.70	4.6
Methylene Chloride		ND		2.1	4.6
Styrene		ND		0.23	4.6
Tetrachloroethene		ND		0.62	4.6
Toluene		ND		0.35	4.6
trans-1,2-Dichloroethene		ND		0.47	4.6
trans-1,3-Dichloropropene		ND		2.0	4.6
Trichloroethene		ND		1.0	4.6

Analytical Data

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-2 (10.5-11)

Lab Sample ID: 480-45961-2 Date Sampled: 09/16/2013 0930

Client Matrix: Solid % Moisture: 16.6 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5035

Dilution: 1.0

Analysis Date: 09/19/2013 0220 Analysis Batch: 480-139832

480-139845

Instrument ID: Lab File ID:

HP5973F F1427.D

Initial Weight/Volume: 6.54 g Final Weight/Volume: 5 g

RL

Prep Date: 09/18/2013 2252

Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL Vinyl chloride ND 0.56 Xylenes, Total ND

Prep Batch:

4.6 0.77 9.2

%Rec Qualifier Surrogate Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 100 64 - 126 4-Bromofluorobenzene (Surr) 100 72 - 126 Toluene-d8 (Surr) 99 71 - 125

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-3 (10.5-11)

Lab Sample ID: 480-45961-3 Date Sampled: 09/16/2013 1030

Client Matrix: Solid % Moisture: 17.0 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-139832 Instrument ID: HP5973F Prep Method: 5035 Prep Batch: 480-139845 Lab File ID: F1428.D Dilution: Initial Weight/Volume: 6.91 g 1.0 Analysis Date: 09/19/2013 0245 Final Weight/Volume: 5 g

Prep Date: 09/18/2013 2252

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		ND		0.32	4.4
1,1,2,2-Tetrachloroethane		ND		0.71	4.4
1,1,2-Trichloro-1,2,2-trifluor	oethane	ND		0.99	4.4
1,1,2-Trichloroethane		ND		0.57	4.4
1,1-Dichloroethane		ND		0.53	4.4
1,1-Dichloroethene		ND		0.53	4.4
1,2,4-Trichlorobenzene		ND		0.26	4.4
1,2-Dibromo-3-Chloropropa	ine	ND		2.2	4.4
1,2-Dibromoethane		ND		0.56	4.4
1,2-Dichlorobenzene		ND		0.34	4.4
1,2-Dichloroethane		ND		0.22	4.4
1,2-Dichloropropane		ND		2.2	4.4
1,3-Dichlorobenzene		ND		0.22	4.4
1,4-Dichlorobenzene		ND		0.61	4.4
2-Butanone (MEK)		ND		1.6	22
2-Hexanone		ND		2.2	22
4-Methyl-2-pentanone (MIE	K)	ND		1.4	22
Acetone		ND		3.7	22
Benzene		ND		0.21	4.4
Bromodichloromethane		ND		0.58	4.4
Bromoform		ND		2.2	4.4
Bromomethane		ND		0.39	4.4
Carbon disulfide		ND		2.2	4.4
Carbon tetrachloride		ND		0.42	4.4
Chlorobenzene		ND		0.58	4.4
Chloroethane		ND		0.98	4.4
Chloroform		ND		0.27	4.4
Chloromethane		ND		0.26	4.4
cis-1,2-Dichloroethene		ND		0.56	4.4
cis-1,3-Dichloropropene		ND		0.63	4.4
Cyclohexane		ND		0.61	4.4
Dibromochloromethane		ND		0.56	4.4
Dichlorodifluoromethane		ND		0.36	4.4
Ethylbenzene		ND		0.30	4.4
Isopropylbenzene		ND		0.66	4.4
Methyl acetate		ND		0.81	4.4
Methyl tert-butyl ether		ND		0.43	4.4
Methylcyclohexane		ND		0.66	4.4
Methylene Chloride		ND		2.0	4.4
Styrene		ND		0.22	4.4
Tetrachloroethene		ND		0.58	4.4
Toluene		ND		0.33	4.4
trans-1,2-Dichloroethene		ND		0.45	4.4
trans-1,3-Dichloropropene		ND		1.9	4.4
Trichloroethene		ND		0.96	4.4
Trichlorofluoromethane		ND		0.41	4.4

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-3 (10.5-11)

Lab Sample ID: 480-45961-3 Date Sampled: 09/16/2013 1030

Client Matrix: Solid % Moisture: 17.0 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B
Prep Method: 5035

Analysis Batch: 480-139832 Prep Batch: 480-139845 Instrument ID: HP5973F Lab File ID: F1428.D

Dilution: 1.0 Analysis Date: 09/1 Initial Weight/Volume: 6.91 g

09/19/2013 0245 Final Weight/Volume: 5 g

Prep Date: 09/18/2013 2252

 Analyte
 DryWt Corrected: Y
 Result (ug/Kg)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.53
 4.4

 Xylenes, Total
 ND
 0.73
 8.7

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	103		64 - 126
4-Bromofluorobenzene (Surr)	102		72 - 126
Toluene-d8 (Surr)	101		71 - 125

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-4 (10.5-11)

Lab Sample ID: 480-45961-4 Date Sampled: 09/16/2013 1140

Client Matrix: Solid % Moisture: 16.8 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-139832 Instrument ID: HP5973F Prep Method: 5035 Prep Batch: 480-139845 Lab File ID: F1429.D Dilution: Initial Weight/Volume: 7.81 g 1.0 Analysis Date: 09/19/2013 0311 Final Weight/Volume: 5 g

