

September 14, 2011

Mr. Eugene Melnyk, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203-2999

Subject: Site Management Plan Former Buffalo Color Corporation Site – Area E NYSDEC BCP Site #C915232 Buffalo, New York (Erie County) AMEC Project: 3410090701

Dear Mr. Melnyk:

AMEC E&I, Inc. (AMEC) has prepared the referenced Site Management Plan (SMP) for Area E of the former Buffalo Color Corporation Site on behalf of South Buffalo Development LLC (SBD). Enclosed please find three (3) copies of the SMP. An electronic copy of the SMP has been posted on our FTP site for your use; instructions regarding how to access the FTP site were issued to you via email. The SMP has been prepared in accordance with the current NYSDEC SMP template.

Please contact me at (412) 279-6661 or Mr. John Yensan of SBD at (716) 856-3333 ext. 302 should you have any questions regarding this submittal or require additional information.

Sincerely,

AMEC E&I, Inc. John M. Scrabis

Senior Principal Engineer

JMS:anw

cc: J. Yensan (SBD) – electronic copy R. Galloway (Honeywell) – electronic copy

P:\PROJECTS\South Buffalo Development\3410090701\FINAL DELIVERABLES\Site Management Plans\Final Site Management Plan - Area E\Trans Ltr - Area C SMP (9-14-2011).doc

FORMER BUFFALO COLOR CORPORATION SITE - AREA E

ERIE COUNTY, NEW YORK

Site Management Plan

NYSDEC Site Number: C915232

Prepared for: South Buffalo Development LLC 333 Ganson Street Buffalo, New York

> Prepared by: AMEC E&I, Inc. Pittsburgh, Pennsylvania (412) 279-6661

Revisions to Final Approved Site Management Plan:

Revision #	Submitted Date	Summary of Revision	DEC Approval Date

SEPTEMBER 2011

TABLE OF CONTENTS

TABLE OF CONTENTS	II
LIST OF TABLES	IV
LIST OF FIGURES	V
LIST OF APPENDICES	VI
SITE MANAGEMENT PLAN	1
1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM	1
1.1 INTRODUCTION	1
1.1.1 General 1.1.2 Purpose 1.1.3 Revisions	2
1.2 SITE BACKGROUND	3
1.2.1 Site Location and Description1.2.3 Geologic Conditions	
1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS	7
1.4 SUMMARY OF REMEDIAL ACTIONS	9
1.4.1 Removal of Contaminated Materials from the Site1.4.2 Site-Related Treatment Systems1.4.3 Remaining Contamination	12
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN	14
2.1 INTRODUCTION	14
2.1.1 General 2.1.2 Purpose	
2.2 ENGINEERING CONTROLS	15
2.2.1 Engineering Control Systems 2.2.2 Criteria for Completion of Remediation/Termination of Remedial Systems	
2.3 INSTITUTIONAL CONTROLS	19
2.3.1 Excavation Work Plan 2.3.2 Soil Vapor Intrusion Evaluation	
2.4 INSPECTIONS AND NOTIFICATIONS	22

2.4.1 Inspections22.4.2 Notifications2	
2.5 CONTINGENCY PLAN	4
2.5.1 Emergency Telephone Numbers22.5.2 Map and Directions to Nearest Health Facility22.5.3 Response Procedures2	25
3.0 SITE MONITORING PLAN	9
3.1 INTRODUCTION	:9
3.1.1 General 2 3.1.2 Purpose and Schedule 2	
3.2 COVER SYSTEM MONITORING	0
3.3 MEDIA MONITORING PROGRAM	61
3.3.1 Groundwater Monitoring	2
3.4 SITE-WIDE INSPECTION 4	6
3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL 4	7
3.6 MONITORING REPORTING REQUIREMENTS 4	8
4.0 OPERATION AND MAINTENANCE PLAN	50
5.0 INSPECTIONS, REPORTING AND CERTIFICATIONS	51
5.1 SITE INSPECTIONS	51
5.1.1 Inspection Frequency	51
5.1.2 Inspection Forms, Sampling Data, and Maintenance Reports	
5.2 CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS	•
	52
5.3 PERIODIC REVIEW REPORT	3
5.4 CORRECTIVE MEASURES PLAN	54

LIST OF TABLES

Text

- 2.1 Emergency Contact Numbers
- 2.2 Other Contact Numbers
- 3.1 Monitoring / Inspection Schedule
- 3.2 Schedule of Monitoring / Inspection Deliverables

Attached

- 1 1a Post-Remedial Action Soil Concentrations; 1b Post-Remedial Action Soil Concentrations
- 2 Post-Remedial Action Groundwater Concentrations (to be provided)
- 3 Well Construction and Monitoring Information Area E
- 4 Baseline Groundwater Monitoring Data 2008
- 5 Baseline Groundwater Monitoring Data 2009
- 6 Pre-Remedial Storm Water Monitoring Data 2007 thru 2011
- 7 Post-Remedial Storm Water Monitoring Data 2011

LIST OF FIGURES

- 1 Site Location Map
- 2 Site Plan Former Buffalo Color Areas A, B, C and E.
- 3 Site Plan Area E
- 4 Sewer Location Plan Area E
- 5 Area E Geologic Cross Section Locations
- 6 Area E Cross Section D-D'
- 7 Area E Cross Section E-E'
- 8 Area E Cross Section F-F'
- 9 Area E Cross Section G-G'
- 10 Area E Cross Section H-H'
- 11 Area E Cross Section I-I'
- 12 Area E Cross Section J-J'
- 13 Groundwater Monitoring Results November 2009
- 14 Site Cover Plan Area E
- 15 Remedial Excavation Locations Area E
- 16 Post-Remedial Action Soil Concentrations
- 17 Post-Remedial Action Soil Concentrations
- 18 2009-2010 Groundwater Concentrations

LIST OF APPENDICES

- A Metes and Bounds (Description and ALTA Survey Site Plan)
- B Excavation Work Plan
- C Vapor Intrusion Mitigation Information
- D Health and Safety Plan
- E Site Cover Inspection Checklist
- F Monitoring Well Construction Logs
- G Groundwater Sampling Log
- H Site-Wide Inspection Form
- I Quality Assurance Project Plan

SITE MANAGEMENT PLAN

1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM

1.1 INTRODUCTION

This document is required as an element of the remedial program at Area E at the former Buffalo Color Corporation Site (hereinafter referred to as the "site") under the New York State (NYS) Brownfield Cleanup Program (BCP) administered by New York State Department of Environmental Conservation (NYSDEC). The site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index # B9-0785-08-09 (Site #C915232), which was executed on April 27, 2009.

1.1.1 General

South Buffalo Development LLC (SBD) entered into a BCA with the NYSDEC as a Volunteer to remediate a 15.8-acre property located in the City of Buffalo, Erie County, New York. This BCA required the Remedial Party, SBD, to investigate and remediate contaminated media at the site. Figure 1 provides a site location map, Figure 2 shows the boundaries of the overall site including the 15.8-acre area subject to this Plan, and Figure 3 shows the Area E Site Plan. Figure 4 provides the layout of the existing underground sewers on and adjacent to Area E. The boundaries of the site are more fully described in the metes and bounds site description and ALTA survey plan (Appendix A), which are part of the Environmental Easement.

Per the NYSDEC-approved Remedial Action Work Plan (RAWP), contamination remained in the subsurface at this site at the completion of site remedial work, which is hereafter referred to as "remaining contamination". This Site Management Plan (SMP) was prepared to manage remaining contamination at the site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. All reports associated with the site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State. This SMP was prepared by AMEC E&I, Inc., (AMEC) on behalf of SBD in accordance with the RAWP and the requirements of NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, dated November 2009, and the guidelines provided by NYSDEC. This SMP addresses the means and methods for implementing the Institutional Controls (ICs) and Engineering Controls (ECs) that are required by the Environmental Easement for the site.

1.1.2 Purpose

Per the RAWP, certain contamination remains on-site after completion of the remedial action. As a result, Engineering Controls have been incorporated into the site remedy to control exposure to remaining contamination during the use of the site to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Erie County Clerk, requires compliance with this SMP and all ECs and ICs placed on the site. The ICs place restrictions on site use, and mandate the operation, maintenance, monitoring and reporting measures for all ECs and ICs. This SMP specifies the means and methods necessary to ensure compliance with all ECs and ICs required by the Environmental Easement for remaining contamination. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

This SMP provides a detailed description of all procedures required to manage remaining contamination, including: (1) implementation and management of all Engineering and Institutional Controls; (2) media monitoring; (3) operation and maintenance of all treatment, collection, containment, or recovery systems; (4) performance of periodic inspections, certification of results, and submittal of Periodic Review Reports; and (5) defining criteria for termination of treatment system operations.

To address these needs, this SMP includes three plans: (1) an Engineering and Institutional Control Plan for implementation and management of EC/ICs; (2) a Monitoring Plan for implementation of Site Monitoring; (3) an Operation and Maintenance Plan for implementation of remedial collection, containment, treatment, and recovery systems (including, where appropriate, preparation of an Operation and Maintenance Manual for complex systems).

This plan also includes a description of Periodic Review Reports for the periodic submittal of data, information, recommendations, and certifications to NYSDEC.

It is important to note that this SMP details the site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the environmental easement, which is grounds for revocation of the Certificate of Completion.

Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6NYCRR Part 375 and the BCA (Index # B9-0784-08-06) for the site, and any person who does not comply may be subject to applicable penalties.

1.1.3 Revisions

Revisions to this plan must be proposed in writing to the NYSDEC's project manager. In accordance with the Environmental Easement for the site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.2 SITE BACKGROUND

1.2.1 Site Location and Description

The site is located at 85 Lee Street in the City of Buffalo, County of Erie, New York and is identified as being all of tax parcel SBL#122.12-1-9.11, all of tax parcel SBL#122.12-1-9.13, all of tax parcel SBL#122.12-1-12.1, part of tax parcel SBL#122.12-30, and all of tax parcel SBL#122.12-1-31, all as shown on the tax maps of the County of Erie. The site is an approximately 15.8-acre area bounded by Elk Street to the north, industrial property operated by PVS Chemicals to the south, Lee Street to the east, and Orlando Street to the west (see Figure 2).

As of the date of this Plan, all former buildings and ancillary structures that were located on Area E, as defined in the BCA and in connection with the operation of the former Buffalo Color Corporation plant, have been demolished, and the site is vacant.

The site is part of the former Buffalo Color Corporation facility, which also included Areas A, B, and C located to the west and southwest (Figure 2). The surrounding area consists of industrial and residential properties. The boundaries of the site are more fully described in Appendix A, Metes and Bounds.

1.2.2 Site History

Originally founded as the Schoellkopf Aniline and Dye Company in 1879, the plant produced dyes and organic chemicals based primarily on aniline and various aniline derivatives. The company was reorganized into the National Aniline Chemical Company in 1916. It became one of the five companies that merged to create Allied Chemical Corporation (Allied Chemical) in 1920. The existing dye-making facility and the right to produce certain dyes and intermediates were sold by Allied Chemical to Buffalo Color Corporation on July 1, 1977. At the time of the sale, the plant was divided into eight areas designated with the letters A, B, C, D, E, F, G, and H. Buffalo Color Corporation purchased the manufacturing areas A through E, while Allied Chemical retained an acid plant (which was subsequently sold to PVS Chemicals in 1981), the research and development facility on Area F, and the parking lots on Areas G (Elk Street) and H (Smith Street).

In 2005, Buffalo Color Corporation filed for bankruptcy and ceased manufacturing activity. During the bankruptcy proceedings, some of the facility's production equipment was sold and removed from the site. In conjunction with the bankruptcy, the office building and former plant hospital located at 100 Lee Street on Area B and the warehouse building (Building 322) located near Elk Street on Area E, along with some of the land under and around those buildings, were sold to other parties. Agreements are in place to preserve access rights to the land for the purposes of any required environmental investigation and remediation activities. The remaining buildings and property on Areas A, B, C, D and E were purchased by SBD in 2008.

1.2.3 Geologic Conditions

The following summarizes the geologic conditions known to exist at the site.

1.2.3.1 Site Lithology

The Remedial Investigation (RI) report (Mactec, August 2008) identifies a number of subsurface zones at the site with contrasting hydrogeologic properties. In order of increasing depth, these zones include:

Fill: This unconsolidated material is found over the majority of the surface of the site. It typically consists of clay, silt, crushed stone, gravel, bricks, and miscellaneous building demolition debris. Concrete pads and foundations associated with former structures are known to exist within the fill layer on Area E. The fill thickness generally ranges from 4 feet to less than 10 feet

Clay and Silt Tills (Upper Tills): This unit is unconsolidated fine-grained clay and silt tills, with varying amounts of sand and sand seams. The thickness of this material on Area E generally ranges 5 to 10 feet.

Alluvium: This unit is found only along the southern boundary of Area E and consists of unconsolidated materials, mostly fine to very coarse sands, and likely represents the historical deposits from the Buffalo River. These materials have a moderately high conductivity (i.e., transmit water fairly easily). The maximum thickness of this unit on Area E was found to be 5 feet. Locally, the thickness of the alluvium increases and replaces the upper tills near the Buffalo River.

Glaciolacustrine Clay: This unit is primarily soft clay, with limited occurrence of fine sands. This unit underlies the entire site and has a thickness that ranges from 24 to 36 feet. Grain size analysis shows that this unit is comprised almost entirely of clay sized particles. These materials have a relatively low hydraulic conductivity and the unit is considered an aquitard between the shallow and underlying confined water-bearing units.

Basal Till: This unit is a mixture of sand, silt, gravel, and minor amount of clay. This unit was encountered beneath the glaciolacustrine clay in all deep borings advanced at the former Buffalo Color property, and was encountered immediately above the bedrock. Thickness of this unit ranged from 2 to 5 feet.

Onondaga Limestone: This bedrock unit was described as fractured and weathered, dark gray limestone. Only the upper few feet of this unit were penetrated during site investigation activities. The bedrock surface slopes gently to the south, at a rate of approximately 1.2 feet per 100 feet.

Seven geologic cross sections have been completed for Area E remedial excavations. The locations of the cross sections for Area E are shown on Figure 5. Cross Sections D-D' through J-J' are shown on Figures 6 through 12.

1.2.3.2 Site Hydrogeology

Two aquifers have been identified at the site. The first aquifer encountered, the shallow aquifer, is a saturated unconfined system within the fill and sediments above the glaciolacustrine clay unit. The second aquifer, the confined aquifer, occurs within the basal till and weathered upper surface of the bedrock. The RCRA Facility Investigation report (Golder, 1997) concluded that the thick, low conductivity glaciolacustrine clay unit acts as an aquitard, separating these aquifers and providing a confining layer for the deeper aquifer.

Groundwater flow in the shallow aquifer at the site is generally towards the Buffalo River. However, it was concluded that subsurface utilities and other manmade features influence local flow conditions. Sewer lines and associated backfill are below the water table at various locations and were found to act as groundwater discharge points because depressions in the water table surface at the site coincided with the location of utilities. At Area E, shallow groundwater is typically encountered within 10 feet of the ground surface, is less than 5 feet at many locations, and varies seasonally.

During the RFI, the water levels for the confined aquifer were measured in 12 monitoring wells located across the Buffalo Color facility that were screened within the basal till unit (four of which were installed during the RFI, and eight of which were installed prior to the RFI). The groundwater in the confined aquifer exists under apparent confined conditions within the basal till unit and upper portion of the Onondaga Limestone beneath the base of the glaciolacustrine clay. During the RFI, the confined aquifer contours were interpreted by Golder to indicate a groundwater divide on the eastern side of Area E. Groundwater flow is shown within the confined aquifer as to the east and west of the divide area, parallel to the Buffalo River. Golder reported that gradient in the confined aquifer ranged from 0 to 0.008 ft/ft on two separate occasions in 1997.

1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS

Numerous environmental investigations have been completed for the Buffalo Color property, including Area E, dating back to the 1980s. In 2007-2008, AMEC completed, with NYSDEC approval, a Remedial Investigation (RI) to build off of prior studies and characterize the nature and extent of contamination at the site. The results of prior studies, the RI, and Pre-Design Investigation (PDI) work completed by AMEC in 2009-2010 are described in detail in the following reports:

- Final Report on RCRA Facility Investigation, Buffalo Color Corporation, Golder Associates, 1997.
- Addendum to Final Report on RCRA Facility Investigation, Buffalo Color Corporation, Golder Associates, 1998.
- Remedial Investigation Report, Former Buffalo Color Corporation, Area ABCE Site, Mactec, August 2008.
- Pre-Design Investigation and Remedial Design Report, Area E Petroleum LNAPL, Former Buffalo Color Corporation Site, Mactec, July 2010.
- Pre-Design Investigation and Final Design Report, Former Buffalo Color Corporation Site Area E, Mactec, August 2011.

The RI determined that site soil contained concentrations of certain metals and organic substances that exceeded the NY Commercial Soil Cleanup Objectives (SCOs). Shallow soil and groundwater on the southwestern portion of Area E were found to contain concentrations of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) that exceeded applicable NY soil and groundwater standards. Petroleum (weathered No. 2 fuel oil) in the form of a light non-aqueous phase liquid (LNAPL) present in the shallow soil and on the shallow water table was identified on the southeastern side of Area E.

Below is a summary of site conditions when the RI was performed in 2007-2008, supplemented by data from the PDI work completed by AMEC in 2009-2010:

<u>Soil</u>

Metals (primarily arsenic and mercury) and polycyclic aromatic hydrocarbons (PAHs) were found across Area E, in both surface and subsurface soil, at concentrations that exceed the SCOs. For the direct contact pathway, surface soil samples are considered the most relevant data points. In the vicinity of former chemical aboveground storage tanks (ASTs) on the southwestern side of Area E, a source of groundwater contamination was identified within the fill and upper till materials. The source area contained concentrations of VOCs (including chlorobenzene, dichlorobenzenes, trichlorobenzene and other compounds) and aniline (an SVOC) at levels that exceeded Commercial and Protection of Groundwater SCOs. The AAR (Mactec, February 2009) specified the removal of shallow source materials from this area as part of the final remedy. The Area E Final Design Report (Mactec, May 2011) modified the excavation limits to include deeper soils (below the shallow water table), resulting in the excavation and off-site disposal of approximately 13,600 cubic yards (CY) of soil from three separate excavations, as described in Section 1.4.

Petroleum LNAPL was periodically detected in two monitoring wells (R-14 and ICM-PZ-04S) on the southeastern side of Area E with an apparent thickness that ranged from 0.14 feet (well R-14) to 1.47 feet (well ICM-PZ-04S). The soil layer with LNAPL was up to 2 feet thick and resided primarily in a rounded gravel seam (possibly former pipe bedding) at depths of 7 to 8.5 feet below ground surface (ft-bgs). The in-place volume of soil included in the plume was estimated to be 20,000 cubic feet (approximately 750 cubic yards). Excavation and off-site disposal of soil with petroleum LNAPL was part of the final remedy for Area E, as described in Section 1.4.

Site-Related Groundwater

Shallow groundwater on the southwestern portion of Area E was found to contain concentrations of VOCs (principally chlorobenzene and dichlorobenzenes) and SVOCs (primarily aniline and nitrobenzene) at concentrations that exceed the NY Class GA standards. Locations of groundwater samples with concentrations of VOCs and SVOCs that exceeded the NY Class GA standards during the most recent groundwater monitoring events are shown on Figure 13. The source of the groundwater contamination was determined to be the former ASTs, process-related equipment, and contaminated soils (described above) located above the plume area. The AAR (Mactec, February 2009) specified the in-situ treatment of VOC-impacted groundwater via enhanced bioremediation. The final design (Mactec, May 2011) modified the Area E groundwater remedy to a source removal/enhanced bioremediation remedy that involved deeper excavation (below the shallow water table), as described in Section 1.4.

Site-Related Soil Vapor Intrusion

Soil vapor intrusion sampling was not performed on Area E. Concentrations of VOCs in shallow groundwater indicate that the vapor intrusion (VI) pathway may exist and therefore will be addressed for existing or future structures on-site. Requirements for evaluation and mitigation of the VI pathway are presented in the Engineering and Institutional Control Plan (Chapter 2) of this document.

Underground Storage Tanks

No evidence of prior or existing underground storage tanks (USTs) on Area E was found during the RI and subsequent demolition work.

Site Sewers

The former site process sewers are connected to the nearby Buffalo Sewer Authority (BSA) sewer lines. The RI sampling completed in 2007 identified the presence of residual contaminants in solids within the former facility process sewers (including sediments or sludge). The RI data indicate that shallow groundwater may infiltrate portions of facility storm and/or process sewers. Abandonment/plugging or rehabilitation of the site underground sewer system was specified in the AAR. The Area E Final Design Report describes the abandonment and plugging of certain process and storm sewer lines, as well as the rehabilitation of storm sewer lines that will be preserved for use during future redevelopment of Area E. Figure 4 provides a site plan that shows existing site sewer lines, as well as abandoned/plugged lines.

1.4 SUMMARY OF REMEDIAL ACTIONS

The site was remediated in accordance with both the NYSDEC-approved RAWP, specifically the remedial alternatives presented in Section 9.0 of the AAR (Mactec, 2009), as well as the NYSDEC- approved remedial design documents. Specific details regarding the remedial construction activities are presented in the Area E Final Engineering Report (Mactec, 2010).

The following is a summary of the Remedial Actions performed at the site:

• Excavation and off-site disposal of approximately 13,600 CY (in-place volume) of VOC-contaminated soils from three locations on the

western/southwestern side of Area E to accomplish mass removal of the source material;

- The addition of a bioremediation enhancement agent (Regenesis ORC-A) to the excavation backfill to promote the bioremediation of residual soil and groundwater contamination at the excavated areas;
- Excavation and off-site disposal soil containing petroleum LNAPL from the southeastern side of Area E to accomplish mass removal of petroleum LNAPL;
- Utilization of an integrated site-wide cover system consisting of a combination of a minimum of one foot of imported clean soil and topsoil (seeded with native grasses) underlain by a demarcation layer consisting of a woven geotextile, existing/new pavement (asphalt or concrete), and/or existing buildings to address human exposure to remaining contamination at the site, consistent with the presumptive remedy as identified in 6 NYCRR Part 375 (Figure 14 provides a plan view of the Area E site cover system);
- Abandonment/plugging of unused process sewers and rehabilitation of the existing storm sewer system, including replacement of sections with new piping and sealing of existing pipe via installation of cured-in-place piping (CIPP) and sealing of manholes with a chemical-resistant grout to prevent groundwater infiltration, as appropriate (Figure 4 provides a site plan with existing and abandoned sewer locations);
- Execution and recording of an Environmental Easement in favor of NYSDEC to restrict land use and address future exposure to any remaining contamination at the site. Elements of the Environmental Easement include prohibiting groundwater use, providing protocols for disturbance of Site and, soils and/or groundwater, limiting future land use to commercial or industrial use, and requiring that occupied structures associated with future development at the Site address the vapor intrusion (VI) pathway (either through construction methods or through additional characterization to ensure that the

area over which the structure will reside does not present a potential VI concern); and

• Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting;

The above-described remedial activities were completed at the site in 2010 and 2011 and are documented in the Area E Final Engineering Report (Mactec, 2011).

1.4.1 Removal of Contaminated Materials from the Site

VOC Source Removal

A total of approximately 13,600 CY (in-place volume) of VOC-contaminated soil was removed from three separate excavations (identified as E-1, E-2 and E-3) on the western/southwestern side of Area E. Figure 15 shows the location and lateral extent of each remedial excavation. Based on analytical results for the excavated materials, it is estimated that 11,600 pounds of VOCs and 630 pounds of SVOCs were removed from the site.

Table 1 summarizes post-remedial contaminant concentrations in excavation sidewall and bottom samples. Table 2 summarizes pre-remedial (baseline) and post-remedial contaminant concentrations in shallow groundwater downgradient of the excavated areas.

Approximately 7,800 pounds of dry ORC-A powder and 420 pounds of fertilizer were added to the material used to backfill the excavations in order to stimulate the bioremediation of residual contamination in soil and groundwater within the excavated areas. Long-term groundwater monitoring will be used to evaluate the effectiveness of the remedy and determine reductions in contamination volumes and concentrations over time.

Petroleum LNAPL Excavation

Soils containing petroleum LNAPL (both unsaturated and saturated) were removed from southeastern side of Area E, as specified in the Area E LNAPL remedial design document (Mactec, July 2010). Figure 15 shows the location and lateral extent of the excavation. Overlying vadose zone soils that did not contain visible evidence of petroleum LNAPL were stockpiled and reused as fill beneath the site cover system. Materials removed from the vadose zone and below the water table that contained evidence of petroleum LNAPL were stockpiled, characterized, and transported from the site for off-site disposal.

Groundwater was pumped from the excavation as necessary; the groundwater was pre-treated onsite to remove sediment/solids and LNAPL prior to discharge to the onsite process sewer system in accordance with a temporary discharge permit issued by the Buffalo Sewer Authority (BSA).

After the excavation was completed, the excavation was backfilled to grade using the previously-removed and stockpiled overburden supplemented by clean clay borrow material (the same material used for the soil cover system placed on site).

The surface of the excavated area was covered by clean clay borrow material and topsoil (minimum thickness of 12 inches) and seeded with a native grass mixture.

A total of 1,781 tons of LNAPL-contaminated soil were removed from Area E and transported to Modern Disposal Services, Inc. of Model City, New York for disposal. Approximately 41,700 gallons of water were removed, pretreated onsite, and discharged to the BSA sewer (in accordance with a BSA permit) during the excavation process.

1.4.2 Site-Related Treatment Systems

No long-term treatment systems were installed as part of the remedy for Area E.

1.4.3 Remaining Contamination

Table 1 and Figure 16 summarize the results of soil samples delineating the remaining contamination at the site after completion of Remedial Action that exceed the

applicable SCOs. Table 2 and Figure 17 summarize the results of groundwater samples delineating the remaining contamination at the site after completion of Remedial Action that exceed the applicable groundwater standards.

An integrated cover system and institutional controls have been used to prevent exposure to soil exceeding the NY Commercial SCOs. The cover system consists of clean soil (minimum thickness of one foot), asphalt or concrete pavement, or buildings, consistent with the presumptive remedy as identified in 6 NYCRR Part 375. Existing paved surfaces, including building floor slabs, asphalt parking lots, and access drives used as part of the cover system have been cleaned and rehabilitated as necessary to prevent direct contact with soil exceeding commercial SCOs. A demarcation layer consisting of woven geotextile has been placed between existing surface soils and the one-foot thick clean soil cover layer so the boundary between clean fill and existing Site soils can be identified in the future. The demarcation layer locations have been identified on the base American Land Title Association (ALTA) survey map as depicted on Figure 14, so that periodic inspections can readily identify any erosion or damage to the cover system in those areas. At locations with paved surfaces or buildings, any soil encountered immediately below shall be considered potentially contaminated and must be managed in accordance with the procedures specified in Chapter 2.0 of this Plan.

Fill soil used as a component of the site-wide cover system meets the more stringent of commercial SCOs or protection of groundwater SCOs, but as a conservative measure and in the absence of contravening data should be assumed to meet the commercial SCOs but exceed unrestricted use SCOs. As a protective measure and in the absence of contravening data, any soil beneath the demarcation layer and beneath existing building basements, floor slabs, asphalt parking lots, and asphalt or concrete access drives should be assumed to exceed unrestricted use and commercial use SCOs.

2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN

2.1 INTRODUCTION

2.1.1 General

Because of the remaining contamination at the site, Engineering Controls and Institutional Controls (EC/ICs) are required to protect human health and the environment. This Engineering and Institutional Control Plan describes the procedures for the implementation and management of all EC/ICs at the site. The EC/IC Plan is one component of the SMP and is subject to revision by NYSDEC.

2.1.2 Purpose

This plan provides:

- A description of all EC/ICs on the site;
- The basic implementation and intended role of each EC/IC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the features to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of EC/ICs, such as the implementation of the Excavation Work Plan for the proper management of remaining contamination that may be disturbed during maintenance or redevelopment work on the site; and
- Any other provisions necessary to identify or establish methods for implementing the EC/ICs required by the site remedy, as determined by the NYSDEC.

2.2 ENGINEERING CONTROLS

2.2.1 Engineering Control Systems

2.2.1.1 Integrated Cover

Exposure to remaining contamination in soil/fill at the site is addressed by a cover system placed over the site (as shown on Figure 14). This cover system is comprised of a combination of imported clean soil with a minimum thickness of 12 inches with a demarcation fabric layer at its base, asphalt paved areas, and areas covered by concrete slabs from former buildings. A variance issued via letter dated July 18, 2010 by the City of Buffalo allows certain concrete slabs (and associated foundations) to remain for reuse.

The Excavation Work Plan provided in Appendix B outlines the procedures required to be implemented in the event the cover system is breached, penetrated or temporarily removed, and any underlying remaining soil is disturbed. This would include any future modification or removal of the concrete slabs/foundations permitted to remain under the City variance. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in Section 4 of this SMP.

The cover system is a permanent control and the quality and integrity of this system will be maintained and inspected at defined, regular intervals in perpetuity.

2.2.1.2 Vapor Intrusion Mitigation

Because soil and groundwater containing VOCs above applicable NY criteria will remain on portions of the Site, the vapor intrusion (VI) pathway is potentially present for any future occupied structures on Area E.

SBD received a variance from the City of Buffalo that allows the floor slabs and foundations associated with former BCC Building Nos. 310, 312, 315/316, and 320 to remain for potential reuse as structural slabs for new development. An AMEC engineer with vapor intrusion mitigation design experience conducted a detailed site inspection of the Area E structural floor slabs on June 25, 2010. The site inspection included observing and recording current conditions and construction of the slabs to assess requirements for future vapor intrusion mitigation in accordance with Final Guidance for

Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006). The site inspection included photographic documentation. AMEC determined that the VI pathway can be eliminated during future reuse/redevelopment via sealing cracks, columns and other slab penetrations and replacement or sealing of any brick sections.

To address the potential for soil vapor intrusion into any future constructed structures, engineering controls consisting of soil vapor intrusion mitigation measures consistent with Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006, prepared by the New York State Department of Health, Center for Environmental Health, Bureau of Environmental Exposure Investigation (NYSDOH, 2006), or any then-appropriate requirement, may be required unless future studies demonstrate to the satisfaction of NYSDEC and NYSDOH that the VI pathway is not complete. For an existing slab that will be utilized by a new structure intended for occupancy, or for new structures, soil vapor mitigation measures would be evaluated and implemented as follows:

- 1. A visual inspection of the subject slab would be conducting to identify any specific characteristics and configurations (e.g., large cracks in the foundation slab(s), exposed earth in crawlspaces, open stairways to basements) and operational conditions (e.g., continuously running Heating, Ventilation and Air Conditioning (HVAC) systems or operational windows) that may affect the design, installation, and effectiveness of soil vapor intrusion mitigation measures.
- 2. As part of the slab visual inspection, the existing conditions would be documented, including the location of load-bearing walls, drain fixtures, cracks in the slab, suspected or confirmed vapor entry points, results of any diagnostic testing. Documentation shall include adequate detail to support the subsequent design of any soil vapor intrusion mitigation measures.
- 3. For structures with active HVAC systems, backdraft testing would be conducted during the building/visual inspection to evaluate the existence of, or the potential for, backdrafting of natural draft combustion appliances.
- 4. Openings around piping penetrations in the slab and foundation wall, accessible openings around utility penetrations of the foundation walls and slab, and other openings shall be sealed using methods and materials that are permanent and durable. Sealing the joint between the foundation wall and slab may be appropriate. If the joint is greater than ½ " thick, a foam backer or rod

shall be inserted into the joint prior to applying a sealant. All sealing requirements shall be in conformance with ASTM E2121 03 Section 7.3.4. All sealant materials are to be approved by NYSDEC prior to use.

- 5. As an option, the entire floor slab or basement area (including all penetrations) may be sealed with one or more types of commercially available sealant (Liquid BootTM or similar). This option may be used in combination with a sub-slab depressurization system (described below) to mitigate the VI pathway.
- 6. If, subsequent to addressing potential soil vapor intrusion pathways as discussed above, indoor air and/or sub-slab soil vapor conditions indicate that soil vapor intrusion mitigation is necessary, testing may be conducted to support design and construction of a sub-slab depressurization system (SSDS). The testing may consist of installation of temporary probes or extraction points installed beneath the floor slab for the purposes of identifying the viability and potential issues associated with installation of a SSDS. Testing may consist of monitoring sub-slab pressure at one or more locations point to evaluate sub-slab depressurization resulting from extraction at the temporary extraction point.
- 7. Soil vapor intrusion mitigation methods would be designed and implemented consistent with guidance set forth in Section 4.0 of the NYSDOH Guidance (NYSDOH, 2006) and existing best practices for radon mitigation.
- 8. The approach for sub-slab depressurization of an existing structure or slab would consist of active extraction from one or more of the following:
 - a. A new or existing layer of sand, gravel, crushed rock or other porous media (subbase) present beneath the structure
 - b. an existing sub-slab drain tile system
 - c. an existing foundation sump system
 - d. an existing foundation block wall
 - e. a new sub-slab drain tile/horizontal piping system
 - f. a new a manufactured soil gas mat system
- 9. New structures would require a sub-slab soil vapor barrier, and the approach for sub-slab depressurization would consist of active extraction from one or more of the following:
 - a. crushed rock beneath the structure
 - b. a sub-slab drain tile/horizontal piping system
 - c. a manufactured soil gas mat system
- 10. In addition to, or as an alternative to, an SSD system, the heating, ventilation and air conditioning (HVAC) system for the building may be designed such

that positive pressure is generated within the building, preventing the occurrence of vapor intrusion.

A figure showing a conceptual layout for an SSDS piping system is provided in Appendix C.

2.2.2 Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, remedial processes are considered completed when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.6 of NYSDEC DER-10.

2.2.2.1 Integrated Cover System

The composite cover system is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in perpetuity.

2.2.2.2 SVI Mitigation System (SSDS)

Post-Mitigation testing would be conducted consistent with guidance set forth in Section 4.0 of the NYSDOH Guidance (NYSDOH, 2006) to evaluate the performance and establish a baseline for SVI mitigation systems determined necessary for occupancy/use of a new structure.

Use of a SVI mitigation system in any occupied structure will not be discontinued unless prior written approval is granted by the NYSDEC. In the event that monitoring data indicates that the mitigation system is no longer required, a proposal to discontinue use of the system will be submitted by the property owner to the NYSDEC and NYSDOH.

2.2.2.3 Monitored Natural Attenuation

Groundwater monitoring activities to assess contaminant levels in shallow site groundwater, and assess the process of natural attenuation (enhanced through addition of ORC-A to remedial excavation backfill as described in Section 1.4), will continue, as determined by the NYSDEC, until residual groundwater concentrations are found to be consistently below NYSDEC standards or have become asymptotic at an acceptable level over an extended period. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC. [If groundwater contaminant levels become asymptotic at a level that is not acceptable to the NYSDEC or groundwater concentrations do not trend downward in a satisfactory manner; additional source removal, treatment and/or control measures will be evaluated.] Requirements for longterm groundwater monitoring are provided in Section 3.3 of this Plan.

2.3 INSTITUTIONAL CONTROLS

A series of Institutional Controls is required by the RAWP to: (1) implement, maintain and monitor Engineering Control systems; (2) address future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to commercial and industrial uses only. Adherence to these Institutional Controls on the site is required by the Environmental Easement and will be implemented under this Site Management Plan. These Institutional Controls are:

- Compliance with the Environmental Easement and this SMP by the Grantor and the Grantor's successors and assigns;
- All Engineering Controls must be operated and maintained as specified in this SMP;
- All Engineering Controls on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP;
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in this SMP;

Institutional Controls identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The site has a series of Institutional Controls in the form of site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may only be used for commercial or industrial use provided that the long-term Engineering and Institutional Controls included in this SMP are employed and maintained.
- The property may not be used for a higher level of use, such as unrestricted or restricted residential use, without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contamination must be conducted in accordance with this SMP;
- The use or withdrawal of Site groundwater for drinking, irrigation, or other consumptive purposes will be prohibited;
- The potential for vapor intrusion must be evaluated for any existing or future buildings or structures intended for human use or occupancy, and any potential impacts that are identified must be monitored or mitigated. For any structure intended for human occupancy, the vapor intrusion pathway will be mitigated via the use of vapor barriers and/or soil gas mitigation systems (active or passive), unless an investigation is completed in accordance with applicable NYSDOH and NYSDEC regulations and guidance which indicates that the vapor intrusion pathway does not exist.
- Vegetable gardens and farming on the property are prohibited;
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or at a longer interval that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

2.3.1 Excavation Work Plan

The site has been remediated for restricted commercial or industrial use under the NY BCP Track 4 cleanup scenario. Any future intrusive work that will penetrate the cover system, or encounter or disturb remaining contamination, including any modifications or repairs to the existing cover system, must be performed in compliance with the Excavation Work Plan (EWP) that is attached as Appendix B to this SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) prepared for the site. A sample HASP is attached as Appendix D to this SMP that is in compliance with current DER-10, 29 CFR 1910, 29 CFR 1926, and other applicable Federal, State, and local regulations. Based on future changes to State and Federal health and safety requirements, and specific methods employed by future contractors, the HASP and CAMP will be updated and re-submitted with the notification provided in Section B-1 of the EWP. Any intrusive construction work will be performed in compliance with the EWP, HASP, and CAMP, and will be included in the periodic inspection and certification reports submitted under the Site Management Reporting Plan (See Section 5).

The site owner and associated responsible parties preparing the remedial documents submitted to the State, and parties performing this work, are jointly responsible for the safe performance of all intrusive work, the structural integrity of excavations, proper disposal of excavation spoils, control of runoff from open excavations into remaining contamination, and for structures that may be affected by excavations (such as building foundations and bridge footings). The site owner will ensure that site development activities will not interfere with, or otherwise impair or compromise, the engineering controls described in this SMP.

2.3.2 Soil Vapor Intrusion Evaluation

As part of the renovation or construction of any enclosed structures at the site, an SVI evaluation will be performed to determine whether any mitigation measures are necessary to eliminate potential exposure to vapors in the proposed structure. Alternatively, an SVI mitigation system may be installed as an element of the building foundation to mitigate or eliminate the vapor intrusion pathway prior to occupancy. This mitigation system will include a vapor barrier and/or passive or active sub-slab depressurization system, as appropriate.

Prior to conducting an SVI investigation or installing a mitigation system, a work plan will be developed and submitted to the NYSDEC and NYSDOH. The work plan will be similar to the approved SVI work plan approved for the 100 Lee Street building (attached in Appendix C). This work plan will be developed in accordance with the most recent NYSDOH "Guidance for Evaluating Vapor Intrusion in the State of New York". Measures to be employed to mitigate potential vapor intrusion will be evaluated, selected, designed, installed, and maintained based on the SVI evaluation, the NYSDOH guidance, and construction details of the proposed structure.

Preliminary (unvalidated) SVI sampling data will be forwarded to the NYSDEC and NYSDOH for initial review and interpretation. Upon validation, the final data will be transmitted to the agencies, along with a recommendation for any necessary follow-up action, such as mitigation. Validated SVI data will be transmitted to the property owner and/or tenant within 30 days of validation. If any indoor air test results exceed NYSDOH guidelines, relevant NYSDOH fact sheets will be provided to all tenants and occupants of the property within 15 days of receipt of validated data.

SVI sampling results, evaluations, and follow-up actions will also be summarized in the Periodic Review Report.

2.4 INSPECTIONS AND NOTIFICATIONS

2.4.1 Inspections

Inspections of all remedial components installed at the site will be conducted at the frequency specified in the SMP Monitoring Plan schedule. A comprehensive sitewide inspection will be conducted annually, regardless of the frequency of the Periodic Review Report. The inspections will evaluate and document the following:

- Whether Engineering Controls continue to perform as designed;
- If these controls continue to be protective of human health and the environment;

- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria;
- Sampling and analysis of appropriate media during monitoring events;
- If site records are complete and up to date; and
- Changes, or needed changes, to the remedial or monitoring system.

Inspections will be conducted in accordance with the procedures set forth in the Monitoring Plan of this SMP (Section 3). The reporting requirements are outlined in the Periodic Review Reporting section of this plan (Section 5).

If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the EC/ICs implemented at the site by a qualified environmental professional as determined by NYSDEC.

2.4.2 Notifications

Notifications will be submitted by the property owner to the NYSDEC as needed for the following reasons:

- 1. 60-day advance notice of any proposed changes in site use that are required under the terms of the BCA, 6NYCRR Part 375, and/or Environmental Conservation Law.
- 2. 15-day advance notice of any proposed ground-intrusive activities pursuant to the Excavation Work Plan.
- 3. Notice within 48-hours of any damage or defect to the foundations structures that reduces or has the potential to reduce the effectiveness of other Engineering Controls and likewise any action to be taken to mitigate the damage or defect.
- 4. Notice within 48-hours of any emergency, such as a fire, flood, or earthquake that reduces or has the potential to reduce the effectiveness of Engineering Controls in place at the site, including a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- 5. Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action shall be submitted to the NYSDEC within 45 days and shall describe and document actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser has been provided with a copy of the BCA, and all approved work plans and reports, including this SMP.
- Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing.

2.5 CONTINGENCY PLAN

Emergencies may include injury to personnel, fire or explosion, environmental release, or serious weather conditions.

2.5.1 Emergency Telephone Numbers

In the event of any environmentally related situation or unplanned occurrence requiring assistance, the Owner or Owner's representative(s) should contact the appropriate party from the contact list below. For emergencies, appropriate emergency response personnel should be contacted. Prompt contact should also be made to the qualified environmental professional listed in the table below. These emergency contact lists must be maintained in an easily accessible location at the site.

Medical, Fire, and Police:	911
One Call Center:	(800) 272-4480(3 day notice required for utility markout)
Poison Control Center:	(800) 222-1222
Pollution Toxic Chemical Oil Spills:	(800) 424-8802
NYSDEC Spills Hotline	(800) 457-7362
NYSDEC Region 9 Contacts Regional Hazardous Waste Remediation Engineer	(716) 851-7220

Table 2.2: Other Contact Numbers

Mr. Jon Williams, President SBD Holdings 1, Inc (Site Owner)	(716) 856-3333
Qualified Environmental Professional Mr. John Scrabis AMEC E&I, Inc.	(412) 279-6661

* Note: Contact numbers subject to change and should be updated as necessary

2.5.2 Map and Directions to Nearest Health Facility

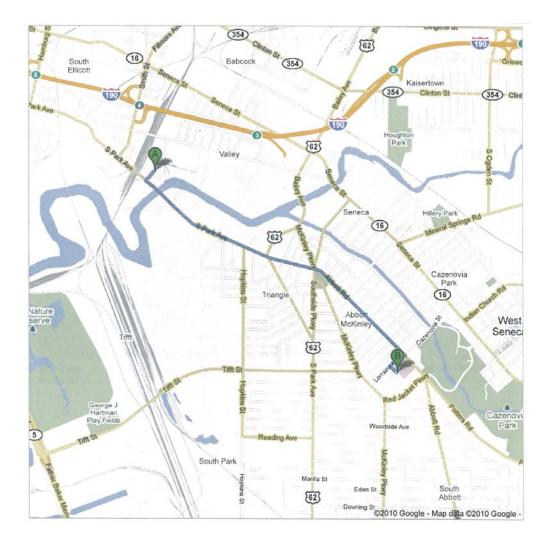
Site Location: 100 Lee Street, Buffalo, NY

Nearest Hospital Name: Mercy Hospital

Hospital Location: 565 Abbott Road, Buffalo, NY

Hospital Telephone: (716) 826-7000

Directions to the Hospital:


- 1. Exit the site and proceed southwest on Lee Street.
- 2. Turn left (southeast) onto South Park Avenue.
- 3. Continue straight S. Park Avenue becomes US-62, then CR-4 (Abbott Road),

1.1 miles. Follow signs to the hospital emergency room entrance.

Total Distance: Approximately 2 miles

Total Estimated Time: Five to 10 minutes, depending on traffic

Map Showing Route from the site to the Hospital:

2.5.3 Response Procedures

As appropriate, the fire department and other emergency response groups will be notified immediately by telephone of the emergency. The emergency telephone number list is found at the beginning of this Contingency Plan (Table 2.1: Emergency Contact Numbers). The list will also be posted prominently at the site and made readily available to all personnel at all times. Responding to emergencies or spills associated with operations conducted by site occupants or tenants will be the responsibility of the occupant or tenant involved. Emergencies or spills known or suspected to have been caused by remaining contamination will be addressed in the following manner:

1. Any person noticing or suspecting a release should contact the owner and appropriate emergency response agencies, as listed in Section 2.5.1.

- 2. The person making the initial report should give as much information as possible including:
 - Substance spilled and approximate amount.
 - Location and source of spill.
 - Approximate time spill began or time first noticed.
 - Is release ongoing?
 - Does the spill pose an immediate threat to human health or the environment?
- 3. Personnel at the scene of the spill shall cease activities and take whatever means are safe and available to restrain further spillage and contain the materials that have been released. The individual(s) providing initial response should first identify any clear health hazards and take appropriate measures to avoid personal injury prior to initiating any response actions. In no case should a person attempt any action if unfamiliar with the material spilled, or if there exists reasonable doubt concerning safety or risk of injury. Specific caution should be taken before attempting to eliminate the spill source of flammable materials (i.e. solvent or gasoline). Flammable materials such as solvents or gasoline pose the additional threat of fire or explosion that may endanger the lives of others present at the site and must be handled with extreme care. The need for appropriate personal protective equipment and response equipment (i.e. non-sparking tools) should be evaluated by the individual(s) that have discovered the release prior to initiating any response measures. The primary motivation for interim response measures by the individuals observing the spill or release is to block potential routes of entry into storm drains or other watercourses and to prevent contamination to soil, surface water, and groundwater.
- 4. After initiating preliminary containment measures as described in paragraph 3) above, personnel involved will secure the area affected.
- 5. Upon notification, the site owner (or tenant, if applicable) will proceed to the spill area.
- 6. It is the responsibility of the site owner (or tenant, if applicable) to determine the potential severity of an oil spill and the need to verbally notify the local fire department, local emergency response agencies, the federal EPA and/or the National Response Center (NRC).
- 7. If the site owner (or tenant, if applicable) determines the spill to be of a minor consequence and below applicable reporting thresholds, he or she may direct the resumption of normal activities at the site.
- 8. If the site owner (or tenant, if applicable) determines that the spill is significant and/or reportable due to type or quantity of material spilled, he or she will initiate an appropriate response effort. If the Site does not have the internal resources

available to effectively handle the spill response, the site owner (or tenant, if applicable) will arrange for assistance from outside resources.

- 9. It is the responsibility of the site owner (or tenant, if applicable) to determine the most effective means of cleanup and proper methods to ultimately dispose of the spilled materials. In most cases this will mean placing the spill residue in a suitable container (e.g. drums). Specific care should be taken in the event of a corrosive spill as these materials often interact with standard steel drums.
- 10. All spilled materials containerized as part of a spill response will be marked as to the type and quantity of the materials contained and the date.
- 11. Records and written documentation regarding the emergency or spill event shall be maintained by the site owner (or tenant, if applicable), as required by law.
- 12. The site owner (or tenant, if applicable) will be responsible for assessing and preparing any reports or notifications required for external agencies (NYSDEC, federal EPA, local fire department, NRC, etc.).

3.0 SITE MONITORING PLAN

3.1 INTRODUCTION

3.1.1 General

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the site, the soil cover system, and all affected site media identified below. Monitoring of other Engineering Controls is described in Chapter 4, Operation, Monitoring and Maintenance Plan. This Monitoring Plan may only be revised with the approval of NYSDEC.

3.1.2 Purpose and Schedule

This Monitoring Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, storm water, indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance, particularly ambient groundwater standards and Part 375 SCOs for soil;
- Assessing achievement of the defined remedial performance criteria.
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, this Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency;
- Information on all designed monitoring systems (e.g., well logs);
- Analytical sampling program requirements;
- Reporting requirements;
- Quality Assurance/Quality Control (QA/QC) requirements;
- Inspection and maintenance requirements for monitoring wells;

- Monitoring well decommissioning procedures; and
- Annual inspection and periodic certification.

Monitoring of the performance of the remedy and overall reduction in contamination on-site and off-site will be conducted for specific media as described below. The frequency thereafter will be determined based on available data and must be approved by NYSDEC. Trends in contaminant levels in air, soil, and/or groundwater in the affected areas will be evaluated to determine if the remedy continues to be effective in achieving remedial goals and/or if the EC/IC can be terminated. Monitoring programs are summarized in the table below and outlined in detail in Sections 3.2 and 3.3.

Monitoring Program	Frequency*	Matrix	Analysis
Shallow Groundwater	Quarterly for first two years, then annually unless determined otherwise by NYSDEC	Groundwater	TCL VOCs, TCL SVOCs and TAL metals
Storm Water (Section 3.3.2)	Quarterly for first year or until off-site groundwater infiltration on the Armor Electric property is eliminated, then annually unless determined otherwise by NYSDEC	Storm Water	TCL VOCs, TAL Metals, TCL SVOCs and any additional SPDES permit parameters
Vapor Intrusion Pathway – occupied structures	One time based on screening requirements	Air	VOCs (site- specific)
Site Cover System	Quarterly	N/A (visual inspection only)	N/A (visual inspection only)

Table 3.1: Monitoring/Inspection Schedule

* The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH

3.2 COVER SYSTEM MONITORING

On a quarterly basis, a representative of the owner will conduct a visual inspection of the site to document the condition of the cover system and identify deficiencies that require maintenance or repair. Specifically, the quarterly inspection will document the following:

- The condition of the soil cover, including
 - o areas with missing or insufficient grass/vegetation;
 - and areas where runoff or erosion has compromised the soil cover and/or exposed the demarcation layer; and
 - areas where animal burrows or the presence of woody vegetation has potentially compromised the integrity of the soil cover.
- The condition of surface pavement (asphalt or concrete), including identification of areas where cracks, weathering, spalling, potholes or other conditions compromise the integrity of the pavement or expose underlying soil; and
- The condition of any at-grade or basement concrete slabs of occupied structures.

The results of each inspection, including identification of conditions requiring repair or maintenance, will be documented on an inspection checklist. Necessary repairs will be completed, where possible, prior to the next inspection. An example inspection checklist is provided in Appendix E.

3.3 MEDIA MONITORING PROGRAM

As noted in Section 3.1.2, specific media that will require monitoring after completion of remedial action are groundwater, storm water and indoor air. The monitoring requirements for each are presented in the following subsections.

3.3.1 Groundwater Monitoring

Groundwater monitoring for selected wells screened within the shallow aquifer will be performed on a periodic basis to assess the performance of the remedy.

A network of perimeter monitoring wells located on Area E has been installed to monitor both up-gradient and down-gradient groundwater conditions at the site. The network of on-site and off-site wells to be included in the monitoring program are listed on Table 3, including upgradient wells located along the northern side of the site, wells located in the middle part of the site, and wells located downgradient, including wells downgradient of the areas affected by the shallow VOC plume on the southwestern side of the property, and the former petroleum LNAPL area on the southeastern side of Area E.

Figure 3 shows the existing monitoring wells located on and adjacent to Area E. Table 3 provides a summary of the available construction information, including total depths and screened intervals, for the Area E wells. Table 3 also includes the monitoring frequency and analytical parameters for the wells that will be included in the monitoring program. Table 4 provides a summary of 2008 groundwater monitoring data for Area E and Table 5 provides a summary of 2009 groundwater monitoring data for Area E, which establish baseline (i.e., pre-remedial) conditions. Monitoring well construction logs are included in Appendix F.

Groundwater samples will be collected from the specified Area E monitoring wells on a quarterly basis in the first two years after NYSDEC issues the Certificate of Completion (COC). Thereafter it is anticipated, depending on trend analysis of groundwater concentrations, that groundwater samples will be collected on an annual basis until such time that the frequency is reduced as approved by NYSDEC. Sampling procedures and analytical methods shall be as specified in the subsections below and may also be modified if approved by NYSDEC.

The sampling frequency and parameters may be modified with the written approval NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by NYSDEC. Deliverables for the groundwater monitoring program are specified below.

3.3.1.1 Sampling Protocol

All monitoring well sampling activities will be recorded in a field book and a groundwater-sampling log (example log presented in Appendix G). Other observations (e.g., well integrity, etc.) will be noted on the well sampling log. The well sampling log will serve as the inspection form for the groundwater monitoring well network.

Low-flow groundwater sampling techniques will be employed during each sampling event following USEPA Region I guidance. However, if low-flow sampling is not possible (e.g., insufficient water level depth in the well or groundwater recharge rate is too slow) an alternate sampling technique may be used. The wells will be sampled using peristaltic pumps or USEPA-approved submersible pumps (e.g., Grundfos® or bladder type). The tubing will be securely fastened to the well casing or cap during sampling to prevent disturbance of any sediments in the well. Pumps will be operated at less than 500 milliliters per minute during purging and sampling.

The following equipment and supplies may be used during groundwater sample collection:

- Low Flow Groundwater Data Sheet;
- field log book;
- peristaltic pump, submersible pump or bladder pump and control box;
- appropriate hoses and connectors for dedicated and non-dedicated systems;
- compressed air or nitrogen source (with regulator) to supply bladder pump;
- alternate purging and sampling device (for alternative sampling method);
- PID meter;
- multi-parameter water quality meter equipped with a flow-through cell;
- water level indicator;
- interface probe for detection and measurement of non-aqueous phase liquids (NAPL);
- volumetric measuring device;

- engineers rule;
- sample containers;
- disposable or digital camera;
- decontamination supplies;
- plastic sheeting to establish a clean area for equipment staging and sample collection;
- tools for opening well protective casings; and containers for temporary storage of purge water.

Attempts should be made to collect inorganics and metals samples with turbidity measuring below 50 Nephelometric Turbidity Units (NTUs). If the field turbidity measurement exceeds 50 NTUs and is unavoidable for a particular well, a filtered sample will be collected through a 0.45 micron filter in addition to the unfiltered fraction.

Non-dedicated groundwater sampling equipment will be decontaminated prior to use. Calibration of the monitoring equipment will be in accordance with the USEPA analytical method and the manufacturer's suggested procedures and will be completed prior to each day's sampling activities and as required during the course of the day. Daily instrument calibration data will be recorded in the field log book or on a separate calibration record. Purge water will be containerized and discharged to the onsite treatment system or allowed to infiltrate in the immediate area of the well.

3.3.1.2 Water Level Measurements

The following equipment and supplies may be used during water level measurement activities:

- field log book;
- water level indicator;
- interface probe,
- engineers rule;
- decontamination supplies; and
- tools for opening well protective casings.

The depth to groundwater will be measured from the surveyor's mark on the well riser or, in the absence of such mark, from the highest point on the rim of the well casing or riser. Water level measurements at the various wells will be obtained using an electronic water level meter. An interface probe will also be used at wells where NAPL may be present to identify the presence and thickness of the NAPL layer. The water level and, where appropriate, NAPL thickness, will be measured to 0.01 feet. The measured values will be checked by raising the probe 1 to 2 feet above the water surface and remeasuring the water level. The probe end of the water level meter and interface probe will be decontaminated between monitoring wells. The height of the protective casing stick-up and protective casing/well casing differential will also be recorded.

3.3.1.3 NAPL Recovery

If NAPL is encountered in a well during a groundwater monitoring event, the NAPL will be removed to the extent practicable at the time of the monitoring event. NAPL removal may be accomplished via bailer, pump (peristaltic), or by insertion of an absorbent material that may be left in the well to recover the NAPL over time. Locations, thicknesses and type of NAPL will be recorded on the well sampling data sheets, along with method and amount of NAPL removed. The annual report will contain the results of an evaluation including a recommendation to address the presence of NAPL.

3.3.1.4 Field Sample Custody

Sample collection activities will be recorded in a bound field notebook. Details of each individual sample collection will be documented in the field log book and/or on a sampling log (Appendix G). Sample labels will be prepared which include the sample designation, date and time of sampling, requested analyses, and preservatives used. A uniquely numbered chain of custody (COC) form will also be prepared and signed in the field by the sampling team. Samples will be shipped by overnight carrier or courier in a sealed cooler packed with ice.

COC forms will be provided by the analytical laboratory and completed by the samplers. The following information must be included on the COC form when shipping samples:

• project name, number, and location

- COC number
- EIM Site ID (The EIM Site ID for this site is 37745)
- location ID
- field sample ID
- date and time of collection
- sample matrix
- sample purpose (or QC code)
- analytical methods
- sample preservation information
- bottle types and number of sample containers
- signature of sampler and sample manager and time relinquished
- bill of lading (as necessary)

Custody procedures associated with sample collection are divided into field custody, field notebooks/documentation, and transfer of custody/shipment. A unique COC number will be generated for each sample. The COC number will be identified as follows:

BCC-Area E-####-mmyy

where:

= monitoring well ID number

mmyy = date of sample collection (e.g., 0510 would designate May

2010)

Chains of Custody will be handwritten in the field and provided to the Site Data Manager.

3.3.1.5 Analytical Protocols

This section provides a description of the proposed off-site laboratory analytical program and the analytical methods used to analyze soil and water samples collected

during groundwater monitoring and field investigation activities. The majority of off-site analytical data will be generated using USEPA SW-846 analytical procedures (USEPA, 1997).

Sample analyses will be completed by a laboratory that is certified by the State of New York and the National Environmental Laboratory Accreditation Program (NELAP).

Groundwater analytical methods and parameters are summarized below:

- Target Compound List (TCL) VOCs by Method 8260B
- TCL SVOCs by Method 8270C
- Target Analyte List (TAL) Metals by Method 6010B including mercury by Methods 7470A and 7471A

Container size and type, preservative, and holding time requirements for groundwater samples for each analytical group will be consistent with USEPA SW-846 requirements.

3.3.1.6 Quality Assurance/Quality Control

Several types of field QC samples will be collected to provide additional data that will be used to evaluate whether the sample collection and handling procedures have affected the quality of the samples. These samples include:

Field Duplicates- Field duplicate samples are samples that have been divided into two or more portions at the same step in the sample collection process. The field duplicated samples will consist of two samples taken from a single purged well. The field duplicate samples will be shipped along with field samples and analyzed by the same laboratory.

Matrix Spike/Matrix Spike Duplicate – Spikes are known amounts of specific chemical constituents added by the laboratory to selected samples to evaluate the effect of the sample matrix on the preparation and analytical procedures. Matrix spikes are performed in duplicate and are referred to as MS/MSDs.

Trip Blank - Trip blanks assess potential contamination of the samples by VOCs during sample transport. The trip blank consists of a VOC sample container filled at the

laboratory with water (water samples). These containers are shipped to the Site with the sample containers, transported with the sample bottles to the sampling location, and an unopened trip blank is returned to the laboratory with each shipment of samples for analysis.

3.3.1.7 Data Management

Management of analytical data includes the following tasks:

- Organization and storage of project field records including logbooks, instrument calibration records, exploration records, field sample collection records, and sample handling and COC documents.
- Tracking of off-site laboratory samples and receipt of laboratory deliverables.
- Receipt, organization, and storage of laboratory data packages.
- Receipt of electronic data and entry of results into the project database.
- Data quality review at a validation level specified in the project-specific plan.
- Entry of data validation qualifiers and preparation of final data tables.
- Preparation of tables and figures for use in contamination assessments.

The data management process will include procedures necessary to ensure consistent and complete collection of field data, tracking of the laboratory analytical and validation processes, consistent and timely production of electronic data deliverables (EDDs) from laboratories, and accurate and timely entry of EDDs into Owner and NYSDEC database systems, as appropriate.

