

Environment

Prepared for: Scott Technologies, Inc. Princeton, NJ Prepared by: AECOM Amherst, NY 60155991 April 2013

Draft Alternatives Analysis Report

Former Scott Aviation Facility Lancaster, NY

Environment

Prepared for: Scott Technologies, Inc. Princeton, NJ Prepared by: AECOM Amherst, NY 60155991 April 2013

Draft Alternatives Analysis Report Former Scott Aviation Facility

Lancaster, NY

Dino Zack, P.G.

Prepared By [Name]

Paul Dombrowski, P.E.

Reviewed By [Name]

Contents

1.0	INTRODUCTION		
	1.1	OBJECTIVE	1
	1.2	REPORT ORGANIZATION	1
2.0	SITE DE	ESCRIPTION AND HISTORY	3
	2.1	SITE HISTORY AND CURRENT OPPERATIONS	3
3.0	SUMMA	ARY OF REMEDIAL INVESTIGATIONS	4
	3.1	GEOLOGY/HYDROLOGY	4
	3.1.1	SITE GEOLOGY	4
	3.1.2	SITE HYDROGEOLOGY	4
	3.2	NATURE AND EXTENT OF CONTAMINATION	6
	3.3	SUMMARY OF THE NATURE AND EXTENT OF CONTAMINATION AND POTENTIAL EXPOSURE PATHWAYS	8
4.0	REMED	IAL ACTION OBJECTIVES AND GOALS	11
	4.1	POTENTIAL STANDARDS, CRITERIA, AND GUIDELINES	
	4.1.1	CHEMICAL-SPECIFIC SCGs	
	4.1.1.		
	4.1.1.		
	4.1.2	ACTION-SPECIFIC SCGs	12
	4.1.3	LOCATION-SPECIFIC SCGs	
	4.2	REMEDIAL ACTION GOALS AND OBJECTIVES	
		REMEDIAL ACTION GOALS	
	4.2.2	REMEDIAL ACTION OBJECTIVES	13
5.0		AL RESPONSE ACTION AND IDENTIFICATION OF REMEDIAL OLOGIES	14
6.0	INITIAL	SCREENING OF REMEDIAL TECHNOLOGIES	16
7.0	DETAIL	ED ANALYSES OF RETAINED REMEDIAL ALTERNATIVES	17
	7.1	Evaluation Criteria	

8.0

	7.1.1	Overall Protection of Human Health and the Environment	17
	7.1.2	Compliance with Standards, Criteria, and Guidance	17
	7.1.3	Long-Term Effectiveness and Permanence	17
	7.1.4	Reduction of Toxicity, Mobility or Volume	17
	7.1.5	Short-term Effectiveness	17
	7.1.6	Implementability	17
	7.1.7	Cost	17
	7.1.8	Land Use	18
	7.1.9	Community Acceptance	18
	7.1.10	Green Remediation	18
	7.2	Remediation Target Areas	18
	7.3	Cost Evaluation Approach	18
	7.4	Common Elements	18
	7.5	Remedial Action Alternatives	19
	7.5.1	Alternative 1: No Action	19
	7.5.2	Alternative GW-2: Excavation	20
	7.5.3	Alternative GW-2A: Excavation with Monitored Natural Attenuation	20
	7.5.4	Alternative GW-3: Enhanced Bioremediation	21
	7.5.5	Alternative GW-4: In-Situ Chemical Oxidation	23
	7.5.6	Alternative GW-4A: Focused In-Situ Chemical Oxidation with Monitored Natural Attenuation	24
	7.5.7	Alternative GW-4B: Focused In-Situ Chemical Oxidation with Enhanced Bioremediation	24
C	омра	RATIVE ANALYSES OF REMEDIAL ALTERNATIVES	26
	8.1	Comparative Analysis of Alternatives	26
	8.1.1	Overall Protection of Human Health and the Environment	26
	8.1.2	Compliance with SCGs	26
	8.1.3	Long-Term Effectiveness and Permanence	26
	8.1.4	Reduction of Toxicity, Mobility, and Volume	27
	8.1.5	Short-Term Effectiveness	27
	8.1.6	Implementability	27
	8.1.7	Cost	27
	8.1.8	Land Use	27

	8.1.9 Green Remediation	
	8.1.10 Community Acceptance	
9.0	RECOMMENDED REMEDIAL ALTERNATIVE	29
10.0	0REFERENCES	

Appendices

Appendix A Cost Estimate Detail

List of Tables

- Table 1
 Groundwater Monitoring Water Level Data
- Table 2 Surface Soil VOC Results
- Table 3 Surface Soil SVOC Results
- Table 4 Surface Soil Metals Results
- Table 5 Surface Soil PCB and Pesticide Results
- Table 6Subsurface Soil VOC Results
- Table 7 Subsurface Soil SVOC Results
- Table 8
 Subsurface Soil Metals Results
- Table 9
 Subsurface Soil PCB and Pesticide Results
- Table 10Groundwater VOC Results
- Table 11 Groundwater SVOC Results
- Table 12 Groundwater Metal Results
- Table 13 Groundwater PCB and Pesticide Results
- Table 14 Groundwater VOC Results in Temporary Piezometers
- Table 15
 Air TO-15 Results Compared to NYSDOH Matrices
- Table 16
 Air T0-15 Results Compared to EPA BASE Database
- Table 17Exposure Pathway Analysis
- Table 18
 Preliminary Screening of Technologies for Groundwater
- Table 19
 Preliminary Screening of Technologies for Soil
- Table 20Preliminary Screening of Technologies for Soil Vapor
- Table 21Initial Screening of Remedial Technologies
- Table 22
 Criteria Comparison and Ranking of Remedial Alternatives
- Table 23
 Summary of Planning Level Costs for Remedial Alternatives

List of Figures

- Figure 1 Site Location
- Figure 2 Site Layout
- Figure 3 Monitoring Well and Piezometer Locations
- Figure 4 Shallow Overburden Groundwater Surface Elevation Contours (June 1, 2011)
- Figure 5 Deep Overburden Groundwater Surface Elevation Contours (June 1, 2011)
- Figure 6 Preliminary Groundwater Remediation Treatment Areas
- Figure 7 Proposed Sub-Slab Depressurization System Areas
- Figure 8 Proposed Shallow Excavation Areas to Achieve Unrestricted Use
- Figure 9 Preliminary Groundwater Remediation Treatment Areas for MNA Subalternatives

List of Acronyms

1,1,1-TCA	1,1,1-trichloroethane
AA	Alternatives Analysis
AAR	Alternatives Analysis Report
AECOM	AECOM Technical Services, Inc.
AVOX	AVOX Systems Inc.
BASE	Building Assessment and Survey Evaluation
BCP	Brownfield Cleanup Program
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylene compounds
CAMP	Community Air Monitoring Program
CHP	Catalyzed hydrogen peroxide
cis-1,2-DCE	cis-1,2-dichloroethene
cm/sec	centimeters per second
COPC	Constituent of Potential Concern
DBC	Dehalococcoides
DER	Division of Environmental Remediation
DHB	Dehalobacter
EVO	Emulsified vegetable oil
ft	Feet
FWIA	Fish and Wildlife Impact Analysis
gpm	Gallons per minute
GRA	General Response Action
IRM	Interim Remedial Measure
ISCO	In-situ chemical oxidation
K	In-situ chemical oxidation Hydraulic Conductivity
K	Hydraulic Conductivity
MNA	Monitored natural attenuation
NYCRR	New York State Official Compilation of Codes, Rules, and Regulations
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
NYSEG	New York State Electric and Gas
O&M	Operations and maintenance
ORP	Oxidation-reduction potential
PCB	Polychlorinated biphenyl
RAO	Remedial Action Objectives
RI	Remedial Investigation
RIR	Remedial Investigation Report
SCG	Standards, Criteria, and Guidelines
SCO	Soil Cleanup Objectives
SRI	Supplemental Remedial Investigation
SRIR	Supplemental Remedial Investigation
SSD	Supplemental Remedial Investigation
SVOC	Semi-Volatile Organic Compound
TAGM	Technical and Administrative Guidance Memorandum
TCE	Trichloroethene
TOD	Total oxidant demand
TOGS	Technical and Operational Guidance Series
TVOC	Total Volatile Organic Compound
µg/L	Microgram per liter
USEPA	United States Environmental Protection Agency
VOC	Volatile Organic Compound

On behalf of Scott Technologies, Inc., AECOM Technical Services, Inc. (AECOM) prepared this Draft Alternatives Analysis Report (AAR) under the guidance of New York State Department of Environmental Conservation's (NYSDEC) Brownfield Cleanup Program (BCP) for the former Scott Aviation Facility Area 1 site (Site) located at 225 Erie Street, Village of Lancaster, Erie County, New York (**Figure 1**).

Scott Technologies, Inc. submitted an application on September 11, 2008 to enter NYSDEC BCP per Title 6 New York State Official Compilation of Codes, Rules, and Regulations (NYCRR) Part 375-3.4 (Applications) effective December 14, 2006 for the Site. Scott Technologies, Inc. applied for entry into NYSDEC BCP as a participant to investigate and remediate, as appropriate, potential areas of environmental concern associated with the Site.

A Remedial Investigation Report (RIR) (AECOM, September 1, 2011) presenting the findings of the Remedial Investigation (RI) was submitted to NYSDEC and the New York State Department of Health (NYSDOH) and approved on September 15, 2011. A revised Supplemental Remedial Investigation Report (SRIR) (AECOM, April 30, 2012) presenting the findings of additional RI work performed in May, June, and October 2011 was submitted to NYSDEC and NYSDOH on April 30, 2012 and approved on June 1, 2012. This Draft AAR was developed based upon findings of the RI and Supplemental Remedial Investigation (SRI). The Draft AAR has been completed in accordance with NYSDEC Division of Environmental Remediation (DER) Draft Brownfield Cleanup Program Guide (BCP Guide) (NYSDEC, May 2004), 6 NYCRR Part 375 Environmental Remediation Programs (NYSDEC, December 14, 2006), and NYSDEC DER Technical Guidance for Site Investigation and Remediation (DER-10) (NYSDEC, May 3, 2010).

1.1 OBJECTIVE

The primary purpose of the AAR is to identify and evaluate the most appropriate remedial alternatives to eliminate or mitigate, through the proper application of scientific and engineering principles, any significant threats to public health and to the environment presented by contaminants present in Site environmental media.

The ultimate goal of the AAR is to select an appropriate final remedy that will allow continued use of the Site as an active industrial facility. This AAR presents the remedy selection process and the proposed remedy for the Site based upon a risk-based, land use approach. The selected remedy will utilize the generic soil cleanup objectives to remediate the Site under Track 2 of the BCP to conditions suitable for future industrial or commercial use or redevelopment of the Site.

1.2 **REPORT ORGANIZATION**

This AAR is organized as follows:

- <u>Section 1 Introduction</u>: This section provides an overview of the project.
- <u>Section 2 Site Description and History</u>: This section provides a description of the Site and a summary of the Site's history.

- <u>Section 3 Summary of Remedial Investigation and Supplemental Remedial Investigation</u>: This section presents a summary of the results of the RI and SRI.
- <u>Section 4 Remedial Action Objectives and Goals</u>: This section presents the goals and objectives of the proposed remedy.
- <u>Section 5 General Response Action and Identification of Remedial Technologies</u>: This section presents a review and screening of applicable technologies for remediating environmental media exhibiting contaminant concentrations exceeding relevant standards at the Site.
- <u>Section 6 Initial Screening of Remedial Technologies</u>: The section presents the initial screening of potentially applicable remedial technologies at the Site.
- <u>Section 7 Detailed Analyses of Retained Remedial Alternatives</u>: This section presents detailed analyses of retained potential remedial alternatives to address the presence of contaminant concentrations exceeding relevant regulatory criteria in environmental media at the Site.
- <u>Section 8 Comparative Analyses of Remedial Alternatives</u>: This section presents the comparative analyses of the remedial alternatives for the Site.
- <u>Section 9 Recommended Remedial Alternative</u>: This section presents a recommendation for the Site remedy and justification of the selection.
- <u>Section 10 References</u>: This section presents a list of references used in the preparation of this AAR.

2.1 SITE HISTORY AND CURRENT OPPERATIONS

The AVOX facility is located in the Village and Town of Lancaster, Erie County, New York. The overall facility is currently used as a manufacturing, development, testing, and distribution facility for aircraft and military supplied-air systems.

The overall property includes manufacturing plants (Plants 1, 2, and 3), support buildings, and asphalt-paved driveways and parking areas (**Figure 2**). Buildings and pavement cover roughly 65 percent of the Plant 1, 2, and 3 manufacturing area. Grassy and undeveloped areas comprise the remainder of the overall property. A tributary to Plum Creek (known as Spring Creek) flows within a culvert beneath the area between Plants 2 and 3.

The 62,000 square foot Plant 1 (225 Erie Street) resides south of Erie Street on the central parcel of a 6.4-acre combination of three adjacent parcels. The three adjacent parcels include: a vacant 1.1-acre parcel zoned light industrial west of the central parcel; a 3.8-acre central parcel zoned light industrial on which Plant 1 is located; and a vacant 1.6-acre parcel zoned residential to the east of the central parcel. Support buildings located within the central parcel include: a small pre-fabricated storage shed for hazardous materials and wastes; a record retention building; a paint storage shed; a grounds keeping equipment shed; a 3,000-gallon elevated steel aboveground storage tank containing liquid oxygen; and, a 100,000-gallon water tower for process use and fire protection.

The 42,000 square foot Plant 2 (25 Walter Winter Drive) and the 30,000 square foot Plant 3 (27 Walter Winter Drive) are located on an 8.4-acre parcel north of Plant 1, and north of Erie Street. The Plant 2 and Plant 3 Areas also contain a small metal building west of Plant 2 that houses a groundwater treatment system, and a storm water detention pond northwest of Plant 2.

An undeveloped 10.1-acre parcel north of the Plant 2 and Plant 3 Area is referred to as the Northern Area. The Northern Area is separated from the Plant 2 / Plant 3 Area by a 100-foot wide parcel owned by New York State Electric & Gas (NYSEG) containing a power line that traverses the area in an east-west orientation.

The proposed BCP boundary for Area 1 is located west/southwest of Plant 1 as shown on Figure 2.

3.1 GEOLOGY/HYDROLOGY

3.1.1 SITE GEOLOGY

The native soils underlying the Site generally consist of interbedded silts and clays with discontinuous sporadic fine sand lenses (shallow overburden). A thin coarse-grained layer is located above the bedrock (deep overburden). Based on the deep overburden wells, the average thickness of the overburden extends to approximately 21 feet (ft) below ground surface (bgs); ranging from 20 ft in the south to 26 ft in the north.

Bedrock cores were collected and logged from MW-41B. The core indicates black shale (Marcellus Formation). A distinct weathered bedrock zone at the base of the deep overburden was not identified. Bedrock cores collected from 24.8 ft bgs to the bottom of the boring (34.8 ft bgs) indicated three potential fractures (two 1 to 1.5-inch horizontal fracture zones and one inclined fracture). Multiple mechanical breaks were observed in the rock core as a result of the fissile nature of the shale. A description of the bedrock core and elevations of the fractures are presented on the stratigraphic borehole log for this well in Appendix A of the RIR; overburden logs are also presented in Appendix A of the SRIR. Refer to **Figure 3** for location of monitoring wells.

3.1.2 SITE HYDROGEOLOGY

Groundwater is first encountered at the Site in the shallow overburden. Depth to groundwater across the Site was measured during five comprehensive rounds of water level measurements; three during the RI and two during the SRI. The table below presents the average depth to water from the monitoring wells for each zone for each round:

Zone/Date	June 2010	August 2010	October 2010	April 2011	June 2011
Shallow Overburden	2.82 ft bgs	4.98 ft bgs	7.13 ft bgs	3.92 ft bgs	2.46 ft bgs
Deep Overburden*	5.06 ft bgs	5.79 ft bgs	6.94 ft bgs	5.56 ft bgs	4.11 ft bgs
Bedrock*	9.2 ft bgs	9.5 ft bgs	10.28 ft bgs	9.63 ft bgs	6.96 ft bgs

*The groundwater within the deep overburden and bedrock appears to be semi-confined.

Table 1 summarizes the groundwater elevations collected in June 2010, August 2010, October2010, April 2011 and June 2011.

As depicted on **Figure 4**, the most recent measured groundwater elevations in the shallow overburden in the vicinity of Plant 1 are generally flat, with localized highs and lows as measured in June 2010, August 2010, October 2010 and April 2011. A west-northwest flow direction in the shallow overburden can be inferred from the data as measured in the five comprehensive rounds of water level measurements. A northwest flow direction is most evident from the groundwater elevations collected in October 2010.

As depicted on **Figure 5**, the most recent measured groundwater flow direction in the deep overburden in the vicinity of Plant 1 is to the northwest, with an approximate gradient of 0.020 foot per foot (ft/ft) as measured in the five comprehensive rounds of water level measurements.

Measured groundwater elevations at the one bedrock well fluctuated over the 5 measured events between 6.96 ft bgs and 10.28 ft bgs.

Seasonal variations in groundwater elevations between June 2010 and October 2010 dropped an average of 2.82 ft bgs in the shallow overburden, 1.88 ft bgs in the deep overburden, and 1.08 ft bgs in the bedrock. From a seasonal perspective, it is anticipated that water levels would rise during the spring and winter season and fall during summer and fall seasons across the Site.

Water elevations were also monitored from the temporary piezometers installed in the storm sewer bedding in the vicinity of Plant 1 during the five monitoring events. The water elevations collected from the temporary piezometers were not included in the groundwater contour figures, as they were screened in a different hydraulic unit (storm sewer bedding) than the shallow overburden wells. Groundwater elevation data from MW-30 was also not included on the groundwater contour figures as this well is screened across both the shallow and deep overburden units.

Results of the in-situ hydraulic conductivity (K) tests performed in the monitoring wells at the Site are presented in Appendix I of the RIR. RI data showed that K values range from 1.49E-03 centimeters per second (cm/sec) to 3.13E-05 cm/sec in the shallow overburden, and range from 4.72E-03 cm/sec to 8.96E-05 cm/sec in the deep overburden. Hydraulic conductivity testing was not performed in the bedrock monitoring well. The K values ranged as presented in the following table:

Monitoring Well	Rising Head	Falling Head	Geometric Mean				
Shallow Overburden							
MW-35S	1.01E-03 cm/sec	2.19E-03 cm/sec	1.49E-03 cm/sec				
MW-37S	Not available	3.13E-05 cm/sec	3.13E-05 cm/sec				
Geometric mean	2.16E-04 cm/sec						
Deep Overburden							
MW-39D	4.96E-03 cm/sec	4.50E-03 cm/sec	4.72E-03 cm/sec				
MW-38D	Not available	8.96E-05 cm/sec	8.96E-05 cm/sec				
Geometric mean	6.50E-04 cm/sec						

3.2 NATURE AND EXTENT OF CONTAMINATION

Based on the results of the RI, SRI and the associated Qualitative Human Health Exposure Assessment, the following conclusions were made:

- No fill was observed in the RI or SRI borings. Previously identified fill was excavated during the Interim Remedial Measure (IRM). Overburden soils were comprised of fine-grained soil, specifically silts and clays, and divided hydraulically into the upper overburden and lower overburden. Borehole refusal (i.e., bedrock) within the overburden was approximately 21 ft to 26 ft bgs.
- 2. Volatile organic compound (VOC) concentrations for surface soil (i.e., 0 to 2 inches bgs) were below the soil cleanup objectives (SCOs) for protection of groundwater at the borings sampled (refer to **Table 2** for surface soil VOC data). Semi-volatile organic compound (SVOC), metals, polychlorinated biphenyl (PCB) and pesticide concentrations were below the SCOs for commercial use with the exceptions of benzo(a)pyrene (potentially resulting from the adjacent active rail line) and metals cadmium and nickel. Refer to **Tables 3**, **4**, **and 5** for surface soil SVOC, metals, and PCB/pesticide data, respectively.
- 3. VOC concentrations for subsurface soil were below the SCO for unrestricted use with the exception of acetone and methylene chloride at borings DPT8-2A and DPT8-2B (common laboratory contaminants) at the borings sampled. Refer to **Table 6** for subsurface soil VOC data. SVOC, metals, and PCB/pesticide concentrations in subsurface soil. Only mercury, copper, and cadmium exceeded SCO for commercial use. These exceedances occurred at borings DPT8-1A and DPT8-2A. Refer to **Tables 7**, **8**, and **9** for subsurface soil SVOC, metals, and PCB/pesticide data, respectively.
- 4. Groundwater was present within the monitoring wells that were installed within the shallow overburden, deep overburden, and bedrock. The average depth to groundwater as measured during the five events was 4 ft bgs in the shallow overburden, 5 ft bgs in the deep overburden, and 9 ft bgs in the bedrock. Water level data indicates that the groundwater flow direction in the overburden in the vicinity of Plant 1 is to the northwest; although this is not as pronounced in the shallow overburden. Only one bedrock well is present on the Site, so no groundwater flow direction can be inferred in the bedrock at the Site. Groundwater within the deep overburden and bedrock appear to be semi-confined. Figures 4 and 5 present shallow and deep overburden surface elevation groundwater contours.
- 5. Analytical data for groundwater samples collected from the shallow and deep overburden identifies the presence of VOCs exceeding NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 standards for the protection of drinking water (NYSDEC, June 1998). Refer to **Table 10** for groundwater VOC data. There were no exceedances of NYSDEC TOGS 1.1.1. protection of drinking water standards in the bedrock groundwater. 1,1,1-trichloroethane (1,1,1-TCA) was detected at the highest concentrations. The most frequently detected VOCs were trichloroethene (TCE) and cis-1,2-dichloroethene (cis-1,2-DCE). The greatest VOC concentrations were detected in the area of the previously-excavated source area during the IRM at A1-GP01, A1-GP02, A1-GP03, A1-GP04, A1-GP10, and MW-38D.
- 6. At perimeter wells, VOCs were either not detected or were detected at concentrations below or slightly above NYSDEC TOGS 1.1.1 protection of drinking water standards for TCE. The delineation of TCE is complete to the north, south, east and west (to northeast corner of building) of the historic source area. (Note: TCE had been detected above NYSDEC TOGS

1.1.1 protection of drinking water standards at A1-GP13 and MW-36S during one of two groundwater sampling events performed during the RI).

- 7. SVOCs in groundwater were below NYSDEC TOGS 1.1.1 protection of drinking water standards; refer to **Table 11**.
- 8. Three naturally occurring metals (iron, magnesium, and sodium) were detected in groundwater above NYSDEC TOGS 1.1.1 protection of drinking water standards; refer to **Table 12**.
- 9. No PCBs were detected in groundwater above NYSDEC TOGS 1.1.1 protection of drinking water standards. Refer to **Table 13** for PCB groundwater data.
- One pesticide (heptachlor epoxide at MW-36S) was detected in groundwater above NYSDEC TOGS 1.1.1 protection of drinking water standards. (Note: A duplicate sample collected at MW-36S was below NYSDEC TOGS 1.1.1 protection of drinking water standards for heptachlor epoxide.) Refer to **Table 13** for pesticide groundwater data.
- 11. VOCs were detected within several storm sewer catch basins located on Site and within the storm sewer pipe bedding. Because groundwater is shallower than the storm sewer piping, contaminants from the groundwater may be infiltrating the storm sewer and bedding material. Compounds detected in the outfall at Spring Creek were either at significantly lower concentrations than those detected in the catch basin samples, or were compounds not found in the Site catch basins. No compounds detected in the outfall sample exceeded NYSDEC Surface Water Standard/Guidance values or US Environmental Protection Agency (EPA) Region 5 Ecological Screening Levels; refer to Table 14.
- 12. Constituents of Potential Concern (COPCs) were identified for soil by comparison of maximum detected concentrations for VOCs to 6 NYCRR Part 375 unrestricted use and for SVOCs, metals, pesticides, and PCBs to restricted use for commercial. COPCs were identified for groundwater by comparison of maximum detected concentrations for VOCs, SVOCs, metals, pesticides, and PCBs to NYSDEC TOGS 1.1.1 protection of drinking water standards.
- 13. Based on the evaluation of the data against the decision matrices, a vapor intrusion condition is not present at the Site, and indoor air quality has not been adversely impacted by the presence of the adjacent groundwater plume. However, per a June 1, 2012 letter from NYSDEC to Tyco, NYSDOH considers this Site a significant threat due to elevated concentrations of VOCs in sub-slab soil vapor, and the potential for this vapor to impact indoor air. Refer to Tables 15 and 16 for vapor data compared to 2006 NYSDOH guidance values and the EPA 2001 Building Assessment and Survey Evaluation (BASE) database indoor air values respectively.
- 14. The qualitative exposure assessment identified the potential for human exposure to soil through dermal contact, incidental ingestion, and inhalation of particulate matter and vapors, and to groundwater through dermal contact, incidental ingestion, and inhalation of vapors. The potentially exposed on-site receptors include workers (plant workers and construction/utility workers) and persons that may trespass onto the Site. Potential human exposure can be addressed using remedial or other methods to eliminate exposure pathways and/or provide worker protection.

15. During the FWIA it was determined that the small, isolated vegetated areas on Site provide limited habitat for wildlife. The Site is surrounded by developments (rail line, industrial and residential properties, roads, etc.). The vegetated areas on Site show no stress due to the presence of COPCs.

3.3 SUMMARY OF THE NATURE AND EXTENT OF CONTAMINATION AND POTENTIAL EXPOSURE PATHWAYS

The results of the RI and SRI indicate that the primary concern is VOCs in shallow overburden groundwater on the Site, and to a lesser extent deep overburden groundwater, at concentrations that exceed NYSDEC TOGS 1.1.1 protection of drinking water standards.

An assessment of potential exposure pathways for receptors at the Site is presented in Table 17.

The following summarizes the Constituents of Potential Concern (COPCs) and potential exposure pathways identified through the completion of the RI and the SRI.

Groundwater

- Observed contamination at the Site appears to mainly exist in the groundwater as VOCs. The table below summarizes the groundwater COPCs for this Site, as well as the maximum detected concentrations of groundwater VOCs that exceed NYSDEC TOGS 1.1.1 protection of drinking water standards.
- Few SVOCs were detected, and only in concentrations below the NYSDEC TOGS 1.1.1 protection of drinking water standards.
- Iron, magnesium, and sodium were detected at concentrations greater than NYSDEC TOGS 1.1.1 protection of drinking water standards, but are not considered COPCs because these compounds are often found naturally.
- No PCBs were detected, and only one pesticide was tentatively detected in one groundwater sample at a concentration greater than NYSDEC TOGS 1.1.1 protection of drinking water standards.

Constituent of Concern	NYSDEC Groundwater Guidance (g) or Standard (s) Value (µg/L)	Maximum Detected Conc. (µg/L)	Sample	Date of Maximum Detection
Benzene	1 s	34 J	A1-GP13-S	8/3/10
Toluene	5 s	1,500	A1-GP01-S	6/22/10
Ethylbenzene	5 s	270	MW-38D	6/22/10
Xylenes (total)	5 s	2,000	A1-GP13-S	8/3/10
1,1,1-Trichloroethane	5 s	84,000	A1-GP10-S	8/3/10
1,1,2-Trichloro-1,2,2- trifluoroethane	5 s	4,400	A1-GP01-S	6/22/10
1,1,2-Trichloroethane	1 s	240 J	MW-42S	4/7/11
1,1-Dichloroethane	5 s	48,000	A1-GP10-S	8/3/10
1,1-Dichloroethene	5 s	6,100	MW-42S	4/7/11
1,2-Dichloroethane	0.6 s	77	A1-GP10-S	6/21/10
2-Butanone	50 g	510 J	MW-42S	4/7/11
Acetone	50 g	400	MW-42S	4/7/11
Chloroethane	5 s	180	A1-GP13-S	8/3/10
cis-1,2-Dichloroethene	5 s	22,000	A1-GP01-S	6/22/10
Dichlorodifluoromethane	5 s	33 J	A1-GP06-S	8/4/10
Methylene chloride	5 s	17	A1-GP10-S	6/21/10
Tetrachloroethene	5 s	230 J	MW-38D	6/22/10
trans-1,2-Dichloroethene	5 s	190 J	A1-GP02-S	8/4/10
Trichloroethene	5 s	20,000	A1-GP02-S	8/4/10
Vinyl chloride	2 s	2,200	A1-GP13-S	8/3/10

The maximum detected concentrations of groundwater VOCs which exceeded NYSDEC Groundwater Guidance or Standards, from the RI and SRI, are as follows:

Storm sewer catch basins and groundwater within the associated pipe bedding were also sampled for VOCs as a part of the SRI, although they are likely influenced by groundwater, as the overburden groundwater elevation is high throughout the Site. Compounds detected in the catch basins were also detected in groundwater; refer to the table below for compounds detected above USEPA Region 5 Ecological Screening Levels (USEPA, August 22, 2003). Only two compounds (1,1,1-trichloroethane and 1,1,2-trichloro-1,2,2-trifluoroethane) that were detected in the outfall to the tributary were also detected in the catch basins on Site. The Site is only one of many properties, whose stormwater feeds into the communal storm sewer which terminates at the referenced outfall. These compounds were detected at concentrations significantly lower at the outfall than were detected in the Site catch basins, and at levels below regulatory limits. Additional compounds detected in the outfall are likely from water entering the communal storm sewer from

other area properties.	Because all of the	e detected c	compounds in	the outfall	were below	regulatory
values, their potential	impact upon off-site	e receptors i	is not discusse	ed.		

Constituent of Concern	USEPA Region 5 Ecological Screening Level (μg/L)	Maximum Detected Conc. (μg/L)	Sample	Date of Maximum Detection
1,1,1-Trichloroethane	76	420	CB-1- 06/01/2011	6/01/11
1,1-Dichloroethane	47	110	CB-E- 06/16/2011	6/16/11
1,1-Dichloroethene	65	93	CB-E- 06/16/2011	6/16/11
Trichloroethene	47	60	CB-E- 06/16/2011	6/16/11

Surface Soil

- No VOC, PCB, or pesticide was detected above the applicable standards in the surface soil at the Site.
- SVOC benzo(a)pyrene was present in three surface soil samples at concentrations slightly greater than the Commercial SCO. Benzo(a)pyrene is a typical byproduct of fossil fuel combustion, and the low levels observed during this sampling are typical of urban background (Note: Active railroad tracks are adjacent to the Site). Therefore, benzo(a)pyrene in soil is not considered a COPC.
- Two metals (cadmium and nickel) were observed above commercial use standards at two boring locations.

Subsurface Soil

- No SVOC, PCB, or pesticide was detected above the applicable standards in the subsurface soil at the Site.
- VOC concentrations for subsurface soil were below the SCO for unrestricted use with the exception of acetone and methylene chloride (common laboratory contaminants) at borings DPT8-2A and DPT8-2B.
- Metal concentrations in subsurface soil were below the SCO for commercial use, with the exception of total mercury, copper, and/or cadmium at borings DPT8-1A and DPT8-2A.

4.0 REMEDIAL ACTION OBJECTIVES AND GOALS

4.1 POTENTIAL STANDARDS, CRITERIA, AND GUIDELINES

Applicable or relevant and appropriate standards, criteria, and guidelines (SCGs) are used to develop remedial action objectives (RAOs) and to scope and formulate remedial action technologies and alternatives. SCGs are categorized as:

- Chemical-specific requirements that define acceptable exposure levels and may, therefore, be used in establishing preliminary remediation goals;
- Location-specific requirements that may serve to protect characteristics, resources, and specific environmental features, such as flood plains or wetlands; and/or
- Action-specific requirements which may set controls or restrictions for particular treatment and disposal activities related to the management of hazardous wastes.

Applicable SCGs should consider the current, intended, and reasonably anticipated future use of the Site and its surroundings. Potential SCGs are described in the following subsections.

4.1.1 CHEMICAL-SPECIFIC SCGs

Chemical-specific SCGs define health-based or risk-based concentration limits in various environmental media for hazardous substances and contaminants. Concentration limits provide predictive cleanup levels, and may be used as a basis for estimating appropriate cleanup levels for the COPCs in the designated media. Chemical-specific SCGs may be used to determine treatment system discharge requirements or disposal restrictions for remedial activities and/or to assess the effectiveness or suitability of a remedial alternative. Chemical-specific SCGs are generally promulgated standards.

Potential chemical-specific SCGs that may apply to groundwater, subsurface soil, surface soil, and air at the Site are described in the following subsections.

4.1.1.1 GROUNDWATER

Groundwater at the Site will be considered Class GA for the purpose of this AAR. Class GA groundwater pertains to fresh groundwater found in the saturated zone of unconsolidated deposits and bedrock. The best usage for Class GA groundwater is as a source of potable water; however, Site groundwater is not used as a drinking water source. The NYS water quality standards and guidance values for Class GA groundwater are stipulated in:

- New York Water Classifications and Quality Standards (6 NYCRR Parts 609, and 700-704).
- TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values dated October 22, 1993 (reissued June 1998).

4.1.1.2 SOIL

For the purpose of characterizing the nature and extent of contamination at the Site and the potential exposure scenarios in the RIR, surface soil sample results were compared to NYSDEC Subpart 375-6 commercial use and unrestricted use SCOs. Subsurface soil VOC analytical results were compared

to NYSDEC Subpart 375-6 unrestricted use SCOs; whereas SVOCs, metals, pesticides, and PCBs subsurface soil analytical results were compared to the commercial use SCOs only.

The FWIA completed as part of the RI and SRI determined that the small, isolated vegetated areas on Site provide limited habitat for wildlife. The Site is also surrounded by developments (rail line, industrial and residential properties, roads, etc.). Within a 0.5-mile radius of the Site, there are some large vegetated tracts. However, due to the level of development that separates the Site from these tracts, it is unlikely that organisms which inhabit those large vegetated tracts transit to the Site to utilize the limited vegetated areas. Therefore, the SCOs for the protection of ecological resources are not applicable to this Site.

Tables 2, **3**, **4**, and **5** for surface soil and **Tables 6**, **7**, **8**, and **9** for subsurface soil (VOCs, SVOCs, metals, and pesticides/PCBs, respectively) present a summary of the soil results as compared to the SCOs discussed above. As required by Part 375, the AAR must also consider an alternative to remediate the Site under an unrestricted use scenario. Therefore, these tables also provide a comparison of the soil analytical results the Part 375 unrestricted use SCOs.

4.1.2 ACTION-SPECIFIC SCGs

Action-specific SCGs are determined by the particular remedial activities that are selected for the Site cleanup. Action-specific requirements establish controls or restrictions on the design, implementation, and performance of remedial activities. Following the development of remedial alternatives, action-specific SCGs that specify performance levels, actions, technologies, or specific levels for discharge of residual chemicals provide a means for assessing the feasibility and effectiveness of the remedial activities.

4.1.3 LOCATION-SPECIFIC SCGs

Potential location-specific SCGs are requirements that set restrictions on activities depending on the physical and environmental characteristics of the Site or its immediate surroundings.

The Site is bounded by both residential and industrial properties. The FWIA completed during the RI concluded that there are no identified rare, threatened or endangered species, habitats of concern, or freshwater wetlands within a 0.5-mile radius of the Site.

Potential location-specific SCGs that may be applicable to potential Site remedial technologies are the Town of Lancaster zoning ordinances and building codes.

4.2 REMEDIAL ACTION GOALS AND OBJECTIVES

4.2.1 REMEDIAL ACTION GOALS

The primary goals of any remedial action are that the action:

- Is protective of human health and the environment;
- Maintains that protection over time; and
- Minimizes untreated waste.

The remedy selection process has been performed in a manner consistent with established state and federal guidance.

4.2.2 REMEDIAL ACTION OBJECTIVES

RAOs established for the protection of human health and the environment should specify:

- The contaminants and media of concern.
- The exposure routes and receptors.
- An acceptable contaminant level or range of levels for each exposure route.

Based on the results of the RI, the remedial actions evaluated for the Site address the presence of VOCs in on-site groundwater and soils. The following RAOs have been established for Site media:

Overburden Groundwater:

- Prevent unacceptable exposure/contact of human receptors to the VOCs detected in on-site groundwater, including preventing people from drinking groundwater with contaminant concentrations in excess of drinking water standards.
- Address overburden groundwater impacts to the extent practicable, so that groundwater conditions are consistent with the contemplated use of the Site as a commercial/industrial manufacturing facility.
- Prevent or mitigate, to the extent practicable, migration of impacted groundwater to off-site areas.
- Reduce/remove source(s) of groundwater contamination.
- Restore the groundwater aquifer to meet ambient groundwater quality criteria, to the extent practicable.
- Monitor the groundwater to confirm that the selected remedy is protective of human health and the environment.

Soil

- Prevent unacceptable exposure/contact of human receptors to Site contaminants in on-site soil, including preventing ingestion/direct contact with contaminated soil and inhalation of, or exposure to contaminants volatilizing from, contaminants in soil. Prevent ingestion/direct contact with contaminated soil.
- Reduce/remove source(s) of VOCs that could impact groundwater.

5.0 GENERAL RESPONSE ACTION AND IDENTIFICATION OF REMEDIAL TECHNOLOGIES

General response actions (GRAs) are remedial approaches encompassing those actions that will satisfy the RAOs. General response actions may include treatment, containment, removal, disposal, institutional controls, or a combination of these, if required, to address varied Site environmental problems and to be effective in meeting all the RAOs. GRAs and potentially applicable remedial technologies for addressing RAOs for each medium of concern were identified and evaluated for potential applicability in **Tables 18**, **19**, and **20** for groundwater, soil, and soil vapor, respectively.

The following GRA descriptions have been generated in accordance with the guidelines in NYSDEC's DER-10. Brief descriptions of specific technologies for each media are provided in **Tables 18**, **19**, and **20**.

Limited Action involves institutional controls that restrict access to contaminated areas through physical and/or administrative measures. Limited Action also includes long-term monitoring. The institutional control response is not intended to reduce the toxicity, mobility, or volume of hazardous Site constituents, but to reduce the potential for human and wildlife exposure to these constituents.

Containment actions include control, isolation, and encapsulation technologies that involve little or no treatment, but provide protection of human health and the environment by reducing mobility of contaminants and/or eliminating pathways of exposure. Since these technologies consist primarily of physical barriers to control migration, contaminant toxicity and volume are not reduced significantly within the contained area.

Removal/Treatment/Disposal actions include technologies that act to reduce the volume, toxicity, and/or mobility of contaminants. These technologies include in-situ treatment, removal, ex-situ treatment, and destruction. Treatment methods reduce contaminant volume, toxicity, and/or mobility by treating contamination to acceptable cleanup levels. Destruction technologies permanently and irreversibly destroy or detoxify contaminants to acceptable cleanup levels, thereby reducing contaminant volume, toxicity, and mobility. Disposal actions include both on-site and off-site technologies, including reuse/recycling, and/or landfill disposal.

No remedial activities would be implemented under a "No Action" general response action; however, it is considered throughout the AAR process as a baseline against which other general response actions and technologies can be compared.

The general response actions and associated technologies identified for each medium include one or a combination of the following on-site actions:

Overburden Groundwater

- No Action
- Limited Action, including institutional controls
- In-situ Treatment
- Removal and Treatment

<u>Soil</u>

- No Action
- Limited Action, including institutional controls
- In-situ Treatment
- Removal

Soil Vapor

- No action
- Engineering Control
- Physical/Ex-situ Treatment

6.0 INITIAL SCREENING OF REMEDIAL TECHNOLOGIES

Technologies that are labeled general response actions and technologies labeled as applicable or potentially applicable in Section 5.0 (**Tables 18**, **19**, and **20**) have undergone a process of initial screening. The purpose of an initial screening is to eliminate remedial technologies that may not be effective based on anticipated Site conditions and/or that cannot be implemented technically at the Site, as well as to more narrowly focus the list of alternatives that will be developed and evaluated in greater detail. Specifically, the initial screening reviewed each technology in terms of effectiveness in providing protection to human health and in reducing toxicity, mobility, or volume of the waste; implementability; and relative cost. The initial screening process was guided by NYSDEC's Selection of Remedial Actions at Inactive Hazardous Waste Sites (Technical and Administrative Guidance [USEPA, 1988; USEPA, 1990]. **Table 21** presents the initial screening evaluation to each specific technology.

Technologies retained from this initial screening process were grouped into potential remedial alternatives for discussion in Section 7.0. Based upon the screening of technologies presented in **Table 21**, the following alternatives have undergone detailed evaluation:

Alternative 1 - No Action (all media, required for baseline)

Groundwater

Alternative GW-2: Excavation

Alternative GW-2A: Focused Excavation with Monitored Natural Attenuation (MNA)

Alternative GW-3: Enhanced Bioremediation

Alternative GW-4: In-situ Chemical Oxidation (ISCO)

Alternative GW-4A: Focused ISCO with MNA

Alternative GW-4B: Focused ISCO with Enhanced Bioremediation

For unsaturated soil, based on the limited extent and shallow depths of identified contaminated soil, excavation is the selected remedy for the ease of implementation and because it will not limit Site reuse. Excavation for impacted unsaturated soil will be included as a component of all of the groundwater alternatives.

For soil vapor, depressurization is the preferred engineering control technology by regulators and practitioners, especially for an existing building, where other engineering control technologies may not be applicable to all buildings or rooms and are often less preferred by environmental regulators. Therefore, sub-slab depressurization will be included as a component of all groundwater alternatives.

7.0 DETAILED ANALYSES OF RETAINED REMEDIAL ALTERNATIVES

The technologies and process options retained from the initial screening process were combined to develop remedial alternatives to undergo detailed analysis. A range of alternatives was developed that would satisfy the Site-specific remedial goals and RAOs. A detailed analysis of each alternative provides conceptual design, primary capital and operating costs, and approximate remediation time to attain remedial goals. The specific evaluation criteria are described in Section 7.1.

7.1 Evaluation Criteria

Each of the remedial alternatives was evaluated using the criteria set forth in NYSDEC's Draft DER-10, Section 4.1(e): Technical Guidance for Site Investigation and Remediation [NYSDEC, 2010a] as well as the USEPA Guidance for Conducting RI/FS Studies under CERCLA [USEPA, 1988].

7.1.1 Overall Protection of Human Health and the Environment

This criterion is an evaluation of the remedy's ability to protect human health and the environment, assessing how risks posed through each existing or potential pathway of exposure are eliminated, reduced or controlled through the removal, treatment, engineering controls or institutional controls. The remedy's ability to achieve each RAO is evaluated.

7.1.2 Compliance with Standards, Criteria, and Guidance

This criterion is an evaluation of the remedy's ability to meet applicable environmental laws, regulations, standards, and guidance.

7.1.3 Long-Term Effectiveness and Permanence

This criterion is an evaluation of the long-term effectiveness and performance of the remedy after implementation.

7.1.4 Reduction of Toxicity, Mobility or Volume

This criterion is an evaluation of the remedy's ability to reduce the toxicity, mobility or volume of the materials.

7.1.5 Short-term Effectiveness

The potential short-term adverse impact(s) and risks of the remedy upon the community, the workers, and the environment during implementation are evaluated.

7.1.6 Implementability

This criterion is an evaluation of the feasibility of technical and administrative implementation.

7.1.7 Cost

Capital, operation, maintenance and monitoring costs are estimated for the remedy and presented on a present worth basis.

7.1.8 Land Use

This criterion is an evaluation of the current, intended and reasonably anticipated future use of the Site and its surroundings, as it relates to an alternative or remedy, when unrestricted use levels would not be achieved.

7.1.9 Community Acceptance

Community acceptance is typically evaluated following a public comment period, after a remedy has been proposed.

7.1.10 Green Remediation

This criterion is an evaluation of the extent to which green and sustainable practices and technologies are incorporated into the remedy during its implementation. NYSDEC DER-31(NYSDEC, 2010b) establishes a preference for remediating Sites in the most sustainable manner while still meeting legal, regulatory, and program requirements.

7.2 Remediation Target Areas

For the purposes of the planning level design generated for the detailed evaluation and comparison of remedial alternatives, this AAR assumes that remediation is targeted for groundwater within the 100 to 1,000 μ g/L Total VOC (TVOC) isopleths for shallow and deep groundwater, plus 10 percent of this area as contingency. For shallow groundwater (approximately 3 to 15 ft bgs), an area of 24,000 square feet is used, and for deep groundwater (approximately 15 to 21 ft bgs) an area of approximately 7,000 square feet is used for the detailed evaluation. Many in-situ remedial technologies become inefficient, and therefore cost prohibitive, when concentrations of total chlorinated VOCs are less than 100 μ g/L. It is assumed that natural attenuation would address contamination outside of these target areas. The areas targeted for groundwater remediation in the AAR are shown on **Figure 6**.

7.3 Cost Evaluation Approach

As part of the detailed evaluation, planning level costs were developed for each alternative, and in some cases, multiple scenarios have been presented. These costs were based on general assumptions and elements likely to become part of each alternative (conceptual planning). The planning level costs presented are intended to provide a measure of total estimated resource costs over time, and the accuracy of these estimates is expected to be between -30 and +50 percent [USACE/USEPA, 2000]. Contingencies were estimated as suggested in *A Guide to Developing and Documenting Estimates during the Feasibility Study* [USACE/USEPA, 2000]. In addition, net present value costs were estimated for future costs for each alternative.

Detailed cost backup calculations are provided in **Appendix A**.

7.4 Common Elements

All groundwater alternatives, except for the Alternative 1 (No Action), include the following common elements:

- Targeted excavation of shallow soil locations with metals concentrations that exceed Commercial SCO criteria;
- Storm Sewer action;
- Sub-slab depressurization system (SSD) for the Plant 1 building; and

Institutional Controls

To mitigate contaminated groundwater entering the storm sewer and eventually discharging at the outfall in Spring Creek, all alternatives will include protective measures implemented directly to the storm sewer. Within the VOC plume area; there are approximately 300 feet of 12-inch diameter pipe, approximately 150 feet of 6-inch diameter pipe, and four catch basins. A range of actions for the sewer line would be considered based on the cost, schedule, and visual appearance of the pipe and connections, and could include repair or replacement of individual sections or joints, encasing the sewer pipe with an impermeable material, pouring concrete around the sewer pipe, and/or complete replacement of the pipe run. Temporary bypass measures would be provided to maintain operation of the storm sewer, which has a base flow of approximately 10 gallons per minute (gpm). In addition, remediation to reduce VOC concentrations in the groundwater around the storm sewer by the chosen alternative will also reduce the VOCs entering the storm sewer and eventually discharging at the outfall.

Based upon sub-slab indoor vapor sampling and groundwater sampling results and assumed VOC concentrations below the building, this AAR assumes that the SSD system will only be needed for a limited area in the southwestern corner of the existing Plant 1 building, namely the boiler room (**Figure 7**, approximately 10 ft by 30 ft). The boiler room is a stand-alone building with metal walls and roof, and a poured concrete floor. It is anticipated that the SSD system would consist of floor sealing, sub-slab vertical suction (or passive venting), and a small blower (if determined required from pilot testing).

Targeted shallow excavations would be performed for unsaturated soil that exceeds commercial use SCO for metals (copper, cadmium, and total mercury) in soil. An area of approximately 20 ft by 40 ft is estimated for removal to depths of two feet, as shown on **Figure 8**. This excavation volume is easy to access, and will eliminate the need for land use controls to continue commercial use of property.

Public potable water is used at the Site and the surrounding properties. However, because groundwater concentrations exceed NYS water quality standards and guidance values for Class GA groundwater, Institutional Controls to implement groundwater use prohibitions may be put in place to minimize any future exposure risks from contaminated groundwater. Institutional Controls could be removed from the property after groundwater remedial goals are met. In addition, the NYSDEC approval letter of the SRIR dated June 1, 2012, stated that this AAR must evaluate treatment for subsurface soil that exceeds groundwater SCOs; the limited number of subsurface soil samples that exceeded groundwater protection SCOs are co-located within the area and volume described above and shown on **Figure 8** and therefore would be appropriately managed by the proposed shallow excavation.

7.5 Remedial Action Alternatives

7.5.1 Alternative 1: No Action

The Alternative 1 (No Action) is developed as a baseline to which other alternatives can be compared, in accordance with USEPA RI/FS Guidance [USEPA, 1988]. Under this alternative, no remedial action is taken and as a result, only naturally occurring processes would be working to achieve RAOs. The time to achieve RAOs under Alternative 1 would likely exceed 100 years, based on the mixture of VOCs, the areal extent of the VOC groundwater contamination, the residual high concentrations in groundwater, and the current oxidation-reduction potential of Site groundwater that is not favorable for natural bioremediation of chlorinated VOCs (generally -40 to +40 millivolts); although natural attenuation is occurring. No costs are presented as no remedial action would be performed. The detailed analysis of Alternative 1 compared to the evaluation criteria is presented in **Table 22**.

7.5.2 Alternative GW-2: Excavation

Under this alternative, contaminated soil and groundwater within the area identified in Section 7.2 would be excavated and transported to an appropriate landfill or treatment facility. This alternative would remove saturated soil and groundwater contaminated with VOCs, in addition to the limited excavation of shallow soils for metals described in Section 7.4. Excavation of soils is not typically considered a groundwater remedy, but the removal of soil in a groundwater hot spot area can accelerate clean up time for groundwater and/or can be used to complement other remedies. Chlorinated solvent contamination extends through the saturated zone, and excavation to the top of bedrock would be required to remove all possible contaminant source materials.

Site preparation activities for soil excavation would include the placement of erosion control materials and equipment decontamination areas to prevent migration of contaminated soil off-site. Sheet piling would be required near Plant 1 (approximately 75 linear ft) to preserve the structural integrity of the building. The removal, transportation, and disposal of contaminated soils can be accomplished with standard construction equipment. Excavated soil would be screened, segregated, and stockpiled prior to being disposed off-site. Safety precautions would include a community air monitoring program (CAMP) to protect people on adjacent properties from the likely presence of airborne volatile contaminants and dust. One challenge to excavating all contaminated soil is that significant volumes of water would need to be removed from within the excavation pit, during both excavation and backfilling activities. With a shallow water table (~3 to 6 ft), dewatering would be required, and water discharge and permitting requirements would need to be determined. For this AAR it is assumed that construction water and stormwater would be treated on-site via air stripper and/or activated carbon and disposed of off-site (likely to a publically owned treatment works). After excavation is complete, clean backfill would be placed back into the entire excavation with compaction and restoration. It is assumed that site preparation, excavation, backfilling, and restoration activities would be completed in approximately five to six months. Bottom and sidewall limit of excavation soil samples would be collected and analyzed for VOCs. Additional soil collection for VOC analysis would be performed for soil characterization prior to land disposal.

The primary capital costs for this alternative include soil excavation, disposal, backfill, and dewatering costs. For the AAR cost estimate, a range of soil disposal scenarios is provided (hazardous vs. non-hazardous). Operations and maintenance (O&M) costs would be minimal with successful implementation of this alternative, but would include groundwater monitoring to evaluate reductions in groundwater concentrations inside and outside of the excavation area. A detailed analysis of Alternative GW-2 (Excavation) compared with the evaluation criteria is presented in **Table 22**.

DER-10 requires evaluation of an alternative that can achieve unrestricted use of the site. This excavation alternative would be performed such that all soils that fail to meet unrestricted use SCOs would be excavated and disposed off-site.

7.5.3 Alternative GW-2A: Excavation with Monitored Natural Attenuation

Under this sub-alternative, soil excavation would be performed within the areas with the most contaminated groundwater, generally within the 10,000 μ g/L TVOC isopleths for the shallow and deep zones, as shown on **Figure 9**. The excavation footprint areas would be approximately 7,000 square feet for the shallow zone, which includes the area near point A1-GP13 between the two 10,000 μ g/L contoured shapes. Inside that area, approximately 1,600 square feet would be removed to the top of bedrock (approximately 40 ft by 40 ft area around MW-38D). This area would also include soils not excavated during the IRM. By removing the most contaminated soil, it is anticipated that groundwater concentrations throughout the rest of the site would decrease through natural attenuation, which is defined as "a variety of physical, chemical, or biological processes that, under favorable conditions,

act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of contaminants in soil and groundwater" [USEPA, 1999]. Such in-situ processes include biodegradation, dispersion, dilution, sorption, volatilization, and chemical or biological stabilization, transformation, or destruction of contaminants. Similar methods for excavation, dewatering, and backfill would be performed as described in Alternative GW-2; however, only limited shoring would likely be needed as the focused excavation areas are generally further away from Plant 1.

Implementation of monitored natural attenuation (MNA) would require installation of additional monitoring wells and environmental monitoring including biological and geochemical parameters to evaluate attenuation reactions. For this AAR it is assumed that groundwater samples would be collected semi-annually for up to five years with annual sampling thereafter for a period of 30 years. Institutional controls could also be implemented to minimize the potential for human exposure by restricting resource usage, potentially including water use restrictions.

The primary capital costs for this alternative include soil excavation, disposal, backfill, dewatering, and well installation costs. For the AAR cost estimate, a range of disposal scenarios is provided (hazardous vs. non-hazardous). O&M costs would include groundwater monitoring to evaluate reductions in concentrations and the success of natural attenuation processes inside and outside of the excavation area. A summary of the costs estimated for Alternative GW-2A is presented in **Appendix A**, and a detailed analysis of Alternative GW-2A compared with the evaluation criteria is presented in **Table 22**.

7.5.4 Alternative GW-3: Enhanced Bioremediation

This alternative consists of injection of amendment(s) to enhance biological processes that convert contaminants to less harmful compounds. Commonly applied remediation technologies utilize reductive processes for chlorinated VOCs and aerobic processes for benzene, toluene, ethylbenzene, and xylene compounds (BTEX) VOCs. Therefore, a single bioremediation technology is not applicable for treating all VOC contaminants detected in Site groundwater. However, a significant fraction (70-100%) of the Total VOC contamination in groundwater consists of chlorinated VOCs, with only the area south of Plant 1 having elevated concentrations of BTEX constituents (primarily toluene and xylene). Therefore, for the purposes of this AAR, the detailed evaluation has assumed enhanced bioremediation using reductive dechlorination.

Under this alternative, treatment of chlorinated VOCs would be achieved by amending the groundwater to create reducing groundwater conditions conducive to the progressive dechlorination of TCE and 1,1,1-TCA by bacteria. Naturally occurring microorganisms create hydrogen, which replaces chlorine on chlorinated VOCs. Biotic dechlorination of TCE yields cis-1,2-DCE, with subsequent biotic dechlorination reactions producing vinyl chloride and eventually ethene. Similarly, biotic dechlorination of 1,1,1-TCA sequentially yields 1,1-DCA and chloroethane. Activity of dehalogenating microbes is most favorable under reducing groundwater conditions when dissolved oxygen is negligible, pH is between 6.0 and 8.5, and oxidation-reduction potential (ORP) is below -100 mV. Biotic dechlorination daughter products are present in Site groundwater, which suggests that some reductive dechlorination is naturally occurring. Biodegradation of chlorinated VOCs can be accelerated through the addition of a carbon source (as a food source and electron donor), the addition of nutrients, and/or bioaugmentation to increase the number of dechlorinating bacteria. Reductive dechlorination of chloroethane to ethane does not readily occur; however, aerobic biodegradation of chloroethane has been observed and would be anticipated to occur as the Site ORP returns to baseline conditions.

Several proprietary and non-proprietary reductive amendments are available for groundwater remediation, including emulsified vegetable oil (EVO), hydrogen release compounds, molasses,

lactate, and soluble oils. Proprietary formulations include readily available carbon as well as slowrelease carbon, which allows for extended release time, and nutrients required for biotic growth. Variations of these products include addition of zero valent iron or reduced (ferrous) iron complexes for promotion of abiotic, chemical dechlorination in addition to biodegradation.

An injection system for enhanced biodegradation would consist of chemical tanks, mixers, pumps, piping, and fittings. Injections would be performed using a regularly-spaced grid throughout the treatment area. Injection can be performed through semi-permanent PVC wells or through directpush rods. For this AAR, it is assumed that injection would be performed through semi-permanent PVC wells to allow for multiple future injections and allow for future data collection. Direct injection would offer some capital cost savings, but rig mobilization would be required to perform future injections. The injection strategy would be finalized during remedial design. In order to remediate the full saturated overburden (approximately 3 ft to 21 ft bgs), it is assumed that each injection location would consist of several PVC wells (injection points) with screens located at different intervals that are installed in separate boreholes positioned within shallow saturated overburden (4 ft to 14 ft bgs) and the deep saturated overburden (15 ft to 21 ft bgs) just above or slightly into weathered bedrock. Due to the low permeability of the subsurface, injection rates and pressures would be relatively low (approximately 0.5 to 1.5 gpm at 5 to 10 psi) to avoid mounding of remedial solutions above the ground surface or out of nearby wells. An injection apparatus could be manifolded to divert and monitor injection flow into multiple injection wells simultaneously, to decrease overall time required for injection activities. The anticipated lifetime of the injected amendments would range from three months to three years, based upon the specific amendment chosen and dosage applied. For this AAR, follow-up carbon enhancement addition is assumed.

This alternative also assumes that bioaugmentation would be performed. Microorganisms capable of degrading TCE to cis-1,2-DCE are omnipresent in subsurface environments [AFCEE, 2004]. However, only specific strains of bacteria are known to fully dechlorinate 1,1,1-TCA to ethane (*Dehalobacter* or DHB) and TCE to ethene (*Dehalococcoides* or DHC), and these bacteria are not present in the subsurface at all Sites or uniformly at a given Site. Advantages of bioaugmentation are that for a relatively small additional cost remediation time is often shorter than enhanced biodegradation using the microbes already present in the subsurface. That bioaugmentation would enhance bioremediation of both TCA and 1,1,1-TCA, as 1,1,1-TCA has been shown to inhibit DHC. Groundwater geochemical parameters, including dissolved oxygen, pH, and ORP, would be monitored following addition of the carbon substrate amendments to evaluate the changing groundwater geochemistry to determine when conditions become favorable for bioaugmentation of DHC microbes. For this AAR, it is assumed that microorganism cultures would be injected approximately three to six months after completion of initial injection of electron donor.

Remediation monitoring would be performed to evaluate the distribution of the electron donor in the subsurface, assess contaminant destruction, and determine progress towards attainment of the cleanup objectives. Groundwater geochemical parameters, including dissolved oxygen, pH, and ORP, would be monitored to evaluate the changing conditions as they become favorable for biodegradation. Monitoring of biological degradation parameters, including ethene, ethane, methane, chloride, as well as VOCs and some metals, would be conducted following injection in order to monitor remedial progress. This alternative may result in temporary mobilization of some metals (including arsenic, iron, and manganese) due to the creation of reducing conditions and potential for a decrease in pH. Laboratory analysis for metals would be performed prior to commencement of groundwater remedial activities to determine baseline metal concentrations and during performance monitoring to evaluate this potential effect. Typically, geochemical conditions will return to pre-injection conditions at some time following the injection, and metals will again become immobile.

The primary capital costs associated with this alternative are carbon addition/electron donor additive and associated chemical additives, installation of injection points, bioaugmentation cultures, and injection labor and equipment. Additional O&M costs include performance monitoring and future follow-up injection of carbon amendments. A summary of the costs estimated for Alternative GW-3 is presented in **Appendix A** and a detailed analysis of Alternative GW-3 compared with the evaluation criteria is presented in **Table 22**.

7.5.5 Alternative GW-4: In-Situ Chemical Oxidation

ISCO acts to reduce the mass of organic contaminants through the direct injection of a strong oxidizing agent into the subsurface. Nearly all organic contaminants can be oxidized to non-hazardous end products of water, carbon dioxide, and inorganic chloride [ITRC, 2005], and ISCO of on-site VOCs has been demonstrated at numerous sites. Successful delivery of the oxidant to the contaminant is the primary factor controlling performance of the remedy, and is dependent upon geologic conditions, injection location, transport, and natural oxidant demand in the subsurface. Several chemical oxidants are available for contaminant remediation, including permanganate, activated persulfate, catalyzed hydrogen peroxide (CHP), and ozone.