Prep Date: 09/18/2013 2252

1,1,1-Trichloroethane ND 0.28 3.8 1,1,2-Tetachloroethane ND 0.62 3.8 1,1,2-Trichloroethane ND 0.88 3.8 1,1-Dichloroethane ND 0.50 3.8 1,1-Dichloroethane ND 0.47 3.8 1,1-Dichloroethane ND 0.47 3.8 1,2-Dibromo-3-Chloropropane ND 0.49 3.8 1,2-Dibromo-3-Chloropropane ND 0.49 3.8 1,2-Dibromo-3-Chloropropane ND 0.49 3.8 1,2-Dichloropropane ND 0.30 3.8 1,2-Dichloropropane ND 0.19 3.8 1,2-Dichloropropane ND 0.20 3.8	Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,12-Trichloro-1,22-trifluorethane ND 0.88 3.8 1,1,2-Trichloroethane ND 0.50 3.8 1,1-Dichloroethane ND 0.47 3.8 1,1-Dichloroethane ND 0.47 3.8 1,1-Dichloroethene ND 0.47 3.8 1,2-Dibrome-3-Chloropropane ND 0.19 3.8 1,2-Dichloroethane ND 0.49 3.8 1,2-Dichloroethane ND 0.30 3.8 1,2-Dichloropropane ND 0.19 3.8 1,2-Dichloroethane ND 0.19 3.8 1,2-Dichloropropane ND 0.19 3.8 1,2-Dichloropropane ND 0.19 3.8 1,2-Dichloropropane ND 0.19 3.8 1,2-Dichloropropane ND 0.19 3.8 1,3-Dichlorobenzene ND 0.19 3.8 1,3-Dichlorobenzene ND 0.50 3.8 2-Butanone (MEK) ND 0.14 19 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
1.12-Trichloroethane ND 0.50 3.8 1,1-Dichloroethane ND 0.47 3.8 1,1-Dichloroethene ND 0.47 3.8 1,2-Pitromoethane ND 0.23 3.8 1,2-Dichroroethane ND 0.49 3.8 1,2-Dichlorobenzene ND 0.49 3.8 1,2-Dichloroethane ND 0.30 3.8 1,2-Dichloropenzene ND 0.19 3.8 1,2-Dichloropenzene ND 0.19 3.8 1,2-Dichloropenzene ND 0.20 3.8 1,2-Dichloropenzene ND 0.20 3.8 1,2-Dichloropenzene ND 0.20 3.8 1,2-Dichloropenzene ND 0.54 3.8 1,2-Dichloropenzene ND 0.54 3.8 1,2-Dichloropenzene ND 0.54 3.8 1,2-Dichloropenzene ND 0.54 3.8 2-Hexanone ND 1.9 1.9 4-Methyl-2-pent	1,1,2,2-Tetrachloroeth	nane	ND			3.8
1.1-Dichloroethane ND 0.47 3.8 1,1-Dichloroethene ND 0.43 3.8 1,2-Dirbinoros-Chiloropropane ND 0.23 3.8 1,2-Dirbinoros-Chiloropropane ND 0.49 3.8 1,2-Dirbinoros-Chiloropropane ND 0.49 3.8 1,2-Dichlorobenzene ND 0.19 3.8 1,2-Dichloropropane ND 0.19 3.8 1,2-Dichlorobenzene ND 0.50 3.8 1,3-Dichlorobenzene ND 0.54 3.8 1,3-Dichlorobenzene ND 0.54 3.8 1,3-Dichlorobenzene ND 0.54 3.8 2-Butanone (MEK) ND 1.4 19 2-Hexanone ND 1.9 1.9 4-Methyl-2-pentanone (MIBK) ND 1.3 19 4-Methyl-2-pentanone (MIBK) ND 1.3 19 Acetone ND 0.52 3.8 Bromoform ND 0.52 3.8 <	1,1,2-Trichloro-1,2,2-t	rifluoroethane	ND		0.88	3.8
1.1-Dichloroethene ND 0.47 3.8 1.2,4-Trichlorobenzene ND 0.23 3.8 1.2-Dibromo-3-Chloropropane ND 1.9 3.8 1.2-Dibromoethane ND 0.49 3.8 1.2-Dichlorobenzene ND 0.30 3.8 1.2-Dichlorophenzene ND 0.19 3.8 1.2-Dichloropherzene ND 0.20 3.8 1.3-Dichlorobenzene ND 0.54 3.8 1.4-Dichlorobenzene ND 0.54 3.8 1.4-Dichlorobenzene ND 0.54 3.8 2-Butanone (MEK) ND 1.4 19 2-Hexanone ND 1.9 19 4-Methyl-2-pentanone (MIBK) ND 1.3 19 4-Methyl-2-pentanone (MIBK) ND 1.3 19 4-Methyl-2-pentanone (MIBK) ND 0.19 3.8 Benzene ND 0.19 3.8 Bromoferm ND 0.52 3.8 Bromoferm ND 0.52 3.8 Bromomethane ND 0.35 3.8 Carbon distifide ND 0.37 3.8 Chlorobertane ND 0.51 3.8	1,1,2-Trichloroethane		ND		0.50	3.8
1,2,4-Trichlorobenzene ND 0.23 3.8 1,2-Dibromo-S-Chloropropane ND 0.49 3.8 1,2-Dichlorobenzene ND 0.30 3.8 1,2-Dichlorobethane ND 0.19 3.8 1,2-Dichloropropane ND 0.19 3.8 1,2-Dichlorobenzene ND 0.9 3.8 1,3-Dichlorobenzene ND 0.54 3.8 1,3-Dichlorobenzene ND 0.54 3.8 2-Butanone (MEK) ND 1,4 19 2-Hexanone ND 1,9 19 4-Methyl-2-pentanone (MIBK) ND 1,3 19 Acetone ND 1,9 19 Benzene ND 0.19 3.8 Bromodichloromethane ND 0.19 3.8 Bromoform ND 0.52 3.8 Bromoform ND 0.35 3.8 Carbon tetrachloride ND 0.37 3.8 Chlorobenzene ND	1,1-Dichloroethane		ND		0.47	3.8
1.2-Dibromo-3-Chloropropane	1,1-Dichloroethene		ND		0.47	3.8
1,2-Dichloroethane ND 0.48 3.8 1,2-Dichloroethane ND 0.30 3.8 1,2-Dichloropropane ND 0.19 3.8 1,2-Dichloropropane ND 1.9 3.8 1,3-Dichlorobenzene ND 0.54 3.8 1,4-Dichlorobenzene ND 0.54 3.8 2-Butanone (MEK) ND 1.4 19 2-Hexanone ND 1.9 19 4-Methyl-2-pentanone (MIBK) ND 1.3 19 Acetone ND 3.2 19 Benzene ND 0.19 3.8 Bromoform ND 0.19 3.8 Bromoethane ND 0.52 3.8 Bromoethane ND 0.35 3.8 Carbon tetrachloride ND 0.35 3.8 Carbon tetrachloride ND 0.51 3.8 Chloroform ND 0.57 3.8 Chloroethane ND 0.57	1,2,4-Trichlorobenzen	e	ND			3.8
1,2-Dichlorobenzene ND 0.30 3.8 1,2-Dichloroproprane ND 0.19 3.8 1,2-Dichlorobenzene ND 0.20 3.8 1,3-Dichlorobenzene ND 0.54 3.8 1,4-Dichlorobenzene ND 0.54 3.8 2,4-Butanone (MEK) ND 1.4 19 2-Hexanone ND 1.9 19 4-Methyl-2-pentanone (MIBK) ND 1.3 19 Acetone ND 3.2 19 Benzene ND 0.19 3.8 Bromodichloromethane ND 0.95 3.8 Bromoform ND 1.9 3.8 Bromoform ND 0.35 3.8 Bromoform ND 0.35 3.8 Carbon disulfide ND 0.37 3.8 Carbon disulfide ND 0.37 3.8 Chlorobenzene ND 0.51 3.8 Chlorobenzene ND 0.57 3.	1,2-Dibromo-3-Chloro	propane	ND		1.9	3.8
1.2-Dichloroethane ND 1.9 3.8 1.2-Dichloropenane ND 1.9 3.8 1.3-Dichlorobenzene ND 0.20 3.8 1.4-Dichlorobenzene ND 0.54 3.8 2-Butanone (MEK) ND 1.4 19 2-Hexanone ND 1.9 19 4-Methyl-2-pentanone (MIBK) ND 1.3 19 Acetone ND 3.2 19 Benzene ND 3.2 19 Benzene ND 0.19 3.8 Bromoform ND 0.52 3.8 Bromoform ND 1.9 3.8 Bromoform ND 1.9 3.8 Carbon disulfide ND 0.35 3.8 Carbon tetrachloride ND 0.37 3.8 Chlorobenzene ND 0.87 3.8 Chlorobethane ND 0.87 3.8 Chlorobethane ND 0.49 3.8	1,2-Dibromoethane		ND			3.8
1.2-Dichloropropane ND 0.20 3.8 1,3-Dichlorobenzene ND 0.54 3.8 2-Butanone (MEK) ND 1.4 19 2-Hexanone ND 1.9 19 4-Methyl-2-pentanone (MIBK) ND 1.3 19 Acetone ND 3.2 19 Benzene ND 0.19 3.8 Bromodichloromethane ND 0.52 3.8 Bromoform ND 1.9 3.8 Bromomethane ND 0.35 3.8 Carbon disulfide ND 0.35 3.8 Carbon disulfide ND 0.37 3.8 Carbon tetrachloride ND 0.37 3.8 Chloropetane ND 0.51 3.8 Chloropetane ND 0.87 3.8 Chloropethane ND 0.87 3.8 Chloropethane ND 0.49 3.8 cis-1,3-Dichloropropopene ND 0.55 <td< td=""><td>1,2-Dichlorobenzene</td><td></td><td>ND</td><td></td><td>0.30</td><td>3.8</td></td<>	1,2-Dichlorobenzene		ND		0.30	3.8
1,3-Dichlorobenzene ND 0.20 3.8 1,4-Dichlorobenzene ND 0.54 3.8 2-Butanone (MEK) ND 1.4 19 2-Hexanone ND 1.9 19 4-Methyl-2-pentanone (MIBK) ND 1.3 19 Acetone ND 3.2 19 Benzene ND 0.19 3.8 Bromodichloromethane ND 0.52 3.8 Bromoform ND 1.9 3.8 Bromofethane ND 0.35 3.8 Carbon disulfide ND 1.9 3.8 Carbon disulfide ND 0.37 3.8 Chlorobenzene ND 0.51 3.8 Chlorobenzene ND 0.51 3.8 Chloropethane ND 0.87 3.8 Chloropethane ND 0.23 3.8 Chloropethane ND 0.49 3.8 Cyclohexane ND 0.55 3.8	1,2-Dichloroethane		ND			3.8
1.4-Dichlorobenzene ND 0.54 3.8 2-Butanone (MEK) ND 1.4 19 2-Hexanone ND 1.9 19 4-Methyl-2-pentanone (MIBK) ND 1.3 19 Acetone ND 3.2 19 Benzene ND 0.19 3.8 Bromodichloromethane ND 0.52 3.8 Bromoform ND 0.52 3.8 Bromoform ND 0.52 3.8 Bromoform ND 0.52 3.8 Bromoform ND 0.35 3.8 Carbon disulfide ND 0.35 3.8 Carbon tetrachloride ND 0.37 3.8 Chloropethane ND 0.51 3.8 Chloropethane ND 0.87 3.8 Chloropethane ND 0.23 3.8 Chloropethane ND 0.49 3.8 cis-1,2-Dichloropethene ND 0.55 3.8	1,2-Dichloropropane		ND			3.8
2-Butanone (MEK) ND 1.4 19 2-Hexanone ND 1.9 19 4-Methyl-2-pentanone (MIBK) ND 1.3 19 Acetone ND 3.2 19 Benzene ND 0.19 3.8 Bromofichloromethane ND 0.52 3.8 Bromoform ND 1.9 3.8 Bromofichloromethane ND 0.35 3.8 Carbon disulfide ND 0.35 3.8 Carbon tetrachloride ND 0.37 3.8 Chlorobenzene ND 0.51 3.8 Chlorobenzene ND 0.51 3.8 Chloroform ND 0.87 3.8 Chloroformethane ND 0.24 3.8 Chloromethane ND 0.23 3.8 cis-1,2-Dichlorethene ND 0.49 3.8 cis-1,3-Dichloropropene ND 0.54 3.8 Dibromochloromethane ND 0.54	1,3-Dichlorobenzene		ND		0.20	3.8
2-Hexanone ND 1.9 19 4-Methyl-2-pentanone (MIBK) ND 1.3 19 Acetone ND 3.2 19 Benzene ND 0.19 3.8 Bromodichloromethane ND 0.52 3.8 Bromoform ND 0.35 3.8 Bromoformethane ND 0.35 3.8 Carbon disulfide ND 1.9 3.8 Carbon tetrachloride ND 0.37 3.8 Chlorobenzene ND 0.51 3.8 Chloroethane ND 0.51 3.8 Chloroform ND 0.87 3.8 Chloroformethane ND 0.24 3.8 cis-1,2-Dichloroethene ND 0.24 3.8 cis-1,3-Dichloropropene ND 0.55 3.8 Cis-1,3-Dichloropropene ND 0.55 3.8 Dibromochloromethane ND 0.54 3.8 Dichlorodifluoromethane ND <td< td=""><td>1,4-Dichlorobenzene</td><td></td><td>ND</td><td></td><td>0.54</td><td>3.8</td></td<>	1,4-Dichlorobenzene		ND		0.54	3.8
4-Methyl-2-pentanone (MIBK) ND 1.3 19 Acetone ND 3.2 19 Benzene ND 0.19 3.8 Bromodichloromethane ND 0.52 3.8 Bromoform ND 1.9 3.8 Bromomethane ND 0.35 3.8 Carbon disulfide ND 1.9 3.8 Carbon tetrachloride ND 0.37 3.8 Chlorobenzene ND 0.51 3.8 Chloroethane ND 0.51 3.8 Chloroform ND 0.87 3.8 Chloroform ND 0.87 3.8 Chloroform ND 0.24 3.8 Chloromethane ND 0.23 3.8 Chloromethane ND 0.49 3.8 Cyclohexane ND 0.55 3.8 Cyclohexane ND 0.54 3.8 Dichlorodifluoromethane ND 0.32 3.8 <t< td=""><td>2-Butanone (MEK)</td><td></td><td>ND</td><td></td><td></td><td>19</td></t<>	2-Butanone (MEK)		ND			19
Acetone ND 3.2 19 Benzene ND 0.19 3.8 Bromodichloromethane ND 0.52 3.8 Bromoform ND 1.9 3.8 Bromomethane ND 0.35 3.8 Carbon disulfide ND 0.37 3.8 Carbon disulfide ND 0.37 3.8 Chlorobenzene ND 0.51 3.8 Chlorobenzene ND 0.51 3.8 Chloroform ND 0.87 3.8 Chloroform ND 0.24 3.8 Chloromethane ND 0.23 3.8 Chloropropene ND 0.49 3.8 cis-1,2-Dichloropropene ND 0.55 3.8 Cyclohexane ND 0.54 3.8 Cyclohexane ND 0.54 3.8 Dichlorodifluoromethane ND 0.54 3.8 Ethylbenzene ND 0.27 3.8	2-Hexanone		ND		1.9	19