Prior to the field program, the Site data manager will set up the valid values or use in a database. Valid values consist of the contractor names, laboratory names, method names, units of measure, parameter lists for each method, QC codes for the field QC samples. Validation requirements, such as holding times and surrogate recoveries for each method and appropriate validation qualifiers are entered at this time as well. COC information will be entered by the Site Data Manager into an electronic database. The electronic COC data will be compared to the laboratory EDDs to track the completeness of the laboratory data deliverables.

Imperfect EDDs will be returned to the laboratory for correction. Returning the EDDs to the laboratory for correction prior to use or upload minimizes discrepancies between hard copy analytical reports and electronic files. Field data will be entered in an EXCEL template or other appropriate electronic file after it has been documented as being checked. Field data will be stored in the project files, along with supporting metadata such as author/creator of data, date, location, brief description. Ten percent of the analytical data and field data will be compared against hard copy. Additional data review will be completed if errors are noted.

Hardcopy data deliverables will be specified for each field program depending on the level of review planned for the sample set and the planned use of the data. Level 2 validation is planned for the groundwater monitoring sampling events. Therefore a Level 2 data package will be provided by the laboratory. For VOCs, SVOCs, and TAL metals, the laboratory will provide hard copy deliverable packages that are equivalent to Contract Laboratory Program (CLP) data package specifications. Modified CLP type forms are acceptable providing they contain equivalent information. Deliverable packages will include a narrative that summarizes activities and any problems or issues, forms summarizing sample and QC blank results, forms summarizing all QC measurement parameters specified in the method, and all associated raw data generated in support of the reported results. Results of QC measurements including calibration data summaries, laboratory control data summaries, MS/MSD summaries (for samples requested on the COC), surrogate summaries, and laboratory duplicate summaries.

3.3.1.8 Monitoring Well Repairs, Replacement And Decommissioning

If biofouling or silt accumulation occurs in the on-site and/or off-site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan), if an event renders the wells unusable. Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

The NYSDEC will be notified prior to any repair or decommissioning of monitoring wells for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent periodic report. Well decommissioning without replacement will be done only with the prior approval of NYSDEC. Well abandonment will be performed in accordance with the most recent version of NYSDEC's "Groundwater Monitoring Well Decommissioning Procedures." Monitoring wells that are decommissioned because they have been rendered unusable will be reinstalled in the nearest available location, unless otherwise approved by the NYSDEC.

3.3.1.9 Data Review and Validation

Analytical data will be validated in accordance with the scope established for each field investigation. Validation will be completed prior to use as final data in investigation reports.

Accuracy and precision limits have been identified for the analytical quality control measurements that will be performed in association with the collection and analysis of field samples. Accuracy and precision limits will follow USEPA Region 2 guidelines. QC Limits for surrogates, spikes, and duplicates will be consistent with USEPA requirements. These limits will be used to review and evaluate data quality and data usability during data validation.

A data validation scope for the monitoring program at the Site is designated at Level 2 validation. Level 2 includes the following data checks and evaluations:

- A review of the data set narrative to identify and issues that the lab reported in the data deliverable;
- A check of sample integrity (sample collection, preservation, and holding times);

- An evaluation of basic QC measurements used to assess the accuracy and precision of data including QC blanks, laboratory control samples (LCS), MS/MSDs, surrogate recovery when applicable, and field or lab duplicate results; and,
- A review of sample results, target compounds, and detection limits to verify that project analytical requirements are met.

A database system may be used to complete a computerized Level 2 review of each data package to check that the project quality control requirements are being met. Data qualifiers will be applied to results that do not meet project goals. A summary of data validation actions will be provided for each sample set. The summaries will be reviewed and approved by the project chemist prior to finalization of the validated data. The data will be evaluated/qualified based on the following parameters (if available/applicable) and specified criteria:

A data validation summary report will be prepared for data sets reported from each distinct sample collection effort. The validation report will include a summary of analytical methods performed, listings of samples included in the review, and summaries of data validation actions or observations. Copies of data validation reports for each sampling event will be provided in the Periodic Review Reports.

3.3.1.10 Monitoring Well Repairs, Replacement and Decommissioning

If biofouling or silt accumulation occurs in the on-site and/or off-site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan), if an event renders the wells unusable.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

The NYSDEC will be notified prior to any repair or decommissioning of monitoring wells for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent periodic report. Well abandonment will be performed in accordance with NYSDEC's "Groundwater Monitoring Well Decommissioning Procedures." Monitoring wells that are decommissioned because they have been rendered unusable will be reinstalled in the nearest available location, unless otherwise approved by the NYSDEC.

3.3.2 Storm Water Monitoring

Area E storm water is collected via a series of manholes/drains and conveyed via a network of underground piping (Figure 4) to the Buffalo River via an outfall identified as Outfall 011. Storm water from the new storm sewer system installed at Area C during 2011 is also conveyed to the Area E system via a pipe that runs beneath Lee Street. This outfall and associated underground storm sewer piping is located on adjacent property owned/operated by PVS Chemicals. An easement is in place that provides SBD with the right to maintain and operate the pipe/outfall.

If discharge limits and requirements for storm water monitoring are specified in a future discharge permit issued by NYSDEC, this SMP will be revised to include the monitoring and reporting requirements specified in the permit upon issuance.

Periodic monitoring of the storm water effluent will be completed to verify that the remedy has successfully mitigated the infiltration of contaminated groundwater to the storm sewer system. Figure 4 shows the layout of the existing storm sewer piping and manholes. Manhole DMH-E31 is the manhole located on Area E that is furthest downstream prior to the Buffalo River outfall.

Table 6 provides a summary of pre-remedial storm water sampling events completed at Area E manholes during non-precipitation events, beginning in 2007 and ending in 2010. Table 7 provides a summary of post-remedial storm water monitoring data for Area E completed in 2011.

As shown in Table 3.1, samples of storm water will be collected from the specified Area E manholes on a quarterly basis during the first year after NYSDEC issues the Certificate of Completion (COC), or until such time that off-site groundwater infiltration on the Armor Electric property is eliminated. The manholes to be sampled on a quarterly basis include DMH-E07, DMH-E15, DMH-E16, DMH-E17, DMH-E18, DMH-E21, DMH-E30, and DMH-E31. Thereafter it is anticipated, depending on levels

of contaminant concentrations in comparison to New York surface water quality standards applicable to the Buffalo River, that storm water samples will be collected on an annual basis from manhole DMH-E31, until such time that the frequency is reduced as approved by NYSDEC. Sampling procedures and analytical methods shall be as specified in the subsections below and may also be modified if approved by NYSDEC.

The sampling frequency and parameters may be modified with the written approval NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by NYSDEC.

Deliverables for the storm water monitoring program are specified below.

3.3.2.1 Sampling Protocol

Storm water sampling activities will be recorded in a field book. The visual appearance of the storm water, approximate flow rate (if measured), sample collection and handling methods, time and date of sample collection, and other relevant information will be noted by the sampler.

Samples will be collected during a non-precipitation event (i.e., at least 3 days since the last measurable precipitation event with no snow melt occurring) to ensure that samples will be representative of infiltrating groundwater. Samples may be collected via clean, long-handled scoops or sample pumps with new/clean tubing. If no flow is present at manhole DMH-E31 due to lack of precipitation, a storm water sample will be collected during the "first flush" of a precipitation event. The absence of storm water flow during a particular sampling event will be considered verification that the remediation has successfully eliminated infiltration of groundwater to the storm sewer system. The lack of storm water flow during a particular sampling event will not preclude future attempts to collect a storm water sample, in accordance with the monitoring frequency specified in Table 3.1.

The following equipment and supplies may be used during storm water sample collection:

- field log book;
- long-handled plastic scoop or peristaltic pump;

- appropriate hoses and connectors for dedicated and non-dedicated systems;
- PID meter;
- volumetric measuring device;
- sample containers;
- disposable or digital camera;
- decontamination supplies;
- plastic sheeting to establish a clean area for equipment staging and sample collection;
- tools for opening manhole; and
- personal protective equipment (nitrile gloves, safety glasses, etc.)

Non-dedicated/non-disposable sampling equipment will be decontaminated prior to use. Calibration of monitoring equipment will be in accordance with the manufacturer's suggested procedures and will be completed prior to each day's sampling activities and as required during the course of the day. Daily instrument calibration data will be recorded in the field log book or on a separate calibration record.

3.3.2.2 Field Sample Custody

Sample collection activities will be recorded in a bound field notebook. Details of each individual sample collection will be documented in the field log book. Sample labels will be prepared which include the sample designation, date and time of sampling, requested analyses, and preservatives used. A uniquely numbered chain of custody (COC) form will also be prepared and signed in the field by the sampling team. Samples will be shipped by overnight carrier or delivered via courier in a sealed cooler packed with ice.

COC forms will be provided by the analytical laboratory and completed by the samplers. The following information must be included on the COC form when shipping samples:

- project name, number, and location
- COC number
- location ID

- field sample ID
- date and time of collection
- sample matrix
- sample purpose (or QC code)
- analytical methods
- sample preservation information
- bottle types and number of sample containers
- signature of sampler and sample manager and time relinquished
- bill of lading (as necessary)

Custody procedures associated with sample collection are divided into field custody, field notebooks/documentation, and transfer of custody/shipment. A unique COC number will be generated for each sample. The COC number will be identified as follows:

BCC-Area E-DMH-E31-mmyy

where: mmyy = date of sample collection (e.g., 0911 would designate September 2011)

Chains of Custody will be handwritten in the field and provided to the Site Data Manager.

3.3.2.3 Analytical Protocols

This section provides a description of the proposed off-site laboratory analytical program and the analytical methods used to analyze soil and water samples collected during groundwater monitoring and field investigation activities. The majority of off-site analytical data will be generated using USEPA SW-846 analytical procedures (USEPA, 1997).

Sample analyses will be completed by a laboratory that is certified by the State of New York and the National Environmental Laboratory Accreditation Program (NELAP). Storm water sample analytical methods and parameters are summarized below:

- Target Compound List (TCL) VOCs by Method 8260B
- TCL SVOCs by Method 8270C (including aniline)

Container size and type, preservative, and holding time requirements for storm water samples for each analytical group will be consistent with USEPA SW-846 requirements.

3.3.2.4 Quality Assurance/Quality Control

Storm water samples will be collected coincident with the Area E groundwater monitoring samples specified in Section 3.3.1. Field QC samples will be collected as described in section 3.3.1.6.

3.3.2.5 Data Management

Data management will be as described in Section 3.3.1.7.

3.3.2.6 Data Review and Validation

Data review and validation will be completed as described in Section 3.3.1.8.

3.3.3 Soil Vapor Intrusion Monitoring Program

The scope and frequency of SVI monitoring of existing or future occupied structures will be determined based on the SVI screening and future sampling data. VI monitoring will be performed as required and shall be consistent with the requirements of the most recent NYSDOH "Guidance for Evaluating Vapor Intrusion in the State of New York". If future occupied structures require routine VI monitoring, the VI monitoring plan shall be provided in a revised version of this SMP.

3.4 SITE-WIDE INSPECTION

Site-wide inspections will be performed on a regular schedule at a minimum of once a year. Site-wide inspections will also be performed after all severe weather conditions that may affect Engineering Controls or monitoring devices. During these inspections, an inspection form will be completed (Appendix H). The form will compile sufficient information to assess the following:

- Compliance with all ICs, including site usage;
- An evaluation of the condition and continued effectiveness of ECs;
- General site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection;
- Compliance with permits and schedules included in the Operation and Maintenance Plan; and
- Confirm that site records are up to date.

3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL

All sampling and analyses will be performed in accordance with the requirements of the Quality Assurance Project Plan (QAPP) prepared for the site during the Remedial Investigation (Appendix I), or similar plan approved by NYSDEC. Main Components of the QAPP include:

- QA/QC Objectives for Data Measurement;
- Sampling Program:
 - Sample containers will be properly washed, decontaminated, and appropriate preservative will be added (if applicable) prior to their use by the analytical laboratory. Containers with preservative will be tagged as such.
 - Sample holding times will be in accordance with the NYSDEC ASP requirements.
 - Field QC samples (e.g., trip blanks, coded field duplicates, and matrix spike/matrix spike duplicates) will be collected as necessary.

- Sample Tracking and Custody;
- Calibration Procedures:
- All field analytical equipment will be calibrated immediately prior to each day's use. Calibration procedures will conform to manufacturer's standard instructions.
- The laboratory will follow all calibration procedures and schedules as specified in USEPA SW-846 and subsequent updates that apply to the instruments used for the analytical methods.
- Analytical Procedures;
- Preparation of a Data Usability Summary Report (DUSR), which will present the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method.
- Internal QC and Checks;
- QA Performance and System Audits;
- Preventative Maintenance Procedures and Schedules; and
- Corrective Action Measures.

3.6 MONITORING REPORTING REQUIREMENTS

Forms and any other information generated during regular monitoring events and inspections will be kept on file on-site. All forms, and other relevant reporting formats used during the monitoring/inspection events, will be (1) subject to approval by NYSDEC and (2) submitted at the time of the Periodic Review Report, as specified in the Reporting Plan of this SMP.

All monitoring results will be reported to NYSDEC on a periodic basis in the Periodic Review Report. A letter report will also be prepared [if required by NYSDEC], subsequent to each sampling event. The report (or letter) will include, at a minimum:

- Date of event;
- Personnel conducting sampling;
- Description of the activities performed;

- Type of samples collected (e.g., sub-slab vapor, indoor air, outdoor air, etc);
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation, etc.);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format);
- Any observations, conclusions, or recommendations; and
- A determination as to whether groundwater conditions (or other sampled media) have changed since the last reporting event.

Data will be reported in hard copy or digital format as determined by NYSDEC. A summary of the monitoring program deliverables are summarized in the table below.

 Table 3.2: Schedule of Monitoring/Inspection Deliverables

Task	Reporting Frequency*
Periodic Review Report – Area E (will include groundwater monitoring results and any other applicable	Annual (February 15 of each following year)
monitoring reports)	

The frequency of events will be conducted as specified until otherwise approved by NYSDEC

4.0 OPERATION AND MAINTENANCE PLAN

The site remedy does not currently rely on any mechanical systems, such as subslab depressurization systems or air sparge/ soil vapor extraction systems to protect public health and the environment. Therefore, the operation and maintenance of such components is not included in this SMP. Should an active system be required in the future, this SMP will be modified accordingly to address operation and maintenance requirements.

As noted in Section 1.4, ORC-A was added to the backfill of certain remedial excavations as an in-situ method to enhance the degradation and natural attenuation of VOC contamination in shallow Site groundwater. The exact period of time in which the ORC-A will remain in the subsurface and enhance the natural attenuation process will vary depending on localized subsurface conditions, but it is anticipated that the positive effects of the ORC-A will continue for several months to years after application to the excavated areas. Groundwater monitoring, as specified in Chapter 3 of this document, will be used to verify the effectiveness of the remedial program, including the effectiveness of ORC-A. Triggers for additional remediation, which may include retreatment using ORC-A or similar material, are listed in Section 5.4.

5.0 INSPECTIONS, REPORTING AND CERTIFICATIONS5.1 SITE INSPECTIONS

5.1.1 Inspection Frequency

All inspections will be conducted at the frequency specified in the schedules provided in Section 3 - Monitoring Plan and Section 4 - Operation and Maintenance Plan of this SMP. At a minimum, a site-wide inspection will be conducted annually. Inspections of remedial components will also be conducted when a breakdown of any treatment system component has occurred or whenever a severe event has taken place, such as an erosion or flooding event that may affect the ECs.

5.1.2 Inspection Forms, Sampling Data, and Maintenance Reports

All inspections and monitoring events will be recorded on the appropriate forms for their respective system including the inspection form for the Site Cover System (Appendix E). Additionally, a general site-wide inspection form will be completed during the site-wide inspection (see Appendix H). These forms are subject to NYSDEC revision.

All applicable inspection forms and other records, including all media sampling data and system maintenance reports, generated for the site during the reporting period will be provided in electronic format in the Periodic Review Report.

5.1.3 Evaluation of Records and Reporting

The results of the inspection and site monitoring data will be evaluated as part of the EC/IC certification to confirm that the:

- EC/ICs are in place, are performing properly, and remain effective;
- The Monitoring Plan is being implemented;
- Operation and maintenance activities are being conducted properly; and, based on the above items,

• The site remedy continues to be protective of public health and the environment and is performing as designed in the RAWP and FER.

5.2 CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS`

After the last inspection of the reporting period, a Professional Engineer licensed to practice in New York State will prepare the following certification:

For each institutional or engineering control identified for the site, I certify that

all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices; and
- The information presented in this report is accurate and complete.
- No new information has come to my attention, including groundwater monitoring data from wells located at the site boundary, if any, to indicate that the

assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid; and

- Every five years the following certification will be added: "The assumptions made in the qualitative exposure assessment remain valid."
- I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner or Owner's Designated Site Representative] (and if the site consists of multiple properties): [I have been authorized and designated by all site owners to sign this certification] for the site.

The signed certification will be included in the Periodic Review Report described below.

5.3 PERIODIC REVIEW REPORT

A Periodic Review Report will be submitted to the Department every year, beginning eighteen months after the Certificate of Completion is issued. In the event that the site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in Appendix A (Metes and Bounds). The report will be prepared in accordance with NYSDEC DER-10 and submitted within 45 days of the end of each certification period. Media sampling results will also be incorporated into the Periodic Review Report. The report will include:

- Identification, assessment and certification of all ECs/ICs required by the remedy for the site;
- Results of the required annual site inspections and severe condition inspections, if applicable;
- All applicable inspection forms and other records generated for the site during the reporting period in electronic format;
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions;
- Data summary tables and graphical representations of contaminants of concern by media (groundwater, soil vapor), which include a listing of all compounds analyzed,

along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends;

- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format;
- A site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the site-specific RAWP;
 - The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;
 - Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
 - The overall performance and effectiveness of the remedy.

The Periodic Review Report will be submitted, in hard-copy format, to the NYSDEC Central Office and Regional Office in which the site is located, and in electronic format to NYSDEC Central Office, Regional Office and the NYSDOH Bureau of Environmental Exposure Investigation.

5.4 CORRECTIVE MEASURES PLAN

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a corrective measures plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the corrective measures plan until it is approved by the NYSDEC. Conditions that will trigger the preparation of a corrective measures plan, which may include the requirements for additional characterization and remedial action, include the following:

- A statistically static or increasing trend in concentrations of site-related contaminants in groundwater at downgradient monitoring wells (as determined via statistical analysis against baseline data);
- Evidence of mobile NAPL within the property including any previously remediated areas (such as the Area E LNAPL location on the southeastern side of Area E);
- Evidence of vapor intrusion within an occupied structure at levels that exceed applicable State and/or Federal criteria;
- Significant erosion, thinning, lack of sufficient surface vegetation, rutting, deteriorated pavement, or other damage that compromises the integrity of the site cover system and that cannot be addressed via routine maintenance;
- Evidence of infiltration of contaminated groundwater or runoff of Siterelated contaminants into the Site storm sewer system based on statistically static or increasing trend in concentrations of site-related contaminants in site-related storm water (as determined via statistical analysis against baseline data); and
- Conditions that represent an immediate or imminent threat to human health or the environment.

TABLES

TABLE 1a POST-REMEDIAL ACTION SOIL CONCENTRATIONS AREA E - SITE MANAGEMENT PLAN SOUTH BUFFALO DEVELOPMENT – FORMER BUFFALO COLOR FACILITY BUFFALO, NEW YORK

			Les Neurs	E1 DC 02	F1 DC 02	F1 DC 04	F1 D5 OF	F1 B5 06	E1 DC 09	F1 DC 00	F1 DC 12	E1 DC 14	E1 DC 1E	E1 DC 10	E1 DC 20	F1 DC 21	F1 DC 22	E1 DC 22	E1 DC 24	F1 DC 25	E1 DC 2C	F1 BB 01	F1 BB 02
			Loc Name Field Sample ID	E1-RS-02 E1-RS2-0204	E1-RS-03 E1-RS3-0204	E1-RS-04 E1-RS4-0204	E1-RS-05 E1-RS5-0204	E1-RS-06 E1-RS6-0204	E1-RS-08 E1-RS8-0204	E1-RS-09 E1-RS9-0103	E1-RS-13 E1-RS13-0204	E1-RS-14 E1-RS14-0204	E1-RS-15 E1-RS15-0103	E1-RS-16 E1-RS16-0204	E1-RS-20 E1-RS20-0204	E1-RS-21 E1-RS21-0204	E1-RS-22 E1-RS22-0204	E1-RS-23 E1-RS23-0204	E1-RS-24 E1-RS24-0204	E1-RS-25 E1-RS25-0204	E1-RS-26 E1-RS26-0204	E1-RB-01 E1-RB1-0405	E1-RB-03 E1-RB3-1011
			ld Sample Date	11/16/10	11/16/10	11/17/10	11/19/10	11/23/10	11/29/10	11/29/10	12/03/10	12/03/10	12/03/10	12/06/10	01/03/11	01/03/11	01/06/11	01/06/11	01/05/11	01/05/11	01/10/11	11/17/10	11/29/10
		NYSDEC	Values (2)																				
		Commercial	Protection of																				
Parameter	Units (1)	Use	GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual							
VOCs																							
1,1,1-Trichloroethane	ug/kg	500000	680	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
1,1,2,2-Tetrachloroethane	ug/kg			243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
1,1,2-Trichloroethane	ug/kg			243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
1,1,2-Trichlorotrifluoroethane	ug/kg																						
1,1-Dichloroethane	ug/kg	240000	270	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U 4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
1,1-Dichloroethene 1,2,4-Trichlorobenzene	ug/kg ug/kg	500000	330	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 0	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
1,2-Dibromo-3-chloropropane	ug/kg																						+
1.2-Dibromomethane (EDB)	ug/kg																						
1,2-Dichlorobenzene	ug/kg	500000	1100	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	21	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
1,2-Dichloroethane	ug/kg	30000	20	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
1,2-Dichloropropane	ug/kg			243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
1,3-Dichlorobenzene	ug/kg	280000	2400	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
1,4-Dichlorobenzene	ug/kg	130000	1800	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	6.97	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
2-Butanone	ug/kg	500000	120	1210 U	2450 U	1150 U	21.5 U	20.7 U	1100 U	23.7 U	22.1 U	21.5 U	94.3 U	1160 U	22.6 U	20.1 U	21.6 U	21.1 U	21.9 U	21.2 UJ	96.9	1140 U	22.5 U
2-Chloroethyl vinyl ether	ug/kg			1210 U	2450 U	1150 U	21.5 U	20.7 U	1100 U	23.7 U	22.1 U	21.5 U	94.3 U	1160 U	22.6 U	20.1 U	21.6 U	21.1 U	21.9 U	21.2 UJ	25.2 U	1140 U	22.5 U
2-Hexanone	ug/kg			607 U 607 U	1230 U 1230 U	575 U 575 U	10.7 U 10.7 U	10.4 U 10.4 U	551 U 551 U	11.8 U	11.1 U 11.1 U	10.8 U 10.8 U	47.2 U 47.2 U	582 U 582 U	11.3 U 11.3 U	10 U 10 U	10.8 U 10.8 U	10.6 U 10.6 U	10.9 U 10.9 U	10.6 UJ 10.6 UJ	12.6 U 12.6 U	569 U 569 U	11.2 U 11.2 U
4-Methyl-2-pentanone Acetone	ug/kg ug/kg	500000	50	1400	2780	1150 U	48.5	68.6	1100 U	11.8 U	32.2	55.1	108	1160 U	28.4 U	20.1 U	21.6 U	35	21.9 U	21.2 UJ	340	1140 U	22.5 U
Benzene	ug/kg	44000	60	243 U	491 U	230 U	48.5 4.29 U	4.14 U	2220	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	6.1	4.25 UJ	5.05 U	228 U	4.5 U
Bromodichloromethane	ug/kg	11000	00	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
Bromoform	ug/kg			607 U	1230 U	575 U	10.7 U	10.4 U	551 U	11.8 U	11.1 U	10.8 U	47.2 U	582 U	11.3 U	10 U	10.8 U	10.6 U	10.9 U	10.6 UJ	12.6 U	569 U	11.2 U
Bromomethane	ug/kg			243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
Carbon disulfide	ug/kg			243 U	491 U	230 U	4.94	9.76	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	15.9	228 U	4.5 U
Carbon tetrachloride	ug/kg	22000	760	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
Chlorobenzene	ug/kg	500000	1100	2000	57300	2410	96.7	4.14 U	5710	4.74 U	106	81.5	1040	1040	4.52 U	4.02 U	4.32 U	4.23 U	134	35.1 J	5.05 U	7260	4.5 U
Chlorodibromomethane	ug/kg			243 U 243 U	491 U	230 U 230 U	4.29 U 4.29 U	4.14 U 4.14 U	221 U	4.74 U 4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U 4.32 U	4.23 U	4.37 U 4.37 U	4.25 UJ	5.05 U	228 U	4.5 U 4.5 U
Chloroethane Chloroform	ug/kg ug/kg	350000	370	243 U	491 U 491 U	230 U	4.29 U	4.14 U	221 U 221 U	4.74 U	4.42 U 4.42 U	4.3 U 4.3 U	18.9 U 18.9 U	233 U 233 U	4.52 U 4.52 U	4.02 U 4.02 U	4.32 U	4.23 U 4.23 U	4.37 U	4.25 UJ 4.25 UJ	5.05 U 5.05 U	228 U 228 U	4.5 U
Chloromethane	ug/kg	330000	570	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
Cis-1.2-Dichloroethene	ug/kg	500000	250	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
Cis-1,3-Dichloropropene	ug/kg			243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
Cyclohexane	ug/kg																						
Dichlorodifluoromethane	ug/kg																						
Ethyl benzene	ug/kg	390000	1000	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
Isopropylbenzene	ug/kg		 																				↓
Methyl acetate	ug/kg	500000	020																				╂─────┤
Methyl tert-Butyl Ether	ug/kg ug/kg	500000	930																				┥───┤
Methylcyclohexane Methylene chloride	ug/kg ug/kg	500000	50	607 U	1230 U	575 U	10.7 U	10.4 U	551 U	11.8 U	11.1 U	10.8 U	47.2 U	582 U	11.3 U	10 U	10.8 U	10.6 U	10.9 U	10.6 UJ	12.6 U	569 U	11.2 U
Styrene	ug/kg	300000	30	607 U	1230 U	575 U	10.7 U	10.4 U	551 U	11.8 U	11.1 U	10.8 U	47.2 U	582 U	11.3 U	10 U	10.8 U	10.6 U	10.9 U	10.6 UJ	12.6 U	569 U	11.2 U
Tetrachloroethene	ug/kg	150000	1300	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
Toluene	ug/kg	500000	700	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.98 J	5.05 U	228 U	4.5 U
Trans-1,2-Dichloroethene	ug/kg	500000	190	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
Trans-1,3-Dichloropropene	ug/kg			243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
Trichloroethene	ug/kg	200000	470	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
Trichlorofluoromethane	ug/kg			243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
Vinyl acetate	ug/kg	40000	20	607 U	1230 U	575 U	10.7 UJ	10.4 U	551 U	11.8 U	11.1 U	10.8 U	47.2 U	582 UJ	11.3 U	10 U	10.8 U	10.6 U	10.9 U	10.6 UJ	12.6 U	569 U	11.2 U
Vinyl chloride	ug/kg	13000	20	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4.74 U 4.74 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U
Xylenes, Total	ug/kg	500000	1600	243 U	491 U	230 U	4.29 U	4.14 U	221 U	4./4 U	4.42 U	4.3 U	18.9 U	233 U	4.52 U	4.02 U	4.32 U	4.23 U	4.37 U	4.25 UJ	5.05 U	228 U	4.5 U

TABLE 1a POST-REMEDIAL ACTION SOIL CONCENTRATIONS AREA E - SITE MANAGEMENT PLAN SOUTH BUFFALO DEVELOPMENT – FORMER BUFFALO COLOR FACILITY BUFFALO, NEW YORK

			Loc Name	E1-RS-02	E1-RS-03	E1-RS-04	E1-RS-05	E1-RS-06	E1-RS-08	E1-RS-09	E1-RS-13	E1-RS-14	E1-RS-15	E1-RS-16	E1-RS-20	E1-RS-21	E1-RS-22	E1-RS-23	E1-RS-24	E1-RS-25	E1-RS-26	E1-RB-01	E1-RB-03
			Field Sample ID	E1-RS2-0204	E1-RS3-0204	E1-RS4-0204	E1-RS5-0204	E1-RS6-0204	E1-RS8-0204	E1-RS9-0103	E1-RS-15 E1-RS13-0204	E1-RS14-0204	E1-RS15-0103	E1-RS16-0204	E1-RS20-0204	E1-RS21-0204	E1-RS22-0204	E1-RS23-0204	E1-RS24-0204	E1-RS25-0204	E1-RS26-0204	E1-RB1-0405	E1-RB3-1011
			eld Sample Date	11/16/10	11/16/10	11/17/10	11/19/10	11/23/10	11/29/10	11/29/10	12/03/10	12/03/10	12/03/10	12/06/10	01/03/11	01/03/11	01/06/11	01/06/11	01/05/11	01/05/11	01/10/11	11/17/10	11/29/10
			C Values (2)																				
Parameter	Units (1)	Commercial Use	Protection of GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual							
SVOCs	Onics	036		Result Quar	Result Quai	Result Quai	Result Quar	Result Quar	Result Quar	Result Qual	Result Qual	Result Quar	Result Quai	Result Qual	Result Quai	Result Quai	Result Quai	Result Qual	Result Quar	Result Qual	Result Quai	Result Quai	Result Qual
1,2,4-Trichlorobenzene	ug/kg	500000	1100	383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ug/kg ug/kg	500000 280000	1100 2400	383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 338 U	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
1,4-Dichlorobenzene	ug/kg	130000	1800	383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
2,2'-Dichlorodiisopropylether 2,2'-Oxybis(1-Chloropropane)	ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U			327 U	319 U	364 U	348 U	376 U
2,4,5-Trichlorophenol	ug/kg ug/kg			958 U	939 U	857 U	830 U	953 U	853 U	855 U	880 U	846 U	890 U	836 U	849 U	841 U	891 U	882 U	816 U	798 U	910 U	870 U	939 U
2,4,6-Trichloropheno	ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
2,4-Dichlorophenol 2,4-Dimethylphenol	ug/kg ug/kg			383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 338 U	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
2,4-Dinitrophenol	ug/kg			958 U	939 U	857 U	830 U	953 U	853 U	855 U	880 U	846 U	890 U	836 U	849 U	841 U	891 U	882 U	816 U	798 U	910 U	870 U	939 U
2,4-Dinitrotoluene 2,6-Dichlorophenol	ug/kg			383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 338 U	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
2,6-Dinitrotoluene	ug/kg ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U 342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
2-Chloronaphthalene	ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
2-Chlorophenol 2-Methylnaphthalene	ug/kg ug/kg			383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 338 U	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
2-Methylphenol	ug/kg	500000	330	383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
2-Nitroaniline 2-Nitrophenol	ug/kg			958 U 383 U	939 U 376 U	857 U 343 U	830 U 332 U	953 U 381 U	853 U 341 U	855 U 342 U	880 U 352 U	846 U 338 U	890 U 356 U	836 U 334 U	849 U 340 U	841 U 337 U	891 U 357 U	882 U 353 U	816 U 327 U	798 U 319 U	910 U 364 U	870 U 348 U	939 U 376 U
3,3'-Dichlorobenzidine	ug/kg ug/kg			383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 338 U	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
3-Methylphenol	ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
3-Nitroaniline 4.6-Dinitro-2-methylphenol	ug/kg ug/kg			958 U 958 U	939 U 939 U	857 U 857 U	830 U 830 U	953 U 953 U	853 U 853 U	855 U 855 U	880 U 880 U	846 U 846 U	890 U 890 U	836 U 836 U	849 U 849 U	841 U 841 U	891 U 891 U	882 U 882 U	816 U 816 U	798 U 798 U	910 U 910 U	870 U 870 U	939 U 939 U
4-Bromophenyl phenyl ether	ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
4-Chloro-3-methylphenol 4-Chloroaniline	ug/kg ug/kg			383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 338 U	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
4-Chlorophenyl phenyl ether	ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
4-Methylphenol	ug/kg	500000	330																				
4-Nitroaniline 4-Nitrophenol	ug/kg ug/kg			958 U 958 U	939 U 939 U	857 U 857 U	830 U 830 U	953 U 953 U	853 U 853 U	855 U 855 U	880 U 880 U	846 U 846 U	890 U 890 U	836 U 836 U	849 U 849 U	841 U 841 U	891 U 891 U	882 U 882 U	816 U 816 U	798 U 798 U	910 U 910 U	870 U 870 U	939 U 939 U
Acenaphthene	ug/kg	500000	98000	383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
Acenaphthylene Acetophenone	ug/kg ug/kg	500000	107000	383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
Aniline	ug/kg		460	383 U	376 U	343 U	332 U	412	341 U	342 U	352 U	338 U	737	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 UJ	348 U	376 U
Anthracene	ug/kg	500000	1000000	383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
Atrazine Benzaldehyde	ug/kg ug/kg																						
Benzidine	ug/kg			958 U	939 U	857 U	830 U	953 U	853 U	855 U	880 U	846 U	890 U	836 U	849 U	841 U	891 U	882 U	816 U	798 U	910 U	870 U	939 U
Benzo(a)anthracene Benzo(a)pyrene	ug/kg ug/kg	5600 1000	1000 22000	383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 754	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
Benzo(b)fluoranthene	ug/kg	5600	1700	383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
Benzo(ghi)perylene Benzo(k)fluoranthene	ug/kg	500000 56000	1000000 1700	383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 338 U	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
Benzoic Acid	ug/kg ug/kg	50000	1700	958 U	939 U	857 U	830 U	953 U	853 U	855 U	880 U	846 U	890 U	836 U	849 U	841 U	891 U	882 U	816 U	798 U	910 U	870 U	939 U
Benzyl alcohol	ug/kg			958 U	939 U	857 U	830 U	953 U	853 U	855 U	880 U	846 U	890 U	836 U	849 U	841 U	891 U	882 U	816 U	798 U	910 U	870 U	939 U
Biphenyl Bis(2-chloroethoxy)methane	ug/kg ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
Bis(2-chloroethyl)ether	ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	ug/kg ug/kg			383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 338 U	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
Caprolactam	ug/kg			101.0	370 0	345 0	JJ2 U		J41 U	J42 U	552 0	556 0	330.0	334 0	J+0 U	337 0	337 0	555 0	J27 U	515 0	JU4 U	J+C U	370 0
Carbazole	ug/kg	E6000	1000	202.11	276 11	242 11	222.11	201 11	2/1 11	242.11	252.11	220 11	256.11	224 11	240.11	227 11	257.11	252.11	227 11	210.11	264.11	240 11	276 11
Chrysene Di-n-butyl phthalate	ug/kg ug/kg	56000	1000	383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 338 U	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
Di-n-octyl phthalate	ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
Dibenzo(a,h)anthracene Dibenzofuran	ug/kg ug/kg	560 350000	1000000 210000	383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 338 U	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
Diethyl phthalate	ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
Dimethyl phthalate Fluoranthene	ug/kg ug/kg	500000	1000000	958 U 383 U	939 U 376 U	857 U 343 U	830 U 332 U	953 U 500	853 U 341 U	855 U 496	880 U 352 U	846 U 338 U	890 U 356 U	836 U 453	849 U 340 U	841 U 337 U	891 U 357 U	882 U 353 U	816 U 327 U	798 U 319 U	910 U 364 U	870 U 348 U	939 U 376 U
Fluorene	ug/kg	500000	386000	383 U	376 U	343 U	332 U	381 U	341 U 341 U	496 342 U	352 U	338 U	356 U	455 334 U	340 U 340 U	337 U	357 U	353 U	327 U	319 U 319 U	364 U	348 U 348 U	376 U
Hexachlorobenzene	ug/kg	6000	3200	383 U 383 U	376 U	343 U 343 U	332 U	381 U	341 U	342 U	352 U	338 U 338 U	356 U	334 U	340 U	337 U	357 U 357 U	353 U	327 U	319 U 319 U	364 U	348 U 348 U	376 U
Hexachlorobutadiene Hexachlorocyclopentadiene	ug/kg ug/kg			383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 338 U	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
Hexachloroethane	ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
Indeno(1,2,3-cd)pyrene Isophorone	ug/kg ug/kg	5600	8200	383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 338 U	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
N-Nitrosodi-n-propylamine	ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
N-Nitrosodimethylamine	ug/kg			383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
N-Nitrosodiphenylamine Naphthalene	ug/kg ug/kg	500000	12000	383 U 383 U	376 U 376 U	343 U 343 U	332 U 332 U	381 U 381 U	341 U 341 U	342 U 342 U	352 U 352 U	338 U 338 U	356 U 356 U	334 U 334 U	340 U 340 U	337 U 337 U	357 U 357 U	353 U 353 U	327 U 327 U	319 U 319 U	364 U 364 U	348 U 348 U	376 U 376 U
Nitrobenzene	ug/kg	69000	26	383 U	376 U	343 U	332 U	729	341 U	1280	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
Pentachlorophenol Phenanthrene	ug/kg ug/kg	6700 500000	800 1000000	958 U 383 U	939 U 376 U	857 U 343 U	830 U 332 U	953 U 381 U	853 U 341 U	855 U 342 U	880 U 352 U	846 U 338 U	890 U 356 U	836 U 334 U	849 U 340 U	841 U 337 U	891 U 357 U	882 U 353 U	816 U 327 U	798 U 319 U	910 U 364 U	870 U 348 U	939 U 376 U
Phenol	ug/kg	500000	330	383 U	376 U	343 U	332 U	381 U	341 U	342 U	352 U	338 U	356 U	334 U	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U
Pyrene	ug/kg	500000	1000000	383 U	376 U	343 U	332 U	381 U	341 U	381	352 U	338 U	356 U	337	340 U	337 U	357 U	353 U	327 U	319 U	364 U	348 U	376 U

			Loc Name	E1-RS-02	E1-RS-03	E1-RS-04	E1-RS-05	E1-RS-06	E1-RS-08	E1-RS-09	E1-RS-13	E1-RS-14	E1-RS-15	E1-RS-16	E1-RS-20	E1-RS-21	E1-RS-22	E1-RS-23	E1-RS-24	E1-RS-25	E1-RS-26	E1-RB-01	E1-RB-03
			Field Sample ID	E1-RS2-0204	E1-RS3-0204	E1-RS4-0204	E1-RS5-0204	E1-RS6-0204	E1-RS8-0204	E1-RS9-0103	E1-RS13-0204	E1-RS14-0204	E1-RS15-0103	E1-RS16-0204	E1-RS20-0204	E1-RS21-0204	E1-RS22-0204	E1-RS23-0204	E1-RS24-0204	E1-RS25-0204	E1-RS26-0204	E1-RB1-0405	E1-RB3-1011
			Field Sample Date	11/16/10	11/16/10	11/17/10	11/19/10	11/23/10	11/29/10	11/29/10	12/03/10	12/03/10	12/03/10	12/06/10	01/03/11	01/03/11	01/06/11	01/06/11	01/05/11	01/05/11	01/10/11	11/17/10	11/29/10
		NYS	DEC Values ⁽²⁾																				
		Commer	cial Protection of																				
Parameter	Units	1) Use	GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
Metals	0			nesure Quu	incount Quar	nesure Quar	nesure Quar	Nesure Quar	nesure quui	nesure Quar	nesure quui	nesure quui	Result Quar	nesure Quar	nesure Quu	nesure Quui	nesure Quar	nesure Quui	Result Quar	nesure quui	nesure quui	Result Quar	nesure quar
Cyanide	mg/k	2 27	40																				
Aluminum	mg/k		10	11500	9770	4940	5410	12.300	12700	13400	14700	12100	13500	13400	10800	14600	13,300	20.400	6890	8910	13900	12800	16900
Antimony	mg/k			7 U	7.5 U	6.44 U	5.71 U	7.39	4.95 U	5.43 U	5.6 U	6.06 U	5.07 U	6.62 U	4.78 U	6.1 U	6.66 U	5.01 U	6.23 U	6.47 U	5.53 U	4.54 U	7.83 U
Arsenic	mg/k		16	152	18.6	1.34	2.36	18.2	16.5	11.6	4.55	5.06	31.7	12.2	8.88	10.9	7.8	8.05	4.13	12.1	12.9	4.73	17.2
Barium	mg/k			89.4	97.5	23.5	29.3	111	84.8	146	77.1	41.1	106	82	54	80.6	61.9	158	45.1	114	59.1	98.8	99.1
Beryllium	mg/k		47	0.583 U	0.625 U	0.536 U	0.476 U	0.593 U	0.653	0.653	0.522	0.525	0.669	0.758	0.515	0.678	0.636	0.433 U	0.518 U	0.54 U	0.494	0.602	0.815
Cadmium	mg/k		7.5	0.872	2.13	0.536 U	0.476 U	4.81	0.467	1.95	0.694	0.505 U	0.737	1.01	0.398 U	0.509 U	5.24	0.417 U	0.518 U	0.858	0.461 U	0.378 U	0.652 U
Calcium	mg/k		7.0	2670	1680	989	1030	49.100	2440	11900	3490	1900	33200	3810	39400	38300	34,700	1,520	9090	4310	1510	2200	37200
Chromium ⁽³⁾	mg/k	-		12.1	10.4	5.19	7.65	25.4	17.7	104	17.3	11.8	19.1	17.5	14.6	19.4	17.9	17	9.18	20.7	13.7	16.1	23.7
Cobalt	mg/k			13.6	13.7	2.19	3.68	19	11.6	16.1	6.37	9,9	15.6	17.6	9.58	12.1	19	6.4	3.98	8.5	5.68	7.2	14.9
Copper	mg/k		1720	545	184	5.31	22.6	1,490	31.1	209	13.5	10.9	43.4	27.2	26.6	32.9	33.6	630	8.56	284	20.3	19.2	32.4
Iron	mg/k		1720	12500	20100	5240	8000	58,500	30700	30100	17200	16300	42100	26900	22500	27700	25.700	31,900	13300	24600	19000	20600	29000
Lead	mg/k		450	72.3	93.4	6.99	8.84	326	16.9	147	21	7.49	42100	20300	12	16	13.5	70.6	5.93	24000	80.6	9.15	15.2
Magnesium	mg/k		450	1320	1180	611	1290	10.900	4110	7180	2640	1540	6690	3770	12700	12500	11.400	2.350	1540	2450	1690	3350	14000
Manganese	mg/k		2000	64.2	77.5	40.9	55.3	210	186	268	175	171	1320	256 J	555	419	949	91.7	85.1	340	82.2	139	483
Nickel	mg/k		130	16.4	21.4	4.3 U	12.4	29.4	31.6	28.8	16.3	24.1	32.1	28.1	26.3	33.6	33	14	9.68	27.7	11	23	37.4
Potassium	mg/k		150	900	927	320	509	1.230	1460	1600	1120	502	1800	1520	1510	2980	2.220	880	433	811	839	1320	3650
Selenium	mg/k		4	0.583 U	0.625 U	0.536 U	0.476 U	0.593 U	0.412 U	0.452 U	0.467 U	0.505 U	0.423 U	0.552 U	0.398 U	0.509 U	0.555 U	0.417 U	0.518 U	0.54 U	0.461 U	0.378 U	0.652 U
Silver	mg/k			1.17 U	1.25 U	1.07 U	0.951 U	2.34	0.825 U	0.905 U	0.934 U	1.01 U	0.844 U	1.1 U	0.797 U	1.02 U	1.11 U	0.836 U	1.04 U	1.08 U	0.922 U	0.755 U	1.3 U
Sodium	mg/k		0.5	117 U	125 U	107 U	95.1 U	281	165 U	181 U	186 UJ	202 UJ	211 J	441	144	358	1.110	1.120	208 U	216 U	99	75.5 U	299
Thallium	mg/k			0.7 U	0.75 U	0.644 U	0.571 U	0.711 U	0.495 U	0.543 U	0.56 U	0.606 U	0.507 U	0.662 U	0.478 U	0.61 U	0.666 U	0.501 U	0.623 U	0.647 U	0.553 U	0.454 U	0.783 U
Vanadium	mg/k			19.4	19.8	9.82	15.1	24.1	26	25.9	24.6	29.3	26.4	31.6	21.5	27.6	25.8	42.1	19.1	19.6	30.7	24.6	32.3
Zinc	mg/k		2480	849	525	24.3	68.6	1,860	78.7	1500	73	35.6	133	60.2	61.2	76.4	1,070	457	23.7	251	91.2	131	89.9
Mercury	mg/k		0.73	0.0598 J	0.193 J	0.0546	0.0125	0.176	0.0398	2.05	0.044	0.0182	0.128	0.0565	0.0181	0.0223	0.0068	0.0798	0.0146	0.502	0.036	0.0414	0.0532
PCBs	ing/k	5 2.0	0.75	0.0550 1	0.155 5	0.0340	0.0125	0.170	0.0550	2.05	0.044	0.0102	0.120	0.0505	0.0101	0.0225	0.0000	0.0750	0.0140	0.502	0.050	0.0414	0.0332
Aroclor 1016	ug/ki	1000	3200	1																			
Aroclor 1221	ug/k			1						1	1												<u> </u>
Aroclor 1221 Aroclor 1232	ug/kg			1	1					1	1									1	1		
Aroclor 1232 Aroclor 1242	ug/k			1	1					1	1									1			
Aroclor 1242 Aroclor 1248	ug/kg			1	1					1	1									1	1		
Aroclor 1248 Aroclor 1254	ug/k		0	1																			1
Aroclor 1254 Aroclor 1260	ug/k			1						1	1												
Aroclor 1260	ug/k			1																			1
Aroclor 1268	ug/k			1																			+
AIUCIUI 1200	ug/ Kį	1000	5200		I	I	I	I I		I	I					I	I			I	I		'

Notes: (1) Units: ug/kg = micrograms/kilogram; mg/kg = milligrams/kilogram (2) New York State Department of Environmental Conservation, Restricted Use Soil Cleanup Objectives, Commercial Use and Protection of Groundwater, Table 375-6.8(b) (3) Standards used for comparison are for Hexavalent Chromium Qualifiers: U = not detected; J = estimated value; UJ = non-detect reported, reporting limit qualified as estimated; D = duplicate results outside QC limits, mav indicate non-homoenous matrix: M = matrix solike outside QC limits,

may indicate non-homogenous matrix; M = matrix spike outside QC limits, matrix bias indicated; R = data rejected during validation Shaded value - exceedance of Restricted Use Soil Cleanup Objective

TABLE 1a POST-REMEDIAL ACTION SOIL CONCENTRATIONS AREA E - SITE MANAGEMENT PLAN SOUTH BUFFALO DEVELOPMENT – FORMER BUFFALO COLOR FACILITY BUFFALO, NEW YORK

			I Nour	F1 DD 04	F4 DD 05	51 DD 00	F4 DD 07	F2 DC 4	F2 BC 2	F2 DC 4	F2 DD 4	F2 BC 2	F2 DC 7	F2 DC 0	52.00.0	F2 DC 12	F2 DC 42	F2 DC 44	F2 DC 45	52.05.46	F2 DC 17	F2 DD 7	F2 DD 0
			Loc Name Field Sample ID	E1-RB-04 E1-RB4-0506	E1-RB-05	E1-RB-06 E1-RB6-0405	E1-RB-07 E1-RB7-0506	E2-RS-1 E2-RS1-0501	E2-RS-3 E2-RS3-0502	E2-RS-4 E2-RS4-0103	E2-RB-1 E2-RB1-0910	E3-RS-3 E3-RS3-0305	E3-RS-7 E3-RS7-0305	E3-RS-8 E3-RS8-0304	E3-RS-9 E3-RS9-0203	E3-RS-12 E3-RS12-0204	E3-RS-13 E3-RS13-0305	E3-RS-14	E3-RS-15 E3-RS15-0204	E3-RS-16 E3-RS16-0204	E3-RS-17 E3-RS17-0204	E3-RB-7 E3-RB7-0506	E3-RB-8 E3-RB8-0506
		Fie	eld Sample Date	12/13/10	E1-RB5-1011 12/22/10	01/03/11	01/06/11	10/06/10	10/06/10	10/13/10	10/06/10	09/29/10	10/01/10	10/01/10	10/01/10	10/11/10	10/11/10	E3-RS14-0305 10/11/10	10/13/10	10/26/10	10/26/10	10/12/10	10/12/10
			Values ⁽²⁾	12/13/10	12/22/10	01/03/11	01/00/11	10/00/10	10/00/10	10/15/10	10/00/10	05/25/10	10/01/10	10/01/10	10/01/10	10/11/10	10/11/10	10/11/10	10/15/10	10/20/10	10/20/10	10/12/10	10/12/10
	11	Commercial	Protection of																				
Parameter	Units (1)	Use	GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
VOCs 1,1,1-Trichloroethane	ug/kg	500000	680	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
1.1.2.2-Tetrachloroethane	ug/kg ug/kg	300000	080	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
1.1.2-Trichloroethane	ug/kg			227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
1.1.2-Trichlorotrifluoroethane	ug/kg			227 0	237 0	201 0	100 0	5110 0	5.75 0	1111 0	5.700	1500 0	56.6 6	152 0	0.00 0	110 0	1010 0	19000 0	157 0	1100 0		1000 0	0200 0
1,1-Dichloroethane	ug/kg	240000	270	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
1,1-Dichloroethene	ug/kg	500000	330	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
1,2,4-Trichlorobenzene	ug/kg																						
1,2-Dibromo-3-chloropropane	ug/kg																						
1,2-Dibromomethane (EDB)	ug/kg																						
1,2-Dichlorobenzene	ug/kg	500000	1100	227 U	257 U	297	4.63 U	9.46 U	9.79 U	20.8	9.76 U	73900	3300	1920	115 J	2740	7350	265000	157 U	4.68 U	43.7	35300	67100
1,2-Dichloroethane	ug/kg	30000	20	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
1,2-Dichloropropane	ug/kg	200000	2400	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U 48	1500 U	6280 U
1,3-Dichlorobenzene	ug/kg	280000	2400	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	12.3	9.76 U	4040	1070	192 U	8.65 U	110 U	1010 U	19600 U	2400	4.68 U		1500 U	6280 U
1,4-Dichlorobenzene 2-Butanone	ug/kg ug/kg	130000 500000	1800 120	227 U 1130 U	257 U 1290 UJ	231 U 1150 U	4.63 U 23.2 U	9.46 U 47.3 U	9.79 U 48.9 U	15 55.4 UJ	9.76 U 48.8 U	13100 7910 U	1480 494 U	329 958 U	16 J 43.2 U	442 548 U	1390 5050 U	19600 U 98100 U	424 783 UJ	4.68 U 23.4 U	13.3 48.2	5230 7520 UJ	6280 U 31400 UJ
2-Chloroethyl vinyl ether	ug/kg	300000	120	1130 U	1290 U	1150 U	23.2 U	47.3 UI	48.9 UI	55.4 U	48.8 UJ	7910 U	494 U	958 U	43.2 U	548 U	5050 U	98100 U	783 U	23.4 U	22.4 U	7520 UJ	31400 UJ
2-Hexanone	ug/kg			567 U	644 U	577 U	11.6 U	23.6 U	24.5 U	27.7 UJ	24.4 U	3960 U	247 U	479 U	21.6 U	274 U	2520 U	49100 U	392 UJ	11.7 U	11.2 U	3760 UJ	15700 UJ
4-Methyl-2-pentanone	ug/kg			567 U	644 U	577 U	11.6 U	23.6 U	24.5 U	27.7 U	24.4 U	3960 U	247 U	479 U	21.6 U	274 U	2520 U	49100 U	392 U	11.7 U	11.2 U	3760 UJ	15700 UJ
Acetone	ug/kg	500000	50	1130 U	1290 UJ	2110 U	23.2 U	47.3 U	136	55.4 UJ	48.8 U	7910 UJ	494 UJ	958 UJ	101	548 U	5050 U	98100 U	783 UJ	23.4 U	243	7520 UJ	31400 UJ
Benzene	ug/kg	44000	60	347	257 U	231 U	5.5	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Bromodichloromethane	ug/kg			227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Bromoform	ug/kg			567 U	644 U	577 U	11.6 U	23.6 U	24.5 U	27.7 U	24.4 U	3960 U	247 U	479 U	21.6 U	274 U	2520 U	49100 U	392 U	11.7 U	11.2 U	3760 UJ	15700 UJ
Bromomethane	ug/kg			227 U	257 U	231 U	4.63 U	9.46 UJ	9.79 UJ	11.1 U	9.76 UJ	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Carbon disulfide	ug/kg			227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Carbon tetrachloride	ug/kg	22000	760	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Chlorobenzene Chlorodibromomethane	ug/kg	500000	1100	1160 227 U	3650 257 U	12500 231 U	4.63 U 4.63 U	9.46 U 9.46 U	9.79 U 9.79 U	218 11.1 U	9.76 U 9.76 U	18700 1580 U	4670 98.8 U	326 192 U	349 J 8.65 U	2140 110 U	1010 U 1010 U	19600 U 19600 U	157 U 157 U	7.59 4.68 U	95.2 4.49 U	28100 1500 U	6280 U 6280 U
Chloroethane	ug/kg ug/kg			227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Chloroform	ug/kg	350000	370	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Chloromethane	ug/kg	330000	570	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Cis-1,2-Dichloroethene	ug/kg	500000	250	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Cis-1,3-Dichloropropene	ug/kg			227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 UJ	6280 UJ
Cyclohexane	ug/kg																						
Dichlorodifluoromethane	ug/kg																						
Ethyl benzene	ug/kg	390000	1000	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Isopropylbenzene	ug/kg																						┥────┤
Methyl acetate Methyl tert-Butyl Ether	ug/kg	500000	930																				┝────┤
Methylcyclohexane	ug/kg ug/kg	500000	950																				╉────┤
Methylene chloride	ug/kg	500000	50	567 U	644 U	577 U	11.6 U	23.6 U	24.5 U	27.7 U	24.4 U	3960 U	247 U	479 U	21.6 U	274 U	2520 U	49100 U	392 U	11.7 U	11.2 U	3760 UJ	15700 UJ
Styrene	ug/kg	500000	50	567 U	644 U	577 U	11.6 U	23.6 U	24.5 U	27.7 U	24.4 U	3960 U	247 U	479 U	21.6 U	274 U	2520 U	49100 U	392 U	11.7 U	11.2 U	3760 UJ	15700 UJ
Tetrachloroethene	ug/kg	150000	1300	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Toluene	ug/kg	500000	700	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Trans-1,2-Dichloroethene	ug/kg	500000	190	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Trans-1,3-Dichloropropene	ug/kg			227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Trichloroethene	ug/kg	200000	470	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Trichlorofluoromethane	ug/kg			227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Vinyl acetate	ug/kg			567 U	644 U	577 U	11.6 U	23.6 U	24.5 U	27.7 U	24.4 U	3960 U	247 U	479 U	21.6 U	274 U	2520 U	49100 U	392 U	11.7 UJ	11.2 UJ	3760 U	15700 U
Vinyl chloride	ug/kg	13000	20	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 U	6280 U
Xylenes, Total	ug/kg	500000	1600	227 U	257 U	231 U	4.63 U	9.46 U	9.79 U	11.1 U	9.76 U	1580 U	98.8 U	192 U	8.65 U	110 U	1010 U	19600 U	157 U	4.68 U	4.49 U	1500 UJ	6280 UJ

TABLE 1a POST-REMEDIAL ACTION SOIL CONCENTRATIONS AREA E - SITE MANAGEMENT PLAN SOUTH BUFFALO DEVELOPMENT – FORMER BUFFALO COLOR FACILITY BUFFALO, NEW YORK