Activated persulfate is a robust oxidant approach that is capable of oxidizing BTEX and chlorinated VOCs. Sodium persulfate needs to be activated to be used for remedial chemical oxidation to generate even more oxidizing free radicals. Iron, base, acid, and hydrogen peroxide are potential activators. CHP is a very robust ISCO approach for oxidation of a wide range of VOCs. Iron is used to catalyze hydrogen peroxide to generate an array of oxidizing free radicals. CHP has been shown to improve desorption of VOCs from soil, but subsurface persistence of CHP is relatively short (hours to days). Ozone is a gaseous oxidant, so delivery would be difficult and the propagation of the oxidant would be slow in the low permeability soils observed beneath the Site. Permanganate is particularly effective for oxidizing double bonds, but chlorinated ethanes are recalcitrant to permanganate oxidation. Therefore, ozone and permanganate will not be evaluated. Activated persulfate or CHP would both be applicable oxidants for the Site. For this AAR, activated persulfate was assumed for generating a cost estimate. It should be noted that 1,1,1-TCA is more recalcitrant to oxidation than other VOCs, and bench-scale treatability and/or field pilot-scale testing would be conducted to optimize treatment.

An ISCO injection system would consist of tanks, mixers, pumps, piping, and fittings. All components would need to be compatible for use with strong chemical oxidants. Like in-situ bioremediation (Alternative GW-3), ISCO injections can be performed through installed semi-permanent wells or through direct-push rods. For this AAR, it is assumed that injection would be performed through semi-permanent PVC wells, to allow for multiple future injections and future data collection. Direct injection would offer some capital cost savings, but rig mobilization would be required to perform future injections. The injection strategy would be finalized during remedial design. Similar to Alternative GW-3, a grid system of wells would be installed in order to provide sufficient distribution of the oxidant in the subsurface. Multiple injection intervals would be treated at each location to remediate the full saturated overburden (approximately 3 ft to 21 ft bgs). Multiple injections are often required to achieve groundwater regulatory cleanup goals [McGuire, et. al, 2006; ITRC, 2005]. For this AAR, three injection events are estimated to be required to complete treatment, and follow-up injections are anticipated to be sequentially smaller in treatment areas and volumes.

A wide range of naturally occurring reactants other than the target contaminant(s), including organic matter and reduced metals species, also react with chemical oxidants. Oxidant demand attributed to soil and organic matter within soil (also termed non-target, natural, or background demand) is typically greater than the demand from target contaminants. Laboratory testing to estimate the Total Oxidant Demand (TOD) would be completed to assist the Remedial Design and selecting dosage(s).

Remediation monitoring would be performed to evaluate the distribution of the oxidant in the subsurface, assess contaminant destruction, and determine progress toward attainment of the cleanup objectives. Groundwater geochemical parameters, including dissolved oxygen, pH, ORP, and conductivity would be monitored to evaluate the changing conditions as a result of ISCO injections. In addition, persulfate test kits and sulfate analysis would be used to evaluate oxidant persistence and distribution. This alternative may result in temporary mobilization of some metals due to creation of oxidizing conditions (chromium) or decrease in pH (arsenic, iron and manganese) which are potential outcomes depending on the native soil conditions (buffer capacity) and specific oxidant-activator pairing selected. Laboratory analysis for metals would be performed prior to commencement of groundwater remedial activities to determine baseline metal concentrations and during performance monitoring to evaluate this potential effect. Typically, geochemical conditions will return to pre-injection conditions at some time following the injection, and metals will again become immobile.

The primary capital costs associated with this alternative are installation of ISCO injection points, injection apparatus, oxidant chemicals, and injection labor and materials. Additional O&M costs include performance monitoring and follow-up injections. A summary of the costs estimated for Alternative GW-4 is presented in **Appendix A** and a detailed analysis of Alternative GW-4 compared with the evaluation criteria is presented in **Table 22**.

7.5.6 Alternative GW-4A: Focused In-Situ Chemical Oxidation with Monitored Natural Attenuation

Under this sub-alternative, ISCO would be performed within the areas with the most contaminated groundwater. Outside of the ISCO treatment area, MNA would be implemented to evaluate reductions in VOC concentrations from natural processes, after reducing the contaminant mass and concentrations in the most contaminated areas that are serving as a source of groundwater contamination. The ISCO treatment area for this sub-alternative will generally lie within the 10,000 µg/L Total VOC isopleths for the shallow and deep zones as shown on **Figure 9** (similar to Alternative GW-2A). The approximate treatment footprint for this sub-alternative would be 7,000 square feet for the shallow zone, which includes the area near point A1-GP13 between the two 10,000 ug/L contoured shapes. Within this ISCO area, for the deep interval approximately 1,600 square feet would be treated to the top of bedrock (approximately 40 ft x 40 ft area around MW-38D). ISCO would be performed as described in Alternative GW-4, except in a smaller area. It is assumed that three injections will be performed in this smaller area.

For the MNA component of this sub-alternative, additional monitoring wells will be installed. In addition, groundwater samples will be analyzed for additional parameters to evaluate natural attenuation processes, including alkalinity, methane/ethane/ethane, and total organic carbon in addition to periodic quantification of DHC and DHB bacteria.

The primary capital costs associated with this alternative are installation of ISCO injection points, injection apparatus, oxidant chemicals, injection labor and materials, and the installation of additional monitoring wells. Additional O&M costs include performance monitoring and follow-up injections. A summary of the costs estimated for Alternative GW-4A is presented in **Appendix A**, and a detailed analysis of Alternative GW-4A compared with the evaluation criteria is presented in **Table 22**.

7.5.7 Alternative GW-4B: Focused In-Situ Chemical Oxidation with Enhanced Bioremediation

Under this sub-alternative, ISCO would be performed within the areas with the most contaminated groundwater (as described in Alternative GW-4A). Outside of the ISCO treatment area, enhanced bioremediation via reductive dechlorination would be implemented (as described in Alternative GW-3).

The injection of a chemical oxidant would render groundwater conditions more oxidizing within and immediately downgradient of the ISCO injections. Enhanced bioremediation for chlorinated VOCs is most favorable under reducing conditions; therefore it is assumed that ISCO and bioremediation injections would not be performed at the same time or immediately in sequence. For the purposes of this AAR, it is assumed that two injections of chemical oxidant would be performed within the area of highly contaminated groundwater, and approximately 9 to 12 months after the second ISCO injection, carbon substrate to stimulate bioremediation by reductive dechlorination would be injected to the areas outside of the ISCO injection area. Performance monitoring would determine if a third ISCO injection is needed and/or if injections for enhanced bioremediation would have to occur in the future within the focused ISCO area.

The primary capital costs associated with this alternative are installation of injection points, injection apparatus, oxidant chemicals, bioremediation amendments, injection labor and materials, and the installation of additional monitoring wells. Additional O&M costs include performance monitoring and follow-up injections. A summary of the costs estimated for Alternative GW-4B is presented in **Appendix A**, and a detailed analysis of Alternative GW-4B compared with the evaluation criteria is presented in **Table 22**.

8.0 COMPARATIVE ANALYSES OF REMEDIAL ALTERNATIVES

8.1 Comparative Analysis of Alternatives

After individual evaluation of each alternative based on the criteria defined in Section 7.1, comparative analyses were conducted to evaluate the relative performance of each alternative. The purpose of the analyses was to identify the advantages and disadvantages of each alternative relative to the others so that key tradeoffs could be identified and balanced. Overall protection of human health and the environment and compliance with SCGs must be met by any selected alternative. Tradeoffs among the alternatives are related to five criteria: long-term effectiveness and permanence; reduction of toxicity, mobility and volume; short-term effectiveness; implementability; and cost. The remediation timeframes for each alternative are important to consider when comparing short-term effectiveness, compliance with SCGs, protection of human health and environment, and land use. State and community acceptance would be addressed following regulatory review and a public comment period after a remedy has been recommended. **Table 22** also summarizes the comparative analysis of the alternatives and ranks each alternative for each of the criteria.

8.1.1 Overall Protection of Human Health and the Environment

All alternatives, with the exception of Alternative 1, would be protective of human health and the environment by eliminating potential exposure pathways, either by removal, treatment or containment of impacted soils and non-aqueous phase liquid in addition to limiting exposure pathways to intrusive activities, as in the current Site environment. The Excavation Alternative (and Subalternatives) is considered more protective by physically removing the contamination from the Site. Subalternatives that include MNA are considered less protective by only relying on natural attenuation processes to reduce contaminant concentrations over time.

8.1.2 Compliance with SCGs

All alternatives would meet the SCGs for groundwater over time via natural attenuation. They would achieve overall protection of human health and the environment by the remedial actions and/or the implementation of groundwater MNA. However, alternatives would meet SCGs in varying periods of time based on the degree of active remediation proposed.

Chemical specific SCGs would be met with implementation of excavation, chemical oxidation, and/or enhanced bioremediation alternatives; and, with MNA subalternatives and Alternative 1 over a longer period of time. All alternatives would be implemented such that action-specific and location-specific SCGs would be met.

8.1.3 Long-Term Effectiveness and Permanence

All of the alternatives except for Alternative 1 would result in permanent reduction and/or containment of impacted media. Alternative 1 would be least effective because it would involve no removal, immobilization or containment of impacted materials, relying on prolonged natural attenuation to treat impacted media without monitoring or administrative means to confirm its progress. The in-situ treatment alternatives ranked slightly lower than the excavation alternative where contamination is removed from the Site.

8.1.4 Reduction of Toxicity, Mobility, and Volume

All of the alternatives except for Alternative 1 would result in reduction in mobility of contamination. The Excavation alternative does not reduce volume or toxicity, unless treatment performed at a disposal facility, since typically contaminated soil is only moved from the Site to a disposal facility.

8.1.5 Short-Term Effectiveness

All Alternatives except Alternative 1 would include measures to minimize and mitigate exposure risks to the community, the workers and the environment during implementation. The Excavation Alternative has higher potential exposure to contamination from exposed materials, dust, and volatilized organic vapors. The Chemical Oxidation Alternative would require handling strong chemical oxidants, and personal protective equipment and materials would need to be resistant to strong oxidants.

8.1.6 Implementability

Each of the presented alternatives could be implemented; although, the degree of difficulty varies between the alternatives. The Excavation Alternatives would face the greatest challenges for implementability due to extensive dewatering, proximity to buildings, and subsurface utilities. In-situ treatment alternatives can more easily be implemented with widely available equipment and remediation amendments as well as the least disturbance to the Site.

8.1.7 Cost

The AAR cost estimates for each of the alternatives are summarized and compared in **Table 23**. Cost is inversely proportional to anticipated time to meet SCGs and directly proportional to certainty of treatment. The in-situ remediation costs are lower than excavation costs, with enhanced bioremediation being less expensive to implement than ISCO. Subalternatives that include MNA offer significant cost savings.

8.1.8 Land Use

Each of the presented alternatives includes some degree of Institutional Controls until SCGs are attained which would alter land use to be protective of human health and the environment, with the exception of Alternative 1 and Unrestricted Use SCO criteria. In addition to Institutional Controls, each alternative would have varying degree of impacts on land use. Excavation alternatives would have the highest short term impact on land use, but the lowest impact on future land use by removing the source material. MNA subalternatives would have the most impact on future land use by requiring institutional controls for the longest period of time.

8.1.9 Green Remediation

All remediation and construction activities pose an environmental impact from vehicle usage, chemical and materials manufacture, sampling activities, and laboratory analysis. The alternatives were evaluated using guidance provided in DER-31 and include a range of environmental impacts. Excavation would have the greatest environmental impact due to the heavy vehicle usage to excavate and transport contaminated materials off-Site. Generally, in-situ remediation technologies can be completed more sustainably than removal/ex-situ processes. The MNA subalternatives rely on natural processes which are viewed favorably by DER-31.

8.1.10 Community Acceptance

Community acceptance is typically evaluated following a public comment period, after a remedy has been proposed. For the evaluated alternatives short-term community impacts, long term land use, and overall protection of human health and the environment are anticipated to be the most important aspects to consider for local area stakeholders.

9.0 RECOMMENDED REMEDIAL ALTERNATIVE

Enhanced bioremediation (Alternative GW-3) is the recommended alternative for groundwater remediation based on the detailed evaluation and comparative analysis (Table 22). This technology is readily implementable and is a technically-proven remediation approach that has been demonstrated at numerous field sites for in-situ treatment of chlorinated VOCs, which are the groundwater contaminants that are the highest concentrations and most widespread. This is the lowest estimated cost alternative for treatment of the full contaminated area. In addition, bioremediation enhances naturally occurring processes and is considered a "greener" technology than others evaluated. This alternative also poses significantly less risks to site workers for implementation. Other advantages of enhanced bioremediation are that injected amendments have an active persistence that is significantly longer than chemical oxidants, which reduces the potential for rebound of contaminant concentrations in groundwater and will likely require fewer injection mobilization events. Additionally, as conditions become more reducing, and therefore favorable for biotic reductive dechlorination, microbes grow and multiply in the subsurface, and biodegrading microbes are not exhausted as occurs with a chemical oxidant. It is also anticipated that the community would accept this technology as it will target the significant area of the VOC plume and will not result in increased traffic, which would occur as a result of extensive excavation alternatives.

Alternative GW-3 would also include discrete excavation of shallow soils to address metals exceeding appropriate NYSDEC soil standards for commercial use (**Figure 8**), installation of a SSD system to operate beneath a portion of Plant 1 (**Figure 7**), and mitigation actions to reduce VOCs infiltrating into the storm drain.

10.0 REFERENCES

- AECOM. April 2012. "Supplemental Remedial Investigation, Former Scott Aviation Facility Area 1, Lancaster New York".
- AECOM. September 2011. "Remedial Investigation Report, Former Scott Aviation Facility Area 1, Lancaster New York".
- AECOM. February 2010. "Remedial Investigation/Alternatives Analysis Work Plan, Former Scott Aviation Facility Area 1, Lancaster New York".
- AECOM. May 2010. "Addendum to Remedial Investigation/Alternatives Analysis Work Plan, Former Scott Aviation Facility Area 1, Lancaster New York".
- NYSDEC. May 2010. "New York State Department of Environmental Conservation, Division of Environmental Remediation, DER-10 Technical Guidance for Site Investigation and Remediation".
- NYSDEC. 2006. Rules and Regulations, 6 NYCRR Subpart 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006.
- NYSDEC. May 2004. "Draft Brownfield Cleanup Program Guide".
- NYSDEC. June 1998. "Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations".
- NYSDEC. October 1994. "Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (FWIA)".
- NYSDEC. August 2010. "New York State Department of Environmental Conservation, Division of Environmental Remediation, DER-31 Green Remediation".

NYSDOH. October 2006. "Guidance for Evaluating Soil Vapor Intrusion in the State of New York".

USEPA. July 2000. "A Guide to Developing and Documenting Estimates during the Feasibility Study".

USEPA. October 1988. "Guidance for Conducting RI/FS Studies under CERCLA".

April 2013

Appendix A

Cost Estimate Detail

Appendix A Cost Estimate Detail Former Scott Aviation Facility Area 1 Lancaster, New York

	Alterna	ative 2	Alterna	ative 2A	Alternative 3	Alternative 4	Alternative 4A	Alternative 4B	
Alternative	Excav	vation	Focused Exca	avation + MNA	Enhanced Bioremediation	In-situ Chemical Oxidation	Focused ISCO + MNA	Focused ISCO +	
(Cost in Millions)	(Unrestric	ted Use)						Enhanced Bioremediation	
Process Description	Excavation, dewatering, and off-site disposal of contaminated media (soil disposal assume 100% haz)	Excavation, dewatering, and off-site disposal of	and off-site disposal of area of most contaminanted	Excavation, dewatering, and off-site disposal of area of most contaminanted groundwater, monitored natural attenuation for remainder of plume (soil disposal assume 75% haz)	Injection of amendments to enhance natural microbial processes in addition to adding microbe cultures to augment desired native microbe populations.	Injection of chemical oxidant into subsurface for oxidation/destruction of contaminants in soil and groundwater.	Injection of chemical oxidant into areas with most contaminated groundwater with monitored natural attenuation for remainder of plume	Injection of chemical oxidant into areas with most contaminated groundwater with enhanced bioremediation for remainder of plume	
Total Capital Cost	\$6.4	\$5.0	\$2.0	\$1.9	\$1.0	\$1.7	\$0.76	\$0.88	
Future Cost	\$0.02	\$0.02	\$0.74	\$0.74	\$0.67	\$0.60	\$1.12	\$1.04	
TOTAL GW									
ALTERNATIVE COST	\$6.4	\$5.0	\$2.8	\$2.6	\$1.6	\$2.3	\$1.9	\$1.9	
TOTAL NET PRESENT VALUE ALTERNATIVE COST	\$6.4	\$5.0	\$2.5	\$2.4	\$1.6	\$2.2	\$1.6	\$1.8	
SHALLOW EXCAVATION COST					\$0.12				
STORM SEWER				Will be remedia	ted by default by using any of the Alternatives listed above				
SUB SLAB DEPRESSURIZATION					\$0.06				
TOTAL COST CONTINGEN	CY AND SENSITIVI	TY (GW ALTERNAT	TIVE + COMMON ELEME	NTS)					
-30%	\$4.6	\$3.6	\$1.9	\$1.8	\$1.2	\$1.7	\$1.2	\$1.4	
50%	\$9.8	\$7.5	\$3.8	\$3.5	\$2.3	\$3.4	\$2.4	\$2.7	
Remedy Construction and Implementation Time (from Notice to Proceed)	6 - 18	months	6 - 12	months	3-5 years (2-3 Injection events)	3-4 years (2-3 ISCO Injection events)	3-4 years (2-3 ISCO Injection events)	3-4 years (2-3 ISCO Injection events)	
Period of Performance - Remediation & Post- Remediation Monitoring	monitoring sampl	ears performance ing to demonstrate attainment		nitored natural attenuation ate criteria attainment	Assume 3-5 years performance monitoring sampling after last injection for additional natural attenuation and to demonstrate criteria attainment	Assume 2-4 years performance monitoring sampling after ISCO for additional natural attenuation and to demonstrate criteria attainment	Assume 20 years of monitored natural attenuation sampling demonstrate criteria attainment	Assume 3-5 years performance monitoring sampling after last injection for additional natural attenuation and to demonstrate criteria attainment	
Overall Time to Achieve Site Closure	З у	ears	21	years	6 - 10 years	5 - 8 years	23 years	8 - 10 years	

Summary of Engineering Assumptions for Planning Level Costs for Remedial Alternatives Former Scott Aviation Facility, Lancaster, NY

Horizontal and Vertical Extents of Remediation

The AAR assumes that remediation is targeted for groundwater within the 100 to 1,000 ug/L Total VOC isopleths for shallow and deep groundwater, in addition to 10 percent of this area as contingency. Shallow overburden 3-15 feet, Area = 29000 sq ft Deep Overburden 15-21 feet, Area = 12500 sq ft Average shallow extent of treatment (ft.) = 3-5 to 15 feet bgs [lacrustine silts and clay interbedded with thin sand lens; K values in 2 wells = 1x10-3 and 3x10-5 cm/s] Average deep extent of treatment (ft.) = 15-21 feet bgs – [coarser grained layer (silt, sand, gravel) right above

Average deep extent of treatment (ft.) = 15-21 feet bgs – [coarser grained layer (silt, sand, gravel) right above bedrock; K values in 2 wells 5x10-3 and 9x10-5 cm/s] Depth to water (ft.) = 3 feet

The same area/thickness/volume was assumed for all technologies where planning level costs generated

Horizontal and Vertical Extents of Focused Remediation (to be used with MNA)

The AAR assumes that focused treatment for groundwater within the 10,000 ug/L Total VOC isopleths for shallow and deep groundwater, with monitored natural attenuation outside of the remediation area. Shallow overburden 3-15 feet, Area = 7,000 sq ft Deep Overburden 15-21 feet, Area = 1,600 sq ft

Alternative-Specific Assumptions

Excavation (Alternative 2 and Alternative 2A)

3 disposal scenarios evaluated (100% hazardous, 50% hazardous & 50% non-hazardous, and 25% hazardous & 75% non-hazardous) Dewatering will be required. Water discharge and permitting requirements need to be determined Assume sheet piling (~75') near building

Enhanced Bioremediation (Alternative 3)

Assume treatment is focused on chlorinated VOCs via reductive dechlorination

Cost estimate information based pricing information provided by Tersus and modified based on AECOM experience with this other in-situ remediation. Three discrete injection events assumed in the cost estimate, with each 65% of the previous.

Injection assumed using installed wells as multiple injection events are included

Field pilot test assumed within the cost estimate

Injection rate of ~1.5 gallon per minute assumed based on AECOM experience injecting in similar soils. This is a critical design parameter for finalizing cost

In-Situ Chemical Oxidation (Alternative 4, Alternative 4A, Alternative 4B)

Cost estimate prepared based on AECOM experience and using several recent cost quotations for chemicals and labor&equipment

Base activated persulfate assumed as the oxidant based on demonstrated ability to oxidize all site VOCs Three discrete injection events assumed in the cost estimate, with each 65% of the previous (Focused ISCO scenarios assume 2nd injection is the same as the 1st and the 3rd injection is 65% of previous) Injection assumed using installed wells as multiple injection events are included Field pilot test assumed within the cost estimate

Injection rate of ~1.5 gallon per minute assumed based on AECOM experience injecting in similar soils. This is a critical design parameter for finalizing cost

Monitored Natural Attenuation (Alternative 2A and Alternative 4A)

Assume installation of 5 additional well pairs

Assume semi-annual sampling for 5 years and annual sampling for years 6 through 15

Thermal Remediation

Cost estimate information based on "ball park" estimate prepared by TRS, who implements thermal remediation by Electric Resistive Heating (ERH)

The TRS quote includes assumed costs for work plans, permitting, drilling, soil disposal, electrical connection and usage, vapor treatment, confirmatory sampling and well abandonment.

Xylene was selected as the controlling contaminant as it is the least volatile of the contaminants listed.

Sub-Slab Depressurization System (all Alternatives) Former Scott Aviation Facility - Lancaster, NY

DESCRIPTION	UNIT	QUANTITY	RATE	TOTAL COST	ESTIMATE/SOURCE NOTES
CAPITAL COSTS ENGINEERING DESIGN & PERMITTING					
Additional Air Sampling	1	allowance	\$15,000	\$15,000	Allowance to confirm extent, labor, materials, and analysis
Remedial Design	40	hours	\$115	\$4,600	Include design, specifications, and contract documents Specific permits to be determined but could include air,
Permit Preparation	25	hours	\$115	\$2,875	building, or other
SUBTOTAL				\$22,475	
ASSESSMENT AND INSTALLATION		· .			<u></u>
Slab Seal/Repair	10	Hour	\$100	\$1,000	Cost estimates from AECOM experience at similar sites
System Installation Labor	48	Hour	\$100	\$4,800	Two workers for 3 days
Electrician Installation Labor	20	Hour	\$125	\$2,500	
Small shed	1	each	\$5,000	\$5,000	Discussion of the second s
SD Equipment	1	Lump Sum	\$6,500	\$6,500	Blower, knock out drum, suction points, control panel with alarm
Engineering Procurement & Coordination	6	hours	\$100	\$600	
Engineering Oversight	3	days	\$1,000	\$3,000	Oversight of SSD subcontractor
Project Management	10	hours	\$150	\$1,500	Assume 2 hours per day during construction + 4 hours for planning and coordination
UBTOTAL				\$24,900	
UTURE COSTS Suture Year					
	-	Dour	¢250	\$250	
Performance Monitoring Equipment Rental Sampling and GAC Change Oversight	1 0	Days Days	\$350 \$1,100	\$350 \$0	
ampling and GAC Change Oversight BAC changeout and disposal (2 drums)	0	Allowance	\$1,100	\$0 \$0	
aboratory Analyses (VOC)	2	Samples	\$175	\$350	
Rental Vehicle	1	days	\$75	\$75	
lileage/Misc Expenses	0	Allowance	\$500	\$0	
ata Evaluation and Summary Report	16	hours	\$100	\$1,600	
UBTOTAL FUTURE YEAR ssume annual Vapor GAC change out and sampling				\$2,375	
			NPV	Net Doorsen	
Future Veer	Events Per Year	Basa Cost	Discount Factor	Net Present Value	(assume Real Discount Rate of 4.5%)
Future Year	1	Base Cost \$2,375	1.00	\$2,375	(assume real Discount reale of 4.576)
1 2	1	\$2,375	0.96	\$2,273	
3	1	\$2,375	0.92	\$2,175	
4	1	\$2,375	0.88	\$2,081	
5	1	\$2,375	0.84	\$1,992	
6	1	\$2,375	0.80	\$1,906	
6	1	\$2,375	0.80	\$1,906	
7	1	\$2,375	0.77	\$1,824	
8	1	\$2,375	0.73	\$1,745	
9	1	\$2,375	0.70	\$1,670	
<u> </u>	1	\$2,375 \$2,375	0.67	\$1,598 \$1,529	
11 12	1	\$2,375	0.62	\$1,529	
13	1	\$2,375	0.59	\$1,400	
14	1	\$2,375	0.56	\$1,340	
15	1	\$2,375	0.54	\$1,282	
16	1	\$2,375	0.52	\$1,227	
17	1	\$2,375	0.49	\$1,174	
18	1	\$2,375	0.47	\$1,124	
19	1	\$2,375	0.45	\$1,075	
20 21	1	\$2,375 \$2,375	0.43	\$1,029 \$985	
2122	1	\$2,375	0.41	\$985	
23	1	\$2,375	0.38	\$902	
24	1	\$2,375	0.36	\$863	
25	1	\$2,375	0.35	\$826	
26	1	\$2,375	0.33	\$790	
27	1	\$2,375			
28	1	\$2,375	0.30	\$724	
29		\$2,375	0.29	\$692 \$663	
30 UTURE COST TOTALS	1	\$2,375 \$71,250	0.28	\$663	· · · · · · · · · · · · · · · · · · ·
				+1404	
LTERNATIVE COST SUMMARY					
LIERNATIVE COST SUMMART					
		\$24,900		\$24.900	
apital Cost		\$24,900 \$71,250		\$24,900 \$39,202	

Shallow Soil Excavation (all Alternatives) Former Scott Aviation Facility - Lancaster, NY

DESCRIPTION	UNIT	QUANTITY	RATE	TOTAL COST	ESTIMATE/SOURCE NOTES
CAPITAL COSTS					
ENGINEERING DESIGN & PERMITTING					
Remedial Design	60	hours	\$115	\$6,900	Include design, specifications, and contract documents
Permit Preparation	20	hours	\$115	\$2,300	Specific permits to be determined but could include air, building, or other
SUBTOTAL				\$9,200	
EXCAVATION AND FIELD ACTIVITIES					
Equipment Mobilization	1	Lump Sum	\$2,500	\$2,500	
Excavation & Handling of Soils (includes 1 additional foot)	208	CY	\$20	\$4,160	
Community Air Monitoring	3	Day	\$1,000	\$3,000	
Confirmation Sampling (including data validation)	10	Sample	\$150	\$1,500	,
Clean Fill Material	208	CY	\$9	\$1,872	
Place & Compact	208	CY	\$6	\$1,248	
Seeding/asphalt	1875	SF	\$1.00	\$1,875	
Well Installation- Install 2 Mon Wells Post Excavation	2	Each	\$1,500.00	\$3,000	Install two shallow monitoring wells to evaluate groundwater impacts from excavation
Misc. Supplies and PPE (Well Installation)	1	LS	\$1,000.00	\$1,000	
Drum Disposal (Well Installation)	1	Each	\$250.00	\$250	
Engineering Procurement & Coordination	12	hours	\$100	\$1,200	Assume 8 hours for excavation, 4 hours for drilling
Engineering Oversight	10.5	person days	\$1,000	\$10,500	assume 1 full time and 1 half time staff throughout excavation, equipment mob/demob, well installation
Project Management	29	hours	\$150	\$4,350	assume 2 hours per day during field activities + 15 hours for procurement/coordination
SUBTOTAL (without disposal)				\$36,455	
Disposal Scenario 1					
Transportation and Disposal; 0% of Soils (Non-HAZ)	0	Ton	\$85	\$0	
Transportation and Disposal: 100% of Soils (HAZ)	208	Ton	\$200	\$41,600	
Disposal Scenario 2				,	
Transportation and Disposal; 25% of Soils (Non-HAZ)	52	Ton	\$85	\$4,420	
Transportation and Disposal: 75% of Soils (HAZ)	156	Ton	\$200	\$31,200	
Disposal Scenario 3					
Transportation and Disposal; 50% of Soils (Non-HAZ)	104	Ton	\$85	\$8,840	
Transportation and Disposal: 50% of Soils (HAZ)	104	Ton	\$200	\$20,800	
		Scenario 1	Scenario 2	Scenario 3	
CAPITAL COST SUBTOTAL		\$87,255	\$81,275	\$75,295	
Contingency	30%	\$26,177	\$24,383	\$22,589	
TOTAL CAPITAL COSTS		\$113,432	\$105,658	\$97,884	

Shallow Soil Excavation (all Alternatives) Former Scott Aviation Facility - Lancaster, NY

ow Flow Sampling Rental Equipment	0	Days	\$500	\$220	Semi-annual sampling one year after excavation (two monitoring wells)
Sampling Staff	0	Person-Days	\$950	\$0	
aboratory Analyses (VOC)	0	Samples	\$100	\$0	
Rental Vehicle	0	days	\$75	\$0	
Mileage/Misc Expenses	1	Allowance	\$500	\$500	
Data Evaluation and Summary Report	10	hours	\$100	\$1,000	
SUBTOTAL FUTURE YEAR 1				\$1,720	
Contingency	30%			\$516	
TOTAL FUTURE YEAR 1				\$2,236	
Future Year 2					
Performance Monitoring	1	Future Year 1	\$720	\$720	annual sampling in year 2 same scope as Year 1
Data Evaluation and Summary Report	20	hours	\$100	\$2,000	
SUBTOTAL FUTURE YEAR 2				\$2,720	
Contingency	30%			\$816	
TOTAL FUTURE YEAR 2					
IVIAL FUIURE TEAR 2				\$3,536	
				\$3,536	
<u></u>	annual sampling u	ntil Year 30		\$3,536	
<u></u>		ntil Year 30	NPV	· · · · · · · · · · · · · · · · · · ·	1
	annual sampling u Events Per Year		NPV Discount Factor	\$3,536 Net Present Value	(assume Real Discount Rate of 4.5%)
Assume semi-annual sampling for 5 years and	Events		Discount	Net Present	(assume Real Discount Rate of 4.5%)
Assume semi-annual sampling for 5 years and Future Year	Events Per Year	Base Cost	Discount Factor	Net Present Value	(assume Real Discount Rate of 4.5%)
Assume semi-annual sampling for 5 years and Future Year 1 2	Events Per Year 1	Base Cost \$2,236	Discount Factor 1.00	Net Present Value \$2,236	(assume Real Discount Rate of 4.5%)
Assume semi-annual sampling for 5 years and Future Year 1 2 FUTURE COST TOTALS	Events Per Year 1	Base Cost \$2,236 \$3,536	Discount Factor 1.00	Net Present Value \$2,236 \$3,384	(assume Real Discount Rate of 4.5%)
Assume semi-annual sampling for 5 years and Future Year 1 2 FUTURE COST TOTALS	Events Per Year 1	Base Cost \$2,236 \$3,536	Discount Factor 1.00	Net Present Value \$2,236 \$3,384	(assume Real Discount Rate of 4.5%)
Assume semi-annual sampling for 5 years and Future Year 1 2 FUTURE COST TOTALS ALTERNATIVE COST SUMMARY	Events Per Year 1	Base Cost \$2,236 \$3,536 \$3,536 Scenario 1	Discount Factor 1.00 0.96 Scenario 2	Net Present Value \$2,236 \$3,384 \$3,384 \$3,384 Scenario 3	(assume Real Discount Rate of 4.5%)
Assume semi-annual sampling for 5 years and Future Year 1 2 FUTURE COST TOTALS ALTERNATIVE COST SUMMARY Total Capital Cost	Events Per Year 1	Base Cost \$2,236 \$3,536 \$3,536 \$3,536 \$3,536 \$3,536	Discount Factor 1.00 0.96 Scenario 2 \$105,658	Net Present Value \$2,236 \$3,384 \$3,384 \$3,384 Scenario 3 \$97,884	(assume Real Discount Rate of 4.5%)
Assume semi-annual sampling for 5 years and Future Year 1 2 FUTURE COST TOTALS ALTERNATIVE COST SUMMARY Total Capital Cost Total Future Costs	Events Per Year 1	Base Cost \$2,236 \$3,536 \$3,536 \$3,536 \$3,536 \$cenario 1 \$113,432 \$3,536	Discount Factor 1.00 0.96 Scenario 2 \$105,658 \$3,536	Net Present Value \$2,236 \$3,384 \$3,384 Scenario 3 \$97,884 \$3,536	(assume Real Discount Rate of 4.5%)
Assume semi-annual sampling for 5 years and Future Year 1 2 FUTURE COST TOTALS ALTERNATIVE COST SUMMARY Total Capital Cost	Events Per Year 1	Base Cost \$2,236 \$3,536 \$3,536 \$3,536 \$3,536 \$3,536	Discount Factor 1.00 0.96 Scenario 2 \$105,658	Net Present Value \$2,236 \$3,384 \$3,384 \$3,384 Scenario 3 \$97,884	(assume Real Discount Rate of 4.5%)

Excavation (Alternative 2) Former Scott Aviation Facility - Lancaster, NY

DESCRIPTION	UNIT	QUANTITY	RATE	TOTAL COST	ESTIMATE/SOURCE NOTES
CAPITAL COSTS	0.011	- COMMINI	IVIL	101AL 0031	
ENGINEERING DESIGN & PERMITTING					
Remedial Design	250	hours	\$115	\$28,750	design includes dewatering and sheeting
Permit Preparation	80	hours	\$115	\$9,200	
				*-,	
SUBTOTAL				\$37,950	
EXCAVATION AND FIELD ACTIVITIES					
Equipment Mobilization	1	Lump Sum	\$25,000	\$25,000	
Sheet Pile Mobilization	1	Lump Sum	\$30,000	\$30,000	
Temporary Facilities	1	Lump Sum	\$5,000	\$5,000	
Sheet Pile Materials	4620	SF	\$33	\$152,460	Sheet pile to 21 feet, 220 linear feet
Sheet Pile Installation/Removal, bracing install/removal	4620	SF	\$15	\$69,300	
Excavation & Handling of Soils (includes 15% for sloping)	18200	CY	\$20	\$364,000	
Stockpile Storage Area	1	LS	\$10,000	\$10,000	
Confirmation Soil Sampling	52	Sample	\$100.00	\$5,200	assume 1 per 350 CY, including validation
Community Air Monitoring	67	Day	\$1,000	\$67,000	assume 250 CY excacation per day, plus 10%
Confirmation Sampling (including data validation)	67	Sample	\$150	\$10,050	
Clean Fill Material	18200	CY	\$9	\$163,800	
Place & Compact	18200	CY	\$6	\$109,200	
Seeding	24000	SF	\$0.50	\$12,000	
Frac Tank Rental	81	DY	\$35.00	\$2,835	Excavation time plus 2 weeks for water handling and disposal afterwards
Carbon Units, Hose&Bag filters, Disposal of spent media	1	Allowance	\$15,000	\$15,000	
Pump Rental	17	WK	\$500	\$8,500	
Weekly Maintenance and Operation	17	WK	\$500	\$8,500	
Well Installation-Install 8 Mon Wells Post Excavation	8	Each	\$1,800.00	\$14,400	Allowance based on AECOM experience at other sites
Misc. Supplies and PPE (Well Installation)	1	LS	\$1,000.00	\$1,000	
Drum Disposal (Well Installation)	2	Each	\$250.00	\$500	
Engineering Procurement & Coordination	40	hours	\$100	\$4,000	
Engineering Oversight	110	days	\$1,000	\$110.000	assume 1 full time and 1 half time staff throughout excavation, equipment mob/demob, well installation, wastewater handling
Project Management	250	hours	\$125	\$31,250	assume 2 hours per day during field activities + 30 hours for procurement/coordination
] , , , , , , , , , , , , , , , , , , ,			•		
SUBTOTAL (without disposal)				\$1,218,995	
Disposal Scenario 1		_		<i></i>	
Transportation and Disposal; 0% of Soils (Non-HAZ)	0	Ton	\$85	\$0	
Transportation and Disposal: 100% of Soils (HAZ)	18200	Ton	\$200	\$3,640,000	
Disposal Scenario 2					
Transportation and Disposal; 25% of Soils (Non-HAZ)	4550	Ton	\$85	\$386,750	1
Transportation and Disposal: 75% of Soils (HAZ)	13650	Ton	\$200	\$2,730,000	
Disposal Scenario 3					
Transportation and Disposal; 50% of Soils (Non-HAZ)	9100	Ton	\$85	\$773,500	
Transportation and Disposal: 50% of Soils (HAZ)	9100	Ton	\$200	\$1,820,000	
			0		
		Scenario 1	Scenario 2	Scenario 3	
CAPITAL COST SUBTOTAL	200/	\$4,896,945	\$4,373,695	\$3,850,445	
Contingency	30%	\$1,469,084	\$1,312,109	\$1,155,134	
TOTAL CAPITAL COSTS		\$6,366,029	\$5,685,804	\$5,005,579	

Excavation (Alternative 2) Former Scott Aviation Facility - Lancaster, NY

mpling Staff boratory Analyses (VOC) ntal Vehicle eage/Misc Expenses ta Evaluation and Summary Report BTOTAL FUTURE YEAR 1	6 10 22 6 2 60	Days Person-Days Samples days Allowance hours	\$500 \$950 \$100 \$75 \$500 \$100	\$3,220 \$9,500 \$2,200 \$450 \$1,000 \$6,000	Semi-annual sampling one year after excavation 10 wells, assume 2 wells per person per day 2 YSI, 2 peristaltic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11)
aboratory Analyses (VOC) ental Vehicle illeage/Misc Expenses ata Evaluation and Summary Report UBTOTAL FUTURE YEAR 1	10 22 6 2	Person-Days Samples days Allowance	\$950 \$100 \$75 \$500	\$9,500 \$2,200 \$450 \$1,000	10 wells, assume 2 wells per person per day
Alleage/Misc Expenses Data Evaluation and Summary Report SUBTOTAL FUTURE YEAR 1	22 6 2	Samples days Allowance	\$100 \$75 \$500	\$2,200 \$450 \$1,000	
Rental Vehicle Mileage/Misc Expenses Data Evaluation and Summary Report SUBTOTAL FUTURE YEAR 1	6 2	days Allowance	\$75 \$500	\$450 \$1,000	2 YSI, 2 peristaltic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11)
Data Evaluation and Summary Report	2	Allowance	\$500	\$1,000	
Vileage/Misc Expenses Data Evaluation and Summary Report SUBTOTAL FUTURE YEAR 1 Contingency	-				
SUBTOTAL FUTURE YEAR 1	60	hours	\$100	\$6,000	
Contingency				\$22,370	
	30%			\$6,711	
TOTAL FUTURE YEAR 1				\$29,081	
Future Year 2					
Performance Monitoring	0.5	Future Year 1	\$16,370	\$8,185	annual sampling in year 2 (half costs for labor, rental, and lab from year 1)
Data Evaluation and Summary Report	60	hours	\$100	\$6,000	
SUBTOTAL FUTURE YEAR 2				\$14,185	
Contingency	30%			\$4,256	
TOTAL FUTURE YEAR 2				\$18,441	
Assume semi-annual sampling for 5 years and annua	I sampling u	ntil Year 30			
			NPV		
	Events		Discount	Net Present	
Future Year	Per Year		Factor	Value	(assume Real Discount Rate of 4.5%)
1	1	\$29,081	1.00	\$29,081	
2	1	\$18,441	0.96	\$17,646	
FUTURE COST TOTALS		\$18,441		\$17,646	

constant and a second

and dependence items in the

Focused In-Situ Chemical Oxidation with Monitored Natural Attenuation (Alternative 4A) Former Scott Aviation Facility - Lancaster, NY

DESCRIPTION	UNIT	QUANTITY	RATE	TOTAL COST	ESTIMATE/SOURCE NOTES
CAPITAL COSTS					
ENGINEERING DESIGN & PERMITTING					
Remedial Design	200	hours	\$115	\$23,000	design includes dewatering and sheeting
Permit Preparation	80	hours	\$115	\$9,200	eougi moladoo donaloning ana oneening
SUBTOTAL		nouro	•••••	\$32,200	
DRILLING AND INJECTION WELL INSTALLATION				\$01,100	····· ··· ··· ··· ··· ··· ··· ··· ···
Driller Mobilization/Demobilization (include Decon Pad)	1	Lump Sum	\$1,500	\$1,500	Annual Antonio Maria
Drill Rig and Labor	10	rig-days	\$1,500	\$15,000	Assume 2 rigs mobilized
1.5" Prepack Screens (5' length) for injection wells	125	each	\$125	\$15,625	Assume direct-push rig for well installation (110'/d) plus per diem
	500	LF			55 shallow inj wells, 15 deep injection wells (4-14', 15-21') = 1100 feet of drilling
1.5" PVC Riser and materials for injection wells	500 70		\$8 \$100	\$4,000	Riser 5' and 15' = 500 feet; 2 x 5' screens per shallow well + 1 x 5' screen for deep well
Protective Stick Ups		wells		\$7,000	
Drums	11	drums	\$75	\$825	Assume 1 drum per 8 wells
CAMP Equipment Rental	1	week	\$500	\$500	Assume 1 PID and 1 Dust Track (Pine Environmental 12-20-11)
Soil Disposal	11	drums	\$300	\$3,300	
Engineering Procurement & Coordination	30	hours	\$100	\$3,000	
SUBTOTAL				\$50,750	
MONITORED NATURAL ATTENUATION - WELL INSTAL	ATION A				
Engineering Design, MNA Workplan, Oversight	1	Lump Sum	\$29,000	\$29,000	See MNA Backup Cost Estimate
MNA Well Installation and Subcontractors	1	Lump Sum	\$19,500	\$19,500	See MNA Backup Cost Estimate
Baseline MNA Sampling Event	1	Lump Sum	\$30,095	\$30,095	See MNA Backup Cost Estimate
SUBTOTAL				\$78,595	
EXCAVATION AND FIELD ACTIVITIES					
Equipment Mobilization	1	Lump Sum	\$25,000	\$25,000	
Sheet Pile Mobilization	1	Lump Sum	\$30,000	\$30,000	
Temporary Facilities	1	Lump Sum	\$5,000	\$5,000	
Sheet Pile Materials	1500	ŚF	\$33	\$49,500	Sheet pile to 15 feet, 100 linear feet
Sheet Pile Installation/Removal, bracing install/removal	1500	SF	\$15	\$22,500	
Excavation & Handling of Soils (includes 15% for sloping)	4800	CY	\$20	\$96,000	
Stockpile Storage Area	1	LS	\$10,000	\$10,000	
Confirmation Soil Sampling	14	Sample	\$100	\$1,400	assume 1 per 350 CY, including validation
Community Air Monitoring	21	Day	\$1,000	\$21,000	assume 250 CY excacation per day, plus 10%
Confirmation Sampling (including data validation)	21	Sample	\$150	\$3,150	
Clean Fill Material	4800	CY	\$9	\$43,200	
Place & Compact	4800	CY	\$6	\$28,800	
Seeding	7000	SF	\$0.50	\$3,500	
Frac Tank Rental	35	DY	\$35.00	\$1,225	Excavation time plus 2 weeks for water handling and disposal afterwards
Carbon Units, Hose&Bag filters, Disposal of spent media	1	Allowance	\$15,000	\$15,000	
Pump Rental	7	WK	\$500	\$3,500	
Weekly Maintenance and Operation	7	WK	\$500	\$3,500	
Well Installation- Install 8 Mon Wells Post Excavation	4	Fach	\$1,500.00	\$6,000	
Misc. Supplies and PPE (Well Installation)	1	LS	\$1,000.00	\$1,000	
Drum Disposal (Well Installation)	2	Each	\$250.00	\$500	
Engineering Procurement & Coordination	40	hours	\$100	\$4,000	
Engineering Oversight	56	days	\$1,000	\$56,000	assume 1 full time and 1 half time staff throughout excavation, equipment mob/demob, well installation, wastewater handling
Project Management	142	hours	\$125	\$17,750	assume 2 hours per day during field activities + 30 hours for procurement/coordination
roject management	174	10013	ψ120	φ17,73 0	assume 2 must per day during new addities + 30 hours for procurement/coordination
SUBTOTAL (without disposal)				\$447,525	
Disposal Scenario 1					
Transportation and Disposal; 0% of Soils (Non-HAZ)	0	Ton	\$85	\$0	
Transportation and Disposal: 100% of Soils (HAZ)	4800	Ton	\$200	\$960,000	
Disposal Scenario 2					
Transportation and Disposal; 25% of Soils (Non-HAZ)	1200	Ton	\$85	\$102,000	
Transportation and Disposal: 75% of Soils (HAZ)	3600	Ton	\$200	\$720,000	
Disposal Scenario 3					
Transportation and Disposal; 50% of Soils (Non-HAZ)	2400	Ton	\$85	\$204,000	
Transportation and Disposal: 50% of Soils (HAZ)	2400	Ton	\$200	\$480,000	
		Scenario 1	Scenario 2	Scenario 3	
CAPITAL COST SUBTOTAL		\$1,569,070	\$1,431,070	\$1,293,070	
Contingency	30%	\$470,721	\$429,321	\$387,921	
TOTAL CAPITAL COSTS		\$2,039,791	\$1,860,391	\$1,680,991	

. t....

Focused In-Situ Chemical Oxidation with Monitored Natural Attenuation (Alternative 4A) Former Scott Aviation Facility - Lancaster, NY

FUTURE COSTS					
Future Year 1 - 5 (Annual Cost)				000 00 <i>1</i>	
MNA Sampling	1	Event	\$30,095	\$30,095	See MNA Backup Cost Estimate (assume 2 MNA events for 5 years)
SUBTOTAL FUTURE YEAR 1 - 5	30%			\$30,095	
				\$9,029	
TOTAL FUTURE YEAR 1 - 5				\$39,124	
Future Year 6 - 20 (Annual Cost)					Perform MNA Annual Sampling
Performance Monitoring with Summary Report	1	Event	\$30,095	\$30,095	Perform when Annual Sempling
Contingency	30%	Lycin	400,000	\$9,029	
TOTAL FUTURE YEAR 6-20	0070			\$39,124	
				+/	
,u=,u=					
Assume semi-annual sampling for 5 years and annu	al sampling u	intil Year 30			
			NPV		
	Events		Discount	Net Present	
Future Year	Per Year	Base Cost	Factor	Value	(assume Real Discount Rate of 4.5%)
1	2	\$39,124	1.00	\$39,124	
2	2	\$39,124	0.96	\$37,439	
3	2	\$39,124	0.92	\$35,827	
4	2	\$39,124	0.88	\$34,284	
5	2	\$39,124	0.84	\$32,807	
6	1	\$39,124	0.80	\$31,395	
7	1	\$39,124	0.77	\$30,043	
8	1	\$39,124	0.73	\$28,749	
9	1	\$39,124	0.70	\$27,511	
10	1	\$39,124	0.67	\$26,326	
11	1	\$39,124	0.64	\$25,193	
12	1	\$39,124	0.62	\$24,108	
13	1	\$39,124	0.59	\$23,070	
14	1	\$39,124	0.56	\$22,076	
15	1	\$39,124	0.54	\$21,126	
16	1	\$39,124	0.52	\$20,216	
17	1	\$39,124	0.49	\$19,345	
18	1	\$39,124	0.47	\$18,512	
19	1	\$39,124	0.45	\$17,715	
20	1 1	\$39,124	0.43	\$16,952	
FUTURE COST TOTALS		\$743,347		\$492,694	
		\$140,047		\$,0 <u>2</u> ,004	

ALTERNATIVE COST SUMMARY

	Scenario 1	Scenario 2	Scenario 3
Total Capital Cost	\$2,039,791	\$1,860,391	\$1,680,991
Total Future Costs	\$743,347	\$743,347	\$743,347
TOTAL COST	\$2,783,138	\$2,603,738	\$2,424,338
TOTAL NET PRESENT VALUE COST	\$2,532,485	\$2,353,085	\$2,173,685

Enhanced Bioremediation (Alternative 3) Former Scott Aviation Facility - Lancaster, NY

DESCRIPTION	UNIT	QUANTITY	RATE	TOTAL COST	ESTIMATE/SOURCE NOTES
CAPITAL COSTS					
ENGINEERING DESIGN, PERMITTING					
Remedial Design	175	hours	\$115	\$20,125	
Permit Preparation	80	hours	\$115	\$9,200	
SUBTOTAL				\$29,325	
DRILLING AND INJECTION WELL INSTALLATION		,			
Driller Mobilization/Demobilization (include Decon Pad)	1	Lump Sum	\$1,500	\$1,500	Assume 2 rigs mobilized
Drill Rig and Labor	39	rig-days	\$1,500	\$58,500	Assume direct-push rig for well installation (110'/d) plus per diem
1.5" Prepack Screens (5' length) for injection wells	443	each	\$125	\$55,375	180 shallow inj wells, 83 deep injection wells (4-14', 15-21') = 4,265 feet of drilling
1.5" PVC Riser and materials for injection wells	2215	LF	\$8	\$17,720	Riser 5' and 15' = 2525 feet; 2 x 5' screens per shallow well + 1 x 5' screen for deep well
Protective Stick Ups	263	wells	\$100	\$26,300	
Drums	33	drums	\$75	\$2,475	Assume 1 drum per 8 wells
CAMP Equipment Rental	4	week	\$500	\$2,000	Assume 1 PID and 1 Dust Track (Pine Environmental 12-20-11)
Soil Disposal	33	drums	\$300	\$9,900	Assume TFID and TDds. Hdck (Fine Environmental 12-20-11)
Engineering Procurement & Coordination	30	hours	\$300 \$100	\$3,000	
Engineering Frood enteric & Coordination	50	nours	φiuu	\$3,000	assume 2 staff (Geologist/Scientist 3) for oversight and CAMP:
Engineering Oversight	468	hours	\$100	\$46,800	10 hrs/day + 20% for markout, misc
Project Management	45	hours	\$125	\$5,625	assume 2 hours per day during field activities + 6 hours for procurement/coordination
SUBTOTAL				\$229,195	
BIOREMEDIATION INJECTION (ROUND 1)					Labor, equipment, and mobilization costs based on 2011 Redox Tech quote
njection Subcontractor (mobilization)	1	Lump Sum	\$20,000	\$20,000	Assume injection volume equal to 20% of total pore volume
Injection Subcontractor (labor and equipment)	54	days	\$3,500	\$189,000	Assume injection rate of 1.5 gpm based on soil types and AECOM experience
· · · · · · · · · · · · · · · · · · ·	•		00,000	\$100,000	Field injection days assumes 6 active injection points, 5.5 hrs/day injection time, and 2 days each for mob/der
Carbon Substrate/Chemicals					The injection abys assumes a active injection points, 5.5 misraay injection time, and 2 days each for moorder
Water Soluble Oil	26	drums	\$1,200	\$31,200	Chamical and from Toxics Environmental Outly (11-1-1-0040)
Bioremediation Nutrients	26	5g pail	\$225	\$5,850	Chemical costs from Tersus Environmental Quote (March 2012)
Quick release carbon substrate	13	gallons	\$1,000	\$13,000	
Injection Subcontractor (per diem)	54	÷	\$525		
	40	days	+	\$28,350	Assume 3 person crew for subcontractor
Engineering Procurement & Coordination		hours	\$100	\$4,000	assume Engineer 3/4
Engineering Oversight	54	days	\$1,000	\$54,000	assume Geologist/Scientist 3 for oversight
Engineering Oversight	10	days	\$1,150	\$11,500	assume 20% for Engineer 3/4
Project Management	24	hours	\$125	\$3,000	assume 1.5 hours per day during field activities + 24 hours for procurement/coordination
Misc Oversight Materials and PPE	1	Lump Sum	\$300	\$300	Log book, gloves, face shield, eye wash station
Injection Oversight Rental Equipment	11	weeks	\$250	\$2,750	Assume no formal CAMP; assume 1 PID & 1 water level meter (Pine Environmental 12-20-11)
Rental Vehicle for Oversight	11	weeks	\$175	\$1,925	assume pick up truck or SUV (base rental and gas/mileage etc)
Field Test Kits/Monitoring Supplies	1	Allowance	\$1,500	\$1,500	
Travel Expenses	1	Allowance	\$2,000	\$2,000	mileage, per diem for PM and ISCO Engineer
SUBTOTAL				\$368,375	
BIOAUGMENTATION					
Injection Labor	22	Days	\$1,000	\$22,220	assume 0.4 Liters of microbe culture solution per injection well
Bioaugmentation Inoculum	105.2	Liters	\$450	\$47,560	assume bioaugment 12 wells per day
Materials and Equipment	22	Days	\$350	\$7,700	pumps, deaeration supplies
Rental Vehicle	23	days	\$75	\$1,725	assume pick up truck or SUV (base rental and gas/mileage etc)
Mileage/Misc Expenses	1	Allowance	\$500	\$500	
SUBTOTAL					

- H - F

PERFORMANCE MONITORING (Per Round)					
Low Flow Sampling Rental Equipment	3	Days	\$500	\$1,720	
Sampling Staff	6	Person-Days	\$950	\$5,700	10 wells, assume 2 wells per person per day
Laboratory Analyses (VOC,TOC,M/E/E, metals)	12	Samples	\$400	\$4,800	2 YSI, 2 peristaltic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11)
Rental Vehicle	4	days	\$75	\$300	
Mileage/Misc Expenses	1	Allowance	\$500	\$500	
Data Evaluation and Summary Report SUBTOTAL	60	hours	\$100	\$6,000 \$19,020	assume pick up truck or SUV (base rental and gas/mileage etc)
CAPITAL COST SUBTOTAL				\$744,640	Assume 2 performance monitoring sampling events 3 and 9 months after injection
Contingency TOTAL CAPITAL COSTS	30%			\$223,392 \$968,032	
FUTURE COSTS					· · · · · · · · · · · · · · · · · · ·
Future Year 1					
Performance Monitoring with Summary Report	2	Event	\$19,020	\$38,040	
SUBTOTAL FUTURE YEAR 1				\$38,040	
Contingency	30%			\$11,412	
TOTAL FUTURE YEAR 1				\$49,452	
Future Year 2					
Remediation Design Addendum	60	hours	\$115	\$6,900	
Bioremediation Injection (Round 2)	(assume 5	0% of round 1)		\$184,188	Labor, equipment, chemicals, oversight
Performance Monitoring with Summary Report	2	Event	\$19,020	\$38,040	
SUBTOTAL FUTURE YEAR 2				\$229,128	
Contingency	30%			\$68,738	
TOTAL FUTURE YEAR 2				\$297,866	
Future Year 3					
Performance Monitoring with Summary Report	2	Event	\$19,020	\$38,040	
SUBTOTAL FUTURE YEAR 3				\$38,040	
Contingency	30%			\$11,412	
TOTAL FUTURE YEAR 3				\$49,452	
Future Year 4					
Remediation Design Addendum	60	hours	\$115	\$6,900	
Bioremediation Injection (Round 3)	(assume 5	0% of round 2)		\$92,094	Labor, equipment, chemicals, oversight
Performance Monitoring with Summary Report	2	Event	\$19,020	\$38,040	
SUBTOTAL FUTURE YEAR 4				\$137,034	
Contingency	30%			\$41,110	
TOTAL FUTURE YEAR 4				\$178,144	
Future Year 5 - 9 (Annual Cost)					
Performance Monitoring with Summary Report	(assume s	ame as PM Ro	und 1)	\$19,020	assume annual performance monitoring sampling
				\$5,706	
Contingency	30%				
Contingency	30%			\$24,726	
	30%			\$24,726	
Contingency TOTAL FUTURE YEAR 5 - 9		ntil Year 30		\$24,726	
Contingency TOTAL FUTURE YEAR 5 - 9	nual sampling u	ntil Year 30	NPV Discount		
Contingency TOTAL FUTURE YEAR 5 - 9			NPV Discount Factor	Net Present	(assume Real Discount Rate of 4.5%)
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year	nual sampling u Events Per Year	Base Cost	Discount Factor	Net Present Value	(assume Real Discount Rate of 4,5%)
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1	nual sampling u Events Per Year 1	Base Cost \$49,452	Discount Factor 1.00	Net Present Value \$49,452	(assume Real Discount Rate of 4.5%)
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1 2	nual sampling un Events Per Year 1	Base Cost \$49,452 \$297,866	Discount Factor 1,00 0.96	Net Present Value \$49,452 \$285,039	(assume Real Discount Rate of 4.5%)
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1 2 3	nual sampling u Events Per Year 1 1	Base Cost \$49,452 \$297,866 \$49,452	Discount Factor 1,00 0.96 0.92	Net Present Value \$49,452 \$285,039 \$45,285	(assume Real Discount Rate of 4.5%)
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1 2 3 4	nual sampling ur Events Per Year 1 1 1 1	Base Cost \$49,452 \$297,866 \$49,452 \$178,144	Discount Factor 1,00 0.96 0.92 0.88	Net Present Value \$49,452 \$285,039 \$45,285 \$156,107	(assume Real Discount Rate of 4.5%)
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1 2 3 4 5	nual sampling u Events Per Year 1 1 1 1 1 1	Base Cost \$49,452 \$297,866 \$49,452 \$178,144 \$24,726	Discount Factor 1.00 0.96 0.92 0.88 0.84	Net Present Value \$49,452 \$285,039 \$45,285 \$156,107 \$20,734	
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1 2 3 4 5 6	Events Per Year 1 1 1 1 1 1 1 1 1	Base Cost \$49,452 \$297,866 \$49,452 \$178,144 \$24,726 \$24,726	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80	Net Present Value \$49,452 \$285,039 \$45,285 \$156,107 \$20,734 \$19,841	(assume Real Discount Rate of 4.5%)
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1 2 3 4 5 5 6 7	nual sampling un Events Per Year 1 1 1 1 1 1 1 1	Base Cost \$49,452 \$297,866 \$49,452 \$178,144 \$24,726 \$24,726 \$24,726	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77	Net Present Value \$49,452 \$285,039 \$45,285 \$156,107 \$20,734 \$19,841 \$18,987	
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1 2 3 4 5 6 7 7 8	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$49,452 \$297,866 \$49,452 \$178,144 \$24,726 \$24,726 \$24,726 \$24,726	Discount Factor 1,00 0,96 0,92 0,88 0,84 0,84 0,80 0,77 0,73	Net Present Value \$49,452 \$285,039 \$45,285 \$156,107 \$20,734 \$19,841 \$18,987 \$18,169	
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1 2 3 4 5 6 7 8 8 9	nual sampling un Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$49,452 \$297,866 \$49,452 \$178,144 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.84 0.80 0.77 0.73 0.73	Net Present Value \$49,452 \$285,039 \$45,285 \$156,107 \$20,734 \$19,841 \$18,987 \$18,169 \$17,387	
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1 2 3 4 5 6 7 8 9 10	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$49,452 \$297,866 \$49,452 \$178,144 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726	Discount Factor 1,00 0,96 0,92 0,88 0,84 0,84 0,80 0,77 0,73	Net Present Value \$49,452 \$285,039 \$45,285 \$156,107 \$20,734 \$19,841 \$19,841 \$18,987 \$18,169 \$17,387 \$16,638	
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1 2 3 4 5 6 7 8 8 9	nual sampling un Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$49,452 \$297,866 \$49,452 \$178,144 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.84 0.80 0.77 0.73 0.73	Net Present Value \$49,452 \$285,039 \$45,285 \$156,107 \$20,734 \$19,841 \$18,987 \$18,169 \$17,387	
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1 2 3 4 5 6 7 8 9 10 FUTURE COST TOTALS	nual sampling un Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$49,452 \$297,866 \$49,452 \$178,144 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77 0.73 0.70 0.67	Net Present Value \$49,452 \$285,039 \$45,285 \$156,107 \$20,734 \$19,841 \$18,987 \$18,169 \$17,387 \$16,638 \$598,188	
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1 2 3 4 5 6 7 6 7 8 9 10 FUTURE COST TOTALS ALTERNATIVE COST SUMMARY	nual sampling un Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$49,452 \$297,866 \$49,452 \$178,144 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726 \$73,818	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77 0.73 0.70 0.67	Net Present Value \$49,452 \$285,039 \$45,285 \$156,107 \$20,734 \$19,841 \$18,987 \$18,169 \$17,387 \$16,638 \$598,188 Net Present Valu	
Contingency TOTAL FUTURE YEAR 5 - 9 Assume semi-annual sampling for 5 years and ann Future Year 1 2 3 4 5 6 7 8 9 10 FUTURE COST TOTALS	nual sampling un Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$49,452 \$297,866 \$49,452 \$178,144 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726 \$24,726	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77 0.73 0.70 0.67	Net Present Value \$49,452 \$285,039 \$45,285 \$156,107 \$20,734 \$19,841 \$18,987 \$18,169 \$17,387 \$16,638 \$598,188	