Benzene ND 0.19 3.8 Bromodichloromethane ND 0.52 3.8 Bromoform ND 1.9 3.8 Bromomethane ND 0.35 3.8 Carbon disulfide ND 1.9 3.8 Carbon tetrachloride ND 0.37 3.8 Chlorobenzene ND 0.51 3.8 Chlorobenzene ND 0.51 3.8 Chloroform ND 0.87 3.8 Chloroform ND 0.87 3.8 Chloromethane ND 0.24 3.8 Chloromethane ND 0.23 3.8 cis-1,2-Dichloropropene ND 0.49 3.8 Cyclohexane ND 0.54 3.8 Dibromochloromethane ND 0.54 3.8 Ethylbenzene ND 0.49 3.8 Isopropylbenzene ND 0.58 3.8 Methyl tert-butyl ether ND 0.59 3.8<	4-Methyl-2-pentanone	(MIBK)	ND		1.3	19
Bromodichloromethane ND 0.52 3.8 Bromoform ND 1.9 3.8 Bromomethane ND 0.35 3.8 Carbon disulfide ND 1.9 3.8 Carbon tetrachloride ND 0.37 3.8 Chlorobenzene ND 0.51 3.8 Chlorobenzene ND 0.87 3.8 Chloroform ND 0.87 3.8 Chloroform ND 0.24 3.8 Chloromethane ND 0.23 3.8 Cis-1,2-Dichloropthene ND 0.49 3.8 cis-1,2-Dichloropropene ND 0.54 3.8 Cyclohexane ND 0.54 3.8 Dibromochloromethane ND 0.54 3.8 Elthylbenzene ND 0.32 3.8 Elthylbenzene ND 0.58 3.8 Isopropylbenzene ND 0.58 3.8 Methyl tert-butyl ether ND 0.59	Acetone		ND		3.2	19
Bromoform ND 1.9 3.8 Bromomethane ND 0.35 3.8 Carbon disulfide ND 1.9 3.8 Carbon tetrachloride ND 0.37 3.8 Chlorobenzene ND 0.51 3.8 Chloroethane ND 0.87 3.8 Chloroform ND 0.24 3.8 Chloromethane ND 0.23 3.8 cis-1,2-Dichloroethene ND 0.49 3.8 cis-1,3-Dichloropropene ND 0.55 3.8 Cyclohexane ND 0.54 3.8 Dibromochloromethane ND 0.54 3.8 Dichlorodifluoromethane ND 0.32 3.8 Ethylbenzene ND 0.27 3.8 Isopropylbenzene ND 0.58 3.8 Methyl cetate ND 0.72 3.8 Methyl cetate ND 0.59 3.8 Methyl tert-butyl ether ND 0.59 </td <td>Benzene</td> <td></td> <td>ND</td> <td></td> <td>0.19</td> <td>3.8</td>	Benzene		ND		0.19	3.8
Bromomethane ND 0.35 3.8 Carbon disulfide ND 1.9 3.8 Carbon tetrachloride ND 0.37 3.8 Chlorobenzene ND 0.51 3.8 Chlorobethane ND 0.87 3.8 Chloroform ND 0.24 3.8 Chloromethane ND 0.23 3.8 Chloromethane ND 0.49 3.8 cis-1,2-Dichloropropene ND 0.55 3.8 Cyclohexane ND 0.54 3.8 Dibromochloromethane ND 0.54 3.8 Dibromochloromethane ND 0.32 3.8 Ethylbenzene ND 0.27 3.8 Isopropylbenzene ND 0.58 3.8 Methyl acetate ND 0.72 3.8 Methyl tert-butyl ether ND 0.38 3.8 Methylene Chloride ND 0.59 3.8 Methylene Chloride ND 0	Bromodichloromethan	e	ND		0.52	3.8
Carbon disulfide ND 1.9 3.8 Carbon tetrachloride ND 0.37 3.8 Chlorobenzene ND 0.51 3.8 Chlorobenzene ND 0.87 3.8 Chloroform ND 0.24 3.8 Chloromethane ND 0.23 3.8 Chloromethane ND 0.49 3.8 cis-1,2-Dichloroptopene ND 0.55 3.8 Cyclohexane ND 0.54 3.8 Dibromochloromethane ND 0.54 3.8 Dibromochloromethane ND 0.49 3.8 Ethylbenzene ND 0.32 3.8 Ethylbenzene ND 0.58 3.8 Methyl acetate ND 0.58 3.8 Methyl tetr-butyl ether ND 0.72 3.8 Methylene Chloride ND 0.59 3.8 Methylene Chloride ND 0.19 3.8 Styrene ND 0.19	Bromoform		ND		1.9	3.8
Carbon tetrachloride ND 0.37 3.8 Chlorobenzene ND 0.51 3.8 Chloroethane ND 0.87 3.8 Chloroform ND 0.24 3.8 Chloromethane ND 0.23 3.8 Cis-1,2-Dichloroethene ND 0.49 3.8 cis-1,2-Dichloropropene ND 0.55 3.8 Cyclohexane ND 0.54 3.8 Cyclohexane ND 0.54 3.8 Dibromochloromethane ND 0.49 3.8 Dichlorodifluoromethane ND 0.49 3.8 Ethylbenzene ND 0.32 3.8 Ethylbenzene ND 0.27 3.8 Isopropylbenzene ND 0.72 3.8 Methyl acetate ND 0.72 3.8 Methylcyclohexane ND 0.79 3.8 Methylcyclohexane ND 0.19 3.8 Styrene ND 0.19	Bromomethane		ND		0.35	3.8
Chlorobenzene ND 0.51 3.8 Chloroform ND 0.87 3.8 Chloroform ND 0.24 3.8 Chloromethane ND 0.23 3.8 cis-1,2-Dichloroethene ND 0.49 3.8 cis-1,3-Dichloropropene ND 0.55 3.8 Cyclohexane ND 0.54 3.8 Dibromochloromethane ND 0.54 3.8 Dibromochloromethane ND 0.49 3.8 Ethylbenzene ND 0.32 3.8 Ethylbenzene ND 0.27 3.8 Isopropylbenzene ND 0.58 3.8 Methyl acetate ND 0.72 3.8 Methyl tert-butyl ether ND 0.38 3.8 Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 0.19 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.29 <td>Carbon disulfide</td> <td></td> <td>ND</td> <td></td> <td>1.9</td> <td>3.8</td>	Carbon disulfide		ND		1.9	3.8
Chloroethane ND 0.87 3.8 Chloroform ND 0.24 3.8 Chloromethane ND 0.23 3.8 cis-1,2-Dichloroethene ND 0.49 3.8 cis-1,3-Dichloropropene ND 0.55 3.8 Cyclohexane ND 0.54 3.8 Dibromochloromethane ND 0.49 3.8 Dichlorodifluoromethane ND 0.49 3.8 Ethylbenzene ND 0.32 3.8 Ethylbenzene ND 0.27 3.8 Isopropylbenzene ND 0.58 3.8 Methyl acetate ND 0.72 3.8 Methyl tert-butyl ether ND 0.38 3.8 Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 0.59 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.40 <td>Carbon tetrachloride</td> <td></td> <td>ND</td> <td></td> <td>0.37</td> <td>3.8</td>	Carbon tetrachloride		ND		0.37	3.8
Chloroform ND 0.24 3.8 Chloromethane ND 0.23 3.8 cis-1,2-Dichloroethene ND 0.49 3.8 cis-1,3-Dichloropropene ND 0.55 3.8 Cyclohexane ND 0.54 3.8 Dibromochloromethane ND 0.49 3.8 Dibromochloromethane ND 0.49 3.8 Ethylbenzene ND 0.32 3.8 Ethylbenzene ND 0.27 3.8 Isopropylbenzene ND 0.58 3.8 Methyl acetate ND 0.72 3.8 Methyl tert-butyl ether ND 0.38 3.8 Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 0.59 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND <th< td=""><td>Chlorobenzene</td><td></td><td>ND</td><td></td><td>0.51</td><td>3.8</td></th<>	Chlorobenzene		ND		0.51	3.8
Chloromethane ND 0.23 3.8 cis-1,2-Dichloroethene ND 0.49 3.8 cis-1,3-Dichloropropene ND 0.55 3.8 Cyclohexane ND 0.54 3.8 Dibromochloromethane ND 0.49 3.8 Dichlorodifluoromethane ND 0.32 3.8 Ethylbenzene ND 0.27 3.8 Isopropylbenzene ND 0.58 3.8 Methyl acetate ND 0.72 3.8 Methyl tert-butyl ether ND 0.38 3.8 Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 1.8 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.52 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 0.40 3.8 trans-1,3-Dichloroethene	Chloroethane		ND		0.87	3.8
cis-1,2-Dichloroethene ND 0.49 3.8 cis-1,3-Dichloropropene ND 0.55 3.8 Cyclohexane ND 0.54 3.8 Dibromochloromethane ND 0.49 3.8 Dichlorodifluoromethane ND 0.32 3.8 Ethylbenzene ND 0.27 3.8 Isopropylbenzene ND 0.58 3.8 Methyl acetate ND 0.72 3.8 Methyl tert-butyl ether ND 0.38 3.8 Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 1.8 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.52 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	Chloroform		ND		0.24	3.8
cis-1,3-Dichloropropene ND 0.55 3.8 Cyclohexane ND 0.54 3.8 Dibromochloromethane ND 0.49 3.8 Dichlorodifluoromethane ND 0.32 3.8 Ethylbenzene ND 0.27 3.8 Isopropylbenzene ND 0.58 3.8 Methyl acetate ND 0.72 3.8 Methyl tert-butyl ether ND 0.38 3.8 Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 1.8 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	Chloromethane		ND		0.23	3.8
Cyclohexane ND 0.54 3.8 Dibromochloromethane ND 0.49 3.8 Dichlorodifluoromethane ND 0.32 3.8 Ethylbenzene ND 0.27 3.8 Isopropylbenzene ND 0.58 3.8 Methyl acetate ND 0.72 3.8 Methyl tert-butyl ether ND 0.38 3.8 Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 1.8 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	cis-1,2-Dichloroethene	e	ND		0.49	3.8
Dibromochloromethane ND 0.49 3.8 Dichlorodifluoromethane ND 0.32 3.8 Ethylbenzene ND 0.27 3.8 Isopropylbenzene ND 0.58 3.8 Methyl acetate ND 0.72 3.8 Methyl tert-butyl ether ND 0.38 3.8 Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 1.8 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	cis-1,3-Dichloroproper	ne	ND		0.55	3.8
Dichlorodifluoromethane ND 0.32 3.8 Ethylbenzene ND 0.27 3.8 Isopropylbenzene ND 0.58 3.8 Methyl acetate ND 0.72 3.8 Methyl tert-butyl ether ND 0.38 3.8 Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 1.8 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	Cyclohexane		ND		0.54	3.8
Ethylbenzene ND 0.27 3.8 Isopropylbenzene ND 0.58 3.8 Methyl acetate ND 0.72 3.8 Methyl tert-butyl ether ND 0.38 3.8 Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 1.8 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	Dibromochloromethan	ne	ND			3.8
Isopropylbenzene ND 0.58 3.8 Methyl acetate ND 0.72 3.8 Methyl tert-butyl ether ND 0.38 3.8 Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 1.8 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	Dichlorodifluorometha	ne	ND		0.32	3.8
Methyl acetate ND 0.72 3.8 Methyl tert-butyl ether ND 0.38 3.8 Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 1.8 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	Ethylbenzene		ND		0.27	3.8
Methyl tert-butyl ether ND 0.38 3.8 Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 1.8 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	Isopropylbenzene		ND		0.58	3.8
Methylcyclohexane ND 0.59 3.8 Methylene Chloride ND 1.8 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	Methyl acetate		ND		0.72	3.8
Methylene Chloride ND 1.8 3.8 Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	Methyl tert-butyl ether		ND		0.38	3.8
Styrene ND 0.19 3.8 Tetrachloroethene ND 0.52 3.8 Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	Methylcyclohexane		ND		0.59	3.8
Tetrachloroethene ND 0.52 3.8 Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	Methylene Chloride		ND		1.8	3.8
Toluene ND 0.29 3.8 trans-1,2-Dichloroethene ND 0.40 3.8 trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	Styrene		ND		0.19	3.8
trans-1,2-DichloroetheneND0.403.8trans-1,3-DichloropropeneND1.73.8TrichloroetheneND0.853.8	Tetrachloroethene		ND		0.52	3.8
trans-1,3-Dichloropropene ND 1.7 3.8 Trichloroethene ND 0.85 3.8	Toluene		ND		0.29	3.8
Trichloroethene ND 0.85 3.8	trans-1,2-Dichloroethe	ene	ND		0.40	3.8
	trans-1,3-Dichloroprop	pene	ND		1.7	3.8
Trichlorofluoromethane ND 0.36 3.8	Trichloroethene					
	Trichlorofluoromethan	e	ND		0.36	3.8