				54 55 64	54 88 65	54 88 96	54.00.07	50.00.4	52.50.0	52.56.4	53.00.4	50.00.0	50.00.7	53.55.0	53.56.0	52.56.42	50.00.40	52.55.44	53.56.45	50.00.40	50.00.47	50.00.7	53.88.0
			Loc Name Field Sample ID	E1-RB-04 E1-RB4-0506	E1-RB-05 E1-RB5-1011	E1-RB-06 E1-RB6-0405	E1-RB-07 E1-RB7-0506	E2-RS-1 E2-RS1-0501	E2-RS-3 E2-RS3-0502	E2-RS-4 E2-RS4-0103	E2-RB-1 E2-RB1-0910	E3-RS-3 E3-RS3-0305	E3-RS-7 E3-RS7-0305	E3-RS-8 E3-RS8-0304	E3-RS-9 E3-RS9-0203	E3-RS-12 E3-RS12-0204	E3-RS-13 E3-RS13-0305	E3-RS-14 E3-RS14-0305	E3-RS-15 E3-RS15-0204	E3-RS-16 E3-RS16-0204	E3-RS-17 E3-RS17-0204	E3-RB-7 E3-RB7-0506	E3-RB-8 E3-RB8-0506
			ld Sample Date	12/13/10	12/22/10	01/03/11	01/06/11	10/06/10	10/06/10	10/13/10	10/06/10	09/29/10	10/01/10	10/01/10	10/01/10	10/11/10	10/11/10	10/11/10	10/13/10	10/26/10	10/26/10	10/12/10	10/12/10
		NYSDEC	Values ⁽²⁾																				
		Commercial	Protection of																				
Parameter SVOCs	Units (*)	Use	GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
1,2,4-Trichlorobenzene	ug/kg			350 U	376 U	346 U	1,740 U	343 U	375 U	2330	372 U	3510 U	358 U	24700	1720 U	358 U	7530	226000	170000	342 U	341 U	418	4800
1,2-Dichlorobenzene	ug/kg	500000	1100	350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	7730	358 U	73700	1720 U	914	9880	318000	326 U	342 U	341 U	6870	8050
1,3-Dichlorobenzene 1.4-Dichlorobenzene	ug/kg ug/kg	280000 130000	2400 1800	350 U 350 U	376 U 376 U	346 U 346 U	1,740 U 1.740 U	343 U 343 U	375 U 375 U	345 U 345 U	372 U 372 U	3510 U 3510 U	358 U 358 U	9580 U 9600	1720 U 1720 U	358 U 358 U	702 U 1530	14200 U 18200	1270 326 U	342 U 342 U	341 U 341 U	361 U 1100	358 U 524
2,2'-Dichlorodiisopropylether	ug/kg			350 U	376 U	346 U	-,	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
2,2'-Oxybis(1-Chloropropane)	ug/kg			076.11		0.00 11	1 2 5 2 11	050.11	000.11	062.11	004.11	0770.11	000 11	24000.11	1010.11	005.11	4750.11	25500.11		055.11	050.11	000.11	005.11
2,4,5-Trichloropheno 2,4,6-Trichloropheno	ug/kg ug/kg			876 U 350 U	940 U 376 U	866 U 346 U	4,360 U 1,740 U	859 U 343 U	938 U 375 U	863 U 345 U	931 U 372 U	8770 U 3510 U	896 U 358 U	24000 U 9580 U	4310 U 1720 U	895 U 358 U	1750 U 702 U	35500 U 14200 U	814 U 326 U	855 U 342 U	853 U 341 U	903 U 361 U	895 U 358 U
2,4-Dichlorophenol	ug/kg			350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
2,4-Dimethylphenol	ug/kg			350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
2,4-Dinitrophenol 2.4-Dinitrotoluene	ug/kg ug/kg			876 U 350 U	940 U 376 U	866 U 346 U	4,360 U 1.740 U	859 U 343 U	938 U 375 U	863 U 345 U	931 U 372 U	8770 U 3510 U	896 U 358 U	24000 U 9580 U	4310 U 1720 U	895 U 358 U	1750 U 702 U	35500 U 14200 U	814 U 326 U	855 U 342 U	853 U 341 U	903 UJ 361 U	895 UJ 358 U
2,6-Dichlorophenol	ug/kg			350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
2,6-Dinitrotoluene	ug/kg			350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
2-Chloronaphthalene 2-Chlorophenol	ug/kg ug/kg			350 U 350 U	376 U 376 U	346 U 346 U	1,740 U 1,740 U	343 U 343 U	375 U 375 U	345 U 345 U	372 U 372 U	3510 U 3510 U	358 U 358 U	9580 U 9580 U	1720 U 1720 U	358 U 358 U	702 U 702 U	14200 U 14200 U	326 U 326 U	342 U 342 U	341 U 341 U	361 U 671	358 U 358 U
2-Methylnaphthalene	ug/kg			350 U	376 U	346 U	1,740 U	474	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
2-Methylphenol	ug/kg	500000	330	350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
2-Nitroaniline 2-Nitrophenol	ug/kg ug/kg			876 U 350 U	940 U 376 U	866 U 346 U	4,360 U 1.740 U	859 U 343 U	938 U 375 U	863 U 345 U	931 U 372 U	8770 U 3510 U	896 U 358 U	24000 U 9580 U	4310 U 1720 U	895 U 358 U	1750 U 702 U	35500 U 14200 U	814 U 326 U	855 U 342 U	853 U 341 U	903 U 361 U	895 U 358 U
3,3'-Dichlorobenzidine	ug/kg			350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U 342 U	341 U 341 U	361 U	358 U
3-Methylphenol	ug/kg			350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
3-Nitroaniline 4,6-Dinitro-2-methylphenol	ug/kg			876 U 876 U	940 U 940 U	866 U 866 U	4,360 U 4.360 U	859 U 859 U	938 U 938 U	863 U 863 U	931 U 931 U	8770 U 8770 U	896 U 896 U	24000 U 24000 U	4310 U 4310 U	895 U 895 U	1750 U 1750 U	35500 U 35500 U	814 U 814 U	855 U 855 U	853 U 853 U	903 U 903 U	895 U 895 U
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	ug/kg ug/kg			350 U	376 U	346 U	4,360 U 1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
4-Chloro-3-methylphenol	ug/kg			350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
4-Chloroaniline	ug/kg			350 U 350 U	376 U 376 U	346 U 346 U	1,740 U 1,740 U	343 U 343 U	375 U 375 U	345 U 345 U	372 U 372 U	3510 U 3510 U	358 U	9580 U 9580 U	1720 U 1720 U	358 U 358 U	702 U 702 U	14200 U 14200 U	326 U 326 U	342 U 342 U	341 U 341 U	361 U 361 U	358 U 358 U
4-Chlorophenyl phenyl ether 4-Methylphenol	ug/kg ug/kg	500000	330	350 0	376 0	346 0	1,740 0	343 0	375 0	345 0	372 0	3310 0	358 U	9580 0	1720 0	338 0	702 0	14200 0	326 0	342 0	541 0	301.0	358 0
4-Nitroaniline	ug/kg			876 U	940 U	866 U	4,360 U	859 U	938 U	863 U	931 U	8770 U	896 U	24000 U	4310 U	895 U	1750 U	35500 U	814 U	855 U	853 U	903 U	895 U
4-Nitrophenol	ug/kg	500000	98000	876 U 350 U	940 U 376 U	866 U 346 U	4,360 U 1.740 U	859 U 343 U	938 U 375 U	863 U 345 U	931 U 372 U	8770 U 3510 U	896 U 358 U	24000 U 9580 U	4310 U 1720 U	895 U 358 U	1750 U 702 U	35500 U 14200 U	814 U 326 U	855 U 342 U	853 U 341 U	903 U 361 U	895 U
Acenaphthene Acenaphthylene	ug/kg ug/kg	500000	107000	350 U	376 U	346 U 346 U	1,740 U	343 U 343 U	421	1350	372 U 372 U	3510 U 3510 U	358 U 358 U	9580 U 9580 U	1720 U	358 U 358 U	702 U	14200 U	326 U	342 U 342 U	341 U 341 U	361 U 361 U	358 U 358 U
Acetophenone	ug/kg																						
Aniline	ug/kg	500000	460	4640	2920	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	896
Anthracene Atrazine	ug/kg ug/kg	500000	1000000	350 U	376 U	346 U	1,740 U	343 U	375 U	3130	372 U	3510 U	358 U	9580 U	5350	358 U	702 U	14200 U	835	342 U	341 U	361 U	358 U
Benzaldehyde	ug/kg																						
Benzidine	ug/kg	5.000	1000	876 U	940 U	866 U	4,360 U	859 U	938 U	863 U	931 U	8770 U	896 U	24000 U	4310 U	895 U	1750 U	35500 U	814 U	855 U	853 U	903 U	895 U
Benzo(a)anthracene Benzo(a)pyrene	ug/kg ug/kg	5600 1000	1000 22000	350 U 350 U	376 U 376 U	346 U 346 U	1,740 U 1,740 U	856 844	2680 2780	5820 5350	372 U 372 U	3510 U 3510 U	358 U 358 U	9580 U 9580 U	5860 4700	358 U 358 U	702 U 702 U	14200 U 14200 U	1040 870	342 U 342 U	351 341 U	361 U 361 U	358 U 358 U
Benzo(b)fluoranthene	ug/kg	5600	1700	350 U	376 U	346 U	1,740 U	768	2710	5210	372 U	3510 U	358 U	9580 U	3830	358 U	702 U	14200 U	797	342 U	341 U	361 U	358 U
Benzo(ghi)perylene	ug/kg	500000	1000000	350 U	376 U	346 U	1,740 U	588	1750	3380	372 U	3510 U	358 U	9580 U	2490	358 U	702 U	14200 U	452	342 U	341 U	361 U	358 U
Benzo(k)fluoranthene Benzoic Acid	ug/kg ug/kg	56000	1700	350 U 876 U	376 U 940 U	346 U 866 U	1,740 U 4,360 U	664 859 U	1650 938 U	3600 863 U	372 U 931 U	3510 U 8770 U	358 U 896 U	9580 U 24000 U	3650 4310 U	358 U 895 U	702 U 1750 U	14200 U 35500 U	857 814 U	342 U 855 U	341 U 853 U	361 U 903 U	358 U 895 U
Benzyl alcohol	ug/kg			876 U	940 U	866 U	4,360 U	859 U	938 U	863 U	931 U	8770 U	896 U	24000 U	4310 U	895 U	1750 U	35500 U	814 U	855 U	853 U	903 U	895 U
Biphenyl	ug/kg			250.11	276.11	246.11	4 740 11	242.11	275.11	245.11	272.11	2540.11	250.11	0500.11	4720.11	250.11	702.11	14200 11	226.11	242.11	244.11	264.11	250.11
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	ug/kg ug/kg			350 U 350 U	376 U 376 U	346 U 346 U	1,740 U 1,740 U	343 U 343 U	375 U 375 U	345 U 345 U	372 U 372 U	3510 U 3510 U	358 U 358 U	9580 U 9580 U	1720 U 1720 U	358 U 358 U	702 U 702 U	14200 U 14200 U	326 U 326 U	342 U 342 U	341 U 341 U	361 U 361 U	358 U 358 U
Bis(2-ethylhexyl) phthalate	ug/kg			350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
Butyl benzyl phthalate	ug/kg			350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
Caprolactam Carbazole	ug/kg ug/kg					1																	
Chrysene	ug/kg	56000	1000	350 U	376 U	346 U	1,740 U	893	2350	5220	372 U	3510 U	358 U	9580 U	5120	358 U	702 U	14200 U	944	342 U	341 U	361 U	358 U
Di-n-butyl phthalate Di-n-octyl phthalate	ug/kg			350 U 350 U	376 U 376 U	346 U 346 U	1,740 U 1,740 U	343 U 343 U	375 U 375 U	345 U 345 U	372 U 372 U	3510 U 3510 U	358 U 358 U	9580 U 9580 U	1720 U 1720 U	358 U 358 U	702 U 702 U	14200 U 14200 U	326 U 326 U	342 U 342 U	341 U 341 U	361 U 361 U	358 U 358 U
Dibenzo(a,h)anthracene	ug/kg ug/kg	560	1000000	350 U	376 U	346 U 346 U	1,740 U	343 U 343 U	408	867	372 U 372 U	3510 U 3510 U	358 U 358 U	9580 U 9580 U	1720 U	358 U 358 U	702 U	14200 U	326 U	342 U 342 U	341 U 341 U	361 U 361 U	358 U 358 U
Dibenzofuran	ug/kg	350000	210000	350 U	376 U	346 U	1,740 U	343 U	375 U	680	372 U	3510 U	358 U	9580 U	3600	358 U	702 U	14200 U	406	342 U	341 U	361 U	358 U
Diethyl phthalate Dimethyl phthalate	ug/kg ug/kg			350 U 876 U	376 U 940 U	346 U 866 U	1,740 U 4,360 U	343 U 859 U	375 U 938 U	345 U 863 U	372 U 931 U	3510 U 8770 U	358 U 896 U	9580 U 24000 U	1720 U 4310 U	358 U 895 U	702 U 1750 U	14200 U 35500 U	326 U 814 U	342 U 855 U	341 U 853 U	361 U 903 U	358 U 895 U
Fluoranthene	ug/kg	500000	1000000	350 U	376 U	346 U	4,360 U 1,740 U	1620	3260	12600	372 U	3510 U	358 U	9580 U	17400	738	702 U	14200 U	2940	342 U	790	361 U	358 U
Fluorene	ug/kg	500000	386000	350 U	376 U	346 U	1,740 U	343 U	375 U	1540	372 U	3510 U	358 U	9580 U	5520	358 U	702 U	14200 U	726	342 U	341 U	361 U	358 U
Hexachlorobenzene Hexachlorobutadiene	ug/kg ug/kg	6000	3200	350 U 350 U	376 U 376 U	346 U 346 U	1,740 U 1,740 U	343 U 343 U	375 U 375 U	345 U 345 U	372 U 372 U	3510 U 3510 U	358 U 358 U	9580 U 9580 U	1720 U 1720 U	358 U 358 U	702 U 702 U	14200 U 14200 U	326 U 326 U	342 U 342 U	341 U 341 U	361 U 361 U	358 U 358 U
Hexachlorocyclopentadiene	ug/kg			350 U	376 U	346 U 346 U	1,740 U	343 U 343 U	375 U 375 U	345 U 345 U	372 U 372 U	3510 U 3510 U	358 U 358 U	9580 U 9580 U	1720 U	358 U 358 U	702 U	14200 U	326 U	342 U 342 U	341 U 341 U	361 U 361 UJ	358 U 358 UJ
Hexachloroethane	ug/kg			350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
Indeno(1,2,3-cd)pyrene Isophorone	ug/kg	5600	8200	350 U 350 U	376 U 376 U	346 U 346 U	1,740 U 1,740 U	582 343 U	1770	2900 345 U	372 U	3510 U 3510 U	358 U	9580 U 9580 U	2360	358 U 358 U	702 U	14200 U 14200 U	352 326 U	342 U 342 U	341 U 341 U	361 UJ 361 U	358 UJ 358 U
N-Nitrosodi-n-propylamine	ug/kg ug/kg			350 U	376 U 376 U	346 U 346 U	1,740 U	343 U 343 U	375 U 375 U	345 U 345 U	372 U 372 U	3510 U 3510 U	358 U 358 U	9580 U 9580 U	1720 U 1720 U	358 U 358 U	702 U 702 U	14200 U	326 U	342 U 342 U	341 U 341 U	361 U 361 U	358 U 358 U
N-Nitrosodimethylamine	ug/kg			350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
N-Nitrosodiphenylamine	ug/kg	E00000	12000	350 U	376 U	346 U	1,740 U	343 U	375 U	345 U	372 U	3510 U	358 U	9580 U	1720 U	358 U	702 U	14200 U	326 U	342 U	341 U	361 U	358 U
Naphthalene Nitrobenzene	ug/kg ug/kg	500000 69000	12000 26	350 U 350 U	376 U 376 U	346 U 346 U	1,740 U 19,100	399 343 U	375 U 375 U	345 U 345 U	372 U 372 U	3510 U 3510 U	358 U 358 U	9580 U 9580 U	5310 1720 U	358 U 358 U	702 U 702 U	14200 U 14200 U	326 U 326 U	342 U 342 U	341 U 341 U	361 U 361 U	358 U 358 U
Pentachlorophenol	ug/kg	6700	800	876 U	940 U	866 U	4,360 U	859 U	938 U	863 U	931 U	8770 U	896 U	24000 U	4310 U	895 U	1750 U	35500 U	814 U	855 U	853 U	903 U	895 U
Phenanthrene	ug/kg	500000	1000000	350 U	376 U	346 U	1,740 U	1110	535	7400	372 U	3510 U	358 U	9580 U	23400	482	702 U	14200 U	2290	342 U	545	361 U	358 U
Phenol Pyrene	ug/kg ug/kg	500000 500000	330 1000000	350 U 350 U	376 U 376 U	346 U 346 U	1,740 U 1,740 U	343 U 1410	375 U 3190	345 U 13100	372 U 372 U	3510 U 3510 U	358 U 358 U	9580 U 9580 U	1720 U 12300	358 U 554	702 U 702 U	14200 U 14200 U	326 U 2120	342 U 342 U	341 U 546	361 U 361 U	358 U 358 U
. frene	ug/ ng	500000	1000000	550 0	5,00	540 0	1,740 0	1410	3130	13100	572 0	5510 0	550 0	5500 0	12300	554	702 0	14200 0	2120	542 0	540	501.0	555 0

		Fie	Loc Name Field Sample ID Id Sample Date	E1-RB-04 E1-RB4-0506 12/13/10	E1-RB-05 E1-RB5-1011 12/22/10	E1-RB-06 E1-RB6-0405 01/03/11	E1-RB-07 E1-RB7-0506 01/06/11	E2-RS-1 E2-RS1-0501 10/06/10	E2-RS-3 E2-RS3-0502 10/06/10	E2-RS-4 E2-RS4-0103 10/13/10	E2-RB-1 E2-RB1-0910 10/06/10	E3-RS-3 E3-RS3-0305 09/29/10	E3-RS-7 E3-RS7-0305 10/01/10	E3-RS-8 E3-RS8-0304 10/01/10	E3-RS-9 E3-RS9-0203 10/01/10	E3-RS-12 E3-RS12-0204 10/11/10	E3-RS-13 E3-RS13-0305 10/11/10	E3-RS-14 E3-RS14-0305 10/11/10	E3-RS-15 E3-RS15-0204 10/13/10	E3-RS-16 E3-RS16-0204 10/26/10	E3-RS-17 E3-RS17-0204 10/26/10	E3-RB-7 E3-RB7-0506 10/12/10	E3-RB-8 E3-RB8-0506 10/12/10
		Commercial	Protection of																				
Parameter	Units ⁽¹⁾	Use	GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
Metals				nesure quar	duar quar	nesure quar	nesure quu	nesure quar	nesure quar	nesure quar	nesure quar	nesult quu	nesure quu	nesure quar	nesure quar	nesure quu	nesure quar	nesure quar	nesure quar	itesuit quui	nesure quu	nesure quu	nesure quar
Cyanide	mg/kg	27	40																				
Aluminum	mg/kg			20600	16600	13900	12,900	2660	8280	10700	16600	13500	10700	5090	13000	14300	13500	13700	8410	12700	4680	15100	12400
Antimony	mg/kg			5.77 UJ	4.16 U	3.99 U	3.76 U	15.3	34.2	6.38 U	6.85 U	6.52 U	7.01 U	7.46 U	6.88 U	6.85 U	7.28 U	7.28 U	5.83 U	6.67 U	5.17 U	7.2 U	6 U
Arsenic	mg/kg	16	16	16.7	6.38	8.24	7.15	39.3	190	24.3	6.51	6.75	18.7	76.1	7.94	5.73	10	9.38	30	7.96	7.13	15.6	8.34
Barium	mg/kg	400	820	104	90	73.9	59.6	120	190	81.5	85.2	69.3	70.1	113	60.5	65	80	106	49.3	74	29.6	78.9	68.5
Beryllium	mg/kg	590	47	0.845	0.753	0.653	0.579	0.521 U	0.884	0.612	0.769	0.629	0.585 U	0.622 U	0.6	0.571 U	0.632	0.646	0.486 U	0.665	0.431 U	0.744	0.588
Cadmium	mg/kg	9.3	7.5	0.48 U	0.379	0.332 U	0.314 U	1.05	0.934	1.59	0.571 U	0.544 U	0.585 U	0.965	0.775	0.571 U	0.606 U	0.857	0.486 U	0.606	0.737	0.599 U	0.5 U
Calcium	mg/kg			34800	45700	33100	49,200	6660	19900	30800	38800	37400	31900	3680	54200	10500	45600	8430	2090	5410	104000	35800	48800
Chromium ⁽³⁾	mg/kg	1500		24.8	22.1	18.9	17.2	17.9	32.5	15.6	22.1	18.4	16.3	30.8	18.8	13.9	17.4	18	11.5	16.8	21.4	20.2	16.8
Cobalt	mg/kg			15.7	13.4	12.5	9.76	7.27	7.68	12.9	13.7	10.1	10.2	6.74	9.08	6.68	12.2	9.48	6.39	10.2	3.66	13.2	10.2
Copper	mg/kg	270	1720	30.4	30.7	41	28.9	138	235	112	31	23.7	41.5	89.9	29.9	15.4	29.3	37.8	12.3	26	30.3	33	27
Iron	mg/kg		-	28400	27900	25900	23,300	37900	71500	29800	28200	23700	23300	33400	20100	17500	27000	20500	12800	23000	10800	30700	21600
Lead	mg/kg	1000	450	12.6	12.6	21.2	11.9	232	3000	96.9	14	14.8	31.1	207	13.1	12.9	14	32.1	9.36	14.1	42.3	15.3	13.3
Magnesium	mg/kg			12900	12800	10600	12.500	1350	2790	13000	13700	12100	9020	113	34900	4950	12400	4870	1760	5020	29100	12100	11400
Manganese	mg/kg	10000	2000	445	484	422	409	94.5	166	449	502	390	413	90.3	528	299	525	163	113	418	216	442	398
Nickel	mg/kg	310	130	35.5	34.7	32	28	16.3	22.5	28.5	36.2	35.2	28	15.5	25.3	16.5	30.8	21.3	13.8	29.6	12.2	34.5	26.5
Potassium	mg/kg			5170	3570	2170	2380	692	1050	1570	3280	2880	2520	743	2910	1170	2200	1340	502	1860	896	2880	2050
Selenium	mg/kg	1500	4	0.48 U	0.346 U	0.332 U	0.314 U	2.61 U	3.13 U	1.06 U	2.86 U	0.544 U	0.585 U	0.622 U	0.573 U	0.571 U	0.606 U	0.607 U	0.971 U	0.556 U	0.431 U	0.599 U	0.5 U
Silver	mg/kg	1500	8.3	0.962 U	0.692 U	0.664 U	0.627 U	1.04 U	1.25 U	1.06 U	1.14 U	1.09 U	1.17 U	1.24 U	1.15 U	1.14 U	1.21 U	1.21 U	0.971 U	1.11 U	0.861 U	1.2 U	1 U
Sodium	mg/kg			621	253	411	765	521 U	625 U	106 U	571 U	316	483	249 U	535	740	281	135	97.1 U	704	374	241	424
Thallium	mg/kg			0.577 UJ	0.416 U	0.399 U	0.376 U	0.625 U	0.75 U	1.06 U	0.685 U	0.652 U	0.701 U	0.746 U	0.688 U	0.685 U	0.728 U	0.728 U	0.971 U	0.667 U	0.517 U	0.72 U	0.6 U
Vanadium	mg/kg			37.7	30.7	27.2	24.9	12.8	31	22.9	30.7	24.2	21.1	20.4	23.4	29.5	25.5	25.7	22.2	26.2	11.6	30.3	23.5
Zinc	mg/kg	10000	2480	76.1	77.4	93	68.1	316	202	428	83.3	78.5	118	477	253	50.1	72.5	311	38.5	63.8	138	84.5	72.4
Mercury	mg/kg	2.8	0.73	0.0196	0.0179	0.0192	0.0152	0.676	13.3	0.0784	0.0149	0.02	0.0561	1.92	0.0694	0.0363 J	0.018 J	0.122 J	0.0447	0.0382 J	0.246 J	0.0242	0.133
PCBs	0, 0																						
Aroclor 1016	ug/kg	1000	3200																				
Aroclor 1221	ug/kg	1000	3200								1									1			
Aroclor 1232	ug/kg	1000	3200																				
Aroclor 1242	ug/kg	1000	3200								1									1			
Aroclor 1248	ug/kg	1000	3200																				
Aroclor 1254	ug/kg	1000	3200								1									1			
Aroclor 1260	ug/kg	1000	3200																				
Aroclor 1262	ug/kg	1000	3200								1									1			
Aroclor 1268	ug/kg	1000	3200																	1			

Notes: (1) Units: ug/kg = micrograms/kilogram; mg/kg = milligrams/kilogram (2) New York State Department of Environmental Conservation, Restricted Use Soil Cleanup Objectives, Commercial Use and Protection of Groundwater, Table 375-6.8(b) (3) Standards used for comparison are for Hexavalent Chromium Qualifiers: U = not detected; J = estimated value; UJ = non-detect reported, reporting limit qualified as estimated; D = duplicate results outside QC limits, mav indicate non-homoenous matrix: M = matrix solike outside QC limits,

may indicate non-homogenous matrix; M = matrix spike outside QC limits, matrix bias indicated; R = data rejected during validation Shaded value - exceedance of Restricted Use Soil Cleanup Objective

				52.55.0	53 55 40	53.00.44	53.55.43																	
			Loc Name	E3-RB-9	E3-RB-10	E3-RB-11	E3-RB-12	LNAPL-SW-01	LNAPL-SW-02	LNAPL-SW-03	LNAPL-SW-04	LNAPL-SW-05	LNAPL-SW-06	LNAPL-SW-07	LNAPL-SW-08	LNAPL-SW-09	LNAPL-SW-10	LNAPL-SW-11	LNAPL-SW-12	LNAPL-B-01	LNAPL-B-02	LNAPL-B-03	LNAPL-B-04	LNAPL-B-05
			Field Sample ID eld Sample Date	E3-RB9-0506 10/12/10	E3-RB10-0506 10/12/10	E3-RB11-0506 10/12/10	E3-RB12-0506 10/12/10	LNAPL-SW-01 07/16/10	LNAPL-SW-02 07/16/10	LNAPL-SW-03 07/20/10	LNAPL-SW-04 07/20/10	LNAPL-SW-05 07/20/10	LNAPL-SW-06 07/20/10	LNAPL-SW-07 07/20/10	LNAPL-SW-08 07/20/10	LNAPL-SW-09 07/20/10	LNAPL-SW-10 07/20/10	LNAPL-SW-11 07/20/10	LNAPL-SW-12 07/20/10	LNAPL-B-01 07/16/10	LNAPL-B-02 07/19/10	LNAPL-B-03 07/19/10	LNAPL-B-04 07/19/10	LNAPL-B-05 07/19/10
		NYSDEC	(2)	10/12/10	10/12/10	10/12/10	10/12/10	07/10/10	07/10/10	07/20/10	07/20/10	07/20/10	07/20/10	07/20/10	07/20/10	07/20/10	07/20/10	07/20/10	07/20/10	07/10/10	07/15/10	07/15/10	07/15/10	07/15/10
	(1)	Commercial	Protection of																					
Parameter	Units ⁽¹⁾	Use	GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
VOCs																								
1,1,1-Trichloroethane	ug/kg	500000	680	1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
1,1,2,2-Tetrachloroethane	ug/kg			1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
1,1,2-Trichloroethane	ug/kg			1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
1,1,2-Trichlorotrifluoroethane	ug/kg	240000	270	1020 11	1600.11	2520.11	422.11	0.60.11	0.24.11	0.00 11	0.50.11	0.11.11	0.00 11	102.11	7.40.11	0.04.11	10.2.11	12.6.11	105.11	42.7.11	44.11	44.0.11	0.76.11	10.2.11
1,1-Dichloroethane 1,1-Dichloroethene	ug/kg ug/kg	240000 500000	270 330	1030 U 1030 U	1690 U 1690 U	2530 U 2530 U	132 U 132 U	9.68 U 9.68 U	9.34 U 9.34 U	8.26 U 8.26 U	8.58 U 8.58 U	9.11 U 9.11 U	9.06 U 9.06 U	103 U 103 U	7.40 U 7.40 U	8.84 U 8.84 U	10.3 U 10.3 U	12.6 U 12.6 U	10.5 U 10.5 U	12.7 U 12.7 U	11 U 11 U	11.8 U 11.8 U	8.76 U 8.76 U	10.2 U 10.2 U
1,1-Dichlorobenzene	ug/kg	500000	550	1030 0	1090 0	2550 0	132 0	9.08 0	9.34 0	8.20 U	8.38 U	9.11 0	9.06 0	103 0	7.40 0	8.84 U	10.5 0	12.0 0	10.5 0	12.7 0	11 0	11.8 0	8.70 U	10.2 0
1.2-Dibromo-3-chloropropane	ug/kg																							
1.2-Dibromomethane (EDB)	ug/kg																							
1,2-Dichlorobenzene	ug/kg	500000	1100	2220	34900	105000	9510	24.2 U	23.4 U	20.7 U	21.4 U	22.8 U	22.6 U	1280	18.5 U	22.1 U	25.6 U	31.5 U	26.4 U	31.7 U	27.5 U	29.6 U	21.9 U	25.4 U
1,2-Dichloroethane	ug/kg	30000	20	1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
1,2-Dichloropropane	ug/kg	1		1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
1,3-Dichlorobenzene	ug/kg	280000	2400	2140	1690 U	2530 U	132 U	24.2 U	23.4 U	20.7 U	21.4 U	22.8 U	22.6 U	971	18.5 U	22.1 U	25.6 U	31.5 U	26.4 U	31.7 U	27.5 U	29.6 U	24.1	25.4 U
1,4-Dichlorobenzene	ug/kg	130000	1800	1420	6890	10800	1080	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	4310	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	138	10.2 U
2-Butanone	ug/kg	500000	120	5130 UJ	8460 UJ	12600 UJ	660 UJ	48.4 U	46.7 U	41.3 U	42.9 U	45.6 U	45.3 U	517 U	37 U	44.2 U	51.3 U	62.9 U	52.7 U	63.4 U	55 U	59.2 U	43.8 U	50.9 U
2-Chloroethyl vinyl ether	ug/kg			5130 UJ	8460 UJ	12600 UJ	660 UJ	48.4 U	46.7 U	41.3 U	42.9 U	45.6 U	45.3 U	517 U	37 U	44.2 U	51.3 U	62.9 U	52.7 U	63.4 U	55 U	59.2 U	43.8 U	50.9 U
2-Hexanone	ug/kg			2560 UJ	4230 UJ	6320 UJ	330 UJ	24.2 U	23.4 U	20.7 U	21.4 U	22.8 U	22.6 U	258 U	18.5 U	22.1 U	25.6 U	31.5 U	26.4 U	31.7 U	27.5 U	29.6 U	21.9 U	25.4 U
4-Methyl-2-pentanone	ug/kg			2560 UJ	4230 UJ	6320 UJ	330 UJ	24.2 U	23.4 U	20.7 U	21.4 U	22.8 U	22.6 U	258 U	18.5 U	22.1 U	25.6 U	31.5 U	26.4 U	31.7 U	27.5 U	29.6 U	21.9 U	25.4 U
Acetone	ug/kg		50	5130 UJ	8460 UJ	12600 UJ	660 UJ	50.8	74.7	41.3 U	42.9 U	45.6 U	61.5	517 U	37 U	65.3	61.7	62.9 U	222	234	388	272	43.8 U	211
Benzene Benzene	ug/kg	44000	60	1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Bromodichloromethane Bromoform	ug/kg			1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U 21.4 U	9.11 U 22.8 U	9.06 U 22.6 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U 27.5 U	11.8 U	8.76 U	10.2 U 25.4 U
	ug/kg ug/kg			2560 UJ 1030 U	4230 UJ 1690 U	6320 UJ 2530 U	330 U 132 U	24.2 U 9.68 U	23.4 U 9.34 U	20.7 U 8.26 U	8.58 U	9.11 U	9.06 U	258 U 103 U	18.5 U 7.40 U	22.1 U 8.84 U	25.6 U 10.3 U	31.5 U 12.6 U	26.4 U 10.5 U	31.7 U 12.7 U	27.5 U 11 U	29.6 U 11.8 U	21.9 U 8.76 U	10.2 U
Carbon disulfide	ug/kg			1030 U	1690 U	2530 U	132 U	9.68 U	9.38	8.26 U	8.58 U	11.6	9.06 U	103 U	7.40 U	8.84 U	22.4	17.4	11.3	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Carbon tetrachloride	ug/kg	22000	760	1030 U	1690 U	2530 U	132 U	24.2 U	23.4 U	20.7 U	21.4 U	22.8 U	22.6 U	258 U	18.5 U	22.1 U	25.6 U	31.5 U	26.4 U	31.7 U	27.5 U	29.6 U	21.9 U	25.4 U
Chlorobenzene	ug/kg	500000	1100	7870	17400	4680	564	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	3160	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	18.6	10.2 U
Chlorodibromomethane	ug/kg			1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Chloroethane	ug/kg			1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Chloroform	ug/kg	350000	370	1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Chloromethane	ug/kg			1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Cis-1,2-Dichloroethene	ug/kg	500000	250	1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Cis-1,3-Dichloropropene	ug/kg			1030 UJ	1690 UJ	2530 UJ	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Cyclohexane Disklassedifuseesestheses	ug/kg		╎───┨																					┥────┤
Dichlorodifluoromethane	ug/kg	200000	1000	1020 11	1600 11	2520.11	122.11	0.68.11	0.24.11	8.26.11	0 50 11	0.11.11	0.06.11	102.11	7.40.11	0.04.11	10.2.11	12 6 11	10 5 11	12711	11.11	11.0.11	97611	10.2.11
Ethyl benzene Isopropylbenzene	ug/kg ug/kg	390000	1000	1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Methyl acetate	ug/kg		┼───┨		1					1					1									┟────┤
Methyl tert-Butyl Ether	ug/kg	500000	930							1					1									<u>├</u>
Methylcyclohexane	ug/kg	500000	550							1					1									1
	ug/kg	500000	50	2560 UJ	4230 UJ	6320 UJ	330 UJ	24.2 U	23.4 U	20.7 U	21.4 U	22.8 U	22.6 U	258 U	18.5 U	22.1 U	25.6 U	31.5 U	26.4 U	31.7 U	27.5 U	29.6 U	21.9 U	25.4 U
Styrene	ug/kg			2560 UJ	4230 UJ	6320 UJ	330 U	24.2 U	23.4 U	20.7 U	21.4 U	22.8 U	22.6 U	258 U	18.5 U	22.1 U	25.6 U	31.5 U	26.4 U	31.7 U	27.5 U	29.6 U	21.9 U	25.4 U
Tetrachloroethene	ug/kg	150000	1300	1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	31.5	68.2	14.9	9.06 U	113	17.80	9.34	46.8	26.8	45.8	12.7 U	128	48.4	10.9	10.2 U
Toluene	ug/kg	500000	700	1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Trans-1,2-Dichloroethene	ug/kg	500000	190	1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Trans-1,3-Dichloropropene	ug/kg			1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Trichloroethene	ug/kg	200000	470	1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Trichlorofluoromethane	ug/kg			1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Vinyl acetate	ug/kg	12000	20	2560 U	4230 U	6320 U	330 U	24.2 U	23.4 U	20.7 U	21.4 U	22.8 U	22.6 U	258 U	18.5 U	22.1 U	25.6 U	31.5 U	26.4 U	31.7 U	27.5 U	29.6 U	21.9 U	25.4 U
Vinyl chloride	ug/kg	13000	20	1030 U	1690 U	2530 U	132 U	9.68 U	9.34 U	8.26 U	8.58 U	9.11 U	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U
Xylenes, Total	ug/kg	500000	1600	1030 UJ	1690 UJ	2530 UJ	132 U	9.68 U	9.34 U	8.26 U	8.58 U	35.7	9.06 U	103 U	7.40 U	8.84 U	10.3 U	12.6 U	10.5 U	12.7 U	11 U	11.8 U	8.76 U	10.2 U

Image: Field Sample Damping Fi				Les Neme	F2 BB 0	F2 DD 10	F2 DD 11	F2 DD 12										INADI CM/ 10							
Image: Problem Image: Problem Image: Problem Image: Pr				Loc Name Field Sample ID	E3-RB-9 E3-RB9-0506	E3-RB-10 E3-RB10-0506	E3-RB-11 E3-RB11-0506	E3-RB-12 E3-RB12-0506	LNAPL-SW-01 LNAPL-SW-01	LNAPL-SW-02 LNAPL-SW-02	LNAPL-SW-03 LNAPL-SW-03	LNAPL-SW-04 LNAPL-SW-04	LNAPL-SW-05 LNAPL-SW-05	LNAPL-SW-06 LNAPL-SW-06	LNAPL-SW-07 LNAPL-SW-07	LNAPL-SW-08 LNAPL-SW-08	LNAPL-SW-09 LNAPL-SW-09	LNAPL-SW-10 LNAPL-SW-10	LNAPL-SW-11 LNAPL-SW-11	LNAPL-SW-12 LNAPL-SW-12	LNAPL-B-01 LNAPL-B-01	LNAPL-B-02 LNAPL-B-02	LNAPL-B-03 LNAPL-B-03	LNAPL-B-04 LNAPL-B-04	LNAPL-B-05 LNAPL-B-05
			Fi																						
box box <th></th> <th></th> <th>NYSDE</th> <th>C Values ⁽²⁾</th> <th></th>			NYSDE	C Values ⁽²⁾																					
Dim Dim <th></th> <th>(1)</th> <th>Commercial</th> <th></th>		(1)	Commercial																						
CHANCE CHANCE CHANCE CHANCE CHANCE CHANCE CHANCE CHANCE CHANCE		Units (1)	Use	GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
Control Contro Control Control <th< th=""><th></th><th>ug/kg</th><th></th><th></th><th>346 11</th><th>694.11</th><th>6050</th><th>887</th><th>328 11</th><th>360 11</th><th>367.11</th><th>340 11</th><th>1650 11</th><th>361 11</th><th>318 </th><th>341 11</th><th>338 11</th><th>341 11</th><th>365 11</th><th>380 U</th><th>359.11</th><th>347 11</th><th>378 11</th><th>319 </th><th>370.11</th></th<>		ug/kg			346 11	694.11	6050	887	328 11	360 11	367.11	340 11	1650 11	361 11	318	341 11	338 11	341 11	365 11	380 U	359.11	347 11	378 11	319	370.11
A P P P P P P P P P P P P P P P P P P P				1100																					
Spanne Spanne Spanne Spanne <th>1,3-Dichlorobenzene</th> <th>ug/kg</th> <th>280000</th> <th>2400</th> <th>1190</th> <th>694 U</th> <th>1750 U</th> <th>345 U</th> <th>328 U</th> <th>360 U</th> <th>367 U</th> <th>340 U</th> <th>1650 U</th> <th>361 U</th> <th>788</th> <th>341 U</th> <th>338 U</th> <th>341 U</th> <th>365 U</th> <th>380 U</th> <th>359 U</th> <th>347 U</th> <th>378 U</th> <th>319 U</th> <th>370 U</th>	1,3-Dichlorobenzene	ug/kg	280000	2400	1190	694 U	1750 U	345 U	328 U	360 U	367 U	340 U	1650 U	361 U	788	341 U	338 U	341 U	365 U	380 U	359 U	347 U	378 U	319 U	370 U
Description	,			1800																				-	
CAL CAL CAL CAL CAL	,	ů,			346 U	694 U	1750 U	345 U	328 U	360 U	367 U	340 U	1650 U	361 U	3180	341 U	338 U	341 U	365 U	380 U	359 U	347 U	378 U	319 U	370 U
	, . ,,				865 U	1740 U	4360 U	862 U	820 U	901 U	919 U	850 U	4130 U	902 U	795 U	852 U	844 U	852 U	913 U	951 U	898 U	867 U	944 U	798 U	925 U
phone phone <th< th=""><th></th><th>0,0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		0,0																							
Character Control Contro Control Control <											367 U									380 U					
A PACOM A PAC A PAC A PAC A PAC <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																									
b A B and A B A A A A A A A A A A A A A A A A A A A A																									
Abb Abb <th>,</th> <th></th>	,																								
Constraine Constraine <thconstraine< th=""> Constraine Constrai</thconstraine<>					346 U	694 U	1750 U	345 U	328 U	360 U	367 U	340 U		361 U		341 U	338 U	341 U	365 U	380 U	359 U	347 U			370 U
Discription Dist		ug/kg																							
jach jach <th< th=""><th></th><th></th><th></th><th> </th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>																									
Schwarz Schwarz <t< th=""><th> / ·</th><th></th><th></th><th>330</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	/ ·			330																					
Cale Cale Cale Cale C																									
bick mb																									
International No. No. No. No. <																									
Lather scale Mai Mai Mai Mai <t< th=""><th></th><th>0, 0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		0, 0																							
International matrix Internati		0, 0		+																					
CALCONSIDUATION CALCONSIDUATION CALCONSIDUATION CALCONSIDUAT				1																					
Characterization Characterization<	4-Chloro-3-methylphenol	ug/kg				694 U			328 U	360 U	367 U	340 U		361 U			338 U	341 U	365 U	380 U	359 U	347 U	378 U		
bold bold <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																									
char char char char <th></th> <th></th> <th></th> <th>220</th> <th>346 U</th> <th>694 U</th> <th>1750 U</th> <th>345 U</th> <th>328 U</th> <th>360 U</th> <th>367 U</th> <th>340 U</th> <th>1650 U</th> <th>361 U</th> <th>318 U</th> <th>341 U</th> <th>338 U</th> <th>341 U</th> <th>365 U</th> <th>380 U</th> <th>359 U</th> <th>347 U</th> <th>378 U</th> <th>319 U</th> <th>370 U</th>				220	346 U	694 U	1750 U	345 U	328 U	360 U	367 U	340 U	1650 U	361 U	318 U	341 U	338 U	341 U	365 U	380 U	359 U	347 U	378 U	319 U	370 U
Characteristic Cond				550	865 U	1740 U	4360 U	862 11	820 U	901 U	919 U	850 U	4130 U	902 U	795 U	852 11	844 U	852 U	913 U	951 U	898 U	867 U	944 U	798 []	925 U
manufactor manufa		ů,																							
bold bold <th< th=""><th>Acenaphthene</th><th>ug/kg</th><th>500000</th><th>98000</th><th>346 U</th><th>694 U</th><th>1750 U</th><th>345 U</th><th>328 U</th><th>360 U</th><th>367 U</th><th>340 U</th><th>1650 U</th><th>361 U</th><th>318 U</th><th>341 U</th><th>338 U</th><th>341 U</th><th>365 U</th><th>380 U</th><th>359 U</th><th>347 U</th><th>378 U</th><th>319 U</th><th>370 U</th></th<>	Acenaphthene	ug/kg	500000	98000	346 U	694 U	1750 U	345 U	328 U	360 U	367 U	340 U	1650 U	361 U	318 U	341 U	338 U	341 U	365 U	380 U	359 U	347 U	378 U	319 U	370 U
matrix	<i>i</i>			107000	346 U	694 U	1750 U	345 U	328 U	360 U	367 U	340 U	1650 U	361 U	318 U	341 U	338 U	341 U	365 U	380 U	359 U	347 U	378 U	319 U	370 U
chard chard star star star star <th< th=""><th></th><th>ů,</th><th></th><th>460</th><th>346 11</th><th>4750</th><th>2830</th><th>345 11</th><th>328 11</th><th>360 11</th><th>367 11</th><th>340 11</th><th>1650 11</th><th>361 11</th><th>318 </th><th>341 11</th><th>338 11</th><th>341 11</th><th>365 11</th><th>380 11</th><th>359 11</th><th>347 11</th><th>378 11</th><th>319 </th><th>370 11</th></th<>		ů,		460	346 11	4750	2830	345 11	328 11	360 11	367 11	340 11	1650 11	361 11	318	341 11	338 11	341 11	365 11	380 11	359 11	347 11	378 11	319	370 11
start start <th< th=""><th></th><th></th><th></th><th></th><th>0.00</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>001 0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>					0.00									001 0											
book book <th< td=""><th>Atrazine</th><th>ug/kg</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Atrazine	ug/kg																							
bick bick <th< td=""><th></th><th></th><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>						-																			
sheed for the sheed f				1000																					
bick bick <th< td=""><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																									
inversion inversion <t< td=""><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																									
International Internat																									
import				1700																					
Biphery gy/L C C C C </td <th></th> <th></th> <td></td>																									
Big2-concerning unit Sec 38-0					005 0	1740 0	4500 0	002 0	020 0	501 0	515 0	0.50 0	4150 0	502 0	755 0	032 0	044.0	032 0	515 0	5510	0,0 0	007 0	544 0	/50 0	525 0
Bit 2 Bit 3 Bit 4 Bit 4 <th< td=""><th>Bis(2-chloroethoxy)methane</th><th>ug/kg</th><td></td><td></td><td>346 U</td><td>694 U</td><td>1750 U</td><td>345 U</td><td>328 U</td><td>360 U</td><td>367 U</td><td>340 U</td><td>1650 U</td><td>361 U</td><td>318 U</td><td>341 U</td><td>338 U</td><td>341 U</td><td>365 U</td><td>380 U</td><td>359 U</td><td>347 U</td><td>378 U</td><td>319 U</td><td>370 U</td></th<>	Bis(2-chloroethoxy)methane	ug/kg			346 U	694 U	1750 U	345 U	328 U	360 U	367 U	340 U	1650 U	361 U	318 U	341 U	338 U	341 U	365 U	380 U	359 U	347 U	378 U	319 U	370 U
Birly encly Birly Birly<		0,0																							
Carbonds op/a I I I																									
Chrabee wig Sou Conce C					540 0	094 0	1/30 0	J+J U	520 0	300.0	307 0	340 0	1000.0	501.0	510 0	341.0	550 0	J+1 U	505 0	300 0	337 0	54/0	576 0	515 0	570 0
Dn-burdy phylakate u/g (s - 346 U 646 U 175 U 382 U 380 U		ug/kg																							
Dn-dx/phthalate u/g/g En H4 H50 H50 H36 U H37 U <th< td=""><th></th><th></th><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				1000																					
Oberact/aparthracene ug/kg 560 100000 346 U 1750 U 345 U 360 U 361 U 380 U 361 U 380 U 361 U 380 U 361 U 380 U 365 U 380 U 377 U 378 U 378 U 370 U Demtry/prhahate ug/kg Composition 346 U 694 U 1750 U 345 U 380 U 367 U 380 U 381 U 381 U 381 U 380 U				<u> </u>																					
Debendpriman ug/kg 35000 23000 346 U 649 U 175 U 345 U 328 U 360 U 367 U 340 U 155 U 331 U 331 U 338 U 360 U 359 U 347 U 378 U 378 U 370 U Dinschrighthalate ug/kg 5000 1360 U 646 U 175 U 435 U 328 U 360 U 367 U 380 U 370 U 380 U 390 U 310 U </th <th>/ ·</th> <th></th> <th></th> <th>1000000</th> <th></th>	/ ·			1000000																					
Diethy phrhaiter ug/kg -																									
International mathem us/kg 500000 346 U 694 U 1750 U 472 328 U 360 U 367 U 600 1650 U 361 U 318 U 314 U 338 U 341 U 365 U 380 U 359 U 377 U 378 U 319 U 370 U Hexachlorobarane us/kg 6000 3200 346 U 694 U 1750 U 345 U 380 U 310 U 318 U 311 U 338 U 341 U 380 U 340 U 359 U 347 U 378 U 319 U 370 U Hexachlorobarane us/kg 6000 346 U 694 U 1750 U 345 U 328 U 360 U 367 U 340 U 1650 U 361 U 318 U 341 U 380	Diethyl phthalate	ug/kg					1750 U								318 U										
line ug/kg 50000 346 U 694 U 1750 U 345 U 360 U 367 U 340 U 1550 U 341 U 338 U 341 U 355 U 380 U 359 U 347 U 378 U 319 U 370 U Hexachlorobutalene ug/kg 346 U 694 U 1750 U 345 U 328 U 360 U 367 U 340 U 1650 U 381 U 381 U 381 U 381 U 381 U 380 U <																									
hexachlorobenzene ug/kg 600 3200 346 U 694 U 1750 U 346 U 360 U 361 U 318 U 310 U 355 U 347 U 378 U 319 U 370 U hexachlorocyclopentaliene ug/kg C 346 U 694 U 1750 U 345 U 328 U 360 U 367 U 340 U 388 U 341 U 388 U 341 U 380 U <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>								-																	
Hexachlorobutadien ug/kg Image: Mark Mark Mark Mark Mark Mark Mark Mark																									
Heachlorgethane ug/kg M 346 U 644 U 175 U 345 U 328 U 360 U 367 U 340 U 318 U 314 U 338 U 341 U 365 U 380 U 359 U 347 U 378 U 319 U 370 U Inden(1,2,3-c)d)prene ug/kg 5600 364 U 694 U 1750 U 345 U 328 U 360 U 367 U 340 U 1650 U 318 U 318 U 318 U 318 U 380 U 350 U 359 U 347 U 378 U 319 U 310 U 300 U 359 U 360 U <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>																									
Inden(1,2,3-cd)pyrene ug/kg 5600 8200 346 U 694 UJ 1750 U 345 U 328 U 360 U 367 U 340 U 1650 U 318 U 318 U 341 U 338 U 341 U 365 U 380 U 359 U 347 U 378 U 319 U 370 U Isophorone ug/kg 346 U 694 U 1750 U 345 U 328 U 360 U 367 U 340 U 1650 U 361 U 318 U 341 U 388 U 341 U 365 U 380 U 359 U 347 U 378 U 319 U 370 U N-Nitrosodin-prop/samine ug/kg 346 U 694 U 1750 U 345 U 328 U 360 U 367 U 310 U 1650 U 361 U 318 U 341 U 388 U 341 U 365 U 380 U 359 U 347 U 378 U 319 U 370 U N-Nitrosodiphenylamine ug/kg 346 U 694 U 1750 U 345 U 328 U 360 U 367 U 318 U <th></th>																									
Isophorone ug/kg Image: Monone Image: Monone Image: Monone Image: Monone Image: Monone Image: Monone Imag				8300																					
N-Nitrosodim-propylamine ug/kg 4 346 U 345 U 346 U 367 U 346 U 361 U 318 U </th <th></th> <th></th> <th></th> <th>8200</th> <th></th>				8200																					
N-Nitrosodimethylamine ug/kg M 346 U 694 U 1750 U 345 U 360 U 367 U 340 U 1650 U 318 U 318 U 341 U 338 U 341 U 365 U 380 U 347 U 378 U 319 U 370 U N-Nitrosodiphenylamine ug/kg - 346 U 694 U 1750 U 345 U 328 U 360 U 367 U 340 U 1650 U 318 U 311 U 338 U 341 U 365 U 380 U 359 U 347 U 378 U 319 U 370 U N-Nitrosodiphenylamine ug/kg 500000 12000 346 U 694 U 1750 U 345 U 360 U 367 U 340 U 1650 U 318 U 311 U 338 U 341 U 365 U 380 U 359 U 347 U 378 U 319 U 370 U Nitrobenzene ug/kg 69000 26 360 U 1750 U 328 U 360 U 367 U 340 U 1650 U 318 U 318 U 341 U 338 U 3				1																					
Naphthalene ug/kg 50000 12000 346 U 694 U 1750 U 345 U 360 U 361 U 318 U																									
Nitrobenzene ug/kg 6900 26 346 U 694 U 17100 2200 328 U 360 U 340 U 1650 U 318 U 318 U 341 U 338 U 341 U 365 U 380 U 347 U 378 U 319 U 370 U Pentachlorophenol ug/kg 6700 800 855 U 1740 U 4360 U 862 U 820 U 910 U 910 U 850 U 4130 U 902 U 795 U 852 U 844 U 852 U 913 U 951 U 888 U 867 U 944 U 798 U 925 U Phenathrene ug/kg 50000 1000000 346 U 1750 U 562 U 328 U 367 U 340 U 1550 U 341 U 338 U 341 U 355 U 387 U 347 U 378 U 378 U 370 U Phenol ug/kg 50000 330 346 U 1750 U 345 U 360 U 361 U 318 U 314 U 338 U 341 U 380 U 359 U 347 U 378 U <th>. ,</th> <th></th>	. ,																								
Pentachlorophenol ug/kg 6700 800 865 U 1740 U 4360 U 862 U 911 U 912 U 795 U 852 U 844 U 852 U 913 U 951 U 880 U 944 U 798 U 925 U Phenanthrene ug/kg 50000 1000000 346 U 694 U 1750 U 562 328 U 360 U 361 U 361 U 318 U 361 U 365 U 380 U 365 U 380 U 318 U </th <th></th>																									
Phenanthrene ug/kg 50000 100000 346 U 694 U 1750 U 562 328 U 360 U 340 U 1650 U 318 U 318 U 341 U 365 U 380 U 370 U 378 U 370 U 378 U 370 U Phenol ug/kg 50000 330 346 U 694 U 1750 U 345 U 360 U 367 U 340 U 1650 U 318 U 318 U 341 U 365 U 380 U 347 U 378 U 370 U																									
Phenol ug/kg 50000 330 346 U 694 U 1750 U 345 U 345 U 345 U 345 U 345 U 346 U 346 U 347 U 347 U 340 U 1650 U 340 U 341 U 338 U 341 U 365 U 380 U 359 U 347 U 378 U 319 U 370 U		0,0																							
Pyrene ug/kg 50000 1000000 346 U 694 U 1750 U 394 328 U 360 U 367 U 492 1650 U 318 U 318 U 314 U 338 U 341 U 365 U 380 U 359 U 347 U 378 U 319 U 370 U				330			1750 U						1650 U		318 U	341 U									370 U
	Pyrene	ug/kg	500000	1000000	346 U	694 U	1750 U	394	328 U	360 U	367 U	492	1650 U	361 U	318 U	341 U	338 U	341 U	365 U	380 U	359 U	347 U	378 U	319 U	370 U

			Loc Name Field Sample ID ield Sample Date	E3-RB9-0506	E3-RB-10 E3-RB10-0506 10/12/10	E3-RB-11 E3-RB11-0506 10/12/10	E3-RB-12 E3-RB12-0506 10/12/10	LNAPL-SW-01 LNAPL-SW-01 07/16/10	LNAPL-SW-02 LNAPL-SW-02 07/16/10	LNAPL-SW-03 LNAPL-SW-03 07/20/10	LNAPL-SW-04 LNAPL-SW-04 07/20/10	LNAPL-SW-05 LNAPL-SW-05 07/20/10	LNAPL-SW-06 LNAPL-SW-06 07/20/10	LNAPL-SW-07 LNAPL-SW-07 07/20/10	LNAPL-SW-08 LNAPL-SW-08 07/20/10	LNAPL-SW-09 LNAPL-SW-09 07/20/10	LNAPL-SW-10 LNAPL-SW-10 07/20/10	LNAPL-SW-11 LNAPL-SW-11 07/20/10	LNAPL-SW-12 LNAPL-SW-12 07/20/10	LNAPL-B-01 LNAPL-B-01 07/16/10	LNAPL-B-02 LNAPL-B-02 07/19/10	LNAPL-B-03 LNAPL-B-03 07/19/10	LNAPL-B-04 LNAPL-B-04 07/19/10	LNAPL-B-05 LNAPL-B-05 07/19/10
		NYSDE	C Values (2)																					/
		Commercia	Protection of																					/
Parameter	Units ⁽¹) Use	GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qua
Metals																								
Cyanide	mg/kg	27	40																					
Aluminum	mg/kg			16100	15500	15600	17400	5770	5130	8520	3670	9410	14800	9890	13300	11300	11000	8220	11400	7850	8370	11900	9510	10400
Antimony	mg/kg			7.26 U	6.52 U	6 U	6.14 U	5.73 U	6.76 U	6.73 U	16.2	6.27 U	4.41 U	4.25 U	6.25 U	4.83 U	4.04 U	5.48 U	4.66 U	5.04 U	6.37 U	5.97 U	6.50 U	5.78 U
Arsenic	mg/kg	16	16	6.85	9.56	10.7	8.06	2.13	2.31	5.73	34.3	4.44	9.28	12.4	6.68	8.98	5.39	3.75	4.79	4.56	3.8	5.53	6.23	3.89
Barium	mg/kg	400	820	97.3	93.2	73.2	105	29.3	26.7	45.3	43.4	63.5	71.5	53.8	68.2	66.7	49.3	39.8	83.5	53.7	50.4	74.5	46.2	46.4
Beryllium	mg/kg	590	47	0.688	0.745	0.735	0.807	0.477 U	0.562 U	0.562 U	0.466 U	0.522 U	0.653	0.434	0.579	0.536	0.614	0.456 U	0.537	0.421 U	0.531 U	0.587	0.543 U	0.517
Cadmium	mg/kg	9.3	7.5	0.605 U	0.56	0.5 U	0.532	0.477 U	0.562 U	0.562 U	3.69	0.522 U	0.369	0.496	0.520 U	0.402 U	0.337 U	0.456 U	0.432	0.620	0.531 U	0.497 U	0.543 U	0.482 U
Calcium	mg/kg			81000	74800	37500	39600	2180	4140	5510	5830	39000	47000	22300	26500	23900	11900	6570	3290	4370	5560	2250	2650	1840
Chromium ⁽³⁾	mg/kg	1500		20.9	21	20.5	22.7	7.21	7.26	23.7	153	13.4	19.7	37.9	17	18.8	17.4	11.4	15.3	21.2	11.3	16	12	13.9
Cobalt	mg/kg			10.8	12.2	13.1	12.7	3.52	4.73	10.4	19.2	9.16	11.6	9.79	10.4	10.1	10.4	8.54	10.4	8.29	8.45	11	11.4	10.7
Copper	mg/kg	270	1720	24	31.4	35.4	32.5	6.85	8.45	34.8	208	24.4	28.1	72.6	25.7	61	29.3	21.7	24	86.9	19	26.3	23.9	21
Iron	mg/kg			22200	27800	29400	27700	8330	10100	22600	314000	24800	24900	34600	23900	22300	21000	16300	19700	16500	16500	21400	23000	17400
Lead	mg/kg	1000	450	13.3	12.5	14.5	12.7	22.2	25.5	13.9	58.5	14.7	10.7	64.5	12.2	18.3	16.6	10.1	13.8	16.2	10	13.1	13.6	10.8
Magnesium	mg/kg			11100	10900	10500	10900	1640	2090	4070	1100	12500	12900	7320	9650	8270	7080	4460	4120	3650	4180	4220	2620	3580
Manganese	mg/kg		2000	482	448	458	499	96.4	127	427	2210	529	393	435	426	341	407	459	412	245	425	222	872	178
Nickel	mg/kg	310	130	30.1	34.2	35.8	37.4	6.52	7.07	30.1	88.2	28.2	31.9	42.6	26.6	27.5	28.3	22.7	29.6	24.2	22	30.2	23.5	27.7
Potassium	mg/kg			2720	2950	2700	3240	639	716	1200	350	1570	3080	1730	2220	1930	1760	973	1380	1110	1220	1490	1120	1220
Selenium	mg/kg	1500	4	0.605 U	0.543 U	0.5 U	0.512 U	0.477 U	0.562 U	0.562 U	0.466 U	0.522 U	0.367 U	0.354 U	0.520 U	0.402 U	0.337 U	0.456 U	0.388 U	0.421 U	0.531 U	0.497 U	0.543 U	0.482 U
Silver	mg/kg		8.3	1.21 U	1.09 U	1 U	1.02 U	0.955 U	1.13 U	1.12 U	0.934 U	1.05 U	0.734 U	0.708 U	1.04 U	0.805 U	0.674 U	0.912 U	0.775 U	0.842 U	1.06 U	0.993 U	1.08 U	0.964 U
Sodium	mg/kg			573	624	333	552	95.5 U	113 U	112 U	93.4 U	105 U	149	229	199	306	162	91.2 U	77.6 U	84.2 U	106 U	99.3 U	242	96.4 U
Thallium	mg/kg			0.726 U	0.652 U	0.6 U	0.614 U	0.573 U	0.676 U	0.673 U	0.560 U	0.627 U	0.441 U	0.425 U	0.625 U	0.483 U	0.404 U	0.548 U	0.466 U	0.504 U	0.637 U	0.597 U	0.650 U	0.578 U
Vanadium	mg/kg			28	29.7	28.6	31.9	15.3	15.5	18.9	15.7	19.2	28.1	24.7	25.7	24.6	21.6	16.8	20.3	16.1	17.3	21.2	20.9	19.1
Zinc	mg/kg	10000	2480	71.2	79.3	85.2	83.5	73.9	80.6	74.6	222	98.1	73.3	77.6	70.3	80.7	71.6	65.1	83.5	91.9	60	88.7	50.7	74.1
Mercury	mg/kg	2.8	0.73	0.0222	0.02	0.0195	0.0177	0.156	0.0773	0.237	0.242	0.0872	0.0244	0.120	0.0390	0.0248 D,M	0.0809	0.0300	0.0357	0.0302	0.0236	0.0569	0.0418	0.0290
PCBs	<u>0, 0</u>															,								
Aroclor 1016	ug/kg	1000	3200					0.347 U	0.372 U	0.388 U	0.349 U	0.336 U	0.376 U	0.327 U	0.358 U	0.357 U	0.350 U	0.380 U	0.398 U	0.378 U	0.366 U	0.394 U	0.337 U	0.381 U
Aroclor 1221	ug/kg	1000	3200					0.347 U	0.372 U	0.388 U	0.349 U	0.336 U	0.376 U	0.327 U	0.358 U	0.357 U	0.350 U	0.380 U	0.398 U	0.378 U	0.366 U	0.394 U	0.337 U	0.381 U
Aroclor 1232	ug/kg		3200	1		1	1	0.347 U	0.372 U	0.388 U	0.349 U	0.336 U	0.376 U	0.327 U	0.358 U	0.357 U	0.350 U	0.380 U	0.398 U	0.378 U	0.366 U	0.394 U	0.337 U	0.381 U
Aroclor 1242	ug/kg		3200	1		1		0.347 U	0.372 U	0.388 U	0.349 U	0.336 U	0.376 U	0.327 U	0.358 U	0.357 U	0.350 U	0.380 U	0.398 U	0.378 U	0.366 U	0.394 U	0.337 U	0.381 U
Aroclor 1248	ug/kg	1000	3200	1		1	1	0.347 U	0.372 U	0.388 U	0.349 U	0.336 U	0.376 U	0.327 U	0.358 U	0.357 U	0.350 U	0.380 U	0.398 U	0.378 U	0.366 U	0.394 U	0.337 U	0.381 U
Aroclor 1254	ug/kg		3200					0.347 U	0.372 U	0.388 U	0.349 U	0.336 U	0.376 U	0.327 U	0.358 U	0.357 U	0.350 U	0.380 U	0.398 U	0.378 U	0.366 U	0.394 U	0.337 U	0.381 U
Aroclor 1260	ug/kg	1000	3200	1		1	1	0.347 U	0.372 U	0.388 U	0.349 U	0.336 U	0.376 U	0.327 U	0.358 U	0.357 U	0.350 U	0.380 U	0.398 U	0.378 U	0.366 U	0.394 U	0.337 U	0.381 U
Aroclor 1262	ug/kg		3200																					1
Aroclor 1268	ug/kg		3200		1	İ		i		1					İ							1		1