In-Situ Chemical Oxidation (Alternative 4) Former Scott Aviation Facility - Lancaster, NY

DESCRIPTION	UNIT	QUANTITY	RATE	TOTAL COST	ESTIMATE/SOURCE NOTES
CAPITAL COSTS					
ENGINEERING DESIGN, PERMITTING, PILOT TEST EV	ALUATION				
ISCO Pilot Test	1	Lump Sum	\$125,000	\$125,000	Assume all costs for design, monitoring, chemicals, and injection labor and equipment
Remedial Design and PilotTest Evaluation	175	hours	\$115	\$20,125	
Permit Preparation	80	hours	\$115	\$9,200	
SUBTOTAL				\$154,325	
DRILLING AND INJECTION WELL INSTALLATION					
Driller Mobilization/Demobilization (include Decon Pad)	1	Lump Sum	\$1,500	\$1,500	Assume 2 rigs mobilized
Drill Rig and Labor	39	rig-days	\$1,500	\$58,500	Assume direct-push rig for well installation (110/d) plus per diem
1.5" Prepack Screens (5' length) for injection wells	443	each	\$125	\$55,375	180 shallow inj wells, 83 deep injection wells (4-14', 15-21') = 4,265 feet of drilling
1.5" PVC Riser and materials for injection wells	2215	LF	\$8	\$17,720	Riser 5' and 15' = 2525 feet; 2 x 5' screens per shallow well + 1 x 5' screen for deep well
Protective Stick Ups	263	wells	\$100	\$26,300	
Drums	33	drums	\$75	\$2,475	Assume 1 drum per 8 wells
CAMP Equipment Rental	4	week	\$500	\$2,000	Assume 1 PID and 1 Dust Track (Pine Environmental 12-20-11)
Soil Disposal	33	drums	\$300	\$9,900	, , , , , , , , , , , , , , , , , , ,
Engineering Procurement & Coordination	30	hours	\$100	\$3,000	
					assume 2 staff (Geologist/Scientist 3) for oversight and CAMP;
Engineering Oversight	468	hours	\$100	\$46,800	10 hrs/day + 20% for markout, misc
Project Management	45	hours	\$125	\$5,625	assume 2 hours per day during field activities + 6 hours for procurement/coordination
SUBTOTAL				\$229,195	
ISCO INJECTION (ROUND 1)					
ISCO Injection Subcontractor (mobilization)	1	Lump Sum	\$20,000	\$20,000	
ISCO Injection Subcontractor (labor)	54	days	\$2,250	\$121,500	Assume injection volume equal to 20% of total pore volume
ISCO Injection Subcontractor (equipment)	54	days	\$2,025	\$109,350	Assume injection rate of 1.5 gpm based on soil types and AECOM experience
Oxidant/Chemicals					Field injection days assumes 6 active injection points, 5.5 hrs/day injection time, and 2 days each for mob/demot
					ISCO labor, equipment, mobilization, and chemical costs based on 2011 ISOTEC quote for similar size site in V
Persulfate	257300	pounds	\$2	\$439,983	
NaOH (25%)	345700	pounds	\$0	\$76,054	
Catalyst	0	gallons	\$1	\$0	
ISCO Injection Subcontractor (per diem)	54	days	\$525	\$28,350	Assume 3 person crew for subcontractor
Engineering Procurement & Coordination	40	hours	\$100	\$4,000	assume Engineer 3/4
Engineering Oversight	54	days	\$1,000	\$54,000	assume Geologist/Scientist 3 for oversight
Engineering Oversight	10	days	\$1,150	\$11,500	assume 20% for Engineer 3/4
Project Management	105	hours	\$125	\$13,125	assume 1.5 hours per day during field activities + 24 hours for procurement/coordination
Misc Oversight Materials and PPE	1	Lump Sum	\$300	\$300	Log book, gloves, face shield, eye wash station
Injection Oversight Rental Equipment	11	weeks	\$250	\$2,750	Assume no formal CAMP; assume 1 PID & 1 water level meter (Pine Environmental 12-20-11)
Rental Vehicle for Oversight	11	weeks	\$175	\$1,925	assume pick up truck or SUV (base rental and gas/mileage etc)
Persulfate Field Test Kits	5.4	Each	\$115	\$621	FMC, 10 tests each (including shipping)
Travel Expenses	1	Allowance	\$2,000	\$2,000	mileage, per diem for PM and ISCO Engineer
SUBTOTAL				\$885,458	
PERFORMANCE MONITORING (ROUND 1)					
Low Flow Sampling Rental Equipment	3	Days	\$500	\$1,720	Assume groundwater sampling event 6 months after injection
Sampling Staff	6	Person-Days		\$5,700	10 wells, assume 2 wells per person per day
Laboratory Analyses (VOC, metals @ 30% of wells)	12	Samples	\$150	\$1,800	2 YSI, 2 peristaltic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11)
Rental Vehicle	4	days	\$75	\$300	
Mileage/Misc Expenses	1	Allowance	\$500	\$500	
Data Evaluation and Summary Report	60	hours	\$100	\$6,000	assume pick up truck or SUV (base rental and gas/mileage etc)
SUBTOTAL			•••	\$16,020	
CAPITAL COST SUBTOTAL				\$1,284,998	
Contingency	30%			\$385,499	
TOTAL CAPITAL COSTS				\$1,670,497	

In-Situ Chemical Oxidation (Alternative 4)

FUTURE COSTS					
Future Year 1					
Remediation Design Addendum	60	hours	\$115	\$6,900	
ISCO Injection (Round 2)	(assume 65%	6 of round 1)		\$575,548	Labor, equipment, chemicals, oversight
Performance Monitoring with Summary Report (Round 2)	(assume sam	ne as PM Ro	und 1)	\$16,020	
SUBTOTAL FUTURE YEAR 1				\$598,468	
Contingency	30%			\$179,540	
TOTAL FUTURE YEAR 1				\$778,008	
Future Year 2					
Remediation Design Addendum	60	hours	\$115	\$6,900	
ISCO Injection (Round 3)	(assume 65%	6 of round 2)		\$374,106	Labor, equipment, chemicals, oversight
Performance Monitoring with Summary Report (Round 3)	(assume sam	ne as PM Ro	und 1)	\$16,020	· · · · · ·
SUBTOTAL FUTURE YEAR 2				\$397,026	
Contingency	30%			\$119,108	
TOTAL FUTURE YEAR 2				\$516,134	
Future Year 3 - 6 (Annual Cost)					
Performance Monitoring with Summary Report	(assume sam	ne as PM Ro	und 1)	\$16,020	assume annual performance monitoring sampling
Contingency	30%			\$4,806	
TOTAL FUTURE YEAR 3-6				\$20,826	

Assume semi-annual sampling for 5 years and annual sampling until Year 30

	Events		Discount	Net Present	
Future Year	Per Year	Base Cost	Factor	Value	(assume Real Discount Rate of 4.5%)
1	1	\$778,008	1.00	\$778,008	
2	1	\$516,134	0.96	\$493,908	
3	1	\$20,826	0.92	\$19,071	
4	1	\$20,826	0.88	\$18,250	
5	1	\$20,826	0.84	\$17,464	
6	1	\$20,826	0.80	\$16,712	
FUTURE COST TOTALS		\$599,438		\$565,404	

ALTERNATIVE COST SUMMARY	Total Cost	Net Present Value	
Capital Cost	\$1,670,497	\$1,670,497	
Future Costs	\$599,438	\$565,404	
TOTAL	\$2,269,935	\$2,235,902	

Focused In-Situ Chemical Oxidation with Monitored Natural Attenuation (Alternative 4A) Former Scott Aviation Facility - Lancaster, NY

Construction Construction Status	DESCRIPTION	UNIT	QUANTITY	RATE	TOTAL COST	ESTIMATE/SOURCE NOTES
BCD Pior Test 1 Lump Sum S125,000 \$125,000 \$155 \$115 \$17,250 Wint Programmin 50 hours \$115 \$17,250 \$115 \$17,250 Wint Programmin 1 Lump Sum \$15,000 \$115 \$17,250 Annum 2 right motions and exciption of the design motions of the design	CAPITAL COSTS	-				
James Begin and PiorTes Evaluation 150 hours 5115 517,250 Num R Poparation 50 hours 5115 512,250 Start Method 511,450 maximum 2 days and starting (rights) for injection wells 10 right days and starting (rights) for injection wells 12 access and starting and starting (rights) for injection wells 515,000 31,500 maximum 2 days and starting (rights) for injection wells 50 30 30 31,500 maximum 2 days and starting (rights) for injection wells 50 30 30 31,500 Maximum 2 days and starting rights (rights) for injection wells 50 30 30 30 31,500 Maximum 2 days and starting rights (rights) for injection wells 10 Access and the starting and starting (rights) for injection wells 10 40 30 30 31,500 Maximum 2 days and starting (rights) for injection wells 10 Access and the starting and starting (rights) for injection wells 10 Access and the starting and	ENGINEERING DESIGN, PERMITTING, PILOT TEST EVA	LUATION				
Itemedia Design and PlutTest Evaluation 150 hours \$115 \$37,250 UNITOTAL \$115 \$39,200 \$115 \$39,200 UNITOTAL \$115 \$39,200 \$115 \$39,200 UNITOTAL \$115 \$31,500 \$31,500 \$31,500 \$31,500 Dial Rig and Labor 10 fig.days \$1,500 \$31,5	ISCO Pilot Test	1	Lump Sum	\$125,000	\$125,000	Assume all costs for design, monitoring, chemicals, and injection labor and equipment
Permit Preparation B0 hours \$ 115 \$ 83,200 UBBOTAL \$ \$ 167,400 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Remedial Design and PilotTest Evaluation	150	hours	\$115	\$17,250	
Bull Diff AL \$151,450 Differ Mobilization/Demokilization (Include Decor Pad) 1 Lump Sum \$1,500 \$1,500 Assume 3 right mobilization (Include Decor Pad) 1 Comp Sum \$1,500 Assume 3 right mobilization (Include Decor Pad) 1 Comp Sum Assume 3 right mobilization (Include Decor Pad) 1 Comp Sum Assume 3 right mobilization (Include Decor Pad) 1 Comp Sum Assume 3 right mobilization (Include Decor Pad) 1 Comp Sum Assume 3 right mobilization (Include Decor Pad) 1 Comp Sum Strate 3 res 1 right mobilization (Include Decor Pad) 1 Comp Sum Strate 3 res 1 right mobilization (Include Decor Pad) 1 Comp Sum Strate 3 res 1 right mobilization (Include Decor Pad) 1 Comp Sum Strate 3 res 1 right mobilization (Include Decor Pad) 1 Comp Sum Strate 3 res 1 right mobilization (Include Decor Pad) 1 Comp Sum Strate 3 res 1 right mobilization (Include Decor Pad) 1 Comp Sum Strate 3 res 1 right mobilization (Include Decor Pad) 1 Comp Sum	Permit Preparation	80	hours	\$115		
DRELING AND INJECTION WELL INSTALLATION Stable Modification/Demokilization (Include Decor Pag) 1 Lump Sum \$1,500 Stable Modification/Demokilization (Include Decor Pag) 1 Lump Sum \$1,500 Stable Modification/Demokilization (Include Decor Pag) 1 Lump Sum \$1,500 Stable Modification/Demokilization (Include Decor Pag) 1 Lump Sum \$1,500 Stable Modification/Demokilization (Include Decor Pag) 1 Lump Sum \$1,500 Stable Modification/Demokilization (Include Decor Pag) 1 Lump Sum \$1,500 Stable Modification/Demokilization/Demokination (Include Decor Pag) 1 Demokination (Include Decor Pag) 1 Lump Sum \$1,500 Stable Modification/Demokination (Include Decor Pag) 1 Lump Sum \$2,500 Stable Modification/Demokination (Include Decor Pag) 1 Include Mark Stable Modification/Demokination (Include Decor Pag) 1 Demokination (Include Decor Pag) Nume Stable Modification/Demokination (Include Decor Pag) Nume Nume Stable Modification/Demokination (Include Decor Pag) Nume Nume Stable Modification/Demokination Nume Nume Nume Nume Nume Nume Num Nume Nume Num						
State Mobilization Underson Parial Dial Rg and Labor 1 Lump Sum \$1,500 Assume 2 rgs mobilised Assume descepants (per set with sites extra three descepants (per set with sites (per se	SUBTOTAL				\$151,450	
Diff Rig and Labor 10 ng-cays \$15,000 \$15,000 Assume arrespondence of young in particulation (11/00) you goe deam JP Properts Screenes (P ingrigh for injection wells 500 LF 88 \$4,000 Reame a drespond you well is to be or during you goe deam JP Properts Screenes (P ingrigh for injection wells 500 LF 88 \$4,000 Reame a drespond you well is to be or during you goe deam JUB Explorimer 11 durins \$775 \$825 Assame 1 during r & wells. JUB Explorimer 11 durins \$3300 \$3300 To wells if it is it	DRILLING AND INJECTION WELL INSTALLATION					
Diff Rig and Labor 10 ng-cays \$15,000 \$15,000 Assume arrespondence of young in particulation (11/00) you goe deam JP Properts Screenes (P ingrigh for injection wells 500 LF 88 \$4,000 Reame a drespond you well is to be or during you goe deam JP Properts Screenes (P ingrigh for injection wells 500 LF 88 \$4,000 Reame a drespond you well is to be or during you goe deam JUB Explorimer 11 durins \$775 \$825 Assame 1 during r & wells. JUB Explorimer 11 durins \$3300 \$3300 To wells if it is it	Driller Mobilization/Demobilization (include Decon Pad)	1	Lump Sum	\$1 500	\$1 500	Assume 2 rigs mobilized
15* PPocks Screen (0) Finghton velic (12 mighton velic (12 mi						
15 PVC Riber and materials for justicion wells 500 UF 88 44,000 Puer 9 and 19 - 500 fast 2, 49 acreans per dualsy well + 1.9 acreans for designed AVM Equipment Rental 11 drums 57,00 Stood Assume 1 200 and 1 Data Toak (Pris Eliveronneut 12:20-11) Sin Disposal 11 drums \$300 \$3,000 Stood Assume 1 200 and 1 Data Toak (Pris Eliveronneut 12:20-11) Signeening Poweright 20 hours \$100 \$100 Stood assume 2 dual (Scolgardidicated 3) for ownight and CAUP; Signeening Poweright 20 hours \$100 \$120,000 assume 2 hours per day duag fed acables + 8 hours for poweringt and CAUP; Signeening Doweright 120 hours \$100 Stood assume 2 hours per day duag fed acables + 8 hours for poweringt and CAUP; Signeening Doweright 12 Lump Sum \$20,000 \$20,000 see MAK Sedue Code Extinues Signeening Doweright 1 Lump Sum \$20,000 \$20,000 Stoode Signeening Poweright 17 days \$22,25 \$34,25 \$44,25 Stoode	1 *	125				
Order Close Statu						
htms 11 drums \$75 \$822 Accums 1 drum pay wells. AddP Equipment Renall 1 drums \$300 \$500 Spineering Procurement & Coordination 20 hours \$100 \$2000 Engineering Procurement & Coordination 20 hours \$100 \$12000 assume 2 man 2 min 4 (Genogad/Science 3) for oversight and CAMP; engineering Procurement & Coordination 20 hours \$100 \$22000 assume 2 min 2 min 4 (Genogad/Science 3) for oversight and CAMP; engineering Design, MNA Wordplan, Oversight 1 Lump Sum 312,600 \$29,000 See MMA Backup Cost Estimate Stort FOR MARCINN - WELL INSTALLATION AND BASELINE SAMPLING 1 Lump Sum 312,600 \$29,000 See MMA Backup Cost Estimate Stort FOR MONORMED 1 Lump Sum 320,005 \$20,000 See MMA Backup Cost Estimate Stort FOR MONORMED 1 Lump Sum 320,005 \$20,000 See MMA Backup Cost Estimate Stort FOR MONORMED 1 Lump Sum 320,005 \$20,000 See MAN Backup Cost Estimate Stort FOR MONORMED 1 Lump Sum 320,005 \$20,00						
AMP Equipment: Rental 1 week \$500 Assume 1PO and 1 Dust Track (Prive Environmental 12.20:11) ingineering Procurement & Coordination 20 hours \$100 \$2,000 ingineering Procurement & Coordination 20 hours \$100 \$2,000 ingineering Procurement & Coordination 20 hours \$100 \$12,000 ingineering Procurement & Coordination 20 hours \$120 \$1000 \$100 \$100 \$	Drums					Assume 1 drum per 8 wells
Bid Disposal 11 drums \$300 \$3,300 Disposal 120 hours \$100 \$2,000 Signifereing Pocurement & Coordination 20 hours \$100 \$2,000 Engineering Pocurement & Coordination 10 hours \$100 \$12,000 maxum 2 bart (Geocgardisentist.3) for overagits and CAMP; Sugmont Pock 10 hours \$100 \$2,000 maxum 2 hours per day during field subMes + 6 hours for procurement/coordination Sugmont Pock 512,000 See MIA Beckup Cest Extense See MIA Beckup Cest Extense Sugmont Pock 1 Lump Sum \$20,000 See MIA Beckup Cest Extense Sco MECTION (ROUND 1) Sco MECTION (ROUND 1) Sco Mection Subcontractor (mobilization) 1 Lump Sum \$20,000 Assume lepton value equit to 20% of total pore walue Sco Mection Subcontractor (updoment) 17 days \$22,55 \$34,820 Assume lepton value equit to 20% of total pore walue Sco Mection Subcontractor (updoment) 17 days \$22,55 \$34,820 Assume 1 pection rate of a subcontractor Sco Mection Subcontractor (updupment)					•	
ingineering Procurement & Coordination 20 hours \$100 \$2,000 assume 2 daff (Geologia/Glaintist.)) for oversight and CAME; ingineering Oversight 120 hours \$128 \$2,000 second 2 daff (Geologia/Glaintist.)) for oversight and CAME; ingineering Oversight 120 hours \$128 \$2,000 second 2 daff (Geologia/Glaintist.)) for oversight and CAME; ingineering Oversight 11 Lump Sum \$30,000 \$29,000 second 2 daff (Geologia/Glaintist.)) for oversight and CAME; ingineering Oversight 11 Lump Sum \$19,500 \$19,000 second 2 daff (Geologia/Glaintist.)) for oversight 11 Lump Sum \$19,500 \$20,000 second 2 daff (Geologia/Glaintist.)) for oversight 2 daff (Geologia/Glaintist.) for oversight 2 daff (Geologia/Glai						Position in a fact thank (fine childrin childrin 12-20-11)
Biglineering Oversight 120 hours \$100 \$12,000 Typed Management 16 hours \$100 \$12,000 SUBTOTAL 532,000 \$22,000 see MNA Backup Cost Estimate ONITORED NATURAL ATTENUATION - WELL INSTALLATION AND BASELINE SAMPLING seasure 2 hours per day during field activities + 6 hours for procurement/coordination Brightening Design, MNA Workplan, Oversight 1 Lump Sum \$23,000 See MNA Backup Cost Estimate Stabilitie 1 Lump Sum \$20,000 \$20,000 See MNA Backup Cost Estimate Sto Diffection Subcontractor (nobilization) 1 Lump Sum \$20,000 \$20,000 SCO Injection Subcontractor (nobilization) 1 Lump Sum \$20,000 \$20,000 SCO Injection Subcontractor (nobilization) 1 Lump Sum \$20,000 \$20,000 SCO Injection Subcontractor (nobilization) 1 Lump Sum \$20,000 \$20,000 SCO Injection Subcontractor (nobilization) 1 Gays \$2,250 \$34,425 Aasume ipection notion 16 pro hourse \$10 point action site in 10 point action sin 10 point action si						
Engineering Oversight 12.0 hours \$12,00 100 120,00 100,000,000 100,000 100,000						assume 2 staff (Geologist/Scientist 3) for oversight and CAMP:
Supportation \$53,750 MONITORED NATURAL ATTENUATION - WELL INSTALLATION AND BASELINE SAMPLING Segmenting Design. Oversight 1 Lump Sum \$22,000 See MIA Backup Cost Estimate Signeering Design. MAN Workplan, Oversight 1 Lump Sum \$20,000 See MIA Backup Cost Estimate Signeering Design. MAN Workplan, Oversight 1 Lump Sum \$30,095 See MIA Backup Cost Estimate Signeering Design. MAN Workplan, Oversight 1 Lump Sum \$20,000 See MIA Backup Cost Estimate Signeering Design. 1 Lump Sum \$20,000 See MIA Backup Cost Estimate Signeering Design. 1 Lump Sum \$20,000 See MIA Backup Cost Estimate Signeering Devent 1 Cump Sum \$20,000 See MIA Backup Cost Estimate Signeering Devent 17 days \$2,250 Signeering Devent Assume signeetion volume equal to 20% of fotal pore volume Signeering Devent 17 days \$1,160 Signeering Devent Signeering Devent Signeering Devent 0 galons \$1 \$1000 Signeering Devent Signeering Devent	Engineering Oversight	120	hours	\$100	\$12,000	10 hrs/day + 20% for markout, misc
MONTORED NATURAL ATTENUATION - WELL INSTALLATION AND BASELINE SAMPLING regineering Design, MAW Workplan, Oversight MA Vell Installation and Subcontractors 1 Lump Sum \$19,500 \$29,000 \$29,000 \$20,0	Project Management	16	hours	\$125	\$2,000	assume 2 hours per day during field activities + 6 hours for procurement/coordination
MONTORED NATURAL ATTENUATION - WELL INSTALLATION AND BASELINE SAMPLING regineering Design, MAW Workplan, Oversight MA Vell Installation and Subcontractors 1 Lump Sum \$19,500 \$29,000 \$29,000 \$20,0	SUBTOTAL				\$63 750	
Engineering Design, MMA Workplan, Oversight 1 Lump Sum \$29,000 \$29,000 \$29,000 \$29,000 \$30,095 \$36,095 Max Well Installation and Subcontractors 1 Lump Sum \$19,500 \$30,095 \$36,095 \$36,095 \$36,095 \$36,095 \$36,095 \$36,095 \$36,095 \$36,095 \$36,095 \$36,005 \$36,0					\$00,700	
MiX Well Installation and Subcontractors 1 Lump Sum \$19,500 \$19,500 \$20,000 Saveline MiX Sampling Event 1 Lump Sum \$30,005 \$30,005 \$30,005 \$30,005 \$30,005 \$30,005 \$30,005 \$30,005 \$30,005 \$53,4255 \$53,4255 \$53,4255 \$53,4255 \$50,005					\$29,000	Saa MNA Baakun Cost Estimate
Baseline MNA Sampling Event 1 Lump Sum \$30,095 \$30,095 \$30,095 \$see MAA Badrup Cost Estimate SUBTOTAL SCO Injection Subcontractor (mobilization) 1 Lump Sum \$20,000 \$20,000 SCO Injection Subcontractor (labor) 17 days \$2,205 \$34,425 Assume injection with of 16 gpm based on set types and AECOM experience SCO Injection Subcontractor (equipment) 17 days \$2,025 \$34,425 Assume injection with of 16 gpm based on set types and AECOM experience Persulfate 68100 pounds \$2 \$116,451 NaOH (25%) 91500 pounds \$1 \$0 Catalysi 0 gallons \$1 \$0 Engineering Oversight 17 days \$11,000 \$11,000 Stop ersight 3 days \$11,50 sasume Engineer 34 Engineering Oversight 1 Lump Sum \$300 \$300 Stop ersight Netral Equipment 49,5 hours \$100 Assume Specing 3400 Stop ersight Netral Equipment 49,5 hours \$20,000 assume Goolget/Bicanetd 3 for oversight Engineering Oversight Netral Equipment 4 weeks \$17,5 \$30,00 Stop ersight Netral Equipment 2<			•			
Support AL \$78,595 SCO Injection Subcontractor (mobilization) 1 Lump Sum \$20,000 \$20,000 SCO Injection Subcontractor (mobilization) 1 Lump Sum \$20,000 \$20,000 SCO Injection Subcontractor (debr) 17 days \$22,250 \$38,250 Assume injection rate of 1.6 gpm based on soil types and AECOM experience Friedinjection days assume 6 adve injection points, 6.5 braiday injection fam, and 2 days each for mobilemob Inscher (25%) 91500 pounds \$2 \$114,425 Assume injection rate of 1.6 gpm based on soil types and AECOM experience Friedinjection days assume 6 adve injection points, 6.5 braiday injection fam, and 2 days each for mobilemob Inscher (25%) 91500 pounds \$2 \$114,621 Persulfate 68100 pounds \$2 \$14,000 assume 6 adverser for subcontractor BCO Injection Subcontractor (per diem) 17 days \$52,05 Assume 1 pounds \$2 Assume 1 pounds \$2 Assume 1 pounds \$2 Assume 3 person crew for subcontractor Engineering Oversight 17 days \$1,150 \$3,400 assume 20% for Engineer 34 assume 20% for Engineer 34 Engineering Oversight 3 </td <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td>			•			
SCO INJECTION (ROUND 1) SCO Injection Subcontractor (mobilization) 1 Lump Sum \$20,000 SCO Injection Subcontractor (dabor) 17 days \$2,250 \$38,250 Assume injection volume equal to 20% of total pore volume SCO Injection Subcontractor (quipment) 17 days \$2,250 \$34,250 Assume injection volume equal to 20% of total pore volume SCO Injection Subcontractor (quipment) 17 days \$2,250 \$34,425 Assume injection volume equal to 20% of total pore volume SCO Injection Subcontractor (quipment) 17 days \$2,251 S38,250 Assume injection volume equal to 20% of total pore volume Viddatt/Chemicals 91500 pounds \$2 \$116,451 S20,130 Catalyst 0 gallons \$1 \$0 sasume 3 person crew for subcontractor Engineering Oversight 17 days \$110,00 \$1,000 assume Galogiet/Sainet 3 for oversight Engineering Oversight 17 days \$112,55 \$6,188 assume 15 hours paid exploring resourcement/coordination Assoc Versight Materials and PPE 1 Lump Sum \$300 \$300 \$20,000 assume fick up		•	Lump Sum	400,030		See Miles Backup Cost Esumate
SCO Injection Subcontractor (mobilization) 1 Lump Sum \$20,000 \$38,250 \$38,250 Assume injection volume equal to 20% of total pore volume SCO Injection Subcontractor (labor) 17 days \$2,250 \$34,425 Assume injection volume equal to 20% of total pore volume SCO Injection Subcontractor (equipment) 17 days \$2,205 \$34,425 Assume injection volume equal to 20% of total pore volume SCO Injection Subcontractor (equipment) 17 days \$2,025 \$34,425 Assume injection volume equal to 20% of total pore volume SCO Injection Subcontractor (per diem) 0 galions \$1 \$0 \$20 labor \$100 \$2,010 Collabor \$20 labor \$20 labor <t< td=""><td></td><td></td><td></td><td></td><td>\$70,000</td><td></td></t<>					\$70,000	
SCO Injection Subcontractor (abor) 17 days \$2,250 \$38,250 Assume njection volume equal to 20% of total pore volume SCO Injection Subcontractor (equipment) 17 days \$2,025 \$34,425 Assume njection nate of 1.6 gpm based on total pore volume Vidant/Chemicals 581 6,8100 pounds \$2 \$116,451 Vidant/Chemicals 68100 pounds \$2 \$116,451 Stop on the sto		1	Lumn Sum	\$20.000	\$20,000	
SCO Injection Subcontractor (equipment) 17 days \$2,025 \$34,425 Assume injection rate of 1.6 gpm based on soil types and AECOM experience Persulfate 68100 pounds \$2 \$116,451 NaOH (25%) 91500 pounds \$1 \$0 Catalyst 0 gations \$1 \$0 SCO Injection Subcontractor (per diem) 17 days \$100 \$0,000 Catalyst 0 gations \$1 \$0 saume 19ecton rate of 1.6 gpm based on soil types and AECOM experience Engineering Oversight 17 days \$20,0130 saume fagees on crew for subcontractor Engineering Oversight 17 days \$1,000 saume Engineeri 34 Engineering Oversight 3 days \$1,150 \$3,450 assume 20% for Engineeri 34 Viele Coversight Materials and PPE 1 Lump Sum \$300 \$300 Log box, box, foce shield, eve welt aston Injection Oversight Rental Equipment 4 weeks \$250 \$1,000 sasume 15 hours per day duing field activities + 24 hours for procurement/coordination Uisc Oversight Materials and PPE 1 Lump Sum <td></td> <td></td> <td></td> <td></td> <td></td> <td>Assume injection volume equal to 20% of total para volume</td>						Assume injection volume equal to 20% of total para volume
Dxtidant/Chemicals Field injection days assume as advive highestion points, 5.5 thruiday injection time, and 2 days each for mobiledemole biological contractor (per diem) Field injection days assume as advive highestion points, 5.5 thruiday injection time, and 2 days each for mobiledemole biological contractor (per diem) Persulfate 68100 pounds \$2 \$116,451 NaOH (25%) 91500 pounds \$1 \$0 SCO Injection Subcontractor (per diem) 17 days \$1,000 ssume Engineer 3/4 Engineering Oversight 17 days \$1,150 \$3,450 assume Engineer 3/4 Engineering Oversight 3 days \$1,150 \$3,450 assume 20% for Engineer 3/4 Engineering Oversight 3 days \$1,150 \$3,450 assume 20% for Engineer 3/4 Signified and PPE 1 Lump Sum \$300 \$300 Log book gloves, face shield, eye wash station nijection Oversight Materials and PPE 1 Lump Sum \$300 \$300 Log book gloves, face shield, eye wash station right Field Test Kits 2 Each \$115 \$230 Field indicution shipping) Travel Expenses 1 Allowance \$2,000						
Persulfate 66100 pounds \$2 \$116,451 NaOH (25%) 91500 pounds \$1 \$0 \$20,130 Catalyst 0 gallons \$1 \$0 SCO lifection Subcontractor (per diem) 17 days \$525 \$8,925 Assume 3 person crew for subcontractor Engineering Procurement & Coordination 40 hours \$100 \$4,000 assume Engineer 3/4 Engineering Oversight 17 days \$1,500 \$1,500 assume Geologid/Scientist for overight Engineering Oversight 3 days \$1,150 \$3,450 assume Fagmeer 3/4 Project Management 49.5 hours \$125 \$8,188 assume 15 hours per day during field achilities + 24 hours for procurement/coordination Visic Oversight Materials and PPE 1 Lump Sum \$300 Log book, giove, face shield, eye wash staton Fravel Expenses 1 Allowance \$2,000 \$2,000 melesp.er dem for PM and ISCC Engineer SUBTOTAL 2 Each \$115 \$2,300 mileage, pridem for PM and ISCC Engineer Subortoxy Analyzes (VOC,metais @ 30% of welis) 1		.,	aayo	QL,020	Q 01,120	
Persulfate 68100 pounds \$22 \$116,451 NaOH (25%) 91500 pounds \$0 \$20,130 Catalyst 0 gallons \$1 \$0 SCO Injection Subcontractor (per diem) 17 days \$525 \$8,925 Assume 3 person crew for subcontractor Engineering Oversight 17 days \$100 \$4,000 assume Engineer 3/4 Engineering Oversight 17 days \$11,50 \$3,450 assume 20% for Engineer 3/4 Froject Management 49.5 hours \$125 \$6,188 assume 15 hours per day during field activities + 24 hours for procurement/coordination Versight Materials and PPE 1 Lump Sum \$300 Log book, gioves, face shied, we wash staten relection Oversight 4 weeks \$175 \$700 assume pick up truck or SUV (base rental and gas/mileage etc) Persulfate Field Test Kits 2 Each \$115 \$230 FMC, 10 tests each (including shipping) Trevel Expenses 1 Allowance \$273,049 Yet expense \$100 \$273,049 Set FOROMANCE MONITORING (ROUND 1) Sampling Rental						
NaOH (25%) 91500 pounds \$0 \$20,130 Catalyst 0 gallons \$1 \$0 SCC Injection Subcontractor (per diem) 17 days \$525 \$8,925 Assume 3 person crew for subcontractor Engineering Oversight 40 hours \$100 \$4,000 assume Engineer 3/4 Engineering Oversight 3 days \$1,150 \$3,450 assume 20% for Engineer 3/4 Engineering Oversight 3 days \$1,150 \$3,450 assume 20% for Engineer 3/4 Sicc Oversight Materials and PPE 1 Lump Sum \$300 \$300 \$300 \$20,000 Nicc Oversight Rental Equipment 4 weeks \$250 \$1,000 Assume no format CAMP; assume 1 PID & 1 water fevel meter (Pine Environmental 12-20-11) Rental Vehicle for Oversight 4 weeks \$270 assume for format CAMP; assume 1 PID & 1 water fevel meter (Pine Environmental 12-20-11) Rental Vehicle for Oversight 4 weeks \$175 \$700 assume groundwater sampling event 6 months atter injection Suber TAL 2 Each \$115 \$230 \$1,720 Assume groundwater sampling event 6 months atter injection Sompling Staff 6 Person-Days \$950 \$1,720 Assume ground	Persulfate	68100	nounde	\$2	\$116 451	iso shace, equipment, modezation, and chemical costs based on 2011 1501 EC quote for similar size site in V
Catalyst 0 gallons \$1 \$0 SCO Injection Subcontractor (per diem) 17 days \$525 \$8,925 Assume 3 person crew for subcontractor Engineering Procurement & Coordination 40 hours \$100 \$17,000 assume Geologiet/Scientist 3 for oversight Engineering Oversight 17 days \$1,150 \$3,450 assume Geologiet/Scientist 3 for oversight Engineering Oversight 3 days \$11,150 \$3,450 assume Geologiet/Scientist 3 for oversight Project Management 49.5 hours \$125 \$6,188 assume 15 hours per day dwins field activities + 24 hours for procurement/coordination Visc Oversight Materials and PPE 1 Lump Sum \$300 \$200 Log book; gloves, face shied; eye wash station nijection Oversight Rental Equipment 4 weeks \$2175 \$700 assume no formal CAMP; assume 1PID &1 water level meter (Pine Environmental 12-20-11) Parsulfate Field Test Kits 2 Each \$115 \$230 FMC, 10 tests each (including shipping) Irravel Expenses 1 Allowance \$2,000 mileage, per dem for PM and ISCO Engineer SuBTOTAL						
SCO Injection Subcontractor (per diem) 17 days \$525 \$8,925 Assume 3 person crew for subcontractor Engineering Procurement & Coordination 40 hours \$100 \$17,000 assume Engineer 3/4 Engineering Oversight 17 days \$1,150 \$3,450 assume 20% for Engineer 3/4 Project Management 49,5 hours \$125 \$5,180 assume 20% for Engineer 3/4 Project Management 49,5 hours \$125 \$5,180 assume 10 working fed achiets + 24 hours for procurement/coordination Injection Oversight Materials and PPE 1 Lump Sum \$300 Log book, gloves, face shield, eye wash station Injection Oversight Rental Equipment 4 weeks \$250 \$1,000 assume 10 CoMMP; assume 1 PD & 1 water level meter (Pine Environmental 12-20-11) Versulfate Field Test Kits 2 Each \$115 \$230 FMC, 10 tests each (including shipping) Irravel Expenses 1 Allowance \$2,000 \$2,000 mileage, per diem for PM and ISCO Engineer VBTOTAL 2 Sampling Staff 6 Person-Days \$950 \$1,720 Assume groundwater sampling event fer moths after			•			
Engineering Procurement & Coordination 40 hours \$100 \$4,000 assume Engineer 3/4 Engineering Oversight 17 days \$1,000 \$17,000 assume Engineer 3/4 Engineering Oversight 3 days \$1,150 \$3,450 assume 20% for Engineer 3/4 Project Management 49.5 hours \$125 \$6,188 assume 1.5 hours par day duing field activities + 24 hours for procurement/coordination Visic Oversight Materials and PPE 1 Lump Sum \$300 \$300 Log book, gloves, face shield, eye wash station reciction Oversight Materials Equipment 4 weeks \$175 \$700 assume proceed for SUV (base rental and gas/mileage etc) Parsulfate Field Test Kits 2 Each \$115 \$230 FMC, 10 tests each (including shipping) Travel Expenses 1 Allowance \$2,000 mileage, per diem for PM and ISCO Engineer Suppring Rental Equipment 3 Days \$500 \$1,720 Assume groundwater sampling event 6 months after injection Sampling Staff 6 Person-Days \$950 \$1,700 10 wells, assume 100 2 YSI, 2 peristatic pumps, 2 water levels, 2 Turb Meters, PID (Pi			-			Accurso 2 nomen areu far autoenteeter
Engineering Oversight 17 days \$1,000 \$17,000 assume Geologist/Scientist 3 for oversight Engineering Oversight 3 days \$1,150 \$3,450 assume 20% for Engineer 3/4 Project Management 49.5 hours \$125 \$6,188 assume 1.5 hours per day during field activities + 24 hours for procurement/coordination Misc Oversight Materials and PPE 1 Lump Sum \$300 \$300 b00x, gloves, face shield, eye wash station njection Oversight Materials and PPE 1 Lump Sum \$300 \$300 source of the expenses Parsulfate Field Test Kits 2 Each \$115 \$2300 \$200 mileage, per diem for PM and ISCO Engineer Versel Supprises 1 Allowance \$200 \$1,720 Assume groundwater sampling event 6 months after injection Sampling Staff 6 Person-Days \$950 \$1,720 Assume 20 wels per person per day Adays \$75 \$300 \$10 \$10 \$12 Samples \$10 Sental Vehicle 4 days \$75 \$300 \$17,200 Assume groundwater sampling event 6 months after injection	ideo injection Subcontractor (per diem)	17	uays	<i>\$</i> 525	\$0,920	Assume 3 person crew for subcontractor
Engineering Oversight 3 days \$1,150 \$3,450 assume 20% for Engineer 3/4 Project Management 49.5 hours \$12.5 \$8,188 assume 1.5 hours per day during field activities + 24 hours for procurement/coordination Misic Oversight Materials and PPE 1 Lump Sum \$300 \$300 Log book, gloves, face shield, eye wash station Injection Oversight Materials and PPE 1 Lump Sum \$300 \$300 Assume n.6 formal CAMP; assume 1.7 ID.8.1 vate level meter (Pine Environmental 12-20-11) Rental Vehicle for Oversight 4 weeks \$17.5 \$700 assume pick up truck or SUV (base rental and gas/mileage etc) Persulfate Field Test Kits 2 Each \$11.5 \$23.0 FNC. 10 tests each (including shipping) Travel Expenses 1 Allowance \$2,000 \$2,000 mileage, per dem for PM and ISCO Engineer SUBTOTAL 5 5500 \$1,720 Assume groundwater sampling event 6 months after injecton Ower Klow Sampling Rental Equipment 3 Days \$500 \$1,720 Assume 2 wells per person per day .aboratory Analyses (VOC,metals @ 30% of wells) 12 Samples \$150 \$1,800 <	Engineering Procurement & Coordination	40	hours	\$100	\$4,000	assume Engineer 3/4
Project Management 49.5 hours \$125 \$6,188 assume 1.5 hours per day during field activities + 24 hours for procurement/coordination Visc Oversight Materials and PPE 1 Lump Sum \$300 \$300 Log book, gloves, face shield, eye wash station njection Oversight Materials and PPE 1 Lump Sum \$300 \$300 Assume no formal CAMP; assume 1 PID & 1 water level meter (Pine Environmental 12-20-11) Rental Vehicle for Oversight 4 weeks \$17.5 \$700 assume pick up truck or SUV (base rental and gas/mileage etc) Persulfate Field Test Kits 2 Each \$11.5 \$230 FMC, 10 tests each (including shipping) Travel Expenses 1 Allowance \$2,000 \$2,000 mileage, per diem for PM and ISCO Engineer SUBTOTAL 2 Each \$11.5 \$230 \$1,720 Assume groundwater sampling event 6 months after injection Sompling Staff 6 Person-Days \$950 \$1,720 Assume 2 weits per person per day Laboratory Analyses (VOC, metals @ 30% of wells) 12 Samples \$16,000 2 YSI, 2 peristatic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11) Wileage/Misc Expenses 1 Allowance \$500 \$510 assume pick up truck or SUV (base rental and gas/mileage etc) U	Engineering Oversight	17	days	\$1,000	\$17,000	assume Geologist/Scientist 3 for oversight
Wisc Oversight Materials and PPE 1 Lump Sum \$300 \$300 Log book, gloves, face shield, eye wash station njection Oversight Rental Equipment 4 weeks \$250 \$1,000 Assume no formal CAMP; assume 1 PID & 1 water fevel meter (Pine Environmental 12-20-11) Rental Vehicle for Oversight Kental Equipment 4 weeks \$175 \$700 assume no formal CAMP; assume 1 PID & 1 water fevel meter (Pine Environmental 12-20-11) Rental Vehicle for Oversight 4 weeks \$200 \$2,000 mileage, per diem for PM and ISCO Engineer SUBTOTAL	Engineering Oversight	3	days	\$1,150	\$3,450	assume 20% for Engineer 3/4
njection Oversight Rental Equipment 4 weeks \$250 \$1,000 Assume no formal CAMP; assume 1PID & 1 water level meter (Pine Environmental 12-20-11) Aental Vehicle for Oversight 4 weeks \$175 \$700 assume pick up truck or SUV (base rental and gas/mileage etc) Persulfate Field Test Kits 2 Each \$115 \$230 FMC, 10 tests each (including shipping) Travel Expenses 1 Allowance \$2,000 \$2,000 mileage, per diem for PM and ISCO Engineer SUBTOTAL \$273,049 PERFORMANCE MONITORING (ROUND 1) cow Flow Sampling Rental Equipment 3 Days \$500 \$1,720 Assume 2 wells per person per day aboratory Analyses (VOC, metals @ 30% of wells) 12 Samples \$150 \$1,800 2 YSI, 2 peristatic pumps, 2 weter levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11) Rental Vehicle 4 days \$75 \$300 Data Evaluation and Summary Report 60 hours \$100 \$6,000 assume pick up truck or SUV (base rental and gas/mileage etc) SUBTOTAL \$16,020 Contingency 30% \$174, 859	Project Management	49.5	hours	\$125	\$6,188	assume 1.5 hours per day during field activities + 24 hours for procurement/coordination
Rental Vehicle for Oversight 4 weeks \$175 \$700 assume pick up truck or SUV (base rental and gas/mileage etc) Persulfate Field Test Kits 2 Each \$115 \$230 FMC, 10 tests each (including shipping) Iravel Expenses 1 Allowance \$2,000 mileage, per diem for PM and ISCO Engineer SUBTOTAL \$273,049 \$273,049 \$273,049 PERFORMANCE MONITORING (ROUND 1) \$273,049 \$273,049 ow Flow Sampling Rental Equipment 3 Days \$500 \$1,720 Assume groundwater sampling event 6 months after injection aboratory Analyses (VOC,metals @ 30% of wells) 12 Samples \$150 \$1,800 2 YSI, 2 peristaltic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11) Antal Vehicle 4 days \$75 \$300 Villeage/Misc Expenses 1 Allowance \$500 \$500 Data Evaluation and Summary Report 60 hours \$100 \$8,000 assume pick up truck or SUV (base rental and gas/mileage etc) SUBTOTAL \$16,020 \$16,020 \$200 assume pick up truck or SUV (base rental and gas/mileage etc) Contingeney <td< td=""><td>Misc Oversight Materials and PPE</td><td><u> </u></td><td>Lump Sum</td><td>\$300</td><td>\$300</td><td>Log book, gloves, face shield, eye wash station</td></td<>	Misc Oversight Materials and PPE	<u> </u>	Lump Sum	\$300	\$300	Log book, gloves, face shield, eye wash station
Rental Vehicle for Oversight 4 weeks \$175 \$700 assume pick up truck or SUV (base rental and gas/mileage etc) Persulfate Field Test Kits 2 Each \$115 \$230 FMC. 10 tests each (including shipping) Travel Expenses 1 Allowance \$2,000 \$2,000 mileage. per diem for PM and ISCO Engineer SUBTOTAL 2 Days \$500 \$1,720 Assume groundwater sampling event 6 months after injection Sow Flow Sampling Rental Equipment 3 Days \$500 \$1,720 Assume groundwater sampling event 6 months after injection Sampling Staff 6 Person-Days \$950 \$1,800 2 YSI, 2 peristatic pumps, 2 welts per person per day .aboratory Analyses (VOC,metals @ 30% of wells) 12 Samples \$16,020 2 YSI, 2 peristatic pumps, 2 welts levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11) Rental Vehicle 4 days \$75 \$300 Uileage/Misc Expenses 1 Allowance \$500 \$500 Data Evaluation and Summary Report 60 hours \$100 \$6,000 assume pick up truck or SUV (base rental and gas/mileage etc) SUBTOTAL 516,020	Injection Oversight Rental Equipment	4	weeks	\$250	\$1,000	Assume no formal CAMP; assume 1 PID & 1 water level meter (Pine Environmental 12-20-11)
Image: Provide Expenses 1 Allowance \$2,000 \$2,000 mitage, per diam for PM and ISCO Engineer SUBTOTAL Serror \$273,049 PERFORMANCE MONITORING (ROUND 1) Sampling Rental Equipment 3 Days \$500 \$1,720 Assume groundwater sampling event 6 months after injection Sampling Staff 6 Person-Days \$950 \$5,700 10 wells, assume 2 wells per person per day .aboratory Analyses (VOC, metals @ 30% of wells) 12 Samples \$1,800 2 YSI, 2 peristatic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11) Rental Vehicle 4 days \$75 \$300 Vileage/Misc Expenses 1 Allowance \$500 \$500 Data Evaluation and Summary Report 60 hours \$100 \$6,000 assume pick up truck or SUV (base rental and gas/mileage etc) SUBTOTAL \$16,020 \$200 \$114,859 Contingency 30% \$174,859 \$174,859	Rental Vehicle for Oversight	•	weeks			
SUBTOTAL \$273,049 PERFORMANCE MONITORING (ROUND 1)	Persulfate Field Test Kits	2	Each	\$115	\$230	FMC, 10 tests each (including shipping)
PERFORMANCE MONITORING (ROUND 1) .ow Flow Sampling Rental Equipment 3 Days \$500 \$1,720 Assume groundwater sampling event 6 months after injection Sampling Staff 6 Person-Days \$950 \$5,700 10 wells, assume 2 wells per person per day Jaboratory Analyses (VOC, metals @ 30% of wells) 12 Samples \$150 \$1,800 2 YSI, 2 peristaltic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11) Rental Vehicle 4 days \$75 \$300 Villeage/Misc Expenses 1 Allowance \$500 \$500 2ta Evaluation and Summary Report 60 hours \$100 \$80,000 assume pick up truck or SUV (base rental and gas/mileage etc) SUBTOTAL \$16,020 \$16,020 \$16,020 \$16,020 Contingency 30% \$174,859 \$174,859	Travel Expenses	1	Allowance	\$2,000		mileage, per diem for PM and ISCO Engineer
Low Flow Sampling Rental Equipment 3 Days \$500 \$1,720 Assume groundwater sampling event 6 months after injection Sampling Staff 6 Person-Days \$950 \$5,700 10 wells, assume 2 wells per person per day Laboratory Analyses (VOC,metals @ 30% of wells) 12 Samples \$1,800 2 YSI, 2 peristaltic pumps, 2 wells per person per day Antal Vehicle 4 days \$75 \$300 Villeage/Misc Expenses 1 Allowance \$500 \$500 Data Evaluation and Summary Report 60 hours \$100 \$6,000 assume pick up truck or SUV (base rental and gas/mileage etc) SUBTOTAL 516,020 \$562,864 Contingency 30% \$174,859	SUBTOTAL				\$273,049	
Sampling Staff 6 Person-Days \$950 \$5,700 10 wells, assume 2 wells per person per day .aboratory Analyses (VOC,metals @ 30% of wells) 12 Samples \$150 \$1,800 2 YSI, 2 peristaltic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11) Rental Vehicle 4 days \$75 \$300 Vileage/Misc Expenses 1 Allowance \$500 \$500 Data Evaluation and Summary Report 60 hours \$100 \$6,000 assume pick up truck or SUV (base rental and gas/mileage etc) SUBTOTAL 516,020 \$500 \$500 \$11,020 Contingency 30% \$174,859 \$12	PERFORMANCE MONITORING (ROUND 1)					
Laboratory Analyses (VOC, metals @ 30% of wells) 12 Samples \$150 \$1,800 2 YSI, 2 peristatic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11) Rental Vehicle 4 days \$75 \$300 2 YSI, 2 peristatic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11) Wileage/Misc Expenses 1 Allowance \$500 \$500 Data Evaluation and Summary Report 60 hours \$100 assume pick up truck or SUV (base rental and gas/mileage etc) SUBTOTAL \$16,020 \$16,020 Contingency 30% \$174,859	Low Flow Sampling Rental Equipment					Assume groundwater sampling event 6 months after injection
Rental Vehicle 4 days \$75 \$300 Wileage/Misc Expenses 1 Allowance \$500 \$500 Data Evaluation and Summary Report 60 hours \$100 assume pick up truck or SUV (base rental and gas/mileage etc) SUBTOTAL \$16,020 \$16,020 \$16,020 Contingency 30% \$174,859			•			
villeage/Misc Expenses 1 Allowance \$500 \$500 Data Evaluation and Summary Report 60 hours \$100 \$6,000 assume pick up truck or SUV (base rental and gas/mileage etc) SUBTOTAL 516,020 \$100 \$582,864 Contingency 30% \$174,859						2 YSI, 2 peristaltic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11)
Data Evaluation and Summary Report 60 hours \$100 \$60,000 assume pick up truck or SUV (base rental and gas/mileage etc) SUBTOTAL \$16,020 \$16,020 \$16,020 \$16,020 \$16,020 \$16,020 \$16,020 \$16,020 \$16,020 \$16,020 \$17,4,859 \$174,859	Rental Vehicle		-			
SUBTOTAL \$16,020 CAPITAL COST SUBTOTAL \$582,864 Contingency 30% \$174,859	Mileage/Misc Expenses		Allowance	\$500	\$500	
SUBTOTAL \$16,020 CAPITAL COST SUBTOTAL \$582,864 Contingency 30% \$174,859	Data Evaluation and Summary Report	60	hours	\$100	\$6,000	assume pick up truck or SUV (base rental and gas/mileage etc)
Contingency 30% \$174,859	SUBTOTAL				\$16,020	
	CAPITAL COST SUBTOTAL				\$582,864	
TOTAL CAPITAL COSTS \$757,723	Contingency	30%			\$174,859	
	TOTAL CAPITAL COSTS				\$757,723	

Focused In-Situ Chemical Oxidation with Monitored Natural Attenuation (Alternative 4A) Former Scott Aviation Facility - Lancaster, NY

FUTURE COSTS					
Future Year 1					
Remediation Design Addendum	60	hours	\$115	\$6,900	
ISCO Injection (Round 2)	(assume 10	00% of round 1)	\$273,049	Labor, equipment, chemicals, oversight
Performance Monitoring with Summary Report (Round 2)	(assume sa	ime as PM Rou	und 1)	\$16,020	
MNA Sampling	1	Event	\$30,095	\$30,095	See MNA Backup Cost Estimate (assume 1 MNA event in addition to ISCO Performance Monitoring)
SUBTOTAL FUTURE YEAR 1				\$326,064	
Contingency	30%			\$97,819	
TOTAL FUTURE YEAR 1				\$423,883	
Future Year 2					
Remediation Design Addendum	60	hours	\$115	\$6,900	
ISCO Injection (Round 3)		5% of round 2)		\$177,482	Labor, equipment, chemicals, oversight
Performance Monitoring with Summary Report (Round 3)	•	ame as PM Rou		\$16,020	
MNA Sampling	1	Event	\$30,095	\$30,095	See MNA Backup Cost Estimate (assume 1 MNA event in addition to ISCO Performance Monitoring)
SUBTOTAL FUTURE YEAR 2				\$230,497	
Contingency	30%			\$69,149	
TOTAL FUTURE YEAR 2				\$299,645	
Future Year 3 - 5 (Annual Cost)	-	- .			Perform MNA Semi-Annual Sampling
Performance Monitoring with Summary Report	2	Event	\$30,095	\$60,190	
Contingency	30%			\$18,057	
TOTAL FUTURE YEAR 3-5				\$78,247	
Future Year 6 - 20 (Annual Cost)					Perform MNA Annual Sampling
Performance Monitoring with Summary Report	1	Event	\$30,095	\$30,095	
Contingency	30%			\$9,029	
TOTAL FUTURE YEAR 6-20				\$39,124	
Assume semi-annual sampling for 5 years and annua		ntil Year 30	NPV	Net Dresent	
	Events		Discount	Net Present	(assume Real Discount Rate of 4.5%)
Future Year	Events Per Year	Base Cost	Discount Factor	Value	(assume Real Discount Rate of 4.5%)
Future Year	Events Per Year 1	Base Cost \$423,883	Discount Factor 1.00	Value \$423,883	(assume Real Discount Rate of 4.5%)
Future Year	Events Per Year 1	Base Cost \$423,883 \$299,645	Discount Factor 1.00 0.96	Value \$423,883 \$286,742	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3	Events Per Year 1 1 1	Base Cost \$423,883 \$299,645 \$78,247	Discount Factor 1.00 0.96 0.92	Value \$423,883 \$286,742 \$71,653	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4	Events Per Year 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247	Discount Factor 1.00 0.96 0.92 0.88	Value \$423,883 \$286,742 \$71,653 \$68,568	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5	Events Per Year 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$78,247	Discount Factor 1.00 0.96 0.92 0.88 0.84	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6	Events Per Year 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$78,247 \$78,247 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6 7	Events Per Year 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$78,247 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$30,043	(assume Real Discount Rate of 4.5%)
Future Year	Events Per Year 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$78,247 \$39,124 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77 0.73	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$30,043 \$28,749	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6 7 8 9	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$78,247 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77 0.73 0.70	Value \$423,883 \$286,742 \$71,653 \$65,615 \$31,395 \$30,043 \$28,749 \$27,511	(assume Real Discount Rate of 4,5%)
Future Year 1 2 3 4 5 6 7 8 9 10	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$78,247 \$39,124 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77 0.73 0.73 0.70 0.67	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$30,043 \$28,749 \$27,511 \$26,326	(assume Real Discount Rate of 4.5%)
Future Year	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$78,247 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77 0.73 0.70 0.667 0.64	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$30,043 \$20,043 \$22,749 \$27,511 \$26,326 \$25,193	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6 7 8 9 10 11 12	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77 0.73 0.70 0.67 0.64 0.62	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$30,043 \$28,749 \$27,511 \$26,326 \$25,193 \$24,108	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6 7 8 9 10 11 12 13	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$78,247 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77 0.73 0.70 0.67 0.64 0.62 0.59	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$30,043 \$28,749 \$27,511 \$26,326 \$25,193 \$24,108 \$23,070	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77 0.73 0.70 0.67 0.64 0.62 0.59 0.56	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$30,043 \$28,749 \$27,511 \$26,326 \$22,193 \$24,108 \$23,070 \$22,076	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.84 0.80 0.77 0.73 0.77 0.73 0.64 0.62 0.65 0.55 0.54	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$30,043 \$23,043 \$27,511 \$26,326 \$25,193 \$24,108 \$24,108 \$24,108 \$23,070 \$22,076 \$21,126	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$78,247 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77 0.73 0.77 0.73 0.70 0.67 0.64 0.62 0.59 0.56 0.554 0.52	Value \$423,883 \$286,742 \$71,653 \$68,568 \$565,615 \$31,395 \$30,043 \$28,749 \$27,511 \$26,326 \$25,193 \$24,108 \$23,070 \$22,076 \$22,076 \$22,076 \$22,126	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$78,247 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.84 0.84 0.77 0.73 0.77 0.73 0.70 0.67 0.64 0.62 0.59 0.56 0.55 0.55 0.52 0.49	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$30,043 \$28,749 \$27,511 \$26,326 \$25,193 \$24,108 \$23,070 \$22,076 \$21,126 \$20,216 \$19,345	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$78,247 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77 0.73 0.77 0.73 0.70 0.67 0.64 0.62 0.59 0.56 0.554 0.52	Value \$423,883 \$286,742 \$71,653 \$68,568 \$565,615 \$31,395 \$30,043 \$28,749 \$27,511 \$26,326 \$25,193 \$24,108 \$23,070 \$22,076 \$22,076 \$22,076 \$22,126	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$78,247 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.84 0.84 0.77 0.73 0.77 0.73 0.70 0.67 0.64 0.62 0.59 0.56 0.55 0.55 0.52 0.49	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$30,043 \$28,749 \$27,511 \$26,326 \$25,193 \$24,108 \$23,070 \$22,076 \$21,126 \$20,216 \$19,345	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.80 0.77 0.73 0.77 0.73 0.70 0.67 0.67 0.67 0.62 0.59 0.56 0.54 0.52 0.54 0.54 0.54 0.54 0.54 0.54	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$20,043 \$22,7511 \$26,326 \$22,193 \$24,108 \$23,070 \$22,076 \$21,126 \$20,216 \$19,345 \$18,512	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.84 0.80 0.77 0.73 0.77 0.73 0.73 0.64 0.62 0.64 0.62 0.59 0.56 0.54 0.52 0.47 0.45	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$30,043 \$28,749 \$27,511 \$26,326 \$22,193 \$24,108 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$22,126 \$20,216 \$19,345 \$18,512 \$17,715	(assume Real Discount Rate of 4.5%)
Future Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 FUTURE COST TOTALS	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.84 0.80 0.77 0.73 0.77 0.73 0.77 0.67 0.67 0.67 0.67 0.62 0.59 0.56 0.54 0.52 0.59 0.55 0.43 0.43	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$20,043 \$28,749 \$27,511 \$26,326 \$25,193 \$24,108 \$24,108 \$23,070 \$22,076 \$21,126 \$20,216 \$20,216 \$19,345 \$18,512 \$18,512 \$17,715 \$16,952 \$844,915	
Future Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 FUTURE COST TOTALS ALTERNATIVE COST SUMMARY	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$39,124 \$30,124 \$3	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.84 0.80 0.77 0.73 0.77 0.73 0.77 0.67 0.67 0.67 0.67 0.62 0.59 0.56 0.54 0.52 0.59 0.55 0.43 0.43	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$20,043 \$22,749 \$27,511 \$26,326 \$22,193 \$24,108 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$23,126 \$23,070 \$22,076 \$23,126 \$23,070 \$22,076 \$23,126 \$23,070 \$22,076 \$23,126 \$23,070 \$22,076 \$23,126 \$23,070 \$22,076 \$23,126 \$23,070 \$22,076 \$23,126 \$23,126 \$23,126 \$23,126 \$24,108 \$23,070 \$22,076 \$23,126 \$24,108 \$23,070 \$22,076 \$21,126 \$23,126 \$23,126 \$23,126 \$24,108 \$23,126 \$24,108 \$23,126 \$24,108 \$24,108 \$24,108 \$25,126 \$24,108 \$25,126 \$25,126 \$24,108 \$25,126 \$25,126 \$25,126 \$25,126 \$25,126 \$25,126 \$25,126 \$26,266 \$25,126 \$25,126 \$26,26	
Future Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 FUTURE COST TOTALS ALTERNATIVE COST SUMMARY Capital Cost	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$39,124	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.84 0.80 0.77 0.73 0.77 0.73 0.77 0.67 0.67 0.67 0.67 0.62 0.59 0.56 0.54 0.52 0.59 0.55 0.43 0.43	Value \$423,883 \$286,742 \$71,653 \$68,568 \$31,395 \$30,043 \$28,749 \$27,511 \$26,326 \$22,193 \$24,108 \$23,070 \$22,076 \$21,126 \$20,216 \$19,345 \$18,512 \$18,512 \$16,952 \$844,915 Net Present Vali \$757,723	
Future Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 FUTURE COST TOTALS ALTERNATIVE COST SUMMARY	Events Per Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Base Cost \$423,883 \$299,645 \$78,247 \$78,247 \$39,124 \$30,124 \$3	Discount Factor 1.00 0.96 0.92 0.88 0.84 0.84 0.80 0.77 0.73 0.77 0.73 0.77 0.67 0.67 0.67 0.67 0.62 0.59 0.56 0.54 0.52 0.59 0.55 0.43 0.43	Value \$423,883 \$286,742 \$71,653 \$68,568 \$65,615 \$31,395 \$20,043 \$22,749 \$27,511 \$26,326 \$22,193 \$24,108 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$22,076 \$23,126 \$23,070 \$22,076 \$23,126 \$23,070 \$22,076 \$23,126 \$23,070 \$22,076 \$23,126 \$23,070 \$22,076 \$23,126 \$23,070 \$22,076 \$23,126 \$23,070 \$22,076 \$23,126 \$23,126 \$23,126 \$23,126 \$24,108 \$23,070 \$22,076 \$23,126 \$24,108 \$23,070 \$22,076 \$21,126 \$23,126 \$23,126 \$23,126 \$24,108 \$23,126 \$24,108 \$23,126 \$24,108 \$24,108 \$24,108 \$25,126 \$24,108 \$25,126 \$25,126 \$24,108 \$25,126 \$25,126 \$25,126 \$25,126 \$25,126 \$25,126 \$25,126 \$26,266 \$25,126 \$25,126 \$26,26	