HP5973F

F1429.D

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-4 (10.5-11)

Lab Sample ID: 480-45961-4 Date Sampled: 09/16/2013 1140

Client Matrix: Solid % Moisture: 16.8 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-139832 Instrument ID: Prep Method: 5035 Prep Batch: 480-139845 Lab File ID: Dilution: 1.0 Initial Weight/V

Dilution: 1.0 Initial Weight/Volume: 7.81 g
Analysis Date: 09/19/2013 0311 Final Weight/Volume: 5 g

Prep Date: 09/18/2013 2252

 Analyte
 DryWt Corrected: Y
 Result (ug/Kg)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.47
 3.8

 Xylenes, Total
 ND
 0.65
 7.7

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10164 - 1264-Bromofluorobenzene (Surr)9972 - 126Toluene-d8 (Surr)10171 - 125

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-5 (10.5-11)

Lab Sample ID: 480-45961-5 Date Sampled: 09/16/2013 1215

Client Matrix: Solid % Moisture: 18.4 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-139832 Instrument ID: HP5973F Prep Method: 5035 Prep Batch: 480-139845 Lab File ID: F1430.D Dilution: Initial Weight/Volume: 6.9 g 1.0 Analysis Date: 09/19/2013 0337 Final Weight/Volume: 5 g