Notes: (1) Units: ug/kg = micrograms/kilogram; mg/kg = milligrams/kilogram (2) New York State Department of Environmental Conservation, Restricted Use Soil Cleanup Objectives, Commercial Use and Protection of Groundwater, Table 375-6.8(b) (3) Standards used for comparison are for Hexavalent Chromium Qualifiers: U = not detected; J = estimated value; UJ = non-detect reported, reporting limit qualified as estimated; D = duplicate results outside QC limits, mav indicate non-homoenous matrix: M = matrix solike outside QC limits,

may indicate non-homogenous matrix; M = matrix spike outside QC limits, matrix bias indicated; R = data rejected during validation Shaded value - exceedance of Restricted Use Soil Cleanup Objective

			Sample ID:	TB-E01-0304	TB-E01-SURFACE	TB-E03-0708	TB-E03-SURFACE	TB-E04-0304	TB-E04-0708	TB-E04-SURFACE	TB-E05-0708	TB-E05-SURFACE	TB-E11-0304	TB-E11-SURFACE	TB-E12-0304	TB-E12-SURFACE	TB-E15-0203	TB-E15-SURFACE	TB-E16-0203	TB-E16-SURFACE	TB-E17-0102	TB-E17-SUFACE	TB-E18-0304	TB-E18-SURFACE	TB-E19-0304
			Date:	01/10/07	01/10/07	01/09/07	01/09/07	01/09/07	01/09/07	01/09/07	01/09/07	01/09/07	01/11/07	01/11/07	01/11/07	01/11/07	01/10/07	01/10/07	01/10/07	01/10/07	01/09/07	01/09/07	01/09/07	01/09/07	01/10/07
			Depth:	3-4'	Surface	7-8'	Surface	3-4'	7-8'	Surface	7-8'	Surface	3-4'	Surface	3-4'	Surface	2-3'	Surface	2-3'	Surface	1-2'	Surface	3-4'	Surface	3-4'
	1	NYSDEC	Values (2)																						
	(1)	Commercial	Protection of																						
Parameter	Units (1)	Use	GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
VOCs																									<u> </u>
1,1,1-Trichloroethane	ug/kg	500000	680	8 UJ	6 UJ	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	7 U	7 U	6600 U	6 UJ	7 U	4 U	6 U	6 U	4 U
1,1,2,2-Tetrachloroethane	ug/kg																								
1,1,2-Trichloroethane	ug/kg				<u> </u>	<u> </u>				<u> </u>		<u> </u>							6600 H	<u> </u>			<u> </u>	<u> </u>	l
1,1,2-Trichlorotrifluoroethane	ug/kg	240000	270	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	7 U	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
1,1-Dichloroethane 1.1-Dichloroethene	ug/kg	240000	270 330			-																			ł
1,1-Dichloroethene 1.2.4-Trichlorobenzene	ug/kg	500000	330	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	7 U	7 U	1800 J	6 U	7 U	4 U	6 U	6 U	6
1,2,4- Inchorobenzene 1.2-Dibromo-3-chloropropane	ug/kg ug/kg			8.0	6.0	60	4 0	50		60	50	80	50	50	50	80	70	70	1900 1	60	70	40	80	60	0
1.2-Dibromomethane (EDB)	ug/kg ug/kg					-																			ł
1,2-Dichlorobenzene	ug/kg	500000	1100	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	150	7 U	20000	6 U	7 U	4 U	6 U	6 U	10
1.2-Dichloroethane	ug/kg ug/kg	30000	20	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	7 U	70	6600 U	6 U	7 U	4 U	6 U	6 U	2 J
1,2-Dichloropropane	ug/kg	30000	20	0.0	00	00	40	50		0.0	50	00	50	3.0	30	80	/0	/ 0	0000 0	00	70	40	00	00	<u></u>
1,2-Dichloropropane	ug/kg ug/kg	280000	2400	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	4 J	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
1,4-Dichlorobenzene	ug/kg	130000	1800	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	19	70	12000	6 U	7 U	4 U	6 U	6 U	1 J
2-Butanone	ug/kg	500000	120	42 U	30 U	28 U	22 U	26 U		28 U	25 U	30 U	25 U	24 U	27 U	42 U	36 U	36 U	33000 U	31 U	36 U	21 U	32 U	29 U	23 U
2-Chloroethyl vinyl ether	ug/kg	500000	120	42 0	50 0	20 0	22.0	20 0		20 0	25 0	50 0	25 0	24 0	27 0	42.0	50 0	50 0	55000 0	510	50 0	210	52.0	25 0	23 0
2-Hexanone	ug/kg																								1
4-Methyl-2-pentanone	ug/kg																								1
Acetone	ug/kg	500000	50	61 U	30 U	28 U	22 U	26 U		28 U	25 U	30 U	19 J	23 J	24 J	42 U	36 U	36 U	33000 U	31 U	36 U	21 U	32 U	29 U	17 J
Benzene	ug/kg	44000	60	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	2 J	5 U	5 U	8 U	7 U	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
Bromodichloromethane	ug/kg	11000	00					50			50		2.7	50	50		, ,	, ,	0000 0						
Bromoform	ug/kg																								
Bromomethane	ug/kg																								1
Carbon disulfide	ug/kg			8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	5 J	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
Carbon tetrachloride	ug/kg	22000	760	8 UI	6 UI	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 0	5 U	8.0	7 U	7 U	6600 U	6 UJ	7 U	4 U	6.0	6 U	4 U
Chlorobenzene	ug/kg	500000	1100	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	12	14	3 J	5 J	75	7 U	470000	6 U	7 U	4 U	6 U	6 U	2 J
Chlorodibromomethane	ug/kg																								
Chloroethane	ug/kg																								
Chloroform	ug/kg	350000	370	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	7 U	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
Chloromethane	ug/kg			17 U	12 U	11 U	9 U	10 U		11 U	10 U	12 U	10 U	10 U	11 U	17 U	14 U	14 U	13000 U	12 U	14 U	8 U	13 U	12 U	9 U
Cis-1,2-Dichloroethene	ug/kg	500000	250	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	7 U	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
Cis-1,3-Dichloropropene	ug/kg																								
Cyclohexane	ug/kg			8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	2 J	5 U	8 U	7 U	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
Dichlorodifluoromethane	ug/kg																								
Ethyl benzene	ug/kg	390000	1000	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	7 U	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
Isopropylbenzene	ug/kg			8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	7 U	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
Methyl acetate	ug/kg			8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	7 U	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
Methyl tert-Butyl Ether	ug/kg	500000	930																						
Methylcyclohexane	ug/kg			8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	2 J	5 U	2 J	7 U	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
Methylene chloride	ug/kg	500000	50	16 UJ	10 UJ	9 UJ	10 UJ	9 UJ		10 U	8 UJ	13 UJ	10 U	7 U	10 U	9 U	11 UJ	9 UJ	6600 U	9 UJ	10 U	7 U	9 U	8 U	6 UJ
Styrene	ug/kg			8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	7 U	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
Tetrachloroethene	ug/kg	150000	1300	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	7 U	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
Toluene	ug/kg	500000	700	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	45	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
Trans-1,2-Dichloroethene	ug/kg	500000	190																						
Trans-1,3-Dichloropropene	ug/kg																								
Trichloroethene	ug/kg	200000	470	8 U	6 U	6 U	4 U	5 U		6 U	5 U	6 U	5 U	5 U	5 U	8 U	7 U	7 U	6600 U	6 U	7 U	4 U	6 U	6 U	4 U
Trichlorofluoromethane	ug/kg																								
Vinyl acetate	ug/kg																								
Vinyl chloride	ug/kg	13000	20	17 U	12 U	11 U	9 U	10 U		11 U	10 U	12 U	10 U	10 U	11 U	17 U	14 U	14 U	13000 U	12 U	14 U	8 U	13 U	12 U	9 U
Xvlenes, Total	ug/kg	500000	1600	25 U	18 U	17 U	14 U	16 U		16 U	15 U	18 U	15 U	14 U	16 U	26 U	10 J	21 U	3900 J	18 U	21 U	13 U	19 U	17 U	14 U

				Sample ID:	TB-E01-0304	TB-E01-SURFACE	TB-E03-0708	TB-E03-SURFACE	TB-E04-0304	TB-E04-0708	TB-E04-SURFACE	TB-E05-0708	TB-E05-SURFACE	TB-E11-0304	TB-E11-SURFACE	TB-E12-0304	TB-E12-SURFACE	TB-E15-0203	TB-E15-SURFACE	TB-E16-0203	TB-E16-SURFACE	TB-E17-0102	TB-E17-SUFACE	TB-E18-0304	TB-E18-SURFACE	TB-E19-0304
				Depth:	3-4'	Surface	7-8'	Surface	3-4'	7-8'	Surface	7-8'	Surface	3-4'	Surface	3-4'	Surface	2-3'	Surface	2-3'	Surface	1-2'	Surface	3-4'	Surface	3-4'
bar bar <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>																										1
MM MM M	Parameter	Units (1)			Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
Altername Altername <t< td=""><td></td><td>onics</td><td>030</td><td></td><td>nesure quui</td><td>itesuit Quui</td><td>nesur Quar</td><td>nesure Quar</td><td>nesure Quur</td><td>nesure Quur</td><td>nesure quui</td><td>nesur qua</td><td>nesure quar</td><td>nesure Quar</td><td>nesure Quar</td><td>Nesure Quur</td><td>Nesure Quar</td><td>nesure quui</td><td>nesure quar</td><td>Nesure Quar</td><td>nesure Quu</td><td>nesure Quu</td><td>nesur quu</td><td>Nesure Quar</td><td>Result Quar</td><td>nesure Quur</td></t<>		onics	030		nesure quui	itesuit Quui	nesur Quar	nesure Quar	nesure Quur	nesure Quur	nesure quui	nesur qua	nesure quar	nesure Quar	nesure Quar	Nesure Quur	Nesure Quar	nesure quui	nesure quar	Nesure Quar	nesure Quu	nesure Quu	nesur quu	Nesure Quar	Result Quar	nesure Quur
Cale Name Cale Name <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																										
Alt Alt <td>,</td> <td></td> <td>t</td>	,																									t
	,																									
Alternation Alternation																										1
																										L
Character Control Contro Control Control <	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1400 U	5200 U	1000 U	830 U		970 U	980 U	960 U	880 U	940 U	940 U	980 U	990 U	10000 U	22000 U	19000 U	9700 U	9600 U	4400 U	5000 U	9700 U	17000 U
					570 U	2100 U	410 U	340 U		400 U	400 U	390 U	360 U	390 U	390 U	400 U	410 U	260 J	8900 U	7700 U	4000 U	4000 U	1800 U	2000 U	4000 U	7200 U
CAL CAL CAL CAL CAL					570 U	2100 U	410 U	340 U		400 U	400 U	390 U	360 U	390 U	390 U	400 U	410 U	4300 U	8900 U	7700 U	4000 U	4000 U	1800 U	2000 U	4000 U	7200 U
Del bel bel bel bel bel bel bel bel bel b																										
Description Cond ond Cond	,				570 0	2100 0	410 0	340 U		400 0	400 U	390 0	360 U	390 0	390 0	400 U	240 J	60000	3700 J	7700 0	4000 0	4000 0	1800 U	2000 0	4000 0	7200 0
Schurtz Schurtz <t< td=""><td></td><td></td><td></td><td></td><td>570 U</td><td>2100 U</td><td>410 U</td><td>340 U</td><td></td><td>400 U</td><td>400 U</td><td>110 J</td><td>360 U</td><td>390 U</td><td>390 U</td><td>400 U</td><td>190 J</td><td>90000</td><td>2400 J</td><td>7700 U</td><td>4000 U</td><td>4000 U</td><td>1800 U</td><td>2000 U</td><td>4000 U</td><td>7200 U</td></t<>					570 U	2100 U	410 U	340 U		400 U	400 U	110 J	360 U	390 U	390 U	400 U	190 J	90000	2400 J	7700 U	4000 U	4000 U	1800 U	2000 U	4000 U	7200 U
Display ON N ON O																										
Sector Sector																										
Share Share <th< td=""><td></td><td></td><td>500000</td><td>330</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			500000	330																						
Alpha Alpha Baba aba Baba Ba			500000	550																						
bit bit <td></td> <td>ug/kg</td> <td></td>		ug/kg																								
black black <td>,</td> <td></td> <td></td> <td> </td> <td>2800 U</td> <td>10000 U</td> <td>2000 U</td> <td>1700 U</td> <td></td> <td>1900 U</td> <td>3100</td> <td>1900 U</td> <td>1800 U</td> <td>1900 U</td> <td>1900 U</td> <td>2000 U</td> <td>2000 U</td> <td>21000 U</td> <td>43000 U</td> <td>38000 U</td> <td>19000 U</td> <td>19000 U</td> <td>8700 U</td> <td>10000 U</td> <td>19000 U</td> <td>35000 U</td>	,				2800 U	10000 U	2000 U	1700 U		1900 U	3100	1900 U	1800 U	1900 U	1900 U	2000 U	2000 U	21000 U	43000 U	38000 U	19000 U	19000 U	8700 U	10000 U	19000 U	35000 U
Decomposing Dia ia Dia					2800 U	10000 U	2000 U	1700 U		1900 U	2000 U	1900 U	1800 U	1900 U	1900 U	2000 U	2000 U	21000 U	43000 U	38000 U	19000 U	19000 U	8700 U	10000 U	19000 U	35000 U
Scheening No. o. No. N																										
Characterize Characterize Characterize<		ug/kg																								
Characterization Control Contro Control Control																										
bith bith <th< td=""><td></td><td></td><td></td><td></td><td>570 0</td><td>2100 0</td><td>410 U</td><td>540 U</td><td></td><td>400 U</td><td>400 U</td><td>290 U</td><td>0 002</td><td>230.0</td><td>220 U</td><td>400 U</td><td>410 U</td><td>4500 0</td><td>0 0069</td><td>7700 0</td><td>4000 0</td><td>4000 0</td><td>1900 0</td><td>2000 0</td><td>4000 0</td><td>7200 0</td></th<>					570 0	2100 0	410 U	540 U		400 U	400 U	290 U	0 002	230.0	220 U	400 U	410 U	4500 0	0 0069	7700 0	4000 0	4000 0	1900 0	2000 0	4000 0	7200 0
Altern Altern<			500000	330	570 U	2100 U	410 U	340 U		400 U	400 U	390 U	360 U	390 U	390 U	400 U	410 U	4300 U	8900 U	7700 U	4000 U	4000 U	1800 U	2000 U	4000 U	7200 U
charden <																										
Some Some <t< td=""><td></td><td></td><td>E00000</td><td>08000</td><td>E70 II</td><td>2100 11</td><td>410 11</td><td>240.11</td><td></td><td>400.11</td><td>400.11</td><td>200 11</td><td>260.11</td><td>200.11</td><td>200 11</td><td>400.11</td><td>410.11</td><td>4200 11</td><td>8000 11</td><td>070 1</td><td>4000 11</td><td>4000 11</td><td>00.1</td><td>120 1</td><td>220 1</td><td>7200 11</td></t<>			E00000	08000	E70 II	2100 11	410 11	240.11		400.11	400.11	200 11	260.11	200.11	200 11	400.11	410.11	4200 11	8000 11	070 1	4000 11	4000 11	00.1	120 1	220 1	7200 11
state state <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																										
Calabor <		0, 0																								
Image Image <th< td=""><td></td><td>0.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		0.0																								
mark mark <t< td=""><td></td><td></td><td>500000</td><td>1000000</td><td>570 U</td><td>2100 U</td><td>410 U</td><td>340 U</td><td></td><td>400 U</td><td>59 J</td><td>390 U</td><td>360 U</td><td>390 U</td><td>390 U</td><td>400 U</td><td>38 J</td><td>4300 U</td><td>8900 U</td><td>3500 J</td><td>4000 U</td><td>180 J</td><td>330 J</td><td>150 J</td><td>850 J</td><td>7200 U</td></t<>			500000	1000000	570 U	2100 U	410 U	340 U		400 U	59 J	390 U	360 U	390 U	390 U	400 U	38 J	4300 U	8900 U	3500 J	4000 U	180 J	330 J	150 J	850 J	7200 U
black black <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																										
Import Import<																										
Incombinements Integra																										
Image Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																										
second Amorthane wire 5000 100																										
imple imple <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																										
Biner Only Sinty Sinty <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																										
mic) channel mice mick mic					F70 II	2100 11	410.11	240.11		400.11	400.11	200 11	260.11	200.11	200.11	400.11	170	4200 11	8000 11	7700 11	4000 11	4000 11	1800 11	2000 11	4000 11	7200 11
Bit2-control/printmai ope C C C C					570 0	2100 0	410 0	340 U		400 0	400 0	390 0	360 0	390 0	390 0	400 0	170 J	4300 0	8900 0	7700 0	4000 0	4000 0	1800 0	2000 0	4000 0	7200 0
Bardy entry and participant with a set of partipant with a set of participant with a set of partici																										
Capacitam up/s S70 U S		ug/kg																								
Chrones Vert Vert< ert Vert Vert																										
Chyse Syste Syste <th< td=""><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																										
On-burdy phthalate yite I S70 S700	-	0: 0	56000	1000																						
Description u/kg 560 10000 570 1200 4100 3401 3401 3401	Di-n-butyl phthalate	ug/kg			570 U	2100 U	410 U	340 U		400 U	400 U	390 U	360 U	390 U	390 U	400 U	410 U	4300 U	8900 U	7700 U	4000 U	4000 U	1800 U	2000 U	4000 U	7200 U
besch style stole stole <tt< td=""><td></td><td>0, 0</td><td>560</td><td>1000000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tt<>		0, 0	560	1000000																						
Diephylphalbet ug/kg - S700 Z010 4100 340 u 400 u 330 u 330 u 330 u 330 u 330 u 330 u 430 u 430 u 830 u 7700 u 400 u 400 u 400 u 7700 u Buoment ug/kg 50000 30000 130 u 430 u 330 u 330 u 330 u 430 u 430 u 430 u 7700 u 400 u 400 u 430 u 7700 u 400 u 400 u 400 u 770 u 400 u 400 u 400 u 770 u 7700 u 400 u 400 u 770 u																										
Dimetry thylphalate Ug/s Somo Frame (1) Somo S			550000	_10000																						
Function u/k 500000 38000 570 U 2100 U 410 U 340 U 400 U 390 U 390 U 390 U 400 U <	Dimethyl phthalate	ug/kg			570 U	2100 U	410 U	340 U		400 U	400 U	390 U	360 U	390 U	390 U	400 U	410 U	4300 U	8900 U	7700 U	4000 U	4000 U	1800 U	2000 U	4000 U	7200 U
hexachlorobarcence ug/k 6000 3200 570 U 210 U 410 U 340 U 460 U 380 U 380 U 380 U 480 U 480 U 4800 U 4000																										
headploreduration ug/g 1 570 2100 4101 3400 4000 3900 4000 4000 40000 40																										
headhoredpendation ug/k i.e. i				5200					ł																	
Indenci (1,2,3-cd) pyrene ug/kg 5600 8200 74 J 200 J 410 U 340 U 390 U 390 U 390 U 400 U 69 J 4300 U 1400 J 4800 J <td>Hexachlorocyclopentadiene</td> <td>ug/kg</td> <td></td>	Hexachlorocyclopentadiene	ug/kg																								
lsophorme ug/kg Image: Constraint of the co			F.COC	0000	74 .	200 -	440	240.11	Ţ	400	440 -	300.11	260.11	200.11	200.11	400	<u> </u>	4200	1400 :	4000 :	4000	220 1	050 -	1200 :	1500 :	F
N-Nitrosodin-propylamine ug/kg			5600	8200	74 J	200 J	410 U	340 U		400 U	110 J	390 U	360 U	390 U	390 U	400 U	69.1	4300 U	1400 J	4800 J	4000 U	320 J	850 J	1200 J	1500 J	570 J
N-Nitrosodimethylamine ug/kg (ug/kg) (L								┌──── ┨
Naphthalene ug/kg 50000 1200 570 U 740 J 410 U 340 U 400 U 390 U 390 U 390 U 390 U 390 U 390 U 46000 1100 J 400 U 39 J 200 J 160 J 520 J Nitrobenzene ug/kg 69000 26 570 U 980 J 410 U 340 U 400 U 390 U 390 U 390 U 400 U 400 U 400 U 390 U 400 U 400 U 400 U 720 U 400 U 720 U 400 U 720 U 400 U 720 U	N-Nitrosodimethylamine																									
Nitrobenzene ug/kg 6900 26 570 U 980 J 410 U 340 U 400 U 390 U 390 U 390 U 400 U																										
Pentachlorophenol ug/kg 6700 800 Image: Constraint of the constra																										
Phenanthren ug/kg 50000 100000 120 J 410 J 410 U 340 U 400 U 240 J 390 U 390 U 390 U 100 4300 U 730 J 2100 620 J 570 J 1400 J 360 J 720 U Phenol ug/kg 50000 330 570 U 2100 U 410 U 340 U 400 U 390 U 390 U 390 U 400 U 720 U 400 U 400 U 400 U 720 U 400 U 100 U 400 U 400 U 720 U 400 U 100 U 400 U 400 U 720 U 400 U 100 U 400 U 400 U 100 U 400 U 400 U 100 U 400 U 400 U 720 U <					570 0	- 900 J	410 U	340 U		400 0	400 U	330 U	500 0	390 U	350 0	400 U	410 U	4500 0	0.0060	7700 0	4000 0	4000 0	1000 0	2000 0	4000 0	7200 0
Phenol ug/kg 50000 330 570 U 2100 410 340 U 400 400 400 400 400 390 360 390 390 400 400 400 400 400 400 400 400 400 4	· · · · · · · · · · · ·				120 J	410 J	410 U	340 U		400 U	240 J	390 U	360 U	390 U	390 U	400 U	1100	4300 U	7300 J	21000	620 J	570 J	1400 J	1600 J	3600 J	7200 U
Pyrene lug/kg 50000 100000 130 470 410 340 400 270 390 24 390 390 400 240 390 400 540 540 540 540 540 610 1400 190 360 360 720 0		ug/kg	500000																	7700 U		4000 U				7200 U
	Pyrene	ug/kg	500000	1000000	130 J	470 J	410 U	340 U		400 U	270 J	390 U	24 J	390 U	390 U	400 U	240 J	4300 U	5400 J	15000	460 J	610 J	1400 J	1900 J	3600 J	7200 U

			Sample ID:	TB-E01-0304	TB-E01-SURFACE	TB-E03-0708	TB-E03-SURFACE	TB-E04-0304	TB-E04-0708	TB-E04-SURFACE	TB-E05-0708	TB-E05-SURFACE	TB-E11-0304	TB-E11-SURFACE	TB-E12-0304	TB-E12-SURFACE	TB-E15-0203	TB-E15-SURFACE	TB-E16-0203	TB-E16-SURFACE	TB-E17-0102	TB-E17-SUFACE	TB-E18-0304	TB-E18-SURFACE	TB-E19-0304
			Date:	01/10/07	01/10/07	01/09/07	01/09/07	01/09/07	01/09/07	01/09/07	01/09/07	01/09/07	01/11/07	01/11/07	01/11/07	01/11/07	01/10/07	01/10/07	01/10/07	01/10/07	01/09/07	01/09/07	01/09/07	01/09/07	01/10/07
			Depth:	3-4'	Surface	7-8'	Surface	3-4'	7-8'	Surface	7-8'	Surface	3-4'	Surface	3-4'	Surface	2-3'	Surface	2-3'	Surface	1-2'	Surface	3-4'	Surface	3-4'
		NYSDE	Values ⁽²⁾																						
		Commercial																							
Parameter	Units (1)	Use	GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
Metals																									
Cyanide	mg/kg	27	40	1.6 U	1.2 U	1.1 U	0.73 U		1.1 U	1 UJ	1.1 U	0.88 U	1.1 UJ	1 UJ	1.1 UJ	1.1 UJ	0.96 U	1.7	0.82 U	0.86 U	0.78 UJ	0.96 UJ	0.95 UJ	1 UJ	0.93 U
Aluminum	mg/kg			16900	8490	11200	3110		13400	4350 J	13300	3180	11400 J	11500 J	10400 J	776 J	5360	9250	8340	9320	3800 J	7340 J	3040 J	8330 J	4080
Antimony	mg/kg			24.8 R	18.8 R	18.7 UJ	16.2 UJ		19 UJ	17.8 UJ	18.7 UJ	16.3 UJ	18.3 UJ	18 UJ	18 UJ	18.3 UJ	18.7 UJ	119 J	19.3 J	42.7 J	18.5 UJ	17.9 UJ	18.4 UJ	18.4 UJ	305 J
Arsenic	mg/kg	16	16	18.9 J	14 J	5.4	2.6		9.8	3.7	4.2	2.2 U	7.4 J	6.7 J	10.2 J	24.4 J	53.1	234	82.5	43.6	50.1	7.4	20.6	26.4	20.2
Barium	mg/kg	400	820	174 J	90.3 J	63.8	16.3		119	18.5	69.1	16.5	72.3 J	88.2 J	54 J	43.8 J	466 J	248 J	173	189	27.8	82.1	101	164	102 J
Beryllium	mg/kg	590	47	0.82	0.58	0.53	0.22 U		0.65	0.24 U	0.59	0.22 U	0.57	0.58	0.55	0.42	0.44	1.2	0.97	1.5	0.41	1.2	0.4	0.79	0.32
Cadmium	mg/kg	9.3	7.5	6.2 J	0.9 J	0.25 U	0.22 U		0.25 U	0.24 U	0.25 U	0.36	0.67 J	0.54 J	0.6 J	0.37 J	2.5	5.9	2.2	0.72	0.49	0.49	0.25 U	0.9	1.2
Calcium	mg/kg			6240	23500	43700	21500		39500	52100	38300	9800	4090 J	5090 J	2160 J	1970 J	2370	47500	9000	40700	95900	150000	3120	37000	60300
Chromium ⁽³⁾	mg/kg	1500		19.8 J	13 J	16.2	14.1		18.9	8	18.6	6.3	16.5	16.4	14.7	5.8	335	482	40.1	153	6.4	533	5.3	119	46.9
Cobalt	mg/kg			14.7 J	10.9 J	12.1	4		12.2	3.4	8.1	7.2	11.4	9	11.7	1.3	3.9	10	9.4	4.3	3.8	8.1	3.8	6.9	5.6
Copper	mg/kg	270	1720	288 J	117 J	25.5	9.5		32.4	66	24.1	9.9	26.4 J	24.5 J	27 J	18.2 J	312	504	146	110	9.5	56.9	124	132	200
Iron	mg/kg			30500 J	27900 J	21100	7890		29300	8540	22300	7950	25200	23500	27700	13100	34200	81900	36500	30700	7460	263000	17100	29100	22000
Lead	mg/kg	1000	450	171 J	84.3 J	12.4	7.1		15.2	12.4	11.5	6.8	13.9	14.2	16.8	44	2100	2830	189	186	47.9	260	74.6	162	199
Magnesium	mg/kg			2730	7730	13000	4110		13200	20000 J	13000	2730	4570 J	3810 J	3890 J	348 J	655	5400	1710	4970	5460 J	9800 J	537 J	14400 J	17400
Manganese	mg/kg	10000	2000	297	274	399	160		466	196	313	146	220 J	220 J	167 J	23.5 J	63.5	1800	510	933	235	12300	115	508	354
Nickel	mg/kg	310	130	17 J	24.3 J	28.1	18.2		35.1	15.2	27.6	9.8	31.7	23.7	30.6	4.5	15.9	87.9	26.2	15.1	10.7	118	9.9	23.1	25.8
Potassium	mg/kg			1520 J	1420 J	1660 J	534 J		1870 J	1090	1960 J	533 J	1100 J	909 J	963 J	607 J	516 J	791 J	709 J	1070 J	899	762	330	1060	677 J
Selenium	mg/kg	1500	4	6.6 U	5 U	5 U	4.3 U		5.1 U	4.7 U	5 U	4.3 U	4.9 UJ	4.8 UJ	4.8 UJ	4.9 UJ	5 U	5.2 U	4.8 U	4.8 U	4.9 U	4.8 U	4.9 U	4.9 U	4.2 U
Silver	mg/kg	1500	8.3	0.88	0.63 U	0.62 U	0.54 U		0.63 U	0.59 U	0.62 U	0.54 U	0.61 U	0.6 U	0.6 U	0.61 U	0.62 U	0.65 U	0.36 U	0.36 U	0.62 U	0.6 U	1.3	0.61 U	0.52 U
Sodium	mg/kg			825 J	347 J	537	151 U		435	373	1130	200	225	249	168 U	435	175 U	412	263	220	202	198	180	196	205
Thallium	mg/kg			9.9 UJ	7.5 UJ	7.5 U	6.5 U		7.6 U	7.1 U	7.5 U	6.5 U	7.3 UJ	7.2 UJ	7.2 UJ	7.3 UJ	7.5 U	7.9 U	7.2 U	7.2 U	7.4 U	7.1 U	7.4 U	7.3 U	6.3 U
Vanadium	mg/kg			33.4 J	19 J	19.3	6.3		22.8	11.2	20.5	4.7	20.5 J	21.1 J	20.5 J	8 J	23.5	55.3	20.2	50.3	9.1	241	11.1	21.6	13.4
Zinc	mg/kg	10000	2480	1090 J	300 J	60.6	33.9		81.3	82.1	70.6	36.1	67.3	64	60	60.7	626 J	3950 J	1800	290	104	135	83.7	260	989 J
Mercury	mg/kg	2.8	0.73	0.11	0.31	0.02	0.01 U		0.03	0.04	0.02 U	0.01 U	0.02	0.03	0.03	0.36	3.3	14.3	2.9	12.2	0.91	0.24	0.47	0.84	5.8
PCBs																									
Aroclor 1016	ug/kg	1000	3200																						
Aroclor 1221	ug/kg	1000	3200																						
Aroclor 1232	ug/kg	1000	3200																						
Aroclor 1242	ug/kg	1000	3200		22 U																				
Aroclor 1248	ug/kg	1000	3200		22 U																				
Aroclor 1254	ug/kg	1000	3200		64																				
Aroclor 1260	ug/kg	1000	3200		22 U																				
Aroclor 1262	ug/kg	1000	3200																						
Aroclor 1268	ug/kg	1000	3200																						

Notes:

Notes:
(1) Units: ug/kg = micrograms/kilogram; mg/kg = milligrams/kilogram
(2) New York State Department of Environmental Conservation, Restricted Use Soil Cleanup Objectives, Commercial Use and Protection of Groundwater, Table 375-6.8(b)
(3) Standards used for comparison are for Hexavalent Chromium Qualifiers: U = not detected; J = estimated value; UJ = non-detect reported, reporting limit qualified as estimated; D = duplicate results outside QC limits, may indicate non-homogenous matrix; M = matrix spike outside QC limits, matrix bias indicated; R = data rejected during validation
Shaded value - exceedance of Restricted Use Soil Cleanup Objective

				70 540 61054 05	70 504 0004	70 504 61054 65	70 500 0004	70 500 00054.05	70 500 0405	70 500 61054 65	70 534 0303	70 504 6110 54 05	70 506 0506		70 500 0000		70 500 0000		70 524 0202		221 504 0204	DD1 505 0004	551 507 0004		
				TB-E19-SURFACE	TB-E21-0304	TB-E21-SURFACE	TB-E22-0304	TB-E22-SURFACE	TB-E23-0405	TB-E23-SURFACE	TB-E24-0203	TB-E24-SURFACE	TB-E26-0506	TB-E26-SURFACE	TB-E29-0203	TB-E29-SURFACE	TB-E30-0203	TB-E30-SURFACE	TB-E31-0203	TB-E31-SURFACE	PDI-E04-0204	PDI-E06-0304	PDI-E07-0204	PDI-E12-0204	PDI-E13-0608
			Date: Depth:	01/10/07 Surface	01/11/07 3-4'	01/11/07 Surface	01/10/07 3-4'	01/10/07 Surface	01/09/07 4-5'	01/09/07 Surface	01/10/07 2-3'	01/10/07 Surface	01/10/07 5-6'	01/10/07 Surface	01/09/07 2-3'	01/09/07 Surface	01/09/07 2-3'	01/09/07 Surface	01/10/07 2-3'	01/10/07 Surface	09/16/09 2-4'	09/16/09 3-4'	09/16/09 2-4'	09/17/09 2-4'	09/17/09 6-8'
		NYSDEC Va	(2)	Suitace	5-4	Surface	5=4	Surrace	4-5	Surface	2-5	Surface	3-0	Surface	2-3	Surface	2-5	Surrace	2=5	Surface	2=4	5=4	2-4	2=4	0-0
			otection of																						
Parameter	Units (1)	Use	GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual																
VOCs	0			nesan daa	nesure quar	nessit qua	nesure quar	nesure quu	nesure quar	nesure quar	nesure qua	nesure quu	nesure quar	nesure quar	nesure quar	nesure quar	nesure quar	nesure quui	nesure quar	nesure qua	nesure qua	duar	nesure quar	nesure quar	incount dau
1,1,1-Trichloroethane	ug/kg	500000	680	5 U	5 UJ	5 U	5 U	6 UJ	4 UJ	5 U	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 UJ	5 U	5.5 U	4.6 U	6.2 U	6.3 U	52 U
1,1,2,2-Tetrachloroethane	ug/kg																				5.5 U	4.6 U	6.2 U	6.3 U	52 U
1,1,2-Trichloroethane	ug/kg																				5.5 U	4.6 U	6.2 U	6.3 U	52 U
1,1,2-Trichlorotrifluoroethane	ug/kg			5 U	5 UJ	5 U	5 U	6 UJ	4 UJ	5 U	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 U	5 U	5.5 U	4.6 U	6.2 U	6.3 U	52 U
1,1-Dichloroethane	ug/kg		270						_												5.5 U	4.6 U	6.2 U	6.3 U	52 U
1,1-Dichloroethene	ug/kg	500000	330		2.1			<u> </u>	1000									<u> </u>		400	5.5 U	4.6 U	6.2 U	6.3 U	52 U
1,2,4-Trichlorobenzene	ug/kg			5 U	2 J	47	5 U	6 UJ	1000	11	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 U	120	5.5 U	4.6 U	6.2 U	6.3 U	52 U
1,2-Dibromo-3-chloropropane 1,2-Dibromomethane (EDB)	ug/kg ug/kg																				5.5 U 5.5 U	4.6 U 4.6 U	6.2 U 6.2 U	6.3 U 6.3 U	52 U 52 U
1,2-Dichlorobenzene	ug/kg	500000	1100	5 U	1800	5 U	4 J	7700	5300	28	7 U	5 U	5 U	5 U	6 U	5 U	12	9600	8 U	٩	5.5 U	2.9 J	6.2 U	6.3 U	33 J
1,2-Dichloroethane	ug/kg	30000	20	5 U	5 UJ	5 U	4 J 5 U	6 UJ	4 UJ	28 5 U	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 U	5 U	5.5 U	2.9 J 4.6 U	6.2 U	6.3 U	52 U
1.2-Dichloropropane	ug/kg	50000	20	50	5.01			0.03	+ 01		, 0		50	50				0.03			5.5 U	4.6 U	6.2 U	6.3 U	52 U
1,3-Dichlorobenzene	ug/kg	280000	2400	5 U	740	5 U	5 U	6 UJ	310 J	5 U	7 U	5 U	5 U	5 U	6 U	5 U	8 U	250 J	8 U	5 U	5.5 U	4.6 U	6.2 U	6.3 U	52 U
1,4-Dichlorobenzene	ug/kg	130000	1800	5 U	360 J	5 U	5 U	2900	1900	6	7 U	5 U	5 U	5 U	6 U	5 U	3 J	2600	8 U	2 J	5.5 U	4.3 J	6.2 U	6.3 U	52 U
2-Butanone	ug/kg	500000	120	24 U	26 UJ	24 U	26 U	30 UJ	50 J	27 U	34 U	27 U	25 U	24 U	29 U	26 U	39 U	30 UJ	38 U	26 U	12 J	23 U	18 J	17 J	260 U
2-Chloroethyl vinyl ether	ug/kg																								
2-Hexanone	ug/kg																				28 U	23 U	31 U	32 U	260 UJ
4-Methyl-2-pentanone	ug/kg																				28 U	23 U	31 U	32 U	260 U
Acetone	ug/kg		50	24 U	26 UJ	24 U	30	30 UJ	14 J	27 U	34 U	27 U	25 U	24 U	29 U	26 U	22 J	14 J	38 U	26 U	62	30	93	76	260 U
Benzene	ug/kg	44000	60	5 U	2 J	5 U	5 U	4 J	3 J	3 J	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 U	5 U	5.5 U	8.3	6.2 U	40	55
Bromodichloromethane	ug/kg																				5.5 U	4.6 U	6.2 U	6.3 U	52 U
Bromoform Bromomethane	ug/kg ug/kg																				5.5 UJ 5.5 U	4.6 UJ 4.6 U	6.2 UJ 6.2 U	6.3 U 6.3 U	52 U 52 U
Carbon disulfide	ug/kg			5 U	5 UJ	5 U	5 U	6 UJ	4 UJ	5 U	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 U	5 U	5.5 U	4.6 U	6.2 U	6.3 U	52 U
Carbon tetrachloride	ug/kg	22000	760	5 U	5 UJ	5 U	5 U	6 UJ	4 UJ	5 U	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 UJ	5 U	5.5 U	4.6 U	6.2 U	6.3 U	52 U
Chlorobenzene	ug/kg		1100	5 U	1100	12	2 J	48000	2400	12	7 U	5 U	5 U	5 U	6 U	5 U	15	560 J	18	2 J	3.6 U	1200	3.1 U	23	52 U
Chlorodibromomethane	ug/kg	500000	1100		1100			10000	2100		, ,	50		50		50	15	500 5	10		5.5 U	4.6 U	6.2 U	6.3 U	52 U
Chloroethane	ug/kg																				5.5 U	4.6 U	6.2 U	6.3 U	52 U
Chloroform	ug/kg	350000	370	5 U	5 UJ	5 U	5 U	6 UJ	4 UJ	5 U	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 U	5 U	5.5 U	4.6 U	6.2 U	6.3 U	52 U
Chloromethane	ug/kg			10 U	10 UJ	10 U	10 U	12 UJ	9 UJ	11 U	14 U	11 U	10 U	9 U	12 U	10 U	16 U	12 UJ	15 U	10 U	5.5 U	4.6 U	6.2 U	6.3 U	52 U
Cis-1,2-Dichloroethene	ug/kg	500000	250	5 U	5 UJ	5 U	5 U	6 UJ	4 UJ	5 U	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 U	5 U	5.5 U	4.6 U	6.2 U	6.3 U	52 U
Cis-1,3-Dichloropropene	ug/kg																				5.5 U	4.6 U	6.2 U	6.3 U	52 U
Cyclohexane	ug/kg			5 U	5 UJ	5 U	5 U	6 UJ	2 J	3 J	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 U	5 U	5.5 U	4.6 U	6.2 U	6.3 U	52 U
Dichlorodifluoromethane	ug/kg	200000	1000					2500		2.1	7.11			F 11	<u> </u>			<u> </u>			5.5 U	4.6 U	6.2 U	6.3 U	52 U
Ethyl benzene	ug/kg	390000	1000	5 U 5 U	5 UJ 5 UJ	5 U 5 U	5 U 5 U	2500 7 J	1 J 4 UJ	3 J 5 U	7 U 7 U	5 U 5 U	5 U 5 U	5 U 5 U	6 U 6 U	5 U 5 U	8 U 8 U	6 UJ 6 UJ	8 U 8 U	5 U 5 U	5.5 U 5.5 U	4.6 U 4.6 U	6.2 U 6.2 U	6.3 U 6.3 U	52 U 52 U
Isopropylbenzene Methyl acetate	ug/kg ug/kg	├		5 U 5 U	5 UJ 5 UJ	5 U 5 U	5 U 5 U	6 UJ	4 UJ 4 UJ	5 U 5 U	7 U	5 U 5 U	5 U 5 U	5 U 5 U	6 U	5 U 5 U	8 U 8 U	6 UJ	8 U 8 U	5 U 5 U	5.5 U 5.5 U	4.6 U 4.6 U	6.2 U 6.2 U	6.3 U 6.3 U	52 U 52 U
Methyl tert-Butyl Ether	ug/kg	500000	930	50	3 01	30	50	0.01	4 03	50	70	50	50	30	00	50	80	0.01	80	50	5.5 U	4.6 U	6.2 U	6.3 U	52 U
Methylcyclohexane	ug/kg	500000	550	5 U	5 UJ	5 U	5 U	6 UJ	2	3.1	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 U	5 U	5.5 U	4.6 U	6.2 U	6.3 U	52 U
Methylene chloride	ug/kg	500000	50	7 UJ	8 UJ	8 U	7 UJ	12 UJ	8 UJ	9 U	10 UJ	7 UJ	9 UJ	8 UJ	8 U	8 U	12 U	10 UJ	10 UJ	7 UJ	5.5 U	4.6 U	6.2 U	1.7 U	52 U
Styrene	ug/kg			5 U	5 UJ	5 U	5 U	2000	4 UJ	2 J	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 U	5 U	5.5 U	4.6 U	6.2 U	6.3 U	52 U
Tetrachloroethene	ug/kg	150000	1300	5 U	5 UJ	5 U	5 U	6 UJ	4 UJ	5 U	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 U	5 U	5.5 U	4.6 U	6.2 U	6.3 U	52 U
Toluene	ug/kg	500000	700	5 U	5 UJ	5 U	5 U	11 J	13 J	8	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 U	5 U	5.5 U	4.6 U	6.2 U	6.3 U	68
Trans-1,2-Dichloroethene	ug/kg	500000	190																		5.5 U	4.6 U	6.2 U	6.3 U	52 U
Trans-1,3-Dichloropropene	ug/kg						ļ													ļ	5.5 U	4.6 U	6.2 U	6.3 U	52 U
Trichloroethene	ug/kg	200000	470	5 U	5 UJ	5 U	5 U	6 UJ	4 UJ	5 U	7 U	5 U	5 U	5 U	6 U	5 U	8 U	6 UJ	8 U	5 U	5.5 U	4.6 U	6.2 U	6.3 U	52 U
Trichlorofluoromethane	ug/kg																				5.5 U	4.6 U	6.2 U	6.3 U	52 U
Vinyl acetate	ug/kg	12000	20	10.11	10.11	10.11	10.11	42.111	0.111	44.11		44.11	10.11	0.11	12.11	10.11	16.11	42.111	45.12	10.11	44.11	0.4.11	12.11	12.11	100.11
Vinyl chloride	ug/kg		20	10 U	10 UJ	10 U	10 U	12 UJ	9 UJ	11 U	14 U	11 U	10 U	9 U	12 U	10 U	16 U	12 UJ	15 U	10 U	11 U	9.1 U	12 U	13 U	100 U
Xylenes, Total	ug/kg	500000	1600	14 U	16 UJ	15 U	16 U	16000	7 J	17	21 U	16 U	15 U	14 U	17 U	16 U	23 U	18 UJ	23 U	15 U	11 U	9.1 U	12 U	13 U	100 U

						[
					TB-E21-0304	TB-E21-SURFACE	TB-E22-0304	TB-E22-SURFACE	TB-E23-0405	TB-E23-SURFACE		TB-E24-SURFACE	TB-E26-0506	TB-E26-SURFACE	TB-E29-0203	TB-E29-SURFACE	TB-E30-0203	TB-E30-SURFACE	TB-E31-0203	TB-E31-SURFACE	PDI-E04-0204	PDI-E06-0304	PDI-E07-0204	PDI-E12-0204	PDI-E13-0608
			Date: Depth:	01/10/07 Surface	01/11/07 3-4'	01/11/07 Surface	01/10/07 3-4'	01/10/07 Surface	01/09/07 4-5'	01/09/07 Surface	01/10/07 2-3'	01/10/07 Surface	01/10/07 5-6'	01/10/07 Surface	01/09/07 2-3'	01/09/07 Surface	01/09/07 2-3'	01/09/07 Surface	01/10/07 2-3'	01/10/07 Surface	09/16/09 2-4'	09/16/09 3-4'	09/16/09 2-4'	09/17/09 2-4'	09/17/09 6-8'
		NYSDE	C Values (2)																						
	(1)	Commercial	Protection of																						
Parameter	Units (1)	Use	GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qua	Result Qual	Result Qual	Result Qual	Result Qual
SVOCs 1.2.4-Trichlorobenzene	ug/kg		1																						
1,2-Dichlorobenzene	ug/kg	500000	1100																						
1,3-Dichlorobenzene	ug/kg		2400																						
1,4-Dichlorobenzene	ug/kg	130000	1800																						
2,2'-Dichlorodiisopropylether 2,2'-Oxybis(1-Chloropropane)	ug/kg ug/kg		1																		250 UJ	210 UJ	220 UJ	230 U	1100 UJ
2,4,5-Trichloropheno	ug/kg			9800 U	970 U	8500 U	5200 U	170000 U	9100 U	88000 U	21000 U	970 U	970 U	940 U	9300 U	8600 U	130000 U	9600 U	930 U	980 U	250 U	210 U	220 U	230 U	1100 U
2,4,6-Trichloropheno	ug/kg																				250 U	210 U	220 U	230 U	1100 U
2,4-Dichlorophenol 2,4-Dimethylphenol	ug/kg ug/kg			4000 U 4000 U	400 U 400 U	3500 U 3500 U	2200 U 2200 U	70000 U 70000 U	3800 U 3800 U	36000 U 36000 U	8600 U 8600 U	400 U 400 U	400 U 400 U	390 U 390 U	3800 U 3800 U	3500 U 3500 U	52000 U 52000 U	4000 U 4000 U	380 U 380 U	410 U 410 U	250 U 250 U	210 U 210 U	220 U 220 U	230 U 230 U	1100 U 1100 U
2,4-Dinitrophenol	ug/kg		1	20000 U	1900 U	17000 U	10000 U	340000 U	18000 U	180000 U	42000 U	1900 U	1900 U	1900 U	18000 U	17000 U	250000 U	19000 U	1800 U	2000 U	480 U	410 U	440 U	450 U	2100 U
2,4-Dinitrotoluene	ug/kg			4000 U	400 U	3500 U	2200 U	70000 U	3800 U	36000 U	8600 U	400 U	400 U	390 U	3800 U	3500 U	160000	4000 U	1100	1400	250 U	210 U	220 U	230 U	1100 U
2,6-Dichlorophenol	ug/kg			4000 11	400.11	2500.11	2200.11	70000 11	2000 11	2000 11	0000 11	400.11	400.11	200.11	2000 11	3500 11	72000	4000 11	540	050	250.11	240.11	220.11	220.11	1100.11
2,6-Dinitrotoluene 2-Chloronaphthalene	ug/kg ug/kg		1 1	4000 U	400 U	3500 U	2200 U	70000 U	3800 U	36000 U	8600 U	400 U	400 U	390 U	3800 U	3500 U	72000	4000 U	540	950	250 U 250 U	210 U 210 U	220 U 220 U	230 U 230 U	1100 U 1100 U
2-Chlorophenol	ug/kg		1	4000 U	400 U	3500 U	2200 U	70000 U	3800 U	36000 U	8600 U	400 U	400 U	390 U	3800 U	3500 U	52000 U	4000 U	380 U	410 U	250 U	210 U	220 U	230 U	1100 U
2-Methylnaphthalene	ug/kg			2300 J	58 J	77000	2200 U	17000 J	7400	39000	8600 U	410	400 U	390 U	3800 U	3500 U	410000	2600 J	27 J	130 J	250 U	210 U	8.8 J	230 U	1100 U
2-Methylphenol	ug/kg	500000	330	4000 U	400 U	3500 U	2200 U	70000 U	3800 U	36000 U	8600 U	400 U	400 U	390 U	3800 U	3500 U	52000 U	4000 U	380 U	410 U	250 U	210 U	220 U	230 U	1100 U
2-Nitroaniline 2-Nitrophenol	ug/kg ug/kg		┼───┨	20000 U	1900 U	17000 U	10000 U	340000 U	18000 U	180000 U	42000 U	1900 U	1900 U	1900 U	18000 U	17000 U	250000 U	19000 U	1800 U	2000 U	480 U 250 U	410 U 210 U	440 U 220 U	450 U 230 U	2100 U 1100 U
3,3'-Dichlorobenzidine	ug/kg		1 1	20000 U	1900 U	17000 U	10000 U	340000 U	18000 U	180000 U	42000 U	1900 U	1900 U	1900 U	18000 U	17000 U	250000 U	19000 U	1800 U	2000 U	250 U	210 U	220 U	230 U	1100 U
3-Methylphenol	ug/kg									-				-	-	-	-	-							
3-Nitroaniline	ug/kg		↓ ↓	20000 U	1900 U	17000 U	10000 U	340000 U	18000 U	180000 U	42000 U	1900 U	1900 U	1900 U	18000 U	17000 U	250000 U	19000 U	1800 U	2000 U	480 U	410 U	440 U	450 U	2100 U
4,6-Dinitro-2-methylphenol	ug/kg		<u>↓ </u>																		480 U	410 U 210 U	440 U 220 U	450 U	2100 U
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	ug/kg ug/kg		┼──┨	4000 U	400 U	3500 U	2200 U	70000 U	3800 U	36000 U	8600 U	400 U	400 U	390 U	3800 U	3500 U	52000 U	4000 U	380 U	410 U	250 U 250 U	210 U 210 U	220 U 220 U	230 U 230 U	1100 U 1100 U
4-Chloroaniline	ug/kg			4000 U	400 U	3500 U	2200 U	70000 U	3800 U	36000 U	8600 U	400 U	400 U	390 U	3800 U	3500 U	52000 U	4000 U	380 U	410 U	250 U	210 U	220 U	230 U	1100 U
4-Chlorophenyl phenyl ether	ug/kg																				250 U	210 U	220 U	230 U	1100 U
4-Methylphenol	ug/kg	500000	330	4000 U	400 U	3500 U	2200 U	70000 U	3800 U	36000 U	8600 U	400 U	400 U	390 U	3800 U	3500 U	52000 U	4000 U	380 U	410 U	480 U	410 U	440 U	450 U	2100 U
4-Nitroaniline 4-Nitrophenol	ug/kg ug/kg		1 1																		480 U 480 U	410 U 410 U	440 U 440 U	450 U 450 U	2100 U 2100 U
Acenaphthene	ug/kg	500000	98000	9300	400 U	16000	2200 U	9800 J	2200 J	15000 J	8600 U	690	400 U	390 U	3800 U	3500 U	100000	810 J	380 U	130 J	15 J	210 U	220 U	230 U	1100 U
Acenaphthylene	ug/kg		107000	4000 U	400 U	15000	2200 U	14000 J	8800	120000	8600 U	330 J	400 U	390 U	3800 U	80 J	260000	2600 J	380 U	140 J	12 J	210 U	220 U	230 U	1100 U
Acetophenone	ug/kg		150	4000 U	400 U	3500 U	2200 U	70000 U	3800 U	36000 U	8600 U	400 U	400 U	390 U	3800 U	3500 U	52000 U	4000 U	380 U	140 U	250 U	210 U	220 U	230 U	1100 U
Aniline Anthracene	ug/kg ug/kg		460 1000000	4000 U 25000	400 U 400 U	3500 U 54000	2200 U 220 J	70000 U 120000	3800 U 33000	36000 U 240000	8600 U 8600 U	400 U 1400	400 U 400 U	390 U 390 U	3800 U 3800 U	3500 U 84 J	52000 U 960000	4000 U 7100	490 380 U	1300 400 J	480 U 58 J	410 U 210 U	440 U 8.8 J	450 U 230 U	2700 1100 U
Atrazine	ug/kg	500000	1000000	25000	400 0	54000	220 3	120000	33000	240000	0000 0	1400	400 0	330 0	5666 6	04 3	500000	/100	500 0	400 3	250 UJ	210 UJ	220 UJ	230 UJ	1100 UJ
Benzaldehyde	ug/kg																				250 U	210 U	220 U	230 U	1100 U
Benzidine	ug/kg	5000	1000	25000	400.11	62000	620 J	120000	26000	440000	2000	2000	400.11	200.11	220 1	200 1	700000	11000	200.1	1100	02.1	210.11	20.1	220.11	1100.11
Benzo(a)anthracene Benzo(a)pyrene	ug/kg ug/kg	5600 1000	1000 22000	25000 19000	400 U 400 U	62000 44000	620 J 560 J	130000 92000	36000 26000	440000 320000	2600 J 2000 J	3000 2400	400 U 400 U	390 U 41 J	330 J 290 J	280 J 260 J	790000	11000 8600	200 J 120 J	1100 630	93 J 89 J	210 U 210 U	38 J 37 J	230 U 230 U	1100 U 1100 U
Benzo(b)fluoranthene	ug/kg		1700	27000	400 U	56000	760 J	140000	32000	360000	8600 U	3200	400 U	390 U	380 J	420 J	640000	11000	240 J	1300	96 J	210 U	44 J	230 U	1100 U
Benzo(ghi)perylene	ug/kg		1000000	6700	400 U	17000	330 J	35000 J	15000	160000	1700 J	990	400 U	21 J	290 J	250 J	260000	4800	92 J	420	50 J	210 U	26 J	230 U	1100 U
Benzo(k)fluoranthene	ug/kg	56000	1700	7600	400 U	24000	230 J	42000 J	13000	170000	8600 U	1100	400 U	26 J	180 J	140 J	250000	4200	100 J	480	41 J	210 U	15 J	230 U	1100 U
Benzoic Acid Benzyl alcohol	ug/kg ug/kg		+								-	-							-			-	-		
Biphenyl	ug/kg			640 J	400 U	13000	2200 U	4400 J	2200 J	10000 J	8600 U	140 J	400 U	390 U	3800 U	3500 U	120000	790 J	380 U	43 J	250 U	210 U	220 U	230 U	1100 U
Bis(2-chloroethoxy)methane	ug/kg																				250 U	210 U	220 U	230 U	1100 U
Bis(2-chloroethyl)ether	ug/kg		<u>∤</u> ∎	4000	400	3500	2200	70000 11	2000	26000	0000.11	460.1	346 -	<i>co</i> :	2000	2500	F2000 ···	4000		440 :	250 U	210 U	220 U	230 U	1100 U
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	ug/kg ug/kg	-	╎┤	4000 U 4000 U	400 U 400 U	3500 U 3500 U	2200 U 2200 U	70000 U 70000 U	3800 U 3800 U	36000 U 36000 U	8600 U 8600 U	160 J 400 U	210 J 400 U	69 J 390 U	3800 U 3800 U	3500 U 3500 U	52000 U 52000 U	4000 U 4000 U	99 J 380 U	140 J 410 U	250 U 250 U	210 U 210 U	140 J 220 U	230 U 230 U	1100 U 1100 U
Caprolactam	ug/kg	1	1	4000 UJ	400 UJ	3500 UJ	2200 UJ	70000 UJ	3800 U	36000 U	8600 UJ	400 UJ	400 UJ	390 UJ	3800 U	3500 U	52000 U	4000 U	380 UJ	410 UJ	250 U	210 U	220 U	230 U	1100 U
Carbazole	ug/kg			13000	55 J	30000	2200 U	26000 J	14000	79000	8600 U	640	400 U	390 U	3800 U	3500 U	560000	3200 J	27 J	240 J	18 J	210 U	220 U	230 U	1100 U
Chrysene Dia butul abthalata	ug/kg	56000	1000	22000	400 U	48000	600 J	110000	30000	340000	8600 U	2600	400 U	390 U	330 J	300 J	630000	9700	170 J	1000	96 J	210 U	34 J	230 U	1100 U
Di-n-butyl phthalate Di-n-octyl phthalate	ug/kg ug/kg		┼───┨	4000 U 4000 U	400 U 400 U	3500 U 3500 U	2200 U 2200 U	70000 U 70000 U	3800 U 3800 U	36000 U 36000 U	8600 U 8600 U	400 U 23 J	400 U 400 U	390 U 390 U	3800 U 3800 U	3500 U 3500 U	52000 U 52000 U	4000 U 4000 U	380 U 380 U	410 U 410 U	250 U 250 U	210 U 210 U	220 U 220 U	230 U 230 U	1100 U 1100 U
Dibenzo(a,h)anthracene	ug/kg		1000000	2600 J	400 U	5200	2200 U	12000 J	4600	56000	570 J	330 J	400 U	390 U	81 J	3500 U	80000	1400 J	48 J	140 J	250 U 15 J	210 U	220 U	230 U	1100 U
Dibenzofuran	ug/kg	350000	210000	6400	400 U	46000	2200 U	30000 J	13000	66000	8600 U	660	400 U	390 U	3800 U	3500 U	600000	4200	21 J	200 J	18 J	210 U	220 U	230 U	1100 U
Diethyl phthalate	ug/kg		<u>↓ </u>	4000 U	400 U	3500 U	2200 U	70000 U	3800 U	36000 U	8600 U	400 U	400 U	390 U	3800 U	3500 U	52000 U	4000 U	380 U	410 U	250 U	210 U	220 U	230 U	1100 U
Dimethyl phthalate Fluoranthene	ug/kg		1000000	4000 U 59000	400 U 400 U	3500 U 190000	2200 U 1500 J	70000 U 390000	3800 U 88000	36000 U 1000000	8600 U 8600 U	400 U 8300	400 U 400 U	390 U 390 U	3800 U 520 J	3500 U 520 J	52000 U 2000000	4000 U 30000	380 U 300 J	410 U 2600	250 U 240 J	210 U 210 U	220 U 69 J	230 U 230 U	1100 U 1100 U
Fluorene					400 U	84000	2200 U	53000 J	21000	120000	8600 U	1200	400 U	390 U	3800 U	3500 U	810000	7000	22 J	320 J	240 J 29 J	210 U 210 U	220 U	230 U	1100 U
	ug/kg ug/kg		386000	11000		3500 U	2200 U	70000 U	3800 U	3200 J	8600 U	400 U	400 U	390 U	290 J	220 J	52000 U	4000 U	70 J	97 J	250 U	210 U	220 U	230 U	1100 U
Hexachlorobenzene	ug/kg	500000	386000 3200	4000 U	400 U	3300 0			3800 U	36000 U	8600 U	400 U	400 U	390 U	3800 U	3500 U	52000 U	4000 U	380 U	410 U	250 U	210 U	220 U	230 U	1100 U
Hexachlorobutadiene	ug/kg ug/kg ug/kg ug/kg	500000			400 U 400 U	3500 U	2200 U	70000 U	3800 0													- · · ·			
Hexachlorobutadiene Hexachlorocyclopentadiene	ug/kg ug/kg ug/kg ug/kg ug/kg	500000 6000		4000 U			2200 U	70000 U	3800 0												250 U	210 U	220 U	230 U	1100 U
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 6000	3200	4000 U 4000 U		3500 U				160000	530 J	980	400 U	390 U	220 1	210 J	250000	4200	98.1	410	250 U	210 U	220 U 220 U	230 U 230 U	1100 U
Hexachlorobutadiene Hexachlorocyclopentadiene	ug/kg ug/kg ug/kg ug/kg ug/kg	500000 6000 5600		4000 U	400 U		2200 U 	36000 J	14000	160000	530 J	980	400 U	390 U	220 J	210 J	250000	4200	98 J	410			220 U	230 U	
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitrosodi-n-propylamine	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 6000 5600	3200	4000 U 4000 U	400 U	3500 U				160000	530 J	980	400 U	390 U	220 J	210 J	250000	4200	98 J	410	250 U 42 J	210 U 210 U	220 U 220 U 21 J	230 U 230 U 230 U	1100 U 1100 U
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 6000 5600	3200	4000 U 4000 U 6900	400 U 400 U	3500 U 16000	290 J	36000 J	14000												250 U 42 J 250 U 250 U	210 U 210 U 210 U 210 U 210 U	220 U 220 U 21 J 220 U 220 U 220 U	230 U 230 U 230 U 230 U 230 U 230 U	1100 U 1100 U 1100 U 1100 U
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitrosodi-n-propylamine N-Nitrosodimethylamine N-Nitrosodiphenylamine	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 6000 5600	3200 8200	4000 U 4000 U 6900 4000 U	400 U 400 U 400 U	3500 U 16000 3500 U	290 J 2200 U	36000 J 70000 U	14000 3800 U	36000 U	8600 U	110 J	400 U	390 U	3800 U	3500 U	52000 U	4000 U	46 J	94 J	250 U 42 J 250 U 250 U 250 U 250 U	210 U 210 U 210 U 210 U 210 U 210 U	220 U 220 U 21 J 220 U 220 U 220 U 220 U	230 U 230 U 230 U 230 U 230 U 230 U 230 U	1100 U 1100 U 1100 U 1100 U 1100 U 1100 U
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitrosodi-n-propylamine N-Nitrosodi-n-propylamine	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 6000 5600 5600 500000	3200 8200 12000	4000 U 4000 U 6900	400 U 400 U	3500 U 16000 3500 U 190000	290 J	36000 J	14000					390 U 390 U	3800 U 3800 U						250 U 42 J 250 U 250 U 250 U 250 U 14 J	210 U 210 U 210 U 210 U 210 U	220 U 220 U 21 J 220 U 220 U 220 U 220 U 220 U 14 J	230 U 230 U 230 U 230 U 230 U 230 U	1100 U 1100 U 1100 U 1100 U 1100 U 1100 U 1100 U
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitrosodin-n-propylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine Naphthalene	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 6000 5600 5600 500000 69000	3200 8200	4000 U 4000 U 6900 4000 U 4000 U 4600	400 U 400 U 400 U 230 J	3500 U 16000 3500 U	290 J 2200 U 2200 U 2200 U	36000 J 70000 U 33000 J	14000 3800 U 21000	36000 U 100000	8600 U 2300 J	110 J 220 J	400 U 400 U	390 U	3800 U	3500 U 75 J	52000 U 1000000	4000 U 7800	46 J 220 J	94 J 600	250 U 42 J 250 U 250 U 250 U 250 U	210 U 210 U 210 U 210 U 210 U 210 U 210 U 210 U	220 U 220 U 21 J 220 U 220 U 220 U 220 U	230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 U	1100 U 1100 U 1100 U 1100 U 1100 U 1100 U
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno(1,2,3-cd)pyrene Isophorone N-Nitrosodin-n-propylamine N-Nitrosodin-n-propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 6000 5600 5600 500000 69000 6700 500000	3200 8200 12000 26 800 1000000	4000 U 4000 U 6900 4000 U 4600 4000 U 71000	400 U 400 U 230 J 400 U 230 J 400 U 26 J	3500 U 16000 3500 U 190000 3500 U 280000	290 J 2200 U 2200 U 2200 U 2200 U 910 J	36000 J 70000 U 33000 J 70000 U 330000 J	14000 3800 U 21000 3800 U 81000	36000 U 100000 36000 U 560000	8600 U 2300 J 8600 U 8600 U	110 J 220 J 400 U 7900	400 U 400 U 400 U 400 U 400 U	390 U 390 U 390 U 390 U 390 U	3800 U 3800 U 3800 U 3800 U 360 J	3500 U 75 J 3500 U 320 J	52000 U 1000000 9100 J 2900000	4000 U 7800 4000 U 28000	46 J 220 J 380 U 380 U	94 J 600 410 U 2100	250 U 42 J 250 U 250 U 250 U 14 J 250 U 480 U 250	210 U 210 U	220 U 220 U 21 J 220 U 220 U 220 U 220 U 14 J 220 U 440 U 55 J	230 U 230 U	1100 U 1100 U 1100 U 1100 U 1100 U 1100 U 37000 2100 U 1100 U
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitrosodi-n-propylamine N-Nitrosodimethylamine N-Nitrosodiphenylamine Naphthalene Pentachlorophenol	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	500000 6000 5600 5600 500000 69000 6700 500000	3200 8200 12000 26 800	4000 U 4000 U 6900 4000 U 4600 4000 U	400 U 400 U 400 U 230 J 400 U	3500 U 16000 3500 U 190000 3500 U	290 J 2200 U 2200 U 2200 U 2200 U	36000 J 70000 U 33000 J 70000 U	14000 3800 U 21000 3800 U	36000 U 100000 36000 U	8600 U 2300 J 8600 U	110 J 220 J 400 U	400 U 400 U 400 U 400 U	390 U 390 U 390 U 390 U	3800 U 3800 U 3800 U	3500 U 75 J 3500 U	52000 U 1000000 9100 J	4000 U 7800 4000 U	46 J 220 J 380 U	94 J 600 410 U	250 U 42 J 250 U 250 U 250 U 14 J 250 U 480 U	210 U 210 U 210 U 210 U 210 U 210 U 210 U 210 U 210 U 410 U	220 U 220 U 21 J 220 U 220 U 220 U 14 J 220 U 440 U 55 J 220 U	230 U 230 U	1100 U 1100 U 1100 U 1100 U 1100 U 1100 U 1100 U 37000 2100 U