Focused In-Situ Chemical Oxidation with Enhanced Bioremediation (Alternative 4B) Former Scott Aviation Facility - Lancaster, NY

DESCRIPTION	UNIT	QUANTITY	RATE	TOTAL COST	ESTIMATE/SOURCE NOTES
CAPITAL COSTS					
ENGINEERING DESIGN, PERMITTING, PILOT TEST EVA	LUATION				
ISCO Pilot Test	1	Lump Sum	\$125,000	\$125,000	Assume all costs for design, monitoring, chemicals, and injection labor and equipment
Remedial Design and PilotTest Evaluation	200	hours	\$115	\$23,000	
Permit Preparation	80	hours	\$115	\$9,200	
SUBTOTAL				\$157,200	
DRILLING AND INJECTION WELL INSTALLATION					
Driller Mobilization/Demobilization (include Decon Pad)	1	Lump Sum	\$1,500	\$1,500	Assume 2 rigs mobilized
Drill Rig and Labor	39	rig-days	\$1,500	\$58,500	Assume direct-push rig for well installation (110/d) plus per diem
1.5" Prepack Screens (5' length) for injection wells	443	each	\$125	\$55,375	180 shallow inj wells, 83 deep injection wells (4-14', 15-21') = 4,265 feet of drilling
1.5" PVC Riser and materials for injection wells	2215	LF	\$8	\$17,720	Riser 5' and 15' = 2525 feet; 2 x 5' screens per shallow well + 1 x 5' screen for deep well
Protective Stick Ups	263	wells	\$100	\$26,300	
Drums	33	drums	\$75	\$2,475	Assume 1 drum per 8 wells
CAMP Equipment Rental	4	week	\$500	\$2,000	Assume 1 PID and 1 Dust Track (Pine Environmental 12-20-11)
Soil Disposal	33	drums	\$300	\$9,900	
Engineering Procurement & Coordination	30	hours	\$100	\$3,000	
			• • • • •		assume 2 staff (Geologist/Scientist 3) for oversight and CAMP;
Engineering Oversight	468	hours	\$100	\$46,800	10 hrs/day + 20% for markout, misc
Project Management	45	hours	\$125	\$5,625	assume 2 hours per day during field activities + 6 hours for procurement/coordination
SUBTOTAL				\$229,195	
FOCUSED ISCO INJECTION (ROUND 1)					
ISCO Injection Subcontractor (mobilization)	1	Lump Sum	\$20,000	\$20,000	
ISCO Injection Subcontractor (labor)	17	days	\$2,250	\$38,250	Assume injection volume equal to 20% of total pore volume
ISCO Injection Subcontractor (equipment)	17	days	\$2,025	\$34,425	Assume injection rate of 1.6 gpm based on soil types and AECOM experience
Oxidant/Chemicals					Field injection days assumes 6 active injection points, 5.5 hrs/day injection time, and 2 days each for mob/demob
					ISCO labor, equipment, mobilization, and chemical costs based on 2011 ISOTEC quote for similar size site in VT
Persulfate	68100	pounds	\$2	\$116,451	
NaOH (25%)	91500	pounds	\$0	\$20,130	
Catalyst	0	gailons	\$1	\$0	
ISCO Injection Subcontractor (per diem)	17	days	\$525	\$8,925	Assume 3 person crew for subcontractor
		aayo	4020	\$0,020	
Engineering Procurement & Coordination	40	hours	\$100	\$4,000	assume Engineer 3/4
Engineering Oversight	17	days	\$1,000	\$17,000	assume Geologist/Scientist 3 for oversight
Engineering Oversight	3	days	\$1,150	\$3,450	assume 20% for Engineer 3/4
Project Management	49.5	hours	\$125	\$6,188	assume 1.5 hours per day during field activities + 24 hours for procurement/coordination
Misc Oversight Materials and PPE	1	Lump Sum	\$300	\$300	Log book, gloves, face shield, eye wash station
Injection Oversight Rental Equipment	4	weeks	\$250	\$1,000	Assume no formal CAMP; assume 1 PID & 1 water level meter (Pine Environmental 12-20-11)
Rental Vehicle for Oversight	4	weeks	\$175	\$700	assume pick up truck or SUV (base rental and gas/mileage etc)
Persulfate Field Test Kits	2	Each	\$115	\$230	FMC, 10 tests each (including shipping)
Travel Expenses	1	Allowance	\$2,000	\$2,000	mileage, per diem for PM and ISCO Engineer
SUBTOTAL				\$273,049	
PERFORMANCE MONITORING (ROUND 1)					
Low Flow Sampling Rental Equipment	3	Days	\$500	\$1,720	Assume groundwater sampling event 6 months after injection
Sampling Staff	6	Person-Days	\$950	\$5,700	10 wells, assume 2 wells per person per day
Laboratory Analyses (VOC, metals @ 30% of wells)	12	Samples	\$150	\$1,800	2 YSI, 2 peristaltic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11)
Rental Vehicle	4	days	\$75	\$300	
Mileage/Misc Expenses	1	Allowance	\$500	\$500	
Data Evaluation and Summary Report	60	hours	\$100	\$6,000	assume pick up truck or SUV (base rental and gas/mileage etc)
SUBTOTAL				\$16,020	
CAPITAL COST SUBTOTAL				\$675,464	
Contingency	30%			\$202,639	
TOTAL CAPITAL COSTS				\$878,103	

term of the same constrained as well because constrained

and the management

Focused In-Situ Chemical Oxidation with Enhanced Bioremediation (Alternative 4B) Former Scott Aviation Facility - Lancaster, NY

FUTURE COSTS					
Future Year 1					
	60	hours	\$115	£6 000	
Remediation Design Addendum		hours		\$6,900	
ISCO Injection (Round 2)	(assume 100% of round 1)			\$273,049	Labor, equipment, chemicals, oversight
Performance Monitoring with Summary Report (Round 2)	(assume same as PM Round 1)		\$16,020	ISCO Performance Monitoring	
SUBTOTAL FUTURE YEAR 1				\$295,969	
Contingency	30%			\$88,791	
TOTAL FUTURE YEAR 1				\$384,759	
Future Year 2					
Remediation Design Addendum	60	hours	\$115	\$6,900	
ISCO Injection (Round 3)	(assume 6	5% of round 2)		\$177,482	Labor, equipment, chemicals, oversight
Enhanced Bioremediation Injection					
Injection Subcontractor (mobilization)	1	Lump Sum	\$20,000	\$20,000	Assume injection volume equal to 20% of total pore volume
Injection Subcontractor (labor and equipment)	41	days	\$3,500	\$143,500	Assume injection rate of 1.5 gpm based on soil types and AECOM experience
		•			Field injection days assumes 6 active injection points, 5.5 hrs/day injection time, and 2 days each for mob/demob
Carbon Substrate/Chemicals					
Water Soluble Oil	21	drums	\$1,200	\$25,200	Chemical costs from Tersus Environmental Quote (March 2012)
Bioremediation Nutrients	21	5g pail	\$225	\$4,725	•
Quick release carbon substrate	10.5	gallons	\$1,000	\$10,500	
Injection Subcontractor (per diem)	41	days	\$525	\$21,525	Assume 3 person crew for subcontractor
Engineering Procurement & Coordination	40	hours	\$100	\$4,000	assume Engineer 3/4
Engineering Oversight	41	days	\$1,000	\$41,000	assume Geologist/Scientist 3 for oversight
Engineering Oversight	8	days	\$1,150	\$9,200	assume 20% for Engineer 3/4
Project Management	24	hours	\$125	\$3,000	assume 1.5 hours per day during field activities + 24 hours for procurement/coordination
Misc Oversight Materials and PPE	1	Lump Sum	\$300	\$300	Log book, gloves, face shield, eye wash station
Injection Oversight Rental Equipment	9	weeks	\$250	\$2,250	Assume no formal CAMP; assume 1 PID & 1 water level meter (Pine Environmental 12-20-11)
Rental Vehicle for Oversight	9	weeks	\$175	\$1,575	assume pick up truck or SUV (base rental and gas/mileage etc)
Field Test Kits/Monitoring Supplies	1	Allowance	\$1,500	\$1,500	assume pick up mack of GOV (base rental and gasmileage etc)
Travel Expenses	1	Allowance	\$2,000	\$2,000	mileage, per diem for PM and ISCO Engineer
SUBTOTAL	•	7	\$2,000	\$290,275	
Bioremediation Performance Monitoring with Summary Re	eport (Round	1)		\$19,020	Same as Enhanced Bioremediation Performance Monitoring Round 1 (see Alternative 3)
SUBTOTAL FUTURE YEAR 2				\$493,677	
Contingency	30%			\$148,103	
TOTAL FUTURE YEAR 2				\$641,779	
Future Vear 3					
Future Year 3 Performance Monitoring with Summary Report	2	Event	\$19.020	\$38.040	
Performance Monitoring with Summary Report	2	Event	\$19,020	\$38,040 \$38,040	
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3		Event	\$19,020	\$38,040	
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3 Contingency	2 30%	Event	\$19,020	\$38,040 \$11,412	
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3		Event	\$19,020	\$38,040	
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3 Contingency TOTAL FUTURE YEAR 3 Future Year 4	30%	Event		\$38,040 \$11,412 \$49,452	
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3 Contingency TOTAL FUTURE YEAR 3		Event	\$19,020	\$38,040 \$11,412	·
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3 Contingency TOTAL FUTURE YEAR 3 Future Year 4	30% 60		\$115	\$38,040 \$11,412 \$49,452	Labor, equipment, chemicais, oversight
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3 Contingency TOTAL FUTURE YEAR 3 Future Year 4 Remediation Design Addendum	30% 60	hours	\$115	\$38,040 \$11,412 \$49,452 \$6,900	Labor, equipment, chemicals, oversight
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3 Contingency TOTAL FUTURE YEAR 3 Future Year 4 Remediation Design Addendum Bioremediation Injection (Round 2)	30% 60 (assume 8	hours 50% of 1st biore	\$115 mediation)	\$38,040 \$11,412 \$49,452 \$6,900 \$145,138	Labor, equipment, chemicals, oversight
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3 Contingency TOTAL FUTURE YEAR 3 Future Year 4 Remediation Design Addendum Bioremediation Injection (Round 2) Performance Monitoring with Summary Report	30% 60 (assume 8	hours 50% of 1st biore	\$115 mediation)	\$38,040 \$11,412 \$49,452 \$6,900 \$145,138 \$350	Labor, equipment, chemicals, oversight
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3 Contingency TOTAL FUTURE YEAR 3 Future Year 4 Remediation Design Addendum Bioremediation Injection (Round 2) Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 4	30% 60 (assume 5 2	hours 50% of 1st biore	\$115 mediation)	\$38,040 \$11,412 \$49,452 \$6,900 \$145,138 \$350 \$152,388	Labor, equipment, chemicals, oversight
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3 Contingency TOTAL FUTURE YEAR 3 Future Year 4 Remediation Design Addendum Bioremediation Injection (Round 2) Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 4 Contingency TOTAL FUTURE YEAR 4	30% 60 (assume 5 2	hours 50% of 1st biore	\$115 mediation)	\$38,040 \$11,412 \$49,452 \$6,900 \$145,138 \$350 \$152,388 \$45,716	Labor, equipment, chemicals, oversight
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3 Contingency TOTAL FUTURE YEAR 3 Future Year 4 Remediation Design Addendum Bioremediation Injection (Round 2) Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 4 Contingency TOTAL FUTURE YEAR 4 Future Year 5 - 10 (Annual Cost)	30% 60 (assume 5 2 30%	hours i0% of 1st biore Event	\$115 mediation) \$175	\$38,040 \$11,412 \$49,452 \$6,900 \$145,138 \$350 \$152,388 \$45,716 \$198,104	
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3 Contingency TOTAL FUTURE YEAR 3 Future Year 4 Remediation Design Addendum Bioremediation Injection (Round 2) Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 4 Contingency TOTAL FUTURE YEAR 4 Future Year 5 - 10 (Annual Cost) Performance Monitoring with Summary Report	30% 60 (assume 5 30% (assume 5	hours 50% of 1st biore	\$115 mediation) \$175	\$38,040 \$11,412 \$49,452 \$6,900 \$145,138 \$350 \$152,388 \$45,716 \$198,104 \$19,020	Labor, equipment, chemicais, oversight assume annual performance monitoring sampling
Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 3 Contingency TOTAL FUTURE YEAR 3 Future Year 4 Remediation Design Addendum Bioremediation Injection (Round 2) Performance Monitoring with Summary Report SUBTOTAL FUTURE YEAR 4 Contingency TOTAL FUTURE YEAR 4 Future Year 5 - 10 (Annual Cost)	30% 60 (assume 5 2 30%	hours i0% of 1st biore Event	\$115 mediation) \$175	\$38,040 \$11,412 \$49,452 \$6,900 \$145,138 \$350 \$152,388 \$45,716 \$198,104	

211F

Focused In-Situ Chemical Oxidation with Enhanced Bioremediation (Alternative 4B) Former Scott Aviation Facility - Lancaster, NY

	Events		NPV Discount	Net Present	
Future Year	Per Year	Base Cost	Factor	Value	(assume Real Discount Rate of 4.5%)
1	1	\$384,759	1.00	\$384,759	
2	1	\$641,779	0.96	\$614,143	
3	1	\$49,452	0.92	\$45,285	
4	1	\$198,104	0.88	\$173,598	
5	1	\$24,726	0.84	\$20,734	
6	1	\$24,726	0.80	\$19,841	
7	1	\$24,726	0.77	\$18,987	
8	1	\$24,726	0.73	\$18,169	
9	1	\$24,726	0.70	\$17,387	
10	1	\$24,726	0.67	\$16,638	
IRE COST TOTALS		\$1,037,691		\$944,783	

ALTERNATIVE COST SUMMARY	Total Cost	Net Present Value	
Capital Cost	\$878,103	\$878,103	
Future Costs	\$1,037,691	\$944,783	
TOTAL	\$1,915,794	\$1,822,885	

3 of 3

Monitored Natural Attenuation Cost Estimate (for Alternatives 2A and 4A) Former Scott Aviation Facility - Lancaster, NY

DESCRIPTION	UNIT	QUANTITY	RATE	TOTAL COST	ESTIMATE/SOURCE NOTES
CAPITAL COSTS					
ENGINEERING DESIGN AND OVERSIGHT					
MNA initial work plan/remedial action plan	100	hours	\$115	\$11,500	
Engineering Procurement & Coordination	30	hours	\$100	\$3,000	
	405	h e une	@4.00	¢40.600	assume 2 staff (Geologist/Scientist 3) for oversight and CAMP;
Engineering Oversight	125	hours	\$100	\$12,500	10 hrs/day + 25% for planning, markout and survey
Project Management	16	hours	\$125	\$2,000	assume 2 hours per day during field activities + 6 hours for procurement/coordination
SUBTOTAL				\$29,000	
SUBCONTRACTORS					
Driller Mobilization/Demobilization (include Decon Pad)	1	Lump Sum	\$1,500	\$1,500	
Drill Rig and Labor (Auger Rig)	5	days	\$1,800	\$9,000	Install 5 new monitoring wells pairs (to depths of 15 and 21 feet)
PVC Well Materials (riser, screen, sand, grout, flush mount)	10	wells	\$450	\$4,500	Assume auger rig installs one well pair per day
CAMP Equipment Rental	1	week	\$500	\$500	Assume 1 PID and 1 Dust Track (Pine Environmental 12-20-11)
Soil Disposal	5	drums	\$300	\$1,500	
Survey New Wells and Map	1	allowance	\$2,500	\$2,500	
SUBTOTAL				\$19,500	
CAPITAL COST SUBTOTAL				\$48,500	
Contingency	30%			\$14,550	
TOTAL CAPITAL COSTS				\$82,550	
FUTURE COSTS					
MNA SAMPLING (1 ROUND)	_	_			
Low Flow Sampling Rental Equipment	5	Days	\$500	\$2,720	2 YSI, 2 peristaltic pumps, 2 water levels, 2 Turb Meters, PID (Pine Environmental, 12-20-11)
Sampling Staff	10	Person-Days	\$950	\$9,500	20 total wells, assume 2 wells per person per day
Laboratory Analyses	20	Samples	\$550	\$11,000	VOCs, metals, methane/ethane/ethene, TOC, alkalinity, sulfate, nitrate/nitrite, chloride, phosphate + 30% QA/QC, analytical costs from quotes received in 2012 by AECOM
Rental Vehicle	20 5	days	\$550 \$75	\$375	assume pick up truck or SUV (base rental and gas/mileage etc)
Per Diem/Mileage/Misc Expenses	1	Allowance	\$75 \$1.000	\$375 \$1,000	assume pick up truck of SUV (base rental and gas/mileage etc)
o 1	50	hours	\$1,000 \$110	\$1,000 \$5,500	
Data Evaluation and Summary Report SUBTOTAL	50	nouis	φΠυ	. ,	
	20%			\$30,095	
	30%			\$9,029	
TOTAL MNA SAMPLING EVENT				\$39,124	

Monitored Natural Attenuation Cost Estimate (for Alternatives 2A and 4A) Former Scott Aviation Facility - Lancaster, NY

ssume semi-annual sampling for 5 years ar	nd annual sampling u	intil Year 30			
Future Year	Events Per Year	Base Cost	NPV Discount Factor	Net Present Value	(assume Real Discount Rate of 4.5%)
1	2	\$78,247	1.00	\$78,247	
2	2	\$78,247	0.96	\$74,878	
3	2	\$78,247	0.90	\$71,653	
4	2	\$78,247	0.88	\$68,568	
5	2	\$78,247	0.84	\$65,615	
<u>6</u>	1	\$39,124	0.80	\$31,395	
6	1	\$39,124	0.80	\$31,395	
7	1 1	\$39,124	0.00	\$30,043	
		\$39,124	0.73	\$28,749	
9	1	\$39,124	0.70	\$27,511	
10	1	\$39,124	0.67	\$26,326	
11	1	\$39,124	0.64	\$25,193	
12	1	\$39,124	0.62	\$24,108	
13		\$39,124	0.59	\$23,070	
14	1	\$39,124	0.55	\$22,076	
15	1	\$39,124	0.54	\$21,126	
16	1	\$39,124	0.52	\$20,216	
17	1	\$39,124	0.49	\$19,345	
18	1	\$39,124	0.47	\$18,512	······································
19	1	\$39,124	0.45	\$17,715	
20	1	\$39,124	0.43	\$16,952	······································
21	1	\$39,124	0.41	\$16,222	
22	1	\$39,124	0.40	\$15,524	
23	1	\$39,124	0.38	\$14,855	
24	1	\$39,124	0.36	\$14,216	
25	1	\$39,124	0.35	\$13,603	····
26	1	\$39,124	0.33	\$13,018	· · · · · · · · · · · · · · · · · · ·
27	1	\$39,124	0.32	\$12,457	
28	1	\$39,124	0.30	\$11,921	
29	1	\$39,124	0.29	\$11,407	
30	1	\$39,124	0.28	\$10,916	
JTURE COST TOTALS		\$1,330,199		\$798,584	

TABLES

Table 1 Groundwater Elevation Data Scott Aviation BCP Site

		June 1	6, 2010	August	2, 2010	October	21, 2010	April 7	′, 2011	June 1	, 2011
Monitoring Point Identification	Top of Casing Elevation	Depth to Groundwater (feet from TOC)	Groundwater Elevation (feet AMSL)								
					Monitorii	ng Wells					
MW-30 ¹	689.69	2.92	686.77	3.71	685.98	NA	NA	NA	NA	NA	NA
MW-35S	688.56	1.84	686.72	5.70	682.86	10.23	678.33	0.40	688.16	0.60	687.96
MW-35D	688.40	8.00	680.40	7.77	680.63	9.17	679.23	9.85	678.55	5.08	683.32
MW-36S	689.82	3.00	686.82	5.25	684.57	4.99	684.83	2.83	686.99	3.01	686.81
MW-36D	689.66	5.30	684.36	6.08	683.58	7.35	682.31	5.83	683.83	4.65	685.01
MW-37S	690.10	3.50	686.60	5.25	684.85	6.16	683.94	2.86	687.24	3.21	686.89
MW-37D	690.05	4.20	685.85	5.30	684.75	6.35	683.70	4.31	685.74	3.80	686.25
MW-38D	689.66	5.70	683.96	6.28	683.38	7.46	682.20	6.00	683.66	4.81	684.85
MW-39D	689.72	3.85	685.87	4.94	684.78	6.05	683.67	3.98	685.74	3.50	686.22
MW-40D	689.19	3.33	685.86	4.34	684.85	5.26	683.93	3.38	685.81	2.84	686.35
MW-41B	689.78	9.20	680.58	9.50	684.85	10.28	683.93	9.63	680.15	6.96	682.82
MW-42S	689.08	NA	NA	NA	NA	NA	NA	10.90	678.18	1.15	687.93
MW-43S	689.13	NA	NA	NA	NA	NA	NA	2.60	686.53	2.65	686.48
MW-44S	688.96	NA	NA	NA	NA	NA	NA	NA	NA	4.15	684.81
					Piezon	neters					
A1-GP01-S	689.96	NA	NA	5.55	684.41	6.20	683.76	1.95	688.01	2.98	686.98
A1-GP02-S	689.82	3.05	686.77	5.30	684.52	5.50	684.32	3.20	686.62	3.53	686.29
A1-GP03-S	690.70	4.38	686.32	6.54	684.16	7.59	683.11	4.78	685.92	5.10	685.60
A1-GP04-S	690.46	3.61	686.85	6.12	684.34	8.80	681.66	3.80	686.66	3.80	686.66
A1-GP05-S	690.38	4.80	685.58	6.36	684.02	7.40	682.98	4.55	685.83	4.75	685.63
A1-GP06-S	687.71	3.40	684.31	3.20	684.51	3.92	683.79	2.23	685.48	2.10	685.61
A1-GP07-S	690.47	3.70	686.77	6.20	684.27	6.86	683.61	3.95	686.52	4.20	686.27
A1-GP08-S	689.68	2.75	686.93	5.04	684.64	5.80	683.88	2.70	686.98	2.87	686.81
A1-GP09-S	689.36	2.45	686.91	5.80	683.56	7.80	681.56	2.37	686.99	2.55	686.81
A1-GP10-S	689.10	1.27	687.83	3.92	685.18	2.40	686.70	2.03	687.07	2.55	686.55
A1-GP11-S	689.34	4.04	685.30	4.50	684.84	4.70	684.64	4.25	685.09	4.10	685.24
A1-GP12-S	689.5	2.28	687.22	2.98	686.52	3.32	686.18	2.77	686.73	2.78	686.72
A1-GP13-S	689.69	1.34	688.35	3.55	686.14	4.56	685.13	3.25	686.44	3.10	686.59
A1-GP14-S	689.43	1.50	687.93	3.04	686.39	2.20	687.23	1.75	687.68	2.60	686.83
A1-GP15-S	687.69	0.54	687.15	4.40	683.29	7.64	680.05	0.10	687.59	1.20	686.49
A1-GP16-S	689.86	3.00	686.86	5.21	684.65	5.80	684.06	2.89	686.97	3.00	686.86
A1-GP17-S	690.11	3.16	686.95	6.40	683.71	5.82	684.29	3.12	686.99	3.28	686.83
A1-GP18-S	690.37	6.90	683.47	5.25	685.12	5.25	685.12	3.90	686.47	3.70	686.67

Notes:

Well is screened across both shallow and deep overburden units.
 TOC - Top of Casing
 AMSL - Above Mean Sea Level

NA - Not Available

S - well is screened in shallow overburden

D - well is screened in deep overburden

B - well is screened in bedrock

Table 2 Surface Soil VOC Results Scott Aviation BCP Site

Sample Designation			Protection of	SS-MW-41B2-0-0.2	SS-MW-40D-0-0.	2	SS-MW-38D-0-0).2	SS-DPT8-2C-(0-0.2)
Laboratory Identification	CAS Number	Unrestricted	Public Health	RTE1487-05	RTE1487-06		RTE1487-07		RTF0541-01
Date Sampled		Use	Commercial Use	5/27/2010	5/27/2010		5/27/2010		6/2/2010
BTEX Compounds (mg/Kg)									
Benzene	71-43-2	0.06	44	0.00046 UJ	0.00029 L	J	0.00032	U	0.00028 U
Ethylbenzene	100-41-4	1	390	0.00065 UJ	0.00041 L	J	0.00045	-	0.00039 U
Toluene	108-88-3	0.7	500	0.00071 UJ	0.00044 L	-	0.00049	-	0.00043 U
Xylene (mixed)	1330-20-7	0.26	500	0.0016 UJ	0.00099 L	-		U	0.00095 U
	1000 20 7	0.20	000	0.0010 00	0.00000		0.0011	0	0.000000
Total BTEX (mg/Kg)	NA	NL	NL	U	L	J		U	U
Other VOCs (mg/Kg)						-			
1.1.1-Trichloroethane	71-55-6	0.68	500	0.00068 UJ	0.00043 L	J	0.00047	U	0.00041 U
1,1,2,2-Tetrachloroethane	79-34-5	NL	NL	0.0015 UJ	0.00095 L		0.0011		0.00092 U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NL	NL	0.0021 UJ	0.0013 L	J	0.0015	U	0.0013 U
1,1,2-Trichloroethane	79-00-5	NL	NL	0.0012 UJ	0.00076 L	J	0.00085		0.00073 U
1,1-Dichloroethane	75-34-3	0.27	240	0.0011 UJ	0.00072 L		0.00079		0.00069 U
1,1-Dichloroethene	75-35-4	0.33	500	0.0011 UJ	0.00072 L	-	0.0008		0.00069 U
1,2,4-trichlorobenzene	120-82-1	NL	NL	0.00057 UJ	0.00036 L		0.0004		0.00034 U
1,2-Dibromo-3-chloropropane	96-12-8	NL	NL	0.0047 UJ	0.0029 L	-	0.0033	-	0.0028 U
1,2-Dibromoethane	106-93-4	NL	NL	0.0012 UJ	0.00076 L	-	0.00084	-	0.00073 U
1,2-Dichlorobenzene	95-50-1	1.1	500	0.00074 UJ	0.00046 L		0.00051	U	0.00044 U
1,2-Dichloroethane	107-06-2	0.02	30	0.00047 UJ	0.0003 L	-	0.00033	Ū	0.00028 U
1-3 dichloropropane	78-87-5	NL	NL	0.0047 UJ	0.0029 L		0.0033		0.0028 U
1.3-Dichlorobenzene	541-73-1	2.4	280	0.00048 UJ	0.0003 L	-	0.00033		0.00029 U
1,4-Dichlorobenzene	106-46-7	1.8	130	0.0013 UJ	0.00082 L			U U	0.00079 U
Methyl ethyl ketone	78-93-3	0.12	500	0.0013 UJ	0.0022 L		0.0024	0	0.0021 U
2-Hexanone	591-78-6	NL 0.12	NL	0.0034 UJ	0.0022 0		0.0024	-	0.0021 U
4-Methyl-2-Pentanone	108-10-1	NL	NL	0.0047 UJ	0.0029 0			U U	0.0028 U
Acetone	67-64-1	0.05	500	0.0031 UJ	0.005 L	-	0.0021	0	0.0019 U
Bromodichloromethane	75-27-4	0.05 NL	NL	0.0079 UJ	0.003 0	-	0.0055		0.0048 U
		NL	NL	0.0013 UJ	0.0079 0		0.0087	-	0.00078 U
Bromoform	75-25-2							-	
Bromomethane	74-83-9	NL	NL	0.00085 UJ	0.00053 L		0.00059		0.00051 U
Carbon Disulfide	75-15-0	NL	NL	0.0047 UJ	0.0029 L	-	0.0033	-	0.0028 U
Carbon tetrachloride	56-23-5	0.76	22	0.00091 UJ	0.00057 L		0.00063		0.00055 U
Chlorobenzene	108-90-7	1.1	500	0.0012 UJ	0.00078 L		0.00086		0.00075 U
Chloroethane	75-00-3	NL	NL	0.0021 UJ	0.0013 L	-	0.0015	-	0.0013 U
Chloroform	67-66-3	0.37	350	0.00058 UJ	0.00036 L		0.0004		0.00035 U
Chloromethane	74-87-3	NL	NL	0.00057 UJ	0.00036 L		0.00039	-	0.00034 U
cis -1,2-Dichloroethene	156-59-2	0.25	500	0.0012 UJ	0.00075 L		0.00083	U	0.00072 U
cis-1,3-Dichloropropene	10061-01-5	NL	NL	0.0014 UJ	0.00085 L	J	0.00094	U	0.00081 U
Cyclohexane	110-82-7	NL	NL	0.0013 UJ	0.00082 L	J	0.00091	U	0.00079 U
Dibromochloromethane	124-48-1	NL	NL	0.0012 UJ	0.00075 L	J	0.00083	U	0.00072 U
Dichlorodifluoromethane	75-71-8	NL	NL	0.00078 UJ	0.00049 L	J	0.00054	U	0.00047 U
Isopropylbenzene	98-82-8	NL	NL	0.0014 UJ	0.00089 L	J	0.00098	U	0.00085 U
Methyl acetate	79-20-9	NL	NL	0.0018 UJ	0.0011 L	J	0.0012	U	0.0011 U
Methyl tert-butyl ether	1634-04-4	0.93	500	0.00093 UJ	0.00058 L	J	0.00064	U	0.00055 U
Methylcyclohexane	108-87-2	NL	NL	0.0014 UJ	0.00089 L	J	0.00099	U	0.00086 U
Methylene chloride	75-09-2	0.05	500	0.013 UJ	0.0027 L	J	0.0065		0.019 U
Styrene	100-42-5	NL	NL	0.00047 UJ	0.00029 L		0.00033		0.00028 U
Tetrachloroethene	127-18-4	1.3	150	0.0094 UJ	0.0059 L		0.0065		0.00076 U
trans-1,2-Dichloroethene	156-60-5	0.19	500	0.00097 UJ	0.00061 L		0.00067		0.00058 U
trans-1,3-Dichloropropene	10061-02-6	NL	NL	0.0041 UJ	0.0026 L	J	0.0029	U	0.0025 U
Trichloroethene	79-01-6	0.47	200	0.0021 UJ	0.0013 L	J	0.0014	U	0.0012 U
Trichlorofluoromethane	75-69-4	NL	NL	0.00089 UJ	0.00056 L	J	0.00062	U	0.00053 U
Vinyl chloride	75-01-4	0.02	13	0.0011 UJ	0.00072 L	J	0.00079	U	0.00069 U
Total VOCs (mg/Kg) (Note 1)	NA	NL	NL	U	U			U	U
	11/4	INL	INL	0	(,		U	U

Notes:

NL = Not Listed

NA = Not analyzed, not applicable.

U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit. J = The associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than the Unrestricted Use SCO concentration.

Shaded value - compound detected at concentration greater than the Commercial SCO concentration.

Note 1 - Total VOCs includes BTEX compounds.

NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

Table 3 Surface Soil SVOC Results Scott Aviation BCP Site

<table-container> Serre Number Number Number Serre Serre <</table-container>		1		Destantion of	00 100 050 0 0 0	00 100 4400 0 0	~	00 MW 400 0 0 0	00 100 000 0			
bashspectraConnectionSigned <th></th> <th></th> <th>Unrestricted</th> <th></th> <th></th> <th></th> <th>.2</th> <th></th> <th></th> <th>0.2</th> <th></th> <th>).2)</th>			Unrestricted				.2			0.2).2)
PACE Company Decompony Company Accord SymponyImage Sympony SymponyImage Sympony Sym		CAS Number	Use									
Sheenyenname Ni-Lo Ni. Ni. And Constrained And Part And Pa				Commercial Use	5/20/2010	5/2//2010		5/2//2010	5/27/2010		0/2/2010	т т
Absolve Bb 75.2 B2 B30 BB 75.1 BB 74.1		01 57 6	NI	NI	0.00211	0.02		0.01211	0.0027		0.047	7 1 1
Accuratelyan Disk 52 P30 P30 P300 Disk 72 Disk 72 <thdisk 72<="" th=""> Disk 72 Disk7</thdisk>							<u>UJ</u>			0		
Attmixed 13112 100 900 100 10 10 0.05 0.05 Bencholphrase 0.7073 1 0.3							J			J		
Subscience 59:53 1 1 64:54 33.1 14 0.23.1 12.1 24.1 Subscience 97:35 1 1 0.23 0.31 0.21 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>0.014</td><td>UJ</td><td></td><td></td><td>U</td><td></td><td></td></td<>						0.014	UJ			U		
Sincellynorm 90.324 1 1 0.21 33/2 1 1 0.21 2.25 Sincellynorm 207-92 1 0.0 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td>J</td><td></td><td></td><td>J</td><td></td><td></td></t<>						1	J			J		
Sinch Schwartner316-9215.60.7.84.6.91.9.90.1.90.33.8.93.8.9Sinch Schwartner216.900110 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Binoxing/regions 191-562 100 900 101 27 12 13 0.15 17 Chryme 210.01 100 100 100 100 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.15 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.15 0.17 0.15 0.15 0.17 0.15 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Bitson Synthesize 2014bp 0.1 0.1 1.5 0.01 0.14 0.15 0.01 0.12	Benzo(b)fluoranthene	205-99-2			0.28			1.9	0.3		2.9	J
Objection 218-10 1 56 0.23 1 64 1.6 0.28 2.23 Description 20.73 0.03 0.56 0.05 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.65 0.64 0.71 0.07 <t< td=""><td>Benzo(ghi)perylene</td><td>191-24-2</td><td>100</td><td>500</td><td>0.16 J</td><td>2.7</td><td>J</td><td>1.2</td><td>0.19</td><td>J</td><td>1.7</td><td>7 J</td></t<>	Benzo(ghi)perylene	191-24-2	100	500	0.16 J	2.7	J	1.2	0.19	J	1.7	7 J
Observation 35-0-3 0.30 0.80 0.088 0.88 0.28 0.002 0.004 0.46 Function 66-17 30 500 0.001 0.62 0.011 0.021 0.021 0.011 0.021 0.011 0.021 0.011 0.021 0.011 0.021 0.011 0.021 0.011 0.021 0.011 0.021 0.011 0.021 0.011 0.021 0.011 0.021 0.011 0.021 0.011 0.021 0.01	Benzo(k)fluoranthene	207-08-9	0.8	56	0.1 J	1.3	J	0.81 J	0.14	J	1.2	2 J
Observe All stratemen 35.0-5 0.33 0.58 0.085 0.68 0.58 0.057 0.062 0.64 0.64 Larrandmen 20.14.0 100 20 0.57 0.57 0.64 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.64 0.65 0.64 0.65 0.65 0.65 0.65 0.64 0.65 0.66	Chrysene	218-01-9	1	56	0.23 J	3.4	J	1.6	0.26		2.2	۶J
Fixedment 366.40 190 900 0.05 7.6 3.2 0.53 4.7 Interret 67.57 30 600 0.054 0.22 0.11 0.101 0.11		53-70-3	0.33	0.56	0.036 J	0.58	J	0.29 J	0.042	J	0.4	ŧIJ
Flareme 56-73 30 500 0.000 0.42 0.17 0.022 0.17 0.022 0.17 0.022 0.17 0.022 0.17 0.022 0.012 0.022 0.012 0.023 0.026 0.026 0.012 0.021							- .l			-		
Indenci 2.3 oblymme 19.3.5 0.5 5.6 0.1.4 D 2.2 1.1 0.161 0.107 0.207 0.208							<u> </u>			1		
Ngantakan 91 91 17 150 0.0582 0.0282 0.0282 0.0282 0.021 0.027 2.02 0.027 2.02 0.027 2.02 0.027 2.02 0.027 2.02 0.027 2.02 0.027 2.02 0.027 2.02 0.027 2.02 0.027 2.02 0.027 2.02 0.027 2.02 0.027 2.02 0.027							<u> </u>			J 1		-
Phenatheres 55.01 500 527 47.1 77 0.27 2.28 1 Syntes 120.00 100 500 2.28 1 1 2 1 1 4 2 Total PMs (ng/Kg) NA NA NA NA 2.28 1 1 1 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>J</td><td></td><td></td></t<>										J		
Spene 129.000 190 500 0.4 6 J 2.5 0.41 4.42 Call PMA (ng/Kg) NA NA NA NA NA 2.65 0.419 0.654 2.9 0.73 Dore 3V0C5 (ng/Kg) -	•						UJ			U		
A NA NL NL </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>J</td> <td></td> <td></td> <td></td> <td></td> <td></td>							J					
Normal Normal<	Pyrene	129-00-0	100	500	0.4	6	J	2.5	0.41		4.2	
Normal Normal<												-
11-Biphent 92-524 NL NL 0.078 U 0.078	Total PAHs (mg/Kg)	NA	NL	NL	2.693	41.89		18.546	2.9		27.31	4
11-Biphent 92-524 NL NL 0.078 U 0.078												
11-Biphent 92-524 NL NL 0.078 U 0.078	Other SVOCs (mg/Kg)											
22-solget_Changepane) 10. NL NL 0.038 0 0.1 0 0.023 0 0.04 0.048 0 0.023 0 0.023 0 0.023 0 0.023 0 0.023 0 0.023 0 0.025 0 0.026 0 0.025 0 0.025 0 0.025 0 0.025 0 0.025 0 0.025 0 0.025 0 0.025 0 0.025 0 0.025 0 0.025 0 0.025		92-52-4	NL	NL	0.016 U	0.1	UJ	0.062 U	0.014	U	0.24	ŧU
24.5*fridiogram 95:54-1 NL NL 0.05[U 0.03[U] 0.02[U 0.049[U 0.049[U 0.049[U 0.049[U 0.049[U 0.049[U 0.049[U 0.025[U 0.015[U 0.025[U 0.										Ū		
24.6 + Totopphend 84-0-3. NL NL NL 0.017[U 0.018[U 0.015[U 0.028[U 24-Dindroghend 130.83.7 NL NL 0.068[U 0.45[U] 0.027[U 0.066[U 0.17[U 0.027[U 0.066[U 0.17[U 0.027[U 0.066[U 0.18[U 0.08[U] 0.35[U 0.076[U 13] 24-Dintroflamm 111-1.2 NL NL 0.008[U 0.06[U] 0.015[U 0.036[U 0.06[U] 0.025[U 0.016[U] 0.025[U 0.016[U] 0.025[U 0.016[U] 0.025[U 0.016[U] 0.025[U] 0.021[U]										Ū		
2.4-Dienkryphenol 105.872 NL NL 0.071 U 0.087 U 0.087 U 0.072 U 0.071 U 0.022 U 2.4-Dienkryphenol 512.87.5 NL NL 0.088 U 0.658 U 0.351 U 0.075 U 1.13 U 2.4-Dienkryphenol 121.14.2 NL NL 0.088 U 0.658 U 0.055 U 0.088 U 2.6-Dienkryphenol 66.20.2 NL NL 0.062 U 0.11 U 0.668 U 0.055 U 0.088 U 2.6-Dienkryphenol 91.857 NL NL NL 0.007 U 0.01 U 0.060 U 0.005 U 0.020 U 0.01 U 0.020 U 0.01 U 0.01 U 0.020 U 0.01 U 0.021 U 0.020 U 0.01 U 0.02 U <td></td>												
2.4-Dentrophenol 10:67:9 NL NL NL 0.068 b 0.45 JU 0.27 JU 0.061 JU 1.13 U 2.4-Dentrophenol 15:28:5 NL NL 0.088 JU 0.28 JU 0.051 JU 0.038 JU 0.038 JU 0.038 JU 0.043 JU 2.4-Dentrophene 66:0:20 NL NL 0.062 JU 0.011 JU 0.065 JU 0.005 JU 0.007 JU 0.011 JU 0.02 JU 0.011 JU 0.011 JU 0.011 JU 0.011 JU 0.0												
24-Dimitrophenol 51/28-5 NL NL NL 0.088 U 0.58 U 0.078 U 0.088 U 0.078 U 0.088 U 0.018										0		
24-Dintrologuene 121-14-2 NL NL 0.039 U 0.26 U 0.051 0.061 2-Dintrologuene 666-50-2 NL NL 0.067 0.011 U 0.24 0.055 U 0.28 2-Dintrologuene 95-57-3 NL NL 0.017 U 0.011 0.026 U 0.015 U 0.021 U 0.011 U 0.028 U 0.021 U 0.43 U 0.011 U 0.18 U 0.21 U 0.44 U 0.32 U 0.021 U 0.34 U 0.31												-
2.5-Districtatione 96-59-2 NL NL 0.062 0.41 U 0.24 U 0.055 U 0.04 2-Chorosphenol 95-57.8 NL NL 0.013 0.068 U 0.065 U 0.011 U 0.20 2-Chorosphenol 95-57.8 NL NL 0.017 U 0.051 U 0.035 U 0.0060 U 0.011 U 0.22 2-Alteraghina 88.74-4 NL NL 0.061 U 0.32 U 0.072 U 1.2 2-Alteraghina 91-94-1 NL NL 0.061 0.051 U 0.051 U 0.011 U 0.34 U 0.071 1.3 3-3r-Dichtorbardine 91-94-1 NL NL NL 0.061 0.031 0.061 U 0.011 0.021 0.061 U 0.011 0.011 U 0.011 0.011 0.011 U 0.011 U												
2 Description 91-58-7 NL NL 0.017 U 0.066 U 0.015 U 0.24 2 Otherophenol 95-57.8 NL NL 0.0071 U 0.051 U 0.050 U 0.0020 U 0.12 U 2.24 U 0.051 U 0.032 U 0.072 U 1.32 U 2.34 D 0.072 U 0.051 U 0.032 U 0.072 U 1.32 U 2.34 D 0.071 U 0.045 U 0.011 U 0.061 U 0.34 U 0.21 U 0.34 U 0.31 U 0.21 U 0.36 U 0.35 U 0.37 U 0.38 U 0.32 U 0.071 U 0.38 U 0.32 U 0.37 U 0.38 U 0.37 U 0.38 U 0.37 U U												
2-Chicrophend 95-57-8 NL NL NL 0.013 U 0.085 UJ 0.05 UJ 0.011 U 0.22 U 2-Mitrophend (cresol) 95-57-8 NL NL 0.061 UJ 0.032 UJ 0.072 U 1.12 U 2-Mitrophend 887-75-5 NL NL 0.061 UJ 0.047 U 0.22 U 0.051 U 0.021 U 0.012 U 0.012 U 0.032 U 0.037 U 0.18 U 0.037 U 0.031 U 0.041 U 0.021 U 0.031 U 0.031 U 0.031 U 0.041 U 0.021 U 0.031 U 0.031 U 0.031 U 0.031 U 0.031 U 0.031 U 0.041 U 0.021 U 0.077 U 1.3 U 45-0nontroph phytely other 10.053 NL NL 0.068 U 0.021 U 0.068 U 0.11 U 0.082 U 0.01 U 0.069 U 0.021 U 0.068 U 0.11 U 0.022 U 0.071 U 1.2 U 0.071 U 1.2 U 0.071 U 1.2 U 0.01 U 0.021 U 0.025 U 0.01 U 0.021 U 0.025 U 0.01 U 0.024 U <t< td=""><td>2,6-Dinitrotoluene</td><td></td><td></td><td></td><td></td><td>0.41</td><td>UJ</td><td></td><td></td><td></td><td></td><td></td></t<>	2,6-Dinitrotoluene					0.41	UJ					
2xheftynioni (o-cresol) 98-74-7 0.33 500 0.0077 U 0.051 U 0.030 U 0.0069 U 0.12 U 2xhiroanifien 88-74-4 NL NL 0.061 U 0.051 U 0.027 U 1.2 U 2xhiroanifien 919-14-1 NL NL 0.011 U 0.076 U 0.021 U 0.011 U 0.021 U 0.011 U 0.021 U 0.011 U 0.022 U 0.012 U 0.004 U 0.021 U 0.004 U 0.021 U 0.004 U 0.021 U 0.004 U 0.021 U 0.004 U 0.022 U 0.012 U </td <td>2-Chloronaphthalene</td> <td>91-58-7</td> <td>NL</td> <td>NL</td> <td>0.017 U</td> <td>0.11</td> <td>UJ</td> <td>0.066 U</td> <td>0.015</td> <td>U</td> <td>0.26</td> <td>۶U</td>	2-Chloronaphthalene	91-58-7	NL	NL	0.017 U	0.11	UJ	0.066 U	0.015	U	0.26	۶U
2+Microbine NL NL NL 0.01 0.03 0.02 0.072 0.01 1.2 33: Deterophenzidine 91:94:1 NL NL 0.02 1.5 0.01	2-Chlorophenol	95-57-8	NL	NL	0.013 U	0.085	UJ	0.05 U	0.011	U	0.2	2 U
2+Nirophani NL NL 0.081 0.32 0.072 0.072 1 1 33*Definorbenzidine 91-94-1 NL NL 0.011 0.076 U 0.011 0.011 0.076 U 0.011 0.0021 0.011 0.0021 0.011 0.0021 0.011 0.021 0.011 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 </td <td>2-Methylphenol (o-cresol)</td> <td>95-48-7</td> <td>0.33</td> <td>500</td> <td>0.0077 U</td> <td>0.051</td> <td>UJ</td> <td>0.03 U</td> <td>0.0069</td> <td>U</td> <td>0.12</td> <td>2 U</td>	2-Methylphenol (o-cresol)	95-48-7	0.33	500	0.0077 U	0.051	UJ	0.03 U	0.0069	U	0.12	2 U
2+Nicophenol 98-75-5 NL NL NL 0.011 0.076 [U] 0.045 [U] 0.011 [U] 0.012 [U] 0.01 [U] 0.012 [U] 0.02 [U] 0.04 [U] 0.04 [U] 0.04 [U] 0.04 [U] 0.02 [U] 0.04 [U] 0.05 [U] 0.077 [U] 1.1 [U] 0.071 [U] 0.02 [U] 0.06 [U] 0.071 [U] 0.02 [U] 0.06 [NL	NL		0.53	U.I					
3.1:Decknownadine 91-94-1 NL NL 0.2 1.5 0.0 0.77 0.2 1.5 0.2 0.77												
3-Ninoaniline 99-09-2 NL NL 0.08 U 0.23 U 0.051 U 0.08 4-Binneg-meryl phenyl ether 101.55.3 NL NL 0.007 U 0.53 U 0.32 U 0.071 U 1.5 4-Binneg-meryl phenyl ether 101.55.3 NL NL 0.007 U 0.022 0.071 U 1.0 4-Chinoro-anitryl phenyl ether 106-47.8 NL NL 0.074 0.068 U 0.041 0.068 U 0.042 U 0.066 U 0.042 U 0.068 U 0.042 U 0.068 U 0.028 U 0.066 U 0.065 U 0.062 U 0.022 U 0.041 U 0.024 U 0.024												
4.E-Dinto-2-methylphenol 534-52-1 NL NL 0.08 U 0.58 U 0.32 U 0.077 U 1.3 U 4-Chronos-methylphenol 59-50-7 NL NL 0.01 U 0.069 U 0.041 U 0.002 U 0.065 U 1.1 U 4-Chronos-methylphenol 106-47-78 NL NL 0.074 U 0.049 U 0.021 U 0.068 U 0.005 U 0.014 U 0.068 U 0.021 U 0.068 U 0.005 U 0.014 U 0.028 U 0.064 U 0.028 U 0.065 U 0.014 U 0.028 U 0.065 U 0.014 U 0.028 U 0.065 U 0.014 U 0.028 U 0.048 U 0.041 U 0.022 U 0.041 U 0.024 U 0.042 U 0.041 U 0.024 U<												
4-Bromopheny Intenyl ether 101-55-3 NL NL 0.08 U 0.53 U 0.02 U 0.071 U 1.2 U 4-Choros-Bruthylphenol 59.507 NL NL 0.01 U 0.068 U 0.041 U 0.002 U 0.01 U 0.022 U 0.004 U 0.022 U 0.010 U 0.012 U 0.021 U 0.041 U 0.022 U 0.021 U 0.												-
4C-htors-methylphenol 99-50-7 NL NL NL 0.01 0.068 0.041 0.0021 0.0020 0.011 0.0021 0.0020 0.011 0.0021 0.0020 0.016 0.11 0.0021										-		
AChorosmiline 106-47.8 NL NL 0.074 U 0.038 U 0.20 U 0.008 U 0.11 U 4 Chiorophenyl phenyl ethery 7005-72.3 NL NL 0.005 U 0.038 U 0.003 U 0.004 U 0.008 U 0.002 U 0.004 U 0.008 U 0.002 U 0.012 U 0.012 U 0.21 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.25 U 0.23 U 0.21 U 0.22 U 0.21												
4-ChorophenyLphenylether 7005-72-3 NL NL 0.0054 U 0.0054 U 0.021 U 0.0048 U 0.021 U 0.0048 U 0.021 U 0.0048 U 0.021 U 0.012 U 0.021 U </td <td></td>												
4-Metrydpenol (p-cresol) 106-44-5 0.33 500 0.014 U 0.038 U 0.065 U 0.012 U 0.21 U 4-Nitrophenol 100-01-6 NL NL 0.028 U 0.19 U 0.11 U 0.025 U 0.43 U 4-Nitrophenol 100-02-7 NL NL 0.01 U 0.44 U 0.24 U 0.051 U 0.011 U 0.032 U 0.033 U Acetophenone 98-86-2 NL NL 0.011 U 0.044 U 0.039 U 0.017 U 0.024 U 0.044 U 0.028 U 0.011 U 0.024 U 0.024 U 0.021 U 0.044 U 0.028 U 0.011 U 0.024 U 0.021 U <t< td=""><td>4-Chloroaniline</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.29 U</td><td>0.065</td><td>U</td><td></td><td></td></t<>	4-Chloroaniline							0.29 U	0.065	U		
4-Nitoaniline NL NL 0.028 U 0.19 UJ 0.11 U 0.025 U 0.43 U 4-Nitoaniline 100-01-6 NL NL NL 0.061 U 0.4 UJ 0.24 U 0.054 U 0.038 U 4-Nitoaniline 98-86-2 NL NL 0.013 U 0.066 U 0.051 U 0.011 U 0.224 U 0.043 U 0.042 U 0.044 U 0.009 U 0.171 U 0.21 U Arrazine 1912-24-9 NL NL 0.028 U 0.11 U 0.024 U 0.042 U 0.041 U 0.021 U	4-Chlorophenyl phenyl ether	7005-72-3	NL		0.0054 U	0.036	UJ	0.021 U	0.0048	U	0.082	2 U
ANtrophenol 100.02-7 NL NL NL 0.081 0.081 0.024 0.024 0.026 0 0.033 0 Acetophenone 98-86-2 NL NL 0.013 0.086 0.051 0 0.011 0.026 0 0.011 0.026 0 0.011 0 0.021 0 0.011 0.026 0 0.044 0.0099 0.017 0 0.022 0 0.044 0.0044 0.0044 0.024 0 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.033 0 0.032 0 0.032 0.012 0.021 0.032 0.012 0.031 0.033 0 0.032 0 0.031 0.006 0 1 1 0.026 0 0.012 0.021 0.021 0.023 0 0.022 0.012 0.006 0 1	4-Methylphenol (p-cresol)	106-44-5	0.33	500	0.014 U	0.093	UJ	0.055 U	0.012	U	0.21	U
4-Nirophenol 100-02-7 NL NL NL 0.061 U 0.4 U 0.24 U 0.034 U 0.033 U Acetaphenone 98-86-2 NL NL 0.011 U 0.031 U 0.061 U 0.011 U 0.021 U 0.011 U 0.021 U 0.032 U 0.012 U 0.021 U 0.032 U 0.021 U 0.032 U 0.021 U 0.032 U 0.021 U 0.033 U 0.032 U 0.032 U 0.032 U 0.032 U 0.032 U 0.032 U 0.031 U 0.032 U 0.031 U 0.032 U 0.031 U 0.032 U 0.031 U 0.032 U 0.012 U 0.32 U 0.012 U 0.32 U 0.012 U 0.32 U 0.012 U 0.32 U <td>4-Nitroaniline</td> <td>100-01-6</td> <td>NL</td> <td>NL</td> <td>0.028 U</td> <td>0.19</td> <td>UJ</td> <td>0.11 U</td> <td>0.025</td> <td>U</td> <td>0.43</td> <td>3 U</td>	4-Nitroaniline	100-01-6	NL	NL	0.028 U	0.19	UJ	0.11 U	0.025	U	0.43	3 U
Acetaphenone 98-86-2 NL NL NL 0.013 U 0.086 U 0.061 U 0.011 U 0.2 U Arrazine 1912-24-9 NL NL NL 0.011 U 0.074 (U) 0.041 U 0.0099 U 0.17 U Benzalderlyde 100-52.7 NL NL 0.028 U 0.18 UJ 0.011 U 0.024 U 0.42 U bis(2-Choroethoxy)methane 111-91-1 NL NL 0.014 U 0.091 UJ 0.065 U 0.019 U 0.23 U 0.21 U 0.21 U 0.21 U 0.21 U 0.23 U 0.012 U 0.21 U 0.23 U 0.072 U 1.2 U Buck benzyl phthalate 117-81-7 NL NL 0.088 U 0.45 UJ 0.32 U 0.072 U 1.2 U Buck benzyl phthalate 85-68-7 NL NL 0.019 U 0.72 UJ 0.06 U 1.7 U Caprolactam 105-60-2 NL NL 0.019 J 0.7 J 0.25 J 0.038 J 0.32 U 0.04 U Dien-zotyn phthalate 131-13 <td></td> <td>100-02-7</td> <td>NL</td> <td>NL</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		100-02-7	NL	NL								
Arrazine 1912-24-9 NL NL NL 0.011 0 0.074 U 0.044 U 0.0099 U 0.17 U Benzadehyde 100-52-7 NL NL NL 0.028 U 0.18 U 0.014 U 0.0091 U 0.024 U 0.42 U 0.42 U 0.42 U 0.42 U 0.024 U 0.42 U 0.41 U 0.41 U 0.41 U 0.42 U 0.41 U 0.41 U 0.42 U 0.43 U 0.061 U 0.43 U 0.43 U 0.43 U 0.43 U 0.44 U 0			NL									
Benzaldehyde 100-52-7 NL NL 0.028 0 0.18 0 0.11 0 0.024 0 0.42 0 big(2-Choreethoxy)methane 111-91-1 NL NL 0.014 0.014 0.054 0 0.012 0 0.024 0 0.021 0 0.021 0 0.021 0 0.021 0 0.035 0 0.019 0 0.33 0 0.031 0 0.051 0 0.024 0 0.021 0 0.21 0 0 0.019 0 0.33 0 0.032 0 0.072 0 1.2 0 0 0.06 0 1.2 0 0 0.06 0 1.2 0 0.072 0 1.2 0 0 0.072 0 0.22 0 0.032 0 0.072 0 0.072 0 0.023 0 0.024 0 0 0 0.025 0 0.032										Ū		
bis(2-Choroethoxy)methane 111-91-1 NL NL NL 0.014 U 0.091 U 0.054 U 0.012 U 0.21 U bis(2-Choroethy)) ether 111-44-4 NL NL 0.022 U 0.14 UJ 0.085 U 0.019 U 0.33 U 0.072 U 1.2 U Bury benzyl phthalate 85-68-7 NL NL 0.068 U 0.45 UJ 0.27 U 0.06 U 1/U Carbazole 85-68-7 NL NL 0.011 U 0.72 UJ 0.031 U 0.006 U 1/U Carbazole 86-74-8 NL NL 0.017 J 0.25 J 0.038 J 0.32 J Dibenzohran 132-64-9 7 350 0.0026 U 0.01 J 0.001 U 0.0023 U 0.0067 U 0.12 U 0.01 U 0.0028 U 0.01 U 0.0028 U 0.01 U 0.0026 U 0.043 U 0.0067 U 0.12 U 0.04 U 0.01 U 0.0028 U 0.043 U 0.0067 U 0.12 U 0.01 U 0.0028 U 0.01 U 0.0051 U 0.006 U 0.12 U										ŭ –		
bis(2-Choroethyl) ether 111-44-4 NL NL 0.022 0.014 U 0.0085 U 0.013 U 0.33 U bis(2-Choroethyl) ether 117-81-7 NL NL 0.081 0.054 U 0.32 U 0.072 U 1.2 U 1.2 U 0.068 U 0.045 U 0.032 U 0.072 U 1.2 U 1.2 U 0.068 U 0.045 U 0.068 U 0.045 U 0.066 U 1.1 U 0.072 U 0.066 U 1.1 U 0.072 U 0.066 U 0.041 U 0.072 U 0.052 U 0.032 U 0.041 U 0.022 U 0.032 U 0.041 U 0.026 U 0.033 U 0.026 U 0.032 U 0.041 U 0.12 U 0.12 U 0.051 U												
bis(2-Ethylhexyl phthalate 117-81-7 NL NL NL 0.081 U 0.54 UJ 0.32 U 0.072 U 1.2 U Buty berzyl phthalate 85-68-7 NL NL 0.068 U 0.45 UJ 0.27 U 0.06 U 1.12 U Caprolactam 105-60-2 NL NL 0.11 0.72 UJ 0.43 U 0.066 U 1.7 U Carbazole 86-74-8 NL NL 0.019 0.7 J 0.25 J 0.038 J 0.32 J 0.042 J 0.01 U 0.004 U 0.041 U 0.041 U 0.026 U 0.043 U 0.0067 U 0.021 U 0.041 U 0.026 U 0.032 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0												
Butyl berzyl phthalate 85-68-7 NL NL NL 0.068 U 0.45 UJ 0.27 U 0.06 U 1 U Caprolactam 105-60-2 NL NL 0.11 U 0.72 UJ 0.43 U 0.096 U 1.77 U 0.32 J 0.32 J 0.32 J 0.32 J 0.32 J 0.04 U 0.043 U 0.0026 U 0.043 U 0.006 U 0.043 U 0.006 U 0.043 U 0.006 U 0.043 U 0.0065 U 0.012 U 0.063 U 0.0051 U 0.0051 U 0.												-
Caprolactam 105-60-2 NL NL 0.11 0.72 0.13 0 0.43 0 0.06 1.7 0 Caprolactam 105-60-2 NL NL 0.11 0.7 0.25 0.038 0.0028 0.032 0.032 0.032 0.032 0.032 0.04 0 0.01 0 0.0026 0 0.19 0.01 0 0.0028 0 0.04 0 0.04 0 0.01 0 0.0026 0 0.01 0 0.0026 0 0.01 0 0.0026 0 0.025 0 0.04 0 0.04 0 0.01 0 0.0026 0 0.025 0 0.026 0 0.026 0 0.026 0 0.026 0 0.01 0 0 0.01 0 0 0 0 0.025 0 0.026 0 0.01 0 0 0 0 0 0 0 0										U	1.2	2 U
Carbactering NL NL NL 0.019 J 0.73 0.025 J 0.038 J 0.32 J Diberzofuran 132-64-9 7 350 0.0026 U 0.19 J 0.01 U 0.0023 U 0.04 U Diberzofuran 131-11-3 NL NL 0.0076 U 0.05 U 0.03 U 0.0067 U 0.04 U 0.04 U 0.005 U 0.03 U 0.0077 U 0.11 U 0.005 U 0.034 U 0.0058 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.005										U	1	U
Dibenzofuran 132-64-9 7 350 0.0026 U 0.19 J 0.01 U 0.0023 U 0.04 U Diehtyl phthalate 131-11-3 NL NL NL 0.0076 U 0.05 U 0.03 U 0.0067 U 0.12 U Dimetyl phthalate 84-66-2 NL NL 0.0066 U 0.04 U 0.0058 U 0.0058 U 0.0058 U 0.01 U 0.0058 U 0.01 U 0.0058 U 0.012 U 0.023 U 0.0052 U 0.03 U 0.0052 U 0.09 U 0.033 U 0.0051 U 0.0052 U 0.09 U 0.031 U 0.0052 U 0.09 U 0.031 U 0.067 U 0.011 U 0.019 U 0.014 U 0.011 U 0.011 U 0.011 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>UJ</td> <td></td> <td></td> <td>U</td> <td></td> <td></td>							UJ			U		
Diethyl phthalate 131-11-3 NL NL 0.0076 U 0.005 UJ 0.03 U 0.0067 U 0.12 U Dimethyl phthalate 84-66-2 NL NL 0.0066 0.043 UJ 0.026 0.0058 U 0.011 U 0.012 0.11 U 0.0158 UJ 0.026 0.0058 U 0.0058 U 0.023 U 0.0052 U 0.0052 U 0.09 U 0.033 U 0.0059 U 0.033 U 0.0052 U 0.0052 U 0.09 U 0.09 U 0.019 U 0.019 U 0.019 U 0.019 U 0.011 U 0.019 U 0.011 U 0.019 U 0.011 U 0.019 U 0.011 U 0.011 <t< td=""><td>Carbazole</td><td></td><td>NL</td><td></td><td></td><td></td><td>J</td><td></td><td></td><td>J</td><td></td><td></td></t<>	Carbazole		NL				J			J		
Dimethyl phthalate 84-66-2 NL NL 0.0066 U 0.043 UJ 0.026 U 0.0058 U 0.1 U Din-butyl phthalate 84-74-2 NL NL NL 0.087 U 0.58 UJ 0.34 U 0.077 U 1.3 U Din-octyl phthalate 117-84-0 NL NL 0.0059 U 0.039 UJ 0.023 U 0.0052 U 0.009 U Hexachlorobenzone 118-74-1 0.33 6 0.012 0.033 UJ 0.049 U 0.011 U 0.19 U 0.19 U 0.19 U 0.19 U 0.22 U Hexachlorocyclopentadiene 77-47-4 NL NL 0.016 U 0.051 U 0.011 U 0.22 U Hexachlorocyclopentadiene 67-72-1 NL NL 0.013 U 0.049 U 0.011 U 0.30 U 0.	Dibenzofuran	132-64-9	7	350	0.0026 U	0.19	J	0.01 U	0.0023	U	0.04	t U
Dimethyl phthalate 84-66-2 NL NL 0.0066 U 0.043 UJ 0.026 U 0.0058 U 0.1 U Din-butyl phthalate 84-74-2 NL NL 0.087 0.88 UJ 0.34 U 0.077 U 1.3 U Din-octyl phthalate 117-84-0 NL NL 0.0059 0.039 UJ 0.023 U 0.0052 0.09 U 0.011 U 0.09 U 0.011 U 0.024 U 0.011 U 0.22 U Hexachlorocyclopentadiene 77-47-4 NL NL 0.076 U 0.51 U 0.011 U 0.024 U 0.011 </td <td>Diethyl phthalate</td> <td>131-11-3</td> <td>NL</td> <td>NL</td> <td>0.0076 U</td> <td>0.05</td> <td>UJ</td> <td>0.03 U</td> <td>0.0067</td> <td>U</td> <td>0.12</td> <td>2 U</td>	Diethyl phthalate	131-11-3	NL	NL	0.0076 U	0.05	UJ	0.03 U	0.0067	U	0.12	2 U
Din-buly phthalate 84-74-2 NL NL 0.087 U 0.58 U 0.34 U 0.077 U 1.3 U Din-buly phthalate 117-84-0 NL NL 0.0059 0.039 0.033 0 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.009 0.009 0.009 0.009 0.0052 0.0052 0 0.0052 0.0052 0.0052 0.0052 0.009 0.009 0.009 0.009 0.009 0.0052 0 0.0052 0 0.0052 0 0.0052 0 0.0052 0 0.009 0 0.011 0 0.011 0 0.021 0 0.021 0 0.021 0 0.021 0 0.021 0 0.021 0 0.021 0 0.021 0 0.021 0 0.021 0 0.031 0 0.0071 0 0.011 0 0.021 0 0.011 0			NL									
Di-n-oct/phthalate 117-84-0 NL NL 0.0059 U 0.039 UJ 0.032 U 0.0052 U 0.009 U Hexachlorobenzene 118-74-1 0.33 6 0.012 U 0.038 UJ 0.049 U 0.011 U 0.19 U Hexachlorobutadiene 87-68-3 NL NL 0.013 U 0.085 UJ 0.051 U 0.011 U 0.2 U Hexachlorobutadiene 77-47-4 NL NL 0.016 U 0.051 U 0.067 U 0.2 U Hexachlorobutadiene 67-72-1 NL NL 0.019 U 0.13 U 0.067 U 0.3 U 0.017 U 0.017 U 0.017 U 0.017 U 0.017 U 0.011 U 0.03 U 0.017 U 0.011 U 0.017 U 0.011 U 0.014	· · ·											
Hexachlorobenzene 118-74-1 0.33 6 0.012 U 0.083 UJ 0.049 U 0.011 U 0.19 U Hexachlorobutadiene 87-68-3 NL NL NL 0.013 U 0.085 UJ 0.051 U 0.011 U 0.2 U Hexachlorocyclopentadiene 77-47-4 NL NL 0.076 U 0.5 UJ 0.3 U 0.067 U 1.2 U Hexachlorocyclopentadiene 67-72-1 NL NL 0.076 U 0.5 UJ 0.3 U 0.067 U 1.2 U Hexachlorocyclopentadiene 67-72-1 NL NL 0.019 0.13 UJ 0.077 U 0.017 U 0.3 U 0.30 U 0.017 U 0.31 U 0.044 U 0.017 U 0.19 U 0.19 U 0.17 U 0.17 U 0.19												
Hexachlorobutadiene 87-68-3 NL NL 0.013 U 0.085 U 0.051 U 0.011 U 0.02 U Hexachlorocyclopentadiene 77-47-4 NL NL 0.076 U 0.5 U 0.3 U 0.067 U 1.2 U Hexachlorocthane 67-72-1 NL NL 0.019 U 0.13 U 0.077 U 0.017 U 0.017 U 0.017 U 0.019 U 0.013 U 0.049 U 0.019 U 0.13 U 0.049 U 0.011 U 0.19 U 0.17 U 0.17 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
Hexachlorocyclopentadiene 77-47-4 NL NL 0.076 U 0.5 UJ 0.3 U 0.067 U 1.2 U Hexachloroethane 67-72-1 NL NL 0.019 U 0.13 U 0.077 U 0.017 U 0.3 U Isophorone 78-59-1 NL NL 0.013 U 0.083 U 0.049 U 0.011 U 0.3 U 0.019 U 0.014 U 0.017 U 0.03 U 0.049 U 0.011 U 0.3 U 0.017 U 0.017 U 0.011 U 0.03 U 0.011 U 0.017												
Hexachloroethane 67-72-1 NL NL 0.019 U 0.13 UJ 0.077 U 0.017 U 0.011 U 0.03 U 0.049 U 0.011 U 0.011 U 0.017 U 0.011 U 0.011 U 0.011 U 0.014 U 0.004 U 0.009 U 0.017 U 0.017 U 0.011 U 0.014 U 0.004 U 0.004 U 0.004 U 0.004 U 0.017 U												
Isophorone 78-59-1 NL NL 0.013 U 0.083 UJ 0.049 U 0.011 U 0.19 U Nitroberzene 98-95-3 NL NL 0.011 U 0.074 UJ 0.044 U 0.0099 U 0.17 U N-Nitrosodin-propylamine 621-64-7 NL NL 0.021 0.13 UJ 0.078 U 0.018 U 0.012 U 0.30 N-Nitrosodiphenylamine 86-30-6 NL NL 0.014 U 0.091 UJ 0.054 U 0.012 U 0.21 U<												
Nirobenzene 98-95-3 NL NL 0.011 U 0.074 UJ 0.044 U 0.0099 U 0.17 U N-Nitrosodi-n-propylamine 621-64-7 NL NL 0.02 0.13 U 0.078 U 0.018 U 0.33 U N-Nitrosodiphenylamine 86-30-6 NL NL 0.014 U 0.091 U 0.012 U 0.31 U 0.012 U 0.21 U 0.2												
N-Nitrosodi-n-propylamine 621-64-7 NL NL 0.02 U 0.13 UJ 0.078 U 0.018 U 0.3 U N-Nitrosodiphenylamine 86-30-6 NL NL 0.014 U 0.091 UJ 0.054 U 0.012 U 0.21 U Pentachlorophenol 87-86-5 0.8 6.7 0.086 U 0.57 UJ 0.34 U 0.077 U 1.3 U Phenol 108-95-2 0.33 500 0.026 U 0.18 UJ 0.10 U 0.023 U 0.4 U 0.02 U 0.18 U 0.02 U 0.18 U 0.02 U 0.4 U 0.02 U 0.02 U 0.18 U 0.02 U 0.18 U 0.02 U 0.4 U 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U	Isophorone				0.013 U	0.083	UJ	0.049 U	0.011	U	0.19) U
N-Nitrosodi-n-propylamine 621-64-7 NL NL 0.02 0.13 UJ 0.078 U 0.018 U 0.3 U N-Nitrosodiphenylamine 86-30-6 NL NL 0.014 U 0.091 UJ 0.054 U 0.012 U 0.21 U 0.23 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.074</td><td>UJ</td><td></td><td></td><td></td><td></td><td></td></t<>						0.074	UJ					
Pentachlorophenol 87-86-5 0.8 6.7 0.086 U 0.57 UJ 0.34 U 0.077 U 1.3 U Phenol 108-95-2 0.33 500 0.026 U 0.18 UJ 0.11 U 0.023 U 0.44 U 0.44 U 0.14 U 0.023 U 0.44 U U 0.44 U U 0.44 U U U U <td></td> <td></td> <td>NL</td> <td>NL</td> <td></td> <td></td> <td></td> <td>0.078 U</td> <td></td> <td></td> <td></td> <td></td>			NL	NL				0.078 U				
Pentachlorophenol 87-86-5 0.8 6.7 0.086 U 0.57 UJ 0.34 U 0.077 U 1.3 U Phenol 108-95-2 0.33 500 0.026 U 0.18 UJ 0.1 U 0.023 U 0.4 U 0.4 U 0.14 U 0.023 U 0.4 U 0.14 U 0.023 U 0.4 U 0.14 U 0.023 U 0.4 U U 0.023 U 0.4 U U 0.14 U 0.023 U 0.4 U U 0.023 U 0.4 U U 0.023 U 0.4 U			NL	NL								
Phenol 108-95-2 0.33 500 0.026 U 0.18 UJ 0.1 U 0.023 U 0.4 U												
Total SVOCs (mg/Kg) (Note 1) NA NL NL 2.712 42.78 18.796 2.938 27.63					0.020 0	5.10			0.020		0.4	Ť
	Total SVOCs (mg/Kg) (Note 1)	NA	NL	NL	2.712	42.78		18.796	2.938		27.63	3