Prep Date: 09/18/2013 2252

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		ND		0.32	4.4
1,1,2,2-Tetrachloroethane		ND		0.72	4.4
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND		1.0	4.4
1,1,2-Trichloroethane		ND		0.58	4.4
1,1-Dichloroethane		ND		0.54	4.4
1,1-Dichloroethene		ND		0.54	4.4
1,2,4-Trichlorobenzene		ND		0.27	4.4
1,2-Dibromo-3-Chloropropar	ne	ND		2.2	4.4
1,2-Dibromoethane		ND		0.57	4.4
1,2-Dichlorobenzene		ND		0.35	4.4
1,2-Dichloroethane		ND		0.22	4.4
1,2-Dichloropropane		ND		2.2	4.4
1,3-Dichlorobenzene		ND		0.23	4.4
1,4-Dichlorobenzene		ND		0.62	4.4
2-Butanone (MEK)		ND		1.6	22
2-Hexanone		ND		2.2	22
4-Methyl-2-pentanone (MIBk	()	ND		1.5	22
Acetone	•	12	J	3.7	22
Benzene		ND		0.22	4.4
Bromodichloromethane		ND		0.60	4.4
Bromoform		ND		2.2	4.4
Bromomethane		ND		0.40	4.4
Carbon disulfide		ND		2.2	4.4
Carbon tetrachloride		ND		0.43	4.4
Chlorobenzene		ND		0.59	4.4
Chloroethane		ND		1.0	4.4
Chloroform		ND		0.27	4.4
Chloromethane		ND		0.27	4.4
cis-1,2-Dichloroethene		ND		0.57	4.4
cis-1,3-Dichloropropene		ND		0.64	4.4
Cyclohexane		ND		0.62	4.4
Dibromochloromethane		ND		0.57	4.4
Dichlorodifluoromethane		ND		0.37	4.4
Ethylbenzene		ND		0.31	4.4
Isopropylbenzene		ND		0.67	4.4
Methyl acetate		ND		0.83	4.4
Methyl tert-butyl ether		ND		0.44	4.4
Methylcyclohexane		ND		0.68	4.4
Methylene Chloride		ND		2.0	4.4
Styrene		ND		0.22	4.4
Styrene Tetrachloroethene		ND ND		0.60	4.4 4.4
Toluene		ND		0.34	4.4
trans-1,2-Dichloroethene		ND		0.34 0.46	4.4 4.4
·				2.0	4.4 4.4
trans-1,3-Dichloropropene		ND ND			
Trichloroethene		ND		0.98	4.4
Trichlorofluoromethane		ND		0.42	4.4

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-5 (10.5-11)

Lab Sample ID: 480-45961-5 Date Sampled: 09/16/2013 1215

Client Matrix: Solid % Moisture: 18.4 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B
Prep Method: 5035

Analysis Batch: 480-139832 Prep Batch: 480-139845 Instrument ID: HP5973F Lab File ID: F1430.D

Dilution: 1.0

Initial Weight/Volume: 6.9 g

Analysis Date: 09/19/2013 0337

Final Weight/Volume: 5 g

Prep Date: 09/18/2013 2252

 Analyte
 DryWt Corrected: Y
 Result (ug/Kg)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.54
 4.4

 Xylenes, Total
 ND
 0.75
 8.9

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)9764 - 1264-Bromofluorobenzene (Surr)9872 - 126Toluene-d8 (Surr)10171 - 125

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-6 (10.5-11)

Lab Sample ID: 480-45961-6 Date Sampled: 09/16/2013 1300

Client Matrix: Solid % Moisture: 17.6 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-139832 Instrument ID: HP5973F Prep Method: 5035 Prep Batch: 480-139845 Lab File ID: F1431.D Dilution: Initial Weight/Volume: 6.99 g 1.0 Analysis Date: 09/19/2013 0402 Final Weight/Volume: 5 g

Prep Date: 09/18/2013 2252

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroetha	ane	ND		0.32	4.3
1,1,2,2-Tetrachloro	pethane	ND		0.70	4.3
1,1,2-Trichloro-1,2	,2-trifluoroethane	ND		0.99	4.3
1,1,2-Trichloroetha	ane	ND		0.56	4.3
1,1-Dichloroethane	e	ND		0.53	4.3
1,1-Dichloroethene	e	ND		0.53	4.3
1,2,4-Trichloroben	zene	ND		0.26	4.3
1,2-Dibromo-3-Chl	loropropane	ND		2.2	4.3
1,2-Dibromoethane	e	ND		0.56	4.3
1,2-Dichlorobenze	ne	ND		0.34	4.3
1,2-Dichloroethane	е	ND		0.22	4.3
1,2-Dichloropropar	ne	ND		2.2	4.3
1,3-Dichlorobenze	ne	ND		0.22	4.3
1,4-Dichlorobenze	ne	ND		0.61	4.3
2-Butanone (MEK))	ND		1.6	22
2-Hexanone		ND		2.2	22
4-Methyl-2-pentan	one (MIBK)	ND		1.4	22
Acetone		ND		3.7	22
Benzene		ND		0.21	4.3
Bromodichloromet	hane	ND		0.58	4.3
Bromoform		ND		2.2	4.3
Bromomethane		ND		0.39	4.3
Carbon disulfide		ND		2.2	4.3
Carbon tetrachlorid	de	ND		0.42	4.3
Chlorobenzene		ND		0.57	4.3
Chloroethane		ND		0.98	4.3
Chloroform		ND		0.27	4.3
Chloromethane		ND		0.26	4.3
cis-1,2-Dichloroeth	nene	ND		0.56	4.3
cis-1,3-Dichloropro	ppene	ND		0.63	4.3
Cyclohexane		ND		0.61	4.3
Dibromochloromet	hane	ND		0.56	4.3
Dichlorodifluorome	ethane	ND		0.36	4.3
Ethylbenzene		ND		0.30	4.3
Isopropylbenzene		ND		0.65	4.3
Methyl acetate		ND		0.81	4.3
Methyl tert-butyl et	ther	ND		0.43	4.3
Methylcyclohexane	e	ND		0.66	4.3
Methylene Chloride	e	ND		2.0	4.3
Styrene		ND		0.22	4.3
Tetrachloroethene		ND		0.58	4.3
Toluene		ND		0.33	4.3
trans-1,2-Dichloroe	ethene	ND		0.45	4.3
trans-1,3-Dichlorop	propene	ND		1.9	4.3
Trichloroethene		ND		0.96	4.3
Trichlorofluoromet	hane	ND		0.41	4.3

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-6 (10.5-11)

Lab Sample ID: 480-45961-6 Date Sampled: 09/16/2013 1300

Client Matrix: Solid % Moisture: 17.6 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5035 Analysis Batch: 480-139832 Prep Batch: 480-139845 Instrument ID: HP5973F Lab File ID: F1431.D

Dilution: 1.0

Initial Weight/Volume: 6.99 g

Analysis Date: 09/19/2013 0402

Final Weight/Volume:

5 g

Prep Date: 09/18/2013 2252

 Analyte
 DryWt Corrected: Y
 Result (ug/Kg)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.53
 4.3

 Xylenes, Total
 ND
 0.73
 8.7

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)9964 - 1264-Bromofluorobenzene (Surr)9872 - 126Toluene-d8 (Surr)10171 - 125

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-45961-7 Date Sampled: 09/16/2013 0000

Client Matrix: Water Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-139828 Instrument ID: HP5975D Prep Method: 5030B Prep Batch: N/A Lab File ID: D5486.D Dilution: Initial Weight/Volume: 1.0 5 mL

Analysis Date: 09/18/2013 2209 Final Weight/Volume: 5 mL

Prep Date: 09/18/2013 2209

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
I,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK)	ND		1.3	10
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chloroethane	ND		0.73	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND ND		0.36	1.0
Cyclohexane	ND		0.30	1.0
Dibromochloromethane	ND		0.16	1.0
Dichlorodifluoromethane	ND		0.68	1.0
	ND		0.74	1.0
Ethylbenzene			0.74	
sopropylbenzene	ND ND		0.79	1.0 1.0
Methyl acetate	ND ND		0.50 0.16	1.0
Methyl tert-butyl ether	ND ND			
Methylcyclohexane	ND ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Foluene	ND		0.51	1.0
rans-1,2-Dichloroethene	ND		0.90	1.0
rans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-45961-7 Date Sampled: 09/16/2013 0000

Client Matrix: Water Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-139828 Instrument ID: Prep Method: 5030B Prep Batch: N/A Lab File ID: Dilution: 1.0 Initial Weight/V

Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

HP5975D

D5486.D

Analysis Date: 09/18/2013 2209 Prep Date: 09/18/2013 2209

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.90
 1.0

 Xylenes, Total
 ND
 0.66
 2.0

Surrogate %Rec Qualifier Acceptance Limits

1,2-Dichloroethane-d4 (Surr) 83 66 - 137

4-Bromofluorobenzene (Surr) 87 73 - 120

Toluene-d8 (Surr) 87 71 - 126

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-1 GW 09172013

 Lab Sample ID:
 480-45961-8
 Date Sampled: 09/17/2013 1315

 Client Matrix:
 Water
 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-139828 Instrument ID: HP5975D Prep Method: 5030B Prep Batch: N/A Lab File ID: D5487.D Dilution: Initial Weight/Volume: 5.0 5 mL Final Weight/Volume: 5 mL