			Sample ID	: TB-E19-SURFACE	TB-E21-0304	TB-E21-SURFACE	TB-E22-0304	TB-E22-SURFACE	TB-E23-0405	TB-E23-SURFACE	TB-E24-0203	TB-E24-SURFACE	TB-E26-0506	TB-E26-SURFACE	TB-E29-0203	TB-E29-SURFACE	TB-E30-0203	TB-E30-SURFACE	TB-E31-0203	TB-E31-SURFACE	PDI-E04-0204	PDI-E06-0304	PDI-E07-0204	PDI-E12-0204	PDI-F13-0608
			Date	: 01/10/07	01/11/07	01/11/07	01/10/07	01/10/07	01/09/07	01/09/07	01/10/07	01/10/07	01/10/07	01/10/07	01/09/07	01/09/07	01/09/07	01/09/07	01/10/07	01/10/07	09/16/09	09/16/09	09/16/09	09/17/09	09/17/09
			Depth	: Surface	3-4'	Surface	3-4'	Surface	4-5'	Surface	2-3'	Surface	5-6'	Surface	2-3'	Surface	2-3'	Surface	2-3'	Surface	2-4'	3-4'	2-4'	2-4'	6-8'
		NIVED	C Values (2)	Junace	5-4	Surface	5-4	Juliace	4-5	Surrace	2-5	Junace	5-0	Junace	2-5	Junace	2-5	Surface	2-5	Sunace	2-4	5-4	2-4	2-4	0-0
			Protection of	-																					
Parameter	Units ⁽¹	Use	GW	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qua	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	l Result Qual
Metals																	200								
Cvanide	mg/kg	27	40	0.94 U	1.1 UJ	1 UJ	1.1 U	0.94 U	0.74 UJ	0.94 UJ	1.2 U	0.95 U	0.83 U	1.2 U	1.1 UJ	1 UJ	1.2 UJ	0.91 UJ	1.1 U	0.93 U					1
Aluminum	mg/kg			6150	13100 J	3590 J	10100	26400	8170 J	1850 J	5810	8160	5320	11900	2280 J	4820 J	7490 J	2170 J	17800	17100					
Antimony	mg/kg			18.8 UJ	19 UJ	15.5 UJ	20.2 UJ	16.9 UJ	16.8 UJ	41.2 J	30.2 J	18.6 UJ	19.1 UJ	18.1 UJ	34 J	54.1 J	112 J	18.9 UJ	16.8 UJ	19.2 UJ					
Arsenic	mg/kg	16	16	22.7	6.9 J	2.1 UJ	13.4	1110	9.7	36.7	104	6.1	3.3	5.7	8.5	5	82.6	3.7	77.2	45.3	22.7 J	3.5 J	11.5 J	2.9 UJ	13.9
Barium	mg/kg		820	110 J	87.6 J	15.9 J	73.5 J	5.5 J	45.8	21.1	98.7 J	42 J	15 J	88.4 J	149	45.2	240	13.9	185	179	101 J	62.2 J	86.2 J	87 J	109
Beryllium	mg/kg		47	0.58	0.62	0.21 U	0.37	0.23 U	0.43	0.33	0.63	1.3	0.26 U	0.6	0.45	0.48	1	0.3	2.3	2.3					
Cadmium	mg/kg		7.5	4.4	0.29 J	0.33 J	0.3	0.23 U	0.22 U	0.46	0.97	0.25 U	0.26 U	0.24 U	0.25 U	0.3	2.4	0.25 U	0.84	2.3	12.9	0.265 U	2.13	0.286 U	0.305
Calcium	mg/kg			46300	2900 J	54000 J	3990	166000	44200	284000	28600	123000	32200	41800	87500	187000	55700	242000	55700	120000					
Chromium ⁽³⁾	mg/kg	1500		14.4	17.4	4.4	11.3	6.6	15.7	36.5	53	16.7	8	18.5	102	156	109	10	66.3	84.6	12.5	10.1	13.5	10.4	20.5
Cobalt	mg/kg			13.2	8.1	2	2.5	1.1	7	3	5.6	2.6	7.2	10.4	2.9	3	7	2.1	5.3	6					
Copper	mg/kg	270	1720	583	23.2 J	8 J	73.4	34.9	31.2	91.4	103	16.9	22.1	21.5	40	27.2	258	8.7	90.4	130					
Iron	mg/kg			39000	23000	6440	9890	2480	17500	10900	26200	8340	14400	21500	25600	29400	49300	5710	28800	49700					
Lead	mg/kg	1000	450	287	11.9	10.3	89.4	77	20.6	75.7	142	26.8	9.1	15	52.1	72	495	12.9	210	493	475	11.8	45.8	15.3	16.8
Magnesium	mg/kg			25000	4270 J	31500 J	1340	6420	5310 J	15100 J	14500	12200	10200	12400	3090 J	29900 J	4710 J	13200 J	9870	14700					
Manganese	mg/kg	10000	2000	363	271 J	402 J	103	71.4	323	221	151	624	292	472	1890	3160	564	160	868	1500					
Nickel	mg/kg	310	130	18.4	24.7	4.8	7	11.2	22.2	25.7	23.6	9.7	23.7	23.4	11.1	13.2	38.5	8.3	19.2	96.3					
Potassium	mg/kg			843 J	989 J	512 J	607 J	269 J	1020	589	633 J	1080 J	711 J	2200 J	839	1540	886	760	1500 J	1330 J					
Selenium	mg/kg	1500	4	5 U	5.1 UJ	4.1 UJ	5.4 U	4.5 U	4.5 U	4.3 U	4.9 U	4.9 U	5.1 U	4.8 U	4.9 U	4.3 U	6.7 U	5 U	4.5 U	5.1 U	5.6 UJ	5.3 UJ	5.5 UJ	5.7 UJ	5 U
Silver	mg/kg	1500	8.3	1.4	0.63 U	0.52 U	0.67 U	0.56 U	0.56 U	0.54 U	0.61 U	0.62 U	0.64 U	0.6 U	0.61 U	0.54 U	0.84 U	0.63 U	0.34 U	0.38 U	3.47	0.662 U	0.683 U	0.716 U	0.625 U
Sodium	mg/kg			330	516	399	238	158 U	349	151 U	194	236	179 U	169 U	269	228	394	176 U	463	684					
Thallium	mg/kg			7.5 U	7.6 UJ	6.2 UJ	8.1 U	6.8 U	6.7 U	6.5 U	7.4 U	7.4 U	7.7 U	7.2 U	7.4 U	6.5 U	10 U	7.5 U	6.7 U	7.7 U					
Vanadium	mg/kg			16.5	21.5 J	7.8 J	12.9	2.7	16.7	8.3	26	10	10.1	22.7	54.1	77.1	28.8	8.4	18.7	16.5					
Zinc	mg/kg	10000	2480	2000 J	62.7	52.3	299 J	76.8 J	59.9	121	625 J	76.7 J	53.3 J	80.2 J	38.4	57.4	1250	37.3	482	809					
Mercury	mg/kg	2.8	0.73	0.28	0.03	0.01 U	0.14	5.4	0.7	2.8	3.4	0.66	0.01 U	0.02	0.29	0.14	1.6	0.05	1.2	7.5	0.29	0.0484	0.0388	0.229	0.129
PCBs																									
Aroclor 1016	ug/kg	1000	3200																				22 UJ	23 UJ	21 UJ
Aroclor 1221	ug/kg	1000	3200																				22 UJ	23 U	21 U
Aroclor 1232	ug/kg	1000	3200																				22 UJ	23 U	21 U
Aroclor 1242	ug/kg	1000	3200																				22 UJ	23 U	21 U
Aroclor 1248	ug/kg	1000	3200																				22 UJ	23 U	21 U
Aroclor 1254	ug/kg	1000	3200																				22 UJ	23 U	21 U
Aroclor 1260	ug/kg	1000	3200																				22 UJ	23 UJ	21 UJ
Aroclor 1262	ug/kg	1000	3200																				22 UJ	23 U	21 U
Aroclor 1268	ug/kg	1000	3200																				22 UJ	23 U	21 U

Notes:

Notes:
(1) Units: ug/kg = micrograms/kilogram; mg/kg = milligrams/kilogram
(2) New York State Department of Environmental Conservation, Restricted Use Soil Cleanup Objectives, Commercial Use and Protection of Groundwater, Table 375-6.8(b)
(3) Standards used for comparison are for Hexavalent Chromium Qualifiers: U = not detected; J = estimated value; UJ = non-detect reported, reporting limit qualified as estimated; D = duplicate results outside QC limits, may indicate non-homogenous matrix; M = matrix spike outside QC limits, matrix bias indicated; R = data rejected during validation
Shaded value - exceedance of Restricted Use Soil Cleanup Objective

Image: biolog Biolog	CS-22-0203 CS-23-02 03/24/10 03/24/1 2-3' 2-4' 5.6 U 2-4' 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4
Image: Property and the state of t	2-3' 2-4' 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4
based based <th< th=""><th>5.6 U 5.4 5.6 U 5.4</th></th<>	5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4
Prometer Product of Processor Processor Processor	5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4
beak beak <th< th=""><th>5.6 U 5.4 5.6 U 5.4</th></th<>	5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4
voc voc voc voc voc <th>5.6 U 5.4 5.6 U 5.4</th>	5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4
bit bit 4.10 5.20 4.10 5.20 5	5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4
1)2.2 Francescondance op/2 cm 50.1 5.2.0	5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4
D.2. Productioners upper L Stu	5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4
bill Display Supering	5.6 U 5.4 5.6 U 5.4 5.6 U 5.4 5.6 U 5.4
Libeliconscience uphg 20000 270 55 U 43.0 52.0 53.0 43.0 52.0 53.0	5.6 U 5.4 5.6 U 5.4
1)	5.6 U 5.4
12.4-final-independence up/k 6 43.0 43.0 52.0 57.0 44.0 49.0 45.0 59.0 42.0 59.0 53.0<	5.6 U 5.4
12. Demonschaner (ED) uging view 55 U 43 U 52 U 57 U 44 U 45 U 57 U 44 U 45 U 57 U 44 U 45 U 57 U 44 U 45 U 57 U 44 U 45 U 57 U 44 U 45 U 64 U 57 U 44 U 45 U 64 U 57 U 44 U 45 U 64 U 57 U 44 U 45 U 64 U 57 U 44 U 45 U 64 U 57 U 44 U 45 U 64 U 57 U 44 U 45 U 64 U 57 U 44 U 45 U 64 U 57 U 44 U 45 U 64 U 57 U 44 U 45 U 64 U 57 U 44 U 45 U 64 U 58 U 57 U 58 U 57 U 44 U 45 U 64 U 58 U 58 U 51 U 51 U 51 U 51 U 51 U 51 U 51 U 51 U 51 U 51 U 51 U 51 U 51 U 51 U 51 U 51 U 51 U 51	
12-Dechonsence using 50000 1100 52.00	5.6 U 5.4
12-Delhorementane u/kg 0000 75 U 43 U 52 U 57 U 44 U 49 U 45 U 51 U 45 U 52 U 53	5.6 U 5.4
12-Dechonoment up/Rg 2000 2400 62.0 590 53.0 53.0 52.0 61.0 5.8.0 51.0 46.0 13-Dechonoment up/Rg 30000 1400 660 43.0 5.2.0 57.0 44.0 4.9.0 4.5.0 61.0 5.9.0 53.0 52.0.0 61.0 5.8.0 32.0 5.0.0 4.6.0 10000 4.2.0 5.9.0 53.0 52.0.0 61.0 5.8.0 86.0 4.6.0 10000 4.2.0 5.9.0 53.0 52.0.0 61.0 5.8.0 86.0 4.6.0 4.6.0 10000 4.2.0 5.9.0 53.0 52.0.0 61.0 5.8.0 86.0 4.6.0 4.6.0 10000 4.2.0 5.9.0 53.0 52.0.0 61.0 5.8.0 86.0 4.6.0 100000 42.0 5.9.0 53.0 52.0.0 61.0 5.8.0 86.0 4.7.1 23.0 30.0 23.0 30.0 23.0 30.0 23.0 30.0 21.0 30.0 27.0 26.00 30.0 29.0 28.0.0 4.0.0 50.0	5.6 U 3 .
13-0eInformation ug/kg 280000 4.3 U 5.2 U <th>5.6 U 5.4</th>	5.6 U 5.4
14-Dictordencement ug/kg 13000 14.00 14.00 5.1 U 4.6 U 130000 14000 4.2 U 5.0 U 5.0 U 6.1 U 5.0 U 5.0 U 6.1 U 5.0 U 6.1 U 5.0 U<	5.6 U 5.4
julya 50000 120 120 20 151 20 20 20 20 20 20 20 2000 1000 21U 300 21U 300 31 2600 31 2600 30 31 2600 30 2000 300 21U 300 300 30	5.6 U 5.4
2-chorechy (wpt)eter wg/kg C C C C	5.6 U 5.4
2+Hearnen ug/k 280 + 2	22 J 11 .
In-Methyl-2-pertanone ug/kg C 280 U 22 U 26 U 29 U 29 U 23 U 30 U 21 U 30 U 31 U 30 U<	28 U 27
Accesse ug/kg 50000 50 280 42 31 260 73 200 73 200 71 51 70 51 70 61.0 61.0 61.0 73 2000 71 7000 70 7000 70 7000 70 7000 70 7000 70 7000 70 7000 70 7000 70 7000 70 7000 70 7000 70 7000 70 7000 70 7000	28 U 27
Berzene ug/kg 44000 60 95 7 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6.0 U 5.9 U 4.2 U 5.9 U 3.4 J 52 U 5.8 U 51 U 4.6 U Bromodichloromethane ug/kg 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6 U 5.1 U 4.6 U 5900 U 2800 U 4.2 U 5.9 U 5.2 U 5.8 U 51 U 4.6 U Bromomethane ug/kg 0 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6 U 51 U 4.6 U 5900 U 2800 U 4.2 U 5.9 U 51 U 52 U 57 U 4.6 U Bromodemathane ug/kg 0 55 U 4.3 U 5.2 U 57 U 44 U 4.9 U 4.5 U 6 U 51 U 4.6 U 5900 U 2800 U 4.2 U 5.9 U 53 U 52 U 61 U 5.8 U 51 U 5.8 U 51 U 4.6 U	110 59
Isromodichloromethane ug/kg 55.0 4.3.0 52.0 57.0 44.0 4.9.0 4.5.0 61.0 58.0 4.2.0 53.0 53.0 52.0.0 61.0 58.0 51.0 50.0 42.0 59.0 53.0 52.0.0 61.0 58.0 51.0 46.0 Bromoethane ug/kg 55.0 4.3.0 52.0 57.0 44.0 4.9.0 4.5.0 60.0 51.0 4.6.0 5900.0 2800.0 4.2.0 59.0 53.0 61.01 58.0 51.0 57.0 44.0 4.9.0 4.5.0 60.0 51.0 4.6.0 5900.0 2800.0 4.2.0 59.0 53.0 50.0 61.0 58.0 61.0 59.0 4.6.0 5900.0 2800.0 4.2.0 59.0 53.0 61.0 58.0 61.0 58.0 61.0 58.0 61.0 58.0 61.0 58.0 61.0 58.0 61.0 58.0 61.0 58.0 61.0 58.0	5.6 U 5.4 I
Brommethane ug/kg - 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6 U 5.1 U 4.6 U 590 U 280 U 4.2 U 5.9 U 5.3 U 520 U 6.1 U 5.8 U 51 U 4.6 U Carbon disulfide ug/kg 2200 760 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6 U 5.1 U 4.6 U 590 U 280 U 4.2 U 5.9 U 53 U 520 U 6.1 U 5.8 U 91 U 57 U 4.6 U Carbon tetrachoride ug/kg 22000 760 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6 U 5.1 U 4.6 U 590 U 280 U 4.2 U 5.9 U 53 U 520 U 6.1 U 5.8 U 51 U 4.6 U Chiorobarrene ug/kg 50000 100 38000 5.7 U 44 U 4.9 U 4.5 U 6 U 5.1 U 4.6 U 590 U 280 U 4.2 U 5.9 U 53 U 6.1 U 5.8 U 51 U 4.6 U	5.6 U 5.4
Carbon disulfide ug/kg C 55 U 4.3 U 52 U 52 U 57 U 44 U 4.9 U 4.5 U 51 U 4.6 U 590 U 280 U 4.2 U 5.9 U 53 U 52 U 5.8 U 91 57 U 4.6 U Carbon terachloride ug/kg 2200 760 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6 U 5.1 U 4.6 U 590 U 280 U 4.2 U 5.9 U 5.3 U 52 U 5.7 U 51 U 4.6 U Chorobenzene ug/kg 2000 100 3800 6.1 U 4.5 U 6 U 5.1 U 4.6 U 590 U 280 U 4.2 U 5.9 U 5.3 U 52 U 5.1 U 4.6 U Chorobenzene ug/kg 0 10.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6 U 5.1 U 4.6 U 590 U 280 U 4.2 U 5.9 U 5.3 U 5.0 U 6.1 U 5.4 U 4.6 U 590 U 280 U 4.2 U 5.9 U 5.3 U 5.0 U 6.1 U 5.1 U 4.6	5.6 U 5.4
Carbon tetrachloride ug/kg 2200 760 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 5.1 U 4.6 U 590 U 280 U 4.2 U 5.9 U 5.0 U 5.0 U 5.8 U 5.1 U 4.6 U Chirophenzene ug/kg 50000 1100 38000 6.1 U 5.2 U 5.7 U 1100 4.9 U 4.5 U 6.1 U 4.6 U 46000 66000 80 970 47000 340000 6.1 U 5.8 U 51 U 7.0 U 4.6 U Chirorethane ug/kg C 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6 U 5.1 U 4.6 U 500 U 280 U 4.2 U 5.9 U 53 U 52 U 51 U 7.0 U 4.6 U Chirorethane ug/kg C S 5 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 5.0 U 2.0 U 5.3 U 5.0 U 5.0 U 5.0 U 5.0 U 5.	5.6 U 5.4
Chlorobenzene ug/kg 50000 1100 38000 6.1 5.2 U 5.2 U 5.7 U 1100 4.9 U 4.5 U 6 U 5.1 U 4.6 U 6000 80 970 47000 340000 6.1 U 5.8 U 5.1 U 4.6 U Chlorodibromomethane ug/kg C 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6 U 5.1 U 4.6 U 5900 U 280 U 4.2 U 5.9 U 53 U 520 U 6.1 U 5.8 U 51 U 57 U 4.6 U Chlorodibromottane ug/kg S0000 370 53 U 52 U 57 U 44 U 4.9 U 4.5 U 6 U 51 U 4.6 U 590 U 280 U 4.2 U 5.9 U 53 U 52 U 51 U 57 U 4.6 U 50 U 500 U 280 U 4.2 U 5.9 U 53 U 51 U 5.8 U 51 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U <th>5.6 U 5.4</th>	5.6 U 5.4
Chlorodibronomethane ug/kg 4 55 U 4.3 U 5.2 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 5.0 U	5.6 U 5.4
Chloroethane ug/kg 4 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 5.1 U 4.6 U 590 U 280 U 4.2 U 5.9 U 5.3 U 5.0 U 5.1 U 5.0 U <t< th=""><th>5.6 U 5.4</th></t<>	5.6 U 5.4
Chloroform ug/kg 3500 370 55 U 4.3 U 5.2 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 5.0 U <th< th=""><th>5.6 U 5.4</th></th<>	5.6 U 5.4
Choromethane ug/kg M 55 U 4.3 U 5.2 U 5.2 U 5.7 U 4.4 U 4.9 U 4.5 U 5.1 U 4.6 U 590 U 280 U 4.2 U 5.9 U 5.0 U 5.0 U 5.1 U 5.0 U <	5.6 U 5.4
Cis.1,2-Dichloroethene ug/kg 50000 250 55 U 4.3 U 5.2 U 5.2 U 5.7 U 4.4 U 4.9 U 4.5 U 6.0 U 5.0 U<	5.6 U 5.4 5.6 U 5.4
Cis-1,3-Dichloropropene ug/kg 55 U 4.3 U 5.2 U 5.2 U 5.7 U 4.4 U 4.9 U 4.5 U 5.0	5.6 U 5.4
Cyclohexane ug/kg 0 55 0 4.3 0 5.2 0 5.2 0 5.2 0 5.7 0 4.4 0 4.9 0 4.5 0 6.0 5.1 0 4.6 0 590 0 2800 4.2 0 5.9 0 5.0 5.0 6.1 0 5.8 30 5.0 0 4.0 5.0 4.0 5.0 4.0 5.0 0 4.0 5.0 0 4.0 5.0 0 5	5.6 U 5.4
	5.6 U 5.4
Dichlorodifluoromethane ug/kg 55 U 4.3 U 5.2 U 52 U 5.7 U 44 U 4.9 U 4.5 U 6.U 5.1 U 4.6 U 5900 U 2800 U 4.2 U 5.9 U 53 U 520 U 6.1 U 5.8 U 51 U 57 U 4.6 U	5.6 U 5.4
Ethyl benzene ug/kg 39000 100 75 4.3 U 5.2 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 5.1 U 4.6 U 5.1 U 4.6 U 5900 U 2.2 J 7.4 53 U 52 U 6.1 U 5.8 U 51 U 130 4.6 U	5.6 U 5.4
Isopropylbenzene ug/kg 0 55 U 4.3 U 5.2 U 52 U 5.7 U 4.4 U 4.9 U 4.5 U 6.1 G 4.5 U 5.2 U 5.7 U 4.4 U 4.9 U 4.5 U 6.1 U 4.5 U 5.0 U 4.2 U 5.9 U 5.0 U 5	5.6 U 5.4
Methylacetate ug/kg 27 4.3 5.2 UJ 5.2 UJ 5.2 UJ 5.2 UJ 5.7 UJ 4.4 4.9 U 4.9 U 4.9 U 4.5 UJ 6.0 5.1 4.6 590 2800 4.2 U 5.9 U 5.0 51 520 6.1 5.8 340 140 4.6 U 4.6 U	5.6 U 5.4
Methyl Ether ug/kg 50000 930 55 U 4.3 U 52 U 52 U 5.7 U 44 U 4.9 U 4.5 U 5.1 U 4.6 U 5.1 U 4.6 U 590 U 4.2 U 5.9 U 5.0 U 5.0 U 5.0 U 5.8 U 5.1 U 5.0 U 4.0 U 4.0 U 4.0 U 4.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 4.0 U 5.0 U	5.6 U 5.4
Methylcyclohexane ug/kg 55 U 4.3 U 52 U 52 U 57 U 44 U 4.9 U 4.5 U 51 U 52 U 57 U 44 U 4.9 U 4.5 U 50 U 51 U 4.6 U 5900 U 2800 U 4.2 U 5.9 U 52 U 52 U 5.8 U 78 67 4.6 U	5.6 U 5.4
Methylene chloride ug/kg 50000 50 50 4.3 U 5.2 U 57 U 44 U 1.5 U 4.5 U 6 U 51 U 4.2 U 5.9 U 52 U 6.1 U 57 U 4.6 U 590 U 4.2 U 5.9 U 52 U 6.1 U 57 U 4.6 U 590 U 4.2 U 5.9 U 52 U 6.1 U 57 U 4.6 U	5.6 U 5.4
Styrene ug/kg 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6 U 5.1 U 4.6 U 5900 U 2800 U 4.2 U 5.9 U 5.0 U 6.1 U 5.8 U 51 U 57 U 4.6 U Tetrachloroethene ug/kg 15000 1300 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6.0 U 5.1 U 4.6 U 5900 U 2800 U 4.2 U 5.9 U 5.1 U 5.8 U 51 U 57 U 4.6 U	5.6 U 5.4 S.6 U 5.4
Tetrachloroethene ug/kg 15000 1300 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6 U 5.1 U 4.6 U 5900 U 2800 U 4.2 U 5.9 U 5.3 U 5.0 U 5.1 U 5.7 U 4.6 U Toluene ug/kg 50000 700 55 U 4.3 U 5.2 U 5.7 U 44 U 4.9 U 4.5 U 6.0 U 5.1 U 4.6 U 5900 U 2800 U 4.2 U 5.9 U 5.1 U 5.8 U 51 U 5.0 U 4.6 U	5.6 U 5.4
$\frac{100000}{17ans-1,2-Dichloroethene} \frac{10g/kg}{ug/kg} \frac{500000}{500} \frac{70}{55} \frac{520}{4.3} \frac{5.2}{5.2} \frac{5.2}{5.2} \frac{5.7}{5.4} \frac{440}{4.9} \frac{4.9}{4.9} \frac{4.9}{4.5} \frac{4.5}{50} \frac{500}{2800} \frac{2800}{4.20} \frac{4.2}{5.9} \frac{5.9}{53} \frac{520}{520} \frac{6.1}{6.1} \frac{5.8}{5.8} \frac{510}{57} \frac{4.6}{4.6} \frac{5.9}{50} \frac{5.9}{53} \frac{520}{520} \frac{5.1}{5.1} \frac{4.9}{5.1} $	5.6 U 5.4
$\frac{1}{12} \frac{1}{2} 1$	5.6 U 5.4
$\frac{1}{12643-5256460000000000000000000000000000000000$	5.6 U 5.4
$\frac{1}{10000000000000000000000000000000000$	5.6 U 5.4
Vin/lacetate ug/kg	
Vinyl chloride ug/kg 1300 20 110 8.7 U 10 10 U 10 10 11 87 U 9.9 9.0 9.0 5.1 0 5.1 4.6 U 590 U 2800 4.2 U 5.9 U 53 U 520 0 6.1 U 5.8 U 51 U 57 U 4.6 U	
Xylenes, Total ug/kg 50000 1600 110 8.7 U 10 U 10 U 10 U 11 U 8.7 U 10 U 11 8.7 U 9.9 9.0 9.0 12 U 10 9.3 U 1200 U 5600 U 8.4 U 12 U 110 U 100 U 12 U 12 U 34 J 53 J 9.2 U	5.6 U 5.4

			Canada ID.	DDI 514 0507	DDI 546 0204	DDI 517 0204	DDI 540 0204	DDI 520 0204	DDI 524 0204	DDI 533 0400	DDI 533 0304	DDE 01 0201	DDE 01 0400	DDE 01 0000	DDF 04 0507	DD5 04 0010			DDE 05 4042		CC 01 0102	CC 02 0202	CC 10 0102	CC 20 0102	CC 21 0204	CC 22 0202	CC 22 0204
			Sample ID: Date:	PDI-E14-0507 09/17/09	PDI-E16-0204 09/17/09	PDI-E17-0204 09/17/09	PDI-E18-0204 09/18/09	PDI-E20-0204 09/18/09	PDI-E21-0204 09/18/09	PDI-E22-0406 09/18/09	PDI-E23-0204 09/17/09	DDE-01-0204 03/19/10	DDE-01-0406 03/19/10	DDE-01-0608 03/19/10	DDE-04-0507 03/19/10	DDE-04-0810 03/19/10	DDE-05-0204 03/19/10	DDE-05-0406 03/19/10	DDE-05-1012 03/19/10	DDE-06-0608 03/19/10	CS-01-0102 03/23/10	CS-02-0203 03/23/10	CS-18-0102 03/24/10	CS-20-0102 03/24/10	CS-21-0204 03/24/10	CS-22-0203 03/24/10	CS-23-0204 03/24/10
			Depth:	5-7'	2-4'	2-4'	2-4'	2-4'	2-4'	4-6'	2-4'	2-4'	4-6'	6-8'	5-7'	8-10'	2-4'	4-6'	10-12'	6-8'	1-2'	2-3'	1-2'	1-2'	2-4'	2-3'	2-4'
		NYSDE0 Commercial	C Values (2) Protection of																								
Parameter	Units ⁽¹⁾	Use	GW	Result Qual	Result Qual	l Result Qual	Result Qua	Result Qual	Result Qual	Result Qua	Result Qual	Result Qual	Result Qual	Result Qual	Result Qua	l Result Qual	Result Qua	l Result Qual	Result Qua	Result Qual							
SVOCs 1,2,4-Trichlorobenzene	ug/kg															-											
1,2-Dichlorobenzene	ug/kg	500000	1100																								
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/kg ug/kg	280000 130000	2400 1800																								
2,2'-Dichlorodiisopropylether	ug/kg	190000	1000																								
2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichloropheno	ug/kg			200 U 200 U	200 U 200 U	200 UJ 200 U	2100 UJ 2100 U	2200 UJ 2200 U	200 UJ 200 U	210 UJ 210 U	200 UJ 200 U									-	190 U 190 U	210 U 210 U	210 U 210 U	1100 U 1100 U	200 U 200 U	220 U 220 U	200 U 200 U
2,4,6-Trichlorophenol	ug/kg ug/kg			200 U	200 U	200 U	2100 U 2100 U	2200 U	200 U	210 U 210 U	200 U										190 U	210 U	210 U 210 U	1100 U	200 U	220 U	200 U
2,4-Dichlorophenol	ug/kg			200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U										190 U	210 U	210 U	1100 U	200 U	220 U	200 U
2,4-Dimethylphenol 2,4-Dinitrophenol	ug/kg ug/kg			200 U 390 U	200 U 380 U	200 U 390 U	2100 U 4000 U	2200 U 4200 U	200 U 380 U	210 U 400 U	200 U 390 U										190 U 370 UJ	210 U 410 U	210 U 400 U	1100 U 2200 U	200 U 390 U	220 U 430 U	200 U 400 U
2,4-Dinitrotoluene	ug/kg			200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U										190 U	210 U	210 U	1100 U	200 U	220 U	200 U
2,6-Dichlorophenol 2,6-Dinitrotoluene	ug/kg ug/kg			200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U										190 U	210 U	210 U	1100 U	200 U	220 U	200 U
2-Chloronaphthalene	ug/kg			200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U					1					190 U	210 U	210 U	1100 U	200 U	220 U	200 U
2-Chlorophenol	ug/kg			190 J	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U										190 U	210 U	210 U	1100 U	200 U	220 U	200 U
2-Methylnaphthalene 2-Methylphenol	ug/kg ug/kg	500000	330	200 U 200 U	200 U 200 U	200 U 200 U	2100 U 2100 U	2200 U 2200 U	200 U 200 U	210 U 210 U	200 U 200 U										190 U 190 U	210 U 210 U	35 J 210 U	1100 U 1100 U	200 U 200 U	220 U 220 U	200 U 200 U
2-Nitroaniline	ug/kg			390 U	380 U	390 U	4000 U	4200 U	380 U	400 U	390 U										370 U	410 U	400 U	2200 U	390 U	430 U	400 U
2-Nitrophenol 3,3'-Dichlorobenzidine	ug/kg ug/kg			200 U 200 U	200 U 200 U	200 U 200 U	2100 U 2100 U	2200 U 2200 U	200 U 200 U	210 U 210 U	200 U 200 U										190 U 190 U	210 U 210 U	210 U 210 U	1100 U 1100 U	200 U 200 U	220 U 220 U	200 U 200 U
3-Methylphenol	ug/kg			200 0	200 0	200 0	2100 0	2200 0	200 0	210 0	200 0										1.00	210 0	210 0	1100 0	200 0	220 0	200 0
3-Nitroaniline	ug/kg			390 U	380 U	390 U	4000 U	4200 U	380 U	400 U	390 U										370 U	410 U	400 U	2200 U	390 U	430 U	400 U
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	ug/kg ug/kg			390 U 200 U	380 U 200 U	390 U 200 U	4000 U 2100 U	4200 U 2200 U	380 U 200 U	400 U 210 U	390 U 200 U										370 UJ 190 U	410 U 210 U	400 U 210 U	2200 U 1100 U	390 U 200 U	430 U 220 U	400 U 200 U
4-Chloro-3-methylphenol	ug/kg			200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U										190 U	210 U	210 U	1100 U	200 U	220 U	200 U
4-Chloroaniline 4-Chlorophenyl phenyl ether	ug/kg ug/kg			200 U 200 U	200 U 200 U	200 U 200 U	2100 U 2100 U	2200 U 2200 U	200 U 200 U	210 U 210 U	200 U 200 U										190 U 190 U	210 U 210 U	210 U 210 U	1100 U 1100 U	200 U 200 U	220 U 220 U	200 U 200 U
4-Methylphenol	ug/kg	500000	330	390 U	380 U	390 U	4000 U	4200 U	380 U	400 U	390 U										370 U	410 U	400 U	2200 U	390 U	430 U	400 U
4-Nitroaniline	ug/kg			390 U	380 U	390 U	4000 U	4200 U	380 U	400 U	390 U										370 U	410 U	400 U	2200 U	390 U	430 U	400 U
4-Nitrophenol Acenaphthene	ug/kg ug/kg	500000	98000	390 U 200 U	380 U 200 U	390 U 200 U	4000 U 2100 U	4200 U 2200 U	380 U 200 U	400 U 210 U	390 U 200 U										370 U 190 U	410 U 210 U	400 U 210 U	2200 U 1100 U	390 U 200 U	430 U 220 U	400 U 200 U
Acenaphthylene	ug/kg	500000	107000	200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U										190 U	210 U	210 U	1100 U	200 U	220 U	200 U
Acetophenone Aniline	ug/kg ug/kg		460	200 U 390 U	200 U 380 U	200 U 390 U	2100 U 4000 U	2200 U 4200 U	200 U 380 U	210 U 400 U	200 U 390 U										190 U 370 U	210 U 410 U	210 U 520	1100 U 1300 J	200 U 390 U	220 U 430 U	200 U 400 U
Anthracene	ug/kg	500000	1000000	200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U										190 U	210 U	10 J	77 J	13 J	220 U	26 J
Atrazine Benzaldehvde	ug/kg ug/kg			200 UJ 200 U	200 UJ 200 U	200 UJ 200 U	2100 UJ 2100 U	2200 UJ 2200 U	200 UJ 200 U	210 UJ 210 U	200 UJ 200 U										190 U 190 U	210 U 210 U	210 U 210 U	1100 U 1100 U	200 U 200 U	220 U 220 U	200 U 200 U
Benzidine	ug/kg			200 0	200 0	200 0	2100 0	2200 0	200 0	210 0	200 0										150 0	210 0	210 0	1100 0	200 0	220 0	200 0
Benzo(a)anthracene	ug/kg	5600 1000	1000	200 U 200 U	18 J 200 U	200 U	190 J 170 J	230 J	200 U	210 U 210 U	200 U 200 U										20 J 190 U	18 J	36 J	240 J 220 J	30 J	23 J	38 J 29 J
Benzo(a)pyrene Benzo(b)fluoranthene	ug/kg ug/kg	5600	22000 1700	200 U	200 U	200 U 200 U	400 J	190 J 220 J	200 U 200 U	210 U 210 U	200 U										190 U 30 J	210 U 210 U	31 J 31 J	370 J	22 J 23 J	15 J 23 J	29 J 25 J
Benzo(ghi)perylene	ug/kg	500000	1000000	200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U										20 J	210 U	26 J	150 J	12 J	15 J	15 J
Benzo(k)fluoranthene Benzoic Acid	ug/kg ug/kg	56000	1700	200 U	200 U	200 U	2100 U	120 J	200 U	210 U	200 U										190 U	210 U	23 J	1100 U	13 J	10 J	20 J
Benzyl alcohol	ug/kg																										
Biphenyl Bis(2-chloroethoxy)methane	ug/kg ug/kg			200 U 200 U	200 U 200 U	200 U 200 U	2100 U 2100 U	2200 U 2200 U	200 U 200 U	210 U 210 U	200 U 200 U										190 U 190 U	210 U 210 U	210 U 210 U	1100 U 1100 U	200 U 200 U	220 U 220 U	200 U 200 U
Bis(2-chloroethyl)ether	ug/kg			200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U										190 U	210 U	210 U	1100 U	200 U	220 U	200 U
Bis(2-ethylhexyl) phthalate	ug/kg			200 U	200 U	200 U	2100 U	2200 U	200 U	78 J	200 U										190 U	210 U	210 U	1100 U	99 J	220 U	200 U
Butyl benzyl phthalate Caprolactam	ug/kg ug/kg			200 U 200 U	200 U 200 U	200 U 200 U	2100 U 2100 U	2200 U 2200 U	200 U 200 U	210 U 210 U	200 U 200 U										190 U 190 U	210 U 210 U	210 U 210 U	1100 U 1100 U	200 U 200 U	220 U 220 U	200 U 200 U
Carbazole	ug/kg			200 U	28 J	200 U	2100 U	2200 U	200 U	210 U	200 U										190 U	210 U	210 U	1100 U	200 U	220 U	17 J
Chrysene Di-n-butyl phthalate	ug/kg ug/kg	56000	1000	200 U 200 U	200 U 200 U	200 U 200 U	170 J 2100 U	210 J 2200 U	200 U 200 U	210 U 210 U	200 U 200 U					<u> </u>		ł			39 U 190 U	14 J 210 U	43 J 210 U	260 J 1100 U	23 J 200 U	20 J 220 U	33 J 200 U
Di-n-octyl phthalate	ug/kg		1	200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U							1			190 U	210 U	210 U	1100 U	200 U	220 U	200 U
Dibenzo(a,h)anthracene Dibenzofuran	ug/kg	560 350000	1000000 210000	200 U 200 U	200 U 200 U	200 U 200 U	2100 U 2100 U	2200 U 2200 U	200 U 200 U	210 U 210 U	200 U 200 U					<u>↓ </u>					190 U 190 U	210 U 210 U	210 U 15 J	1100 U 88 J	200 U 200 U	220 U 220 U	200 U 17 J
Diethyl phthalate	ug/kg ug/kg	330000	210000	200 U 200 U	200 U 200 U	200 U	2100 U 2100 U	2200 U 2200 U	200 U	210 U 210 U	200 U 200 U										190 U 190 U	210 U 210 U	210 U	1100 U	200 U	220 U 220 U	200 U
Dimethyl phthalate	ug/kg	E00000	1000000	200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U										190 U	210 U	210 U	1100 U	200 U	220 U	200 U
Fluoranthene Fluorene	ug/kg ug/kg	500000 500000	1000000 386000	200 U 200 U	38 J 13 J	200 U 200 U	280 J 2100 U	370 J 2200 U	200 U 200 U	210 U 210 U	200 U 200 U					+					32 J 190 U	28 J 210 U	63 J 210 U	510 J 68 J	66 J 10 J	37 J 220 U	110 J 30 J
Hexachlorobenzene	ug/kg	6000	3200	200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U										190 U	210 U	210 U	1100 U	200 U	220 U	200 U
Hexachlorobutadiene Hexachlorocyclopentadiene	ug/kg ug/kg			200 U 200 U	200 U 200 U	200 U 200 U	2100 U 2100 U	2200 U 2200 U	200 U 200 U	210 U 210 U	200 U 200 U										190 U 190 U	210 U 210 U	210 U 210 U	1100 U 1100 U	200 U 200 U	220 U 220 U	200 U 200 U
Hexachloroethane	ug/kg			200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	200 U										190 U	210 U	210 U	1100 U	200 U	220 U	200 U
Indeno(1,2,3-cd)pyrene	ug/kg	5600	8200	200 U	200 U	200 U	140 J	2200 U	200 U	210 U	200 U										19 J	210 U	17 J	120 J	11 J	13 J	13 J
Isophorone N-Nitrosodi-n-propylamine	ug/kg ug/kg			200 U 200 U	200 U 200 U	200 U 200 U	2100 U 2100 U	2200 U 2200 U	200 U 200 U	210 U 210 U	200 U 200 U										190 U 190 U	210 U 210 U	210 U 210 U	1100 U 1100 U	200 U 200 U	220 U 220 U	200 U 200 U
N-Nitrosodimethylamine	ug/kg																										
N-Nitrosodiphenylamine Naphthalene	ug/kg ug/kg	500000	12000	200 U 200 J	200 U 200 U	200 U 200 U	2100 U 2100 U	2200 U 2200 U	200 U 200 U	210 U 210 U	200 U 200 U										190 U 190 U	210 U 210 U	32 J 19 J	120 J 1100 U	200 U 200 U	220 U 220 U	200 U 18 J
Nitrobenzene	ug/kg	69000	26	200 U	200 U	200 U	2100 U	2200 U	200 U	210 U	40 J										190 U	210 U	42 J	1100 U	200 U	220 U	200 U
Pentachlorophenol	ug/kg		800 1000000	390 U	380 U	390 U	4000 U	4200 U	380 U	400 U	390 U					<u> </u>		ļ			370 U	410 U	400 U	2200 U	390 U	430 U	400 U
Phenanthrene Phenol	ug/kg ug/kg	500000 500000	330	200 U 200 U	55 J 200 U	200 U 200 U	120 J 2100 U	280 J 2200 U	200 U 200 U	210 U 210 U	200 U 200 U		1			<u> </u>	1	1		<u> </u>	190 U 190 U	210 U 210 U	64 J 210 U	300 J 1100 U	67 J 200 U	33 J 220 U	150 J 200 U
Pyrene	ug/kg		1000000	200 U	28 J	200 U	240 J	280 J	200 U	210 U	200 U										26 J	20 J	57 J	410 J	53 J	30 J	84 J

			Completion ID	DDI 514 0507	DDI 546 0204	001 517 0204	DDI 540 0304	DDI 530 0304	DDI 534 0304	001 533 0400	DDI 533 0304	DDF 01 0204	DD5 01 0400	DD5 01 0000	DD5 04 0507	DDF 04 0040	DD5 05 0304	DD5 05 0400	DDF 05 4042		CC 01 0102	CC 02 0202	CC 10 0103	CC 20 0102	CC 21 0204	CC 22 0202	CC 22 0204
			Sample ID:					PDI-E20-0204			PDI-E23-0204		DDE-01-0406		DDE-04-0507				DDE-05-1012		CS-01-0102	CS-02-0203	CS-18-0102	CS-20-0102	CS-21-0204	CS-22-0203	CS-23-0204
			Date	: 09/17/09	09/17/09	09/17/09	09/18/09	09/18/09	09/18/09	09/18/09	09/17/09	03/19/10	03/19/10	03/19/10	03/19/10	03/19/10	03/19/10	03/19/10	03/19/10	03/19/10	03/23/10	03/23/10	03/24/10	03/24/10	03/24/10	03/24/10	03/24/10
			Depth	: 5-7'	2-4'	2-4'	2-4'	2-4'	2-4'	4-6'	2-4'	2-4'	4-6'	6-8'	5-7'	8-10'	2-4'	4-6'	10-12'	6-8'	1-2'	2-3'	1-2'	1-2'	2-4'	2-3'	2-4'
			C Values (2)																								/
	(1)		Protection of																								/
Parameter	Units (1)	Use	GW	Result Qual	Result Qual	Result Qual	I Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qua	l Result Qual	Result Qual	Result Qua	l Result Qua	al Result Qua	l Result Qua	Result Qual	Result Qual							
Metals																											4
Cyanide	mg/kg		40																								
Aluminum	mg/kg																										
Antimony	mg/kg																										
Arsenic	mg/kg		16	3.2 J	3.6 J	8.5	8.9	10.1	3.9	10	11.2																
Barium	mg/kg		820	78.9 J	33.6 J	72.4	89.5	99.3	50.1	107	80.1																
Beryllium	mg/kg		47																								
Cadmium		9.3	7.5	0.234 U	0.244 U	0.229 U	0.326	0.295	0.779	0.278	0.437																
Calcium	mg/kg																										
Chromium ⁽³⁾	mg/kg	1500		20.1	7.28	14.7	18.2	17.8	12.7	19.6	16.6																
Cobalt	mg/kg																										
Copper	mg/kg	270	1720																								
Iron	mg/kg																										
Lead	mg/kg	1000	450	7.2	8.1	13.7	12.3	134	8.4	13.2	14.8																1
Magnesium	mg/kg																										
Manganese	mg/kg	10000	2000																								
Nickel	mg/kg	310	130																								
Potassium	mg/kg																										
Selenium	mg/kg	1500	4	4.7 UJ	4.9 UJ	4.6 U	4.7 U	5.3 U	4.5 U	5.2 U	4.9 U																
Silver	mg/kg	1500	8.3	0.585 U	0.611 U	0.572 U	0.587 U	0.658 U	0.568 U	0.646 U	0.612 U																
Sodium	mg/kg																										
Thallium	mg/kg																										
Vanadium	mg/kg																										
Zinc	mg/kg	10000	2480																								
Mercury	mg/kg	2.8	0.73	0.0242	0.0256	0.0237 U	0.0254 U	0.407	0.022 U	0.0247 U	0.039																
PCBs																											/
Aroclor 1016	ug/kg	1000	3200				20 UJ																				
Aroclor 1221	ug/kg	1000	3200				20 UJ																				
Aroclor 1232	ug/kg	1000	3200				20 UJ																				
Aroclor 1242	ug/kg	1000	3200				20 UJ																				
Aroclor 1248	ug/kg	1000	3200				20 UJ																				
Aroclor 1254	ug/kg		3200				20 UJ																				
Aroclor 1260	ug/kg	1000	3200				20 UJ																				1
Aroclor 1262	ug/kg	1000	3200				20 UJ																				
Aroclor 1268		1000	3200	1			20 UJ			1							1	1	1						1		1

Notes:

Notes:
(1) Units: ug/kg = micrograms/kilogram; mg/kg = milligrams/kilogram
(2) New York State Department of Environmental Conservation, Restricted Use Soil Cleanup Objectives, Commercial Use and Protection of Groundwater, Table 375-6.8(b)
(3) Standards used for comparison are for Hexavalent Chromium Qualifiers: U = not detected; J = estimated value; UJ = non-detect reported, reporting limit qualified as estimated; D = duplicate results outside QC limits, may indicate non-homogenous matrix; M = matrix spike outside QC limits, matrix bias indicated; R = data rejected during validation
Shaded value - exceedance of Restricted Use Soil Cleanup Objective

	-		6 L 15		00.05.0100	05 22 2222	00.00.0500	00.04.5505	00.00.0100	00.04.0004	66 30 930 4	00 44 0000	00 45 0004	00 40 0004	05 40 0000
			Sample ID:	CS-24-0204	CS-25-0102	CS-28-0203	CS-30-0506	CS-31-5565	CS-33-0102	CS-34-0304	CS-38-0304	CS-44-0203	CS-45-0304	CS-48-0204	CS-49-0203
			Date:	03/24/10 2-4'	03/24/10 1-2'	05/13/10 2-3'	05/13/10 5-6'	05/13/10 5.5-6.5'	05/13/10 1-2'	05/13/10 3-4'	05/13/10 3-4'	06/16/10 2-3'	06/16/10 3-4'	08/06/10	08/06/10 2-3'
			Depth: Values ⁽²⁾	Z-4	1-2	2-5	5-0	5.5-0.5	1-2	5-4	5-4	2-3	5-4	2-4'	2-5
		Commercial													
Parameter	Units (1)	Use	GW												
VOCs	0	0.00													
1,1,1-Trichloroethane	ug/kg	500000	680	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
1,1,2,2-Tetrachloroethane	ug/kg			190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
1,1,2-Trichloroethane	ug/kg			190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
1,1,2-Trichlorotrifluoroethane	ug/kg			190 U	6 U	67 U	4.2 UJ	4.8 UJ	6.8 UJ	4.1 UJ	43 U	5.4 UJ	4.6 U	45 U	49 U
1,1-Dichloroethane	ug/kg	240000	270	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
1,1-Dichloroethene	ug/kg	500000	330	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
1,2,4-Trichlorobenzene	ug/kg			190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	7.7	2700	1300
1,2-Dibromo-3-chloropropane	ug/kg			190 UJ	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 UJ	4.6 UJ	45 U	49 U
1,2-Dibromomethane (EDB)	ug/kg	500000	4400	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
1,2-Dichlorobenzene 1.2-Dichloroethane	ug/kg	500000 30000	1100 20	770 190 U	6 U 6 U	67 U 67 U	4.2 U 4.2 U	4.8 U 4.8 U	6.8 U 6.8 U	4.1 U 4.1 U	64 43 U	7.1 5.4 U	69 4.6 U	490 45 U	890 49 U
1,2-Dichloropropane	ug/kg ug/kg	30000	20	190 U	6 U	67 U	4.2 U 4.2 U	4.8 U 4.8 U	6.8 U	4.1 U 4.1 U	43 U 43 U	5.4 U	4.6 U	45 U 45 U	49 U 49 U
1,3-Dichlorobenzene	ug/kg	280000	2400	190 U 130 J	6 U	67 U	4.2 U 4.2 U	4.8 U	6.8 U	4.1 U 4.1 U	43 U 43 U	5.4 U	53	380	49 U
1.4-Dichlorobenzene	ug/kg	130000	1800	230	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	51	150	120
2-Butanone	ug/kg	500000	1300	950 U	14 J	340 U	4.2 0 21 U	4.8 U	34 U	4.1 0 1.7 J	210 U	27 U	23 U	220 U	240 U
2-Chloroethyl vinyl ether	ug/kg	500000	120	550 0	1.0	5100		210	510	1.7 5	210 0	27 0	25 0	220 0	210 0
2-Hexanone	ug/kg			950 U	30 U	340 U	21 U	24 U	34 U	21 U	210 U	27 U	23 U	220 U	240 U
4-Methyl-2-pentanone	ug/kg			950 U	30 U	340 U	21 U	24 U	34 U	21 U	210 U	27 U	23 U	220 U	240 U
Acetone	ug/kg	500000	50	950 U	68	340 U	21 UJ	24 UJ	34 UJ	21 UJ	210 U	27 U	23 U	220 U	240 U
Benzene	ug/kg	44000	60	190 U	5.6 J	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
Bromodichloromethane	ug/kg			190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 UJ	4.6 UJ	45 U	49 U
Bromoform	ug/kg			190 U	6 U	67 UJ	4.2 U	4.8 U	6.8 U	4.1 U	43 UJ	5.4 UJ	4.6 UJ	45 U	49 U
Bromomethane	ug/kg			190 U	6 U	55 J	4.2 UJ	4.8 UJ	6.8 UJ	4.1 UJ	43 UJ	5.4 U	4.6 U	45 U	49 U
Carbon disulfide	ug/kg			190 U	6 U	67 U	4.2 UJ	4.8 UJ	6.8 UJ	4.1 UJ	43 U	5.4 UJ	4.6 UJ	45 U	49 U
Carbon tetrachloride	ug/kg	22000	760	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 UJ	4.6 UJ	45 U	49 U
Chlorobenzene	ug/kg	500000	1100	8700	6	4100	4.2 U	4.8 U	6.8 U	4.1 U	55	5.4 U	16	120	27 J
Chlorodibromomethane	ug/kg			190 UJ	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 UJ	4.6 U	45 U	49 U
Chloroethane	ug/kg	250000	270	190 U	6 U	67 UJ	4.2 UJ	4.8 UJ	6.8 UJ	4.1 UJ	43 U	5.4 U	4.6 U	45 U	49 U
Chloroform	ug/kg ug/kg	350000	370	190 U 190 U	6 U 6 U	67 U 67 U	4.2 U 4.2 U	4.8 U 4.8 U	6.8 U 6.8 U	4.1 U 4.1 U	43 U 43 U	5.4 U 5.4 U	4.6 U 4.6 U	45 U 45 U	49 U 49 U
Chloromethane Cis-1,2-Dichloroethene	ug/kg	500000	250	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	43 U	49 U
Cis-1,3-Dichloropropene	ug/kg	300000	230	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	43 U	49 U
Cyclohexane	ug/kg			190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
Dichlorodifluoromethane	ug/kg			190 U	6 U	67 UJ	4.2 U	4.8 U	6.8 U	4.1 U	43 UJ	5.4 U	4.6 U	45 U	49 U
Ethyl benzene	ug/kg	390000	1000	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
Isopropylbenzene	ug/kg			190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
Methyl acetate	ug/kg			190 U	6 U	67 U	4.2 UJ	4.8 UJ	6.8 UJ	4.1 UJ	43 U	5.4 U	4.6 U	45 U	49 U
Methyl tert-Butyl Ether	ug/kg	500000	930	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
Methylcyclohexane	ug/kg			190 U	6 U	50 J	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
Methylene chloride	ug/kg	500000	50	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 UJ	4.6 UJ	45 U	49 U
Styrene	ug/kg			190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
Tetrachloroethene	ug/kg	150000	1300	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
Toluene	ug/kg	500000	700	190 U	6 U	36 J	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	40 J	49 U
Trans-1,2-Dichloroethene	ug/kg	500000	190	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
Trans-1,3-Dichloropropene	ug/kg	200000	470	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
Trichloroethene	ug/kg	200000	470	190 U 190 U	6 U	67 U	4.2 U	4.8 U 4.8 U	6.8 U	4.1 U 4.1 U	43 U	5.4 U	4.6 U	45 U 45 U	49 U 49 U
Trichlorofluoromethane Vinyl acetate	ug/kg			190.0	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
Vinyl acetate Vinyl chloride	ug/kg ug/kg	13000	20	190 U	6 U	67 U	4.2 U	4.8 U	6.8 U	4.1 U	43 U	5.4 U	4.6 U	45 U	49 U
Xylenes, Total	ug/kg	500000	20	190 U 380 U	12 U	130 U	4.2 U 8.5 U	4.8 U 9.6 U	6.8 U 14 U	4.1 U 8.2 U	43 U 85 U	5.4 U 11 U	4.6 U 9.1 U	45 U 89 U	49 U 97 U
Ayienes, Iutai	ug/ kg	300000	1000	300 U	12 0	130.0	0.5 U	9.0 0	14 U	0.2 U	05 0	11.0	5.1 0	07 U	5/0