 Notes:

 NL = Not Listed

 NA = Not analyzed, not applicable.

 U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit.

 J = The associated numerical value is an estimated quantity.

 Bold value - compound detected at concentration greater than the Unrestricterd Use SCO concentration.

 Shaded value - compound detected at concentration greater than the Commercial SCO concentration.

 NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

 (Note 1) - Total SVOCs includes all of the PAH and SVOC compounds.

Table 4 Surface Soil Metals Results Scott Aviation BCP Site

Sample Designation	CAS		Protection of	SS-MW-35S-0-0).2	SS-MW-41B2-0-0	.2	SS-MW-40D-0-0	2	SS-MW-38D-0-0	.2	SS-DPT8-2C-(0-0.	2)
Laboratory Identification	Number	Unrestricted Use	Public Health	RTE1487-01		RTE1487-05		RTE1487-06		RTE1487-07		RTF0541-01	
Date Sampled	Number	USe	Commercial Use	5/26/2010		5/27/2010		5/27/2010		5/27/2010		6/2/2010	
Aluminum	7429-90-5	NL	NL	12600		20900	J	9280		13500		5570	
Antimony	7440-36-0	NL	NL	21.9	UJ	28.3	UJ	17.2	UJ	19.5	UJ	18.4	U
Arsenic	7440-38-2	13	16	6.5		12	J	3.5		5.5		4.7	
Barium	7440-39-3	350	400	48.7		142	J	66.7		81.1		112	
Beryllium	7440-41-7	7.2	590	0.601		0.776	J	0.356		0.495		0.487	
Cadmium	7440-43-9	2.5	9.3	0.293	U	19.9	J	1.33		1.77		23.5	
Calcium	7440-70-2	NL	NL	2670		21800	J	9220		11500		160000	D08
Chromium	7440-47-3	30 ^c	1500	14.6		322	J	38.8		50.1		575	
Cobalt	7440-48-4	NL	NL	6.01		12.2	J	5.26		7.56		3.92	
Copper	7440-50-8	50	270	15.1		123	J	43.1		38		147	
Iron	7439-89-6	NL	NL	17100		34500	J	13900		20700		16200	
Lead	7439-92-1	63	1,000	37.9		305	J	81.3		58.6		768	
Magnesium	7439-95-4	NL	NL	2180		8050	J	4940		5780		14700	
Manganese	7439-96-5	1,600	10,000	152	J	607	J	309	J	366	J	370	
Total Mercury	7439-97-6	0.18	2.8	0.0615		0.569	J	0.0861		0.0243	U	0.113	
Nickel	7440-02-0	30	310	15.3		83.9	J	14.5		20.8		621	
Potassium	7440-09-7	NL	NL	827		2490	J	920		1410		498	
Selenium	7782-49-2	3.9	1,500	5.9	U	7.5	UJ	4.6	U	5.2	U	4.9	U
Silver	7440-22-4	2	1,500	0.731	U	1.36	J	0.575	U	0.648	U	NA	
Sodium	7440-23-5	NL	NL	205	U	264	UJ	161	U	182	U	206	
Thallium	7440-28-0	NL	NL	8.8	U	11.3	UJ	6.9	U	7.8	U	7.4	U
Vanadium			NL	21.7		34.7	J	15.8		22.5		11.8	
Zinc	7440-66-6	109	10,000	73.2		646	J	221		159		448	

Notes:

NL = Not Listed

NA = Not analyzed

U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit. J = The associated numerical value is an estimated quantity.

D08 =

Bold value - compound detected at concentration greater than Unrestricted Use SCO. **Shaded** value - compound detected at concentration greater than the Commercial SCO. NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

Table 5 Surface Soil PCBs and Pesticides Results Scott Aviation BCP Site

Sample Designation	0.10		Protection of	SS-MW-35S-0-0.2	SS-MW-41B2-0-0.2	SS-MW-40D-0-0.2	SS-MW-38D-0-0.2	SS-DPT8-2C-(0-0.2)
Laboratory Identification	CAS Number	Unrestricted Use	Public Health	RTE1487-01	RTE1487-05	RTE1487-06	RTE1487-07	RTF0541-01
Date Sampled	Number	Use	Commercial	5/26/2010	5/27/2010	5/27/2010	5/27/2010	6/2/2010
Organochlorine Pesticides (mg/Kg)								
Aldrin	309-00-2	0.005	0.68	0.0006 U	0.0082 UJ	0.00095 U	0.0053 U	0.0047 U
alpha-BHC	319-84-6	0.02	3.4	0.00044 U	0.006 UJ	0.0007 U	0.0039 U	0.0034 U
beta-BHC	319-85-7	0.036	3	0.00026 U	0.0036 UJ	0.00042 U	0.0023 U	0.0021 U
delta-BHC	319-86-8	0.04	500	0.00032 U	0.0044 UJ	0.0018 J	0.0028 U	0.0025 U
Chlordane (alpha)	5103-71-9	0.094	24	0.0012 U	0.017 UJ	0.0019 U	0.011 U	0.0095 U
Chlordane	NL	NL	NL	0.0054 U	0.074 UJ	0.0086 U	0.048 U	0.042 U
4,4'-DDD	72-54-8	0.0033	92	0.00048 U	0.0065 UJ	0.0016 J	0.0042 U	0.0037 U
4,4'-DDE	72-55-9	0.0033	62	0.00037 U	0.005 UJ	0.00058 U	0.0032 U	0.0029 U
4,4'-DDT	50-29-3	0.0033	47	0.0014 J	0.0034 UJ	0.00039 U	0.0022 U	0.009 J
Dieldrin	60-57-1	0.005	1.4	0.00059 U	0.008 UJ	0.00093 U	0.0052 U	0.0046 U
Endosulfan I	959-98-8	2.4	200	0.00031 U	0.0042 UJ	0.0039 U	0.0027 U	0.0024 U
Endosulfan II	33213-65-9	2.4	200	0.00044 U	0.006 UJ	0.0007 U	0.0039 U	0.0034 U
Endosulfan sulfate	1031-07-8	2.4	200	0.00046 U	0.0062 UJ	0.00072 U	0.004 U	0.0035 U
Endrin	72-20-8	0.014	89	0.00034 U	0.034 UJ	0.00053 U	0.003 U	0.0026 U
Endrin aldehyde		NL	NL	0.00063 U	0.0086 UJ	0.00099 U	0.0055 U	0.0049 U
Endrin keytone	NL	NL	NL	0.0006 U	0.0082 UJ	0.00095 U	0.0053 U	0.0047 U
gamma-BHC (Lindane)	58-89-9	0.1	9.2	0.00043 U	0.0058 UJ	0.00067 U	0.0037 U	0.0033 U
gamma-Chlordane	NL	NL	NL	0.00078 U	0.011 UJ	0.0012 U	0.0068 U	0.006 U
Heptachlor	76-44-8	0.042	15	0.00038 U	0.0052 UJ	0.0006 U	0.0034 U	0.003 U
Heptachlor epoxide	NL	NL	NL	0.00063 U	0.0086 UJ	0.001 U	0.0056 U	0.0049 U
Methoxychlor	NL	NL	NL	0.00034 U	0.0046 UJ	0.00053 U	0.003 U	0.0026 U
Toxaphene	NL	NL	NL	0.014 U	0.19 UJ	0.022 U	0.13 U	0.11 U
PCBs (mg/Kg)								
Aroclor 1016	12674-11-2		NL	0.0048 U	0.033 UJ	0.0038 U	0.0042 U	0.0037 U
Aroclor 1221	11104-28-2		NL	0.0048 U	0.033 UJ	0.0038 U	0.0042 U	0.0037 U
Aroclor 1232	11141-16-5		NL	0.0048 U	0.033 UJ	0.0038 U	0.0042 U	0.0037 U
Aroclor 1242	53469-21-9		NL	0.0053 U	0.036 UJ	0.0042 U	0.0047 U	0.0041 U
Aroclor 1248	12672-29-6		NL	0.0048 U	0.033 UJ	0.0038 U	0.0042 U	0.0037 U
Aroclor 1254	11097-69-1		NL	0.0052 U	0.11 J	0.021 J	0.034	0.004 U
Aroclor 1260	11096-82-5	NL	NL	0.011 U	0.15 J	0.034 J	0.01 U	0.038 J
Total PCBs (mg/Kg)	NA	0.1	1	U	0.26	0.055	0.034	0.038

Notes:

NL = Not Listed

NA = Not analyzed

U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit.

J = The associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than Unrestricted Use. **Shaded** value - compound detected at concentration greater than the Commercial SCO.

NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

Table 6 Subsurface Soil VOC Results Scott Aviation BCP Site

Sample Designation			Protection of	SS-MW-35S-6-7	SS-DUPLICATE-1	SS-DPT8-1A-(0-2)	SS-DPT8-1B-(2-4)	SS-DPT8-2A-(0-2)	SS-DPT8-2B-(2-4)	SS-DPT8-3B-(6-8)	SS-DPT8-3A-(0-2)	SS-MW-36D-(8-9)
Laboratory Identification	CAS Number	Unrestricted	Public Health	RTE1487-02	RTE1487-03	RTF0541-02	RTF0541-03	RTF0541-04	RTF0541-05	RTF0541-06	RTF0541-07	RTF0542-02
Date Sampled		Use	Commercial Use	5/26/2010	5/26/2010	6/2/2010	6/2/2010	6/2/2010	6/2/2010	6/2/2010	6/2/2010	6/4/2010
BTEX Compounds (mg/Kg)												
Benzene	71-43-2	0.06	44	0.0003 U	0.00034 U	0.00033 U	0.00029 U	0.0022 U	0.0012 U	0.00029 U	0.0003 U	0.00029 U
Ethylbenzene	100-41-4	1	390	0.00042 U	0.00048 U	0.00046 U	0.019	0.0031 U	0.0017 U	0.00041 U	0.00043 U	0.0004 U
Toluene	108-88-3	0.7	500	0.00046 U	0.00052 U	0.0067 U	0.006 U	0.048 J	0.041 J	0.0059 U	0.0062 U	0.0058 U
Xylene (mixed)	1330-20-7	0.26	500	0.001 U	0.0012 U	0.0035 J	0.0063 J	0.064 J	0.0042 U	0.00099 U	0.0063 J	0.00098 U
Total BTEX (mg/Kg)	NA	NL	NL	U	U	0.0035	0.0253	0.112	0.041	U	0.0063	U
Other VOCs (mg/Kg)												
1,1,1-Trichloroethane	71-55-6	0.68	500	0.00044 U	0.0005 U	0.00049 U	0.00043 U	0.0032 U	0.0018 U	0.00043 U	0.00045 U	0.00042 U
1,1,2,2-Tetrachloroethane	79-34-5	NL	NL	0.00098 U	0.0011 U	0.0011 U	0.00097 U	0.0072 U	0.0041 U	0.00095 U	0.001 U	0.00095 U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NL	NL	0.0014 U	0.0016 U	0.0015 U	0.0014 U	0.01 U	0.0057 U	0.0013 U	0.0014 U	0.0013 U
1,1,2-Trichloroethane	79-00-5	NL	NL	0.00079 U	0.0009 U	0.00088 U	0.00077 U	0.0058 U	0.0033 U	0.00077 U	0.00081 U	0.00076 U
1,1-Dichloroethane	75-34-3	0.27	240	0.00074 U	0.00084 U	0.013	0.052	0.0054 U	0.0031 U	0.00072 U	0.00076 U	0.00071 U
1,1-Dichloroethene	75-35-4	0.33	500	0.00074 U	0.00085 U	0.00082 U	0.00073 U	0.0054 U	0.0031 U	0.00072 U	0.00076 U	0.00071 U
1,2,4-trichlorobenzene	120-82-1	NL	NL	0.00037 U	0.00042 U	0.00041 U	0.00036 U	0.0027 U	0.0015 U	0.00036 U	0.00038 U	0.00035 U
1,2-Dibromo-3-chloropropane	96-12-8	NL	NL	0.003 U	0.0035 U	0.0034 U	0.003 U	0.022 U	0.013 U	0.0029 U	0.0031 U	0.0029 U
1,2-Dibromoethane	106-93-4	NL	NL	0.00078 U	0.00089 U	0.00086 U	0.00076 U	0.0057 U	0.0032 U	0.00076 U	0.0008 U	0.00075 U
1.2-Dichlorobenzene	95-50-1	1.1	500	0.00047 U	0.00054 U	0.00053 U	0.00047 U	0.0035 U	0.002 U	0.00046 U	0.00049 U	0.00046 U
1,2-Dichloroethane	107-06-2	0.02	30	0.0003 U	0.00035 U	0.0032 J	0.0003 U	0.0022 U	0.0013 U	0.0003 U	0.00031 U	0.00029 U
1-3 dichloropropane	78-87-5	NL	NL	0.003 U	0.0035 U	0.0034 U	0.003 U	0.022 U	0.013 U	0.0029 U	0.0031 U	0.0029 U
1,3-Dichlorobenzene	541-73-1	2.4	280	0.00031 U	0.00036 U	0.00035 U	0.00031 U	0.0023 U	0.0013 U	0.0003 U	0.00032 U	0.0003 U
1.4-Dichlorobenzene	106-46-7	1.8	130	0.00085 U	0.00097 U	0.00094 U	0.00083 U	0.0062 U	0.0035 U	0.00082 U	0.00087 U	0.00082 U
Methyl ethyl ketone	78-93-3	0.12	500	0.0022 U	0.0025 U	0.0044 J	0.004 J	0.03 J	0.0092 U	0.0022 U	0.0056 J	0.0021 U
2-Hexanone	591-78-6	NL	NL	0.003 U	0.0035 U	0.0034 U	0.003 U	0.022 U	0.013 U	0.0029 U	0.0031 U	0.0029 U
4-Methyl-2-Pentanone	108-10-1	NL	NL	0.002 U	0.0023 U	0.0022 U	0.002 U	0.015 U	0.0082 U	0.0019 U	0.002 U	0.0019 U
Acetone	67-64-1	0.05	500	0.0051 U	0.0058 U	0.034 U	0.04 U	3.8	3	0.029 U	0.042 U	0.029 U
Bromodichloromethane	75-27-4	NL	NL	0.00081 U	0.00093 U	0.0009 U	0.0008 U	0.0059 U	0.0034 U	0.00079 U	0.00083 U	0.00078 U
Bromoform	75-25-2	NL	NL	0.003 U	0.0035 U	0.0034 U	0.003 U	0.022 U	0.013 U	0.0029 U	0.0031 U	0.0029 U
Bromomethane	74-83-9	NL	NL	0.00054 U	0.00062 U	0.00061 U	0.00054 U	0.004 U	0.0023 U	0.00053 U	0.00056 U	0.00053 U
Carbon Disulfide	75-15-0	NL	NL	0.003 U	0.0035 U	0.0034 U	0.003 U	0.022 U	0.013 U	0.0029 U	0.0031 U	0.0029 U
Carbon tetrachloride	56-23-5	0.76	22	0.00058 U	0.00067 U	0.00065 U	0.00058 U	0.0043 U	0.0024 U	0.00057 U	0.0006 U	0.00056 U
Chlorobenzene	108-90-7	1.1	500	0.0008 U	0.00091 U	0.00089 U	0.00079 U	0.0059 U	0.0033 U	0.00078 U	0.00082 U	0.00077 U
Chloroethane	75-00-3	NL	NL	0.0014 U	0.0016 U	0.0034 J	0.0098	0.01 U	0.0057 U	0.0013 U	0.0014 U	0.0013 U
Chloroform	67-66-3	0.37	350	0.00037 U	0.00043 U	0.00042 U	0.00037 U	0.0027 U	0.0015 U	0.00036 U	0.00038 U	0.00036 U
Chloromethane	74-87-3	NL	NL	0.00036 U	0.00042 U	0.00041 U	0.00036 U	0.0027 U	0.0015 U	0.00036 U	0.00037 U	0.00035 U
cis -1,2-Dichloroethene	156-59-2	0.25	500	0.00077 U	0.00088 U	0.00086 U	0.00076 U	0.0057 U	0.0032 U	0.00075 U	0.00079 U	0.00075 U
cis-1,3-Dichloropropene	10061-01-5	NL	NL	0.00087 U	0.00099 U	0.00097 U	0.00086 U	0.0064 U	0.0036 U	0.00085 U	0.00089 U	0.00084 U
Cyclohexane	110-82-7	NL	NL	0.00085 U	0.00097 U	0.00094 U	0.00083 U	0.0062 U	0.025 U	0.00082 U	0.00087 U	0.00082 U
Dibromochloromethane	124-48-1	NL	NL	0.00077 U	0.00088 U	0.00086 U	0.00076 U	0.0057 U	0.0032 U	0.00075 U	0.00079 U	0.00075 U
Dichlorodifluoromethane	75-71-8	NL	NL	0.0005 U	0.00057 U	0.00056 U	0.00049 U	0.0037 U	0.0021 U	0.00049 U	0.00051 U	0.00048 U
Isopropylbenzene	98-82-8	NL	NL	0.00091 U	0.001 U	0.001 U	0.0009 U	0.0067 U	0.0038 U	0.00089 U	0.00094 U	0.00088 U
Methyl acetate	79-20-9	NL	NL	0.0011 U	0.0013 U	0.0013 U	0.0011 U	0.0082 U	0.0047 U	0.0011 U	0.0012 U	0.0011 U
Methyl tert-butyl ether	1634-04-4	0.93	500	0.00059 U	0.00068 U	0.00066 U	0.00058 U	0.0044 U		0.00058 U	0.00061 U	0.00057 U
Methylcyclohexane	108-87-2	NL	NL	0.00092 U	0.001 U	0.001 U	0.0009 U	0.0067 U	0.0038 U	0.00089 U	0.00094 U	0.00089 U
Methylene chloride	75-09-2	0.05	500	0.019 U	0.022 U	0.019 U	0.019 U	0.14 J	0.079 J	0.019 U	0.012 U	0.019 U
Styrene	100-42-5	NL	NL	0.0003 U	0.00035 U	0.00034 U	0.0003 U	0.0022 U	0.0013 U	0.00029 U	0.00031 U	0.00029 U
Tetrachloroethene	127-18-4	1.3	150	0.006 U	0.00093 U	0.0009 U	0.0008 U	0.0059 U	0.0034 U	0.00079 U	0.00083 U	0.00078 U
trans-1,2-Dichloroethene	156-60-5	0.19	500	0.00062 U	0.00071 U	0.00069 U	0.00061 U	0.0046 U	0.0026 U	0.00061 U	0.00064 U	0.0006 U
trans-1,3-Dichloropropene	10061-02-6	NL	NL	0.0027 U	0.003 U	0.003 U	0.0026 U	0.02 U	0.011 U	0.0026 U	0.0027 U	0.0026 U
Trichloroethene	79-01-6	0.47	200	0.0013 U	0.0015 U	0.0015 U	0.0013 U	0.0098 U	0.0055 U	0.0013 U	0.0014 U	0.0013 U
Trichlorofluoromethane	75-69-4	NL	NL	0.00057 U	0.00065 U	0.00064 U	0.00056 U	0.0042 U	0.0024 U	0.00056 U	0.00059 U	0.00055 U
Vinyl chloride	75-01-4	0.02	13	0.00074 U	0.00084 U	0.00082 U	0.00073 U	0.0054 U	0.0031 U	0.00072 U	0.00076 U	0.00071 U
		• • •										
Total VOCs (mg/Kg) (Note 1)	NA	NL	NL	U	U	0.0275	0.0911	4.082	3.12	U	0.0119	U

Notes:

NL = Not Listed

NA = Not analyzed, not applicable.

U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit. J = The associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than the Unrestricted Use SCO concentration.

Shaded value - compound detected at concentration greater than the Commercial SCO concentration.

Note 1 - Total VOCs includes BTEX compounds.

NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

Table 7 Subsurface Soil SVOC Results Scott Aviation BCP Site

Sample Designation			Protection of	SS-MW-35S-6-7	SS-DUPLICATE-1	SS-MW-37D-6-7	SS-DPT8-1A-(0-2)	SS-DPT8-1B-(2-4)	SS-DPT8-2A-(0-2)	SS-DPT8-2B-(2-4)	SS-DPT8-3B-(6-8)	SS-DPT8-3A-(0-2)	SS-MW-39D-(5-6)	SS-MW-36D-(8-9)
Laboratory Identification	CAS Number	Unrestricted	Public Health	RTE1487-02	RTE1487-03	RTE1487-08	RTF0541-02	RTF0541-03	RTF0541-04	RTF0541-05	RTF0541-06	RTF0541-07	RTF0542-01	RTF0542-02
Date Sampled		Use	Commercial Use	5/26/2010	5/26/2010	5/28/2010	6/2/2010	6/2/2010	6/2/2010	6/2/2010	6/2/2010	6/2/2010	6/3/2010	6/4/2010
PAH Compounds (mg/Kg)														
2-Methylnaphthalene	91-57-6	NL 20	NL 500	0.0025 U	0.0028 U	0.0031 U	0.055 U	0.012 U	0.0027 U	0.0027 U	0.0024 U 0.0023 U	0.013 U	0.0025 U 0.0024 U	0.0024 U
Acenaphthene Acenaphthylene	83-32-9 208-96-8	20 100	500	0.0024 U 0.0017 U	0.0027 U 0.02 J	0.003 U 0.0021 U	0.054 U 0.037 U	0.012 U 0.0083 U	0.01 J 0.0018 U	0.0026 U 0.0018 U	0.0023 U 0.0016 U	0.013 U 0.0087 U	0.0024 U 0.0017 U	0.0024 U 0.0016 U
Anthracene	120-12-7	100	500	0.0053 U	0.02 J	0.0021 U	0.12 U	0.026 U	0.0010 U	0.0056 U	0.0051 U	0.027 U	0.0052 U	0.0052 U
Benzo(a)anthracene	56-55-3	1	5.6	0.0036 U	0.17 J	0.0044 U	0.53 J	0.018 U	0.094 J	0.0038 U	0.0034 U	0.018 U	0.0035 U	0.0035 U
Benzo(a)pyrene	50-32-8	1	1	0.005 U	0.19 J	0.0061 U	0.11 U	0.025 U	0.079 J	0.0053 U	0.0048 U	0.026 U	0.0049 U	0.0049 U
Benzo(b)fluoranthene	205-99-2	1	5.6	0.004 U	0.21 J	0.0049 U	0.089 U	0.02 U	0.096 J	0.0043 U	0.0038 U	0.021 U	0.004 U	0.0039 U
Benzo(ghi)perylene	191-24-2	100	500	0.0025 U	0.13 J	0.0031 U	0.055 U	0.012 U	0.056 J	0.0026 U	0.0024 U	0.013 U	0.0024 U	0.0024 U
Benzo(k)fluoranthene Chrysene	207-08-9 218-01-9	0.8	56 56	0.0023 U 0.0021 U	0.081 J 0.18 J	0.0028 U 0.0026 U	0.05 U 0.55 J	0.011 U 0.01 U	0.035 J 0.09 J	0.0024 U 0.0022 U	0.0022 U 0.002 U	0.012 U 0.011 U	0.0022 U 0.002 U	0.0022 U 0.002 U
Dibenz(a,h)anthracene	53-70-3	0.33	0.56	0.0021 U	0.18 J	0.0026 U	0.054 U	0.01 U	0.009 J 0.0026 U	0.0022 U 0.0026 U	0.002 U	0.011 U	0.002 U	0.002 U 0.0024 U
Fluoranthene	206-44-0	100	500	0.0024 U	0.35	0.0037 U	0.67 J	0.012 U	0.0020 D	0.0032 U	0.0029 U	0.015 U	0.0024 U	0.0024 U
Fluorene	86-73-7	30	500	0.0048 U	0.0053 U	0.0059 U	0.11 U	0.023 U	0.016 J	0.0051 U	0.0045 U	0.025 U	0.0047 U	0.0046 U
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	5.6	0.0057 U	0.12 J	0.0071 U	0.13 U	0.028 U	0.047 J	0.0061 U	0.0055 U	0.029 U	0.0056 U	0.0056 U
Naphthalene	91-20-3	12	500	0.0034 U	0.0038 U	0.0042 U	0.076 U	0.017 U	0.0037 U	0.0037 U	0.0033 U	0.018 U	0.0034 U	0.0034 U
Phenanthrene	85-01-8	100 100	500 500	0.0043 U	0.19 J	0.0054 U	0.54 J	0.021 U	0.19 J	0.0046 U	0.0041 U	0.022 U	0.0043 U	0.0042 U
Pyrene	129-00-0	100	500	0.0013 U	0.29	0.0017 U	0.79 J	0.0066 U	0.22	0.0014 U	0.0013 U	0.0069 U	0.0013 U	0.0013 U
Total PAHs (mg/Kg)	NA	NL	NL	U	1.995	U	3.08	U	1,174	U	U	U	U	U
							0.00							
Other SVOCs (mg/Kg)														
1,1'-Biphenyl	92-52-4	NL	NL	0.013 U	0.014 U	0.016 U	0.28 U	0.063 U	0.014 U	0.014 U	0.012 U	0.066 U	0.013 U	0.013 U
2,2'-oxybis(1-Chloropropane)	108-60-1	NL	NL	0.022 U	0.024 U	0.027 U	0.48 U	0.11 U	0.023 U	0.023 U	0.021 U	0.11 U	0.021 U	0.021 U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	95-95-4 88-06-2	NL NL	NL NL	0.045 U 0.014 U	0.05 U 0.015 U	0.056 U 0.017 U	1 U 0.3 U	0.22 U 0.067 U	0.048 U 0.015 U	0.048 U 0.015 U	0.043 U 0.013 U	0.23 U 0.07 U	0.044 U 0.013 U	0.044 U 0.013 U
2,4-Dichlorophenol	120-83-2	NL	NL	0.014 U	0.013 U	0.017 U	0.3 U	0.053 U	0.013 U	0.013 U	0.013 U	0.07 U	0.013 U	0.013 U
2,4-Dimethylphenol	105-67-9	NL	NL	0.056 U	0.062 U	0.069 U	1.2 U	0.28 U	0.06 U	0.06 U	0.053 U	0.29 U	0.055 U	0.054 U
2,4-Dinitrophenol	51-28-5	NL	NL	0.072 U	0.081 U	0.089 U	1.6 U	0.36 U	0.077 U	0.077 U	0.069 U	0.37 U	0.071 U	0.07 U
2,4-Dinitrotoluene	121-14-2	NL	NL	0.032 U	0.036 U	0.039 U	0.71 U	0.16 U	0.034 U	0.034 U	0.031 U	0.17 U	0.032 U	0.031 U
2,6-Dinitrotoluene	606-20-2	NL	NL	0.05 U	0.056 U	0.062 U	1.1 U	0.25 U	0.054 U	0.054 U	0.048 U	0.26 U	0.05 U	0.049 U
2-Chloronaphthalene	91-58-7 95-57-8	NL NL	NL NL	0.014 U 0.011 U	0.015 U 0.012 U	0.017 U 0.013 U	0.31 U 0.23 U	0.068 U 0.052 U	0.015 U 0.011 U	0.015 U 0.011 U	0.013 U 0.01 U	0.072 U 0.054 U	0.014 U 0.01 U	0.014 U 0.01 U
2-Chlorophenol 2-Methylphenol (o-cresol)	95-37-8	0.33	500	0.0063 U	0.012 U	0.013 U 0.0078 U	0.23 U 0.14 U	0.052 U 0.031 U	0.011 U 0.0068 U	0.0011 U	0.01 U 0.0061 U	0.054 U 0.033 U	0.0063 U	0.01 U 0.0062 U
2-Nitroaniline	88-74-4	NL	NL	0.066 U	0.074 U	0.082 U	1.5 U	0.33 U	0.071 U	0.071 U	0.063 U	0.34 U	0.065 U	0.065 U
2-Nitrophenol	88-75-5	NL	NL	0.0094 U	0.011 U	0.012 U	0.21 U	0.047 U	0.01 U	0.01 U	0.009 U	0.049 U	0.0093 U	0.0092 U
3,3'-Dichlorobenzidine	91-94-1	NL	NL	0.18 U	0.2 U	0.22 U	4 U	0.89 U	0.19 U	0.19 U	0.17 U	0.94 U	0.18 U	0.18 U
3-Nitroaniline	99-09-2	NL	NL	0.047 U	0.053 U	0.059 U	1.1 U	0.23 U	0.051 U	0.051 U	0.045 U	0.25 U	0.047 U	0.046 U
4,6-Dinitro-2-methylphenol	534-52-1 101-55-3	NL NL	NL NL	0.071 U	0.08 U 0.073 U	0.088 U	1.6 U 1.5 U	0.35 U	0.076 U	0.076 U	0.068 U	0.37 U	0.07 U	0.07 U
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	59-50-7	NL	NL	0.066 U 0.0085 U	0.073 U	0.081 U 0.01 U	0.19 U	0.32 U 0.042 U	0.07 U 0.0091 U	0.07 U 0.0091 U	0.063 U 0.0081 U	0.34 U 0.044 U	0.065 U 0.0084 U	0.064 U 0.0083 U
4-Chloroaniline	106-47-8	NL	NL	0.061 U	0.068 U	0.075 U	1.3 U	0.3 U	0.065 U	0.065 U	0.058 U	0.31 U	0.06 U	0.059 U
4-Chlorophenyl phenyl ether	7005-72-3	NL	NL	0.0044 U	0.0049 U	0.0054 U	0.097 U	0.022 U	0.0047 U	0.0047 U	0.0042 U	0.023 U	0.0043 U	0.0043 U
4-Methylphenol (p-cresol)	106-44-5	0.33	500	0.011 U	0.013 U	0.014 U	0.25 U	0.057 U	0.012 U	0.012 U	0.011 U	0.059 U	0.011 U	0.011 U
4-Nitroaniline	100-01-6	NL	NL	0.023 U	0.026 U	0.028 U	0.51 U	0.11 U	0.025 U	0.025 U	0.022 U	0.12 U	0.023 U	0.022 U
4-Nitrophenol	100-02-7	NL	NL	0.05 U	0.056 U	0.062 U	1.1 U	0.25 U	0.053 U	0.053 U	0.048 U	0.26 U	0.049 U	0.049 U
Acetophenone Atrazine	98-86-2 1912-24-9	NL NL	NL NL	0.011 U 0.0092 U	0.012 U 0.01 U	0.013 U 0.011 U	0.23 U 0.2 U	0.052 U 0.045 U	0.011 U 0.0098 U	0.011 U 0.0098 U	0.01 U 0.0088 U	0.055 U 0.047 U	0.01 U 0.0091 U	0.01 U 0.009 U
Benzaldehyde	100-52-7	NL	NL	0.0092 U	0.01 U	0.011 U	0.2 U 0.5 U	0.045 U 0.11 U	0.0098 U	0.0098 U	0.008 U	0.047 U	0.0091 U	0.009 U
bis(2-Chloroethoxy)methane	111-91-1	NL	NL	0.011 U	0.013 U	0.014 U	0.25 U	0.055 U	0.012 U	0.012 U	0.011 U	0.058 U	0.011 U	0.011 U
bis(2-Chloroethyl) ether	111-44-4	NL	NL	0.018 U	0.02 U	0.022 U	0.39 U	0.088 U	0.019 U	0.019 U	0.017 U	0.092 U	0.018 U	0.017 U
bis(2-Ethylhexyl) phthalate	117-81-7	NL	NL	0.091 J	0.074 U	0.082 U	1.5 U	0.33 U	0.41	0.49	0.22	0.34 U	0.95	0.11 J
Butyl benzyl phthalate	85-68-7 105-60-2	NL NL	NL NL	0.055 U	0.062 U	0.069 U	1.2 U	0.27 U	0.059 U 0.095 U	0.059 U 0.095 U	0.053 U	0.29 U	0.055 U	0.054 U
Caprolactam Carbazole	105-60-2 86-74-8	NL NL	NL NL	0.089 U 0.0024 U	0.1 U 0.02 J	0.11 U 0.003 U	2 U 0.053 U	0.44 U 0.012 U	0.095 U 0.014 J	0.095 U 0.0026 U	0.085 U 0.0023 U	0.46 U 0.012 U	0.088 U 0.0024 U	0.087 U 0.0023 U
Dibenzofuran	132-64-9	7	350	0.0024 U	0.002 J	0.003 U	0.048 U	0.012 U	0.0023 U	0.0023 U	0.0023 U	0.012 0	0.0024 U	0.0023 U
Diethyl phthalate	131-11-3	NL	NL	0.0062 U	0.007 U	0.0077 U	0.14 U	0.031 U	0.0067 U	0.0067 U	0.006 U	0.032 U	0.0062 U	0.0061 U
Dimethyl phthalate	84-66-2	NL	NL	0.0054 U	0.006 U	0.0067 U	0.12 U	0.027 U	0.0058 U	0.0058 U	0.0052 U	0.028 U	0.0053 U	0.0053 U
Di-n-butyl phthalate	84-74-2	NL	NL	0.071 U	0.08 U	0.088 U	1.6 U	0.35 U	0.076 U	0.076 U	0.068 U	1.3 U	0.071 U	0.07 U
Di-n-octyl phthalate	117-84-0	NL 0.22	NL	0.0048 U	0.0054 U	0.006 U	0.11 U	0.024 U	0.0052 U	0.0052 U	0.0046 U	0.025 U	0.0048 U	0.0047 U
Hexachlorobenzene Hexachlorobutadiene	118-74-1 87-68-3	0.33 NL	6 NL	0.01 U 0.011 U	0.011 U 0.012 U	0.013 U 0.013 U	0.23 U 0.23 U	0.051 U 0.052 U	0.011 U 0.011 U	0.011 U 0.011 U	0.0098 U 0.01 U	0.053 U 0.055 U	0.01 U 0.01 U	0.01 U 0.01 U
Hexachlorocyclopentadiene	77-47-4	NL	NL	0.062 U	0.012 0 0.07 U	0.013 U	1.4 U	0.052 U	0.067 U	0.011 U	0.01 U	0.055 U	0.062 U	0.061 U
Hexachloroethane	67-72-1	NL	NL	0.016 U	0.018 U	0.02 U	0.35 U	0.079 U	0.007 U	0.017 U	0.015 U	0.083 U	0.016 U	0.001 U
Isophorone	78-59-1	NL	NL	0.01 U	0.012 U	0.013 U	0.23 U	0.051 U	0.011 U	0.011 U	0.0099 U	0.053 U	0.01 U	0.01 U
Nitrobenzene	98-95-3	NL	NL	0.0091 U	0.01 U	0.011 U	0.2 U	0.045 U	0.0098 U	0.0098 U	0.0088 U	0.047 U	0.009 U	0.0089 U
N-Nitrosodi-n-propylamine	621-64-7	NL	NL	0.016 U	0.018 U	0.02 U	0.36 U	0.081 U	0.017 U	0.017 U	0.016 U	0.084 U	0.016 U	0.016 U
N-Nitrosodiphenylamine Pentachlorophenol	86-30-6 87-86-5	NL 0.8	NL 6.7	0.011 U 0.071 U	0.013 U 0.079 U	0.014 U 0.088 U	0.25 U 1.6 U	0.056 U 0.35 U	0.012 U 0.076 U	0.012 U 0.076 U	0.011 U 0.068 U	0.058 U 0.37 U	0.011 U 0.07 U	0.011 U 0.069 U
Phenol	108-95-2	0.33	500	0.071 U	0.079 U	0.088 U 0.027 U	0.48 U	0.35 U 0.11 U	0.078 U	0.078 U	0.080 U	0.37 U	0.07 U	0.069 U 0.021 U
Total SVOCs (mg/Kg) (Note 1)	NA	NL	NL	0.091	2.015	U	3.08	U	1.598	0.49	0.22	U	0.95	0.11

 Notes:

 NL = Not Listed

 NA = Not analyzed, not applicable.

 U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit.

 J = The associated numerical value is an estimated quantity.

 Bold value - compound detected at concentration greater than the Unrestricterd Use SCO concentration.

 Shaded value - compound detected at concentration greater than the Commercial SCO concentration.

 NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

 (Note 1) - Total SVOCs includes all of the PAH and SVOC compounds.

Table 8 Subsurface Soil Metals Results Scott Aviation BCP Site

Sample Designation	CAS	Unrestricted	Protection of	SS-MW-35S-6-7	SS-DUPLICATE-1	SS-MW-37D-6-7	SS-DPT8-1A-(0-2)	SS-DPT8-1B-(2-4)	SS-DPT8-2A-(0-2)	SS-DPT8-2B-(2-4)	SS-DPT8-3B-(6-8)	SS-DPT8-3A-(0-2)	SS-MW-39D-(5-6)	SS-MW-36D-(8-9)
Laboratory Identification	Number	Use	Public Health	RTE1487-02	RTE1487-03	RTE1487-08	RTF0541-02	RTF0541-03	RTF0541-04	RTF0541-05	RTF0541-06	RTF0541-07	RTF0542-01	RTF0542-02
Date Sampled	Number	030	Commercial Use	5/26/2010	5/26/2010	5/28/2010	6/2/2010	6/2/2010	6/2/2010	6/2/2010	6/2/2010	6/2/2010	6/3/2010	6/4/2010
Aluminum	7429-90-5	NL	NL	11000	9380	15100	24500	11200	24100	14500	10500	13600	12000	9760
Antimony	7440-36-0	NL	NL	17.2 UJ	21.9 UJ	23.1 UJ	21.5 U	16.6 U	19.8 U	20.7 U	16.6 U	18.8 U	19 U	16.5 U
Arsenic	7440-38-2	13	16	7.7	4.3	12.1	14.7	5.5	7.9	8.3	7.7	5.5	7.7	6.2
Barium	7440-39-3	350	400	72.5	37.7	98.5	90.5	83.5	82.2	98.2	118	84.4	92.1	81.3
Beryllium	7440-41-7	7.2	590	0.483	0.353	0.67	0.505	0.531	0.487	0.68	0.5	0.564	0.576	0.483
Cadmium	7440-43-9	2.5	9.3	0.315	0.381	0.371	18.6	0.874	18	0.317	0.276	0.944	0.372	0.238
Calcium	7440-70-2	NL	NL	48200	2280	47000	7820	57500	45300	59200	58500	2700	63200	55600
Chromium	7440-47-3	30 [°]	1500	15.5	11.3	21.2	932	24	1140	20.9	15.4	299	19.3	14.8
Cobalt	7440-48-4	NL	NL	8.01	4.6	13.3	9.53	9.52	22.8	13.7	13.2	10.3	7.97	8.22
Copper	7440-50-8	50	270	24	11.8	30.9	<u>577</u>	23.4	859	26.8	21.5	16	24.1	18.7
Iron	7439-89-6	NL	NL	22100	12500	30300	27700	20900	20900	26500	21500	23300	24000	18800
Lead	7439-92-1	63	1,000	10.6	28.5	15.2	337	13.9	547	12.4	11.1	31.3	10.5	9.4
Magnesium	7439-95-4	NL	NL	15400	1710	17500	4270	18500	24400	18200	19400	2930	18700	19900
Manganese	7439-96-5	1,600	10,000	337 J	124 J	473 J	291	513	603	809	730	555	352	406
Total Mercury	7439-97-6	0.18	2.8	0.0253 U	0.0409	0.09	5.09 D08	0.047	0.566	0.0263 U	0.0243	0.0612	0.026 U	0.0243 U
Nickel	7440-02-0	30	310	23.9	11.3	34.4	43	25.2	101	32.1	32.3	15.8	24.1	22.2
Potassium	7440-09-7	NL	NL	1970	641	2900	1150	2420	1220	2120	2200	1290	2500	2370
Selenium	7782-49-2	3.9	1,500	4.6 U	5.8 U	6.2 U	5.7 U	4.4 U	5.3 U	5.5 U	4.4 U	5 U	5.1 U	4.4 U
Silver	7440-22-4	2	1,500	0.573 U	0.73 U	0.77 U	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	7440-23-5	NL	NL	174	204 U	224	273	221	244	199	203	175 U	213	192
Thallium	7440-28-0	NL	NL	6.9 U	8.8 U	9.2 U	8.6 U	6.7 U	7.9 U	8.3 U	6.7 U	7.5 U	7.6 U	6.6 U
Vanadium	7440-62-2	NL	NL	20	15.2	27.8	26.3	21.4	22.6	26.1	20.1	27.1	24.5	18.8
Zinc	7440-66-6	109	10,000	61	60.3	80.5	1630 D08	65.9	1460 D08	71.8	61.9	103	67.6	59.9

Notes: NL = Not Listed NA = Not analyzed U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit. J = The associated numerical value is an estimated quantity. D08 =

Bold value - compound detected at concentration greater than Unrestricted Use SCO. Shaded value - compound detected at concentration greater than the Commercial SCO. NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

Table 9 Subsurface Soil Pesticides and PCBs Results Scott Aviation BCP Site

Sample Designation	010	Linne et de te d	Protection of	SS-MW-35S-6-7	SS-DUPLICATE-1	SS-MW-37D-6-7	SS-DPT8-2C-(0-0.2)	SS-DPT8-1A-(0-2)	SS-DPT8-1B-(2-4)	SS-DPT8-2A-(0-2)	SS-DPT8-2B-(2-4)	SS-DPT8-3B-(6-8)	SS-DPT8-3A-(0-2)	SS-MW-39D-(5-6)	SS-MW-36D-(8-9)
Laboratory Identification	CAS	Unrestricted	Public Health	RTE1487-02	RTE1487-03	RTE1487-08	RTF0541-01	RTF0541-02	RTF0541-03	RTF0541-04	RTF0541-05	RTF0541-06	RTF0541-07	RTF0542-01	RTF0542-02
Date Sampled	Number	Use	Commercial Use	5/26/2010	5/26/2010	5/28/2010	6/2/2010	6/2/2010	6/2/2010	6/2/2010	6/2/2010	6/2/2010	6/2/2010	6/3/2010	6/4/2010
Organochlorine Pesticides (mg/Kg)															
Aldrin	309-00-2	0.005	0.68	0.0005 U	0.00056 U	0.00062 U	0.0047 U	0.028 U	0.0005 U	0.0027 U	0.00054 U	0.00049 U	0.0026 U	0.0005 U	0.00049 U
alpha-BHC	319-84-6	0.02	3.4	0.00036 U	0.00041 U	0.00045 U	0.0034 U	0.02 U	0.00036 U	0.002 U	0.0004 U	0.00036 U	0.0019 U	0.00036 U	0.00036 U
beta-BHC	319-85-7	0.036	3	0.00022 U	0.00025 U	0.00027 U	0.0021 U	0.012 U	0.00022 U	0.0012 U	0.00024 U	0.00021 U	0.0011 U	0.00022 UJ	0.00021 U
delta-BHC	319-86-8	0.04	500	0.00027 U	0.0003 U	0.00033 U	0.0025 U	0.015 U	0.00027 U	0.0014 U	0.00029 U	0.00026 U	0.0014 U	0.00027 UJ	0.00026 U
Chlordane (alpha)	5103-71-9	0.094	24	0.001 U	0.0011 U	0.0013 U	0.0095 U	0.056 U	0.001 U	0.0054 U	0.0011 U	0.00099 U	0.0052 U	0.001 U	0.00098 U
Chlordane	NL	NL	NL	0.0045 U	0.005 U	0.0056 U	0.042 U	0.25 U	0.0045 U	0.024 U	0.0049 U	0.0044 U	0.023 U	0.0045 U	0.0044 U
4,4'-DDD	72-54-8	0.0033	92	0.00039 U	0.00044 U	0.00049 U	0.0037 U	0.022 U	0.00099 J	0.0021 U	0.00043 U	0.00039 U	0.002 U	0.00039 U	0.00038 U
4,4'-DDE	72-55-9	0.0033	62	0.0003 U	0.00034 U	0.00038 U	0.0029 U	0.017 U	0.0003 U	0.0016 U	0.00033 U	0.0003 U	0.0016 U	0.0003 U	0.0003 U
4,4'-DDT	50-29-3	0.0033	47	0.00021 U	0.00023 U	0.00026 U	0.009 J	0.011 U	0.00021 U	0.0011 U	0.00022 U	0.0002 U	0.0011 U	0.00021 U	0.0002 U
Dieldrin	60-57-1	0.005	1.4	0.00048 U	0.00055 U	0.0006 U	0.0046 U	0.027 U	0.00049 U	0.006 J	0.00053 U	0.00048 U	0.0025 U	0.00049 U	0.00047 U
Endosulfan I	959-98-8	2.4	200	0.00025 U	0.00029 U	0.00032 U	0.0024 U	0.014 U	0.00026 U	0.0014 U	0.00028 U	0.00025 U	0.0013 U	0.00025 U	0.00025 U
Endosulfan II	33213-65-9	2.4	200	0.00036 U	0.00041 U	0.00045 U	0.0034 U	0.02 U	0.00036 U	0.002 U	0.0004 U	0.00036 U	0.0019 U	0.00036 U	0.00036 U
Endosulfan sulfate	1031-07-8	2.4	200	0.00038 U	0.00042 U	0.00047 U	0.0035 U	0.021 U	0.00038 U	0.002 U	0.00041 U	0.00037 U	0.0019 U	0.00038 U	0.00037 U
Endrin	72-20-8	0.014	89	0.00028 U	0.00031 U	0.00035 U	0.0026 U	0.015 U	0.00028 U	0.0015 U	0.0003 U	0.00027 U	0.0014 U	0.00028 U	0.00027 U
Endrin aldehyde		NL	NL	0.00052 U	0.00058 U	0.00064 U	0.0049 U	0.029 U	0.00052 U	0.0028 U	0.00056 U	0.00051 U	0.0027 U	0.00052 UJ	0.0005 U
Endrin keytone	NL	NL	NL	0.0005 U	0.00056 U	0.00062 U	0.0047 U	0.028 U	0.0005 U	0.0027 U	0.00054 U	0.00049 U	0.0026 U	0.0005 U	0.00049 U
gamma-BHC (Lindane)	58-89-9	0.1	9.2	0.00035 U	0.0004 U	0.00044 U	0.0033 U	0.02 U	0.00035 U	0.0019 U	0.00038 U	0.00035 U	0.0018 U	0.00035 U	0.00034 U
gamma-Chlordane	NL	NL	NL	0.00064 U	0.00072 U	0.0008 U	0.006 U	0.036 U	0.00064 U	0.0035 U	0.0007 U	0.00063 U	0.0033 U	0.00064 U	0.00063 U
Heptachlor	76-44-8	0.042	15	0.00032 U	0.00036 U	0.00039 U	0.003 U	0.018 U	0.00032 U	0.0017 U	0.00035 U	0.00031 U	0.0016 U	0.00032 U	0.00031 U
Heptachlor epoxide	NL	NL	NL	0.00052 U	0.00059 U	0.00065 U	0.0049 U	0.029 U	0.00052 U	0.0028 U	0.00057 U	0.00051 U	0.0027 U	0.00052 U	0.00051 U
Methoxychlor	NL	NL	NL	0.00028 U	0.00031 U	0.00035 U	0.0026 U	0.015 U	0.00028 U	0.0015 U	0.0003 U	0.00027 U	0.0014 U	0.00028 U	0.00027 U
Toxaphene	NL	NL	NL	0.012 U	0.013 U	0.015 U	0.11 U	0.65 U	0.012 U	0.063 U	0.013 U	0.012 U	0.06 U	0.012 U	0.011 U
PCBs (mg/Kg)															
Aroclor 1016	12674-11-2	NL	NL	0.0039 U	0.0044 U	0.0049 U	0.0037 U	0.044 U	0.004 U	0.017 U	0.0043 U	0.0039 U	0.041 U	0.004 U	0.0039 U
Aroclor 1221	11104-28-2	NL	NL	0.0039 U	0.0044 U	0.0049 U	0.0037 U	0.044 U	0.004 U	0.017 U	0.0043 U	0.0039 U	0.041 U	0.004 U	0.0039 U
Aroclor 1232	11141-16-5	NL	NL	0.0039 U	0.0044 U	0.0049 U	0.0037 U	0.044 U	0.004 U	0.017 U	0.0043 U	0.0039 U	0.041 U	0.004 U	0.0039 U
Aroclor 1242	53469-21-9	NL	NL	0.0044 U	0.0049 U	0.0055 U	0.0041 U	0.049 U	0.0044 U	0.019 U	0.0048 U	0.0043 U	0.045 U	0.0044 U	0.0043 U
Aroclor 1248	12672-29-6	NL	NL	0.004 U	0.0045 U	0.0049 U	0.0037 U	0.044 U	0.004 U	0.017 U	0.0043 U	0.0039 U	0.041 U	0.004 U	0.0039 U
Aroclor 1254	11097-69-1	NL	NL	0.0043 U	0.0048 U	0.0053 U	0.004 U	0.047 U	0.0043 U	0.018 U	0.0047 U	0.0042 U	0.044 U	0.0043 U	0.0042 U
Aroclor 1260	11096-82-5	NL	NL	0.0094 U	0.011 U	0.012 U	0.038 J	0.28 J	0.0095 U	0.099 J	0.01 U	0.0093 U	0.097 U	0.0095 U	0.0093 U
						i i	İ			İ				İ	
Total PCBs (mg/Kg)	NA	0.1	1	U	U	U	0.038	0.28	U	0.099	U	U	U	U	U

 Notes:

 NL = Not Listed

 NA = Not analyzed

 U = The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit.

 J = The associated numerical value is an estimated quantity.

 Bold value - compound detected at concentration greater than Unrestricted Use.

 Shaded value - compound detected at concentration greater than the Commercial SCO.

 NYSDEC Subpart 375-6, Remedial Program Soil Cleanup Objectives, December 14, 2006.