Analysis Date: 09/18/2013 2230 Prep Date: 09/18/2013 2230

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		4.1	5.0
1,1,2,2-Tetrachloroethane	ND		1.1	5.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.6	5.0
1,1,2-Trichloroethane	ND		1.2	5.0
1,1-Dichloroethane	ND		1.9	5.0
1,1-Dichloroethene	ND		1.5	5.0
1,2,4-Trichlorobenzene	ND		2.1	5.0
1,2-Dibromo-3-Chloropropane	ND		2.0	5.0
1,2-Dibromoethane	ND		3.7	5.0
1,2-Dichlorobenzene	ND		4.0	5.0
1,2-Dichloroethane	ND		1.1	5.0
1,2-Dichloropropane	ND		3.6	5.0
1,3-Dichlorobenzene	ND		3.9	5.0
1,4-Dichlorobenzene	ND		4.2	5.0
2-Butanone (MEK)	ND		6.6	50
2-Hexanone	ND		6.2	25
4-Methyl-2-pentanone (MIBK)	ND		11	25
Acetone	ND		15	50
Benzene	ND		2.1	5.0
Bromodichloromethane	ND		2.0	5.0
Bromoform	ND		1.3	5.0
Bromomethane	ND		3.5	5.0
Carbon disulfide	ND		0.95	5.0
Carbon tetrachloride	ND		1.4	5.0
Chlorobenzene	ND		3.8	5.0
Chloroethane	ND		1.6	5.0
Chloroform	ND		1.7	5.0
Chloromethane	ND		1.8	5.0
cis-1,2-Dichloroethene	ND		4.1	5.0
cis-1,3-Dichloropropene	ND		1.8	5.0
Cyclohexane	ND		0.90	5.0
Dibromochloromethane	ND		1.6	5.0
Dichlorodifluoromethane	ND		3.4	5.0
Ethylbenzene	ND		3.7	5.0
Isopropylbenzene	ND		4.0	5.0
Methyl acetate	ND		2.5	5.0
Methyl tert-butyl ether	ND		0.80	5.0
Methylcyclohexane	ND		0.80	5.0
Methylene Chloride	ND		2.2	5.0
Styrene	ND		3.7	5.0
Tetrachloroethene	ND		1.8	5.0
Toluene	ND		2.6	5.0
trans-1,2-Dichloroethene	ND		4.5	5.0
trans-1,3-Dichloropropene	ND		1.9	5.0
Trichloroethene	ND		2.3	5.0
Trichlorofluoromethane	ND		4.4	5.0

Client: AECOM, Inc. Job Number: 480-45961-1

Client Sample ID: B-1 GW 09172013

 Lab Sample ID:
 480-45961-8
 Date Sampled: 09/17/2013 1315

 Client Matrix:
 Water
 Date Received: 09/17/2013 1620

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-139828 Instrument ID: HP5975D Prep Method: 5030B Prep Batch: N/A Lab File ID: D5487.D Dilution: 5.0 Initial Weight/Volume: 5 mL

Analysis Date: 09/18/2013 2230 Final Weight/Volume: 5 mL

Prep Date: 09/18/2013 2230

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 4.5
 5.0

 Xylenes, Total
 ND
 3.3
 10

Surrogate %Rec Qualifier Acceptance Limits
1,2-Dichloroethane-d4 (Surr) 81 66 - 137
4-Bromofluorobenzene (Surr) 86 73 - 120
Toluene-d8 (Surr) 89 71 - 126

Tes America Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298

Amherst

2000 **TestAmerica** S - H2SO4 T - TSP Dodecahydrate W - ph 4-5 Z - other (specify) Special Instructions/Note: N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2SO3 Company Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Month 480-39334-10380.2 Preservation Codes G - Amchlor H - Ascorbic Acid 480-45961 Chain of Custody D - Nitric Acid E - NaHSO4 F - MeOH Page: Page 2 pr 2 I - Ice J - DI Water K - EDTA L - EDA A - HCL B - NaOH Archive For Total Number of containers Date/Time: \(\) Date/Fime: Analysis Requested Cooler Temperature(s) °C and Other Remarks: Return To Client Special Instructions/QC Requirements Chain of Custody Record brian.fischer@testamericainc.com X 260B - TCL list OLM04.2 Fischer, Brian J E-Mail: Perform MS/MSD (Yes or No) Time: Preservation Code: ✓ Water
 ✓ Mater
 3 3 V Company V ALARA RABY Due Date Requested: 9 | 20 | 13 TAT Requested (days): 3 day Sample Type (C=comp, G=grab) Radiological 929 Purchase Order not required WO #: 930 91171311315 215 900 200 Sample Date: Unknown Date(Time: Of 1/13 9/16/13 Sample Date Project #: 48008494 SSOW#: Date/Time Poison B Skin Irritant Rossible Hazard Identification

Non-Hazard — Flammable Skin Irrii
Deliverable Requested: I, III, IIV, Other (specify) 10.5-1 (Custody Seal No.: Phone (716) 691-2600 Fax (716) 691-7991 Tyco Int'l Facility - BCP (AECOM# 601559 100 Corporate Parkway Suite 341 2 9 Empty Kit Relinquished by: Sined by Custody Seals Intact:

Δ Yes Δ No Client Information dino.zack@aecom.com Sample Identification 9 0 Mr. Dino Zack Company: AECOM, Inc. linquished by: State, Zip: NY, 14226

246

of

247

09/30/2013

Login Sample Receipt Checklist

Client: AECOM, Inc. Job Number: 480-45961-1

Login Number: 45961 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	N/A	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

ANALYTICAL REPORT

Job Number: 480-46536-1

Job Description: Tyco Int'l Facility-BCP(AECOM# 60155991)

For:
AECOM, Inc.
100 Corporate Parkway
Suite 341
Amherst, NY 14226

Attention: Mr. Dino Zack

Joeph V. Giacomagger

Approved for release Joe V Giacomazza Project Administrator 9/30/2013 10:34 AM

Designee for
Brian J Fischer, Project Manager II
10 Hazelwood Drive, Amherst, NY, 14228-2298
(716)504-9835
brian.fischer@testamericainc.com
09/30/2013

cc: Ms. Helen Jones

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project Manager who has signed this report. TestAmerica Buffalo NELAC Certifications: CADPH 01169CA, FLDOH E87672, ILEPA 200003, KSDOH E-10187, LADEQ 30708, MDH 036-999-337, NHELAP 2973, NJDEP NY455, NHDOH 10026, ORELAP NY200003, PADEP 68-00281, TXCEQ T-104704412-10-1

Job Narrative 480-46536-1

Receipt

The samples were received on 9/25/2013 4:15 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.5° C.

GC/MS VOA

Method(s) 8260B: The following samples were composited by the laboratory on 09/26/2013 due to excessive sediment in the sample vials: B-3 GW 09252013 (480-46536-2).

Method(s) 8260B: The continuing calibration verification (CCV) for analytical batch 141221 recovered outside control limits for trans-1,4-Dichloro-2-butene. This was not a client requested analyte; therefore, the data have been reported.

No other analytical or quality issues were noted.

SAMPLE SUMMARY

Client: AECOM, Inc. Job Number: 480-46536-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
480-46536-1	B-2 GW 09252013	Water	09/25/2013 1410	09/25/2013 1615
480-46536-2	B-3 GW 09252013	Water	09/25/2013 1420	09/25/2013 1615
480-46536-3	B-4 GW 09252013	Water	09/25/2013 1435	09/25/2013 1615
480-46536-4	B-5 GW 09252013	Water	09/25/2013 1445	09/25/2013 1615
480-46536-5	B-6 GW 09252013	Water	09/25/2013 1500	09/25/2013 1615
480-46536-6	TRIP BLANK	Water	09/25/2013 0000	09/25/2013 1615

EXECUTIVE SUMMARY - Detections

Client: AECOM, Inc. Job Number: 480-46536-1

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
480-46536-1 Acetone	B-2 GW 09252013	10		10	ug/L	8260B
480-46536-2 Acetone	B-3 GW 09252013	10		10	ug/L	8260B
480-46536-3 Acetone	B-4 GW 09252013	4.4	J	10	ug/L	8260B
480-46536-4 Acetone	B-5 GW 09252013	35		10	ug/L	8260B
480-46536-5 2-Butanone (MEK) Acetone	B-6 GW 09252013	4.1 37	J	10 10	ug/L ug/L	8260B 8260B
480-46536-6 Acetone	TRIP BLANK	5.6	J	10	ug/L	8260B

METHOD SUMMARY

Client: AECOM, Inc. Job Number: 480-46536-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL BUF	SW846 8260B	
Purge and Trap	TAL BUF		SW846 5030B

Lab References:

TAL BUF = TestAmerica Buffalo

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: AECOM, Inc. Job Number: 480-46536-1

Method	Analyst	Analyst ID
SW846 8260B	Larson, Renee A	RAL

Client: AECOM, Inc. Job Number: 480-46536-1

Client Sample ID: B-2 GW 09252013

 Lab Sample ID:
 480-46536-1
 Date Sampled: 09/25/2013 1410

 Client Matrix:
 Water
 Date Received: 09/25/2013 1615

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-141221 Instrument ID: HP5973S Prep Method: 5030B Prep Batch: N/A Lab File ID: S30540.D Dilution: Initial Weight/Volume: 1.0 5 mL Analysis Date: 09/26/2013 1629 Final Weight/Volume: 5 mL

Prep Date: 09/26/2013 1629

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK)	ND		1.3	10
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	10		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane			0.41	1.0
	ND			
Bromoform	ND ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Ethylbenzene	ND		0.74	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0

Client: AECOM, Inc. Job Number: 480-46536-1

Client Sample ID: B-2 GW 09252013

 Lab Sample ID:
 480-46536-1
 Date Sampled: 09/25/2013 1410

 Client Matrix:
 Water
 Date Received: 09/25/2013 1615

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-141221 Instrument ID: HP5973S Prep Method: 5030B Prep Batch: N/A Lab File ID: S30540.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 1.0 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Prep Date: 09/26/2013 1629