Produced by: ESW/ANW Checked by: NCF

			Sample ID:	CS-24-0204	CS-25-0102	CS-28-0203	CS-30-0506	CS-31-5565	CS-33-0102	CS-34-0304	CS-38-0304	CS-44-0203	CS-45-0304	CS-48-0204	CS-49-0203
			Date:	03/24/10	03/24/10	05/13/10	05/13/10	05/13/10	05/13/10	05/13/10	05/13/10	06/16/10	06/16/10	08/06/10	08/06/10
			Depth:	2-4'	1-2'	2-3'	5-6'	5.5-6.5'	1-2'	3-4'	3-4'	2-3'	3-4'	2-4'	2-3'
		NYSDEC Commercial													
Parameter	Units (1)	Use	GW												
SVOCs 1,2,4-Trichlorobenzene	ug/kg														
1,2-Dichlorobenzene	ug/kg	500000	1100												
1,3-Dichlorobenzene	ug/kg	280000	2400												
1,4-Dichlorobenzene	ug/kg	130000	1800												
2,2'-Dichlorodiisopropylether 2,2'-Oxybis(1-Chloropropane)	ug/kg ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
2,4,5-Trichloropheno	ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
2,4,6-Trichloropheno	ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
2,4-Dichlorophenol 2,4-Dimethylphenol	ug/kg ug/kg			910 U 910 U	220 U 220 U	1200 U 1200 UJ	190 U 190 UJ	210 U 210 UJ	1300 U 1300 UJ	180 U 180 UJ	210 U 210 UJ	180 U 180 U	180 U 180 U	900 U 900 U	860 U 860 U
2,4-Dinitrophenol	ug/kg			1800 U	430 U	2300 U	380 U	420 U	2500 U	360 U	400 U	360 UJ	350 UJ	1700 U	1700 U
2,4-Dinitrotoluene	ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
2,6-Dichlorophenol	ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
2,6-Dinitrotoluene 2-Chloronaphthalene	ug/kg ug/kg			910 U 910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
2-Chlorophenol	ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
2-Methylnaphthalene	ug/kg			910 U	12 J	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
2-Methylphenol 2-Nitroaniline	ug/kg ug/kg	500000	330	910 U 1800 U	220 U 430 U	1200 U 2300 U	190 U 380 U	210 U 420 U	1300 U 2500 U	180 U 360 U	210 U 400 U	180 U 360 U	180 U 350 U	900 U 1700 U	860 U 1700 U
2-Nitrophenol	ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
3,3'-Dichlorobenzidine	ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
3-Methylphenol	ug/kg			1000 11	420.11	2200 11	200.11	420.11	2500 11	200.11	400.11	200.11	250.11	1700 11	1700.11
3-Nitroaniline 4,6-Dinitro-2-methylphenol	ug/kg ug/kg			1800 U 1800 U	430 U 430 U	2300 U 2300 UJ	380 U 380 UJ	420 U 420 UJ	2500 U 2500 UJ	360 U 360 UJ	400 U 400 UJ	360 U 360 U	350 U 350 U	1700 U 1700 U	1700 U 1700 U
4-Bromophenyl phenyl ether	ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
4-Chloro-3-methylphenol	ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
4-Chloroaniline	ug/kg			910 U 910 U	220 U 220 U	1200 U 1200 U	190 U 190 U	210 U 210 U	1300 U 1300 U	180 U 180 U	210 U 210 U	180 U 180 U	180 U 180 U	900 U 900 U	860 U 860 U
4-Chlorophenyl phenyl ether 4-Methylphenol	ug/kg ug/kg	500000	330	1800 U	430 U	2300 U	380 U	420 U	2500 U	360 U	400 U	360 U	350 U	1700 U	1700 U
4-Nitroaniline	ug/kg			1800 U	430 U	2300 U	380 U	420 U	2500 U	360 U	400 U	360 U	350 U	1700 U	1700 U
4-Nitrophenol	ug/kg	500000		1800 U	430 U	2300 U	380 U	420 U	2500 U	360 U	400 U	360 U	350 U	1700 U	1700 U
Acenaphthene Acenaphthylene	ug/kg ug/kg	500000 500000	98000 107000	910 U 910 U	220 U 220 U	1200 U 1200 U	190 U 190 U	210 U 210 U	1300 U 1300 U	180 U 180 U	210 U 210 U	180 U 180 U	180 U 180 U	900 U 900 U	860 U 860 U
Acetophenone	ug/kg	500000	107000	910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 UJ	860 UJ
Aniline	ug/kg		460	1800 U	430 U	2300 U	380 U	420 U	2500 U	360 U	400 U	360 U	350 U	1700 U	1700 U
Anthracene	ug/kg	500000	1000000	130 J 910 U	220 U 220 U	1200 U 1200 U	18 J 190 U	210 U 210 U	1300 U 1300 U	180 U 180 U	210 U 210 U	180 U 180 U	180 U 180 U	900 U 900 UJ	860 U 860 UJ
Atrazine Benzaldehyde	ug/kg ug/kg			910 U 910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
Benzidine	ug/kg														
Benzo(a)anthracene	ug/kg	5600	1000	330 J	23 J	330 J	75 J	210 U	290 J	180 U	210 U	37 J	19 J	900 U	42 J
Benzo(a)pyrene Benzo(b)fluoranthene	ug/kg ug/kg	1000 5600	22000 1700	340 J 360 J	22 J 42 J	290 J 460 J	55 J 80 J	210 U 210 U	260 J 440 J	180 U 180 U	210 U 16 J	26 J 28 J	180 U 23 J	900 U 900 U	860 U 860 U
Benzo(ghi)perylene	ug/kg	500000	1000000	240 J	27 J	220 J	39 J	210 U	200 J	180 U	210 U	20 J	180 U	900 U	860 U
Benzo(k)fluoranthene	ug/kg	56000	1700	180 J	220 U	160 J	35 J	210 U	160 J	180 U	210 U	11 J	180 U	900 U	860 U
Benzoic Acid Benzyl alcohol	ug/kg														
Biphenyl	ug/kg ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 UJ	860 UJ
Bis(2-chloroethoxy)methane	ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
Bis(2-chloroethyl)ether	ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	ug/kg ug/kg			910 U 910 U	220 U 220 U	1200 U 1200 U	190 U 190 U	210 U 210 U	1300 U 1300 U	89 J 180 U	210 U 210 U	180 U 180 U	180 U 180 U	1900 900 U	860 U 860 U
Caprolactam	ug/kg			910 U	220 U	1200 UJ	190 UJ	210 UJ	1300 UJ	180 UJ	210 UJ	180 UJ	180 UJ	900 UJ	860 UJ
Carbazole	ug/kg		10	70 J	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
Chrysene Di-n-butyl phthalate	ug/kg ug/kg	56000	1000	320 J 910 U	30 J 220 U	370 J 1200 U	71 J 190 U	210 U 210 U	320 J 1300 U	180 U 180 U	210 U 210 U	26 J 180 U	18 J 180 U	900 U 900 U	37 J 860 U
Di-n-octyl phthalate	ug/kg			910 U 910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U 900 U	860 U
Dibenzo(a,h)anthracene	ug/kg	560	1000000	66 J	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
Dibenzofuran Diethyl obthalate	ug/kg	350000	210000	79 J	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
Diethyl phthalate Dimethyl phthalate	ug/kg ug/kg			910 U 910 U	220 U 220 U	1200 U 1200 U	190 U 190 U	210 U 210 U	1300 U 1300 U	180 U 180 U	210 U 210 U	180 U 180 U	180 U 180 U	900 U 900 U	860 U 860 U
Fluoranthene	ug/kg	500000	1000000	820 J	44 J	540 J	140 J	210 U	450 J	180 U	210 0 21 J	58 J	28 J	900 U	37 J
Fluorene	ug/kg	500000	386000	98 J	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
Hexachlorobenzene Hexachlorobutadiene	ug/kg ug/kg	6000	3200	910 U 910 U	220 U 220 U	1200 U 1200 U	190 U 190 U	210 U 210 U	1300 U 1300 U	180 U 180 U	210 U 210 U	180 U 180 U	180 U 180 U	900 U 900 U	860 U 860 U
Hexachlorocyclopentadiene	ug/kg			910 U 910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U 900 U	860 U
Hexachloroethane	ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
Indeno(1,2,3-cd)pyrene	ug/kg	5600	8200	200 J	20 J	210 J	36 J	210 U	190 J	180 U	210 U	19 J	180 U	900 U	860 U
Isophorone N-Nitrosodi-n-propylamine	ug/kg ug/kg			910 U 910 U	220 U 220 U	1200 U 1200 U	190 U 190 U	210 U 210 U	1300 U 1300 U	180 U 180 U	210 U 210 U	180 U 180 U	180 U 180 U	900 U 900 U	860 U 860 U
N-Nitrosodimethylamine	ug/kg									_00 0	_10 0				
N-Nitrosodiphenylamine	ug/kg			910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
Naphthalene Nitrobenzene	ug/kg	500000 69000	12000 26	57 J 150 J	16 J 66 J	1200 U 1200 U	190 U 190 U	210 U 210 U	1300 U 1100 J	180 U 180 U	210 U 210 U	180 U 180 U	180 U 180 U	900 U 900 U	860 U 14000
Pentachlorophenol	ug/kg ug/kg	6700	26	150 J 1800 U	430 U	2300 UJ	190 U 380 UJ	420 UJ	2500 UJ	360 UJ	400 UJ	360 U	350 U	900 U 1700 U	14000 1700 U
Phenanthrene	ug/kg	500000	1000000	670 J	28 J	320 J	75 J	210 U	320 J	180 U	25 J	45 J	180 U	900 U	860 U
Phenol	ug/kg	500000	330	910 U	220 U	1200 U	190 U	210 U	1300 U	180 U	210 U	180 U	180 U	900 U	860 U
Pyrene	ug/kg	500000	1000000	640 J	39 J	460 J	120 J	210 U	320 J	180 U	17 J	52 J	26 J	900 U	34 J

Produced by: ESW/ANW Checked by: NCF

			Sample ID:	CS-24-0204	CS-25-0102	CS-28-0203	CS-30-0506	CS-31-5565	CS-33-0102	CS-34-0304	CS-38-0304	CS-44-0203	CS-45-0304	CS-48-0204	CS-49-0203
			Date:	03/24/10	03/24/10	05/13/10	05/13/10	05/13/10	05/13/10	05/13/10	05/13/10	06/16/10	06/16/10	08/06/10	08/06/10
			Depth:	2-4'	1-2'	2-3'	5-6'	5.5-6.5'	1-2'	3-4'	3-4'	2-3'	3-4'	2-4'	2-3'
				2=4	1-2	2-3	5-0	3.3-0.3	1-2	5-4	5-4	2=5	5=4	2-4	2-5
		NYSDEC	Values ⁽²⁾												
- ·		Commercial	Protection of												
Parameter	Units ⁽¹⁾	Use	GW												
Metals	4		10												
Cyanide	mg/kg	27	40												
Aluminum	mg/kg														├ ────
Antimony	mg/kg														L
Arsenic	mg/kg	16	16												
Barium	mg/kg	400	820												
Beryllium	mg/kg	590	47												
Cadmium	mg/kg	9.3	7.5												
Calcium	mg/kg														
Chromium ⁽³⁾	mg/kg	1500													
Cobalt	mg/kg														
Copper	mg/kg	270	1720												
Iron	mg/kg														
Lead	mg/kg	1000	450												
Magnesium	mg/kg														
Manganese	mg/kg	10000	2000												
Nickel	mg/kg	310	130												
Potassium	mg/kg														
Selenium	mg/kg	1500	4												
Silver	mg/kg	1500	8.3												
Sodium	mg/kg														
Thallium	mg/kg														
Vanadium	mg/kg														
Zinc	mg/kg	10000	2480												
Mercury	mg/kg	2.8	0.73												
PCBs	0, 0														
Aroclor 1016	ug/kg	1000	3200												
Aroclor 1221	ug/kg	1000	3200												
Aroclor 1232	ug/kg	1000	3200					1	1						
Aroclor 1242	ug/kg	1000	3200					1	1						
Aroclor 1248	ug/kg	1000	3200												
Aroclor 1254	ug/kg	1000	3200												
Aroclor 1260	ug/kg	1000	3200												<u>├</u> ───┤
Aroclor 1262	ug/kg	1000	3200												
Aroclor 1268	ug/kg	1000	3200												<u>├</u> ────┤
AIUCIUI 1200	ug/ kg	1000	3200								1				L

Notes:

Notes:
(1) Units: ug/kg = micrograms/kilogram; mg/kg = milligrams/kilogram
(2) New York State Department of Environmental Conservation, Restricted Use Soil Cleanup Objectives, Commercial Use and Protection of Groundwater, Table 375-6.8(b)
(3) Standards used for comparison are for Hexavalent Chromium Qualifiers: U = not detected; J = estimated value; UJ = non-detect reported, reporting limit qualified as estimated; D = duplicate results outside QC limits, may indicate non-homogenous matrix; M = matrix spike outside QC limits, matrix bias indicated; R = data rejected during validation
Shaded value - exceedance of Restricted Use Soil Cleanup Objective

Produced by: ESW/ANW Checked by: NCF

TABLE 2

POST REMEDIAL ACTION GROUNDWATER CONCENTRATIONS -

To Be Provided In Future Revision To This Plan

Table 3

WELL CONSTRUCTION AND MONITORING INFORMATION AREA E - SITE MANAGEMENT PLAN SOUTH BUFFALO DEVELOPMENT - FORMER BUFFALO COLOR FACILITY **BUFFALO, NEW YORK**

Well Identification	Area	Aquifer	Date Installed	Total Depth	Top of Screen	Bottom of Screen	Screened Zone	Measuring Point Elevation	Monitoring Frequency	Monitoring Parameters
R-10	E	Shallow	Oct-85	18	-	-	-	588.75	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
R-11	E	Shallow	Nov-88	17.3	-	-	-	586.31	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
RFI-17	Е	Shallow	May-96	12	6.8	11.8	Till	585.73	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
RFI-29	Е	Shallow	May-96	14	7.5	12.5	Till	585.82	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
RFI-32	Е	Shallow	May-96	13	7.5	12.5	Till	586.44	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
RFI-33	Е	Shallow	Apr-96	12	5.0	10.0	Till	582.53	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
RFI-51	Е	Shallow	Jul-98	14	8.0	13.0	Till	586.90	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
RFI-PZ-16	E	-	-	-	-	-	-	586.71	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
MW-E03	E	Shallow	Oct-09	13	3.0	13.0	Till/Clay	588.44	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
MW-E04	Е	Shallow	Oct-09	11.5	1.5	11.5	Till	588.01	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
MW-E05	Е	Shallow	Aug-10	13	3.0	13.0	Till/Clay	586.65	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
MW-E06	Е	Shallow	Aug-10	13	3.0	13.0	Till/Clay	586.89	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
MW-E07	Е	Shallow	Aug-10	14	4.0	14.0	Till/Clay	586.97	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
MW-E08	E	Shallow	Aug-10	13	3.0	13.0	Till	585.89	Quarterly NAPL checks (for 8 consecutive qtrs), annual sampling*	TCL VOCs, TCL SVOCs, TAL metals
MW-E09	Е	Shallow	Aug-10	13	3.0	13.0	Till	586.98	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
MW-E10	ш	Shallow	Aug-10	13.5	3.5	13.4	Till	585.76	Quarterly NAPL checks (for 8 consecutive qtrs), annual sampling*	TCL VOCs, TCL SVOCs, TAL metals
ICM-PZ-02S	E	Shallow	May-06	20	10.0	20.0	Till/Clay	586.03	Quarterly NAPL checks (for 8 consecutive qtrs), annual sampling*	TCL VOCs, TCL SVOCs, TAL metals
ICM-PZ-03S	Е	Shallow	Jun-06	20	10.0	20.0	Till/Clay	586.24	Quarterly (for 8 consecutive qtrs)*	TCL VOCs, TCL SVOCs, TAL metals
RFI-PZ-17	E	-	-	-	-	-	-	585.97	Quarterly NAPL checks (for 8 consecutive qtrs), annual sampling*	TCL VOCs, TCL SVOCs, TAL metals

NOTES:

NOTES: 1) TCL = Target Compount List by EPA Methods (SVOC list includes aniline) 2) TAL = Target Analyte List by EPA Methods 3) VOCs = Volitile Organic Compounds 4) SVOCs = Semivolitile Organic Compounds 5) NAPL = Nonaqueous Phase Liquid *Monitoring frequency and parameters will be evaluated at end of 8 quarters future methods

future monitoring requirements will be determined at that time (subject to NYSDEC approval)

		Sample ID:	R-01-0108	R-01-0408	R-04-0208	R-14-0708	RFI-17-0108	RFI-17-0408	RFI-17-0708	RFI-17-1008	RFI-29-0108	RFI-29-0408	RFI-29-0708	RFI-29-1008	RFI-32-0108	RFI-32-0408	RFI-32-0708	RFI-32-1008	RFI-33-0108	RFI-33-0708	RFI-33-1008	RFI-36-0208	RFI-36-0408	RFI-36-0708	RFI-36-1008
		Location:	R-01	R-01	R-04	R-14	RFI-17	RFI-17	RFI-17	RFI-17	RFI-29	RFI-29	RFI-29	RFI-29	RFI-32	RFI-32	RFI-32	RFI-32	RFI-33	RFI-33	RFI-33	RFI-36	RFI-36	RFI-36	RFI-36
		Date:	02/05/08	04/24/08	02/06/08	07/29/08	02/05/08	04/25/08	07/29/08	10/16/08	02/04/08	04/24/08	07/29/08	10/16/08	02/04/08	04/24/08	07/29/08	10/16/08	02/04/08	07/29/08	10/16/08	02/06/08	04/24/08	07/29/08	10/16/08
		NYSDEC																						1 1	
Parameter	Units ⁽⁴⁾	Values (5)																						1 1	
VOCs																								(
1,1,1-TRICHLOROETHANE	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-TETRACHLOROETHANE	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-TRICHLOROETHANE	ug/L	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-TRICHLOROTRIFLUOROETHANE	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	6.8	17	5.3	3
1,1-DICHLOROETHANE	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-DICHLOROETHENE	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-TRICHLOROBENZENE	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	0.04	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-DIBROMOETHANE	ug/L	0.0006	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-DICHLOROBENZENE	ug/L	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.9	1.4	3	2.7	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-DICHLOROETHANE	ug/L	0.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	<u>1 U</u>	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-DICHLOROPROPANE	ug/L	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3-DICHLOROBENZENE	ug/L	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.91 J	0.54 J	1 U	0.8 J	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-DICHLOROBENZENE 2-BUTANONE	ug/L ug/L	3 50	1 U 5 U	1 U 5 U	1 U 5 U	1 U 5	1 U 5 U	1 U 5 U	1 U 5 U	1 U 5 U	4.6 5 U	3.8 5 U	5.3 5 U	4 5 U	400 U 2000 U	400 U 2000 U	1 U 5 U	200 U 1000 U	1 U 5 U	1 U 5 U	1 U 5 U	1 U 5 U	1 U 5 U	1 U 5 U	1 U 5 U
2-HEXANONE	ug/L ug/L	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2000 U	2000 U 2000 U	5 U	1000 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-METHYL-2-PENTANONE	ug/L ug/L	50	5 U	5 U	5 U	5 U	50	5 U	5 U	5 U	5 U	5 U	50	5 U	2000 U	2000 U	5 U	1000 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
ACETONE	ug/L	50	5 U	5 U	5 U	8.1	5 U	3.8 J	5 U	5 UJ	5 U	5 U	5 U	5 UJ	2000 U	2000 U	5 U	1000 UJ	5 U	5 U	5 UJ	5 U	5 U	5 U	5 UJ
BENZENE	ug/L	1	1 U	1 U	1 U	0.1 0.5 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	600	670	1	1000 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BROMODICHLOROMETHANE	ug/L	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BROMOFORM	ug/L	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BROMOMETHANE	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CARBON DISULFIDE	ug/L	60	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.25 J	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CARBON TETRACHLORIDE	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CHLOROBENZENE	ug/L	5	1 U	0.65 J	1 U	0.52 J	1 U	1 U	1 U	1 U	12	8.9	14	13	29000	33000	48 J	7900	1 U	1 U	1 U	1 U	1 U	1 U	0.27 J
CHLORODIBROMOMETHANE	ug/L	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CHLOROETHANE	ug/L	5	1 U	1 U	1 U	8.7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CHLOROFORM	ug/L	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CHLOROMETHANE	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CIS-1,2-DICHLOROETHENE	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CIS-1,3-DICHLOROPROPENE ⁽¹⁾	ug/L	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CYCLOHEXANE	ug/L		1 U	1 U	1 U	2.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
DICHLORODIFLUOROMETHANE	ug/L	5	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	400 U	400 UJ	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ETHYLBENZENE	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
METHYL ACETATE	ug/L	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U
METHYL TERT-BUTYL ETHER	ug/L	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	400 U	400 U	1 U	200 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
METHYLCYCLOHEXANE METHYLENE CHLORIDE	ug/L	5	1 U 1 U	1 U 1 U	1 U 1 U	3.4 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	400 U 400 U	400 U 400 U	1 U 1 U	200 U 200 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
STYRENE	ug/L ug/L	5	10	10	1 U 1 U	10	10	10	10	10	10	10	10	10	400 U 400 U	400 U 400 U	10	200 U	1 U 1 U	10	1 U 1 U	10	10	1 U 1 U	1 U 1 U
TETRACHLOROETHENE	ug/L ug/L	5	1 U 1 U	1 U 1 U	1 U 1 U	10	1 U 1 U	1 U 1 U	10	1 U 1 U	1 U 1 U	10	10	10	400 U 400 U	400 U 400 U	10	200 U 200 U	10	1 U 1 U					
TOLUENE	ug/L ug/L	5	1 U 1 U	10	10	1 U	10	1 U	10	10	10	1 U	10	10	400 U	400 U 400 U	10	200 U	10	1 U	10	1 U	10	10	1 U
TRANS-1,2-DICHLOROETHENE	ug/L ug/L	5	10	10	10	10	10	10	10	10	1 U	10	10	10	400 U	400 U	10	200 U	10	10	1 U	10	10	10	10
TRANS-1,3-DICHLOROPROPENE ⁽¹⁾	ug/L	0.4	10	10		10	10	10	10	10	10	10	10	10	400 U	400 U	10	200 U	1 U	10	10	10	10		1 U
TRICHLOROETHENE	ug/L ug/L	0.4	10	1 U	1 U 1 U	1 U	10	10	10	1 U	10	1 U	10	10	400 U 400 U	400 U 400 U	10	200 U 200 U	10	1 U 1 U	10	1 U	10	1 U 1 U	1 U 1 U
TRICHLOROFLUOROMETHANE	ug/L ug/L	5	1 U 1 U	10	10	10	10	1 U	10	10	1 U 1 U	10	10	10	400 U 400 U	400 U 400 U	10	200 U 200 U	10	10	10	10	10	10	1 U 1 U
VINYL CHLORIDE	ug/L ug/L	2	1 U	10	10	10	1 U	1 U	10	1 U	10	10	10	10	400 U	400 U	1 U	200 U	10	1 U	1 U	1 U	1 U	10	1 U
XYLENES, TOTAL	ug/L ug/L	5	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	1200 U	1200 U	3 U	600 U	3 U	<u> </u>	3 U	3 U	3 U	3 U	3 U
ATEINES, TOTAL	ug/L	5	50	50	30	50	50	50	1 30	50	50	50	30	50	1200 0	1200 0	50	000 0	50	50	50	50	50		50

Vinte Vinte <th< th=""><th></th><th></th><th>Sample ID:</th><th>R-01-0108</th><th>R-01-0408</th><th>R-04-0208</th><th>R-14-0708</th><th>RFI-17-0108</th><th>RFI-17-0408</th><th>RFI-17-0708</th><th>RFI-17-1008</th><th>RFI-29-0108</th><th>RFI-29-0408</th><th>RFI-29-0708</th><th>RFI-29-1008</th><th>RFI-32-0108</th><th>RFI-32-0408</th><th>RFI-32-0708</th><th>RFI-32-1008</th><th>RFI-33-0108</th><th>RFI-33-0708</th><th>RFI-33-1008</th><th>RFI-36-0208</th><th>RFI-36-0408</th><th>RFI-36-0708</th><th>RFI-36-1008</th></th<>			Sample ID:	R-01-0108	R-01-0408	R-04-0208	R-14-0708	RFI-17-0108	RFI-17-0408	RFI-17-0708	RFI-17-1008	RFI-29-0108	RFI-29-0408	RFI-29-0708	RFI-29-1008	RFI-32-0108	RFI-32-0408	RFI-32-0708	RFI-32-1008	RFI-33-0108	RFI-33-0708	RFI-33-1008	RFI-36-0208	RFI-36-0408	RFI-36-0708	RFI-36-1008
born born <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>																										
OPPI Wei No. Sol Sol <th></th> <th></th> <th></th> <th>02,00,00</th> <th>0.72.700</th> <th>02/00/00</th> <th>07/20/00</th> <th>02/00/00</th> <th>0.720700</th> <th>07/20/00</th> <th>10/ 10/ 00</th> <th>02,01,00</th> <th>0.72.700</th> <th>01/20/00</th> <th>10/ 10/ 00</th> <th>02/01/00</th> <th>0.72.700</th> <th>07723700</th> <th>10/ 10/ 00</th> <th>02/01/00</th> <th>01/20/00</th> <th>10/ 10/ 00</th> <th>02,00,00</th> <th>0.1/2.1/00</th> <th>01/25/00</th> <th>10/ 10/ 00</th>				02,00,00	0.72.700	02/00/00	07/20/00	02/00/00	0.720700	07/20/00	10/ 10/ 00	02,01,00	0.72.700	01/20/00	10/ 10/ 00	02/01/00	0.72.700	07723700	10/ 10/ 00	02/01/00	01/20/00	10/ 10/ 00	02,00,00	0.1/2.1/00	01/25/00	10/ 10/ 00
CARPON UN L L Lo o <thlo< th=""> <thlo< th=""></thlo<></thlo<>	Parameter	Units ⁽⁴⁾	Values ⁽⁵⁾																							
2 concernant abs 1 3.0 1.0 3.10 1.0 </td <td>SVOCs</td> <td>ug/I</td> <td>5</td> <td>5.11</td> <td>5.11</td> <td>5.11</td> <td>R</td> <td>5.11</td> <td>5.11</td> <td>5.11</td> <td>1.11</td> <td>5.11</td> <td>5.11</td> <td>5.11</td> <td>0.99.11</td> <td>5.11</td> <td>5.11</td> <td>5.11</td> <td>0.98.11</td> <td>5.11</td> <td>5.11</td> <td>1.11</td> <td>5.11</td> <td>5.11</td> <td>5.11</td> <td>1 11</td>	SVOCs	ug/I	5	5.11	5.11	5.11	R	5.11	5.11	5.11	1.11	5.11	5.11	5.11	0.99.11	5.11	5.11	5.11	0.98.11	5.11	5.11	1.11	5.11	5.11	5.11	1 11
144 1000 100 <td>2,2'-OXYBIS(1-CHLOROPROPANE)</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td>	2,2'-OXYBIS(1-CHLOROPROPANE)		-								-															-
bicklessentime ab. bicklessentime bicklessentime <td>2,4,5-TRICHLOROPHENOL</td> <td>Ŭ,</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	2,4,5-TRICHLOROPHENOL	Ŭ,																			1					
Attend Attend<	, ,		5								-															
channe channe<	2,4-DIMETHYLPHENOL		1																							
between between <t< td=""><td>2,4-DINITROPHENOL</td><td>Ŭ,</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>	2,4-DINITROPHENOL	Ŭ,	_																		1					
Schulensen Schulen	2,4-DINITROTOLUENE		-								-															-
vert vert< vert< vert< vert vert< ver	2-CHLORONAPHTHALENE	Ŭ,	10																							
Sample and and a set of a		Ŭ,																								
Diff Diff <thdiff< th=""> Diff Diff <thd< td=""><td>2-METHYLPHENOL</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></thd<></thdiff<>	2-METHYLPHENOL						-														1					
31 ECOMPARAMENT 91 9 9 9 9 <	2-NITROANILINE	Ŭ,	5																							
Mathematic abb b< b b< <		Ŭ,	5								-															
statement water state	3-NITROANILINE		÷								-															
Schedes Alternetwork mk - 5.8 5.9 5.9 5.0 <	4,6-DINITRO-2-METHYLPHENOL	Ŭ,					-														1					
CodeRowand abc 5 5 5 <th< td=""><td></td><td>Ŭ,</td><td></td><td></td><td></td><td></td><td>R</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></th<>		Ŭ,					R														1					
Machimento model	4-CHLOROANILINE		5				R				-										1					
Actionation Math	4-CHLOROPHENYL PHENYL ETHER	Ċ;																								
Accisement But		Ŭ,	5								-															
accom-menume accom-shore bit	4-NITROPHENOL	Ŭ,	5																							
ACCOMMENCE AUX SU U <	ACENAPHTHENE	Ŭ,	20																						-	
MAME Index See 14 Ju See 14		Ŭ,																								
anxane up 1 5 5 1 5 5 5 5 <td>ANILINE</td> <td>Ŭ,</td> <td>5</td> <td></td> <td></td> <td></td> <td>R</td> <td></td>	ANILINE	Ŭ,	5				R																			
Instantanto upb T <	ANTHRACENE	Ŭ,																								
memory memory<		Ŭ,	7.5								-															
stace_pin_ubbancheme ·yph 0.000 5 ·u 5 ·	BENZO(A)ANTHRACENE	ug/L	0.002	5 U	5 U	5 U	R	5 U	0.4 J	5 U	0.2 U	5 U	5 U	5 U	0.2 U	5 U	5 U	5 U	0.2 U	5 U	5 U	0.12 J	5 U	5 U	0.2 J	0.073 J
BERDOGRAMMENT ugl SU U	BENZO(A)PYRENE ⁽²⁾	Ŭ,	-																							
alter configuration unit 0 5 U		Ŭ,	0.002																							
Bis2 - Confignment multiple matrix Sul S	BENZO(K)FLUORANTHENE	Ŭ,	0.002				R																			
Big2 Production Mark ugL 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 1 1 5 1 1 1 1 5 1 5 1	BIS(2-CHLOROETHOXY)METHANE		-								-															-
BUTYLERXP.PHTHALATE ug/L S0 S U	, ,	<u> </u>	_																							
CARBACACE up/L OD S U S	BUTYLBENZYL PHTHALATE	Ŭ,	50	5 U			R	5 U		5 U	1 U			5 U				5 U	0.15 J		5 U	0.39 J	5 U			
chm/s Me ug/L 0.002 5.U 5.U 5.U 8.U 8.U 5.U 5.U <th< td=""><td></td><td>Ŭ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		Ŭ,																								
Div OCTV.PHTHALATE ug/L SU SU <td>CARBAZOLE</td> <td>Ŭ,</td> <td>0.002</td> <td></td>	CARBAZOLE	Ŭ,	0.002																							
DIBLEMACY ug/L S U	DI-N-BUTYL PHTHALATE						R																			
DIBERGOPTIAN UNCL SU			50																							
DIMEMPRY PHTAHATE ug/L S0 S U	DIBENZOFURAN																									
FLUGARNTHENE ug/L 50 5 U 5 U 7 U 5 U <t< td=""><td>DIETHYL PHTHALATE</td><td>Ċ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	DIETHYL PHTHALATE	Ċ,																								
FLUDERNE ug/L 50 5 u 5																										
HEXACHLOROBUTADIENE ug/L 0.5 5 U	FLUORENE																								-	
HEXACHLOROCYCLOPENTADIENE ug/L 5 5 U 10 U 5 U 10 U 5 U 10 U <td>HEXACHLOROBENZENE</td> <td></td>	HEXACHLOROBENZENE																									
HEXACHLOROETHANE ug/L 5 5 5 0 0		Ŭ,																								
ISOPHORONE ug/L 50 5 U	HEXACHLOROETHANE		-																							
N-NITROSO-DI-N-PROPYLAMINE ug/L 5 u<	INDENO(1,2,3-CD)PYRENE	÷.																								
N-INTROSODIPHENVLAMINE ug/L 50 5		.	50																							-
NIROBENZENE ug/L 0.4 5 u 5 u 5 u 5 u 5 u 5 u 5 u 5 u 5 u 5 u 6.2 u 5 u	N-NITROSODIPHENYLAMINE		50																							
PNTACHLOROPHENOl ⁽³⁾ ug/L 1 10 U 10 U <td>NAPHTHALENE</td> <td></td> <td>-</td> <td></td>	NAPHTHALENE		-																							
PHENANTHRENE ug/L 50 5 U <t< td=""><td>(3)</td><td>0,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	(3)	0,																								
PHENOL ⁽³⁾ ug/L 1 5U 5U 5U 5U 5U 5U 5U 5U 5U 5U 0.2 V 5U 5U 5U 5U 0.2 V 5U 5U 0.2 V 5U 5U 0.2 V 5U 5U 5U 0.2 V 5U 5U 5U 5U 5U 5U 5U 5U 5U 5U 5U 5U 5U	PHENANTHRENE		-																							-
PYRENE ug/L 50 5U 5U 5U 7U	PHENOL ⁽³⁾		1	5 UJ			5 U	5 UJ		5 U			5 U	5 U	0.2 U			5 U			5 U	0.2 U	5 UJ	5 U		
	PYRENE	ug/L	50	5 U	5 U	5 U	R	5 U	5 U	5 U	0.2 U	5 U	5 U	5 U	0.2 U	5 U	5 U	5 U	0.2 U	5 U	5 U	0.13 J	0.6 J	1 J	1 J	0.74

		Sample ID:	R-01-0108	R-01-0408	R-04-0208	R-14-0708	RFI-17-0108	RFI-17-0408	RFI-17-0708	RFI-17-1008	RFI-29-0108	RFI-29-0408	RFI-29-0708	RFI-29-1008	RFI-32-0108	RFI-32-0408	RFI-32-0708	RFI-32-1008	RFI-33-0108	RFI-33-0708	RFI-33-1008	RFI-36-0208	RFI-36-0408	RFI-36-0708	RFI-36-1008
		Location:	R-01	R-01	R-04	R-14	RFI-17	RFI-17	RFI-17	RFI-17	RFI-29	RFI-29	RFI-29	RFI-29	RFI-32	RFI-32	RFI-32	RFI-32	RFI-33	RFI-33	RFI-33	RFI-36	RFI-36	RFI-36	RFI-36
		Date:	02/05/08	04/24/08	02/06/08	07/29/08	02/05/08	04/25/08	07/29/08	10/16/08	02/04/08	04/24/08	07/29/08	10/16/08	02/04/08	04/24/08	07/29/08	10/16/08	02/04/08	07/29/08	10/16/08	02/06/08	04/24/08	07/29/08	10/16/08
		NYSDEC																							(
Parameter	Units (4)	Values (5)																							1
Metals																									
ALUMINUM	ug/L		200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U				
ANTIMONY	ug/L	3	20 U	20 U	20 U	10 U	20 U	20 U	20 U	10 U	20 U	20 U	20 U	10 U	20 U	20 U	10 U	20 U	20 U	20 U	10 U				
ARSENIC	ug/L	25	10 U	10 U	10 U	33	10 U	10 U	10 U	10 U	14	15	20	12.2	10 U	10 U	16	6.2 J	10 U	10 U	7 J				
BARIUM	ug/L	1000	11	9.1	210	440	29	110	36	41.8 J	98	89	120	91.1 J	48	51	66	61.2 J	66	63	31.8 J	15	15	24	22.4 J
BERYLLIUM	ug/L	3	2 U	2 U	2 U	2 U	2 U	2 U	2 U	4 U	2 U	2 U	2 U	4 U	2 U	2 U	2 U	4 U	2 U	2 U	4 U	2 U	2 U	2 U	4 U
CADMIUM	ug/L	5	1 U	1 U	1 U	1.1	1 U	1 U	1 U	5 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	5 U	7.9	2.2	13.4	1 U	1 U	1 U	5 U
CALCIUM	ug/L		1300	1300	17600	257000	107000	440000	135000	115000	44200	52800	57700	40100	182000	180000	145000	142000	155000	148000	67200	496000	574000	632000	569000
CHROMIUM	ug/L	50	4 U	4 U	4 U	4 U	12	4 U	4 U	2.4 J	4 U	4 U	4 U	5 U	4 U	4 U	4 U	1.9 J	17	4 U	27.4	4 U	4 U	4 U	1.3 J
COBALT	ug/L		4 U	4 U	4 U	4 U	4 U	4 U	4 U	50 U	4 U	4 U	4 U	50 U	4 U	4 U	4 U	50 U	4 U	4 U	50 U	4 U	4 U	4 U	50 U
COPPER	ug/L	200	10 U	10 U	10 U	25 U	10 U	10 U	10 U	25 U	10 U	10 U	10 U	25 U	10 U	10 U	25 U	10 U	10 U	10 U	25 U				
IRON	ug/L	300	450	240 J	920	62300	77	5400 J	81	100 U	97	340 J	50 U	31.8 J	1500	2500 J	3700	1360	680	600	1140	26600	29900 J	18300	35900
LEAD	ug/L	25	31	26	5 U	5 U	5 U	5 U	5 U	3 U	5 U	5 U	5 U	3 U	5 U	5 U	5 U	3 U	5 U	5 U	2.8 J	5 U	5 U	5 U	3 U
MAGNESIUM	ug/L	35000	740	760	23200	98700	31000	102000	45800	28100	6900	8400	8800	5800	73400	76100	67100	65800	52600	52100	20300	68400	72800	51600	47700
MANGANESE	ug/L	300	3 U	3 U	13	2200	3.5	330 J	140	4.1 J	65	85 J	65	49.9	1100	970 J	700	613	680	610	260	650	730 J	600	588
MERCURY	ug/L	0.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				
NICKEL	ug/L	100	10 U	10 U	12	40 U	10 U	10 U	10 U	40 U	10 U	10 U	10 U	40 U	73	57	28.8 J	10 U	11	10 U	7.6 J				
POTASSIUM	ug/L		2100	2200	5600	63200	1200	3600	1200	1480 J	2800	2800	4100	3310 J	1200	1100	1300	1270 J	850	1000	1110 J	9000	10600	14500	16700
SELENIUM	ug/L	10	15 U	15 U	15 U	15 U	19	15 U	15 U	2.9 J	15 U	15 U	15 U	5 U	15 U	15 U	15 U	5 U	15 U	15 U	5 U	15 U	15 U	15 U	5 U
SILVER	ug/L	50	3 U	3 U	3 U	3 U	3 U	3 U	3 U	5 U	3 U	3 U	3 U	5 U	3 U	3 U	3 U	5 U	3 U	3 U	5 U	3 U	3 U	3 U	5 U
SODIUM	ug/L	20000	186000	188000	82100	475000	85600	12500	54900	87700	165000	121000	204000	202000	71000	70100	52000	49300	256000	292000	125000	36600	34500	31500	34600
THALLIUM	ug/L	0.5	20 U	20 U	20 U	10 U	20 U	20 U	20 U	10 U	20 U	20 U	20 U	10 U	20 U	20 U	10 U	20 U	20 U	20 U	10 U				
VANADIUM	ug/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U	4.5 J	5 U	5 U	5 U	4 J	5 U	5 U	5 U	6.4 J	5 U	5 U	50 U	5 U	5 U	5 U	50 U
ZINC	ug/L	2000	1400	980	370	10 U	31	10 U	10 U	20 U	10 U	10 U	10 U	20 U	10 U	10 U	16	20 U	10 U	10 U	20 U	10 U	10 U	10 U	20 U
Additional Analyses																									
CHLORIDE	ug/L	250000	153000	164000	63400		12400	8400	13500 J	9000	136000	95400	160000 J	169000	86500	81600	61200 J	70600	465000	619000 J	179000	25000	43400	30600 J	27600
CYANIDE	ug/L	200	10 U	10 U	10 U		10 U	10 U	10 U	2.4 J	10 U	2.2 J	10 U	10 U	10 U	1.9 J									
FERROUS IRON	ug/L		100 UJ	100 UJ	100 UJ		100 UJ	100 UJ			100 UJ	100 UJ			400 J	720 J			100 UJ			24800 J	27900 J		L
NITROGEN, NITRATE-NITRITE	ug/L	10000		50 U				50 U	250			50 U	3500			50 U	50 U			1000			50 U	940	t
NITROGEN, NITRATE-NITRITE	ug/L	10000	50 U		50 U		50 U			100 U	50 U			100 U	50 U			100 U	50 U		530	50 U			100 U
SULFATE	ug/L	250000		5000 UJ	5000 U			131000	217000			114000	138000			242000	127000			124000		1660000	1160000	1550000	
SULFATE	ug/L	250000	5000				225000			104000	450000			55400	242222			115000	424000		38300				1560000
SULFATE	ug/L	250000	5000 U				236000			2000	150000			6 4 9 9	340000			2400 ·	134000		4000				2200
SULFIDE	ug/L	50	4000				4000			3000 U	4000			6400	4000			2400 J	4000		4800				3200
SULFIDE	ug/L	50	1000 U	1000			1000 U	1000	1000.11		1000 U	4000.55	1000.11		1000 U		4000.55		1000 U	1000		1000		1000	t
	ug/L	50		1000 U	1000 U			1000 U	1000 U			1000 U	1000 U			1000 U	1000 U			1000 U		1000 U	1000 U	1000 U	t
TOTAL RECOVERABLE PHENOLICS	ug/L	1	40	40.11	10.11		40	47			40	40			40				40.11			10	40		t
TOTAL RECOVERABLE PHENOLICS	ug/L	1	10 U	10 U	10 U		10 U	17			10 U	10 U			10 U	22		I	10 U			10 U	10 U	1	لــــــــــــــــــــــــــــــــــــــ

		Sample ID:	RFI-43-0208	RFI-43-0408	RFI-43R-0408	RFI-43-0708	MW-43-1008	RFI-51-0208	RFI-51R-0208	RFI-51-0408	RFI-51-0708	RFI-51-1008	RFI-PZ04S-0708	RFI-PZ-17-0708	RFI-PZ-17-1008	RFI-PZ-18-0208	RFI-PZ-18-0408	RFI-PZ-18-0708	RFI-PZ-18-1008	RFI-PZ-19-0408	RFI-PZ-19-0708	RFI-PZ-19-1008
		Location:	RFI-43	RFI-43	RFI-43	RFI-43	RFI-43	RFI-51	RFI-51	RFI-51	RFI-51	RFI-51	ICM-PZ-04S	RFI-PZ-17	RFI-PZ-17	RFI-PZ-18	RFI-PZ-18	RFI-PZ-18	RFI-PZ-18	RFI-PZ-19	RFI-PZ-19	RFI-PZ-19
		Date:	02/06/08	04/25/08	04/25/08	07/29/08	10/16/08	02/06/08	02/06/08	04/24/08	07/29/08	10/16/08	07/30/08	07/29/08	10/16/08	02/06/08	04/24/08	07/29/08	10/16/08	04/23/08	07/29/08	10/16/08
		1	02,00,00	0.1/20/00	0 1/ 20/ 00	07/23/00	10/10/00	02/00/00	02/00/00	0 1/ 2 1/ 00	07/20/00	10/10/00	07,00,00	01/25/00	10/10/00	02,00,00	0.1/2.1/00	01/25/00	10/ 10/ 00	0 1/ 20/ 00	07,25,00	10/ 10/ 00
	(4)	NYSDEC																			1 1	
Parameter	Units ⁽⁴⁾	Values ⁽⁵⁾																			L	
VOCs																					I	
1,1,1-TRICHLOROETHANE	ug/L	5	4 UJ	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
1,1,2,2-TETRACHLOROETHANE	ug/L	5	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
1,1,2-TRICHLOROETHANE	ug/L	1	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
1,1,2-TRICHLOROTRIFLUOROETHANE	ug/L	5	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
1,1-DICHLOROETHANE	ug/L	5	4 UJ	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
1,1-DICHLOROETHENE	ug/L	5	4 UJ	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
1,2,4-TRICHLOROBENZENE	ug/L	5	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	0.04	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
1,2-DIBROMOETHANE	ug/L	0.0006	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
1,2-DICHLOROBENZENE	ug/L	3	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
1,2-DICHLOROETHANE	ug/L	0.6	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
1,2-DICHLOROPROPANE	ug/L	1	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
1,3-DICHLOROBENZENE	ug/L	3	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
1,4-DICHLOROBENZENE	ug/L	3	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
2-BUTANONE	ug/L	50	20 U	20 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	10 U	5 U	5 U	10 U	5 U	5 U
2-HEXANONE	ug/L	50	20 U	20 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	10 U	5 U	5 U	10 U	5 U	5 U
4-METHYL-2-PENTANONE	ug/L		20 U	20 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	10 U	5 U	5 U	10 U	5 U	5 U
ACETONE	ug/L	50	20 U	20 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 UJ	3.1 J	5 U	3.5 J	10 U	10 U	5 U	5 UJ	10 U	5 U	5 UJ
BENZENE	ug/L	1	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
BROMODICHLOROMETHANE	ug/L	50	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
BROMOFORM	ug/L	50	4 UJ	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
BROMOMETHANE	ug/L	5	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
CARBON DISULFIDE	ug/L	60	4 UJ	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
CARBON TETRACHLORIDE	ug/L	5	4 UJ	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
CHLOROBENZENE	ug/L	5	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.24 J	2 U	2 U	1 U	1 U	2 U	1 U	1 U
CHLORODIBROMOMETHANE	ug/L	50	4	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
CHLOROETHANE	ug/L	5	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
CHLOROFORM	ug/L	7	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
CHLOROMETHANE	ug/L	5	4 UJ	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
CIS-1,2-DICHLOROETHENE	ug/L	5	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
CIS-1,3-DICHLOROPROPENE (1)	ug/L	0.4	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
CYCLOHEXANE	ug/L		4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
DICHLORODIFLUOROMETHANE	ug/L	5	4 UJ	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
ETHYLBENZENE	ug/L	5	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
ISOPROPYLBENZENE	ug/L	5	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
METHYL ACETATE	ug/L		4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	2 U	2 UJ	1 U	1 U	2 UJ	-	1 U
METHYL TERT-BUTYL ETHER	ug/L	10	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
METHYLCYCLOHEXANE	ug/L	-	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
METHYLENE CHLORIDE	ug/L	5	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.3 J	2 U	1 U	1 U	2 U	1 U	1 U
STYRENE	ug/L	5	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
TETRACHLOROETHENE	ug/L	5	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
TOLUENE	ug/L	5	4 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
TRANS-1,2-DICHLOROETHENE	ug/L	5	4 UJ	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U	2 U	2 U	10	1 U	2 U	1 U	
TRANS-1,3-DICHLOROPROPENE ⁽¹⁾	ug/L	0.4	4 U	4 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U	2 U	1 U	1 U
TRICHLOROETHENE	Ŭ,	0.4	4 U 4 U	4 U 4 U	1 U	10	1 U 1 U	10	10	10	10	10	10	10	1 U	2 U	2 U	1 U	1 U 1 U	2 U	1 U	1 U
TRICHLOROFLUOROMETHANE	ug/L	5	4 U 4 UJ	4 U 4 U	10	1 U 1 U	1 U 1 U	1 U 1 U	10	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U	1 U	2 U	2 U	1 U 1 U	1 U 1 U	2 U 2 U	1 U 1 U	1 U 1 U
VINYL CHLORIDE	ug/L	2	4 UJ 4 UJ						-		1 U 1 U			1	1	2 U 2 U	2 U			2 U 2 U	1 U 1 U	
	ug/L	2	4 UJ 12 U	4 U 12 U	1 U	1 U 2 U	1 U	1 U	1 U	1 U		1 U 2 U	1 U	1 U	1 U			1 U	1 U			1 U 3 U
XYLENES, TOTAL	ug/L	5	12 0	12 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U	6 U	3 U	3 U	6 U	3 U	3 U

		Sample ID:	RFI-43-0208	RFI-43-0408	RFI-43R-0408	RFI-43-0708	MW-43-1008	RFI-51-0208	RFI-51R-0208	RFI-51-0408	RFI-51-0708	RFI-51-1008	RFI-PZ04S-0708	RFI-PZ-17-0708	RFI-PZ-17-1008	RFI-PZ-18-0208	RFI-PZ-18-0408	RFI-PZ-18-0708	RFI-PZ-18-1008	RFI-PZ-19-0408	RFI-PZ-19-0708	RFI-PZ-19-1008
		Location:	RFI-43	RFI-43	RFI-43	RFI-43	RFI-43	RFI-51	RFI-51	RFI-51	RFI-51	RFI-51	ICM-PZ-04S	RFI-PZ-17	RFI-PZ-17	RFI-PZ-18	RFI-PZ-18	RFI-PZ-18	RFI-PZ-18	RFI-PZ-19	RFI-PZ-19	RFI-PZ-19
		Date:	02/06/08	04/25/08	04/25/08	07/29/08	10/16/08	02/06/08	02/06/08	04/24/08	07/29/08	10/16/08	07/30/08	07/29/08	10/16/08	02/06/08	04/24/08	07/29/08	10/16/08	04/23/08	07/29/08	10/16/08
	(4)	NYSDEC																				1
Parameter SVOCs	Units (**)	Values (5)																				l
1,1'-BIPHENYL	ug/L	5	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	1 U	5 U	0.4 J	0.99 U	5 U	0.2 J	5 U	1 U	5 U	5 U	0.99 U
2,2'-OXYBIS(1-CHLOROPROPANE)	ug/L	5	5 UJ	5 U	5 U	5 U	0.21 U	5 UJ	5 UJ	5 U	5 U	-	5 UJ	5 U	0.2 U	5 UJ	5 U	5 U	0.21 U	5 U	5 U	0.2 U
2,4,5-TRICHLOROPHENOL	ug/L		5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U
2,4,6-TRICHLOROPHENOL	ug/L		5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U		5 U	5 U	0.99 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U
2,4-DICHLOROPHENOL 2.4-DIMETHYLPHENOL	ug/L ug/L	5	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	0.21 U 1 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	0.16 J 1 U	5 U 5 U	5 U 5 U	1.9 0.99 U	5 U 5 U	5 U 5 U	5 U 5 U	0.21 U 1 U	0.9 J 5 U	2 J 5 U	0.23 0.99 U
2,4-DINITROPHENOL	ug/L	1	10 U	10 U	10 U	10 U	5.2 U	9 U	9 U	10 U	10 U	5 U	11 U	10 U	5 U	10 U	10 U	11 U	5.2 U	9 U	10 U	5 U
2,4-DINITROTOLUENE	ug/L	5	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U	0.9 J	5 U	0.7 J	1 U	5 U	5 U	0.99 U
	ug/L	5	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U
2-CHLORONAPHTHALENE 2-CHLOROPHENOL	ug/L ug/L	10	5 U 5 UJ	5 U 5 U	5 U 5 U	5 U 5 U	0.21 U 1 U	5 U 5 UJ	5 U 5 UJ	5 U 5 U	5 U 5 U	0.2 U 1 U	5 U 5 U	5 U 5 U	0.2 U 0.99 U	5 U 5 UJ	5 U 5 U	5 U 5 U	0.21 U 1 U	5 U 5 U	5 U 5 U	0.2 U 0.99 U
2-METHYLNAPHTHALENE	ug/L		5 U	5 U	5 U	5 UJ	0.21 U	5 U	5 U	5 U	5 UJ		5 U	5 UJ	0.2 U	5 U	5 U	5 UJ	0.21 U	5 U	5 UJ	0.2 U
2-METHYLPHENOL	ug/L		5 UJ	5 U	5 U	5 U	1 U	5 UJ	5 UJ	5 U	5 U	1 U	5 U	5 U	0.99 U	5 UJ	5 U	5 U	1 U	5 U	5 U	0.99 U
	ug/L	5	10 U	10 U	10 U	10 U	5.2 U	9 U	9 U	10 U	10 U	5 U	11 U	10 U	5 U	10 U	10 U	11 U	5.2 U	9 U	10 U	5 U
2-NITROPHENOL 3,3'-DICHLOROBENZIDINE	ug/L ug/L	5	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	1 U 1 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	1 U 1 U	5 U 5 U	5 U 5 U	0.99 U 0.99 U	5 U 5 U	5 U 5 U	5 U 5 U	1 U 1 U	5 U 5 U	5 U 5 U	0.99 U 0.99 U
3-NITROANILINE	ug/L	5	10 U	10 U	10 U	10 U	5.2 U	9 U	9 U	10 U	10 U	5 U	11 U	10 U	5 U	10 U	10 U	11 U	5.2 U	9 U	10 U	5 U
4,6-DINITRO-2-METHYLPHENOL	ug/L		10 U	10 U	10 U	10 U	5.2 U	9 U	9 U	10 U	10 U	5 U	11 U	10 U	5 U	10 U	10 U	11 U	5.2 U	9 U	10 U	5 U
4-BROMOPHENYL PHENYL ETHER 4-CHLORO-3-METHYLPHENOL	ug/L		5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U
4-CHLORO-3-METHYLPHENOL 4-CHLOROANILINE	ug/L ug/L	5	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	1 U 0.099 J	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	1 U 1 U	5 U 5 U	5 U 5 U	0.99 U 0.99 U	5 U 5 U	5 U 5 U	5 U 5 U	1 U 1 U	5 U 5 U	5 U 5 U	0.99 U 0.16 J
4-CHLOROPHENYL PHENYL ETHER	ug/L		5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U
4-METHYLPHENOL	ug/L		5 UJ	5 U	5 U	5 U	1 U	5 UJ	5 UJ	5 U	5 U	1 U	5 U	5 U	0.99 U	5 UJ	5 U	5 U	1 U	5 U	5 U	0.99 U
	ug/L	5	10 U	10 U	10 U	10 U	5.2 U	9 U	9 U	10 U	10 U	5 U	11 U	10 U	5 U	10 U	10 U	11 U	5.2 U	9 U	10 U	5 U
4-NITROPHENOL ACENAPHTHENE	ug/L ug/L	20	10 UJ 5 U	10 U 5 U	10 U 5 U	10 U 5 U	5.2 U 0.21 U	9 UJ 5 U	9 UJ 5 U	10 U 5 U	10 U 5 U	5 U 0.2 U	11 U 5 U	10 U 5 U	5 U 0.2 U	10 UJ 5 U	10 U 0.3 J	11 U 5 U	5.2 U 0.13 J	9 U 5 U	10 U 5 U	5 U 0.16 J
ACENAPHTHYLENE	ug/L		5 U	5 U	5 U	5 U	0.21 U	5 U	5 U	5 U	5 U	0.2 U	5 U	5 U	0.2 U	5 U	5 U	5 U	0.21 U	5 U	5 U	0.2 U
ACETOPHENONE	ug/L		5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U
ANILINE ANTHRACENE	ug/L ug/L	5 50	10 UJ 5 U	10 U 5 U	10 U 5 U	10 U 5 U	1 U 0.21 U	9 UJ 5 U	9 UJ 5 U	10 U 5 U	10 U 5 U	1 U 0.072 J	11 U 5 U	10 U 5 U	0.99 U 0.2 U	10 UJ 5 U	10 U 5 U	11 U 5 U	1 U 0.21 U	9 U 5 U	10 U 5 U	0.99 U 0.2 U
ATRAZINE	ug/L	7.5	5 U	5 U	5 U	5 U	0.21 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	0.2 U	5 U	5 U	5 U	0.21 0 1 U	5 U	5 U	0.2 U
BENZALDEHYDE	ug/L		R	5 U	5 U	5 U	1 U	R	R	5 U	5 U	1 U	5 U	5 U	0.99 U	R	5 U	5 U	1 U	5 U	5 U	0.99 U
BENZO(A)ANTHRACENE	ug/L	0.002	5 U	5 U	5 U	5 U	0.21 U	5 U	0.3 J	5 U	5 U	0.2 U	5 U	5 U	0.2 U	5 U	0.3 J	5 U	0.21 U	5 U	5 U	0.2 U
BENZO(A)PYRENE	ug/L ug/L	0.002	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	0.21 U 0.21 U	5 U 5 U	0.2 J 0.4 J	5 U 5 U	5 U 5 U	0.2 U 0.2 U	5 U 5 U	5 U 5 U	0.2 U 0.2 U	5 U 5 U	5 U 5 U	5 U 5 U	0.057 J 0.21 U	5 U 5 U	5 U 5 U	0.2 U 0.2 U
BENZO(G,H,I)PERYLENE	ug/L ug/L	0.002	5 U	5 U	5 U	5 U	0.21 U	5 U	0.4 J	5 U	5 U	0.2 U	5 U	5 U	0.2 U	5 U	5 U	5 U	0.068 J	5 U	5 U	0.2 U
BENZO(K)FLUORANTHENE	ug/L	0.002	5 U	5 U	5 U	5 U	0.21 U	5 U	0.2 J	5 U	5 U	0.2 U	5 U	5 U	0.2 U	5 U	5 U	5 U	0.21 U	5 U	5 U	0.2 U
BIS(2-CHLOROETHOXY)METHANE	ug/L	5	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U	5 U	5 U	5 U	1 U	5 U	5 U	0.99 U
BIS(2-CHLOROETHYL)ETHER BIS(2-ETHYLHEXYL)PHTHALATE	ug/L ug/L	1 5	5 UJ 5 U	5 U 5 U	5 U 5 U	5 U 5 U	0.21 U 1 U	5 UJ 5 U	5 UJ 5 U	5 U 5 U	5 U 5 U	0.2 U 1 U	5 U 5 U	5 U 5 U	0.2 U 0.99 U	5 UJ 5 U	5 U 5 U	5 U 5 U	0.21 U 1 U	5 U 5 U	5 U 5 U	0.2 U 0.99 U
BUTYLBENZYL PHTHALATE	ug/L	50	5 U	5 U	5 U	5 U	0.14 J	5 U	5 U	5 U	5 U	10	5 U	5 U	0.45 J	5 U	5 U	5 U	0.2 J	5 U	5 U	0.48 J
CAPROLACTAM	ug/L		5 UJ	5 UJ	5 UJ	5 UJ	0.23 J	5 UJ	5 UJ	5 UJ	5 UJ	0.3 J	5 UJ	5 UJ	5 U	5 UJ	5 UJ	5 UJ	5.2 U	5 UJ	5 UJ	5 U
	ug/L	0.000	5 U	5 U	5 U	5 U	0.21 U	5 U	5 U	5 U	5 U	0.2 U	5 U	5 U	0.2 U	5 U	5 U	5 U	0.21 U	5 U	5 U	0.069 J
CHRYSENE DI-N-BUTYL PHTHALATE	ug/L ug/L	0.002 50	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	0.21 U 0.086 J	5 U 5 U	0.3 J 5 U	5 U 5 U	5 U 5 U		5 U 5 U	5 U 5 U	0.2 U 0.99 U	5 U 0.3 J	5 U 0.5 J	5 U 5 U	0.21 U 0.16 J	5 U 5 U	5 U 5 U	0.2 U 0.077 J
DI-N-OCTYL PHTHALATE	ug/L	50	5 U	5 U	5 U	5 U	1 U	5 U	5 U		5 U		5 U	5 U	0.99 U	5 U	2 J	5 U	1 U	5 U	5 U	
DIBENZO(A,H)ANTHRACENE	ug/L		5 U	5 U	5 U	5 U	0.21 U	5 U	0.3 J	5 U	5 U		5 U	5 U	0.2 U	5 U	5 U	5 U	0.061 J	5 U	5 U	
DIBENZOFURAN DIETHYL PHTHALATE	ug/L ug/L	50	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	0.065 J 1 U	5 U 5 U	5 U 5 U		5 U 5 U		5 U 5 U	5 U 5 U	0.99 U 0.99 U	5 U 5 U	5 U 5 U	5 U 5 U	1 U 1 U	5 U 5 U		
DIMETHYL PHTHALATE	ug/L ug/L	50	5 U	5 U	5 U	5 U	1 U	5 U	5 U		5 U		5 U	5 U	0.99 U	5 U	5 U	5 U	1 U	5 U	5 U	
FLUORANTHENE	ug/L	50	5 U	5 U	5 U	5 U	0.21 U	5 U	5 U	5 U	5 U	0.2 U	5 U	5 U	0.2 U	5 U	5 U	5 U	0.098 J	5 U	5 U	0.2 U
	ug/L	50	5 U	5 U	5 U	5 U	0.069 J	5 U	5 U		5 U		5 U	5 U	0.1 J	5 U	5 U	5 U	0.21 U	5 U	5 U	
HEXACHLOROBENZENE HEXACHLOROBUTADIENE	ug/L ug/L	0.04	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 UJ	0.21 U 0.21 U	5 U 5 U	5 U 5 U		5 U 5 UJ		5 U 5 UJ		0.2 U 0.2 U	5 U 5 U	5 U 5 U	5 U 5 UJ	0.21 U 0.21 U	5 U 5 U	5 U 5 UJ	
HEXACHLOROCYCLOPENTADIENE	ug/L	5	5 UJ	5 U	5 U	5 UJ	1 U	5 UJ	5 UJ		5 UJ		5 UJ	1	0.2 U	5 UJ	5 U	5 UJ	1 U	5 UJ	5 UJ	
HEXACHLOROETHANE	ug/L	5	5 UJ	5 U	5 U	5 UJ	1 U	5 UJ	5 UJ		5 UJ		5 UJ			5 UJ	5 U	5 UJ	1 U	5 U	5 UJ	
INDENO(1,2,3-CD)PYRENE ISOPHORONE	ug/L	0.002	5 U	5 U 5 U	5 U 5 U	5 U	0.21 U 1 U	5 U 5 U	0.3 J	5 U	5 U		5 U	5 U 5 U	0.2 U 0.99 U	5 U	5 U 5 U	5 U 5 U	0.069 J	5 U 5 U	5 U	
N-NITROSO-DI-N-PROPYLAMINE	ug/L ug/L	50	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	0.21 U	5 U 5 U	5 U 5 U		5 U 5 U		5 U 5 U		0.99 0	5 U 5 U	5 U	5 U	1 U 0.21 U	5 U	5 U 5 U	
N-NITROSODIPHENYLAMINE	ug/L	50	5 U	5 U	5 U	5 U	0.21 U	5 U	5 U		5 U			1		5 U	5 U	5 U	0.21 U	5 U	5 U	
NAPHTHALENE	ug/L	10	5 U	5 U	5 U	5 UJ	0.21 U	5 U	5 U		5 UJ		5 U	5 UJ		5 U	5 U	5 UJ	0.21 U	5 U	5 UJ	
	ug/L	0.4	5 U	5 U	5 U	5 U	0.21 U	5 U	5 U		5 U		5 U		0.2 U	5 U	5 U	5 U	0.21 U	5 U	5 U	
PENTACHLOROPHENOL ⁽³⁾ PHENANTHRENE	ug/L ug/L	1 50	10 U 5 U	10 U 5 U	10 U 5 U	10 U 5 U	1 U 0.15 J	9 U 5 U	9 U 5 U	10 U 5 U	10 U 5 U		11 U 5 U	10 U 5 U	0.99 U 0.2 U	10 U 5 U	10 U 5 U	11 U 5 U	1 U 0.21 U	9 U 5 U	10 U 5 U	0.99 U 0.14 J
PHENOL ⁽³⁾	ug/L	1	5 UJ	5 U	5 U	5 U	0.13 J 0.21 U	5 UJ	5 UJ		5 U	1	5 U	5 U	0.2 U	5 UJ	5 U	5 U	0.21 U	5 U	5 U	
PYRENE	ug/L	50	5 U	5 U	5 U	5 U	0.21 U	5 U	5 U		5 U		0.2 J	5 U	0.2 U	5 U	5 U	5 U	0.072 J	5 U		
See notes at end of table						•																