Table 10 Groundwater VOC Results Scott Aviation BCP

			T														
										August 2010							
Seconda De alemania		NYSDEC		1000 450			1000 450			low Overburder							
Sample Designation		Groundwater Guidance or	MW-30 RTH0401-01	MW-35S RTH0401-07	MW-36S RTH0401-02	Duplicate MW-36S RTH0401-06	MW-37S RTH0401-10	A1-GP01-S RTH0401-14	A1-GP02-S RTH0401-15	A1-GP03-S RTH0401-16	A1-GP04-S RTH0401-17	A1-GP05-S RTH0401-18	A1-GP06-S 8 RTH0401-19	A1-GP07-S RTH0401-20	A1-GP08-S RTH0402-01	A1-GP09-S RTH0402-02	A1-GP10-S
Laboratory Identification Date Sampleo		Standard Value ¹	8/3/2010	8/2/2010	8/3/2010	8/2/2010	8/3/2010	8/4/2010	8/4/2010	8/4/2010	8/4/2010	8/4/2010	8/4/2010	8/4/2010	8/4/2010	8/3/2010	RTH0402-03 8/3/2010
BTEX Compounds (ug/L)	Number	Stalidard Value	0/3/2010	8/2/2010	8/3/2010	0/2/2010	0/3/2010	0/4/2010	0/4/2010	0/4/2010	0/4/2010	0/4/2010	0/4/2010	0/4/2010	0/4/2010	0/3/2010	8/3/2010
Benzene	71-43-2	1 s	511	5 U	5 U	5 U	20 U	1.200 U	1.000 U	2.000 U	1.4 J	5 U	100 U	250 U	120 U	511	6.200 U
Toluene	100-41-4	5 s	50	5 U	50	5 U	20 U	340 J	1,000 U	2,000 U	1.6 J	50		250 U	120 U	50	6,200 U
Ethylbenzene	108-88-3	55	5 U	5 U	5 U	50	20 U	1.200 U	1.000 U	2.000 U	0.75 J	5 U		250 U	120 U	5 U	6.200 U
Xylenes (total)	1330-20-7	5 s	15 U	15 U	15 U	15 U	60 U	3.800 U	3.000 U	6.000 U	15 U	15 U	300 U	750 U	380 U	15 U	19.000 U
Total BTEX Compounds (ug/L)	NA	NL	U	U	U	U	U	340	U	U	3.75	L	J U	U	U	U	U
Other VOCs (ug/L)																	
1,1,1-Trichloroethane	71-55-6	5 s	5 U	5 U	5 U	5 U	200	7,500	1,000 U	39,000	14	98	1,700	250 U	120 U	5 U	84,000
1,1,2,2-Tetrachloroethane	79-34-5	5 s	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U		100 U	250 U	120 U	5 U	6,200 U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	5 s	5 U	5 U	5 U	5 U	6.3 J	1,000 J	1,000 U	2,000 U	1.7 J	5 U		250 U	120 U	5 U	1,900 J
1,1,2-Trichloroethane	79-00-5	1 s	50	5 U 5 U	5 U 5 UJ	5 U 5 UJ	20 U	180 J	1,000 U	2,000 U	0.59 J	5 U 38		250 U	120 U	5 U 5 U	6,200 U
1,1-Dichloroethane 1.1-Dichloroethene	75-34-3 75-35-4	5 s 5 s	2.4 J	5 U 5 U	5 UJ 5 U		440 20	2,000 760 J	1,000 U 1,000 U	6,200 5,600	13	38	3,200	250 U 250 U	120 U 120 U	50	48,000 2,000 J
1,1-Dichlorobenzene	120-82-1	5 S 5 S	50	5 U 5 U	5 U	5 U 5 U	20 20 U	1,200 U	1,000 U	2,000 U	20 5 U			250 U 250 U	120 U 120 U	50	6,200 U
1.2-Dibromo-3-chloropropane	96-12-8	0.04 s	50	5 U	50	5 U	20 U	1,200 U	1,000 U	2,000 U	50			250 U	120 U	50	6.200 U
1.2-Dibromoethane	106-93-4	0.004 S	50	50	50	50	20 U	1,200 U	1,000 U	2,000 U	50			250 U	120 U	50	6,200 U
1,2-Dichlorobenzene	95-50-1	3 s	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U			250 U	120 U	5 0	6,200 U
1.2-Dichloroethane	107-06-2	0.6 s	5 U	5 U	5 U	5 Ū	20 U	1.200 U	1.000 U	2.000 U	5 U			250 U	120 U	5 U	6.200 U
1,2-Dichloropropane	78-87-5	1 s	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U	5 U	100 U	250 U	120 U	5 U	6,200 U
1,3-Dichlorobenzene	541-73-1	3 s	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U	5 U	100 U	250 U	120 U	5 U	6,200 U
1,4-Dichlorobenzene	106-46-7	3 s	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U			250 U	120 U	5 U	6,200 U
2-Butanone	78-93-3	50 g	25 U	25 U	25 U	25 U	100 U	6,200 U	5,000 U	10,000 U	25 U			1,200 U	620 U	25 U	31,000 U
2-Hexanone	591-78-6	50 g	25 U	25 U	25 U	25 U	100 U	6,200 U	5,000 U	10,000 U	25 U	25 U	500 U	1,200 U	620 U	25 U	31,000 U
4-Methyl-2-pentanone	108-10-1	NL	25 U	25 U	25 U	25 U	100 U	6,200 U	5,000 U	10,000 U	25 U			1,200 U	620 U	25 U	31,000 U
Acetone	67-64-1	50 g	25 U	3.8 J	25 U	25 U	100 U	6,200 U	5,000 U	10,000 U	25 U	25 U		1,200 U	620 U	25 U	31,000 U
Bromodichloromethane	75-27-4	50 g	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U			250 U	120 U	5 U	6,200 U
Bromoform Bromomethane	75-25-2 74-83-9	50 g 5 s	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	20 U 20 U	1,200 U 1,200 U	1,000 U 1.000 U	2,000 U 2,000 U	5 U 5 U	5 U 5 U		250 U 250 U	120 U 120 U	5 U 5 U	6,200 U 6,200 U
Carbon disulfide	75-15-0	60 g	50	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U			250 U	120 U	50	6,200 U
Carbon tetrachloride	56-23-5	5 s	50	5 U	50	5 U	20 U	1,200 U	1,000 U	2,000 U	50			250 U	120 U	50	6.200 U
Chlorobenzene	108-90-7	55	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U	5 U		250 U	120 U	50	6,200 U
Chloroethane	75-00-3	55	5 U	5 U	5 U	50	20 U	1,200 U	1.000 U	2.000 U	5 U			250 U	120 U	5.0	6,200 U
Chloroform	67-66-3	7 s	5 U	5 U	5 U	5 U	20 U	1.200 U	1.000 U	2.000 U	5 U	5 U	100 U	250 U	120 U	5 U	6.200 U
Chloromethane	74-87-3	5 s	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U	5 U	100 U	250 U	120 U	5 U	6,200 U
cis-1,2-Dichloroethene	156-59-2	5 s	7.7	5 U	1.5 J	1.4 J	20 U	15,000	10,000	12,000	3,100	22	130	1,300	2,400	5 U	6,200 U
cis-1,3-Dichloropropene	10061-01-5	0.4 s	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U			250 U	120 U	5 U	6,200 U
Cyclohexane	110-82-7	NL	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U			250 U	120 U	5 U	6,200 U
Dibromochloromethane	124-48-1	50 g	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U			250 U	120 U	5 U	6,200 U
Dichlorodifluoromethane	75-71-8	5 s	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U			250 U	120 U	5 U	6,200 U
Isopropylbenzene	98-82-8	5 s	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U			250 U	120 U	5 U	6,200 U
Methyl acetate Methyl tert-butyl ether	79-20-9 1634-04-4	NL 10 g	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	20 U 20 U	1,200 U 1,200 U	1,000 U 1,000 U	2,000 U 2,000 U	5 U 5 U			250 U 250 U	120 U 120 U	5 U 5 U	6,200 U 6,200 U
Methylcyclohexane	108-87-2	NL	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	50			250 U	120 U	50	6,200 U
Methylene chloride	75-09-2	5 s	50	5 U	50	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U			250 U	120 U	50	6,200 U
Styrene	100-42-5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 U	5 U	5 U	50	20 U	1,200 U	1.000 U	2,000 U	5 U			250 U	120 U	5 U	6,200 U
Tetrachloroethene	127-18-4	55	5 U	5 U	5 U	5 U	20 U	1,200 U	1.000 U	2,000 U	1.8 J	5 U		250 U	120 U	5 U	6,200 U
trans-1,2-Dichloroethene	156-60-5	5 5	5 U	5 U	5 U	5 U	20 U	1,200 U	190 J	2,000 U	35	0.96 J	100 U	250 U	120 U	5 U	6,200 U
trans-1,3-Dichloropropene	10061-02-6	0.4 s	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U	5 U		250 U	120 U	5 U	6,200 U
Trichloroethene	79-01-6	5 s	1.6 J	5 U	0.58 J	0.58 J	3 J	340 J	20,000	2,400	13,000	2.4 J	200	2,900	1,900	0.88 J	6,200 U
Trichlorofluoromethane	75-69-4	5 s	5 U	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	5 U	5 U		250 U	120 U	5 U	6,200 U
Vinyl chloride	75-01-4	2 s	5.9	5 U	5 U	5 U	20 U	1,200 U	1,000 U	2,000 U	480 J	1.2 J	20 J	69 J	49 J	0.9 U	6,200 U
Total VOCs (ug/L)2	NA	NL	17.6	3.8	2.08	1.98	669	27,120	30,190	65,200	16,669.84	183.56	7,469	4,269	4,349	0.88	135,900

 Notes:

 1. Guidance or Standard Values - NYSDEC, Division of Water, TOGS (1.1.1) [NYSDEC, 1998, with addenda through 2004].

 2. Total VOCs includes BTEX compounds.

 NA = Not analyzed, not applicable

 U = Not listed

 U = The material was analyzed for but not detected at, or above, the reporting limit. The associated numerical value is an estimated quantity.

 Bold value - compound detected in a concentration greater than the groundwater standard value.

 s = Standard Value

 g = Guidance Value

Table 10 Groundwater VOC Results Scott Aviation BCP

							gust 2010					SRI April 2			June 2011
		NYSDEC					Overburden					Shallow Overl			w Overburden
Sample Designation	CAS	Groundwater Guidance or	A1-GP11-S RTH0402-04	A1-GP12-S	A1-GP13-S			A1-GP16-S	A1-GP17-S	A1-GP18-S	MW-42S	MW-43S	Duplicate MW-43S	MW-44S	Duplicate MW-44S
Laboratory Identification Date Sampled	Number	Standard Value ¹	8/3/2010	RTH0402-05 8/3/2010	RTH0402-06 8/3/2010	6 RTH0402-07 8/3/2010	RTH0402-08 8/2/2010	RTH0402-09 8/2/2010	RTH0402-10 8/3/2010	RTH0402-11 8/2/2010	480-3472-2 4/7/2011	480-3472-3 4/7/2011	480-3472-1FD 4/7/2011	480-5581-1 6/1/2011	480-5581-5 6/1/2011
BTEX Compounds (ug/L)	Number	otandard value	0/3/2010	0/3/2010	0/3/2010	0/3/2010	0/2/2010	0/2/2010	0/3/2010	0/2/2010	4/1/2011	4///2011	4/1/2011	0/1/2011	0/1/2011
Benzene	71-43-2	1 s	50 U	100 U	34 J	5.5	5 U	25 U	5 U	5 U	1.9	1 U.J	0.44	1 U	1 U
Toluene	100-41-4	5 s	50 U	100 U	63	5 U		25 U	5 U	5 0	1100	1.5	1.5	10	10
Ethylbenzene	108-88-3	5 s	50 U	100 U	120	5 Ŭ		25 U	5 U	5 U	1 U	10	1 U	10	10
Xylenes (total)	1330-20-7	5 s	150 U	300 U	2.000	15 U	15 U	75 U	15 U	15 U	1 U	1.7 J	1.5 J	2 U	2 U
Total BTEX Compounds (ug/L)	NA	NL	U	U	2,217	5.5	U	U	U	U	1,102	3.2	3.4	U	U
															í l
Other VOCs (ug/L)															
1,1,1-Trichloroethane	71-55-6	5 s	50 U	100 U	50 L	J 5 U		25 U	5 U	5 U	25000	15	17	1 U	1 U
1,1,2,2-Tetrachloroethane	79-34-5	5 s	50 U	100 U	50 L	J 5 U		25 U	5 U	5 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	5 s	14 J	100 U	17 J	5 U		25 U		5 U	1700	7.4	6	1 U	1 U
1,1,2-Trichloroethane	79-00-5	1 s	50 U	100 U	13 J	5 U		25 U	5 U	5 U	240 J	1 U	1 U	1 U	1 U
1,1-Dichloroethane	75-34-3	5 s	68	14 J	620	1 J		25 U	5 U	5 U	8550	13	14	1 U	1 U
1,1-Dichloroethene	75-35-4	5 s	6.5 J	17 J	46 J	5 U		25 U	5 U	5 U	6100	3.5 J	2 J	1 U	1 U
1,2,4-Trichlorobenzene	120-82-1	5 s	50 U	100 U	50 L	J 5 U		25 U		5 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	96-12-8	0.04 s	50 U	100 U	50 L	J 5 U		25 U	5 U	5 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	106-93-4 95-50-1	0.0006 s	50 U	100 U	50 L	J 5 U		25 U		5 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene		3 s	50 U	100 U	50 L	J 5 U		25 U	5 U	5 U	1 U 76	1 U	10	1 U 1 U	1 U
1,2-Dichloroethane	107-06-2	0.6 s	50 U	100 U		5 U		25 U		5 U		1 U	1 U		1 U 1 U
1,2-Dichloropropane 1,3-Dichlorobenzene	78-87-5 541-73-1	1 s 3 s	50 U 50 U	100 U 100 U	50 L 50 L	J 5 U J 5 U		25 U 25 U	5 U 5 U	5 U 5 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	10
1.4-Dichlorobenzene	106-46-7	35	50 U	100 U	50 L	J 5 U		25 U		50	10	10	10	10	10
2-Butanone	78-93-3	50 a	250 U	500 U	250 L	J 25 U		120 U		25 U	510 J	3.3 J	10	10 U	10 U
2-Butanone	591-78-6	50 g	250 U	500 U	250 L	J 25 U		120 U	25 U	25 U	11	3.3 J 5 U	5 U	50	5 U
4-Methyl-2-pentanone	108-10-1	NL	250 U	500 U	250 U	J 25 U		120 U		25 U	3.5 J	50	50	5 U	50
Acetone	67-64-1	50 g	250 U	500 U	250 U			120 U		25 U	400	13	15	10 U	10 U
Bromodichloromethane	75-27-4	50 g	50 U	100 U	50 L	J 5 U		25 U		5 U	10	10	1 U	10	10
Bromoform	75-25-2	50 g	50 U	100 U	50 L			25 U		5 0	10	10	10	10	10
Bromomethane	74-83-9	5 s	50 U	100 U	50 L			25 U	5 U	5 U	10	10	10	1 U	10
Carbon disulfide	75-15-0	60 g	50 U	100 U	50 L			25 U	5 U	5 U	9	1.1	0.99 J	1 Ü	1 U
Carbon tetrachloride	56-23-5	5 s	50 U	100 U	50 L	J 5 U		25 U		5 U	1 U	1 U	10	1 U	10
Chlorobenzene	108-90-7	5 s	50 U	100 U	50 L	J 5 U	5 U	25 U	5 U	5 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	75-00-3	5 s	50 U	100 U	180	0.62 J	5 U	25 U	5 U	5 U	100 J	12	11	1 U	1 U
Chloroform	67-66-3	7 s	50 U	100 U	50 L			25 U		5 U	4.8	1 U	1 U	1 UJ	0.46 J
Chloromethane	74-87-3	5 s	50 U	100 U	50 L	J 5 J		25 U	5 U	5 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	156-59-2	5 s	1,000	2,900	2,200	0.88 J		69	5 U	5 U	1000	34	33	1 U	1 U
cis-1,3-Dichloropropene	10061-01-5	0.4 s	50 U	100 U	50 L	J 5 U		25 U	5 U	5 U	1 U	1 U	1 U	1 U	1 U
Cyclohexane	110-82-7	NL	50 U	100 U	5.7 J			25 U		5 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	124-48-1	50 g	50 U	100 U	50 L	J 5 U		25 U	5 U	5 U	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	75-71-8	5 s	50 U	100 U	50 L			25 U		5 U	1 U	1 UJ	12 J	1 U	1 U
Isopropylbenzene	98-82-8	5 s	50 U	100 U	50 L	J 5 U		25 U	5 U	5 U	1 U	1 U	1 U	1 U	1 U
Methyl acetate	79-20-9	NL.	50 U	100 U	50 L			25 U		5 U	1 U	1 U	1 U	1 U	1 U
Methyl tert-butyl ether	1634-04-4	10 g	50 U	100 U	50 L			25 U	5 U	5 U	1 U	1 U	1 U	1 U	1 U
Methylcyclohexane	108-87-2	NL	50 U	100 U	36 J			25 U	5 U	5 U	1 U	0.69 J	0.61	1 U	1 U
Methylene chloride Styrene	75-09-2 100-42-5	5 s 5 s	50 U 50 U	100 U 100 U	50 L 50 L	J 5 U J 5 U		25 U 25 U	5 U 5 U	5 U 5 U	11 1 U	1 U 1 U	10	1 U 1 U	1 U 1 U
	100-42-5	5 S	50 U 50 U	100 U	50 L			25 U 25 U	50	5 U 5 U	1 U 5.6	-	10	1 U 1 U	10
Tetrachloroethene trans-1,2-Dichloroethene	127-18-4	5 S	28 J	100 0	28 J	6.2	5 U 5 U	25 U 25 U	5 U 5 U	5 U	31	1 U 1 U	1 U	10	10
trans-1,2-Dichloroptopene	10061-02-6	5 s 0.4 s	28 J 50 U	120 100 U	28 J 50 L	5 U		25 U 25 U	50	5 U	31 1 U	10	1 U	10	10
Trichloroethene	79-01-6	0.4 s 5 s	700	1.500	50 L	50		25 U 25 U	5 U	5 U 5 U	13000	10	10	10	10
Trichlorofluoromethane	75-69-4	55	50 U	1,500 100 U	50 L	5 U		25 U	5 U	50	13000	15 1 U	10	10	10
Vinvl chloride	75-09-4	2 \$	60 U	240	2.200	11	5 U	25 U	50	50	27	19	22	10	10
Total VOCs (ug/L)2	75-01-4 NA	2 S NL	1,877	4,791	7,588	30.4	3.4	74	U	50	57,881	140.19	156.04	11	0.46
Total VOUS (ug/L)2	INA	NL	1,877	4,791	7,588	30.4	3.4	74	0	0	180, IC	140.19	100.04	0	0.46

 Notes:

 1. Guidance or Standard Values - NYSDEC, Division of Water, TOGS (1.1.1) [NYSDEC, 1998, with addenda through 2004].

 2. Total VOCs includes BTEX compounds.

 NA = Not analyzed, not applicable

 NL = Not listed

 U = The material was analyzed for but not detected at, or above, the reporting limit. The associated numerical value is the sample quantitation limit.

 J = The associated numerical value is an estimated quantity.

 Bold value - compound detected at oncentration greater than the groundwater standard value.

 s = Standard Value

 g = Guidance Value

Table 10 Groundwater VOC Results Scott Aviation BCP

										Ju	ne 2010								
										Shallow	Overburden								
Sample Designation		NYSDEC	MW-30	MW-35S	MW-36S	GW-DUPLICATE-1	MW-37S	A1-GP01-S	A1-GP02-S	A1-GP03-S	A1-GP04-S	A1-GP05-S	A1-GP06-S	A1-GP07-S	6 A1-GP08-S	A1-GP09-S	6 A1-GP10-S	A1-GP11-S	A1-GP12-S
Laboratory Identification	CAS	Groundwater Guidance or		-	RTF1140-0				3 RTF1213-13			-	-						
Date Sampled	Number	Standard Value (Note 1)	6/18/2010	6/17/2010	6/17/2010	6/17/2010	6/18/2010	6/22/2010	6/22/2010	6/21/2010	6/22/2010	6/21/2010	6/21/2010	6/22/2010	6/22/2010	6/22/2010	6/21/2010	6/21/2010	6/21/2010
BTEX Compounds (ug/L)	74 40 0	1.0	0.44	0.41	0.44	0.41	0.41	1 201	1 20 11	20 11	2011	0.41.11	0.011	101	1 101	0.41	0.4111	0.5 1	0.44.11
Benzene	71-43-2 100-41-4	1 s 5 s	0.41 U 0.51 U	0.41 U			0.41 L 0.51 L		J 20 U 26 U	20 U 26 U	20 U 26 U	0.41 U 0.51 U	8.2 U 10 U	16 L 20 L				0.5 J 0.51 U	0.41 U 0.51 U
Toluene Ethylbenzene	100-41-4	5 S	0.51 0	0.51 U 0.74 U			0.51 0		26 U 37 U	26 U 37 U	26 U 37 U	0.51 U 0.74 U	10 U	30 L				0.51 U 0.74 U	0.51 U
Xylenes (total)	1330-20-7	5 s	0.66 U	0.66 U	0.740		0.66 L		37 U 33 U	37 U	37 U 33 U	0.74 U 0.66 U	13 U	26 L				0.74 U	0.66 U
	1330-20-7	53	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	730	33 0	33 0	33 0	0.00 0	13 0	20 0		0.00 0	5 10	0.00 0	0.00 0
Total BTEX Compounds (ug/L)	NA	NL	U	U	I U	U	L	J 2390	U	U	U	U	U	l	J (J (J 26	0.5	U
Other VOCs (ug/L)																			
1,1,1-Trichloroethane	71-55-6	5 s	0.82 U	0.82 U	0.82 U	0.82 U	130	37000	41 U	18000	41 U	56	620	33 ไ	J 20 L	J 0.82 L	J 55000	2 J	0.82 U
1,1,2,2-Tetrachloroethane	79-34-5	5 s	0.21 U	0.21 U	0.21 U	0.21 U	0.21 L	J 11 L	J 11 U	11 U	11 U	0.21 U	4.3 U	8.5 L	J 5.3 L	ป 0.21 ไ	J 0.21 U	0.21 U	0.21 U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	5 s	0.31 U	0.31 U	0.31 U	0.31 U	4.4 J	4400	15 U	15 U	15 U	0.31 U	660	12 L	J 7.7 L	ป 0.31 ไ	J 1400 J	1.7 J	0.44 J
1,1,2-Trichloroethane	79-00-5	1 s	0.23 U	0.23 U	0.23 U	0.23 U	0.23 L	J 210 J	12 U	58 J	12 U	0.23 U	4.6 U	9.2 l	J 5.8 L	J 0.23 l	J 84	0.83 J	0.23 U
1,1-Dichloroethane	75-34-3	5 s	2.1 J	0.38 U	0.38 U		50	3300	19 U	3800	19 U	28	890	15 L		J 0.38 l	J 43000	33	6
1,1-Dichloroethene	75-35-4	5 s	0.29 U	0.29 U			5.8	3100	15 U	3100	15 U	11	63 J	12 L				2.2 J	5.2
1,2,4-Trichlorobenzene	120-82-1	5 s	0.41 U	0.41 U			0.41 L			20 U	20 U	0.41 U	8.2 U	16 L				0.41 U	0.41 U
1,2-Dibromo-3-chloropropane	96-12-8	0.04 s	0.39 U	0.39 U			0.39 L			20 U	20 U	0.39 U	7.9 U	16 L				0.39 U	0.39 U
1,2-Dibromoethane	106-93-4	0.0006 s	0.73 U	0.73 U			0.73 L			36 U	36 U	0.73 U	15 U	29 L				0.73 U	0.73 U
1,2-Dichlorobenzene	95-50-1	<u>3 s</u>	0.79 U	0.79 U			0.79 L			40 U	40 U	0.79 U	16 U	32 L				0.79 U	0.79 U
1,2-Dichloroethane	107-06-2	0.6 s	0.21 U	0.21 U			0.21 L			59 J	11 U	0.21 U	4.3 U	8.6 L				0.21 U	0.21 U
1,2-Dichloropropane	78-87-5	<u>1 s</u>	0.72 U	0.72 U	0.72 U		0.72 L			36 U	36 U	0.72 U	14 U	29 L				0.72 U	0.72 U
1,3-Dichlorobenzene	541-73-1	3 s	0.78 U	0.78 U	0.78 U		0.78 L			39 U	39 U	0.78 U	16 U	31 L				0.78 U	0.78 U
1,4-Dichlorobenzene	106-46-7	3 s	0.84 U	0.84 U			0.84 L			42 U	42 U	0.84 U	17 U	34 L				0.84 U	0.84 U
2-Butanone	78-93-3	50 g 50 g	1.3 U	1.3 U			1.3 L		66 U	66 U	66 U 62 U	1.3 U	26 U 25 U	53 L				1.3 U	1.3 U 1.2 U
2-Hexanone 4-Methyl-2-pentanone	591-78-6 108-10-1	NL 50 g	1.2 U 2.1 U	1.2 U 2.1 U			1.2 L 2.1 L			62 U 100 U	100 U	1.2 U 2.1 U	42 U	50 L 84 L				1.2 U 2.1 U	2.1 U
Acetone	67-64-1	50 g	30				31		150 U	150 U	150 U	2.1 U 3 U	42 U 60 U	120 L				2.1 U 3 U	2.1 U
Bromodichloromethane	75-27-4	50 g	0.39 U			-	0.39 L			130 U	19 U	0.39 U	7.7 U	15 L				0.39 U	0.39 U
Bromoform	75-25-2	50 g	0.33 U				0.26 L			13 U	13 U	0.35 U	5.1 U	10 L				0.35 U	0.26 U
Bromomethane	74-83-9	5 s	0.69 U	0.69 U			0.69 L			34 U	34 U	0.69 U	14 U	28 L				0.69 U	0.69 U
Carbon disulfide	75-15-0	60 g	0.00 U	1.4 J			2 3			9.7 U	9.7 U	0.00 U	3.9 U	7.8 L				0.19 U	0.19 U
Carbon tetrachloride	56-23-5	5 s	0.27 U	0.27 U			0.27 L			13 U	13 U	0.27 U	5.3 U	11 U				0.27 U	0.27 U
Chlorobenzene	108-90-7	5 s	0.75 U	0.75 U			0.75 L			38 U	38 U	0.75 U	15 U	30 ไ				0.75 U	0.75 U
Chloroethane	75-00-3	5 s	0.32 U	0.32 U	0.32 U	0.32 U	0.32 L	J 16 L	J 16 U	16 U	16 U	0.32 U	6.5 U	13 L	J 8.1 L	J 0.32 L	J 10000 U	0.32 U	0.32 U
Chloroform	67-66-3	7 s	0.34 U	0.34 U	0.34 U	0.34 U	0.34 L	J 17 L	J 17 U	17 U	17 U	0.34 U	6.7 U	13 L	J 8.4 L	J 0.34 l	J 7.3	0.34 U	0.34 U
Chloromethane	74-87-3	5 s	0.35 U	0.35 U	0.35 U	0.35 U	0.35 L	J 17 L	J 17 U	17 U	17 U	0.35 U	6.9 U	14 L	J 8.6 L	ป 0.35 ไ	J 0.46 J	0.35 U	0.35 U
cis-1,2-Dichloroethene	156-59-2	5 s	6.4	0.81 U			0.81 L		6400	7100	3000	16	32 J	2000		0.81 l		520	1100
cis-1,3-Dichloropropene	10061-01-5	0.4 s	0.36 U	0.36 U			0.36 L			18 U	18 U	0.36 U	7.1 U	14 L				0.36 U	0.36 U
Cyclohexane	110-82-7	NL	0.18 U	0.18 U			0.18 L			9 U	9 U	0.18 U	3.6 U	7.2 l				0.18 U	0.18 U
Dibromochloromethane	124-48-1	50 g	0.32 U	0.32 U			0.32 L			16 U	16 U	0.32 U	6.4 U	13 L				0.32 U	0.32 U
Dichlorodifluoromethane	75-71-8	5 s	0.68 U	0.68 U			0.68 L			34 U	34 U	0.68 U	14 U	27 L				0.68 U	1.2 J
Isopropylbenzene	98-82-8	5 s	0.79 U	0.79 U			0.79 L			40 U	40 U	0.79 U	16 U	32 L				0.79 U	0.79 U
Methyl acetate	79-20-9	NL	0.5 U	0.5 U			0.5 L			25 U	25 U	0.5 U	10 U	20 L				0.5 U	0.5 U
Methyl tert-butyl ether	1634-04-4	10 g	0.16 U	0.16 U	0.16 U		0.62 J			8 U	8 U	0.16 U	3.2 U	6.4 l				0.16 U	0.16 U
Methylcyclohexane	108-87-2	NL	0.16 U	0.16 U	0.16 U		0.16 L			8 U	8 U	0.16 U	3.2 U	6.4 L				0.16 U	0.16 U
Methylene chloride	75-09-2	5 s	0.44 U				0.44 U			22 U	22 U	0.44 U	8.8 U					0.44 U	0.44 U
Styrene	100-42-5	5 s	0.73 U	0.73 U			0.73			36 U	36 U	0.73 U	15 U	29 L				0.73 U	0.73 U
Tetrachloroethene trans-1.2-Dichloroethene	127-18-4 156-60-5	5 s 5 s	0.36 U 0.9 U	0.36 U 0.9 U			0.36 L 0.9 L			18 U 45 U	18 U 45 U	0.36 U 0.9 U	7.3 U 18 U	15 L 36 L				0.36 U	0.36 U
trans-1,2-Dichloropropene	10061-02-6	0.4 s	0.9 U 0.37 U				0.9 L			45 U 18 U	45 U 18 U	0.9 U 0.37 U	7.4 U	36 L 15 L				11 0.37 U	29 0.37 U
Trichloroethene	79-01-6	0.4 s 5 s	0.37 U				0.37 C		11000	18 U 1500	180	0.37 U 1.6 J	7.4 U 46 J			0.37 0		0.37 U 300	0.37 U 600
Trichlorofluoromethane	79-01-6	5 S	0.88 U				0.88 L			44 U	44 U	0.88 U	40 J 18 U	35 L				0.88 U	0.88 U
Vinyl chloride	75-09-4	3 s	4.9 J				0.88 0			44 U 45 U	160 J	0.88 U	18 U					0.88 U	130
Total VOCs (ug/L) (Note 2)	NA	NL	14.8	1.4	11	14.9	198.32	77432	17494	33558	17160	112.6	2311	6944	2700	l	J 101147.9	904.23	1871.84

Notes: NA = Not analyzed, not applicable NL = Not listed

U = The material was analyzed for but not detected at, or above, the reporting limit. The associated numerical value is the sample quantitation limit.

J = The associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than the reporting limit
Shaded value Compound detected in a concentrat
s = Standard Value

Compound detected in a concentration greater than the groundwater standard value.

g = Guidance Value

Note 1 - Guidance or Standard Values - NYSDEC, Division of Water, TOGS (1.1.1) [NYSDEC, 1998, with addenda through 2004]. Note 2 - Total VOCs includes BTEX compounds.

Table 10 Groundwater VOC Results Scott Aviation BCP

									Ju	une 2010							1	August 2010	, , , , , , , , , , , , , , , , , , , ,
					Shallow O	verburden						Deep Overb	urden			Bedrock		Shallow Overbu	
Sample Designation		NYSDEC	A1-GP13-S	A1-GP14-S	A1-GP15-S		A1-GP17-S	A1-GP18-S	MW-35D	MW-36D	MW-37D	MW-38D	MW-39D	MW-40D	GW-DUPLICATE-2	MW-41B2	MW-30	MW-35S	MW-36S
Laboratory Identification	CAS	Groundwater Guidance or	RTF1213-04		B RTF1140-09				RTF1140-15	RTF1140-04	RTF1140-20	RTF1213-12	RTF1140-17	RTF1213-06	RTF1213-07	RTF1140-07	RTH0401-0	1 RTH0401-07	RTH0401-02
Date Sampled	Number	Standard Value (Note 1)	6/21/2010	6/21/2010	6/17/2010	6/17/2010	6/17/2010	6/18/2010	6/17/2010	6/17/2010	6/18/2010	6/22/2010	6/18/2010	6/21/2010	6/21/2010	6/17/2010	8/3/2010	8/2/2010	8/3/2010
BTEX Compounds (ug/L)																			
Benzene	71-43-2	1 s	22	1.3 J		2 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	20 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U
Toluene	100-41-4	5 s	43	0.51 L	J 0.51 U	2.6 U	0.51 J	0.51 U	0.51 U	0.51 U	0.51 U	300	0.51 U	0.51 U	0.51 U	1.3 J	0.51 U	0.51 U	0.51 U
Ethylbenzene	108-88-3	5 s	96	0.74 L		3.7 U	0.74 U	0.74 U	0.74 U	0.74 U			0.74 U	0.74 U	0.74 U	0.74 U	0.74 U		0.74 U
Xylenes (total)	1330-20-7	5 s	1600	0.66 L	J 0.66 U	3.3 U	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U	730 J	0.66 U	1.1 J	1.1 J	0.71 J	0.66 U	0.66 U	0.66 U
Total BTEX Compounds (ug/L)	NA	NL	1761	1.3	U	U	0.51	U	U	U	U	1300	U	1.1	1.1	2.01	1	U U	U
Other VOCs (ug/L)																			
1.1.1-Trichloroethane	71-55-6	5 s	2.2 J	0.82 L	J 0.82 U	4.1 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	41 U	17	23	22	0.82 U	0.82 U	0.82 U	0.82 U
1.1.2.2-Tetrachloroethane	79-34-5	5 \$	0.21 U	0.02 0		1.1 U	0.02 U	0.21 U	0.21 U	0.21 U	0.21 U			0.21 U		0.21 U	0.21 U		0.21 U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	5 \$	6.6	0.31 L		1.5 U	0.21 U	0.31 U	0.21 U	0.31 U	0.31 U			0.21 U		0.31 U	0.31 U		0.31 U
1,1,2-Trichloroethane	79-00-5	1 s	7	0.23 L		1.2 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U		0.23 U	0.23 U	0.23 U	0.23 U	0.23 U		0.23 U
1,1-Dichloroethane	75-34-3	5 s	400	0.38 L		1.9 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U		4.7 J	260	240	0.38 U	2.4 J	0.38 U	0.38 UJ
1,1-Dichloroethene	75-35-4	5 s	10	0.29 L		1.5 U	0.29 U	0.29 U	0.29 U	0.29 U				1.8 J	1.7 J	0.29 U	0.29 U		0.29 U
1,2,4-Trichlorobenzene	120-82-1	5 s	0.41 U	0.41 L		2 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U			0.41 U	0.41 U	0.41 U	0.41 U		0.41 U
1,2-Dibromo-3-chloropropane	96-12-8	0.04 s	0.39 U	0.39 L		2 U	0.39 U	0.39 U	0.39 U	0.39 U			0.39 U	0.39 U		0.39 U	0.39 U	0.39 U	0.39 U
1,2-Dibromoethane	106-93-4	0.0006 s	0.73 U	0.73 L	J 0.73 U	3.6 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U		0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U
1,2-Dichlorobenzene	95-50-1	3 s	0.79 U	0.79 L	J 0.79 U	4 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	40 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U
1,2-Dichloroethane	107-06-2	0.6 s	6.8	0.21 L	J 0.21 U	1.1 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	11 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,2-Dichloropropane	78-87-5	1 s	0.72 U	0.72 L	J 0.72 U	3.6 U	0.72 U	0.72 U	0.72 U	0.72 U	0.72 U	36 U	0.72 U	0.72 U	0.72 U	0.72 U	0.72 U	0.72 U	0.72 U
1,3-Dichlorobenzene	541-73-1	3 s	0.78 U	0.78 L	J 0.78 U	3.9 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U			0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U
1,4-Dichlorobenzene	106-46-7	3 s	0.84 U	0.84 L	J 0.84 U	4.2 U	0.84 U	0.84 U	0.84 U	0.84 U	0.84 U		0.84 U	0.84 U	0.84 U	0.84 U	0.84 U	0.84 U	0.84 U
2-Butanone	78-93-3	50 g	1.3 U	1.3 L	J 1.3 U	6.6 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U		1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
2-Hexanone	591-78-6	50 g	1.2 U	1.2 L		6.2 U	1.2 U	1.2 U	1.2 U	1.2 U			1.2 U	1.2 U		1.2 U	1.2 U		1.2 U
4-Methyl-2-pentanone	108-10-1	NL	2.1 U	2.1 L		10 U	2.1 U	2.1 U	2.1 U	2.1 U			2.1 U	2.1 U		2.1 U	2.1 U		2.1 U
Acetone	67-64-1	50 g	7 J	3 L		15 U	3 U	3 U	4.1 J	3 U			3 U	3.4 J	3 U	5.7 J	3 U		3 U
Bromodichloromethane	75-27-4	50 g	0.39 U	0.39 L		1.9 U	0.39 U	0.39 U	0.39 U	0.39 U				0.39 U		0.39 U	0.39 U		0.39 U
Bromoform	75-25-2	50 g	0.26 U	0.26 L		1.3 U	0.26 U	0.26 U	0.26 U	0.26 U				0.26 U		0.26 U	0.26 U		0.26 U
Bromomethane	74-83-9	<u>5 s</u>	0.69 U	0.69 L		3.4 U	0.69 U	0.69 U	0.69 U	0.69 U				0.69 U		0.69 U	0.69 U		0.69 U
Carbon disulfide	75-15-0	60 g	0.19 U	0.19 L		0.97 U	0.19 U	0.19 U	0.71 J	0.19 U				0.19 U		0.19 U	0.19 U		0.19 U
Carbon tetrachloride	56-23-5	<u>5 s</u>	0.27 U	0.27 L		1.3 U	0.27 U	0.27 U	0.27 U	0.27 U			0.27 U	0.27 U	0.27 U	0.27 U	0.27 U		0.27 U
Chlorobenzene	108-90-7	<u>5s</u>	0.75 U	0.75 L		3.8 U	0.75 U	0.75 U	0.75 U	0.75 U			0.75 U	0.75 U	0.75 U	0.75 U	0.75 U		0.75 U
Chloroethane	75-00-3 67-66-3	<u>5s</u>	160	0.32 L		1.6 U	0.32 U	0.32 U	0.32 U	0.32 U				1.4 J	1.3 J	0.32 U	0.32 U		0.32 U
Chloroform		7 s	0.34 U	0.34 L		1.7 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U			0.34 U	0.34 U	0.34 U	0.34 U		0.34 U
Chloromethane	74-87-3 156-59-2	<u>5 s</u>	0.35 U	0.35 L		1.7 U	0.35 U	0.35 U	0.35 U	0.35 U			0.35 U	0.35 U	0.35 U	0.35 U	0.35 U		0.35 U
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	10061-01-5	<u>5 s</u> 0.4 s	550 0.36 U	0.81 L 0.36 L		<mark>19 J</mark> 1.8 U	0.81 U 0.36 U	0.81 U 0.36 U	0.81 U 0.36 U	0.81 U 0.36 U	0.81 U 0.36 U		0.81 U 0.36 U	1.2 J 0.36 U	1.2 J 0.36 U	0.81 U 0.36 U	7.7 0.36 U	0.81 U 0.36 U	1.5 J 0.36 U
Cyclohexane	110-82-7	0.4 S	2.5 J	0.36 L		0.9 U	0.36 U 0.18 U	0.36 U	0.36 U	0.36 U	0.36 U		0.36 U	0.36 U	0.36 U	2.3 J	0.36 U		0.36 U
Dibromochloromethane	124-48-1	50 g	0.32 U	0.18		1.6 U	0.18 U	0.18 U	0.18 U	0.18 U				0.18 U		0.32 U	0.18 0		0.18 U
Dichlorodifluoromethane	75-71-8	5s	0.68 U	0.68 L		3.4 U	0.52 U	0.68 U	0.68 U	0.68 U				0.68 U		0.68 U	0.68 U		0.68 U
Isopropylbenzene	98-82-8	5 \$	0.79 U	0.79 L		4 U	0.00 U	0.00 U	0.00 U	0.00 U			0.79 U	0.00 U		0.79 U	0.00 0		0.79 U
Methyl acetate	79-20-9	NL	0.5 U	0.5 L		2.5 U	0.5 U	0.5 U	0.5 U	0.5 U				0.5 U	0.5 U	0.5 U	0.5 U		0.5 U
Methyl tert-butyl ether	1634-04-4	10 g	0.16 U	0.16 L		0.8 U	0.16 U	0.16 U	0.16 U	0.16 U				0.16 U		0.16 U	0.16 U		0.16 U
Methylcyclohexane	108-87-2	NL	23	0.16 L		0.8 U	0.56 J	0.16 U	0.16 U	0.16 U	0.16 U			0.16 U	0.16 U	5.1	0.16 U		0.16 U
Methylene chloride	75-09-2	5 s	8.3	0.44 L		2.2 U		0.44 U	0.44 U	0.44 U						0.44 U	0.44 U		0.44 U
Styrene	100-42-5	5 s	0.73 U	0.73 L		3.6 U		0.73 U	0.73 U	0.73 U					0.73 U	0.73 U	0.73 U		0.73 U
Tetrachloroethene	127-18-4	5 s	0.6 J			1.8 U	0.36 U	0.36 U	0.36 U	0.36 U			0.36 U	0.36 U		0.36 U	0.36 U		0.36 U
trans-1,2-Dichloroethene	156-60-5	5 s	13	1.3 J		4.5 U		0.9 U	0.9 U	0.9 U			0.9 U	0.9 U		0.9 U	0.9 U		0.9 U
trans-1,3-Dichloropropene	10061-02-6	0.4 s	0.37 U	0.37 L	J 0.37 U	1.8 U		0.37 U	0.37 U	0.37 U	0.37 U	18 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
Trichloroethene	79-01-6	5 s	3.9 J	0.46 L	J 0.46 U	2.3 U	0.46 U	0.46 U	0.46 U	2.1 J			0.46 U	2.8 J	2.8 J	0.46 U	1.6 J		0.58 J
Trichlorofluoromethane	75-69-4	5 s	0.88 U	0.88 L		4.4 U	0.88 U	0.88 U	0.88 U	0.88 U				0.88 U		0.88 U	0.88 U	0.88 U	0.88 U
Vinyl chloride	75-01-4	2 s	770	4 J	0.9 U	4.5 U	0.9 U	0.9 U	0.9 U	0.9 U	0.9 U	45 U	0.9 U	0.9 U	0.9 U	0.9 U	5.9	0.9 U	0.9 U
	NIA	NI	2724.0		0.00	40	4 07		4.04	0.4		16020	04	2047	070.4	40.4	47.0		2.00
Total VOCs (ug/L) (Note 2)	NA	NL	3731.9	6.6	9.82	19	1.07	U	4.81	2.1	U	16930	24	294.7	270.1	13.1	17.6	3.8	2.08

Notes: NA = Not analyzed, not applicable NL = Not listed

U = The material was analyzed for but not detected at, or above, the reporting limit. The asso J = The associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than the reporting limit
Shaded value Compound detected in a concentration greater Shaded value -s = Standard Value

g = Guidance Value

Note 1 - Guidance or Standard Values - NYSDEC, Division of Water, TOGS (1.1.1) [NYSDEC Note 2 - Total VOCs includes BTEX compounds.

Table 10 Groundwater VOC Results Scott Aviation BCP

			August 2010 Shallow Overburden																
		NYODEO		MM 070			44 0 500 0	14.0004.0	44 0005 0	÷			44 0 200 0			44 0040 0	44 0040 0		44 0045 0
Sample Designation Laboratory Identification	CAS	NYSDEC Groundwater Guidance or	GW-DUPLICATE-1 RTH0401-06	MW-37S RTH0401-10	A1-GP01-S RTH0401-14	A1-GP02-S RTH0401-15	A1-GP03-S RTH0401-16		A1-GP05-S RTH0401-18		A1-GP07-S RTH0401-20		A1-GP09-S RTH0402-02		A1-GP11-S RTH0402-04			A1-GP14-S RTH0402-07	
Date Sampled	Number	Standard Value (Note 1)	8/2/2010	8/3/2010	8/4/2010	8/4/2010	8/4/2010	8/4/2010	8/4/2010	8/4/2010	8/4/2010	8/4/2010	8/3/2010	8/3/2010	8/3/2010	8/3/2010	8/3/2010	8/3/2010	8/2/2010
BTEX Compounds (ug/L)			0.2.20.0	0.0.2010	0,	0, 1,2010	0, 1,2010	0, 1,2010	0, 1,2010	0,	0,	0,	0,0,2010	0,0,2010	0,0,2010	0.0.2010	0,0,2010	0.0.2010	0,2,2010
Benzene	71-43-2	1 s	0.41 U	1.6 U	100 U	82 U	160 U	1.4 J	0.41 U	8.2 U	20 U	10 U	0.41 U	510 U	4.1 U	8.2 U	34 J	5.5	0.41 U
Toluene	100-41-4	5 s	0.51 U	2 U	340 J	100 U	200 U	1.6 J	0.51 U	10 U	26 U	13 U	0.51 U	640 U	5.1 U	10 U	63	0.51 U	0.51 U
Ethylbenzene	108-88-3	5 s	0.74 U	3 U	180 U	150 U	300 U	0.75 J	0.74 U	15 U	37 U	18 U	0.74 U	920 U	7.4 U	15 U	120	0.74 U	0.74 U
Xylenes (total)	1330-20-7	5 s	0.66 U	2.6 U	160 U	130 U	260 U	0.66 U	0.66 U	13 U	33 U	16 U	0.66 U	820 U	6.6 U	13 U	2000	0.66 U	0.66 U
Total BTEX Compounds (ug/L)	NA	NL	U	U	340	U	U	3.75	U	U	U	U U	U	U	U	U	2217	5.5	U
Other VOCs (ug/L)	74 55 6		0.0211	200	7500	10011	20000	14	00	4700	44 11	20 U	0.0211	84000	0.011	10 11	0.011	0.0211	0.82 U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	71-55-6 79-34-5	5 s 5 s	0.82 U 0.21 U	200 0.85 U	7500 53 U	160 U 43 U	39000 85 U	0.21 U	98 0.21 U	1700 4.3 U	41 U 11 U	5.3 U	0.82 U 0.21 U	84000 270 U	8.2 U 2.1 U	16 U 4.3 U	8.2 U 2.1 U		0.82 U 0.21 U
1.1.2-Trichloro-1.2.2-trifluoroethane	79-34-5	55	0.21 U	6.3 J	1000 J	62 U	120 U	1.7 J	0.21 U	4.3 U	15 U	7.7 U	0.21 U	1900 J	2.1 U	4.3 U	2.1 U	0.21 U	0.21 U
1,1,2-Trichloroethane	79-00-5		0.23 U	0.92 U	180 J	46 U	92 U	0.59 J	0.23 U	16 J	13 U	5.8 U	0.23 U	290 U	2.3 U	4.6 U	17 J	0.23 U	0.23 U
1,1-Dichloroethane	75-34-3	5 \$	0.38 UJ	440	2000	77 U	6200	13	38	3200	12 U	9.6 U	0.38 U	48000	68	14 J	620	0.20 U	0.38 U
1,1-Dichloroethene	75-35-4	5 \$	0.29 U	20	760 J	59 U	5600	20	21	270	15 U	7.3 U	0.29 U	2000 J	6.5 J	17 J	46 J	0.29 U	0.29 U
1,2,4-Trichlorobenzene	120-82-1	5 s	0.41 U	1.6 U	100 U	82 U	160 U	0.41 U	0.41 U	8.2 U	20 U	10 U	0.41 U	510 U	4.1 U	8.2 U	4.1 U		0.41 U
1,2-Dibromo-3-chloropropane	96-12-8	0.04 s	0.39 U	1.6 U	98 U	79 U	160 U	0.39 U	0.39 U	7.9 U	20 U	9.8 U	0.39 U	490 U	3.9 U	7.9 U	3.9 U	0.39 U	0.39 U
1,2-Dibromoethane	106-93-4	0.0006 s	0.73 U	2.9 U	180 U	150 U	290 U	0.73 U	0.73 U	15 U	36 U	18 U	0.73 U	910 U	7.3 U	15 U	7.3 U	0.73 U	0.73 U
1,2-Dichlorobenzene	95-50-1	3 s	0.79 U	3.2 U	200 U	160 U	320 U	0.79 U	0.79 U	16 U	40 U	20 U	0.79 U	990 U	7.9 U	16 U	7.9 U	0.79 U	0.79 U
1,2-Dichloroethane	107-06-2	0.6 s	0.21 U	0.86 U	54 U	43 U	86 U	0.21 U	0.21 U	4.3 U	11 U	5.4 U	0.21 U	270 U	2.1 U	4.3 U	14 J	0.21 U	0.21 U
1,2-Dichloropropane	78-87-5	1 s	0.72 U	2.9 U	180 U	140 U	290 U	0.72 U	0.72 U	14 U	36 U	18 U	0.72 U	900 U	7.2 U	14 U	7.2 U		0.72 U
1,3-Dichlorobenzene	541-73-1	3 s	0.78 U	3.1 U	200 U	160 U	310 U	0.78 U	0.78 U	16 U	39 U	20 U	0.78 U	980 U	7.8 U	16 U	7.8 U		0.78 U
1,4-Dichlorobenzene	106-46-7	<u>3 s</u>	0.84 U	3.4 U	210 U	170 U	340 U	0.84 U	0.84 U	17 U	42 U		0.84 U	1000 U	8.4 U	17 U	8.4 U		0.84 U
2-Butanone	78-93-3	50 g	1.3 U	5.3 U	330 U	260 U	530 U	1.3 U	1.3 U	26 U	66 U	33 U	1.3 U	1600 U	13 U	26 U	13 U		1.3 U
2-Hexanone	591-78-6	50 g	1.2 U	5 U	310 U	250 U 420 U	500 U	1.2 U	1.2 U	25 U	62 U	31 U	1.2 U	1600 U	12 U	25 U	12 U		1.2 U
4-Methyl-2-pentanone Acetone	108-10-1 67-64-1	NL 50 g	2.1 U 3 U	8.4 U 12 U	520 U 750 U	420 U 600 U	840 U 1200 U	2.1 U 3 U	2.1 U 3 U	42 U 60 U	100 U 150 U	52 U 75 U	2.1 U 3 U	2600 U 3800 U	21 U 30 U	42 U 60 U	21 U 30 U		2.1 U 3.4 J
Bromodichloromethane	75-27-4	50 g	0.39 U	12 U	96 U	77 U	1200 U	0.39 U	0.39 U	7.7 U	150 U	9.6 U	0.39 U	480 U	30 U 3.9 U	7.7 U	30 U 3.9 U		0.39 U
Bromoform	75-25-2	50 g	0.35 U	1 U	64 U	51 U	100 U	0.35 U	0.35 U	5.1 U	13 U		0.35 U	320 U	2.6 U	5.1 U	2.6 U		0.26 U
Bromomethane	74-83-9	5 s	0.69 U	2.8 U	170 U	140 U	280 U	0.69 U	0.69 U	14 U	34 U	17 U	0.69 U	860 U	6.9 U	14 U	6.9 U	0.69 U	0.69 U
Carbon disulfide	75-15-0	60 q	0.19 U	0.78 U	48 U	39 U	78 U	0.19 U	0.19 U	3.9 U	9.7 U	4.8 U	0.19 U	240 U	1.9 U	3.9 U	1.9 U	0.19 U	0.19 U
Carbon tetrachloride	56-23-5	5 s	0.27 U	1.1 U	67 U	53 U	110 U	0.27 U	0.27 U	5.3 U	13 U	6.7 U	0.27 U	330 U	2.7 U	5.3 U	2.7 U		0.27 U
Chlorobenzene	108-90-7	5 s	0.75 U	3 U	190 U	150 U	300 U	0.75 U	0.75 U	15 U	38 U	19 U	0.75 U	940 U	7.5 U	15 U	7.5 U	0.75 U	0.75 U
Chloroethane	75-00-3	5 s	0.32 U	1.3 U	81 U	65 U	130 U	0.32 U	0.32 U	6.5 U	16 U	8.1 U	0.32 U	400 U	3.2 U	6.5 U	180	0.62 J	0.32 U
Chloroform	67-66-3	7 s	0.34 U	1.3 U	84 U	67 U	130 U	0.34 U	0.34 U	6.7 U	17 U	8.4 U	0.34 U	420 U	3.4 U	6.7 U	3.4 U	0.34 U	0.34 U
Chloromethane	74-87-3	5 s	0.35 U	1.4 U	86 U	69 U	140 U	0.35 U	0.35 U	6.9 U	17 U	8.6 U	0.35 U	430 U	3.5 U	6.9 U	3.5 U	0.74 J	0.35 U
cis-1,2-Dichloroethene	156-59-2	<u>5 s</u>	1.4 J	3.2 U	15000	10000	12000	3100	22	130	1300	2400	0.81 U	1000 U	1000	2900	2200	0.88 J	0.81 U
cis-1,3-Dichloropropene	10061-01-5	0.4 s	0.36 U	1.4 U	89 U	71 U	140 U	0.36 U	0.36 U	7.1 U	18 U	8.9 U	0.36 U	440 U	3.6 U	7.1 U	3.6 U		0.36 U
Cyclohexane	110-82-7	NL 50 m	0.18 U	0.72 U	45 U	36 U	72 U	0.18 U	0.18 U	3.6 U	9 U		0.18 U	220 U	1.8 U	3.6 U	5.7 J	0.18 U	0.18 U
Dibromochloromethane Diablaradifluoromethana	124-48-1	50 g	0.32 U	1.3 U	81 U 170 U	64 U 140 U	130 U 270 U	0.32 U 0.68 U	0.32 U 0.68 U	6.4 U	16 U 34 U		0.32 U 0.68 U	400 U 850 U	3.2 U	6.4 U	3.2 U 6.8 U	0.32 U 0.68 U	0.32 U 0.68 U
Dichlorodifluoromethane Isopropylbenzene	75-71-8 98-82-8	<u> </u>	0.68 U 0.79 U	2.7 U 3.2 U	170 U 200 U	140 U 160 U	320 U	0.68 U 0.79 U	0.68 U 0.79 U	33 J 16 U	34 U 40 U	20 U	0.68 U	990 U	6.8 U 7.9 U	14 U 16 U	6.8 U 7.9 U		0.68 U 0.79 U
Methyl acetate	98-82-8 79-20-9	NL 55	0.79 U 0.5 U	3.2 U 2 U	130 U	100 U	200 U	0.79 U	0.79 U	10 U	40 U 25 U	13 U	0.79 U	630 U	7.9 U	10 U	7.9 U 5 U		0.79 U
Methyl tert-butyl ether	1634-04-4	10 g	0.5 U	0.64 U	40 U	32 U	64 U	0.5 U	0.5 U	3.2 U	8 U		0.16 U	200 U	1.6 U	3.2 U	1.6 U		0.16 U
Methylcyclohexane	108-87-2	NL NL	0.16 U	0.64 U	40 U	32 U	64 U	0.16 U	0.16 U	3.2 U	8 U	-	0.16 U	200 U	1.6 U	3.2 U	36 J	0.16 U	0.16 U
Methylene chloride	75-09-2	5 s	0.44 U	1.8 U		88 U	180 U		0.44 U	8.8 U	22 U		0.44 U	550 U	4.4 U	8.8 U	50 U	0.44	
Styrene	100-42-5	5 s	0.73 U	2.9 U	180 U	150 U	290 U	0.73 U	0.73 U	15 U	36 U		0.73 U	910 U	7.3 U	15 U	7.3 U		0.73 U
Tetrachloroethene	127-18-4	5 s	0.36 U	1.5 U	91 U	73 U	150 U	1.8 J	0.36 U	7.3 U	18 U	9.1 U	0.36 U	460 U		7.3 U	3.6 U		0.36 U
trans-1,2-Dichloroethene	156-60-5	5 s	0.9 U	3.6 U	220 U	190 J	360 U	35	0.96 J	18 U	45 U		0.9 U	1100 U	28 J	120	28 J		0.9 U
trans-1,3-Dichloropropene	10061-02-6	0.4 s	0.37 U	1.5 U	92 U	74 U	150 U	0.37 U	0.37 U	7.4 U	18 U		0.37 U	460 U		7.4 U	3.7 U		0.37 U
Trichloroethene	79-01-6	5 s	0.58 J	3 J		20000	2400	13000	2.4 J	200	2900	1900	0.88 J	570 U		1500	11 J		0.46 U
Trichlorofluoromethane	75-69-4	5 s	0.88 U	3.5 U	220 U	180 U	350 U	0.88 U	0.88 U	18 U	44 U		0.88 U	1100 U	8.8 U	18 U	8.8 U		0.88 U
Vinyl chloride	75-01-4	2 s	0.9 U	3.6 U	220 U	180 U	360 U	480 J	1.2 J	20 J	69 J	49 J	0.9 U	1100 U	60	240	2200	11	0.9 U
	NIA	NU	4.00	660.0	07400	20400	65000	46660.04	100 50	7400	4000	40.40	0.00	125000	1070 5	4704	7507 7	00.4	
Total VOCs (ug/L) (Note 2)	NA	NL	1.98	669.3	27120	30190	65200	16669.84	183.56	7469	4269	4349	0.88	135900	1876.5	4791	7587.7	30.4	3.4

Notes: NA = Not analyzed, not applicable

NL = Not listed

U = The material was analyzed for but not detected at, or above, the reporting limit. The asso J = The associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than the reporting limit
Shaded value s = Standard Value

g = Guidance Value Note 1 - Guidance or Standard Values - NYSDEC, Division of Water, TOGS (1.1.1) [NYSDEC Note 2 - Total VOCs includes BTEX compounds.