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.90
 1.0

 Xylenes, Total
 ND
 0.66
 2.0

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10166 - 1374-Bromofluorobenzene (Surr)10073 - 120Toluene-d8 (Surr)10771 - 126

Client: AECOM, Inc. Job Number: 480-46536-1

Client Sample ID: B-3 GW 09252013

 Lab Sample ID:
 480-46536-2
 Date Sampled: 09/25/2013 1420

 Client Matrix:
 Water
 Date Received: 09/25/2013 1615

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-141221 Instrument ID: HP5973S Prep Method: 5030B Prep Batch: N/A Lab File ID: S30541.D Dilution: Initial Weight/Volume: 1.0 5 mL Analysis Date: 09/26/2013 1650 Final Weight/Volume: 5 mL

Prep Date: 09/26/2013 1650

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK)	ND		1.3	10
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone (MIBIC)	10		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND ND		0.39	1.0
Bromoform	ND		0.39	
			0.69	1.0
Bromomethane Corbon disulfide	ND			1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Ethylbenzene	ND		0.74	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane				

Client: AECOM, Inc. Job Number: 480-46536-1

Client Sample ID: B-3 GW 09252013

 Lab Sample ID:
 480-46536-2
 Date Sampled: 09/25/2013 1420

 Client Matrix:
 Water
 Date Received: 09/25/2013 1615

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-141221 Instrument ID: HP5973S 8260B Prep Method: 5030B Prep Batch: N/A Lab File ID: S30541.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 09/26/2013 1650 Final Weight/Volume: 5 mL

Prep Date: 09/26/2013 1650

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.90
 1.0

 Xylenes, Total
 ND
 0.66
 2.0

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10366 - 1374-Bromofluorobenzene (Surr)10273 - 120Toluene-d8 (Surr)10971 - 126

Client: AECOM, Inc. Job Number: 480-46536-1

Client Sample ID: B-4 GW 09252013

 Lab Sample ID:
 480-46536-3
 Date Sampled: 09/25/2013 1435

 Client Matrix:
 Water
 Date Received: 09/25/2013 1615

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-141221 Instrument ID: HP5973S Prep Method: 5030B Prep Batch: N/A Lab File ID: S30542.D Dilution: Initial Weight/Volume: 1.0 5 mL Analysis Date: 09/26/2013 1712 Final Weight/Volume: 5 mL

Prep Date: 09/26/2013 1712

Analyte	Result (ug/L)	Qualifier	MDL	RL	
1,1,1-Trichloroethane	ND		0.82	1.0	
1,1,2,2-Tetrachloroethane	ND		0.21	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0	
1,1,2-Trichloroethane	ND		0.23	1.0	
1,1-Dichloroethane	ND		0.38	1.0	
1,1-Dichloroethene	ND		0.29	1.0	
1,2,4-Trichlorobenzene	ND		0.41	1.0	
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0	
1,2-Dibromoethane	ND		0.73	1.0	
1,2-Dichlorobenzene	ND		0.79	1.0	
1,2-Dichloroethane	ND		0.21	1.0	
1,2-Dichloropropane	ND		0.72	1.0	
1,3-Dichlorobenzene	ND		0.78	1.0	
1,4-Dichlorobenzene	ND		0.84	1.0	
2-Butanone (MEK)	ND		1.3	10	
2-Hexanone	ND		1.2	5.0	
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0	
Acetone	4.4	J	3.0	10	
Benzene	ND		0.41	1.0	
Bromodichloromethane	ND		0.39	1.0	
Bromoform	ND		0.26	1.0	
Bromomethane	ND		0.69	1.0	
Carbon disulfide	ND		0.19	1.0	
Carbon tetrachloride	ND		0.27	1.0	
Chlorobenzene	ND		0.75	1.0	
Chloroethane	ND		0.32	1.0	
Chloroform	ND		0.34	1.0	
Chloromethane	ND		0.35	1.0	
cis-1,2-Dichloroethene	ND		0.81	1.0	
cis-1,3-Dichloropropene	ND		0.36	1.0	
Cyclohexane	ND		0.18	1.0	
Dibromochloromethane	ND		0.32	1.0	
Dichlorodifluoromethane	ND		0.68	1.0	
Ethylbenzene	ND		0.74	1.0	
Isopropylbenzene	ND		0.79	1.0	
Methyl acetate	ND		0.50	1.0	
Methyl tert-butyl ether	ND		0.16	1.0	
Methylcyclohexane	ND		0.16	1.0	
Methylene Chloride	ND		0.44	1.0	
Styrene	ND		0.73	1.0	
Tetrachloroethene	ND		0.36	1.0	
Toluene	ND		0.51	1.0	
trans-1,2-Dichloroethene	ND		0.90	1.0	
trans-1,3-Dichloropropene	ND		0.37	1.0	
Trichloroethene	ND		0.46	1.0	
Trichlorofluoromethane	ND		0.88	1.0	
	-			-	

Client: AECOM, Inc. Job Number: 480-46536-1

Client Sample ID: B-4 GW 09252013

Lab Sample ID: 480-46536-3 Date Sampled: 09/25/2013 1435
Client Matrix: Water Date Received: 09/25/2013 1615

Client Matrix: Water Date Received: 09/25/2013 1615

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-141221 Instrument ID: HP5973S 8260B Prep Method: 5030B Prep Batch: N/A Lab File ID: S30542.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 09/26/2013 1712 Final Weight/Volume: 5 mL

Prep Date: 09/26/2013 1712

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.90
 1.0

 Xylenes, Total
 ND
 0.66
 2.0

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 1,2-Dichloroethane-d4 (Surr)
 102
 66 - 137

 4-Bromofluorobenzene (Surr)
 103
 73 - 120

 Toluene-d8 (Surr)
 110
 71 - 126

Client: AECOM, Inc. Job Number: 480-46536-1

Client Sample ID: B-5 GW 09252013

 Lab Sample ID:
 480-46536-4
 Date Sampled: 09/25/2013 1445

 Client Matrix:
 Water
 Date Received: 09/25/2013 1615

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-141221 Instrument ID: HP5973S Prep Method: 5030B Prep Batch: N/A Lab File ID: S30543.D Dilution: Initial Weight/Volume: 1.0 5 mL Final Weight/Volume: 5 mL

Analysis Date: 09/26/2013 1734 Prep Date: 09/26/2013 1734

Analyte	Result (ug/L)	Qualifier	MDL	RL	
1,1,1-Trichloroethane	ND		0.82	1.0	
1,1,2,2-Tetrachloroethane	ND		0.21	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0	
1,1,2-Trichloroethane	ND		0.23	1.0	
1,1-Dichloroethane	ND		0.38	1.0	
1,1-Dichloroethene	ND		0.29	1.0	
1,2,4-Trichlorobenzene	ND		0.41	1.0	
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0	
1,2-Dibromoethane	ND		0.73	1.0	
1,2-Dichlorobenzene	ND		0.79	1.0	
1,2-Dichloroethane	ND		0.21	1.0	
1,2-Dichloropropane	ND		0.72	1.0	
1,3-Dichlorobenzene	ND		0.78	1.0	
1,4-Dichlorobenzene	ND		0.84	1.0	
2-Butanone (MEK)	ND		1.3	10	
2-Hexanone	ND		1.2	5.0	
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0	
Acetone	35		3.0	10	
Benzene	ND		0.41	1.0	
Bromodichloromethane	ND		0.39	1.0	
Bromoform	ND		0.26	1.0	
Bromomethane	ND		0.69	1.0	
Carbon disulfide	ND		0.19	1.0	
Carbon tetrachloride	ND		0.27	1.0	
Chlorobenzene	ND		0.75	1.0	
Chloroethane	ND		0.32	1.0	
Chloroform	ND		0.34	1.0	
Chloromethane	ND		0.35	1.0	
cis-1,2-Dichloroethene	ND		0.81	1.0	
cis-1,3-Dichloropropene	ND		0.36	1.0	
Cyclohexane	ND		0.18	1.0	
Dibromochloromethane	ND		0.32	1.0	
Dichlorodifluoromethane	ND		0.68	1.0	
Ethylbenzene	ND		0.74	1.0	
Isopropylbenzene	ND		0.79	1.0	
Methyl acetate	ND		0.50	1.0	
Methyl tert-butyl ether	ND		0.16	1.0	
Methylcyclohexane	ND		0.16	1.0	
Methylene Chloride	ND		0.44	1.0	
Styrene	ND		0.73	1.0	
Tetrachloroethene	ND		0.36	1.0	
Toluene	ND		0.51	1.0	
trans-1,2-Dichloroethene	ND		0.90	1.0	
trans-1,3-Dichloropropene	ND		0.37	1.0	
Trichloroethene	ND		0.46	1.0	
Trichlorofluoromethane	ND		0.88	1.0	
monorolladionalic	IND		0.00	1.0	

Client: AECOM, Inc. Job Number: 480-46536-1

B-5 GW 09252013 Client Sample ID:

Lab Sample ID: 480-46536-4 Date Sampled: 09/25/2013 1445 Client Matrix:

Water Date Received: 09/25/2013 1615

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-141221 Instrument ID: HP5973S 8260B Prep Method: 5030B Prep Batch: N/A Lab File ID: S30543.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 09/26/2013 1734 Final Weight/Volume: 5 mL

Prep Date: 09/26/2013 1734

Analyte Result (ug/L) Qualifier MDL RL Vinyl chloride ND 1.0 0.90 Xylenes, Total ND 0.66 2.0

%Rec Qualifier Acceptance Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 102 66 - 137 4-Bromofluorobenzene (Surr) 102 73 - 120 Toluene-d8 (Surr) 111 71 - 126

Client: AECOM, Inc. Job Number: 480-46536-1

Client Sample ID: B-6 GW 09252013

 Lab Sample ID:
 480-46536-5
 Date Sampled: 09/25/2013 1500

 Client Matrix:
 Water
 Date Received: 09/25/2013 1615

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-141221 Instrument ID: HP5973S Prep Method: 5030B Prep Batch: N/A Lab File ID: S30544.D Dilution: Initial Weight/Volume: 1.0 5 mL Analysis Date: 09/26/2013 1756 Final Weight/Volume: 5 mL

Prep Date: 09/26/2013 1756

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK)	4.1	J	1.3	10
2-Hexanone	ND	-	1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	37		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Ethylbenzene	ND		0.74	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND ND		0.75	1.0
Toluene	ND ND		0.51	1.0
trans-1,2-Dichloroethene	ND ND		0.90	1.0
trans-1,3-Dichloropropene	ND ND		0.37	1.0
Trichloroethene	ND ND		0.46	1.0
Trichlorofluoromethane	ND ND		0.46	1.0
monioroniuoromethane	טאו		0.00	1.0

Client: AECOM, Inc. Job Number: 480-46536-1

B-6 GW 09252013 Client Sample ID:

Lab Sample ID: 480-46536-5 Date Sampled: 09/25/2013 1500 Client Matrix:

Water Date Received: 09/25/2013 1615

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Analysis Batch: 480-141221 Instrument ID: HP5973S 8260B Prep Method: 5030B Prep Batch: N/A Lab File ID: S30544.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 09/26/2013 1756 Final Weight/Volume: 5 mL

Prep Date: 09/26/2013 1756

Analyte Result (ug/L) Qualifier MDL RL Vinyl chloride ND 1.0 0.90 Xylenes, Total ND 0.66 2.0

%Rec Qualifier Acceptance Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 102 66 - 137 4-Bromofluorobenzene (Surr) 101 73 - 120 Toluene-d8 (Surr) 110 71 - 126

Client: AECOM, Inc. Job Number: 480-46536-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-46536-6 Date Sampled: 09/25/2013 0000

Client Matrix: Water Date Received: 09/25/2013 1615

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-141221 Instrument ID: HP5973S Prep Method: 5030B Prep Batch: N/A Lab File ID: S30545.D Dilution: Initial Weight/Volume: 1.0 5 mL

Analysis Date: 09/26/2013 1818 Final Weight/Volume: 5 mL

Prep Date: 09/26/2013 1818

nalyte	Result (ug/L)	Qualifier	MDL	RL
,1,1-Trichloroethane	ND		0.82	1.0
,1,2,2-Tetrachloroethane	ND		0.21	1.0
,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
,1,2-Trichloroethane	ND		0.23	1.0
,1-Dichloroethane	ND		0.38	1.0
,1-Dichloroethene	ND		0.29	1.0
,2,4-Trichlorobenzene	ND		0.41	1.0
,2-Dibromo-3-Chloropropane	ND		0.39	1.0
,2-Dibromoethane	ND		0.73	1.0
,2-Dichlorobenzene	ND		0.79	1.0
,2-Dichloroethane	ND		0.21	1.0
,2-Dichloropropane	ND		0.72	1.0
,3-Dichlorobenzene	ND		0.78	1.0
,4-Dichlorobenzene	ND		0.84	1.0
-Butanone (MEK)	ND		1.3	10
-Hexanone	ND		1.2	5.0
-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
cetone	5.6	J	3.0	10
enzene	ND		0.41	1.0
romodichloromethane	ND		0.39	1.0
romoform	ND		0.26	1.0
romomethane	ND		0.69	1.0
arbon disulfide	ND		0.19	1.0
arbon tetrachloride	ND		0.27	1.0
thlorobenzene	ND		0.75	1.0
hloroethane	ND		0.32	1.0
hloroform	ND		0.34	1.0
hloromethane	ND		0.35	1.0
is-1,2-Dichloroethene	ND		0.81	1.0
is-1,3-Dichloropropene	ND		0.36	1.0
yclohexane	ND		0.18	1.0
ibromochloromethane	ND		0.32	1.0
ichlorodifluoromethane	ND		0.68	1.0
thylbenzene	ND		0.74	1.0
sopropylbenzene	ND		0.79	1.0
lethyl acetate	ND		0.50	1.0
lethyl tert-butyl ether	ND		0.16	1.0
lethylcyclohexane	ND		0.16	1.0
lethylene Chloride	ND		0.44	1.0
tyrene	ND		0.73	1.0
etrachloroethene	ND		0.36	1.0
oluene	ND		0.51	1.0
ans-1,2-Dichloroethene	ND		0.90	1.0
ans-1,3-Dichloropropene	ND		0.37	1.0
richloroethene	ND		0.46	1.0
richioroethene				

Client: AECOM, Inc. Job Number: 480-46536-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-46536-6 Date Sampled: 09/25/2013 0000

Client Matrix: Water Date Received: 09/25/2013 1615

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 480-141221 Instrument ID: HP5973S Prep Method: 5030B Prep Batch: N/A Lab File ID: S30545.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 09/26/2013 1818 Final Weight/Volume: 5 mL

Prep Date: 09/26/2013 1818

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.90
 1.0

 Xylenes, Total
 ND
 0.66
 2.0

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 1,2-Dichloroethane-d4 (Surr)
 104
 66 - 137

 4-Bromofluorobenzene (Surr)
 102
 73 - 120

 Toluene-d8 (Surr)
 110
 71 - 126

Chain of Custody Record

<u>TestAmerica</u>

TestAmerica Buffalo10 Hazelwod Drive
Amherst, NY 14228-2288
Phone (716) 691-2600 Fax (716) 691-7991

FIGURE (7.10) 031-2000 FAX (7.10) 031-7331	-							A POTENTIAL PROPERTY OF THE CASE OF THE CA
ormation	5	RABY	Lab PM Fische	Lab PM: Fischer, Brian J		Carrier Tracking No(s):	COC No: 480-39863-10380.1	0.1
lact: Zack	Phone: 716 83	9 05h 98		E-Mail: brian.fischer@testamericainc.com	moo		Page: Page 1 of 1	
Company: AECOM, Inc.					Analysis Requested	_	Job #:	
Address: 100 Corporate Parkway Suite 341	Due Date Requested:						Preservation Codes	les:
City: Amherst	TAT Requested (days):						A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - As NaO2
State, Zip: NY, 14226							D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3
Phone:	PO#: Purchase Order not required	quired					F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S2SO3 S - H2SO4 T - TSP Dodecahydrate
Email: dino.zack@aecom.com	, MO #:					S.		U - Acetone
Project Name: Tyco Int'l Facility - BCP (AECOM# 601559	Project #: 48008494			JO 80		enist		W - ph 4-5 Z - other (specify)
she.	SSOW#:			Y) ası		of cor	Other:	
Sample Identification	Sample Date Time	Sample Type (C=comp,		Fileld Filtered Serform MS/W SeoB - TCL list		1edmuM lato		
	()	Preserva	3	X		1 ×		Special Instructions/Note:
B2 CAW 0925 2013	141 51/52/19	رة ا	Water	S. Wish	V			
83 GW 09352013	1450	0	Water	N 30.10.	1			-
B4 Gw 0925201	143	35 6	Water	Doing	-9			1
85 GW 09252613	77-	2	Water	A BUILL			0	
Be Gw 09252013	5	1500 G	Water	Dio 1			1	1
TRIP BLANK	42	-	WATER	A Deviols	10)	
							23 701.0	
			1				١	
							\	
		+						
			1	Sample Disposal (A	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	f samples are retained	d longer than 1 mc	onth)
Non-Hazard Flammable Skin Irritant Poison B Deliverable Requested: I, II, III, IV, Other (specify)	Unknown	Radiological		Special Instructions/QC Requirements	nt <u>Disposal By Lab</u> 2C Requirements:	Lab Archive For	ie For	Months
Empty Kit Relinquished by:	Date:		-	Time:	Meth) Įģ	-	
Religious by Colon	Date/Time:	0 5101	Company	Received by:	JAM V	Patelline: 7	51910	Sampiny PACAL
	Date/Time:		Company	Repaired by:		Date/Time:		Company
ı	Date/Time:	Ö	Company	(Redeived by:		Date/Time:		Company
Custody Seals Intact. Custody Seal No.: Δ Yes Δ No				Cooler Temperature(Cooler Temperature(s) °C and Other Remarks:	H 2	3,5	
						i.		

Login Sample Receipt Checklist

Client: AECOM, Inc. Job Number: 480-46536-1

Login Number: 46536 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	N/A	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	