		Sample ID:	RFI-43-0208	RFI-43-0408	RFI-43R-0408	RFI-43-0708	MW-43-1008	RFI-51-0208	RFI-51R-0208	RFI-51-0408	RFI-51-0708	RFI-51-1008	RFI-PZ04S-0708	RFI-PZ-17-0708	RFI-PZ-17-1008	RFI-PZ-18-0208	RFI-PZ-18-0408	RFI-PZ-18-0708	RFI-PZ-18-1008	RFI-PZ-19-0408	RFI-PZ-19-0708	RFI-PZ-19-100
		Location:	RFI-43	RFI-43	RFI-43	RFI-43	RFI-43	RFI-51	RFI-51	RFI-51	RFI-51	RFI-51	ICM-PZ-04S	RFI-PZ-17	RFI-PZ-17	RFI-PZ-18	RFI-PZ-18	RFI-PZ-18	RFI-PZ-18	RFI-PZ-19	RFI-PZ-19	RFI-PZ-19
		Date:	02/06/08	04/25/08	04/25/08	07/29/08	10/16/08	02/06/08	02/06/08	04/24/08	07/29/08	10/16/08	07/30/08	07/29/08	10/16/08	02/06/08	04/24/08	07/29/08	10/16/08	04/23/08	07/29/08	10/16/08
		NYSDEC	02,00,00	0.1/20/00	01/20/00	01/20/00	10/10/00	02,00,00	02/00/00	0.1/2.1/00	07,25,00	10/10/00	01/00/00	07/25/00	10/10/00	02,00,00	0 1/2 1/00	01/25/00	10/ 10/ 00	0 1/ 20/ 00	07723700	10, 10, 00
																					1	/
Parameter	Units ⁽⁴⁾	Values ⁽⁵⁾																			 '	4
Metals	4		200.11	200.11	200.11	200.11	200.11	200.11	200.11	200.11	200.11	200.11	070	200.11	200.11	200.11	200.11	200.11	200.11	200.11	200.11	200
ALUMINUM	ug/L	-	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	870	200 U								
ANTIMONY	ug/L	3	20 U	20 U	20 U	20 U	10 U	20 U	20 U	20 U	20 U	10 U	20 U	20 U	10 U	20 U	20 U	20 U	10 U	20 U	20 U	
ARSENIC	ug/L	25	10 U	10 U	10 U	10 U	10 U	570	580	1000	670	940	10 U	10 U	3 J	10 U	-					
BARIUM	ug/L	1000	12	12	11	11	12 J	14	14	16	19	20.8 J	230	130	142 J	240	170	180	204	46	61	43.3 .
BERYLLIUM	ug/L	3	2 U	2 U		2 U	4 U	2 U	2 U	2 U	2 U	4 U	2 U	2 U	4 U	2 U	2 U	2 U	4 U	2 U		
CADMIUM	ug/L	5	1 U	1 U		1 U	5 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	5 U	1 U	1 U	1 U	5 U	1 U	-	13
CALCIUM	ug/L		396000	536000	514000	406000	384000	443000	436000	487000	533000	533000	444000	396000	344000	280000	233000	210000	198000	608000	644000	499000
CHROMIUM	ug/L	50	4 U	4 U	-	4 U	5 U	4 U	4 U	4 U	4 U	5 U	4 U	4 U	5 U	4 U	4 U	4 U	1.2 J	4 U	4 U	-
COBALT	ug/L		4 U	4 U	-	4 U	50 U	4 U	4 U	4 U	4 U	50 U	4 U	4 U	50 U	4 U	4 U	4 U	50 U	4 U		
COPPER	ug/L	200	10 U	10 U		10 U	25 U	10 U	10 U	10 U	10 U	25 U	10 U	10 U	25 U	66	120	46	25 U	10 U	-	25 U
IRON	ug/L	300	1500	640 J	470 J	250	197	41700	40300	50600 J	28000	34300	48500	6100	7160	11200	5200 J	320	143	928000 J	730000	971000
LEAD	ug/L	25	5 U	5 U		5 U	3 U	5 U	5 U	5 U	5 U	3 U	5 U	5 U	3 U	8.3	9.4	5 U	3 U	5 U	7.4	15 (
MAGNESIUM	ug/L	35000	126000	161000	154000	125000	121000	57000	56900	63200	99700	78100	106000	90000	67200	38500	32600	28300	26000	336000	415000	357000
MANGANESE	ug/L	300	3100	3300 J	3200 J	2600	1620	1300	1300	1400 J	1500	1390	2600	440	306	1700	1900 J	990	789	25800 J	22800	25800
MERCURY	ug/L	0.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2	0.2 U	0.2 U	0.2 U	0.2 U
NICKEL	ug/L	100	10 U	10 U	10 U	10 U	4.5 J	10 U	10 U	10 U	10 U	40 U	10 U	10 U	40 U	10 U	10 U	10 U	40 U	10 U	10 U	40 U
POTASSIUM	ug/L		960	1000	1000	900	1070 J	20700	20900	20000	31300	29900	7000	4100	3660 J	6500	5100	6300	6300	28200	27800	28600
SELENIUM	ug/L	10	15 U	15 U	15 U	15 U	5 U	15 U	15 U	15 U	15 U	5 U	15 U	15 U	5 U	15 U	15 U	15 U	5 U	15 U	15 U	25 U
SILVER	ug/L	50	3 U	3 U	3 U	3 U	5 U	3 U	3 U	3 U	3 U	5 U	3 U	3 U	5 U	3 U	3 U	3 U	5 U	3 U	3 U	7.9
SODIUM	ug/L	20000	27600	28200	27200	30900	32500	122000	121000	116000	149000	141000	13300	11400	10700	17800	14600	20800	21700	152000	140000	156000
THALLIUM	ug/L	0.5	20 U	20 U	20 U	20 U	10 U	20 U	20 U	20 U	20 U	10 U	20 U	20 U	10 U	20 U	20 U	20 U	10 U	200 U	20 U	50 L
VANADIUM	ug/L		5 U	5 U	5 U	5 U	6.8 J	5 U	5 U	5 U	5 U	50 U	5 U	5 U	4 J	5 U	5 U	5 U	4.5 J	5 U	5 U	250 L
ZINC	ug/L	2000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	10 U	20 U	10 U	43	16	20 U	10 U	10 U	100 l
Additional Analyses																						
CHLORIDE	ug/L	250000	18200	14800	15400	24700 J	24700	29100	27800	27900	22900 J	22900		10000 J	9600	8000	6000	9500 J	10100	104000	92300 J	112000
CYANIDE	ug/L	200	10 U	10 U	10 U	10 U	1.8 J	10 U	10 U	10 U	10 U	1.8 J		10 U	4.4 J	10 U	10 U	10 U	4.2 J	10 U	10 U	6.5 J
FERROUS IRON	ug/L		100 UJ	260 J	280 J			24600 J	27100 J	37500 J						13600 J	2400 J			1650000 J		
NITROGEN, NITRATE-NITRITE	ug/L	10000		50 U	50 U	50 U				50 U	50 U			2800			50 U	62		50 U	50 U	
NITROGEN, NITRATE-NITRITE	ug/L	10000	50 U				100 U	50 U	50 U			100 U			100 U	50 U			100 U			480 J
SULFATE	ug/L	250000	1480000	1240000	1250000	1080000		1670000	1680000	1190000	1750000			124000	1	503000	317000	171000		3360000	3820000	1
SULFATE	ug/L	250000					1180000					1770000			54700				12700			4130000
SULFATE	ug/L	250000																				
SULFIDE	ug/L	50					4800					3000 U			3000 U				6400		· · · · · · · · · · · · · · · · · · ·	3200
SULFIDE	ug/L	50			1																'	
SULFIDE	ug/L	50	1000 U	1000 U	1000 U	1000 U		1000 U	1000 U	1000 U	1000 U			1000 U		1000 U	1000 U	1000 U		1000 U	1600 J	1
TOTAL RECOVERABLE PHENOLICS	ug/L	1	1000 0		1 1000 0	1000 0			1000 0	10000	1000 0			2000 0	1	2000 0	1000 0	1000 0				1
	~o/ =	-		10	12	1		10 U		1		1	1		1				l	1	·	+

Notes:

(1) NYSDEC value of 0.4 ug/L is the standard for the sum of these substances
(2) The NYSDEC standard for benzo(a)pyrene is actually "ND" (non-detect), 0 is used for table compatibility

(3) NYSDEC value of 1 ug/L is the standard for the sum of these substances

(4) Units: ug/L = micrograms per liter

(5) New York State Department of Environmental Conservation, Technical and Operational Guidance Series

Ambient Water Quality Standards, Class GA, Table 1

Ambient Water Quality Guidance Values, Class GA, Table 1

Qualifiers: U = not detected; J = estimated value; UJ = non-detect reported, reporting limit qualified as estimated; R = data rejected during validation

Shaded value = exceedance of standard or guidance value

		Canada ID.	DC 01 1100	DC 10 1100	DC 12 1100	D 00 1100	D 00 1100	D 11 1100	D 12 1100	D 14 1100	DEL 17 1100	DEI 20 1100	DEI 22 1100	DEI 22 1100	DEI 26 1100	DEL 51 1100
		Sample ID:	PS-01-1109	PS-10-1109	PS-12-1109	R-08-1109	R-09-1109	R-11-1109	R-13-1109	R-14-1109	RFI-17-1109	RFI-29-1109	RFI-32-1109	RFI-33-1109	RFI-36-1109	RFI-51-1109
		Location:	PS-01-N	PS-10	PS-12	R-08	R-09	R-11	R-13	R-14	RFI-17	RFI-29	RFI-32	RFI-33	RFI-36	RFI-51
		Date:	11/20/2009	11/17/2009	11/20/2009	11/18/2009	11/17/2009	11/18/2009	11/17/2009	11/18/2009	11/17/2009	11/17/2009	11/20/2009	11/18/2009	11/20/2009	11/19/2009
Parameter	Units (4)	NYSDEC Values ⁽⁵⁾														
Parameter VOCs	UTIILS	values														
1.1.1-TRICHLOROETHANE		5	5 U	1 U	1 U	4 U	1 U	5 U	1 U	1 U	1 U	1 U	100 U	1 U	1 U	1 U
1,1,2,2-TETRACHLOROETHANE	ug/L	5	5 U	1 U	1 U	4 U	1 U	5 U	10	1 U	10	1 U	100 U	10	1 U	1 U
1,1,2,2-TRICHLOROETHANE	ug/L	5	5 U	1 U	1 U	4 U	1 U	5 U	1 U	1 U	1 U	1 U	100 U	1 U	1 U	1 U
1,1,2-TRICHLOROTRIFLUOROETHANE	ug/L ug/L	5	5 U	1 U	1 U	4 U	10	5 U	10	1 U	10	1 U	100 U	10	22	1 U
1,1-DICHLOROETHANE	ug/L	5	5 U	1 U	1 U	77	1 U	5 U	1 U	1 U	1 U	1 U	100 U	10	1 U	1 U
1,1-DICHLOROETHENE	ug/L ug/L	5	5 U	1 U	1 U	4 U	10	5 U	10	10	10	1 U	100 U	10	1 U	10
1,2,4-TRICHLOROBENZENE	ug/L ug/L	5	5 U	1 U	1 U	13	1 U	5 U	1 U	1 U	1 U	1 U	100 U	1 U	1 U	1 U
1.2-DIBROMO-3-CHLOROPROPANE	ug/L ug/L	0.04	5 U	10	1 U	4 U	10	5 U	1 U	10	10	10	100 U	10	1 U	10
1,2-DIBROMOES-CHEOROFROPANE	ug/L	0.004	5 U	1 U	1 U	4 U	1 U	5 U	10	1 U	1 U	1 U	100 U	10	1 U	1 U
1.2-DICHLOROBENZENE	ug/L ug/L	3	5 U	10	1 U	2300	0.43 J	5 U	1.3	10	1.1	3	100 U	10	10	0.56 J
1.2-DICHLOROETHANE	ug/L ug/L	0.6	5 U	10	1 U	4 U	0.43 J 1 U	5 U	1.5 1 U	10	1.1 1 U	1 U	100 U	10	1 U	1 U
1.2-DICHLOROPROPANE	ug/L ug/L	1	5 U	10	1 U	4 U	1 U	5 U	1 U	1 U	10	1 U	100 U	10	10	1 U
1.3-DICHLOROBENZENE	ug/L ug/L	3	5 U	1 U	1 U	24	10	5 U	1 U	1 U	1 U	1.1	100 U	10	10	1 U
1,4-DICHLOROBENZENE	ug/L	3	<u> </u>	1 U	1 U	300	0.57 J	5 U	1 U	1 U	10	5.2	49 J	1 U	1 U	10
2-BUTANONE	ug/L	50	25 U	5 U	5 U	16 J	5 U	25 U	5 U	6.3	5 U	5 U	500 U	5 U	5 U	5 U
2-HEXANONE	ug/L	50	25 U	5 U	5 U	20 U	5 U	25 U	5 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U
4-METHYL-2-PENTANONE	ug/L	50	25 U	5 U	5 U	20 U	5 U	25 U	5 U	5 U	5 U	50	500 U	5 U	50	5 U
ACETONE	ug/L	50	25 U	5 U	5 U	59	2.2 J	20 J	2.1 J	36	5 U	5 U	500 U	5 U	5 U	5 U
BENZENE	ug/L	1	5 U	1 U	1 U	24	0.48 J	5 U	1 U	0.57 J	1 U	1 U	420	1 U	1 U	1 U
BROMODICHLOROMETHANE	ug/L	50	5 U	1 U	10	4 U	1 U	5 U	1 U	1 U	1 U	10	100 U	1 U	1 U	1 U
BROMOFORM	ug/L	50	5 UJ	1 U	1 U	4 U	1 U	5 U	1 U	1 U	1 U	1 U	100 UJ	1 U	1 UJ	1 UJ
BROMOMETHANE	ug/L	5	5 UJ	1 U	1 U	4 U	1 U	5 U	1 U	1 U	1 U	1 U	100 UJ	1 U	1 UJ	1 UJ
CARBON DISULFIDE	ug/L	60	5 U	1 U	1 U	4 U	1 U	5 U	1 U	1 U	1 U	1 U	100 U	1 U	1 U	1 U
CARBON TETRACHLORIDE	ug/L	5	5 U	1 U	1 U	4 U	1 U	5 U	1 U	1 U	1 U	1 U	100 U	1 U	1 U	1 U
CHLOROBENZENE	ug/L	5	2.2 J	1 U	0.87 J	72	190	5 U	1 U	0.77 J	1.3	14	28000	1 U	1 U	1.7
CHLORODIBROMOMETHANE	ug/L	50	5 U	1 U	1 U	4 U	1 U	5 U	1 U	1 U	1 U	1 U	100 U	1 U	1 U	1 U
CHLOROETHANE	ug/L	5	5 U	1 U	1 U	4 U	1 U	5 U	0.76 J	2.5	1 U	1 U	100 U	1 U	1 U	1 U
CHLOROFORM	ug/L	7	5 U	1 U	1 U	30	1 U	5 U	1 U	1 U	1 U	1 U	100 U	1 U	1 U	1 U
CHLOROMETHANE	ug/L	5	5 U	1 U	1 U	4 U	1 U	5 U	1 U	1 U	1 U	1 U	100 U	1 U	1 U	1 U
CIS-1,2-DICHLOROETHENE	ug/L	5	5 U	1 U	1 U	4 U	1 U	5 U	1 U	1 U	1 U	1 U	100 U	1 U	1 U	1 U
CIS-1,3-DICHLOROPROPENE ⁽¹⁾	ug/L	0.4	5 U	1 U	1 U	4 U	1 U	5 U	1 U	1 U	1 U	1 U	100 U	1 U	1 U	1 U
CYCLOHEXANE	ug/L	.	5 U	1 U	1 U	4 U	1 U	5 U	1 U	3.5	1 U	1 U	100 U	1 U	1 U	1 U
DICHLORODIFLUOROMETHANE	ug/L	5	5 U	1 U	10	4 U	10	5 U	1 U	1 U	10	1 U	100 U	1 U	1 U	10
ETHYLBENZENE	ug/L	5	5 U	1 U	1 U	7.4	1 U	5 U	1 U	10	1 U	1 U	100 U	1 U	1 U	1 U
ISOPROPYLBENZENE	ug/L	5	5 U	1 U	10	4 U	10	5 U	1 U	0.44 J	1 U	10	100 U	1 U	1 U	10
METHYL ACETATE	ug/L		5 UJ	1 U	1 UJ	4 U	1 U	5 UJ	1 U	1 U	1 U	10	100 UJ	1 U	1 UJ	1 UJ
METHYL TERT-BUTYL ETHER	ug/L	10	5 U	1 U	1 U	4 U	10	5 U	1 U	10	1 U	10	100 U	1 U	1 U	1 U
METHYLCYCLOHEXANE	ug/L		5 U	1 U	10	4 U	10	5 U	1 U	7.2	1 U	10	100 U	1 U	1 U	10
METHYLENE CHLORIDE	ug/L	5	5 U	1 U	10	4 U	1 U	5 U	1 U	1 U	1 U	10	100 U	1 U	1 U	10
STYRENE	ug/L	5	5 U	1 U	1 U	27	1 U	5 U	1 U	1 U	1 U	1 U	100 U	1 U	1 U	1 U
TETRACHLOROETHENE	ug/l	5	5 U	1 U	1 U	4 U	1 U	5 U	1 U	1 U	1 U	1 U	100 U	1 U	1 U	1 U
TOLUENE	ug/L	5	5 U	1 U	1 U	43	0.93 J	5 U	1.9	1 U	1 U	10	100 U	1 U	1 U	10
TRANS-1,2-DICHLOROETHENE	ug/L	5	5 U	1 U	1 U	4 U	1 U	5 U	1.0	1 U	1 U	10	100 U	1 U	1 U	1 U
TRANS-1.3-DICHLOROPROPENE ⁽¹⁾	ug/L	0.4	5 U	1 U	1 U	4 U	1 U	5 U	1 U	10	1 U	1 U	100 U	10	10	1 U
TRICHLOROETHENE	ug/L ug/L	5	5 U	1 U	1 U	4 U	10	5 U	10	1 U	10	1 U	100 U	1 U	10	1 U
TRICHLOROFLUOROMETHANE	0,	5	5 U	1 U	1 U	4 U	10	5 U	1 U	10	10	1 U	100 U	10	10	10
VINYL CHLORIDE	ug/L ug/L	2	5 U	1 U	1 U	4 U	10	5 U	10	1 U	10	1 U	100 U	10	1 U	1 U
XYLENES. TOTAL	ug/L ug/L	5	10 U	1 U 2 U	2 U	18	2 U	10 U	2 U	2 U	2 U	2 U	200 U	2 U	2 U	2 U
	I Ug/L	Э	10.0	20	20	18	20	10.0	20	20	20	20	200 0	20	20	20

2,2'-OXYBIS(1-CHLOROPROPANE) ug/L 5 4 UJ 3.9 U 3.9 U 3.8 U 3.9 U 4.0 3.9 U 4.0 U 3.9 U 3.9 U 4.0 U 3.9 U 4.0 U 4.0 U 3.9 U 4.0 U 4.9 U 4.8 U 4.8 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U </th <th>6 RFI-51 2009 11/19/2009 0 U</th>	6 RFI-51 2009 11/19/2009 0 U
Parameter NYSDEC Vulus (s) NYSDEC Values (s) NY	UJ 4.9 UJ UJ 3.9 UJ UJ 4.9 UJ UJ 9.7 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ
Parameter Units ⁽⁴⁾ Values ⁽⁵⁾ Ome Ome <td>UJ 3.9 UJ UJ 4.9 UJ UU 4.9 UJ UU 4.9 UJ UJ 4.9 UJ</td>	UJ 3.9 UJ UJ 4.9 UJ UU 4.9 UJ UU 4.9 UJ UJ 4.9 UJ
SVOCs Image: Normal Stress of the Stress of th	UJ 3.9 UJ UJ 4.9 UJ UU 4.9 UJ UU 4.9 UJ UJ 4.9 UJ
2,2'-OXYBIS(1-CHLOROPROPANE) ug/L 5 4 UJ 3.9 U 3.9 U 3.8 U 3.9 U 4.0 3.9 U 4.0 U 3.9 U 3.9 U 4.0 U 3.9 U 4.0 U 4.0 U 3.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.8 U 4.9 U </td <td>UJ 3.9 UJ UJ 4.9 UJ UU 4.9 UJ UU 4.9 UJ UJ 4.9 UJ</td>	UJ 3.9 UJ UJ 4.9 UJ UU 4.9 UJ UU 4.9 UJ UJ 4.9 UJ
2,4,5-TRICHLOROPHENOL ug/L 5 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 5 UJ 4.8 UJ 4.8 UJ 2,4,6-TRICHLOROPHENOL ug/L 5 UJ 4.9 UJ 4.8 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ	UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ
2,4,6-TRICHLOROPHENOL ug/L 5 UJ 4.9 UJ	UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 4.9 UJ UJ 9.7 UJ UJ 4.9 UJ UJ 4.9 UJ
2,4-DIMETHYLPHENOL ug/L 1 5 UJ 4.9 UJ 5 J 4.8 UJ 4.9 UJ 5 UJ 4.9 UJ 5 UJ 4.8 UJ 4.8 UJ 2,4-DIMETHYLPHENOL ug/L 1 9.9 UJ 9.8 UJ 9.7 UJ 980 U 9.6 UJ 9.7 UJ 9.8 UJ 9.7 UJ 9.8 UJ 9.7 UJ 9.8 UJ 9.7 UJ 9.8 UJ 9.7 UJ 9.8 UJ 9.7 UJ 9.8 UJ 9.7 UJ 9.8 UJ 9.7 UJ 9.8 UJ 9.9 UJ 9.5 U 9. 2,4-DINITROTOLUENE ug/L 5 5 UJ 4.9 UJ 4.9 U 4.8 U 4.8 U 4.8 U 4.8 U 4.8 U 4.9 U 4.9 U 4.9 U	UJ 4.9 UJ 3 UJ 9.7 UJ 4.9 UJ 4.9 UJ 0 UJ 4.9 UJ 0 UJ 4.9 UJ
2,4-DINITROPHENOL ug/L 1 9.9 UJ 9.8 UJ 9.7 UJ 980 U 9.6 UJ 9.7 U 10 U 9.8 UJ 9.7 UJ 9.5 U 9.7 UJ 9.8 UJ 9.7 UJ 9.6 UJ 9.7 UJ 10 U 9.8 UJ 9.7 UJ 9.5 U 9.5 U 9.7 UJ 9.8 UJ	UJ 9.7 UJ UJ 4.9 UJ UJ 4.9 UJ
2,4-DINITROTOLUENE ug/L 5 5 UJ 4.9 U 4.9 U 4.9 U 4.8 U 4.9 U 5 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.8 U 4.8 U 4.8 U 4.9 U 4.9 U 4.9 U 4.9 U 5 UJ 4.8 U 4.8 U 4.9 U 5 UJ 4.8 U 4.8 U 4.9 U 5 UJ 4.8 U 4.8 U 4.9 U 5 UJ 4.8 U 4.8 U 4.9 U 5 UJ 4.8 U 4.8 U 4.9 U 5 UJ 4.8 U 4.8 U 4.9 U 5 UJ 4.8 U 4.8 U 4.9 U 5 UJ 4.8 U 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 4.9 U 5 UJ 4.8 U 5 UJ 4.8 U 5 UJ 4.8 U 5 UJ 4.8 U 5 UJ 5 UJ 4.8 U 5 UJ 5 UJ 4.8 U 5 UJ 5 UJ 5 UJ 5 UJ 5 UJ 5 UJ 5 UJ 5	0 UJ 4.9 UJ 0 UJ 4.9 UJ
	UJ 4.9 UJ UJ 4.9 U
	UJ 4.9 UJ
	UJ 4.9 U UJ 9.7 UJ
$\mathbf{\hat{y}}$	UJ 4.9 UJ
	UJ 4.9 UJ
S S S S S S S S S S S S S S S S S S S	UJ 9.7 UJ 9.7 UJ 9.7 UJ
4-BROMOPHENYL PHENYL ETHER Ug/L 5 UJ 4.9 U 4.9 U 4.9 U 4.9 U 4.8 U 4.9 U 5 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.8 U 4.8 U	UJ 4.9 UJ
	0 UJ 4.9 UJ
	UJ 4.9 UJ UJ 4.9 UJ
4-METHYLPHENOL 0g/L 9.9 UJ 9.8 UJ 9.7 UJ 980 UJ 9.6 UJ 9.7 UJ 9.8 UJ 9.7 UJ 9.8 UJ 9.7 UJ 9.8 UJ 9.7 UJ 9.8 UJ 9.9 UJ 9.5 UJ 9.	9.7 UJ
	9.7 UJ
4-NITROPHENOL ug/L 9.9 UJ 9.8 UJ 9.7 UJ 98 UJ 9.6 UJ 9.7 UJ 10 UJ 9.8 UJ 9.7 UJ 9.9 UJ 9.5 UJ 9.5 UJ 9.5 UJ 9.6 UJ 9.7 UJ 10 UJ 9.8 UJ 9.7 UJ 9.9 UJ 9.5 U	SUJ 9.7 UJ SJ 4.9 UJ
ACENAPHTHYLENE ug/L 5 UJ 4.9 U 4.9 UJ 490 U 4.8 U 4.9 U 5 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.8 U 4.8 U	UJ 4.9 UJ
	UJ 4.9 UJ 3 UJ 9.7 U
	UJ 4.9 UJ
	UJ 4.9 UJ
	UJ 4.9 UJ UJ 4.9 UJ
	4.9 UJ 4.9 UJ
	UJ 4.9 UJ
	UJ 4.9 UJ UJ 4.9 UJ
	UJ 4.9 U
	UJ 4.9 U
	UJ 4.9 UJ UJ 4.9 UJ
S S S S S S S S S S S S S S S S S S S	UJ 4.9 UJ
	UJ 4.9 UJ
S S S S S S S S S S S S S S S S S S S	UJ 4.9 UJ UJ 4.9 UJ
DIBENZO(A,H)ANTHRACENE ug/L 5 UJ 4.9 U 4.9 UJ 490 U 4.8 U 4.9 U 5 U 4.9 U 4.9 U 4.9 U 5 U 4.9 U 4.9 U 4.9 U 5 UJ 4.8 U 4.8 U	UJ 4.9 UJ
	3 UJ 9.7 UJ 9 UJ 4.9 UJ
$\mathbf{\hat{y}}$	4.9 UJ 4.9 UJ
ENDRIN ALDEHYDE ug/L 5 5 UJ 4.9 U 4.9 UJ 490 U 4.8 U 4.9 U 5 U 0.43 J 4.9 U 4.9 U 5 UJ 4.8 U 4.8 U 4.8 U	UJ 4.9 UJ
FLUORANTHENE ug/L 50 5 UJ 4.9 U 0.41 J 490 U 4.8 U 4.9 U 5 U 4.9 U 4.9 U 5 UJ 0.53 J 1. FLUORANTHENE ug/L 50 5 UJ 4.9 U 4.9 U 4.9 U 5 UJ 4.9 U 5 UJ 0.53 J 1.	2 J 4.9 UJ 9 UJ 4.9 UJ
S S S S S S S S S S S S S S S S S S S	UJ 4.9 UJ
$\mathbf{\hat{y}}$	UJ 4.9 UJ
\mathbf{v}	UJ 4.9 UJ UJ 4.9 U
INDENO(1,2,3-CD)PYRENE ug/L 0.002 5 UJ 4.9 U 4.9 UJ 490 UJ 4.8 U 4.9 U 5 UJ 4.9 UJ 4.9 UJ 4.9 UJ 5 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.9 UJ 4.8 UJ 4.8 UJ 4.8 UJ 4.8 UJ 4.9 U	UJ 4.9 UJ
	UJ 4.9 UJ
	UJ 4.9 U UJ 4.9 UJ
NAPHTHALENE ug/L 10 5 UJ 4.9 U 4.9 U 4.8 U 4.9 U 5 U 1.6 J 4.9 U 4.9 U 4.8 U 4.8 U	UJ 4.9 UJ
	UJ 4.9 UJ
	9.7 UJ 9.7 UJ 4.9 UJ
PHENOL ug/L 1 5 UJ 4.9 UJ 4.9 UJ 4.8 UJ 4.9 UJ 5 UJ 4.9 UJ 4.9 UJ 0.95 J 4.8 UJ 4.9 UJ	UJ 4.9 UJ
PYRENE ⁽³⁾ ug/L 50 5 UJ 4.9 UJ 4.9 UJ 4.8 UJ 4.9 UJ 5 UJ 4.9 UJ 5 UJ 4.9 UJ 5 UJ 4.9 UJ 5 UJ 4.9 UJ 5 UJ 4.9 UJ 5 UJ 4.9 UJ 5 UJ 4.9 UJ 5 UJ 4.9 UJ 5 UJ 4.9 UJ 5 UJ 4.8 UJ	. J 4.9 UJ

		Sample ID: Location:	PS-01-1109 PS-01-N	PS-10-1109 PS-10	PS-12-1109 PS-12	R-08-1109 R-08	R-09-1109 R-09	R-11-1109 R-11	R-13-1109 R-13	R-14-1109 R-14	RFI-17-1109 RFI-17	RFI-29-1109 RFI-29	RFI-32-1109 RFI-32	RFI-33-1109 RFI-33	RFI-36-1109 RFI-36	RFI-51-1109 RFI-51
		Date:	11/20/2009	11/17/2009	11/20/2009	11/18/2009	11/17/2009	11/18/2009	11/17/2009	11/18/2009	11/17/2009	11/17/2009	11/20/2009	11/18/2009	11/20/2009	11/19/2009
		NYSDEC	11, 20, 2005	11/1//2000	11/20/2000	11/10/2000	11, 17, 2000	11, 10, 2000	11/1//2003	11/10/2000	11/1//2005	11/1/2005	11/20/2005	11, 10, 2005	11/20/2000	11, 15, 2005
Parameter	Units (4)	Values (5)														
Total Metals																
ARSENIC	ug/L	25	10 U	10 U	10 U	10 U	10 U	10 U	10 U	25.6	10 U	17.7	17.9	10 U	10 U	776
BARIUM	ug/l	1000	108	47	26.1	30.8	102	145	110	371	41.3	107	32.4	71	17	18
CADMIUM	ug/L	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.7	1 U	1 U
CHROMIUM	ug/L	50	4 U	4 U	4 U	5.8	4 U	4 U	4 U	4 U	4.2	4 U	4 U	65.5	4 U	4 U
LEAD	ug/L	25	5 U	5 U	13	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
MERCURY	ug/l	0.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
SELENIUM	ug/l	10	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U
SILVER	ug/l	50	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Dissolved Metals																
ARSENIC	ug/L									22					10.1	
BARIUM	ug/l									309					16.5	
CADMIUM	ug/L									1 U					1 U	
CHROMIUM	ug/L									4 U					4 U	
LEAD	ug/L									5 U					5 U	
MERCURY	ug/l									0.2 U					0.2 U	
SELENIUM	ug/l									15 U					15 U	
SILVER	ug/l									3 U					3 U	
Additional Analyses																
AMMONIA	mg/L	2			0.02 U								0.037			
DISSOLVED OXYGEN	mg/L												6.85 J			
NITRATE	mg/L	10			0.05 U								0.05 U			
NITROGEN, KJELDAHL, TOTAL	mg/L				0.28								0.35			
рН	S.U.												7.77 J			
PHOSPHORUS	mg/L				0.0293								0.01 U			
TOTAL ALKALINITY	mg/L				286 J								593 J			

		Sample ID:	RFI-PZ-17-1109_2	RFI-PZ-17R-1109	RFI-PZ-18-1109	RFI-PZ-19-1109	MW-E01-1109	MW-E02-1109	MW-E03-1109	MW-E04-1109
		Location:	RFI-PZ-17	RFI-PZ-17	RFI-PZ-18	RFI-PZ-19	TB-E01	TB-E02	TB-E03	TB-E04
		Date:	11/20/2009	11/20/2009	11/20/2009	11/18/2009	11/20/2009	11/20/2009	11/20/2009	11/20/2009
		NYSDEC								
Parameter	Units ⁽⁴⁾	Values (5)								
VOCs										
1,1,1-TRICHLOROETHANE	ug/L	5	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
1,1,2,2-TETRACHLOROETHANE	ug/L	5	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
1,1,2-TRICHLOROETHANE	ug/L	1	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
1,1,2-TRICHLOROTRIFLUOROETHANE	ug/L	5	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
1,1-DICHLOROETHANE	ug/L	5	5 U	5 U	5 U	1 U	200 U	0.44 J	1 U	1 U
1,1-DICHLOROETHENE	ug/L	5	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
1,2,4-TRICHLOROBENZENE	ug/L	5	5 U	5 U	5 U	1 U	200 U	0.45 J	1 U	0.48 J
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	0.04	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
1,2-DIBROMOETHANE	ug/L	0.0006	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
1,2-DICHLOROBENZENE	ug/L	3	5 U	5 U	5 U	1 U	200 U	7.2	1 U	0.55 J
1,2-DICHLOROETHANE	ug/L	0.6	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
1,2-DICHLOROPROPANE	ug/L	1	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
1,3-DICHLOROBENZENE	ug/L	3	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
1,4-DICHLOROBENZENE	ug/L	3	5 U	5 U	5 U	1 U	200 U	1.1	1 U	1 U
2-BUTANONE	ug/L	50	25 U	25 U	25 U	5 U	1000 U	5 U	5 U	5 U
2-HEXANONE	ug/L	50	25 U	25 U	25 U	5 U	1000 U	5 U	5 U	5 U
4-METHYL-2-PENTANONE	ug/L		25 U	25 U	25 U	5 U	1000 U	5 U	5 U	5 U
ACETONE	ug/L	50	25 U	25 U	25 U	3.1 J	1000 U	7.1	5 U	5 U
BENZENE	ug/L	1	5 U	5 U	5 U	1 U	110 J	1 U	1 U	1 U
BROMODICHLOROMETHANE	ug/L	50	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
BROMOFORM	ug/L	50	5 UJ	5 UJ	5 UJ	1 U	200 UJ	1 U	1 U	1 UJ
BROMOMETHANE	ug/L	5	5 U	5 U	5 UJ	1 U	200 UJ	1 U	1 U	1 UJ
CARBON DISULFIDE	ug/L	60	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
CARBON TETRACHLORIDE	ug/L	5	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
CHLOROBENZENE	ug/L	5	5 U	5 U	5 U	1 U	130000	11	1.4	0.8 J
CHLORODIBROMOMETHANE	ug/L	50	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
CHLOROETHANE	ug/L	5	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
CHLOROFORM	ug/L	7	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
CHLOROMETHANE	ug/L	5	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
CIS-1,2-DICHLOROETHENE	ug/L	5	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
CIS-1.3-DICHLOROPROPENE ⁽¹⁾	ug/L	0.4	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
CYCLOHEXANE	ug/L	0.4	5 U	5 U	5 U	10	200 U	10	1 U	1 U
DICHLORODIFLUOROMETHANE	ug/L	5	5 U	5 U	5 U	10	200 U	1 U	1 U	1 U
ETHYLBENZENE	ug/L	5	5 U	5 U	5 U	1 U	430	1 U	1 U	1 U
ISOPROPYLBENZENE	ug/L	5	5 U	5 U	5 U	1 U	200 U	10	1 U	1 U
METHYL ACETATE	ug/L	5	5 UJ	5 UJ	5 UJ	1 U	200 UJ	1 UJ	1 UJ	1 UJ
METHYL TERT-BUTYL ETHER	ug/L ug/L	10	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
METHYLCYCLOHEXANE	ug/L	10	5 U	5 U	5 U	10	200 U	10	1 U	1 U
METHYLENE CHLORIDE	ug/L ug/L	5	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
STYRENE	ug/L	5	5 U	5 U	5 U	10	200 U	10	10	10
TETRACHLOROETHENE	ug/L ug/l	5	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
TOLUENE	ug/I ug/L	5	5 U	5 U	5 U	10	350	1 U	10	10
TRANS-1,2-DICHLOROETHENE	ug/L ug/L	5	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
		0.4	5 U	5 U	5 U	1 U	200 U	10	10	10
	ug/L	0.4				-		-		-
TRANS-1,3-DICHLOROPROPENE	110/1	-	E 11							
TRICHLOROETHENE	ug/L	5	5 U	5 U	5 U	1 U	200 U	1 U	1 U	1 U
	ug/L ug/L ug/L	5 5 2	5 U 5 U 5 U	5 U 5 U 5 U	5 U 5 U 5 U	1 U 1 U 1 U	200 U 200 U 200 U	1 U 1 U 1 U	1 U 1 U 1 U	1 U 1 U 1 U

See notes at end of table

Produced by: KJC 02/15/10 Checked by: CSR 02/17/10

		Sample ID:	RFI-PZ-17-1109 2	RFI-PZ-17R-1109	RFI-PZ-18-1109	RFI-PZ-19-1109	MW-E01-1109	MW-E02-1109	MW-E03-1109	MW-E04-1109
		Location:	RFI-PZ-17	RFI-PZ-17	RFI-PZ-18	RFI-PZ-19	TB-E01	TB-E02	TB-E03	TB-E04
		Date:	11/20/2009	11/20/2009	11/20/2009	11/18/2009	11/20/2009	11/20/2009	11/20/2009	11/20/2009
	(4)	NYSDEC								
Parameter	Units ⁽⁴⁾	Values (5)	-							
SVOCs 1,1'-BIPHENYL	ug/I	5	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
2,2'-OXYBIS(1-CHLOROPROPANE)	ug/L ug/L	5	4.3 UJ	4 UJ	4 UJ	4.9 U	42 U	4.8 UJ	4 UJ	44 U
2,4,5-TRICHLOROPHENOL	ug/L	5	5.4 UJ	5 UJ	5 UJ	4.9 UJ	53 U	4.8 UJ	5 UJ	55 U
2,4,6-TRICHLOROPHENOL	ug/L		5.4 UJ	5 UJ	5 UJ	4.9 UJ	53 U	4.8 UJ	5 UJ	55 U
2,4-DICHLOROPHENOL	ug/L	5	1.9 J	1.8 J	5 U	4.9 UJ	53 U	4.8 UJ	5 UJ	55 U
2,4-DIMETHYLPHENOL	ug/L	1	5.4 U	5 UJ	5 UJ	4.9 UJ	53 U	4.8 UJ	5 UJ	55 U
2,4-DINITROPHENOL	ug/L	1	11 UJ	10 UJ	10 U	9.7 UJ	110 U	9.5 UJ	10 UJ	110 U
2,4-DINITROTOLUENE	ug/L	5	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	150
2,6-DINITROTOLUENE 2-CHLORONAPHTHALENE	ug/L ug/L	5 10	5.4 UJ 5.4 UJ	5 UJ 5 UJ	5 UJ 5 UJ	4.9 U 4.9 U	53 U 53 U	4.8 UJ 4.8 UJ	5 UJ 5 UJ	290 55 U
2-CHLOROPHENOL	ug/L ug/L	10	5.4 U	5 UJ	5 U	4.9 UJ	280	4.8 UJ	5 U	55 U
2-METHYLNAPHTHALENE	ug/L		5.4 U	5 UJ	5 U	4.9 U	53 U	4.8 UJ	5 UJ	55 U
2-METHYLPHENOL	ug/L		5.4 U	5 UJ	5 U	4.9 UJ	53 U	4.8 UJ	5 U	55 U
2-NITROANILINE	ug/L	5	11 UJ	10 UJ	10 UJ	9.7 U	110 U	9.5 UJ	10 UJ	110 U
2-NITROPHENOL	ug/L		5.4 U	5 UJ	5 UJ	4.9 UJ	53 U	4.8 UJ	5 UJ	55 U
3,3'-DICHLOROBENZIDINE	ug/L	5	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
3-NITROANILINE	ug/L	5	11 UJ	10 UJ	10 UJ	9.7 U	110 U	9.5 UJ	10 UJ	110 U
4,6-DINITRO-2-METHYLPHENOL 4-BROMOPHENYL PHENYL ETHER	ug/L ug/L		11 UJ 5.4 UJ	10 UJ 5 UJ	10 UJ 5 UJ	9.7 UJ 4.9 U	110 U 53 U	9.5 UJ 4.8 UJ	10 UJ 5 UJ	110 U 55 U
4-BROMOPHENYL PHENYL ETHER 4-CHLORO-3-METHYLPHENOL	ug/L ug/L		5.4 UJ 5.4 U	5 UJ	5 U	4.9 UJ	53 U	4.8 UJ 4.8 UJ	5 UJ	55 U
4-CHLOROANILINE	ug/L	5	5.4 U	5 UJ	5 U	4.9 U	53 U	4.8 UJ	5 UJ	55 U
4-CHLOROPHENYL PHENYL ETHER	ug/L	-	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
4-METHYLPHENOL	ug/L		11 UJ	10 UJ	10 UJ	9.7 UJ	15 J	9.5 UJ	10 UJ	110 UJ
4-NITROANILINE	ug/L	5	11 UJ	10 UJ	10 UJ	9.7 U	110 U	9.5 UJ	10 UJ	110 U
4-NITROPHENOL	ug/L		11 UJ	10 UJ	10 UJ	9.7 UJ	110 UJ	9.5 UJ	10 UJ	110 UJ
ACENAPHTHENE	ug/L	20	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
ACENAPHTHYLENE ACETOPHENONE	ug/L ug/L		5.4 UJ 5.4 UJ	5 UJ 5 UJ	5 UJ 5 UJ	4.9 U 4.9 U	53 U 53 U	4.8 UJ 4.8 UJ	5 UJ 5 UJ	55 U 55 U
ANILINE	ug/L	5	5.4 UJ 11 U	10 UJ	10 U	4.9 U 9.7 U	440	4.8 UJ 2.5 J	10 U	110 U
ANTHRACENE	ug/L	50	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
ATRAZINE	ug/L	7.5	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
BENZO(A)ANTHRACENE	ug/L	0.002	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
BENZO(A)PYRENE ⁽²⁾	ug/L	0	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
BENZO(B)FLUORANTHENE	ug/L	0.002	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
BENZO(G,H,I)PERYLENE	ug/L		5.4 UJ	5 UJ	5 UJ	4.9 UJ	53 U	4.8 UJ	5 UJ	55 U
	ug/L	0.002	5.4 UJ 5.4 U	5 UJ 5 UJ	5 UJ 5 U	4.9 U 4.9 U	53 U	4.8 UJ 4.8 UJ	5 UJ 5 U	55 U 55 U
BIS(2-CHLOROETHOXY)METHANE BIS(2-CHLOROETHYL)ETHER	ug/L ug/L	5	5.4 U	5 UJ	5 U	4.9 U	53 U 53 U	4.8 UJ	5 U	55 U
BIS(2-ETHYLHEXYL)PHTHALATE	ug/L	5	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
BUTYLBENZYL PHTHALATE	ug/L	50	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
CAPROLACTAM	ug/L		5.4 UJ	5 UJ	5 UJ	4.9 UJ	53 UJ	4.8 UJ	5 UJ	55 UJ
CARBAZOLE	ug/L		5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
CHRYSENE	ug/L	0.002	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
DI-N-BUTYL PHTHALATE DI-N-OCTYL PHTHALATE	ug/L	50	0.34 J	5 UJ	0.48 J	4.9 U	53 U	4.8 UJ	5 UJ	55 U
DI-N-OCTYL PHTHALATE DIBENZO(A,H)ANTHRACENE	ug/L ug/L	50	5.4 UJ 5.4 UJ	5 UJ 5 UJ	5 UJ 5 UJ	4.9 U 4.9 U	53 U 53 U	4.8 UJ 4.8 UJ	5 UJ 5 UJ	55 U 55 U
DIBENZO(A, H)ANTHRACENE	ug/L		5.4 UJ 11 UJ	10 UJ	10 UJ	4.9 U 9.7 U	110 U	4.8 UJ 9.5 UJ	10 UJ	110 U
DIETHYL PHTHALATE	ug/L	50	0.56 J	5 UJ	5 UJ	4.9 U	53 U	0.4 J	5 UJ	55 U
DIMETHYL PHTHALATE	ug/L	50	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
ENDRIN ALDEHYDE	ug/L	5	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
FLUORANTHENE	ug/L	50	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
FLUORENE	ug/L	50	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
HEXACHLOROBENZENE	ug/L	0.04	5.4 UJ	5 UJ	5 UJ 5 U	4.9 U 4.9 UJ	53 U	4.8 UJ	5 UJ	55 U
HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE	ug/L ug/L	0.5 5	5.4 U 5.4 UJ	5 UJ 5 UJ	5 U 5 UJ	4.9 UJ 4.9 UJ	53 U 53 U	4.8 UJ 4.8 UJ	5 UJ 5 UJ	55 U 55 U
HEXACHLOROETHANE	ug/L	5	5.4 U	5 UJ	5 U	4.9 UJ	53 U	4.8 UJ	5 U	55 U
INDENO(1,2,3-CD)PYRENE	ug/L	0.002	5.4 UJ	5 UJ	5 UJ	4.9 UJ	53 U	4.8 UJ	5 UJ	55 U
ISOPHORONE	ug/L	50	5.4 U	5 UJ	5 U	4.9 U	53 U	4.8 UJ	5 UJ	55 U
N-NITROSO-DI-N-PROPYLAMINE	ug/L		5.4 U	5 UJ	5 U	4.9 U	53 U	4.8 UJ	5 U	55 U
N-NITROSODIPHENYLAMINE	ug/L	50	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
NAPHTHALENE	ug/L	10	5.4 U	5 UJ	5 U	4.9 U	50 J	4.8 UJ	5 UJ	55 U
NITROBENZENE	ug/L	0.4	5.4 U	5 UJ	5 U	4.9 U	53 U	4.8 UJ	5 UJ	55 U
PENTACHLOROPHENOL	ug/L	1	11 UJ	10 UJ	10 UJ	9.7 UJ	110 U	9.5 UJ	10 UJ	110 U
PHENANTHRENE ⁽³⁾	ug/L	50	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U
PHENOL	ug/L	1	5.4 U	5 UJ	5 UJ	4.9 UJ	53 UJ	4.8 UJ	0.44 J	55 UJ
PYRENE ⁽³⁾	ug/L	50	5.4 UJ	5 UJ	5 UJ	4.9 U	53 U	4.8 UJ	5 UJ	55 U

See notes at end of table

Produced by: KJC 02/15/10 Checked by: CSR 02/17/10

		Sample ID:	RFI-PZ-17-1109_2	RFI-PZ-17R-1109	RFI-PZ-18-1109	RFI-PZ-19-1109	MW-E01-1109	MW-E02-1109	MW-E03-1109	MW-E04-1109
		Location:	RFI-PZ-17	RFI-PZ-17	RFI-PZ-18	RFI-PZ-19	TB-E01	TB-E02	TB-E03	TB-E04
	Date:		11/20/2009	11/20/2009	11/20/2009	11/18/2009	11/20/2009	11/20/2009	11/20/2009	11/20/2009
		NYSDEC								
Parameter	Units ⁽⁴⁾	Values (5)								
Total Metals										
ARSENIC	ug/L	25	10 U	10 U	10 U	10 U	19.9	10 U	10 U	10 U
BARIUM	ug/l	1000	152	178	228	21.3	79.5	31.2	83.4	43
CADMIUM	ug/L	5	1 U	1 U	1 U	3.1	1 U	1 U	1 U	1.9
CHROMIUM	ug/L	50	4 U	4 U	4 U	20 U	20.5	4.7	4 U	4 U
LEAD	ug/L	25	5 U	5 U	72	25 U	66.8	9.9	5 U	5 U
MERCURY	ug/l	0.7	0.2 U	0.2 U	0.2 U	0.2 U	0.8	0.2 U	0.2 U	0.2 U
SELENIUM	ug/l	10	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U
SILVER	ug/l	50	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Dissolved Metals										
ARSENIC	ug/L									
BARIUM	ug/l									
CADMIUM	ug/L									
CHROMIUM	ug/L									
LEAD	ug/L									
MERCURY	ug/l									
SELENIUM	ug/l									
SILVER	ug/l									
Additional Analyses										
AMMONIA	mg/L	2					0.871	0.026	1.17	
DISSOLVED OXYGEN	mg/L						5.51 J	8.28 J	6.71 J	
NITRATE	mg/L	10					0.05 U	0.02 J	0.05 U	
NITROGEN, KJELDAHL, TOTAL	mg/L						8.1	0.25	1.7	
рН	S.U.						8.56 J	7.88 J	7.65 J	
PHOSPHORUS	mg/L						1.26	0.01 U	0.01 U	
TOTAL ALKALINITY	mg/L						473 J	286 J	319 J	

Notes: (1) NYSDEC value of 0.4 ug/L is the standard for the sum of these substances

(2) The NYSDEC standard for benzo(a)pyrene is actually "ND" (non-detect), 0 is used for table compatibility

(3) NYSDEC value of 1 ug/L is the standard for the sum of these substances

(4) Units: ug/L = micrograms per liter; mg/L = milligrams per liter; S.U. = standard units

(5) New York State Department of Environmental Conservation, Technical and Operational Guidance Series

Ambient Water Quality Standards, Class GA, Table 1

Ambient Water Quality Guidance Values, Class GA, Table 1

Qualifiers: U = not detected; J = estimated value; UJ = non-detect reported, reporting limit qualified as estimated Shaded value = exceedance of standard or guidance value

Produced by: KJC 02/15/10 Checked by: CSR 02/17/10

		Class C Surface Water	Туре	Basis	SW006-0307	SW011-0307	DMH-E7-0410	DMH-E15-0410	DMH-E18-0410	DMH-E21-0410	DMH-E30-0410
Parameter		Standard		Code	3/1/2007	3/1/2007	4/23/2010	4/23/2010	4/23/2010	4/23/2010	4/23/2010
General Chemistry	Units										
Ammonia as N	mg/L	**	A (C)		9	0.26	0.551	0.734	1.62	1.21	1.01
pH	S.U.	6.5 ≤ Value ≤ 8.5			7.86	7.92	7.8	7.92	7.9	7.93	7.67
Phenolics, Total Recoverable	mg/L				0.05	0.04	0.0149 19.3 J	0.0309 17 J	0.0133 24.3 J	0.037 23.9 J	0.0203 14.9 J
Total Organic Carbon Total Suspended Solids	mg/L mg/L				7	3.2 <4	19.5 J NA	NA	24.3 J NA	NA	14.9 J NA
Metals	IIIg/L				/	<4	NA	NA	NA	INA	NA
Aluminum, Dissolved	mg/L	0.1	A (C)		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Antimony, Dissolved	mg/L		71(0)		<0.02	0.0634	<0.02	<0.02	<0.02	<0.02	0.0213
Arsenic, Dissolved	mg/L	0.15	A (C)		0.201	< 0.01	<0.01	0.0148	< 0.01	<0.01	<0.01
Barium, Dissolved	mg/L				0.0549	0.0941	0.0634	0.0529	0.0622	0.0605	0.0666
Beryllium, Dissolved	mg/L	*	A (C)		< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Cadmium, Dissolved	mg/L	*	A (C)		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Calcium, Dissolved	mg/L				127	146	100	82	108	118	149
Chromium, Dissolved	mg/L	*	A (C)		< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004
Cobalt, Dissolved	mg/L	0.005	A (C)		< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004
Copper, Dissolved	mg/L	*	A (C)		< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Iron, Dissolved	mg/L				2.01	0.632	0.14	<0.087	<0.091	<0.052	<0.05
Lead, Dissolved	mg/L	*	A (C)		< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005
Magnesium, Dissolved	mg/L				13.4	24	21	16.4	20.4	20.7	27.6
Manganese, Dissolved	mg/L		A (C)		0.39	0.317	0.926	0.408	0.634	0.605	0.357
Mercury, Dissolved	mg/L	0.00077	A (C)		<0.0002J	<0.0002J	<0.0002	<0.0002	<0.0002	< 0.0002	< 0.0002
Nickel, Dissolved	mg/L	*	A (C)		<0.01	0.0243	0.0293	0.0108	0.0152	0.0161	0.0108
Potassium, Dissolved Selenium, Dissolved	mg/L	0.0046	A (C)		31.6 <0.015	3.66 <0.015	8.23 <0.015	6.43 <0.015	9.8 <0.015	10.2 <0.015	9.09 <0.015
	mg/L	0.0046			<0.015	<0.015	<0.003	<0.015	<0.015	<0.003	<0.015
Silver, Dissolved Sodium, Dissolved	mg/L mg/L	0.0001	A (C)		<0.003 184	<0.003 402	<0.003 249 J	<0.003 230 J	<0.003 266 J	<0.003 254 J	<0.003 179 J
Thallium, Dissolved	mg/L	0.008	A (C)		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Vanadium, Dissolved	mg/L	0.008	A (C)		<0.005	<0.002	<0.02	<0.02	<0.005	<0.02	<0.02
Zinc, Dissolved	mg/L	*	A (C)		0.113	0.103	0.0548	0.053	0.061	0.0811	0.0456
Volatile Organic Compounds	ilig/c				0.115	0.105	0.0548	0.055	0.001	0.0011	0.0450
1.1.1-Trichloroethane	ug/L				<1	<1	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	ug/L				NA	NA	<1	<1	<1	<1	<1
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L				<1	<1	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	ug/L				NA	NA	<1	<1	<1	<1	<1
1,1-Dichloroethane	ug/L				NA	NA	<1	<1	<1	<1	<1
1,1-Dichloroethene	ug/L				NA	NA	<1	<1	<1	<1	<1
1,2,4-Trichlorobenzene	ug/L	5	A (C)		1.7	15	2	1.1	4.1	7.8	12
1,2-Dibromo-3-Chloropropane	ug/L				NA	NA	<1	<1	<1	<1	<1
1,2-Dibromoethane	ug/L				NA	NA	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	ug/L	5	A (C), ***		50	29	4	3.4	55	66	51
1,2-Dichloroethane	ug/L				<1	<1	<1	<1	<1	<1	<1
1,2-Dichloropropane	ug/L				NA	NA	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	ug/L	5	A (C), ***		5.8	10	0.86 J	<1	3.4	4.6	12
1,4-Dichlorobenzene	ug/L	5	A (C), ***		20	12	1.2	0.95 J	15	16	23
2-Butanone (MEK)	ug/L				<5	<5	<5	<5	2.5 J	1.9 J	<5
2-Hexanone	ug/L				NA	NA	<5	<5	<5	<5	<5
4-Methyl-2-pentanone (MIBK)	ug/L				NA	NA	<5	<5	<5	<5	<5
Acetone	ug/L		11 (50)		6.5 12	<5	21	22 2.3	24 82	40 34	6.3
Benzene	ug/L	10	H (FC)			1.6 NA	0.76 J				3.7
Bromodichloromethane Bromoform	ug/L				NA NA	NA	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Bromomethane	ug/L ug/L				NA	NA	<1	<1	<1	<1	<1
Carbon disulfide	ug/L				NA <1	NA <1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L				<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	ug/L	5 to 400	^	В	340	160	10	14	660	900	150
Chloroethane	ug/L			-	NA	NA	<1	<1	<1	<1	<1
Chloroform	ug/L				<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L				<1	<1	0.74 J	0.57 J	0.71 J	<1	<1
cis-1,2-Dichloroethene	ug/L				7.3	<1	<1	<1	<1	<1	<1
cis-1,3-Dichloropropene	ug/L				NA	NA	<1	<1	<1	<1	<1
Cyclohexane	ug/L				<1	<1	<1	<1	<1	<1	<1
Dibromochloromethane	ug/L				NA	NA	<1	<1	<1	<1	<1
Dichlorodifluoromethane	ug/L				NA	NA	<1	<1	<1	<1	<1
Ethylbenzene	ug/L				1.7	<1	<1	<1	3	3.7	<1
Isopropylbenzene	ug/L				<1	<1	<1	<1	<1	<1	<1
Methyl acetate	ug/L				<1	<1	<1	<1	<1	<1	<1
Methylcyclohexane	ug/L				<1	<1	<1	<1	<1	<1	<1
Methylene Chloride	ug/L	200	H (FC)	А	<1	<1	<1	<1	<1	<1	<1
Methyl-t-Butyl Ether (MTBE)	ug/L				NA	NA	<1	<1	<1	<1	<1
Styrene	ug/L				<1	<1	<1	<1	<1	<1	<1
Tetrachloroethene	ug/L				<1	<1	<1	<1	<1	<1	<1
Toluene	ug/L	6000	H (FC)	В	14	<1	<1	0.63 J	0.86 J	1.8	<1
trans-1,2-Dichloroethene	ug/L				NA	NA	<1	<1	<1	<1	<1
trans-1,3-Dichloropropene	ug/L				NA	NA	<1	<1	<1	<1	<1
Trichloroethene	ug/L	40	H (FC)	А	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L				NA	NA	<1	<1	<1	<1	<1
Vinyl chloride	ug/L ug/L				<1	<1	<1	<1	<1	<1	<1
Xylenes, Total					19	<3	0.94 J	<2	<2	<2	<2