Table 10 Groundwater VOC Results Scott Aviation BCP

Samele Designation Decomposition (unit) NMT3DE (mail of the second standard Value (Note) N1-597-25 (2020) NMT3DE (2020) NMT3DE	August 2010 Shallow Overburden Deep Overburden Bedrocl														
Laboratory leads information OP and worker of under state (value (value (value) value) (value value (value) (value value) (value value (value) (value value) (value value) (value value) (value value value) (value value value) (value value value) (value value value value value) (value value					Shallow Overb	urden					Deep Overbu	rden			Bedrock
Image mappe Number (Not State) Solution	Sample Designation			A1-GP16-S	6 A1-GP17-	S A1-GP18	-S	MW-35D	MW-36D	MW-37D	MW-38D	MW-39D	MW-40D	GW-DUPLICATE-2	MW-41B2
BTEX Compounds (bgL) 1 2 0	-														RTH0401-04
Second 77-1-52 1 2 0.471 0.471 0.471 0.471 0.471 0.471 1.8 0.471<	· · · ·	Number	Standard Value (Note 1)	8/2/2010	8/3/2010	8/2/2010	0	8/2/2010	8/2/2010	8/3/2010	8/4/2010	8/3/2010	8/3/2010	8/3/2010	8/2/2010
Tojue 100-14 5 6 2 8 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.07 U 0.07 U															
Emplomentan 1988-30 0.6 3.71U 0.74U		-		-	-										0.41 U
Sylines (bath) 139:-07 6 s 3.3 U 0.06 U 0.01 U															2 J
Total BTEX Compounds (gup). NA NL U U U U															0.74 U
Other VOS upLy The second	Xylenes (total)	1330-20-7	5 s	3.3 L	J 0.66 l	J 0.66	U	0.66 U	0.66 U	0.66 U	260 J	0.66 U	2.6 U	0.66 U	0.66 U
Other VOS upLy The second															
1,1-1/EnclosePhane 75-56 5 s 4.1 0.82/U 0.	Total BTEX Compounds (ug/L)	NA	NL		U	U	U	U	U	U	260	(· · ·	U	2
11,1-Infinitionaliname 71,5-5 5.s 4.1 0.22 0.2	Other VOCs (ug/L)	-						╏──┼┤					+ +		╊───┤┤
11.22-Franchioscheine 79-345 5.6 1.10 0.2710 0.2		71-55-6	5 \$	411	0.821	0.82	U	0.8211	0.8211	0.8211	160 U	13	25	26	0.82 U
11.2-Trichtorosh2.2-Mullicateshame 78-10 5 m 1.5 U 0.31 U	,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,														0.02 U
11.2 Trichtorigentame 7900-5 1 s 1.2 U 0.23 U 0.															0.21 U
1:-Dehtomethane 75:4-3 5.s 1:9U 0.38U 0.38U 0.38U 0.38U 0.38U 5.8 550 550 1100 0.2 1:2-Altrinorbanzene 1264-71 5.s 2U 0.41U															0.23 U
11-Dehtomerene 75:8-4 5.8 1.5 U 0.28 U 0.28 U 0.28 U 0.28 U 0.41 U 0.4															0.23 U
12.4-Trolhoroberzene 12.6-B2-1 5 s 2 U 0.41 U 0.															0.38 U
12-Dbrome-3-chloroprognem 96-12-8 0.04 s 2[U 0.39 U 0.37 U 0.37 U 0.37 U 0.07 U 0.73 U	,														0.29 U
12-Ditromoethane 106-834 0.0006 s 3.8 U 0.73 U 0															0.39 U
12-Dehkovenzene 95-50-1 3 s 44 U 0.79				-											0.39 U 0.73 U
12-Dichlorophane 78-75 1s 0.6 s 1.1 U 0.27 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.73 U</td>															0.73 U
12-Dechodomagne 78-87-5 1 s 3.6 U 0.72 U<							-								0.79 U 0.21 U
13-Definition/banceme 541-73-1 3 s 3.9 U 0.78 U				-	-	-									0.21 U
14-Dictorobenzene 106-46-7 3 s 4.2 U 0.84 U 1.3 U 2500 1.2 U 1.2 U <td>,</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.72 U</td>	,					-	-								0.72 U
24beanone 59178-6 50 g 6.6 U 1.3 U 1.3 U 1.3 U 1.3 U 260 U 1.3 U 5.3 U 1.3 U 4Methy2-pentanone 108-10-1 NL 10 U 2.1 U															0.78 U
2±Hexanone 591-78-6 50 0 -6.2 U 1.2 U															0.84 U
4-Methyl-Zpentanone 108-10-1 NL 10 2.1 2.1 2.1 2.1 2.1 0 4.20 2.1 0 8.1 2.1 0 8.1 2.1 0 8.1 2.1 0 8.1 2.1 0 8.1 2.1 0 8.1 2.1 0 8.1 2.1 0 8.1 2.1 0 8.1 1.1 0 2.1 0 8.1 1.1															1.3 U
Acetone 67-64-1 50 g 15 U 3 U 3 U 3 U 7 J J 600 U 4 J 12 U 7.4 J 600 U 7.4 J 50 g 7.4 J 0.2 J			0												2.1 U
Bromodichloromethane 75-27-4 50 g 1.9 U 0.39 U 0.39 U 0.39 U 77 U 0.39 U 1.5 U 0.39 U 0.26 U 0.38 U 0.26 U 0.46 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.8 J</td></t<>															6.8 J
Bromodrm 75-25-2 50° 110 0.26 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.27 0 0.26 0 0.26 0 0.26 0 0.26 0 0.26 0 0.26 0 <th0< t<="" td=""><td></td><td></td><td>°</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>0.39 U</td></th0<>			°									-			0.39 U
Bromorethane 74-83-9 5 s 3-4 U 0.69 U 0.67 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33			0												0.39 U 0.26 U
Carbon disulfide 75:10 60 g 0.97 U 0.19 U 0.19 U 0.08 J 1.1 J 39 U 0.19 U 4J 37 J Carbon strachloride Carbon strachloride 56:23:5 5 s 1.3 U 0.27 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 2.2 U 0.22 U 2.2 U 0.22 U 2.2 U 2.2 U			°												
Carbon tetrachloride 5 s 1.3 U 0.27 U 0.27 U 0.27 U 5.3 U 0.27 U 1.1 U 0.27 U 5.3 U 0.27 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.33 U 1.4 U 0.33 U 0.33 U 0.33 U 0.33 U 0.34 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.34 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U															0.69 U
Chlorobenzene 108-90-7 5 s 3.8 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.34 U 0.			0												1.1 J 0.27 U
Chloroethane 75-00-3 5 s 1.6 U 0.32 U 0.32 U 0.32 U 0.32 U 6.5 U 0.32 U 1.3 U 2.9 J 0.02 U Chloroform 67-66-3 7 s 1.7 U 0.34 U 0.34 U 0.34 U 0.34 U 67 U 0.34 U 0.81 U 0.81 U 0.81 U 0.81 U 0.81 U 0.36 U 0.36 U 0.36 U 0.36 U 0.36 U 0.36 U 0.36 U 0.36 U 0.36 U 0.36 U 0.36 U 0.36 U 0.36 U 0.36 U 0.36 U 0.32 U					-										
Chioroform 67-66-3 7 s 1.7 U 0.34 U 0.34 U 0.34 U 0.34 U 67 U 0.34 U 1.3 U 0.34 U 0.34 U Chioromethane 74-87-3 5 s 1.7 U 0.35 U 0.36 U															0.75 U 0.32 U
Chloromethane 74-87-3 5 s 1.7 U 0.35 U 0.36 U															0.32 U 0.34 U
cis-1,2-Dichloroethene 156-59-2 5 s 69 0.81 U 0.															
cis-1,3-Dichloropropene 10061-01-5 0.4 s 1.8 U 0.36 U 0.36 U 0.36 U 0.36 U 71 U 0.36 U 1.4 U 0.36 U 0.36 U 0.36 U 0.36 U 71 U 0.36 U 1.4 U 0.36 U 0.36 U 0.18 U 0.36 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.32 U															0.35 U
Cyclohexane 110-82-7 NL 0.9 U 0.18 U 0.32 U 0.32 <thu< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.81 U 0.36 U</td></thu<>															0.81 U 0.36 U
Dibromochloromethane 124-48-1 50 g 1.6 U 0.32 U															0.36 U
Dichlorodifiluoromethane 75-71-8 5 s 3.4 U 0.68 U 0.68 U 0.68 U 0.68 U 140 U 0.68 U 2.7 U 0.68 U 0.79 U	,														0.32 U
Isopropylbenzene 98-82-8 5 s 4 U 0.79 U 0.79 U 0.79 U 0.79 U 0.79 U 160 U 0.79 U 3.2 U 0.79 U 0.70 U 0.70 U 0.70 U 0.70 U 0.70 U 0.70 U 0.70 U 0.70 U 0.70 U 0.70 U 0.70 U 0.70 U 0.70 U 0.70 U 0.70 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.32 U 0.68 U</td>															0.32 U 0.68 U
Methylacetate 79-20-9 NL 2.5 U 0.5 U 0.6 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
Metryl tert-butyl ether 1634-04-4 10 g 0.8 U 0.16 U															0.79 U 0.5 U
Methylcyclohexane 108-87-2 NL 0.8 U 0.16 U 0.14 U 0.14 U 0.14 U 0.14 U 0.14 U 0.14 U 0.16 U 0.16 U 0.16 U 0.16															
Metrylene chloride 75-09-2 5 s 2.2 U 0.44 U 0.43 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73			0												0.16 U
Styrene 100-42-5 5 s 3.6 U 0.73 U															3.5 J
Tetrachloroethene 127-18-4 5 s 1.8 U 0.36 U 0.36 U 0.36 U 0.36 U 130 J 0.36 U 1.5 U 0.36 U 0.36 U 130 J 0.36 U 1.5 U 0.36 U 0.36 U 130 J 0.36 U 1.5 U 0.36 U 0.36 U 130 J 0.36 U 1.5 U 0.36 U 0.36 U 130 J 0.36 U 1.5 U 0.36 U 0.36 U 130 J 0.36 U 1.5 U 0.36 U 0.36 U 0.36 U 0.9 U															0.44 U
trans-1,2-Dichloroethene 156-60-5 5 s 4.5 U 0.9 U 0.9 U 0.9 U 0.9 U 0.9 U 180 U 0.9 U 3.6 U 0.9 U 0.9 U trans-1,3-Dichloropropene 10061-02-6 0.4 s 1.8 U 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U 0.45 U 0.45 U 0.37 U 0.01 U 0.37 U 0.46 U 0.47 U 0.37 U 0.46 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U	•														0.73 U
trans-1,3-Dichloropropene 10061-02-6 0.4 s 1.8 U 0.37 U															0.36 U
Trichloroethene 79-01-6 5 s 2.3 U 0.46 U 0.46 U 0.74 J 0.46 U 2100 0.46 U 1.8 U 1.9 J 0.000 Trichloroethane 75-69-4 5 s 4.4 U 0.88 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.9 U</td>															0.9 U
Trichlorofluoromethane 75-69-4 5 s 4.4 U 0.88 U															0.37 U
															0.46 U
Vinyi chioriae 75-01-4 2 s 5 J 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9															0.88 U
	VINYI CNIORIAE	/5-01-4	2 \$	<u>5</u> J	0.9	0.9	υ	0.9 U	0.9 U	0.9 U	180 U	0.9 U	3.6 U	1.2 J	0.9 U
Total VOCs (ug/L) (Note 2) NA NL 74 U U 0.69 222.67 8.8 15490 25.9 585 1151.71	Total VOCs (ug/L) (Note 2)	NA	NI	74	1	J	U	0.69	222 67	8.8	15490	25.9	585	1151 71	14.9

Notes: NA = Not analyzed, not applicable NL = Not listed

U = The material was analyzed for but not detected at, or above, the reporting limit. The asso

J = The associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than the reporting limit
Shaded value Compound detected in a concentration greater Shaded value -s = Standard Value

g = Guidance Value

Note 1 - Guidance or Standard Values - NYSDEC, Division of Water, TOGS (1.1.1) [NYSDEC Note 2 - Total VOCs includes BTEX compounds.

Table 11 Groundwater SVOC Results Scott Aviation BCP Site

				June 2	010			August 2	2010	
			Shallow	Overburden	Deep Overburden	Bedrock	Shallow	v Overburden	Deep Overburden	Bedrock
Sample Identification Laboratory Identification	CAS	NYSDEC Groundwater Guidance or	MW-36S RTF1140-05	GW-DUPLICATE-1 (MW-36S) RTF1140-03	MW-39D RTF1140-17	MW-41B2 RTF1140-07	MW-36S RTH0401-02	GW-DUPLICATE-1 (MW-36S) RTH0401-06	MW-39D RTH0401-03	MW-41B2 RTH0401-04
Date Sampled	Number	Standard Value (Note 1)	6/17/2010	6/17/2010	6/18/2010	6/17/2010	8/3/2010	8/2/2010	8/3/2010	8/2/2010
PAH Compounds (ug/L)										
2-Methylnaphthalene	91-57-6	NL	0.59 U	0.59 U	0.57 U	0.58 U	0.57 U	0.58 U	0.57 U	0.58 U
Acenaphthene	83-32-9	20 g	0.4 U	0.41 U	0.39 U	0.39 U	0.39 U	0.4 U	0.39 U	0.39 U
Acenaphthylene	208-96-8	NL	0.37 U	0.38 U	0.36 U	0.37 U	0.36 U	0.37 U	0.36 U	0.37 U
Anthracene	120-12-7	50 g	0.27 U	0.28 U	0.26 U	0.27 U	0.27 U	0.27 U	0.26 U	0.27 U
Benzo(a)anthracene	56-55-3	0.002 g	0.35 U	0.36 U	0.34 U	0.35 U	0.34 U	0.35 U	0.34 U	0.35 U
Benzo(a)pyrene	50-32-8	ND	0.46 U	0.47 U	0.44 U	0.45 U	0.45 U	0.46 U	0.44 U	0.45 U
Benzo(b)fluoranthene	205-99-2	0.002 g	0.33 U	0.34 U	0.32 U	0.33 U	0.33 U	0.33 U	0.32 U	0.33 U
Benzo(ghi)perylene	191-24-2	NL	0.34 U	0.35 U	0.33 U	0.34 U	0.33 U	0.34 U	0.33 U	0.34 U
Benzo(k)fluoranthene	207-08-9	0.002 g	0.72 U	0.72 U	0.69 U	0.7 U	0.7 U	0.71 U	0.69 U	0.7 U
Chrysene	218-01-9	0.002 g	0.32 U	0.33 U	0.31 U	0.32 U	0.32 U	0.32 U	0.31 U	0.32 U
Dibenz(a,h)anthracene	53-70-3	NL	0.41 U	0.42 U	0.4 U	0.4 U	0.4 U	0.41 U	0.4 U	0.4 U
Fluoranthene	206-44-0	50 g	0.39 U	0.4 U	0.38 U	0.38 U	0.38 U	0.39 U	0.38 U	0.38 U
Fluorene	86-73-7	50 g	0.35 U	0.36 U	0.34 U	0.35 U	0.34 U	0.35 U	0.34 U	0.35 U
Indeno(1,2,3-cd)pyrene	193-39-5	0.002 g	0.46 UJ	0.47 UJ	0.44 UJ	0.45 UJ	0.45 U	0.46 U	0.44 U	0.45 U
Naphthalene	91-20-3	10 g	0.75 U	0.75 U	0.72 U	0.73 U	0.73 U	0.74 U	0.72 U	0.73 U
Phenanthrene	85-01-8	50 g	0.43 U	0.44 U	0.42 U	0.42 U	0.42 U	0.43 U	0.42 U	0.42 U
Pyrene	129-00-0	50 g	0.33 U	0.34 U	0.32 U	0.33 U	0.33 U	0.33 U	0.32 U	0.33 U
Total PAHs (ug/L)	NA	NL	U	U	U	U	U	U	U	U
Other SVOCs (ug/L)										
1,1'-Biphenyl	92-52-4	5 s	0.64 U	0.65 U	0.62 U	0.63 U	0.62 U	0.63 U	0.62 U	0.63 U
2,2'-oxybis(1-Chloropropane)	108-60-1	NL	0.51 U	0.51 U	0.49 U	0.5 U	0.5 U	0.5 U	0.49 U	0.5 U
2,4,5-Trichlorophenol	95-95-4	NL	0.47 U	0.48 U	0.45 U	0.46 U	0.46 U	0.47 U	0.45 U	0.46 U
2,4,6-Trichlorophenol	88-06-2	NL	0.6 U	0.6 U	0.58 U	0.59 U	0.58 U	0.59 U	0.58 U	0.59 U
2,4-Dichlorophenol	120-83-2	5 s	0.5 U	0.5 U	0.48 U	0.49 U	0.49 U	0.5 U	0.48 U	0.49 U
2,4-Dimethylphenol	105-67-9	50 g	0.49 U	0.5 U	0.47 U	0.48 U	0.48 U	0.49 U	0.47 U	0.48 U
2,4-Dinitrophenol	51-28-5	10 g	2.2 U	2.2 U	2.1 U	2.1 U	2.1 U	2.2 U	2.1 U	2.1 U
2,4-Dinitrotoluene	121-14-2	5 s	0.44 U	0.44 U	0.42 U	0.43 U	0.43 U	0.43 U	0.42 U	0.43 U
2,6-Dinitrotoluene	606-20-2	5 s	0.39 U	0.4 U	0.38 U	0.38 U	0.38 U	0.39 U	0.38 U	0.38 U
2-Chloronaphthalene	91-58-7	10 g	0.45 U	0.46 U	0.43 U	0.44 U	0.44 U	0.45 U	0.43 U	0.44 U
2-Chlorophenol	95-57-8	NĽ	0.52 U	0.52 U	0.5 U	0.51 U	0.51 U	0.51 U	0.5 U	0.51 U
2-Methylphenol	95-48-7	NL	0.39 U	0.4 U	0.38 U	0.38 U	0.38 U	0.39 U	0.38 U	0.38 U
2-Nitroaniline	88-74-4	5 s	0.41 U	0.42 U	0.4 U	0.4 U	0.4 U	0.41 U	0.4 U	0.4 U
2-Nitrophenol	88-75-5	NL	0.47 U	0.48 U	0.45 U	0.46 U	0.46 U	0.47 U	0.45 U	0.46 U
3,3'-Dichlorobenzidine	91-94-1	5 s	0.39 U	0.4 U	0.38 U	0.38 U	0.38 U	0.39 U	0.38 U	0.38 U
3-Nitroaniline	99-09-2	5 s	0.47 U	0.48 U	0.45 U	0.46 U	0.46 U	0.47 U	0.45 U	0.46 U
4,6-Dinitro-2-methylphenol	534-52-1	NL	2.2 U	2.2 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U
4-Bromophenyl phenyl ether	101-55-3	NL	0.44 U	0.45 U	0.42 U	0.43 U	0.43 U	0.44 U	0.42 U	0.43 U
4-Chloro-3-methylphenol	59-50-7	NL	0.44 U	0.45 U	0.42 U	0.43 U	0.43 U	0.44 U	0.42 U	0.43 U
4-Chloroaniline	106-47-8	5 s	0.58 U	0.58 U	0.56 U	0.57 U	0.56 U	0.57 U	0.56 U	0.57 U
4-Chlorophenyl phenyl ether	7005-72-3	NL	0.34 U	0.35 U	0.33 U	0.34 U	0.33 U	0.34 U	0.33 U	0.34 U
4-Methylphenol	106-44-5	NL	0.35 U	0.36 U	0.34 U	0.35 U	0.34 U	0.35 U	0.34 U	0.35 U
4-Nitroaniline	100-01-6	5 s	0.25 U	0.25 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U

Table 11 Groundwater SVOC Results Scott Aviation BCP Site

				June 2	010			August 2	2010	
			Shallow	Overburden	Deep Overburden	Bedrock	Shallow	v Overburden	Deep Overburden	Bedrock
Sample Identification		NYSDEC	MW-36S	GW-DUPLICATE-1 (MW-36S)	MW-39D	MW-41B2	MW-36S	GW-DUPLICATE-1 (MW-36S)	MW-39D	MW-41B2
Laboratory Identification Date Sampled	CAS Number	Groundwater Guidance or Standard Value (Note 1)	RTF1140-05 6/17/2010	RTF1140-03 6/17/2010	RTF1140-17 6/18/2010	RTF1140-07 6/17/2010	RTH0401-02 8/3/2010	RTH0401-06 8/2/2010	RTH0401-03 8/3/2010	RTH0401-04 8/2/2010
4-Nitrophenol	100-02-7	NL	1.5 U	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U	1.4 U	1.5 U
Acetophenone	98-86-2	NL	0.53 U	0.53 U	0.51 U	0.52 U	0.52 U	0.52 U	0.51 U	0.52 U
Atrazine	1912-24-9	7.5 s	0.45 U	0.46 U	0.43 U	0.44 U	0.44 U	0.45 U	0.43 U	0.44 U
Benzaldehyde	100-52-7	NL	0.26 U	0.26 U	0.25 U	0.26 U	0.26 U	0.26 U	0.25 U	0.26 U
bis(2-Chloroethoxy)methane	111-91-1	5 s	0.34 U	0.35 U	0.33 U	0.34 U	0.33 U	0.34 U	0.33 U	0.34 U
bis(2-Chloroethyl) ether	111-44-4	1 s	0.39 U	0.4 U	0.38 U	0.38 U	0.38 U	0.39 U	0.38 U	0.38 U
bis(2-Ethylhexyl) phthalate	117-81-7	5 s	1.8 U	1.8 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U
Butyl benzyl phthalate	85-68-7	50 g	0.41 U	0.42 U	0.4 U	0.4 U	0.4 U	0.41 U	0.4 U	0.4 U
Caprolactam	105-60-2	NL	2.2 U	2.2 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U
Carbazole	86-74-8	NL	0.29 U	0.3 U	0.28 U	0.29 U	0.29 U	0.29 U	0.28 U	0.29 U
Di-n-butyl phthalate	84-74-2	50 s	0.54 J	0.4 J	0.29 U	0.35 J	9.6 U	9.7 U	9.4 U	9.6 U
Di-n-octyl phthalate	117-84-0	NL	0.46 U	0.47 U	0.44 U	0.45 U	0.45 U	0.46 U	0.44 U	0.45 U
Dibenzofuran	132-64-9	NL	0.5 U	0.5 U	0.48 U	0.49 U	0.49 U	0.5 U	0.48 U	0.49 U
Diethyl phthalate	131-11-3	50 g	0.22 U	0.22 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
Dimethyl phthalate	84-66-2	50 g	0.35 U	0.36 U	0.34 U	0.82 J	0.34 U	0.35 U	0.34 U	0.35 U
Hexachlorobenzene	118-74-1	0.4 s	0.5 U	0.5 U	0.48 U	0.49 U	0.49 U	0.5 U	0.48 U	0.49 U
Hexachlorobutadiene	87-68-3	0.5 s	0.67 U	0.67 U	0.64 U	0.65 U	0.65 U	0.66 U	0.64 U	0.65 U
Hexachlorocyclopentadiene	77-47-4	5 s	0.58 U	0.58 U	0.56 U	0.57 U	0.56 U	0.57 U	0.56 U	0.57 U
Hexachloroethane	67-72-1	5 s	0.58 U	0.58 U	0.56 U	0.57 U	0.56 U	0.57 U	0.56 U	0.57 U
Isophorone	78-59-1	50 g	0.42 U	0.43 U	0.41 U	0.41 U	0.41 U	0.42 U	0.41 U	0.41 U
N-Nitrosodi-n-propylamine	621-64-7	50 g	0.53 U	0.53 U	0.51 U	0.52 U	0.52 U	0.52 U	0.51 U	0.52 U
N-Nitrosodiphenylamine	86-30-6	50 g	0.5 U	0.5 U	0.48 U	0.49 U	0.49 U	0.5 U	0.48 U	0.49 U
Nitrobenzene	98-95-3	0.4	0.28 U	0.29 U	0.27 U	0.28 U	0.28 U	0.28 U	0.27 U	0.28 U
Pentachlorophenol	87-86-5	1 s	2.2 U	2.2 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U
Phenol	108-95-2	1 s	0.38 U	0.39 U	0.37 U	0.38 U	0.37 U	0.38 U	0.37 U	0.38 U
Total SVOCs (ug/L) (Note 2)	NA	NL	0.54	0.4	U	0.35	U	U	U	U

Notes:

NA = Not Analyzed

NL = Not Listed

U = The material was analyzed for but not detected at, or above, the reporting limit. The associated numerical value is the sample quantitation limit.

J = The associated numerical value is an estimated quantity.

Bold value - compound detected at concentration greater than the reporting limit.

Shaded value - Compound detected above regulatory guidance value.

s = Standard Value

g = Guidance Value

(Note 1) - Guidance or Standard Values - NYSDEC, Division of Water, TOGS (1.1.1) [NYSDEC, 1998, with addenda through 2004].

(Note 2) - Total for SVOCs inlcudes PAHs.

Table 12 Groundwater Metals Results Scott Aviation BCP Site

					June 2010					August 2010		
				Shallow Overbure		Deep Overburden	Bedrock		Shallow Overburer	1	Deep Overburden	Bedrock
					GW-DUPLICATE-1				GW-DUPLICATE-1			
Sample Identification		NYSDEC	MW-30	MW-36S	(MW-36S)	MW-39D	MW-41B2	MW-30	(MW-36S)	MW-36S	MW-39D	MW-41B2
Laboratory Identification	CAS	Groundwater Guidance or	RTF1140-16	RTF1140-05	RTF1140-03	RTF1140-17	RTF1140-07	RTH0401-01	RTH0401-06	RTH0401-02	RTH0401-03	RTH0401-04
Date Sampled	Number	Standard Value (Note 1)	6/18/2010	6/17/2010	6/17/2010	6/18/2010	6/17/2010	8/3/2010	8/2/2010	8/3/2010	8/3/2010	8/2/2010
Metals (ug/L)												
	7429-90-5	NL	200 U	200 U	200 U	200 U	1940	200 U	200 U	200 U	200 U	203
	7440-36-0	3 s	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
	7440-38-2	25 s	19	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	7440-39-3	1,000 s	208	81.4	80.3	144	79.2	205	85	83	148	44.7
	7440-41-7	3 g	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
	7440-43-9	5 s	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	7440-70-2	NL	64,800	110,000	107,000	45,000	60,200	67,700	110,000	107,000	47,200	51,700
	7440-47-3	50 s	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U
	7440-48-4	NL	4.4	8.8	9	4 U	4 U	4.7	7.5	7.2	4 U	4 U
	7440-50-8	200 s	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
	7439-89-6	300 s	7780	53	50 U	1170	1,430	4,510	50 U	50 U	3510	582
	7439-92-1	25 s	5 U	5 U	5 U	5 U	5 U	5 UJ	5.5 J	5 UJ	5 UJ	5 UJ
	7439-95-4	35,000 s	62,500	109,000	105,000	61,500	54,300	68,100	114,000	111,000	65,700	25,400
	7439-96-5	300 s	55.4	33.3	31.6	67.8	45.2	57.7	65.9	63.1	79.8	32.1
,	7439-97-6	0.7 s	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
	7440-02-0	100 s	15.6	10 U	10 U	10 U	10 U	15.4	10 U	10 U	10 U	10 U
	7439-97-6	NL	2,500	1,230	1,120	2,870	9,710	2,870	3,400	3,270	2,760	8,960
	7782-49-2	10 s	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U
	7440-22-4	50 s	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
	7440-23-5	20,000 s	47,700	50,000	49,000	35,900	132,000	49,800	50,300	48,800	36,400	135,000
	7440-28-0	0.5 g	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
	7440-62-2	NL	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Zinc	7440-66-6	2,000 g	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U

Notes:

NA = Not analyzed, not applicable NL = Not listed

U = The material was analyzed for but not detected at, or above, the reporting limit. The associated numerical value is the sample quantitation limit. J = The associated numerical value is an estimated quantity.

 Sold value
 compound detected at concentration greater than the reporting limit, shaded value

 Shaded value
 Compound detected at a concentration greater than the standard or guidance value.

 s = Standard Value
 Standard Value

g = Guidance Value

Note(1) - Guidance or Standard Values - NYSDEC, Division of Water, TOGS (1.1.1) [NYSDEC, 1998, with addenda through 2004].

Table 13 Groundwater PCBs and Pesticides Results Scott Aviation BCP Site

			June 20	10			August 2	010	
		Shallo	w Overburden	Deep Overburden	Bedrock	Shallov	v Overburden	Deep Overburden	Bedrock
Sample Identification	NYSDEC	MW-36S	GW-DUPLICATE-1	MW-39D	MW-41B2	MW-36S	GW-DUPLICATE-1	MW-39D	MW-41B2
Lab ID	Groundwater Guidance or	RTF1140-05	RTF1140-03	RTF1140-17	RTF1140-07	RTH0401-02	RTH0401-06	RTH0401-03	RTH0401-04
Date Sampled	Standard Value (Note 1)	6/17/2010	6/17/2010	6/18/2010	6/17/2010	8/3/2010	8/2/2010	8/3/2010	8/2/2010
Pesticide Compounds (µg/L)									
4,4'-DDD	0.3 s	0.0088 U	0.0088 U	0.0087 U	0.0088 U	0.0089 U	0.0088 U	0.0087 U	0.0087 U
4,4'-DDE	0.2 s	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U
4,4'-DDT	0.2 s	0.011 U	0.011 U	0.01 U	0.01 U	0.049 U	0.040 J	0.01 U	0.01 U
Aldrin	ND s	0.0063 U	0.0063 U	0.0062 U	0.0063 U	0.0064 U	0.0063 U	0.0062 U	0.0062 U
alpha-BHC	0.01 s	0.0063 U	0.0063 U	0.0062 U	0.0063 U	0.0064 U	0.048 U	0.0062 U	0.0062 U
alpha-Chlordane	NL	0.023 J	0.019 J	0.014 U	0.014 U	0.014 U	0.016 J	0.014 U	0.014 U
beta-BHC	0.04 s	0.024 U	0.024 U	0.023 U	0.024 U	0.049 U	0.024 U	0.023 U	0.023 U
Chlordane	0.05 s	0.028 U	0.028 U		0.028 U	0.028 U	0.028 U	0.027 U	0.027 U
delta-BHC	0.04 s	0.0097 U	0.0097 U	0.0095 U	0.0096 U	0.0098 U	0.013 NJ	0.015 J	0.012 J
Dieldrin	0.004 s	0.0094 U	0.048 U	0.0092 U	0.0093 U	0.0095 U	0.0094 U	0.0092 U	0.0092 U
Endosulfan I	NL	0.011 U	0.011 U	0.01 U	0.01 U	0.093 NJ	0.072 J	0.01 U	0.01 U
Endosulfan II	NL	0.012 U	0.012 U	0.011 U	0.011 U	0.049 U	0.012 U	0.011 U	0.011 U
Endosulfan sulfate	NL	0.015 U	0.015 U	0.015 U	0.015 U	0.015 U	0.015 U	0.015 U	0.015 U
Endrin	ND s	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U
Endrin aldehyde	5 s	0.016 U	0.016 U	0.015 U	0.016 U	0.016 U	0.016 U	0.015 U	0.015 U
Endrin ketone	5 s	0.012 U	0.012 U	0.011 U	0.011 U	0.012 U	0.012 U	0.011 U	0.011 U
gamma-BHC (Lindane)	0.05 s	0.0058 U	0.0058 U	0.0057 U	0.0057 U	0.0058 U	0.011 NJ	0.011 NJ	0.0057 U
gamma-Chlordane	NL	0.011 U	0.011 U	0.01 U	0.01 U	0.011 U	0.013 NJ	0.01 U	0.01 U
Heptachlor	0.04 s	0.0082 U	0.0082 U	0.008 U	0.0081 U	0.0083 U	0.0082 U	0.008 U	0.008 U
Heptachlor epoxide	0.03 s	0.0051 U	0.0051 U	0.005 U	0.005 U	0.049 NJ	0.026 NJ	0.005 U	0.005 U
Methoxychlor	35 s	0.014 U	0.014 U	0.013 U	0.013 U	0.014 U	0.014 U	0.013 U	0.013 U
Toxaphene	0.06 s	0.12 U	0.12 U	0.11 U	0.11 U	0.12 U	0.12 U	0.11 U	0.11 U
PCB Compounds (µg/L)									
Aroclor 1016	NL	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U
Aroclor 1221	NL	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U
Aroclor 1232	NL	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U
Aroclor 1242	NL	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U
Aroclor 1248	NL	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U
Aroclor 1254	NL	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Aroclor 1260	NL	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
Total PCBs (µg/L)	0.09 (Note 2)	U	U	U	U	U	U	U	U

Notes:

NL = Not Listed

ND - Detections are greater than the groundwater standard value.

U = The material was analyzed for but not detected at, or above, the reporting limit. The associated numerical value is the sample quantitation limit.

J = The associated numerical value is an estimated quantity.

NJ = Presumptively present at estimated quantity.

 $\mu g/L = micrograms per liter$

Bold value - compound detected at concentration greater than the reporting limit, shaded value - compound detected above regulatory guidance value.

Shaded value - Compound detected in a concentration greater than the groundwater standard value.

s = Standard Value

g = Guidance Value

Note(1) - Guidance or Standard Values - NYSDEC, Division of Water, TOGS (1.1.1) [NYSDEC, 1998, with addenda through 2004].

Note(2) - Applies to the sum of PCB compounds.

Table 14 Groundwater VOC Results in Temporary Piezometers and Catch Basins Scott Aviation BCP

Laboratory Identification Date Sampled CAS Number Groundwater Guidance or Standard Value ¹ RTF1140-12 RTF1140-13 RTF1140-10 RTF1140-11 RTH0402-12 48 BTEX Compounds (ug/L) 5 6/17/2010 6/17/2010 6/17/2010 6/17/2010 6/17/2010 6/17/2010 6/17/2010 8/2/2010 6/2/2010 <t< th=""><th>U 2.9 83 42 0.21 0.22</th><th>1-1 480-6205-1 11 6/16/2011 1 0.411 9 0.511 4 0.741 1 0.666 0 1 0.211 0 1200 1 0.211 0 1200 1 0.211 0 1200 1 0.211 0 0.211 1 0.211 1 0.211 1 0.211 1 0.211 1 0.211 1 0.211 1 0.211 1 0.211</th><th>CB-E-06/16/2011 480-6205-3 6/16/2011 U 0.7 U 0.71 U 0.74 U 0.74 U 0.74 U 0.72 U 0.74 U 0.74 U 0.74 U 0.71 U 0.71 U 0.74 U 0.71 U</th><th>CB-W-06/16/2011 480-6205-2 6/16/2011 2.1 U 61 3.7 U 3.3 U 61 4.1 U 1.1 U 1.6 U 1.2 U 1.9 U 1.5 U</th></t<>	U 2.9 83 42 0.21 0.22	1-1 480-6205-1 11 6/16/2011 1 0.411 9 0.511 4 0.741 1 0.666 0 1 0.211 0 1200 1 0.211 0 1200 1 0.211 0 1200 1 0.211 0 0.211 1 0.211 1 0.211 1 0.211 1 0.211 1 0.211 1 0.211 1 0.211 1 0.211	CB-E-06/16/2011 480-6205-3 6/16/2011 U 0.7 U 0.71 U 0.74 U 0.74 U 0.74 U 0.72 U 0.74 U 0.74 U 0.74 U 0.71 U 0.71 U 0.74 U 0.71 U	CB-W-06/16/2011 480-6205-2 6/16/2011 2.1 U 61 3.7 U 3.3 U 61 4.1 U 1.1 U 1.6 U 1.2 U 1.9 U 1.5 U
Laboratory Identification Date Sampled CAS Number Groundwater Guidance or Standard Value ¹ RTF1140-13 RTF1140-10 RTF1140-11 RTF1140-11 RTF1140-12 RTF1140-11 RTF1140-11 RTF1140-12 RTF1140-11 RTF1140-12 RTF1140-13 RTF1140-13 RTF1140-11 RTF1140-11 RTF1140-12 RTF1140-13 RTF1140-13 RTF1140-11 RTF1140-11 RTF1140-12 RTF1140-13 RTF1	80-5581-1 480-558 6/1/2011 6/1/201 0.41 U 0.4 0.51 U 1. 0.74 U 0.7 0.66 U U 2.9 83 42 0.21 0.21 U 0.2 60 J 40 0.23 U 1. 12 5 5 7.2 4 0.41 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7	1-1 480-6205-1 11 6/16/2011 1 0.411 9 0.511 4 0.741 1 0.666 0 1 0.211 0 1200 1 0.211 0 1200 1 0.211 0 1200 1 0.211 0 0.211 1 0.211 1 0.211 1 0.211 1 0.211 1 0.211 1 0.211 1 0.211 1 0.211	480-6205-3 6/16/2011 U 0.7 U 0.71 U 0.74 U 0.71 U 0.21 U 0.21 J 10 93 93	480-6205-2 6/16/2011 2.1 U 61 3.7 U 3.3 U 61 4.1 U 1.1 U 1.1 U 1.6 U 1.2 U 1.9 U 1.5 U
Date Sampled Number Standard Value ¹ 6/17/2010 6/17/2010 6/17/2010 6/17/2010 8/17/2010	6/1/2011 6/1/20 0.41 U 0.4 0.51 U 1. 0.74 U 0.7 0.66 U U 2.5 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.41 0.33 U 1. .	11 6/16/2011 1 U 0.41 9 0.51 4 U 0.74 1 J 0.66 0 0 120 1 U 0.21 0 120 1 U 0.21 0 3 18 1 14 14 1 0.41 9	6/16/2011 U 0.7 U 0.51 U 0.74 U 0.66 U 0.7 U 0.7 U 0.21 U 0.21	6/16/2011 2.1 U 61 3.7 U 3.3 U 61 4.1 U 4.1 U 1.6 U 1.2 U 1.9 U 1.5 U
BTEX Compounds (ug/L) Tri-43-2 1 s 5 U 5 U 5 U 25 U	0.41 U 0.4 0.51 U 1. 0.74 U 0.7 0.66 U U 2.5 U 0.23 60 J 40 0.23 U 1. 12 55 7.2 4 0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2	1 U 0.41 9 0.51 4 U 0.74 1 J 0.66 9 0 1 J 0.66 9 0 1 U 0.21 0 J 220 6 0.87 3 18 1 U 0.41 9 U 0.39	U 0.7 J U 0.51 U U 0.74 U U 0.66 U U 0.7 U 0.7 U 0.21 U J 10 J 10 93	2.1 U 61 3.7 U 3.3 U 61 4.1 U 4.1 U 1.1 U 1.6 U 1.2 U 1.9 U 1.5 U
Benzene Tri-43-2 1 s 5 U 5 U 25 U 25 U 25 U 25 U Toluene 100-41-4 5 s 6 U 5 U 25 U	0.51 U 1. 0.74 U 0.7 0.66 U U 2.9 83 42 0.21 U 0.2 60 J 40 0.23 U 1. 12 55 7.2 7.2 4 0.41 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.71 U 0.7	9 0.51 4 U 0.74 1 J 0.66 9 0 120 1 U 0.21 0 J 220 6 0.87 3 18 1 14 1 U 0.41 9 U 0.39	U 0.51 U U 0.74 U U 0.66 U U 0.7 U 0.7 U 0.7 U 0.21 U 140 J 10 93	61 3.7 U 3.3 U 61 4.1 U 4.1 U 1.1 U 1.6 U 1.2 U 1.9 U 1.5 U
Toluene 100-41-4 5 s 5 u 5 u 2 5 u <th2 5="" th="" u<=""> <th2< td=""><td>0.51 U 1. 0.74 U 0.7 0.66 U U 2.9 83 42 0.21 U 0.2 60 J 40 0.23 U 1. 12 55 7.2 7.2 4 0.41 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.71 U 0.7</td><td>9 0.51 4 U 0.74 1 J 0.66 9 0 120 1 U 0.21 0 J 220 6 0.87 3 18 1 14 1 U 0.41 9 U 0.39</td><td>U 0.51 U U 0.74 U U 0.66 U U 0.7 U 0.7 U 0.7 U 0.21 U 140 J 10 93</td><td>61 3.7 U 3.3 U 61 4.1 U 4.1 U 1.1 U 1.6 U 1.2 U 1.9 U 1.5 U</td></th2<></th2>	0.51 U 1. 0.74 U 0.7 0.66 U U 2.9 83 42 0.21 U 0.2 60 J 40 0.23 U 1. 12 55 7.2 7.2 4 0.41 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.71 U 0.7	9 0.51 4 U 0.74 1 J 0.66 9 0 120 1 U 0.21 0 J 220 6 0.87 3 18 1 14 1 U 0.41 9 U 0.39	U 0.51 U U 0.74 U U 0.66 U U 0.7 U 0.7 U 0.7 U 0.21 U 140 J 10 93	61 3.7 U 3.3 U 61 4.1 U 4.1 U 1.1 U 1.6 U 1.2 U 1.9 U 1.5 U
Ethylbenzene 108-88-3 5 s 5 U 5 U 2 S U 2 S U 2 S U 2 S U 2 S U 2 S U 2 S U 2 S U 2 S U 2 S U 2 S U 2 S U 2 S U 2 S U 2 S U 2 S U 3 U	0.74 U 0.7 0.66 U U 2.9 83 42 0.21 U 0.2 60 J 40 0.23 U 1. 12 57.2 4 0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2	4 U 0.74 1 J 0.66 0 1 U 0.21 0 J 220 6 0.87 3 18 1 U 0.41 9 U 0.39	U 0.74 U U 0.66 U U 0.77 C 0.7 U 0.21 U 0.21 U 0.21 U 140 J 10 110 93	3.7 U 3.3 U 61 4.1 U 1.1 U 1.6 U 1.2 U 1.9 U 1.5 U
Xylenes (total) 1330-20-7 5 s 15 U 16 U 25 U 26 U 75 U Total BTEX Compounds (ug/L) NA NL U	0.66 U U 2.9 83 42 0.21 U 0.2 60 J 40 0.23 U 1. 12 55 7.2 7.2 4 0.41 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2	1 J 0.66 0 1 U 0.21 0 J 220 6 0.87 3 1 14 14 1 U 0.41 9 U 0.39	U 0.66 U U 0.7 230 U 0.21 U 140 J 10 110 93	3.3 U 61 4.1 U 1.1 U 1.6 U 1.2 U 1.9 U 1.5 U
Total BTEX Compounds (ug/L) NA NL U	U 2.5 83 42 0.21 U 0.2 60 J 40 0.23 U 1. 12 55 7.2 4 0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.7 0.7 0.7 0.7 0.21 U 0.2	0 1 U 0.21 0 J 220 6 0.87 3 1 14 14 1 U 0.41 9 U 0.39	U 0.7 230 U 0.21 J 10 J 10 93	61 4.1 U 1.1 U 1.6 U 1.2 U 1.9 U 1.5 U
Other VOCs (ug/L) Other VOCs (ug/L)	83 42 0.21 U 0.2 60 J 40 0.23 U 1. 12 5 7.2 4 0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.2	0 120 1 U 0.21 0 J 220 6 0.87 3 1 18 18 1 14 14 1 0.41 9	U 0.21 U 140 J 10 110 93	4.1 U 1.1 U 1.6 U 1.2 U 1.9 U 1.5 U
1,1,1-Trichloroethane 71-55-6 5 s 63 74 25 U 25 U 230 1,1,2.2-Tetrachloroethane 79-34-5 5 s 5 U 5 U 20 25 U 25 U 25 U 1,1,2-Trichloroethane 79-04-5 1 s 5 U 200 25 U 25 U <td>0.21 U 0.2 60 J 40 0.23 U 1. 12 5 7.2 4 0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2</td> <td>1 U 0.21 0 J 220 6 0.87 3 3 18 14 1 U 0.41 9 U 0.39</td> <td>U 0.21 U 140 J 10 110 93</td> <td>1.1 U 1.6 U 1.2 U 1.9 U 1.5 U</td>	0.21 U 0.2 60 J 40 0.23 U 1. 12 5 7.2 4 0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2	1 U 0.21 0 J 220 6 0.87 3 3 18 14 1 U 0.41 9 U 0.39	U 0.21 U 140 J 10 110 93	1.1 U 1.6 U 1.2 U 1.9 U 1.5 U
1,1,2,2-Tetrachloroethane 79-34-5 5 s 5 U 5 U 25 U	0.21 U 0.2 60 J 40 0.23 U 1. 12 5 7.2 4 0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2	1 U 0.21 0 J 220 6 0.87 3 3 18 14 1 U 0.41 9 U 0.39	U 0.21 U 140 J 10 110 93	1.1 U 1.6 U 1.2 U 1.9 U 1.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 5 s 240 290 25 U 25 U 25 U 25 U 1,1-2-Trichloroethane 79-00-5 1 s 5 U 5 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U 25 U 26 U 25 U 26 U 26 U 26 U 25 U 26 U 25 U 20 J 25 U 20 J 26 U 25 U 20 J 26 U 20 J 26 U 20 J 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U 26 U 26 U 26 U 26 U 26 U 26 U </td <td>60 J 40 0.23 U 1. 12 5 7.2 4 0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2</td> <td>0 J 220 6 0.87 3 18 1 14 9 U 0.39</td> <td>140 J 10 110 110 93 110</td> <td>1.6 U 1.2 U 1.9 U 1.5 U</td>	60 J 40 0.23 U 1. 12 5 7.2 4 0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2	0 J 220 6 0.87 3 18 1 14 9 U 0.39	140 J 10 110 110 93 110	1.6 U 1.2 U 1.9 U 1.5 U
1,1,2-Trichloroethane 79-00-5 1 s 5 U 5 U 25 U 25 U 25 U 1,1-Dichloroethane 75-34-3 5 s 1.4 J 0.64 J 25 U 25 U 25 U 1,1-Dichloroethane 75-35-4 5 s 4.8 J 5.7 25 U 25 U 25 U 25 U 1,2,4-Trichlorobenzene 120-82-1 5 s 5 U 5 U 25 U <td>0.23 U 1. 12 5 7.2 4 0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2</td> <td>6 0.87 3 18 1 14 1 0.41 9 0.39</td> <td>J 10 110 93</td> <td>1.2 U 1.9 U 1.5 U</td>	0.23 U 1. 12 5 7.2 4 0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2	6 0.87 3 18 1 14 1 0.41 9 0.39	J 10 110 93	1.2 U 1.9 U 1.5 U
1,1-Dichloroethane 75-34-3 5 s 1.4 J 0.64 J 25 U 25	12 5 7.2 4 0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2	3 18 1 14 1 0.41 9 0.39	110 93	1.9 U 1.5 U
1,1-Dichloroethene 75-35-4 5 s 4.8 J 5.7 25 U 20 J 20 J 1,2,4-Trichlorobenzene 120-82-1 5 s 5 U 5 U 2	7.2 4 0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2	1 14 1 0.41 9 0	93	1.5 U
1,2,4-Trichlorobenzene 120-82-1 5 s 5 U 5 U 5 U 25 U 25 U 25 U 25 U 1,2-Dibromo-3-chloropropane 96-12-8 0.006 s 5 U 5 U 5 U 25 U	0.41 U 0.4 0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2	1 U 0.41 9 U 0.39		
1.2-Dibromo-3-chloropropane 96-12-8 0.04 s 5 U 5 U 5 U 25 U 25 U 25 U 25 U 1.2-Dibromoethane 106-93-4 0.0006 s 5 U 5 U 5 U 26 U 25 U 26 U 25 U 26 U 25 U 26 U	0.39 U 0.3 0.73 U 0.7 0.79 U 0.7 0.21 U 0.2	9 U 0.39	U 0.41 U	
1,2-Dibromoethane 106-93-4 0.0006 s 5 0 5 0 25	0.73 U 0.7 0.79 U 0.7 0.21 U 0.2			2.1 U
1,2-Dichlorobenzene 95-50-1 3 s 5 U 5 U 25 U 25 U 25 U 25 U 1,2-Dichloroethane 107-06-2 0.6 s 5 U 5 U 5 U 26 U 26 U 26 U 26 U 26 U 26 U<	0.79 U 0.7 0.21 U 0.2	3 1 0 73		2 U
1,2-Dichloroethane 107-06-2 0.6 s 5 U 5 U 5 U 25 U 25 U 25 U 25 U 1,2-Dichloropropane 78-87-5 1 s 5 U 5 U 5 U 26 U 120 U	0.21 U 0.2			3.7 U
1,2-Dichloropropane 78-87-5 1 s 5 U 5 U 5 U 25 U 25 U 25 U 1,3-Dichlorobenzene 541-73-1 3 s 5 U 5 U 5 U 26 U 25 U 26 U 25 U 26 U <td></td> <td></td> <td></td> <td>4 U</td>				4 U
1,3-Dichlorobenzene 541-73-1 3 s 5 U 5 U 25 U 120 U	07211 07			1.1 U
1.4-Dichlorobenzene 106-46-7 3 s 5 U 5 U 25 U 25 U 25 U 25 U 25 U 26 U 27 U 100 U				3.6 U
2-Butanone 78-93-3 50 g 25 U 25 U 120 U		8 U 0.78		3.9 U
2-Hexanone 591-78-6 50 g 25 U 25 U 120 U		4 U 0.84		4.2 U
4-Methyl-2-pentanone 108-10-1 NL 25 U 25 U 120 U		3 U 1.3		6.6 U
Acetone 67-64-1 50 g 9 J 6.4 J 120 U 120 U <t< td=""><td>-</td><td>2 U 1.2</td><td>-</td><td>6.2 U</td></t<>	-	2 U 1.2	-	6.2 U
Bromodichloromethane 75-27-4 50 g 5 U 5 U 25 U	-	1 U 2.1		11 U
Bromoform 75-25-2 50 g 5 U 5 U 25 U	3 U 6			15 J
Bromomethane 74-83-9 5 s 5 U 5 U 25 U		9 U 0.39		2 U
Carbon disulfide 75-15-0 60 g 0.8 J 5 U 25 U </td <td></td> <td>6 U 0.26</td> <td></td> <td>1.3 U</td>		6 U 0.26		1.3 U
Carbon tetrachloride 56-23-5 5 s 5 U 5 U 25 U 25 U 25 U	0.69 U 0.6			3.5 U
		9 U 0.19		0.95 U
Chiorobenzene 108-90-7 5 5 510 510 2510 2510 2510	0.27 U 0.2	-		1.4 U
	0.75 U 0.7			3.8 U
Chloroethane 75-00-3 5 s 5 U 5 U 25 U	0.32 U 2. 0.34 U 0.3			1.6 U 1.7 U
	0.34 U 0.3 0.35 U 0.3			1.7 U 1.8 U
Chloromethane 74-87-3 5 s 5 U 5 U 25 U	23 0.35 0 0.3		U 0.35 U 1200	4.1 U
cis-1,2-Dichloropropene 10061-01-5 0.4 s 5 0 5 0 25 0 25 0 25 0	0.36 U 0.3			4.1 U 1.8 U
Cis-1,5-Dicitionophopene 10001-01-5 0.4 % 50 50 250	0.18 U 0.1			0.9 U
Dibromochloromethane 124-48-1 50 g 5U 5U 25U 25U 25U 25U	0.18 U 0.1			1.6 U
Didfunderind of metriane 75-71-8 5 s 5 U 5 U 2	0.68 U 0.6			3.4 U
Isopropylbenzene 98-82-8 5 s 5 U 5 U 25 U 25 U 25 U	0.79 U 0.7			3.4 U
Hopping/light 3002-0 33 50 50 250 250 250 Methyl acetate 79-20-9 NL 51U 51U 251U		5 U 0.5		2.5 U
Methyl aceale 7920-9 NL 30 30 230 <	0.16 U 0.1			0.8 U
Methyl reflour 1034-04-4 10g 50 50 250	0.16 U 0.1			0.8 U
Methyleboliekane 100-07-2 NL 50 50 250	0.44 U 0.4			2.2 U
Styrene 100-42-5 5 s 5 U 5 U 25 U	0.73 U 0.7	-	-	3.7 U
Stylene 100-42-5 53 50 50 2	0.36 U 0.7			1.8 U
Trans-12-Dichloroethene 156-60-5 5 s 5 U 5 U 25 U 25 U 25 U	0.9 U 1.		4.6	4.5 U
trans-1,3-Dichloropropene 10061-02-6 0.4 s 5U 5U 25U 25U 25U 25U	0.37 U 0.3			4.3 U
Trichloroethene 79-01-6 5 s 2.1 J 0.9 J 25 U 25 U </td <td></td> <td></td> <td>60 0.57 0</td> <td>2.3 U</td>			60 0.57 0	2.3 U
Trichlordmethane 75-69-4 5 s 5 U 25 U 25 U 25 U		-		4.4 U
Individualitie 15 05 4 25 0 26 0 <th20 0<="" th=""> 26 0 26 0</th20>	8.8 5		22	4.5 U
Total VOCs (ug/L) ² NA NL 325 378 U U 1450		2 835	1892	76

Notes:

1. Guidance or Standard Values - NYSDEC, Division of Water, TOGS (1.1.1) [NYSDEC, 1998, with addenda through 2004].

Collabel of Standard Values - NrSDEC,
 Total VOCs includes BTEX compounds.
 NA = Not analyzed, not applicable
 NL = Not listed

U = The material was analyzed for but not detected at, or above, the reporting limit. The associated numerical value is the sample quantitation limit.

J = The associated numerical value is an estimated quantity.
 Bold value - compound detected at concentration greater than the reporting limit
 Shaded value - Compound detected in a concentration greater than the groundwater standard value.
 s = Standard Value

g = Guidance Value

Table 15 Air TO-15 Results Scott Aviation BCP Site

Type of Sample		AMBIENT		AMBIEN	т	1	SUBSLAB		INDOOR		SUBSLAB		INDOOR		SUBSLAB		INDOOR	1		
Sample ID		AS-1		AS-DUPLIC			SS-1-SUBSLAB		SS-1-INDOOF	2	SS-2-SUBSLA	B	SS-2-INDOOF	2	SS-3-SUBSL/	AB	SS-3-INDOOF	2		
Laboratory ID		RTF0696-01		RTF0696			RTF0696-03		RTF0696-02		RTF0696-04		RTF0696-05	-	RTF0696-08		RTF0696-07		75th	90th
Sampling Date	CAS No.	6/2/2010		6/2/201			6/2/2010		6/2/2010		6/2/2010	-	6/2/2010		6/2/2010		6/2/2010		Percentile	Percentile
Compound (µg/m ³)																				
1,1,1-Trichloroethane	71-55-6	1.1	UJ	3.4	J	42		1	.1	U	430		2.5		2.6		1.1	U	10.8	20.6
1,1,2,2-Tetrachloroethane	79-34-5	1.4	U	1.4	U	34	U	1	.4	U	6.9	U	1.4	U	1.4	U	1.4	U	NL	NL
1,1,2-Trichloroethane	79-00-5	1.1	U	1.1	U	27	U	1	.1	U	5.5	U	1.1	U	1.1	U	1.1	U	<1.4	<1.5
1,1-Dichloroethane	75-34-3	0.81	U	0.81	U	100		0	.81	U	73			U	2.8		0.81	U	<0.5	<0.7
1,1-Dichloroethene			ŪJ	0.83	J	20	U	_	.79	Ū	67		0.87	-	0.79	U		Ū	<1.1	<1.4
1,2,4-Trichlorobenzene	120-82-1		U	3.7	U	89	U		5.7	U	19	U		U	3.7	U		U	<1.2	<6.8
1,2,4-Trimethylbenzene	95-63-6	0.98	UJ	1.4	J	25	U	0	.98	U	180		1.2		20		0.98	U	5.1	9.5
1,2-Dibromoethane	106-93-4	1.5	U	1.5	U	38	U	1	.5	U	7.7	U	1.5	U	1.5	U	1.5	U	<1.4	<1.5
1,2-Dichlorobenzene	95-50-1	1.2	U	1.2	U	30	U	1	.2	U	6.0	U	1.2	U	1.2	U	1.2	U	<1.0	<1.2
1,2-Dichloroethane	107-06-2	0.81	U	0.81	U	20	U	0	.81	U	4.0	U	0.81	U	0.81	U	0.81	U	<0.7	<0.9
1,2-Dichloropropane	78-87-5	0.92	UJ	1.6	J	23	U	0	.92	U	4.6	U	0.92	U	0.92	U	0.92	U	<1.6	<1.6
1,3,5-Trimethylbenzene	108-67-8	0.98	U	0.98	U	25	U	0	.98	U	64		0.98	U	8.4		0.98	U	<4.6	3.7
1,3-Butadiene	106-99-0	1.1	U	1.1	U	27	U	1	.1	U	5.5	U	1.1	U	1.1	U	1.1	U	<2.7	<3.0
1,3-Dichlorobenzene	541-73-1	1.2	U	1.2	U	30	U	1	.2	U	6.0	U	1.2	U	1.2	U	1.2	U	<1.1	<2.4
1,4-Dichlorobenzene	106-46-7	1.2	U	1.2	U	30	U	1	.2	U	6.0	U	1.2	U	1.2	U	1.2	U	<1.4	5.5
2,2,4-trimethylpentane	540-84-1	0.93	U	0.93	U	23	U	0	.93	U	4.7	U	0.93	U	0.93	U	0.93	U	NL	NL
2-Chlorotoluene	95-49-8	1.0	U	1.0	U	26	U	1	.0	U	5.2	U	1.0	U	1.0	U	1.0	U	NL	NL
4-ethyltoluene	622-96-8	0.98	U	0.98	U	25	U	0	.98	U	26		0.98	U	1.9		0.98	U	<3.1	3.6
Allyl chloride	107-05-1	1.6	U	1.6	U	38	U	1	.6	U	7.8	U	1.6	U	1.6	U	1.6	U	NL	NL
Benzene	71-43-2	0.64	UJ	2.4	J	16	U	0	.64	U	35		2.3		7.0		0.64	U	5.1	9.4
Bromodichloromethane	75-27-4	1.3	U	1.3	U	34	U	1	.3	U	6.7	U	1.3	U	1.3	U	1.3	U	NL	NL
Bromoform	75-25-2	2.1	U	2.1	U	52	U	2	.1	U	10	U	2.1	U	2.1	U	2.1	U	NL	NL
Bromomethane	74-83-9	0.78	U	0.78	U	19	U	0	.78	U	3.9	U	0.78	U	0.78	U	0.78	U	<1.1	<1.7
Carbon disulfide	75-15-0		U	1.6	U	37	U	1	.6	U	7.8	U	1.6	U	31			U	2.1	4.2
Carbon tetrachloride	56-23-5	-	U	1.3	U	31	U		.3	U	6.3	U		U	1.3	U	-	U	<1.1	<1.3
Chlorobenzene	108-90-7		U	0.92	U	23	U		.92	U	4.6	U	0.92	U	0.92	U	0.01	U	<0.8	<0.9
Chloroethane	75-00-3	-	U	1.3	U	32	U		.3	U	6.6	U	1.3	U	1.3	U		U	<1.0	<1.1
Chloroform			U	0.98	U	24	U		.98	U	4.9	U	0.98	U	0.98	U		U	<1.2	1.1
Chloromethane	74-87-3	1.3		1.2		25	U		.2		5.2	U	1.3		1.0	U	1.3		3.1	3.7
cis-1,2-Dichloroethene	156-59-2		UJ	<mark>1.5</mark>	J	32			.79	U	390		1.6		0.79	U	00	U	<1.2	<1.9
cis-1,3-Dichloropropene	10061-01-5		U	0.91	U	23	U		.91	U	4.5	U	0.01	U	0.91	U		U	<2.0	<2.3
Cyclohexane	110-83-8		UJ	1.1	J	17	U		.69	U	480		0.69	U	18			U	NL	NL
Dibromochloromethane	124-48-1		U	1.7	U	43	U		.7	U	8.5	U	1.7	U	1.7	U	1.7	U	NL	NL
Ethylbenzene			UJ	1.3	J	22	U		0		56		1.5		4.8		1.0		3.4	5.7
Freon 11	75-69-4	1.4		1.7		28	U		.3		24		1.6		1.3		1.6		6.7	18.1
Freon 113	76-13-1	2.0		2.5		520			.2		1300		2.8		1.5	U	1.9		NL	NL
Freon 114	76-14-2		U	1.4	U	35	U		.4	U	7.0	U	1.4	U	1.4	U		U	NL	NL
Freon 12	75-71-8	3.0		4.0		59	U		.1		12	U	3.0		5.4		12 0.00		10.5	16.5
Heptane	142-82-5		UJ	1.1	J	20	U	0	.82	U	200		0.98		34		0.82	U	NL	NL
Hexachloro-1,3-butadiene	87-68-3		U	2.1	U	53	U	2	1	U	11	U	2.1	U	2.1	U	2.1	U	<2.5	<6.8
	110-54-3		UJ	2.4	J	42	U	- I	.8	U	240		2.5		32		1.8	U	NL	NL
m&p-Xylene	179601-23-1		UJ		J	43	U		.4	1.1	290		4.8		34		3.0		12.2	22.2
Methylene chloride			U	1.7	0	42	U		.7		8.7	U	1.7	U	1.7	U	17		5	10
o-Xylene				1.4	J	22	U		.5		91		1.7		12		1.0		4.4	7.9
Styrene			U	0.85	U	21	U		0.85		4.3	U	0.85		0.85	U		U	<2.3	1.9
Tetrachloroethylene			U	1.4		34	U		.4		670		1.4	U	1.4	U		U	5.9	15.9
Toluene			J	11	J	19	U	2			120		9.8		27		1.5		25.9	43
trans-1,2-Dichloroethene			U	0.79	0	40			.79		12		÷ ÷		0.79	U		U	NL 11.2	NL 11.2
trans-1,3-Dichloropropene			U UJ	0.91	0	23	U				4.5	U		U	0.91	U		U U	<1.2	<1.3
Trichloroethene				1.5	J	150			••		640		1.5		4.5			-	1.2	4.2
Vinyl Bromide			U U	0.87	U U	22 13	<u> </u>		0.87 0.51		4.4 2.6				0.87	U U		U U	NL 1.0	NL 10
Vinyl chloride	75-01-4	0.51	U	0.51	U	13	U	U		U	2.0	U	0.51	U	0.51	U	0.51	U	<1.0	<1.9

Notes:

All units in micrograms per cubic meter (µg/m³)

Typical background indoor air values for commercial office buildings, conducted by the US EPA from 1994 to 1996 (Building Assessment and Survey Evaluation (BASE) Database).
 Sample AS-DUPLICATE is a duplicate sample of AS-1.
 Bold - Compound detected in a concentration greater than the method reporting limits.
 Exceeds BASE Database Indoor Air Values 75th Percentile

Exceeds BASE Database Indoor Air Values 90th Percentile

NL - Not listed - data not available for background concentrations for these compounds.

U - The compound was analyzed for, but was not detected above the method reporting limit.

J - The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.

Table 16 Air TO-15 Results Scott Aviation BCP Site

Sample ID		AS-1		AS-DUPLIC	ATE	SS-1-SUBSI	_AB	SS-1-INDO	OR	SS-2-SUBSI	.AB	SS-2-INDO	OR	SS-3-SUBS	LAB	SS-3-INDO	OR
Laboratory ID	CAS	RTF0696	-01	RTF0696-	06	RTF0696-0	03	RTF0696-0	02	RTF0696-0)4	RTF0696-	05	RTF0696-	08	RTF0696-	-07
Sampling Date	Number	6/2/201	0	6/2/2010)	6/2/2010		6/2/2010		6/2/2010		6/2/2010)	6/2/2010)	6/2/2010	0
Compound (µg/m ³)																	
1,1,1-Trichloroethane	71-55-6	1.1	UJ	3.4	J	42		1.1	U	430		2.5		2.6		1.1	U
Carbon tetrachloride	56-23-5	1.3	U	1.3	U	31	U	1.3	U	6.3	U	1.3	U	1.3	U	1.3	U
Tetrachloroethene	127-18-4	1.4	U	1.4	U	34	U	1.4	U	670		1.4	U	1.4	U	1.4	U
Trichloroethene	79-01-6	1.1	UJ	1.5	J	<mark>150</mark>		1.1	U	640		1.5		4.5		1.1	U

Notes:

All units in micrograms per cubic meter (µg/m³)

Sample AS-DUPLICATE is a duplicate sample of AS-1.

U - The material was analyzed for but not detected at or above the reporting limit. The associated numerical value is the sample quantitation limit.

J - Estimated Concentration.

Bold - Compound detected in a concentration greater than the method reporting limit.

Take reasonable and practical actions to identify source(s) and reduce exposures

Monitoring required based on NYSDOH Guidance (2006)

Mitigation required based on NYSDOH Guidance (2006)

Table 17 Exposure Pathway Analysis Former Scott Aviation BCP

Receptor	Exposure Medium	Exposure Pathway	Pathway Not Considered Complete	Pathway Considered Potentially Complete, But Not Likely to Result in Exposure	Pathway Potentially Complete and will be Addressed in the AAR for the Site	Rationale for Inclusion
		Ingestion		Х		Outdoor Maintenance and Utility Workers who mow the grass on the site may b
		Dermal Contact		Х		exposure pathway is considered potentially complete. Since surface soil concel
	On-site Surface	Inhalation of Particulates		x		workers would only be on site for a short time, exposure is not likely.
	Soil (0-2 inches)	Inhalation of Volatiles in Ambient Air		x		Outdoor Maintenance and Utility Workers may be infrequently exposed to ambi however, exposure is not likely due to atmospheric mixing, and dilution of the V
		Ingestion	х			
On-site AVOX	On-site	Dermal Contact	х			Outdoor Maintenance Workers and Utility Workers are not likely to contact subs
workers, Outdoor	Subsurface Soil (>2 inches)	Inhalation of Particulates	х			found to be significantly impacted.
Maintenance Worker	(>2 menes)	Inhalation of Volatiles in Ambient Air	х			
or Utility Worker		Ingestion	х			
	Groundwater	Dermal contact	х			Outdoor Maintenance Workers are not likely to contact groundwater during their
		Inhalation of Volatiles in Ambient Air	X			
	Surface Water	Ingestion		x		Outdoor Workers may be exposed to surface water during storm events in the S mowing or other maintenance work would be performed where surface water is
		Dermal contact		х		water and only in the Spring season, which would serve to limit surface water co
	Soil Vapor/ Indoor Air	Inhalation of Volatiles in Ambient Air		x		Soil vapor intrusion is not a current concern at AVOX Plant 1 but could potentia
		•	•			•
		Ingestion		X		
	On-site Surface	Dermal contact		X		Outdoor Utility Workers who repair or maintain equipment at the site may be ex
	Soil (0-2 inches)	Inhalation of Particulates Inhalation of Volatiles in Ambient Air		x		pathway is considered potentially complete. Since most of the site is covered w would only be on site for a short time, exposure is not likely.
	On-site	Ingestion		Х		
		Dermal contact		Х		Outdoor Subsurface Utility Workers may be exposed to impacts in subsurface s
On-site Outdoor		Inhalation of Particulates		Х		related to on-Site subsurface utilities. However, subsurface soil was not signific
Subsurface Utility Workers	(>2 inches)	Inhalation of Volatiles in Ambient Air		x		
		Ingestion			X	
	Groundwater	Dermal contact			x	Outdoor Subsurface Utility Workers may be exposed to COCs in groundwater a The pathway will be addressed in the Analysis of Alternatives discussion of pote
		Inhalation of Volatiles in Ambient Air			x	
		Ingestion		X		Outdoor Subsurface Utility Workers may be exposed to surface water during sto
	Surface Water	Dermal contact		x		that work would be performed where surface water is present. In addition, only season, which would serve to limit surface water contact with COCs.
		Ingestion		X		
		Dermal contact		X		On-site Visitors and Trespassers may be exposed to residuals in surface soil ar
	On-site Surface	Inholation of Particulator		x		covered with grass and vegetation, the Visitors or Trespassers would only be or
	Soil (0-2 inches) On-site	Inhalation of Volatiles in Ambient Air		x		exposure is not likely.
		Ingestion	x			
		Dermal contact	X			1
Site Visitor or Trespasser	Subsurface Soil (>2 inches)		x			On-site Visitors or Trespassers would not be exposed to subsurface soil while v
		Inhalation of Volatiles in Ambient Air	х			
		Ingestion	Х			
	Groundwater	Dermal contact	х			On-site Visitors or Trespassers would not be exposed to groundwater while visi
		Inhalation of Volatiles in Ambient Air	х			1
1		Ingestion	х			On-site Visitors or Trespassers may potentially be exposed to surface water wh
	Surface Water	Dermal contact	x			Spring, and any contact would be likely to be for only a brief period of time, ther
		-				

ion or Exclusion

y be exposed to residuals in surface soil or particulates, therefore the centrations are low, and the work areas are covered with grass and the

nbient air VOCs emanating from on-site VOC impacts near the surface; e VOCs in ambient air.

ubsurface soils during their workday. In addition, subsurface soil was not

neir workday.

e Spring; however, exposure is not likely as it is unlikely that the grass er is present. In addition, only a small portion of the Site collects surface r contact with residuals.

tially become a concern if conditions of the slab or site use change.

exposed to residuals in surface soil or particulates, therefore the exposure with grass and vegetation, the impacts are covered, and the workers

e soil, dust, or VOCs in ambient air while completing excavation work ificantly impacted, therefore exposure is not likely.

er and VOCs in ambient air while completing excavation work in the Site. potential remedial actions for the site.

storm events in the Spring; however, exposure is not likely as it is unlikely only a small portion of the Site collects surface water and only in the Spring

I and VOCs in ambient air while visiting the site; however, the site is e on site for a short time, and part of the Site is fenced in, therefore

e visiting the site.

isiting the site.

while visiting the site; however, surface water only pools on the site in the herefore exposure is not likely.

Table 18 Preliminary Screening of Technologies for Groundwater Former Scott Aviation Facility Area 1

		Overview of Gro	oundwater Impacts	
•	Iverburden Aquifer): i impacts south and west of Plant 1 (Area 1). One w ium, magnesium, and iron impacts.	vell had an exceedance of a heptachlor epoxide	GRAs and subsequent screening apply to CVOCs a	and RTFX in the shallow and deen overburden a
Deep Groundwater (Over Comingled CVOC, BTEX	rburden Aquifer): impacts southwest of Plant 1. Limited sodium, ma	agnesium, and iron impacts.	exceedance may be addressed during remediation are attributed to naturally occurring geochemistry	of the groundwater plume (within the boundarie
edrock Aquifer: imited sodium, magnes	sium, and iron impacts.			
General Response Actions	Technology	Process	Description	Applicability to Are
No Action	(n/a)	(n/a)	(n/a)	Applicable - Retained as a baseline to compa against.
		Environmental Easement		
	Institutional Controls	Zoning / Ordinance	Non-physical means of enforcing a restriction on the site that limits exposure and use of impacted	Applicable- May be required in addition to rem
Limited Action		Current Site Use	groundwater and prevents actions that would interfere with the remedial program.	site use and selected re
		Site Management Plan		
	Environmental Monitoring	Groundwater Monitoring Monitored Natural Attenuation	Monitoring natural attenuation mechanisms, and plume mobility. Assumes plume is stable.	Applicable- May first require mitigation of
Containment	Physical Containment	Slurry Wall, Solidification, Sheet Pile	Geotechnical methods for the isolation of source areas, thus preventing the ongoing migration of contaminants. Methods include sheet pile walls, diaphragm walls and bentonite slurry walls. Barrier wi likely alter natural groundwater flow paths.	Not Applicable- This is a passive technology that plume, and therefore volatilization and indoor Requires significant civil works to install barrier phase if remediation works are
	Hydraulic Containment	Induced Drawdown - Pump and Treat	Proven method for containment of dissolved phase contaminants. Extraction wells intercept groundwater and recirculate back to upgradient injection locations until contaminants have attenuated.	Not Applicable- Low permeability soils make this installation of extraction wells, and relies complete Requires long-term infrastructure and operation objectives.
		Aerobic	Aerobic bioremediation enhances biodegradation of with the addition of oxygen and/or limiting nutrients to subsurface.	Potentially Applicable - Aerobic bioremediation contaminants and is only applicable to BTEX c (e.g., chloroethane, vinyl chloride) found in gr be applied as a polish step after anothe
	Biological Treatment	Anaerobic	Anaerobic bioremediation enhances anaerobic reductive degradation by adding electron donor (carbon substrate and/or nutrients) to stimulate the microbial activity of dechlorinating bacteria.	Applicable - Anaerobic bioremediation is high in groundwater at the Site, but is generally not presence of daughter products, reductive de naturally. Process could also be applied as remedial technolog
In-situ Treatment		Bioaugmentation	Bioaugmentation comprises adding a known contaminant-degrading microbial culture (e.g. KB-1) to accelerate the bioremediation process.	Potentially Applicable- Different bacteria woul contaminant classes (BTEX vs. CVOCs), a groundwater conditions and/or enhanceme cultures may enhance and/or increase the rate
		In-situ Chemical Oxidation (Injection)	Apply chemical oxidant into subsurface for oxidation/destruction of contaminants in soil and groundwater. Strong oxidants require careful handling	Applicable- Chemical oxidation has been de BTEX and CVOC contaminants; however, tre difficult than other CVOCs. Injection into low conservative design and more injection points.
	Chemical Treatment	In-Situ Chemical Oxidation (Soil Mixing)	procedures.	effective contact between oxidants and VOCs schedule/reuse.
		In-situ Chemical Reduction	Inject amendments to treat subsurface contaminants through reduction reactions (i.e., zero valent iron).	Applicable- In-situ Chemical Reduction most on Additives can be added to also encourage chemical reduction also enhances bioremedi dechlorination.

aquifer. The single pesticide ies of the VOC plume). Metals
ea 1
are other remedial alternatives
nediation, depending on future remedy.
of storm sewer pathway
t would not treat VOCs within the r air exposures would remain. r wall. May be feasible in future e unsuccessful.
s technology infeasible. Requires ely on attenuation for remediation tion which does not meet Site
on process will not treat all site compounds or specific CVOCs roundwater at the Site. Could er remedial technology.
hly effective for CVOCs found t effective for BTEX. Based on egradation may be occurring is a polish step after another gy.
ld be required for different site and each require different nents. Additional microbial e of biodegradation at the Site.
emonstrated to directly treat eatment of 1,1,1-TCA is more ver permeability soils requires s. In-situ soil mixing allows for s but may limit redevelopment
commonly applied for CVOCs. treatment of BTEX. In-situ liation of CVOCs by reductive

Table 18 Preliminary Screening of Technologies for Groundwater Former Scott Aviation Facility Area 1

		Overview of Gr	oundwater Impacts	
	verburden Aquifer): impacts south and west of Plant 1 (Area 1). One w um, magnesium, and iron impacts.			
Deep Groundwater (Over Comingled CVOC, BTEX	r <u>burden Aquifer):</u> impacts southwest of Plant 1. Limited sodium, ma	gnesium, and iron impacts.	GRAs and subsequent screening apply to CVOCs a exceedance may be addressed during remediation are attributed to naturally occurring geochemistry a	of the groundwater plume (within the boundaries
<u>Bedrock Aquifer:</u> .imited sodium, magnes	ium, and iron impacts.			
General Response Actions	Technology	Process	Description	Applicability to Area
		Air Sparging	Strips VOCs from groundwater through addition of air below treatment zone, transferring VOCs to vapor phase for extraction and can enhance aerobic biodegradation by injecting air and providing oxygen source.	Not Applicable- Low permeability soils make t
In-situ Treatment Physical Treatment	Physical Treatment	Electrical Resistive Heating (ERH)/Thermal Conductive Heating (TCH)	In-situ thermal remediation generates heat in-situ or applies heat directly to the subsurface, raising the temperature to above the boiling point of the target VOC contaminants (typically ~100°C or greater) and evaporating VOCs from the soil. Vapors are collected from the subsurface through soil vapor extraction wells for subsequent above-ground treatment.	Applicable- In-situ thermal treatment is more e treatment processes, but can complete treatme Technology is applicable to both unsaturated storm sewer and utilities as well as active op complicate design.
		Pump and Treat	Impacted groundwater is pumped from the subsurface and treated ex-situ using air strippers, adsorption, and/or filtration	Not Applicable - Low permeability soils make t Technology may provide plume containment but c limited in diffusion-limiting clay geology. Pump a infrastructure and operation which does not
		High Vacuum Multi-phase Extraction (MPE)	Utilize high vacuums to extract groundwater and expose impacted upper saturated zone soil for vapor extraction. Provides aggressive contaminant removal. Ideally applied in 48-hour continuous events.	Not Applicable- Low permeability soils make t
Removal Excavation	Off-Site Disposal	Contaminated soils would be removed and transported to an off-site disposal facility.	Applicable - Excavation of soil can be an effe delineated "hot spots" to reduce contamina anticipated to be more expensive than in-situ requires less treatment time . Technology is apj and saturated soil.	
		On-Site Treatment and Backfill	Contaminated soils will be excavated and thermally treated. The treated soils will be backfilled.	Not Applicable - Thermal soil treatment units are app however, due to the small treatment area and volum cost effective.
		Area 1 Catcl	h Basin Network	
ollowing remedies are p	licable" in Area 1 are applicable for the groundwate otentially applicable depending on the remedial ap in structures and associated piping; and/or		ntly, the catch basin network intercepts the groundw	ater table and conveys impacted groundwater to
-Remove storm	water utilities, regrade paved areas, and install drai	-		
) No Action (retained as) Limited Action (Institu	tional Controls, Environmental Monitoring) tment (Aerobic, Anaerobic, and/or Bioaugmentation ation ction	icable for the site conditions and will undergo initia	clusion al screening.	

aquifer. The single pesticide ies of the VOC plume). Metals
ea 1
te this technology infeasible
e expensive than other in-situ ment in a shorter time frame. ed and saturated soil. HDPE operations on the site may n.
te this technology infeasible. It contaminant removal could be up and treat requires long-term not meet Site objectives.
te this technology infeasible
effective alternative for well- inant mass. Excavation is itu treatment processes, but applicable to both unsaturated il.
applicable for CVOCs and BTEX lume, on-site treatment will not be
to a nearby creek. The

Table 19 Preliminary Screening of Technologies for Soil Former Scott Aviation Facility Area 1

		Overview o	f Soil Impacts		
<u>Surface Soil Impacts:</u> Limited PAHs, metals from 0 to 0.2 ft bgs in sample locations south and west of Plant 1 <u>Subsurface Soil Impacts:</u> Limited VOCs (acetone and methylene chloride) south of Plant 1, may be associated with laboratory contamination.		GRAs and subsequent screening apply to metals and PAHs in surface soil.			
General Response Actions	Technology	Process	Description	Applicability to Area	
No action	(n/a)	(n/a)	(n/a)	Applicable- Retained as a baseline to compare against.	
		Environmental Easement	Non-physical means of enforcing a restriction on the		
		Zoning / Ordinance	site that limits exposure to impacted materials and	Applicable- Limited surface soil impacts may b	
Limited action	Institutional Controls	Current Site Use	prevents actions that would interfere with the remedial	controls and may be required for contain	
		Site Management Plan	program.		
		Asphalt cap			
		HDPE cap	Capping provides a physical barrier capable of limiting	Applicable- Based on limited surface soil imp cost-effective remed	
Containment	On-Site Capping	Clay cap	exposure to impacted soil. Capping may also provide		
		Soil cover	a barrier which prevents infiltration of precipitation and subsequent leaching issues.		
		RCRA Landfill	;;;;;		
	In-situ Solidification	Bucket/blender, Auger Rig, Pressure Jet Grout - Portland, bentonite, fly ash, slag, activated carbon, blend	Solidification seeks to reduce the potential mobility of soil contaminants. Treatment is possible when mixed with solidification materials.	Not Applicable- Cost prohibitive based or	
In-situ treatment	Physical treatment	Solidification / Stabilization Soli flushing Surfactant enhanced recovery Electro kinetic separation Vitrification Thermal resistivity Electromagnetic heating Heat enhanced recovery Soli vapor extraction	Physical treatment technologies	Not Applicable - Due to the small treatment area will not be cost effective	
Thermal treatment		Electrical Resistive Heating (ERH)/Thermal Conductive Heating (TCH)	In-situ thermal remediation generates heat in-situ or applies heat directly to the subsurface, raising the temperature to above the boiling point of the target VOC contaminants (typically ~100oC or greater) and evaporating VOCs from the soil. Vapors are collected from the subsurface through soil vapor extraction wells for subsequent above-ground treatment.		
Removal Excavation	Evenuation	Off-site Disposal	Excavate soils from impacted areas, requires on-site treatment and/or disposal	Applicable- Based on limited shallow soil i disposal may provide cost-effed	
	Excavation	On-Site Treatment and Backfill	Excavated soils treated on site by one of the treatment options listed above (in-situ treatment).	Not Applicable- Based on limited impacts in technologies not practical for	
		Con	clusion		

The following technologies were identified as applicable or potentially applicable for the site conditions and will undergo initial screening: 1) No Action 2) Institutional Controls (Limited Action) 3) Capping (Containment) 4) Excavation and Off-site Disposal (Removal)

rea 1 are other remedial alternatives
y be addressed by institutiona tamination left in place.
mpacts, capping may provide ledy.
d on limited soil impacts.
ea and volume, on-site treatment ctive.
address metals impacts.
il impacts, excavation and ffective remedy.
in surface and shallow soil, for the Site.

Table 20Preliminary Screening of Technologies for Soil VaporFormer Scott Aviation Facility Area 1

Overview of Soil Vapor Impacts				
Soil Vapor Impacts: Soil vapor was sampled requiring mitigation for 1	in three locations within the Plant 1 building. One I		GRAs and subsequent screening apply to CVOCs in	n the vicinity of the boiler room.
General Response Actions	Technology	Process	Description	Applical
No action	(n/a)	(n/a)	(n/a)	Applicable - Retained as a bas
Engineering Control	Vapor Barrier	Seal/install barrier beneath building slab	A seal and/or barrier is installed to address the vapor intrusion pathway. The source is not treated, exposure is mitigated.	Not Applicable- May require de interrupt site operation
	Sub-slab Depressurization	Installation of an active or passive vapor mitigation system to provide alternative pathway to atmosphere	Installation of vapor collection points beneath the slab, piping routes vapor to atmosphere. Active or passive vacuum is applied for enhanced transport of vapors.	Applicable- Can be instal technology to
		Room pressurization	HVAC system is modified to apply positive pressure to mitigate vapor intrusion.	Potentially Applicable- Dep
	HVAC Modification	Passive ventilation	Mitigation occurs by dilution through increased ventilation.	Potentially Applicable- Dep
Physical/Ex-situ Treatment	Soil vapor extraction and subsequent treatment	Will address contamination in unsaturated (vadose) zone and prevent impacted vapor from entering the building.	Installation of vapor collection points beneath the slab and/or exterior of the building, vapors are treated ex- situ.	Not Applicable - Based on low per require several extraction points be praction
		Con	clusion	1

The following technologies were identified as applicable or potentially applicable for the site conditions and will undergo initial screening:

1) No Action (retained as a baseline)

2) Sub-slab Depressurization (Exposure Mitigation)

3) HVAC Modification (Exposure Mitigation)

m.

ability to Area 1 Building

baseline to compare other remedial alternatives against.

demolition of existing slab to install barrier. May tions for a considerable amount of time.

stalled in a minimally invasive way. Proven to mitigate soil vapor intrusion.

epending on building construction and room layout. epending on building construction and room

epending on building construction and room layout.

r permeability of soil and shallow groundwater, may nts to get an effective radius of influence. May not ctical given site constraints.

Initial Screening of Remedial Technologies Table 21a – No Action (all media)

<u>No Action</u>: No remedial activities are included under this alternative. No environmental sampling is performed. No actions are proposed to limit exposure to contaminants.

EFFECTIVENESS	IMPLEMENTABILITY	соѕт
Advantages	Advantages	Advantages
• None	 No action makes this the easiest technology alternative to implement 	No capital costsNo O&M costs
Disadvantages	Disadvantages	Disadvantages
 Does not mitigate on-site risk or mitigate exposures Does not comply with SCGs Does not reduce the contaminant concentrations, or limit plume mobility, toxicity, or volume of contamination. No restriction on groundwater use would be implemented. 	Additional remedial actions may be required in the future	Additional remedial actions may be required in the future

Conclusion: The No Action alternative is not protective of human health or the environment. It does not reduce on-site risk or mobility. However, it is used as a baseline in comparison with other alternatives. **This alternative will be retained for detailed analysis.**

Initial Screening of Remedial Technologies Table 21b – Limited Action (all media)

Limited Action: Limited action would include institutional controls to limit exposure to contamination and environmental monitoring to evaluate contaminant concentrations over time in order to quantify risk.

EFFECTIVENESS	IMPLEMENTABILITY	COST
Advantages	Advantages	Advantages
 Mitigate on-site risk by reducing exposure to human and environmental receptors Natural attenuation will reduce contaminant concentrations over time. 	 Limited actions can make this response action easy to implement Environmental sampling is standard practice for contaminated sites. 	 Limited capital costs Low O&M costs
Disadvantages	Disadvantages	Disadvantages
 Does not comply with all SCGs Does not reduce the contaminant concentrations, or limit plume mobility, toxicity, or volume of contamination in a reasonable period of time. 	 Additional remedial actions may be required in the future Institutional controls can be difficult to implement for properties not owned by the responsible party and/or can inhibit property transaction. 	 Additional remedial actions may be required in the future O&M costs for monitoring and reporting may be required for a long time into the future.

Conclusion: Limited Action can be protective of human health and the environment by minimizing exposure to contaminants. However, it does not actively reduce contamination concentrations, mass, or mobility in a reasonable period of time. This technology is not retained for detailed analysis as a stand-alone alternative. However, limited action including institutional controls and/or monitored natural attenuation may be useful to incorporate into other remedial alternatives.

Initial Screening of Remedial Technologies Table 21c – Enhanced Biodegradation (groundwater)

Enhanced Biodegradation: Natural microbial processes are enhanced through the introduction of electron donors (enhancement) and/or microbial populations (bioaugmentation) via injection to reduce concentrations of VOCs.

EFFECTIVENESS	IMPLEMENTABILITY	соѕт
Advantages	Advantages	Advantages
 Treatment technology has been shown to be effective in reducing mass of organic contaminants. Does not generate large amounts of waste material. 	Easily implemented because remedial actions are limited to injection and monitoring.	 Lower capital cost than other remedial technologies being screened Does not generate large amounts of waste material requiring disposal.
Disadvantages	Disadvantages	Disadvantages
 Site contaminants likely require both anaerobic (chlorinated VOCs) and aerobic (BTEX) treatment zones. Short term effectiveness is likely to be low due to the likely presence highly concentrated source areas. More toxic byproducts can be generated from incomplete biodegradation (i.e., vinyl chloride from TCE or chloroethane from 1,1,1-TCA). 	 Delivery of injected substrates less effective in lower permeability soils Additional remedial actions may be required in the future for polishing. Processes create reducing environment which may mobilize inorganic contaminants. 	 Bioaugmentation (addition of microbes) may be required if microbes required for complete dechlorination are not present Long term monitoring costs required to demonstrate remediation effectiveness.

Conclusion: This alternative would protect human health and the environment by limiting exposure to contaminated groundwater and reducing contaminant mass and concentration in overburden groundwater over time. It has been effective at other sites with similar needs and can be relatively less expensive than other remedies undergoing screening. **This alternative is retained for detailed analysis**.

Initial Screening of Remedial Technologies Table 21d – In-Situ Chemical Oxidation (groundwater)

In-Situ Chemical Oxidation: In-situ chemical oxidation (ISCO) acts to reduce the mass of organic contaminants through the direct injection of a strong oxidizing agent into the subsurface to breakdown contaminants into byproducts in the ground.

EFFECTIVENESS	IMPLEMENTABILITY	COST
Advantages	Advantages	Advantages
 Treatment technology has been shown to be effective in reducing mass of BTEX and chlorinated VOCs. Treatment is performed in a short time period. Does not generate large amounts of waste material. 	 Easily implemented because remedial actions are limited to oxidant injection and monitoring. Does not require particular geochemical conditions. 	 Capital costs are relatively low. Does not generate large amounts of waste material requiring disposal.
Disadvantages	Disadvantages	Disadvantages
 1,1,1-TCA (a primary site contaminant) is more difficult to oxidize than other VOCs Change in groundwater pH and/or oxidation state can increase mobility of several metals. 	 More than one oxidant injections may be required, depending on the oxidant chosen, and based on the elevated concentrations present. Delivery of injected substrates less effective in lower permeability soils 	Long term monitoring costs required to demonstrate remediation effectiveness.

Conclusion: This alternative would protect human health and the environment by limiting exposure to contaminated groundwater and reducing contaminant mass and concentration in groundwater, and can be relatively less expensive than other remedies undergoing screening. **This alternative is retained for detailed analysis.**

Initial Screening of Remedial Technologies Table 21e – In-Situ Chemical Reduction (groundwater)

In-situ Chemical Reduction: This technology applies zero valent iron (ZVI) along with a carbon substrate reduce the mass and concentration of chlorinated VOCs by treatment via biological, chemical, and physical processes.

EFFECTIVENESS	IMPLEMENTABILITY	COST
Advantages	Advantages	Advantages
 Technology has been demonstrated to be effective in reducing mass of chlorinated VOCs. Does not generate large amounts of waste material. Contaminants treated in-situ by both biotic and abiotic reactions. 	 Easily implemented because remedial actions are limited to injection and monitoring. Does not require particular geochemical conditions. 	Does not generate large amounts of waste material.
Disadvantage	Disadvantage	Disadvantage
 Developing technology whose effectiveness has been demonstrated less frequently than other in-situ remediation technologies. Technology not demonstrated for treatment of BTEX 	 Injection of ZVI requires high injection pressures (100-300 psi) Limited number of subcontractors who have equipment to inject ZVI Delivery of injected substrates less effective in lower permeability soils Processes create an extremely reducing environment which may mobilize inorganic contaminants. 	 Capital costs are higher than other in-situ remediation technologies. Long term monitoring costs required to demonstrate remediation effectiveness.

Conclusion: This alternative would protect human health and the environment by limiting exposure to contaminated groundwater and reducing contaminant mass and concentration in groundwater. However, due to the shallow groundwater table, the lower permeability of site soils, and the high injection pressures required, this technology is likely to lead to minor fracturing, preferential pathways, and/or daylighting which would limit effectiveness of the treatment. **Thus, this alternative is not retained for detailed evaluation; however, targeted use of ZVI could be considered for an enhanced bioremediation alternative for areas of highest concentrations.**

Initial Screening of Remedial Technologies Table 21f – In-Situ Thermal Remediation (groundwater)

In-situ Chemical Reduction: This technology heats up the subsurface to increase the temperature above the boiling point of water to enhance stripping and volatilization of VOCs. Vapors are collected for treatment.

EFFECTIVENESS	IMPLEMENTABILITY	соѕт
Advantages	Advantages	Advantages
 Effective in reducing contaminant source mass. Boiling points of site-specific VOCs are within the operating range of the technology. Treatment of soil and groundwater is uniform in vertical and horizontal directions, regardless of soil type. May be able to treat soil to below residential and non-residential remedial standards to avoid engineering controls and institutional controls. Short operation time (several months) with low probability of contamination rebound 	 Very timely to remediate residual contaminant source mass areas and residual groundwater in treatment areas. Non-intrusive, except for installation of thermal points and vacuum extraction points. Contaminated areas are relatively accessible. No groundwater dewatering is required. 	 No long term O&M costs Lower costs associated with shorter anticipated monitoring time.
Disadvantages	Disadvantages	Disadvantages
Limited effectiveness for treating VOCs in weathered bedrock/bedrock	 High demand for limited thermal remediation specialty contractors. Thermal remediation system may require installation of additional electrical infrastructure. Treatment or off-site disposal required for collected condensate. Existing PVC utilities and wells will need to be abandoned and replaced with stainless steel wells. Permits may be required for treatment and/or discharge of wastewater and/or vapor stream. 	 High costs associated with electric demand and utilities required for heating. High capital costs associated with design and construction of thermal remediation system. New monitoring wells need to be installed constructed of steel materials. Treatment and/or disposal of generated wastewater.

Conclusion: This alternative would protect human health and the environment by limiting exposure to contaminated groundwater and reducing contaminant mass and concentration in groundwater. However, this technology is significantly more expensive than other in-situ technologies. In addition, the storm sewer line and any other PVC utilities could be damaged by the high temperatures and would require complete replacement with materials resistant to high temperatures. **Thus, this alternative is not retained for detailed evaluation.**

Initial Screening of Remedial Technologies Table 21g – Soil Excavation (soil and/or groundwater)

Soil Excavation: Under this technology, shallow soil and/or saturated soil within areas of contaminated groundwater would be excavated to remove contaminant source zones with the soil transported to an appropriate landfill or treatment facility. By removing the saturated soils, less contamination would be available to dissolve into groundwater and migrate off-site.

EFFECTIVENESS	IMPLEMENTABILITY	COST		
Advantages	Advantages	Advantages		
 Effective for rapidly reducing contaminant mass. Reduces the time to remediate lower concentrations of residual source mass using other remedial technologies. May be able to meet residential and/or non-residential remedial standards to avoid engineering/institutional source area controls. 	 Contamination source areas are accessible, especially for surface soils. Excavation can be easily implemented with conventional construction equipment. Very timely. 	 Low cost to excavate using conventional construction equipment. No O&M costs 		
Disadvantages	Disadvantages	Disadvantages		
 May not be effective for all of the dissolved concentrations in groundwater. Potential for short-term risks to workers and community from emissions during excavation and transport. 	 Large volumes of soil may need to be excavated to remove all saturated areas. Structural supports and management of utilities may be needed to excavate all areas. High water table will require dewatering and treatment of groundwater. Excavation of saturated soils will require more planning for dewatering and associated treatment and disposal. 	 Disadvantages Large volume of soil likely needed, thus high disposal costs would be incurred. High cost for disposal if soil is characterized as hazardous soil. Need to import clean fill to backfill open excavations. Cost associated with sheeting/shoring. Cost associated with dewatering, treatment, and disposal. 		

Conclusion: Excavation and disposal is a very common procedure for remediation, but less so for addressing groundwater contamination. Due to the deep excavation likely required and the high costs associated with disposal with large volumes of soil, this alternative is not recommended for further evaluation.

Initial Screening of Remedial Technologies Table 21h – Soil Capping (Containment) (soil)

Soil Excavation: Under this technology, contaminated shallow soil on the site would be contained beneath an engineered cap consisting of clean fill and geotextile materials to provide a physical barrier limiting exposure to impacted soil. Capping may also provide a barrier which prevents infiltration of precipitation and subsequent leaching issues.

EFFECTIVENESS	IMPLEMENTABILITY	COST		
Advantages	Advantages	Advantages		
 Eliminates direct contact with contaminated soils. Prevents infiltration of precipitation, controlling migration of soil contamination. 	Implementation and success of capping is well documented.	 Transportation and disposal costs can be avoided. Minimal O&M cost. 		
Disadvantages	Disadvantages	Disadvantages		
Does not reduce the toxicity or volume of the contaminants in place.	 Can limit site reuse, especially if soil cap areas need to be raised Contamination left in place and will require future O&M and reporting. Institutional controls may be required 	 Disadvantages Site preparation such as reshaping and contouring may be needed outside of the cap areas. Long term O&M and reporting required. 		

Conclusion Soil capping would reduce risk to human receptors from shallow contaminated soil. However, by leaving contamination in place, this technology would limit site reuse, require long-term O&M, and likely also require institutional controls. **This alternative is not retained for detailed evaluation.**

Initial Screening of Remedial Technologies Table 21i – Sub-Slab Depressurization (soil vapor)

<u>Sub-Slab Depressurization</u>: Installation of vapor collection points beneath a building slab mitigates indoor air inhalation risk by routing vapor to atmosphere.

EFFECTIVENESS	IMPLEMENTABILITY	COST		
Advantages	Advantages	Advantages		
Proven technology to mitigate soil vapor intrusion.	 System installed in a minimally invasive way. Technology is the preferred by regulators and practitioners compared to other engineering controls for soil vapor, especially for an existing building 	 Low capital costs Low O&M costs 		
Disadvantages	Disadvantages	Disadvantages		
Does not reduce contaminant concentrations or limit mobility, toxicity, or volume of contamination in the ground.	Engineered controls will be required with any redevelopment over an area with vapor intrusion issues.	Long term O&M costs		

Conclusion: Sub-Slab Depressurization has been demonstrated to be protective of human health risks associated with vapor intrusion and inhalation. **This alternative will be retained for detailed analysis.**

Initial Screening of Remedial Technologies Table 21j – HVAC Modification (soil vapor)

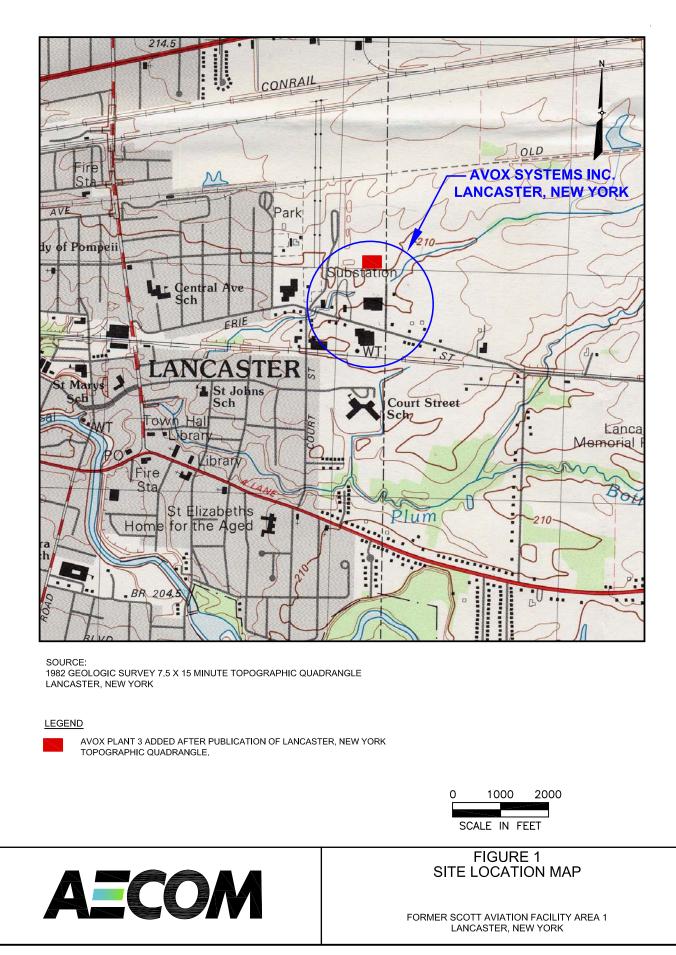
HVAC Modification: HVAC systems for buildings are modified to mitigate vapor intrusion by increasing ventilation and/or applying positive pressure in rooms.

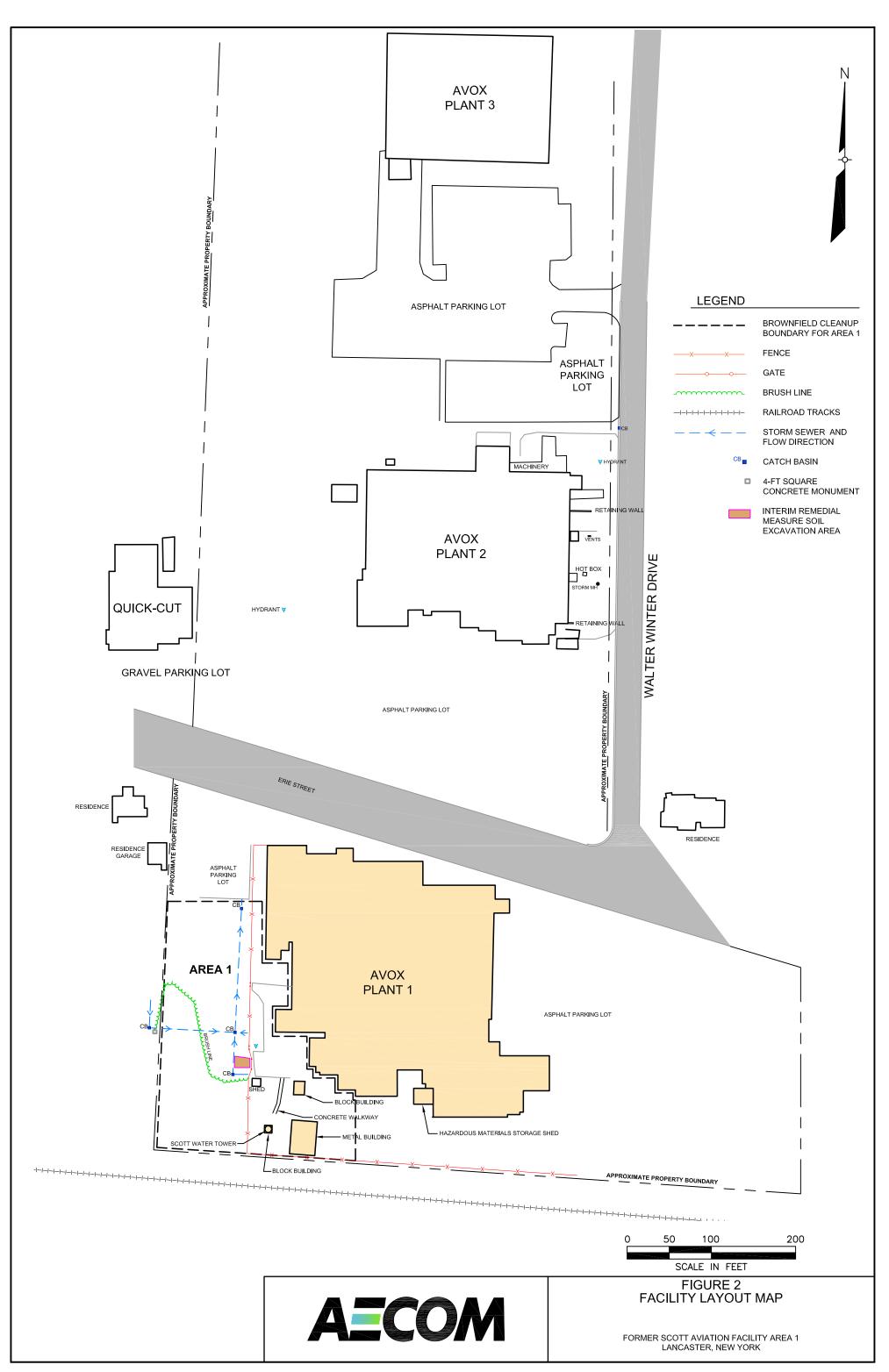
EFFECTIVENESS	IMPLEMENTABILITY	COST		
Advantages	Advantages	Advantages		
 Proven technology to mitigate soil vapor intrusion. 	 Depending on building construction and room layout can be protective about vapor intrusion risks. 	 Potential low capital costs Low O&M costs 		
Disadvantages	Disadvantages	Disadvantages		
Does not reduce contaminant concentrations or limit mobility, toxicity, or volume of contamination in the ground.	 Depending on building construction and room layout, HVAC modification may not fully mitigate vapor intrusion. Can be difficult to implement on existing buildings Engineered controls will be required with any redevelopment over an area with vapor intrusion issues. 	Long term O&M costs		

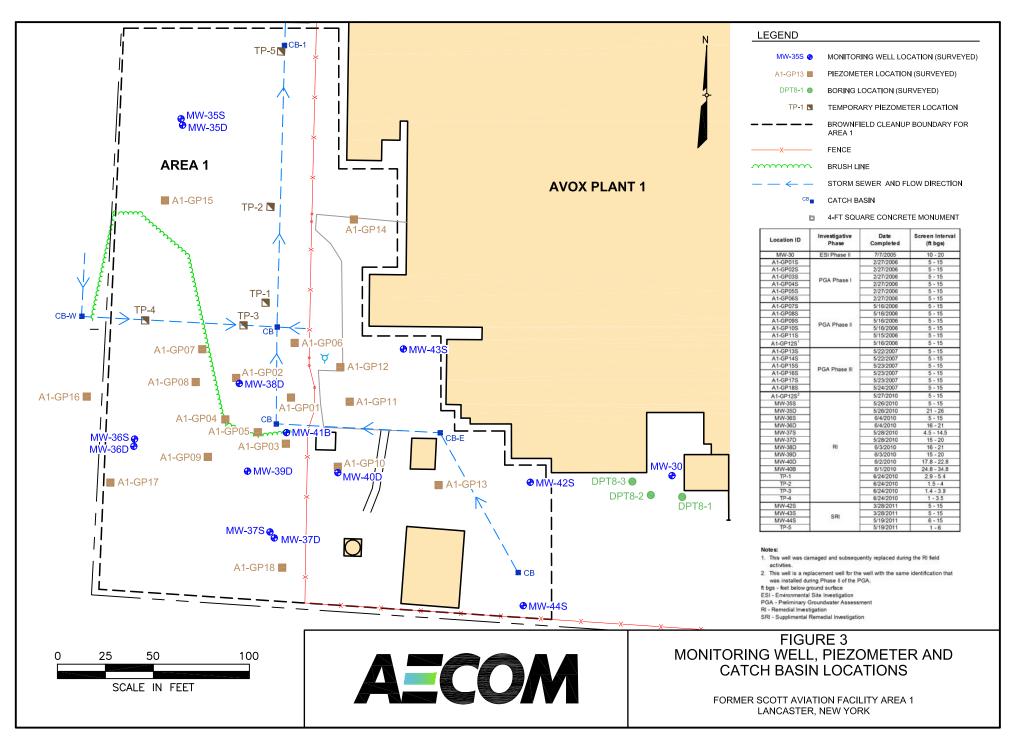
Conclusion: HVAC modification has been demonstrated to be protective of human health risks associated with vapor intrusion and inhalation; however, this technology is not applicable to all buildings or rooms and is a less preferred alternative with environmental regulators. **This alternative will not be retained for detailed analysis.**

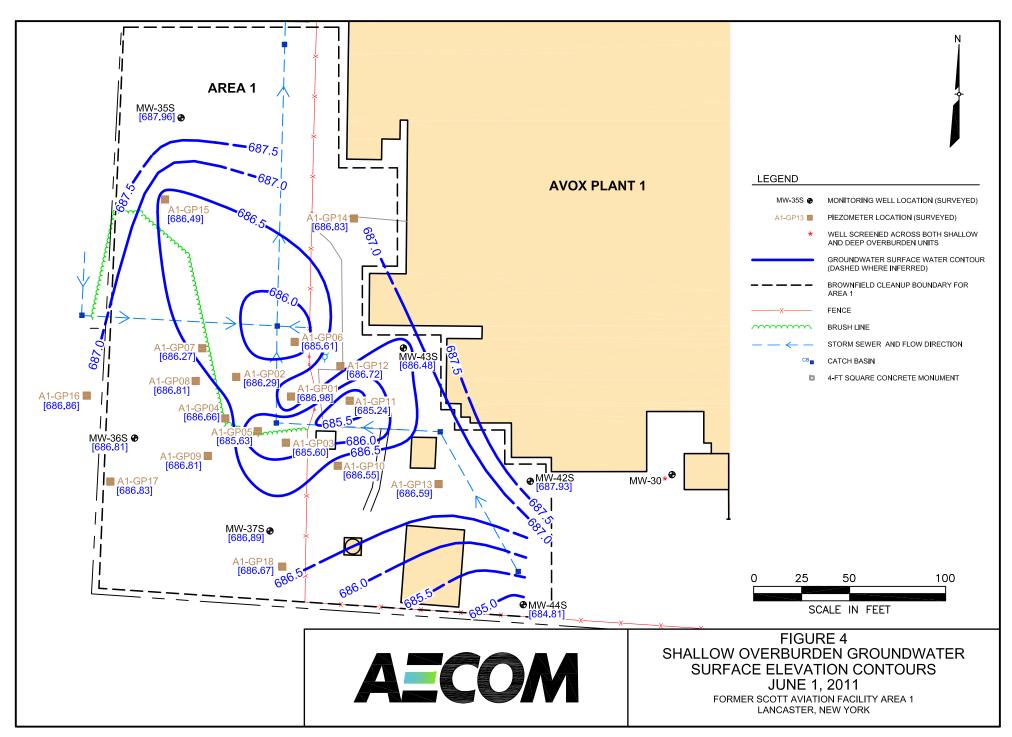
Table 22 Criteria Comparison and Ranking of Remedial Alternatives Former Scott Aviation Facility Area 1 Lancaster, New York

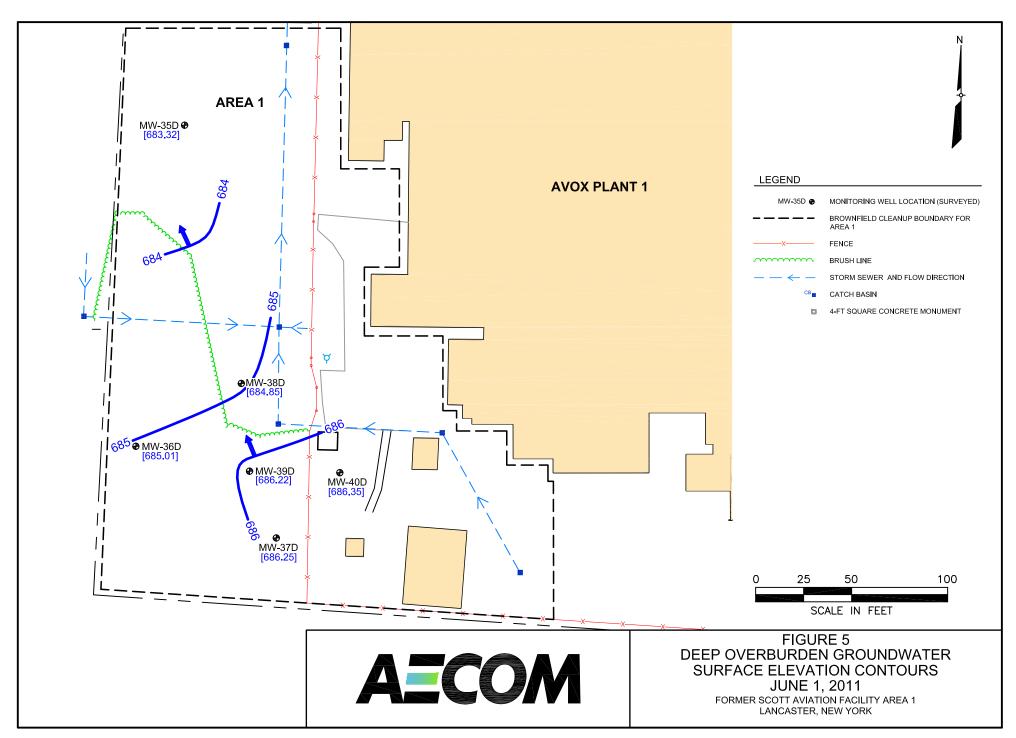
Alternative	Overall Protection of Human Health & the Environment	Compliance with ARARs	Long-Term Effectiveness and Permanence	<u>Reduction of Toxicity, Mobility, and</u> <u>Volume through Treatment</u>	Short-Term Effectiveness	<u>Implementability</u>	Land Use	Green Remediation	<u>GW Alternative Cost ¹</u> (<u>Net Present Value,</u> <u>\$million)</u>	Overall Ranking
Groundwater Remedial Alternatives (Ranking sca	le of 1 through 4, with 1 being m	ost favorable and 4 being leas	favorable)							(Ranked 1-7 based o sum of ranking criteria
Alternative 1 No Action	4 Alternative I would be least effective without any removal, immobilization, or containment of impacted materials, with only natural attenuation to treat impacted media without monitoring or administrative means to prevent exposure.	4 Chemical SCGs will be met over a longer period of time; however, the alternative does not include monitoring to assess concentrations in site media.	4 Alternative 1 would be least effective as it does not involve removal, immobilization or containment of impacted materials, without monitoring or administrative means to prevent exposure.	4 Alternative 1 would reduce volume and toxicity over time due to natural attenuation. However, alternative does not include monitoring to evaluate reduction.	1 Alternative 1 requires no action.	1 Alternative 1 requires no technical or administrative action, and therefore is easy to implement.	4 Alternative 1 includes no action. This alternative would have the least impact on the site area; however, known contamination remains in place reducing potential for redevelopment and potential property values.	4 Alternative 1 requires no action, but includes no removal, immobilization, or containment of impacted materials and does not include monitoring or administrative means to prevent exposure.	Not Ranked This alternative is required by DER-10 and is retained as a baseline alternative for comparison purposes. No cost generated.	7
Alternative 2 Excavation (unrestricted use alternative)	1 Alternative would be most protective with removal and off- site disposal of all contaminated material	1 Alternative would meet chemical specific SCGs in the shortest period of time. Action- and location-specific ARARs will be met.	1 Alternative (excavation) permanently removes contaminants.	2 Alternative will result in permanent reduction in mobility, but does not reduce volume or toxicity (unless treatment performed at disposal facility).	4 Alternative has high potential exposure to contamination during excavation to exposed materials, dust, and volatilized organic vapors. Site specific HASP and CAMP would to confirm that dust or volatilized organic vapors are within acceptable levels and specify additional engineering controls (e.g., use of water sprays and/or foam to suppress dust/vapors/dors) are needed. There is limited potential exposure to contamination during well installation and sampling.	4 Alternative could be implemented, but with difficulty associated with dewatering for working below water table and deep excavation work in soils immediately adjacent to existing buildings and utilities.	1 Alternative may have the most adverse short term impact; however, backfill and compaction of the excavation can be implemented to minmize effects to existing geotechnical properties. There will be significant temporary land use disruptions, but no land use restrictions when the work is completed.	4 Alternative would require off-site disposal of excavated material. Transportation of this material to an off-site landfill will have a large carbon footprint, especially since the nearest disposal facility is at least one hour drive from the site.	4 \$5.1 - \$6.5	5
Alternative 2A Excavation with Monitored Natural Attenuation	3 Alternative would be less protective because it does not involve the removal, immobilization, or containment of all impacted materials, with only monitored natural attenuation to treat impacted media. However, institutional controls would limit exposure to ecological and human health receptors.		3 Alternative is effective at preventing/minimizing exposure; however, contamination left in place. Reduction in contamination by natural attenuation processes is permanent.	3 In the excavation area, Alternative would result in permanent reduction of mobility but does not reduce volume or toxicity (unless treatment performed at disposal facility). Volume and toxicity would be reduced over time due to natural attenuation.	3 Alternative has high potential exposure to contamination during excavation to exposed materials, dust, and volatilized organic vapors. Site specific HASP and CAMP would to confirm that dust or volatilized organic vapors are within acceptable levels and specify additional engineering controls (e.g., use of water sprays and/or foam to suppress dust/vapors/odors) are needed. There is limited potential exposure to contamination during well installation and sampling.	3 Alternative could be implemented, but with difficulty associated with dewatering for working below water table and deep excavation work in soils immediately adjacent to existing buildings and utilities.	3 Alternatives with monitored natural attenuation anticipated to attain SCGs in the longest period of time; thereby requiring land use restrictions on a larger area and for the longest period of time than other alternatives.		3 \$2.6 - \$2.8	6
Alternative 3 Enhanced Bioremediation	2 Alternative would be protective by permanantely destroying site contaminants by biodegradation. This alternative may require several applications to achieve remediation.	2 Alternative would meet chemical specific SCGs in shorter time than only relying on natural processes, but longer than excavation or chemical oxidation alternatives Action- and location-specific ARARs will be met.	2 Alternative permanently treats/removes contaminants by in-situ bioremediation. Several applications may be required to treat all mass and volume of contaminants.	1 Alternative will result in permanent reduction in volume, toxicity, and mobility through in-situ treatment.	1 Site remediation workers would face minimal risks associated with bioremediation injection; proper PPE will be used by workers. There is limited potential exposure to contamination during well installation and sampling.	2 Alternative could be implemented readily with a degree of certainty. Numerous bioremediation amendment products are commercially available, and no special equipment is required for bioremediation injection. Several applications may be necessary to achieve complete treatment. Design would need to consider difficulties of treating site overburden including lower permeability soils, shallow water table, and presence of subsurface utilities.	2 Alternative utilizes in-situ remediation to treat contamination in place. Injection wells or injection points will have minimal adverse impact to land use. Technology is anticipated to meet SCGs (and more area with less restricted land use) more quickly than natural attenuation alternatives.	2 Alternative B treats contaminants in the ground without any removal activities. Carbon footprint limited to injection pumps and mixers and sampling activities. Alternative enhances natural processes.	2 \$1.9	1
Alternative 4 In-situ oxidation	2 Alternative would be protective by permanantely destroying site contaminants by oxidation. This alternative may require several applications to achieve remediation.	2 Alternative would meet chemical specific SCGs in shorter time than on alternatives relying on natural attenuation processes. Action- and location-specific ARARs will be met.	3 Alternative permanently treats/removes contaminants by in-situ oxidation. Several applications may be required to treat all mass and volume of contaminants. However, 1,1,1- TCA can be recalcitrant to some oxidants, and rebound can occur after ISCO injections.	1 Alternative will result in permanent reduction in volume, toxicity, and mobility through in-situ treatment.	2 Site remediation workers will be exposed to strong oxidants; proper PPE will be used by workers. There is limited potential exposure to contamination during injection, well installation, or sampling.	2 Alternative could be implemented readily with a degree of certainty. Several applications of oxidant treatment may be necessary to achieve complete treatment. Design would need to consider difficulties of treating site overburden including lower permeability soils, shallow water table, and presence of subsurface utilities.	use. Technology is anticipated to		3 \$2.2	2
Alternative 4A In-situ oxidation with Monitored Natural Attenuation	3 Alternative would be protective by permanantely destroying site contaminants by oxidation or other natural attenuation proceses. This alternative would require several applications and extended time to achieve remediation criteria.	over a longer period of time. Action- and location-specific ARARs will be met.	3 Alternative permanently treats/removes contaminants by in-situ oxidation and natural attenuation processes.	2 Alternative will result in permanent reduction in volume, toxicity, and mobility through in-situ treatment and natural attenuation processes.	2 Site remediation workers will be exposed to strong oxidants; proper PPE will be used by workers. There is limited potential exposure to contamination during injection, well installation, or sampling.	2 Alternative could be implemented readily with a degree of certainty. Several applications of oxidant treatment may be necessary to achieve complete treatment.	2 Alternatives with monitored natural attenuation anticipated to attain SCGs in the longest period of time; thereby requiring land use restrictions on a larger area and for the longest period of time than other alternatives.	Carbon footprint limited to injection pumps and mixers and sampling activities.	1 \$1.6	3
Alternative 4B In-situ oxidation with Enhanced Bioremediation	2 Alternative would be protective because it would permanantely destroy site contaminants by oxidation or bioremediation. This alternative may require several applications to achieve remediation.	2 Alternative would meet chemical specific SCGs in shorter time than on alternatives relying on natural atternation processes. Action- and location-specific ARARs will be met.		1 Alternative will result in permanent reduction in volume, toxicity, and mobility through in-situ treatment.	2 Site remediation workers will be exposed to strong oxidants; proper PPE will be used by workers. There is limited potential exposure to contamination during well installation and sampling.	3 Alternative could be implemented readily with a degree of certainty. Several applications of oxidant and/or bioremediation amendments may be necessary to achieve complete treatment.	2 Alternative utilizes in-situ remediation to treat contamination in place. Injection wells or injection points will not adversely impact land use, and this technology is anticipated to meet SCGs (and more area with less restricted land use) more quickly than natural attenuation alternatives.	2 Alternative treats contaminants in the ground without any removal activities. Carbon footprint limited to injection pumps and mixers and sampling activities.	3 \$1.9	3
Notes:	1 For comparison of alternatives	Net Present Value costs reporte	d in this table are for the Groundwa	ter Alternative components only and do r	not include the common elements of surface excavati	on sub-slab depressurization system and storm sewe	r actions	1		1


1. For comparison of alternatives, Net Present Value costs reported in this table are for the Groundwater Alternative components only and do not include the common elements of surface excavation, sub-slab depressurization system, and storm sewer actions.


Table 23Summary of Planning Level Costs for Remedial AlternativesFormer Scott Aviation Facility Area 1Lancaster, New York


	Alternative 2		Alternative 2A		Alternative 3	Alternative 4	Alternative 4A	Alternative 4B
Alternative	Exca	vation	Focused Excavation + MNA		Enhanced Bioremediation	In-situ Chemical Oxidation	Focused ISCO + MNA	Focused ISCO +
(Cost in Millions)	(Unrestrie	cted Use)						Enhanced Bioremediation
Process Description	Excavation, dewatering, and off-site disposal of contaminated media (soil disposal assume 100% haz)	Excavation, dewatering, and off-site disposal of contaminated media (soil disposal assume 50% haz/50% non-haz)	contaminanted	Excavation, dewatering, and off-site disposal of area of most contaminanted groundwater, monitored natural attenuation for remainder of plume (soil disposal assume 75% haz)	Injection of amendments to enhance natural microbial processes in addition to adding microbe cultures to augment desired native microbe populations.	Injection of chemical oxidant into subsurface for oxidation/destruction of contaminants in soil and groundwater.	Injection of chemical oxidant into areas with most contaminated groundwater with monitored natural attenuation for remainder of plume	Injection of chemical oxidant into areas with most contaminated groundwater with enhanced bioremediation for remainder of plume
Total Capital Cost	\$6.4	\$5.0	\$2.0	\$1.9	\$1.0	\$1.7	\$0.76	\$0.88
Future Cost	\$0.02	\$0.02	\$0.74	\$0.74	\$0.67	\$0.60	\$1.12	\$1.04
TOTAL GW ALTERNATIVE								
COST	\$6.4	\$5.0	\$2.8	\$2.6	\$1.6	\$2.3	\$1.9	\$1.9
TOTAL NET PRESENT VALUE ALTERNATIVE COST	\$6.4	\$5.0	\$2.5	\$2.4	\$1.6	\$2.2	\$1.6	\$1.8
SHALLOW EXCAVATION COST					\$0.12			
STORM SEWER				Will be remedia	ted by default by using any of th	ne Alternatives listed above		
SUB SLAB DEPRESSURIZATION	\$0.06							
TOTAL COST CONTINGEN	CY AND SENSITIVI	•	IVE + COMMON ELEME	•				
-30%	\$4.6	\$3.6	\$1.9	\$1.8	\$1.2	\$1.7	\$1.2	\$1.4
50%	\$9.8	\$7.5	\$3.8	\$3.5	\$2.3	\$3.4	\$2.4	\$2.7
Remedy Construction and Implementation Time (from Notice to Proceed)	6 - 18 months		6 - 12 months		3-5 years (2-3 Injection events)	3-4 years (2-3 ISCO Injection events)	3-4 years (2-3 ISCO Injection events)	3-4 years (2-3 ISCO Injection events)
Period of Performance - Remediation & Post- Remediation Monitoring	Assume 1 - 2 years performance monitoring sampling to demonstrate criteria attainment		Assume 20 years of monitored natural attenuation sampling demonstrate criteria attainment		Assume 3-5 years performance monitoring sampling after last injection for additional natural attenuation and to demonstrate criteria attainment	Assume 2-4 years performance monitoring sampling after ISCO for additional natural attenuation and to demonstrate criteria attainment	Assume 20 years of monitored natural attenuation sampling demonstrate criteria attainment	Assume 3-5 years performance monitoring sampling after last injection for additional natural attenuation and to demonstrate criteria attainment
Overall Time to Achieve Site Closure	3 years		21 years		6 - 10 years	5 - 8 years	23 years	8 - 10 years




FIGURES