		Class C Surface Water		Basis	SW006-0307	SW011-0307	DMH-E7-0410	DMH-E15-0410	DMH-E18-0410	DMH-E21-0410	DMH-E30-0410
Parameter		Standard	Туре	Code	3/1/2007	3/1/2007	4/23/2010	4/23/2010	4/23/2010	4/23/2010	4/23/2010
Semi-Volatile Organic Compounds											
2,4,5-Trichlorophenol	ug/L				<10	<9	<100	<100	<110	<52	<48
2,4,6-Trichlorophenol	ug/L				NA	NA	<100	<100	<110	<52	<48
2,4-Dichlorophenol	ug/L	1.0	E (FS)	V	<10	<9	<100	<100	<110	<52	<48
2,4-Dimethylphenol	ug/L	1000	H (FC)	В	<10	<9	<100	<100	<110	<52	<48
2,4-Dinitrophenol	ug/L	400	H (FC)	В	23 J	<47	<200	<200	<210	<100	< 95
2,4-Dinitrotoluene	ug/L				290	6 J	<100	<100	<110	<34 J	16 J
2,6-Dinitrotoluene	ug/L				150	10	<100	<100	<110	160	81
2-Chloro-5-Nitrobenzenediami	ug/L				29 J	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene	ug/L				NA	NA	<100	<100	<110	<52	<48
2-Chlorophenol	ug/L				6 J	<9	<100	<100	<110	<52	<48
2-Methylnaphthalene	ug/L				<10	<9	<100	<100	<110	<52	<48
2-Methylphenol	ug/L				<10	<9	<100	<100	<110	<52	<48
2-Nitroaniline	ug/L				4 J	<47	<200	<200	<210	<100	< 95
2-Nitrophenol	ug/L				NA	NA	<100	<100	<110	<52	<48
2-Nitrotoluene	ug/L				300 J	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine	ug/L				0.5 J	0.8 J	<100	<100	<110	<52	5.5 J
3-Methylbenzeneamine	ug/L				93 J	NA	NA	NA	NA	NA	NA
3-Nitroaniline	ug/L				97	<47	<200	<200	<210	<100	< 95
4,6-Dinitro-2-methylphenol	ug/L				NA	NA	<200	<200	<210	<100	< 95
4-Bromophenyl phenyl ether	ug/L				NA <10	NA <9	<100 <100	<100 <100	<110 <110	<52	<48 <48
4-Chloro-3-methylphenol	ug/L									<52	
4-Chloroaniline	ug/L				13 J NA	12 J NA	<100 <100	<100 <100	<110 <110	<52 <52	<48 <48
4-Chlorophenyl phenyl ether 4-Methyl-1,3-Benzenediamine	ug/L ug/L				NA 43 J	NA NA	<100 NA	<100 NA	<110 NA	<52 NA	<48 NA
					43 J	NA <9		<200	<210	<100	< 95
4-Methylphenol 4-Nitroaniline	ug/L ug/L				NA	<9 NA	30 J <200	<200	<210	<100	< 95
4-Nitrophenol	ug/L				NA	NA	<200	<200	<210	<100	< 95
Acenaphthene	ug/L				21	<9	<100	<100	<110	<52	<48
Acenaphthylene	ug/L				<10	<9	<100	<100	<110	<52	<48
Acetophenone	ug/L				<10	<9	<100	<100	<110	<52	<48
Aniline	ug/L				1300 J	84 J	31 J	240	1300	57 J	22 J
Anthracene	ug/L				0.2 J	<9	<100	<100	<110	<52	<48
Atrazine	ug/L				NA	NA	<100	<100	<110	<52	<48
Benzaldehyde	ug/L				NA	NA	<100	<100	<110	<52	<48
Benzo(a)anthracene	ug/L				<10	<9	10 J	12 J	<110	<52	<48
Benzo(a)pyrene	ug/L				<10	<9	11 J	10 J	<110	<52	<48
Benzo(b)fluoranthene	ug/L				<10	<9	14 J	15 J	<110	<52	<48
Benzo(g,h,i)perylene	ug/L				<10	<9	8.3 J	8.2 J	<110	<52	<48
Benzo(k)fluoranthene	ug/L				<10	<9	<100	<100	<110	<52	<48
Biphenyl	ug/L				<10	<9	<100	<100	<110	<52	<48
bis (2-chloroisopropyl) ether	ug/L				NA	NA	<100	<100	<110	<52	<48
Bis(2-chloroethoxy)methane	ug/L				NA	NA	<100	<100	<110	<52	<48
Bis(2-chloroethyl)ether	ug/L				NA	NA	<100	<100	<110	<52	<48
Bis(2-ethylhexyl) phthalate	ug/L	0.6	A (C)		<10	<9	<100	<100	<110	<52	<48
Butyl benzyl phthalate	ug/L				<10	<9	<100	<100	<110	<52	<48
Caprolactam	ug/L				<10 J	<9 J	<100 J	<100 J	<110 J	<52 J	<48 J
Carbazole	ug/L				0.4 J	<9	<100	<100	<110	<52	<48
Chrysene	ug/L				<10	<9	9.9 J	12 J	<110	<52	<48
Dibenz(a,h)anthracene	ug/L				<10	<9	<100	<100	<110	<52	<48
Dibenzofuran	ug/L				2 J	<9	<200	<200	<210	<100	< 95
Diethyl phthalate	ug/L				<10	<9	<100	<100	<110	<52	<48
Dimethyl phthalate	ug/L				<10	<9	<100	<100	<110	<52	<48
Di-n-butyl phthalate	ug/L				0.5 J	0.4 J	<100	<100	<110	<52	<48
Di-n-octyl phthalate	ug/L				<0.4	<0.2	<100	<100	<110	<52	<48
Fluoranthene	ug/L				0.2 J	<9 <9	22 J	30 J <100	<110 <110	<52 <52	3.9 J <48
Fluorene	ug/L	0.00003	11/50	Δ	1J <10	<9	<100	<100	<110	<52	<48
Hexachlorobenzene Hexachlorobutadiene	ug/L	0.00005	H (FC)	A B	<10	<9 <9	<100	<100	<110	<52 <52	<48 <48
Hexachlorobutadiene Hexachlorocyclopentadiene	ug/L ug/L	0.01 to 1.0 0.45	A (C)	в	<10 NA	<9 NA	<100	<100 <100	<110 <110	<52	<48 <48
Hexachlorocyclopentadiene Hexachloroethane		0.45	A (C) H (FC)	А	NA	NA	<100	<100	<110	<52	<48 <48
Hexachloroethane Indeno(1,2,3-cd)pyrene	ug/L ug/L	0.6	п (FC)	A	NA <10	NA <9	<100	<100 <100	<110 <110	<52	<48 <48
Indeno(1,2,3-cd)pyrene Indole	ug/L ug/L				<10 50 J	<9 NA	<100 NA	<100 NA	<110 NA	<52 NA	<48 NA
					NA	NA	<100	<100	<110	<52	<48
Isophorone Naphthalene	ug/L ug/L				NA 4 J	0.4 J	<100	<100	<110	<52	<48 <48
Naphthalene	ug/L ug/L				4 J 440	0.4 J 14	<100	350	220	<52	<48 50
N-Nitrosodi-n-propylamine	ug/L ug/L				NA	NA	<100	<100	<110	<52	<48
N-Nitrosodiphenylamine	ug/L ug/L				4 J	NA <9	<100	<100	<110	<52	<48
O-Chloroaniline	ug/L ug/L				4 J NA	120 J	<100 NA	NA	NA	<52 NA	NA
	ug/L ug/L	*	A (C)		NA	NA	<200	<200	<210	<100	< 95
	ug/ L										
Pentachlorophenol Phenanthrene	110/1				081	<0	161	171		257	
Phenanthrene Phenol	ug/L ug/L	1.0	E (FS)	v	0.8 J <10	<9 <9	16 J <100 J	17 J <100 J	<110 <110 J	<52 <52 J	<48 <48 J

Table 6 PRE-REMEDIAL STORM WATER MONITORING DATA - 2007 THRU 2010 AREA E SITE MANAGEMENT PLAN SOUTH BUFFALD DEVELOPMENT - FORMER BUFFALO COLOR FACILITY BUFFALD, NEW YORK

Notes: NA - Not Analyzed J - Analyte detected at level less than reporting limit and greater than or equal to method detection limit; concentration is estimated. **Bold** - Lab Dectection * - Hardness Dependant ** - pH and Temperature Dependant ** - Sum of 1,2-, 1,3-, and 1,4-Dichlorobenzene ^ - Range Based on All Types

A (C) - Aquatic Chronic A(A) - Aquatic Acute H(FC) - Health, Fish Consumption E(FS) - Aesthetic, Food Source B - Non-oncogenic, Human Health A - Oncogenic, Human Health V - Food Source, Aesthetics

ParameterDataAddataData <th></th> <th></th> <th>Class C Surface Water</th> <th>Туре</th> <th>Basis</th> <th>DMH-E07-0111</th> <th>DMH-E15-0111</th> <th>DMH-E18-0111</th> <th>DMH-E21-0111</th> <th>DMH-E30-0111</th>			Class C Surface Water	Туре	Basis	DMH-E07-0111	DMH-E15-0111	DMH-E18-0111	DMH-E21-0111	DMH-E30-0111
nonusla hmpl···ACO.2.7J.	Parameter		Standard	туре	Code	1/7/2011	1/7/2011	1/7/2011	1/7/2011	1/7/2011
at No. Co.	-			. (5)						
monder, Tank Resentation mpl, P Other Dist, Dist, <thdist,< th=""> Dist, <thdist,< th=""></thdist,<></thdist,<>				A (C)						
Indo DistanceIndo </td <td></td> <td></td> <td>0.5 S Value S 8.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			0.5 S Value S 8.5							
DiskJunkJunkJunkJunkJunkJunkJunkMainMainAll <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Anome Nomine, Bosoledng/k0.1AICw02d0										
whene, Descriptionmp/s<	Metals									
Averner, Standardreg/s0.15A/C0.2030.2030.2030.2040.2030.2040.2030.2040.2030.2040.2030.2040.2030.2040.2030.2040.2030.2040.2030.2040.2030.2040.2030.2040.2030.2040.20				A (C)						
man_m.pschadmg/s0.9570.9730.9090.9090.91520.0152 <td></td> <td></td> <td></td> <td>A (C)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				A (C)						
mrpling. Disolvedmg/L··A (C)··0007··0007··0007··0007··0007··0007··<				A (C)						
Carbon Souvelmg/L-AAC0001				A (C)						
Chronne, Duchedng/L4AA00.00040.0040.0040.0040.0040.0040.0040.004Copie, Discoledng/L-A(C)0.004-0.004-0.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.0040.005 </td <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			*							
Condet Partial AllO Condet Condet<	Calcium, Dissolved	mg/L					87.7			106
Copyr. Disolwel mg/L										
max max <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Land, Blocked mg/L A (_) del 0050 del 0050 del 0050 del 0050 del 0055 del 0055 <thdel 0055<="" th=""> <thdel 0055<="" th=""> <th< td=""><td></td><td></td><td></td><td>A (C)</td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thdel></thdel>				A (C)						
Magneter, Disolved mg/L				A (C)						
Magnane, Disolvedmg/LNLDDefeDefeDefs <thdefs< th="">DefsDefsDefs</thdefs<>				//(6/						
Mecury, Disolvedmg/L0M/CN/C00.0002<							0.088			
Dataset mg/L No 7.2	Mercury, Dissolved	mg/L				<0.0002	<0.0002			
Selenian Jisobed mg/L 0.0046 A (C) webpits 0.0051 0.0051 0.0051 0.0051 0.0031 <th< td=""><td></td><td></td><td></td><td>A (C)</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				A (C)						
Silver, Dissolvedmg/L0.0001A/C)<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.003<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005<0.005				. (0)						
sodur, Disobed mg/L K Page										
mallum, Disolved rrg/L 0.008 A (C) -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.005				A (C)						
Vanadum, Disolved ng/L 0.014 A (C) 0.005				A (C)						
Time, Dassel densmg/L······0.0930.0820.0820.0990.0190.0491,1.1.7richlorenthmeug/L··<										
1,1,1-7indirocethane ug/L K-1 K-1<			*			0.093	0.082	0.099	0.051	0.049
11,22-Terachionzenthane ug/L Id										
1,1,2-Tridinore-1,2,2-tridinore-1,2,2-tridinore-1,2,2-tridinore-1,2,2-tridinore-1,2,2-tridinore-1,2,2 -1,16 -1,16 -1,16 -1,16 -1,12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
1,12-Trichiorethane 1g/L										
1.1-Behromethane y_L R.1. Cl.9 Cl.9 Cl.9 Cl.4 Cl.4 <thcl.4< th=""> Cl.4 Cl.</thcl.4<>										
j.1.Dickloroperhamene ug/L ··· I.1.Deltoroperhamene ug/L S A [C] I.2.Deltoroperhamene ug/L I.2.Deltoroperhamene ug/L ··· I.2.Deltoroperhamene ug/L S.2. R.2. R.2. <thr.2.< th=""></thr.2.<>										
12-Dbromo3-Chloropopane ug/L Image: Constraint of the const									<1.4	
12-Db(momentane ug/L Image: Constraint of the state of	1,2,4-Trichlorobenzene		5	A (C)						
12-Dehlorebrane yg/L 5 A(C,*** 4 64 52 82 64 12-Dehlorebrane yg/L I -1										
1.2-Delhorgentame ug/L N C1				. (0) ***						
12-Delhordprognameug/L \cdots N < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 < 3.6 <th< td=""><td></td><td></td><td></td><td>A (C), ***</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				A (C), ***						
1,3-Deltorobenzeneug/L5 $A(C)$.*** (3.9) <										
14-Dichorbenzene yg/L 5 $A(C)$, *** (-4.2) $(-4$				A (C). ***						
2-Heam ug/L C 66.2 61.2 64.3 64.3 64.3 64.3 64.3 64.3 64.3 64.3 64.3 66.2 60.2							<4.2	<4.2		19
4-Methyl-2pentanone (MIBK) ug/L K <10 <10 <10 <10 <10 <12 Benzene ug/L 10 H (FC) <2	2-Butanone (MEK)	ug/L				<6.6	<6.6	<6.6	<6.6	2.1 J
Acetoneug/L13Benzeneug/L10H (FC) 22 12208812Bromodichloromethaneug/L </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Benzene ug/L 10 H (FC)										
Bromodichloromethane ug/L C C1.9 C1.3 C1.4 C1.7 C1.7 <thc1.7< th=""> C1.7 <thc1.7< th=""></thc1.7<></thc1.7<>				H (EC)						
Bromoform ug/L (-1.3)<				11(10)						
Brommethane ug/L Image: Constraint of the second studied s										
Carbon disulfide ug/L Image: Market	Bromomethane									
Chlorobenzene ug/L Sto 400 ^ B 7.8 11 72 740 170 Chlorotethane ug/L <	Carbon disulfide	ug/L				<0.95	<0.95	<0.95	<0.95	<0.19
Chloroethane ug/L I <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.8 <1.8 <1.8 <1.8 <1.8 <1.8 <1.8 <1.8 <1.8 <1.8 <1.8 <1.8 <1.8										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				۸	В					
Chloromethane ug/L Image: Chloromethane Im										
cis-1,2-Dichloropetheneug/LI<4<4<4<4<6.81cis-1,3-Dichloropropeneug/LI<1.8										
cis-1,3-Dichloropropene ug/L <1.8 <1.8 <1.8 <1.8 <1.8 <1.8 <0.36 Cyclohexane ug/L <0.9										
Cyclohexaneug/L<0.9<0.9<0.9<0.9<0.18Dibronchloromethaneug/L<1.6										
Dichlorodifluoromethane ug/L Image: Marcol And And And And And And And And And And	Cyclohexane									
Ethylbenzene ug/L < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <										
Isopropylbenzene ug/L < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <										
Methylacetate ug/L <2.5 <2.5 <2.5 <2.5 <0.50 Methylcyclobexane ug/L <0.8	1			I						
Methylcyclohexane ug/L < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <										
Methylene Chloride ug/L 200 H (FC) A 3.9 J 2.9 J 3 J 3 J <0.44 Methyl-Eutyl Ether (MTBE) ug/L <0.8				1						
Methyl-t-Butyl Ether (MTBE) ug/L <0.8 <0.8 <0.8 <0.8 <0.16 Styrene ug/L <3.6				H (FC)	A					
Styrene ug/L < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <td></td> <td></td> <td></td> <td>(/</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				(/						
Tetrachloroethene ug/L <1.8 <1.8 <1.8 <1.8 <0.36 Toluene ug/L 6000 H (FC) B <2.6				1						
trans-1,2-Dichloroethene ug/L < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	Tetrachloroethene	ug/L				<1.8	<1.8	<1.8	<1.8	<0.36
trans-1,3-Dichloropropene ug/L <1.8 <1.8 <1.8 <0.37 Trichloroethene ug/L 40 H (FC) A <2.3				H (FC)	В					
Trichloroethene ug/L 40 H (FC) A <2.3 <2.3 <2.3 <2.3 <0.46 Trichlorofluoromethane ug/L <4.4										
Trichlorofluoromethane ug/L <4.4 <4.4 <4.4 <0.88 Vinyl chloride ug/L <4.5				11/50						
Vinyl chloride ug/L <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5 <4.5				H (FC)	A					
		ug/L		1		<3.3	<3.3	<3.3	<3.3	<0.66

Table 7 POST-REMEDIAL STORM WATER MONITORING DATA - 2011 AREA E SITE MANAGMENT PLAN SOUTH BUFFALO DEVELOPMENT - FORMER BUFFALO COLOR FACILITY BUFFALO, NEW YORK

		Class C Surface Water	Туре	Basis	DMH-E07-0111	DMH-E15-0111	DMH-E18-0111	DMH-E21-0111	DMH-E30-0111
Parameter		Standard	туре	Code	1/7/2011	1/7/2011	1/7/2011	1/7/2011	1/7/2011
Semi-Volatile Organic Compounds									
2,4,5-Trichlorophenol	ug/L				<0.45	<0.45	<0.45	<0.45	<0.45
2,4,6-Trichlorophenol	ug/L				<0.58	<0.58	<0.58	<0.58	<0.58
2,4-Dichlorophenol	ug/L	1.0	E (FS)	V	<0.48	<0.48	<0.48	1.2 J	1.1 J
2,4-Dimethylphenol	ug/L	1000	H (FC)	В	<0.47	<0.47	<0.47	0.79 J	<0.47
2,4-Dinitrophenol	ug/L	400	H (FC)	В	<2.1 <0.42	<2.1 <0.42	<2.1 <0.42	<2.1 130	<2.1 77
2,4-Dinitrotoluene 2,6-Dinitrotoluene	ug/L ug/L				<0.42	<0.42	<0.42 3.2 J	130	130
2-Chloro-5-Nitrobenzenediami	ug/L				NA	NA	NA	NA	NA
2-Chloronaphthalene	ug/L				<0.43	<0.43	<0.43	1.3 J	<0.43
2-Chlorophenol	ug/L				<0.50	<0.50	<0.50	6.2	4.2 J
2-Methylnaphthalene	ug/L				<0.57	< 0.57	<0.57	2.3 J	0.89 J
2-Methylphenol	ug/L				< 0.38	< 0.38	0.43 J	1.6 J	1 J
2-Nitroaniline	ug/L				<0.40	1.5 J	<0.40	<0.40	<0.40
2-Nitrophenol	ug/L				< 0.45	<0.45	<0.45	4.8	2.3 J
2-Nitrotoluene	ug/L				NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine	ug/L				<0.38	<0.38	<0.38	<0.38	<0.38
3-Methylbenzeneamine	ug/L				NA	NA	NA	NA	NA
3-Nitroaniline	ug/L				<0.45	<0.45	<0.45	<0.45	<0.45
4,6-Dinitro-2-methylphenol	ug/L				<2.1	<2.1	<2.1	<2.1	<2.1
4-Bromophenyl phenyl ether	ug/L		L		<0.42	<0.42	<0.42	<0.42	<0.42
4-Chloro-3-methylphenol	ug/L				<0.42	< 0.42	<0.42	<0.42	<0.42
4-Chloroaniline	ug/L			ļ	<0.56	0.58 J	<0.56	8.4	10
4-Chlorophenyl phenyl ether 4-Methyl-1,3-Benzenediamine	ug/L				<0.33 NA	<0.33 NA	<0.33 NA	<0.33 NA	<0.33 NA
4-Methylphenol	ug/L ug/L				<0.34	0.69 J	0.43 J	8.1 J	5.1 J
4-Nitroaniline	ug/L				<0.34	<0.24	<0.24	0.73 J	0.68 J
4-Nitrophenol	ug/L				<1.4 J				
Acenaphthene	ug/L				<0.39	<0.39	<0.39	6.2	3.3 J
Acenaphthylene	ug/L				< 0.36	< 0.36	< 0.36	0.41 J	0.77 J
Acetophenone	ug/L				<0.51	< 0.51	0.64 J	2.4 J	1.7 J
Aniline	ug/L				<0.58	330	470	1000	260
Anthracene	ug/L				<0.26	0.79 J	<0.26	4.6 J	1 J
Atrazine	ug/L				<0.43	<0.43	<0.43	<0.43	<0.43
Benzaldehyde	ug/L				<0.25	<0.25	<0.25	<0.25	0.37 J
Benzo(a)anthracene	ug/L				<0.34	<0.34	<0.34	<0.34	<0.34
Benzo(a)pyrene	ug/L				<0.44	0.6 J	<0.44	<0.44	<0.44
Benzo(b)fluoranthene	ug/L				<0.32	1.1 J	<0.32	0.55 J	<0.32
Benzo(g,h,i)perylene	ug/L				<0.33	<0.33	<0.33	<0.33	<0.33
Benzo(k)fluoranthene	ug/L				<0.69	<0.69	<0.69	<0.69	<0.69
Biphenyl	ug/L				<0.62	<0.62	<0.62	0.84 J	<0.62
bis (2-chloroisopropyl) ether	ug/L				<0.49 <0.33	<0.49 <0.33	<0.49 <0.33	<0.49 <0.33	<0.49 <0.33
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	ug/L ug/L				<0.33	<0.33	760	1600	410
Bis(2-ethylhexyl) phthalate	ug/L	0.6	A (C)		<1.7	<1.7	<1.7	<1.7	<1.7
Butyl benzyl phthalate	ug/L		A (C)		<0.40	<0.40	1.3 J	<0.40	<0.40
Caprolactam	ug/L				<2.1	<2.1	<2.1	3.2 J	35
Carbazole	ug/L				<0.28	<0.28	<0.28	6.8	3.6 J
Chrysene	ug/L				<0.31	0.76 J	< 0.31	0.61 J	<0.31
Dibenz(a,h)anthracene	ug/L				<0.40	<0.40	<0.40	<0.40	<0.40
Dibenzofuran	ug/L				<0.48	<0.48	<0.48	<0.48	1.3 J
Diethyl phthalate	ug/L				<0.21	<0.21	<0.21	<0.21	<0.21
Dimethyl phthalate	ug/L				< 0.34	< 0.34	<0.34	<0.34	< 0.34
Di-n-butyl phthalate	ug/L				0.4 J	<0.29	0.39 J	0.48 J	0.48 J
Di-n-octyl phthalate	ug/L				<0.44	<0.44	<0.44	<0.44	<0.44
Fluoranthene	ug/L				<0.38	1.6 J	0.49 J	1.9 J	1.1 J
Fluorene	ug/L				< 0.34	< 0.34	<0.34	3.4 J	1.9 J
Hexachlorobenzene	ug/L	0.00003	H (FC)	A	<0.48	<0.48	<0.48	<0.48	<0.48
Hexachlorobutadiene	ug/L	0.01 to 1.0	^ ^ (C)	В	<0.64	<0.64	<0.64	<0.64	<0.64
Hexachlorocyclopentadiene	ug/L	0.45	A (C)		<0.56	<0.56	<0.56	<0.56	< 0.56
Hexachloroethane	ug/L	0.6	H (FC)	A	<0.56	<0.56	<0.56	<0.56	<0.56
ndeno(1,2,3-cd)pyrene	ug/L				<0.44	<0.44	<0.44	<0.44	<0.44
indole sophorone	ug/L ug/L				NA <0.41	NA <0.41	NA <0.41	NA <0.41	NA <0.41
					<0.41	<0.41	<0.41	<0.41 14	<0.41 4.9
Naphthalene Nitrobenzene	ug/L ug/L				<0.72	<0.72 250	<0.72 29	14 790	4.9
Nitrobenzene N-Nitrosodi-n-propylamine	ug/L		-		<0.27	<0.51	<0.51	<0.51	<0.51
N-Nitrosodi-h-propylamine	ug/L ug/L		-		<0.48	<0.51	<0.51	2 J	0.95 J
D-Chloroaniline	ug/L				NA	NA	NA	NA	NA
	ч <u></u> б/ -		1						
	ug/L	*	A (C)		<2.1	<2.1	<2.1	<2.1	<2.1
Pentachlorophenol Phenanthrene	ug/L ug/L	*	A (C)		<2.1 <0.42	<2.1 0.8 J	<2.1 <0.42	<2.1 4.6 J	<2.1 1 J

Pyrene Notes:

Table 7

AREA E SITE MANAGMENT PLAN

POST-REMEDIAL STORM WATER MONITORING DATA - 2011

SOUTH BUFFALO DEVELOPMENT - FORMER BUFFALO COLOR FACILITY

NA - Not Analyzed

J - Analyte detected at level less than reporting limit

and greater than or equal to method detection limit; concentration is estimated.

Bold- Lab Dectection

* - Hardness Dependant

*** - pH and Temperature Dependant
 *** - Sum of 1,2-, 1,3-, and 1,4-Dichlorobenzene

^ - Range Based on All Types

< 0.32

A (C) - Aquatic Chronic A(A) - Aquatic Acute H(FC) - Health, Fish Consumption E(FS) - Aesthetic, Food Source

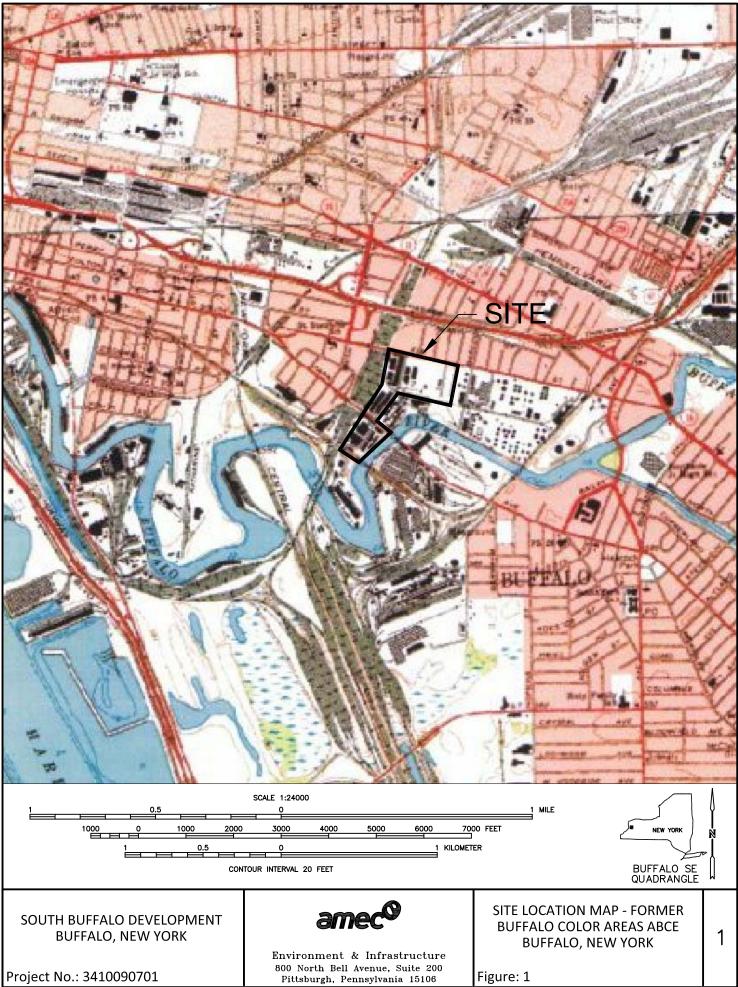
B - Non-oncogenic, Human Health

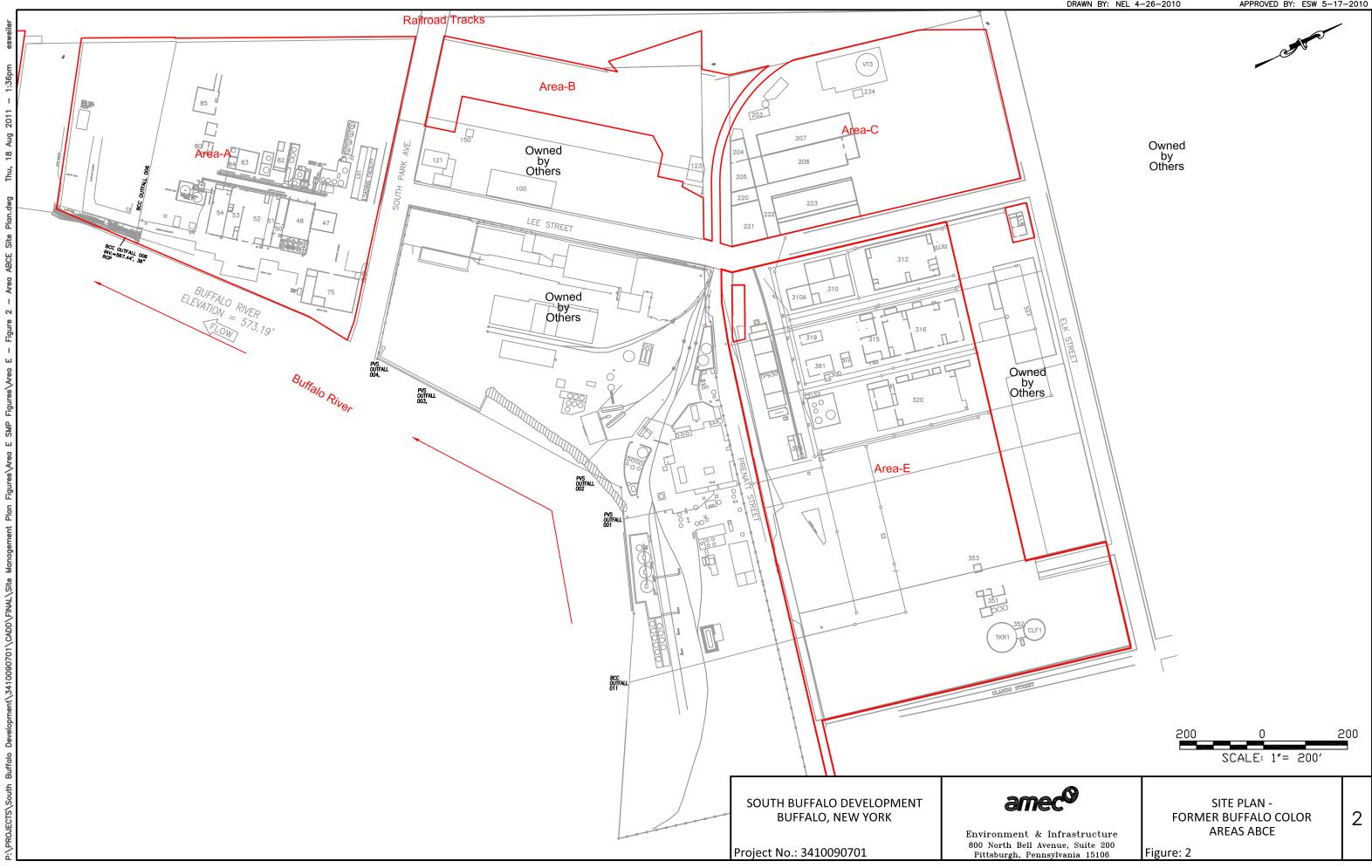
1.2 J

< 0.32

1.2 J

A - Oncogenic, Human Health

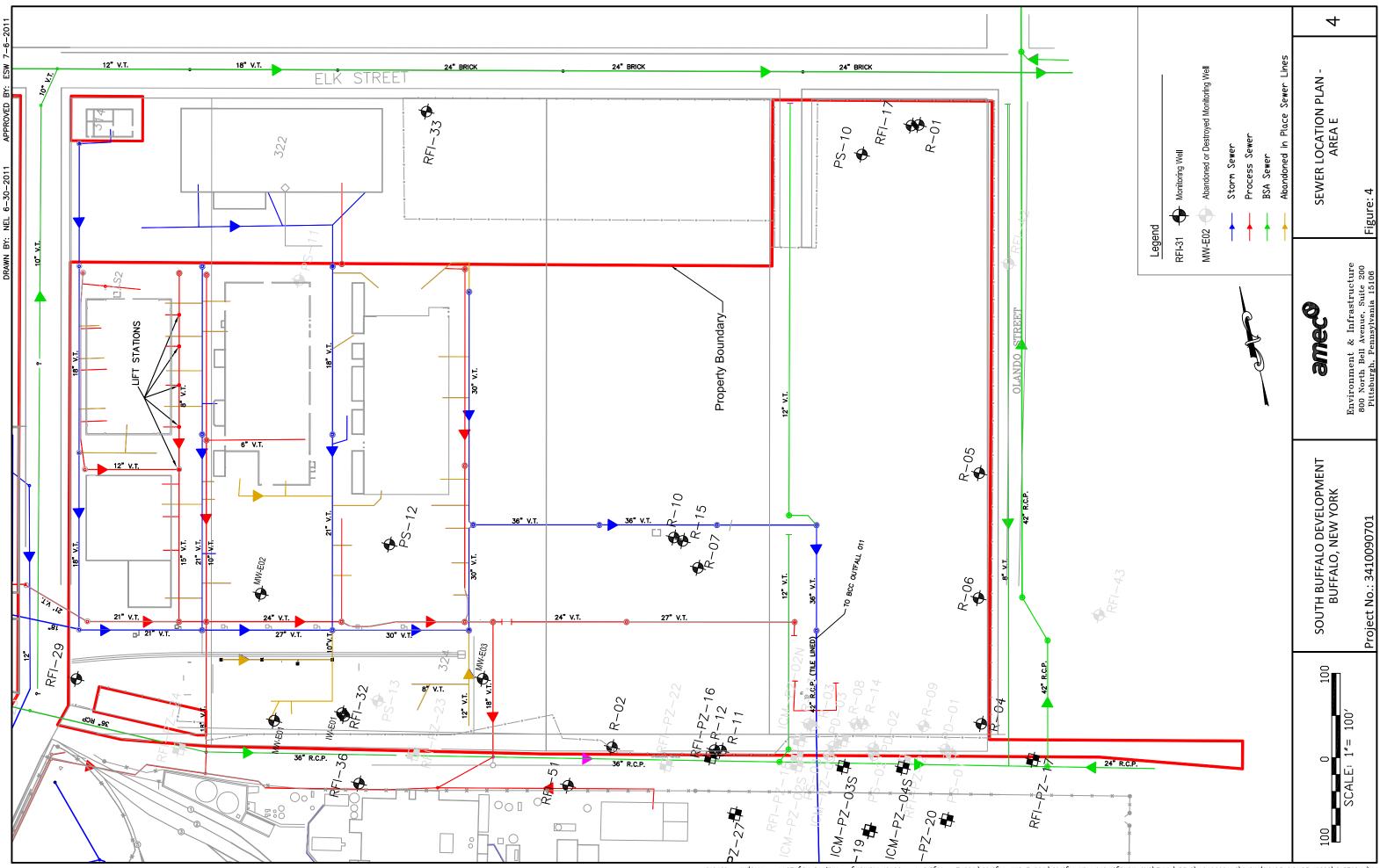

V - Food Source, Aesthetics

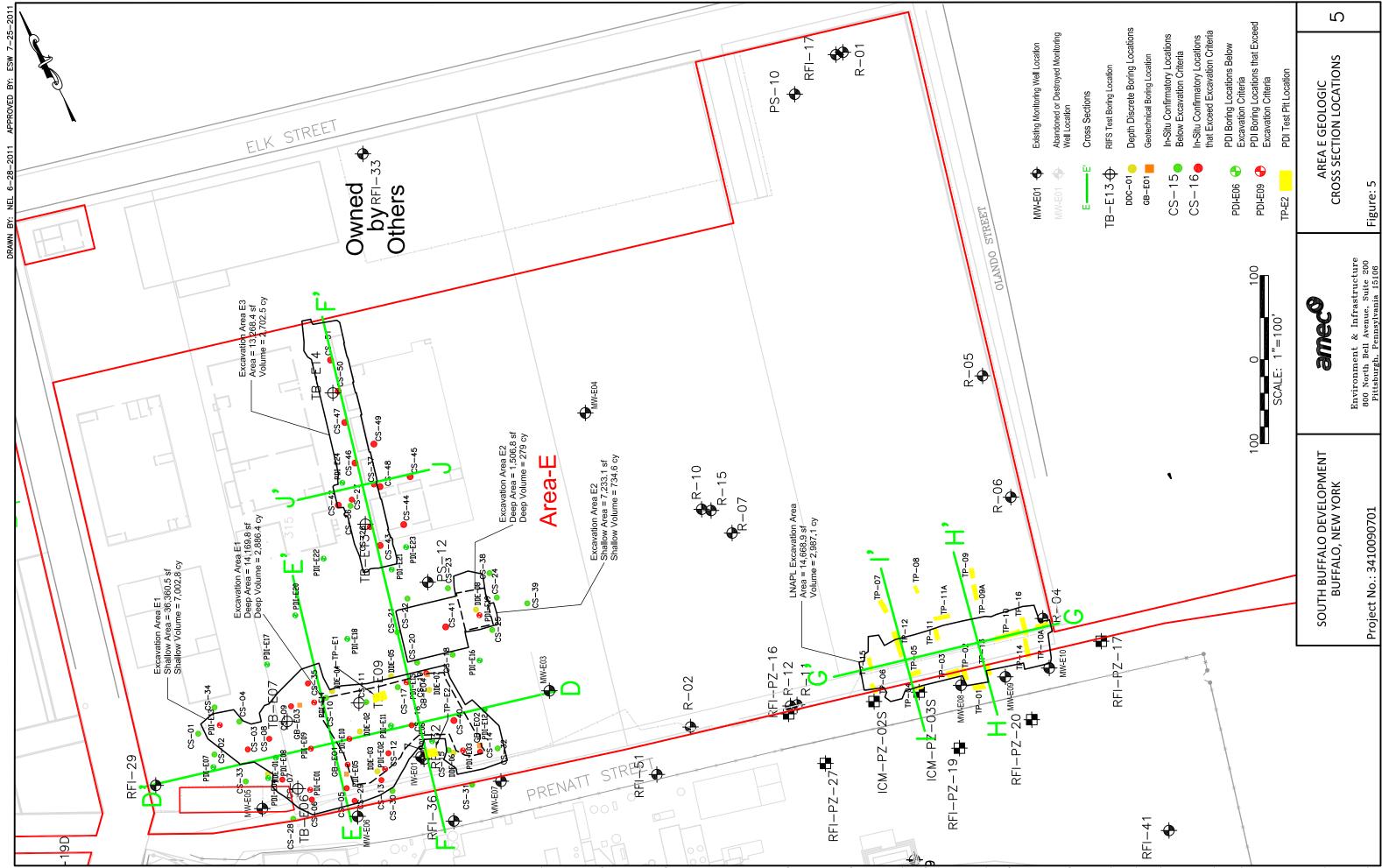

Page 2 of 2

ug/L

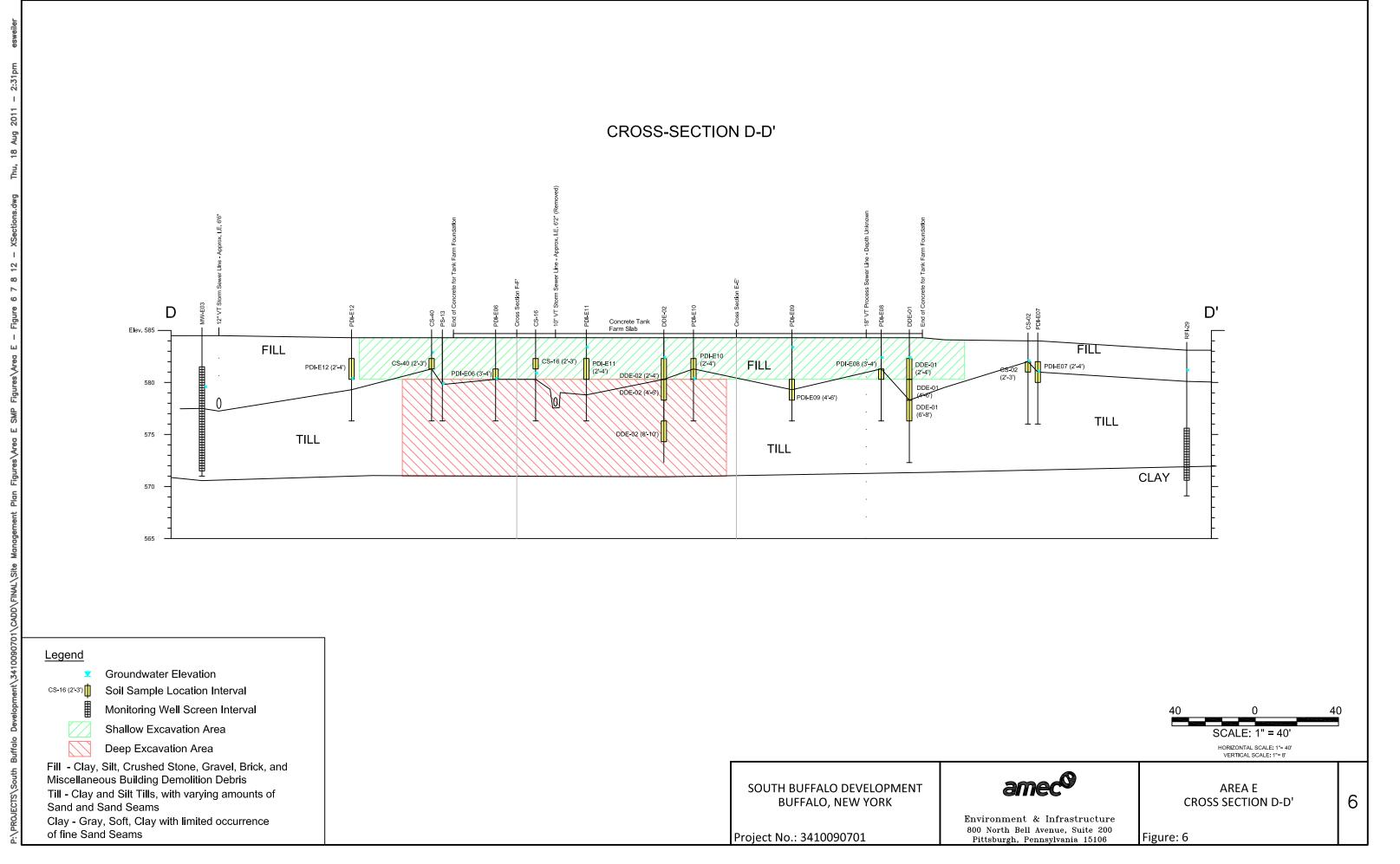
0.74 J

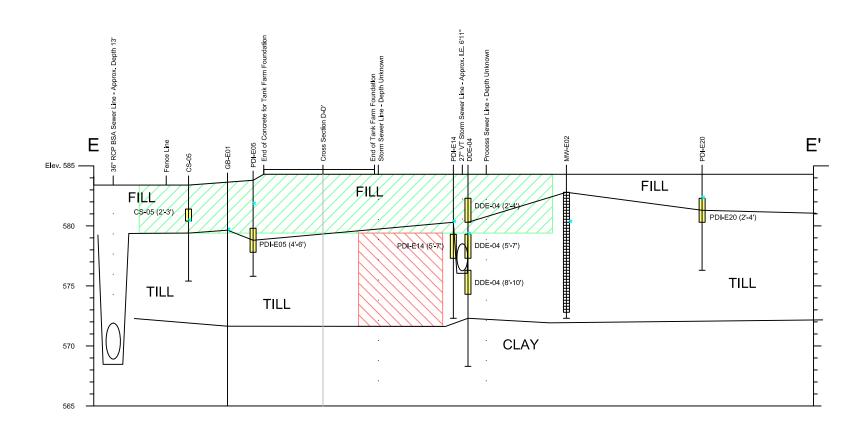
FIGURES

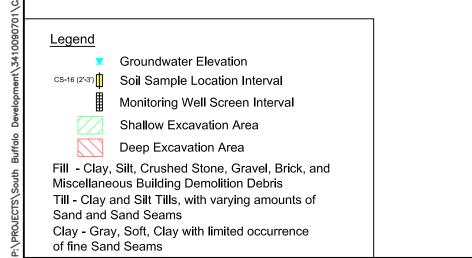




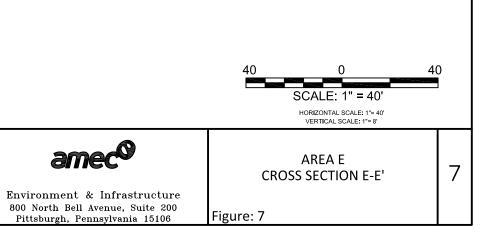
esweiler mq75:1 - 1102 puA 81 ,uAT

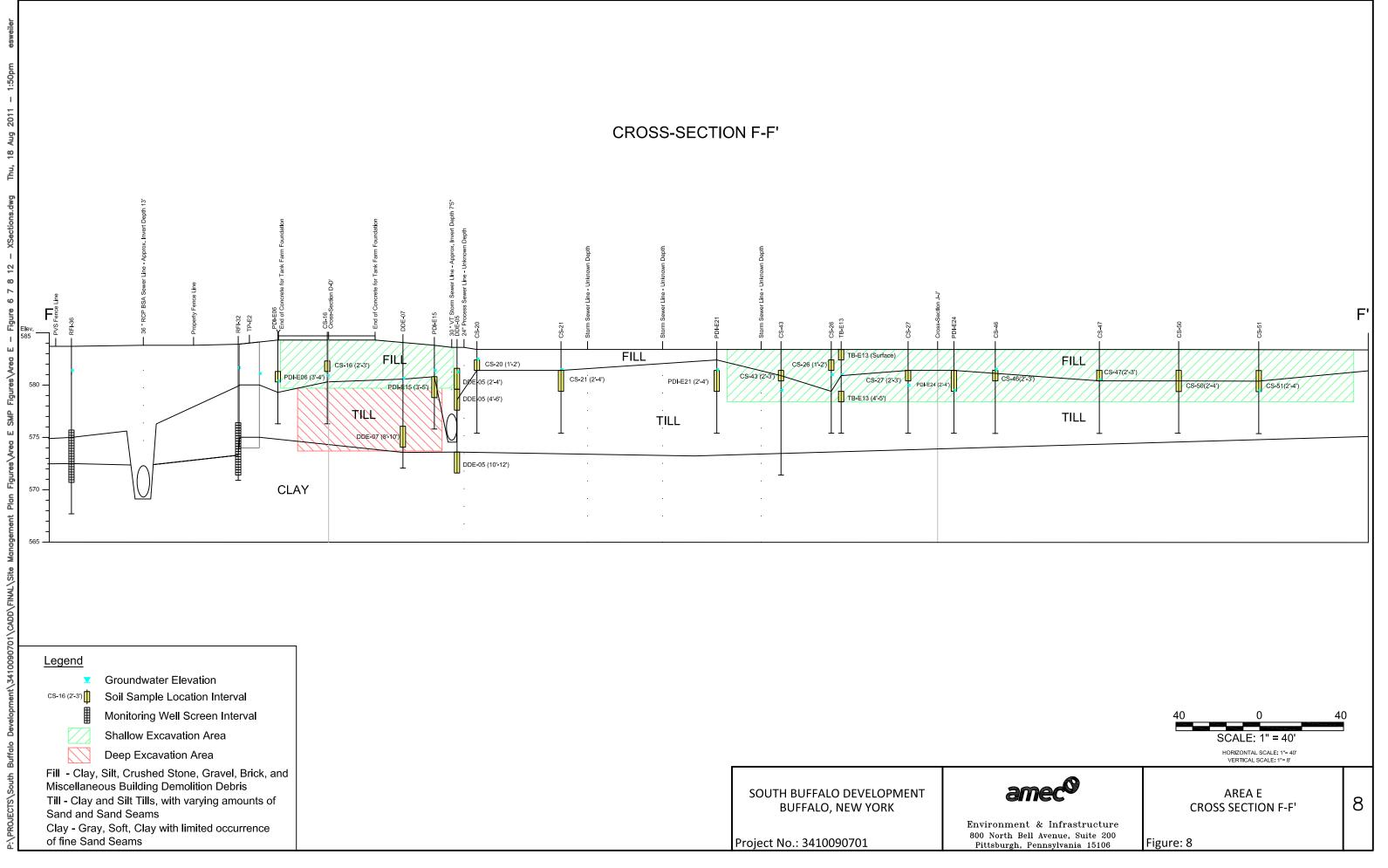

P:/PROJECTS/South Buttalo Development/3410090701/CADD/FINAL/Site Management Plan Figures/Area E SMP Figures/Area E - Figure 3 - Site Plan.dwg

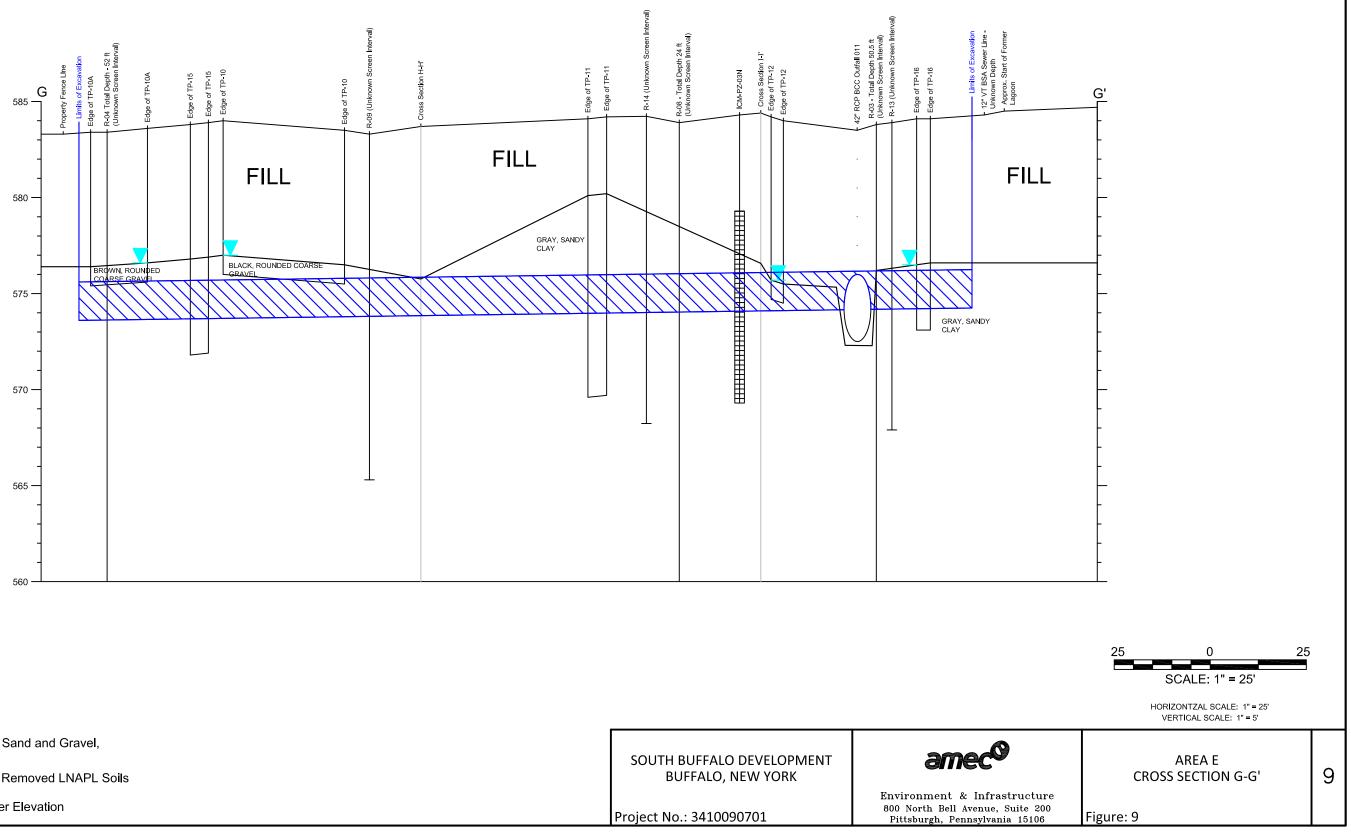

P:/PROJECTS/South Buttalo Development/3410090701/CADD/FINAL/Site Management Plan Figures/Area E SMP Figures/Area E - Figures/Area E - Sewer Plan.dwg Thu, 18 Aug 2011 - 1:45pm esweiler



esweiler P:/PROJECTS/South Buttalo Development/3410090701/CADD/FINAL/Site Management Plan Figures/Area E SMP Figures/Area E - Figure 5 - Geologic Cross Section Locations.dwg mqð4:1 - 1102 puA 81 ,udT

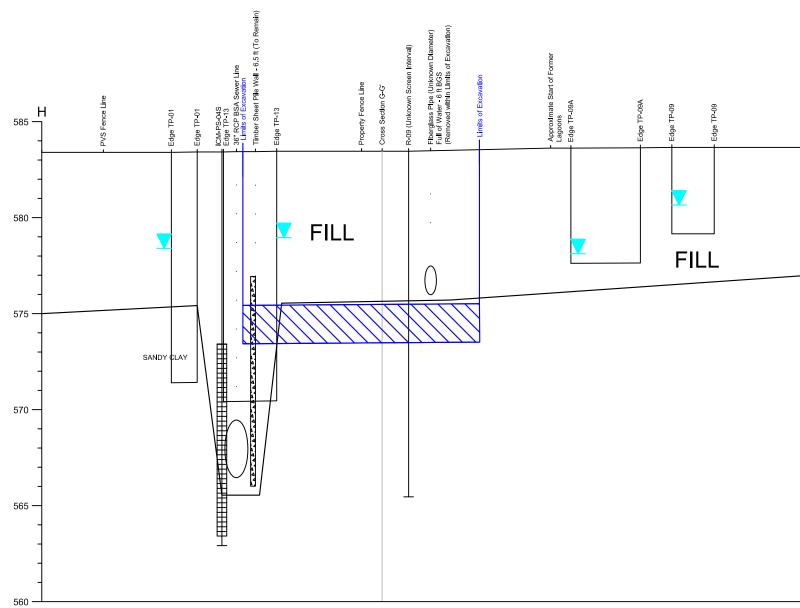



CROSS-SECTION E-E'



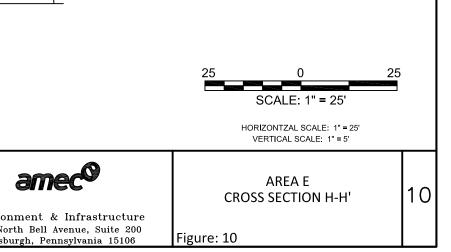
SOUTH BUFFALO DEVELOPMENT	
BUFFALO, NEW YORK	

CROSS-SECTION G-G'

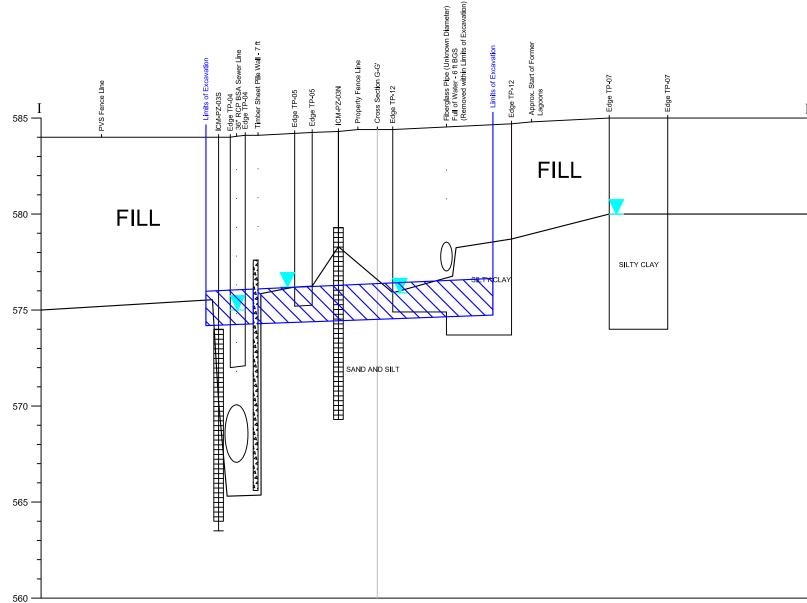

Leg

Legend			
FILL	Black and Brown, Moist, Sand and Gravel, Some Brick and Silt Approximate Location of Removed LNAPL Soils	SOUTH BUFFALO DEVELOPMENT BUFFALO, NEW YORK	an
T	Approximate Groundwater Elevation	Project No.: 3410090701	Environment & 800 North Bell A Pittsburgh, Pen

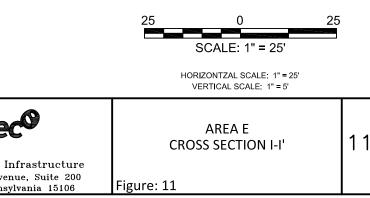
പ്പ ffalo

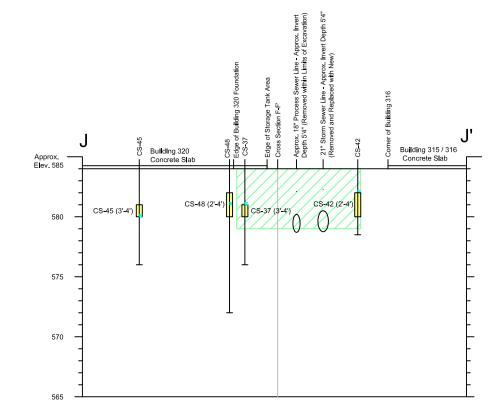


CROSS-SECTION H-H'

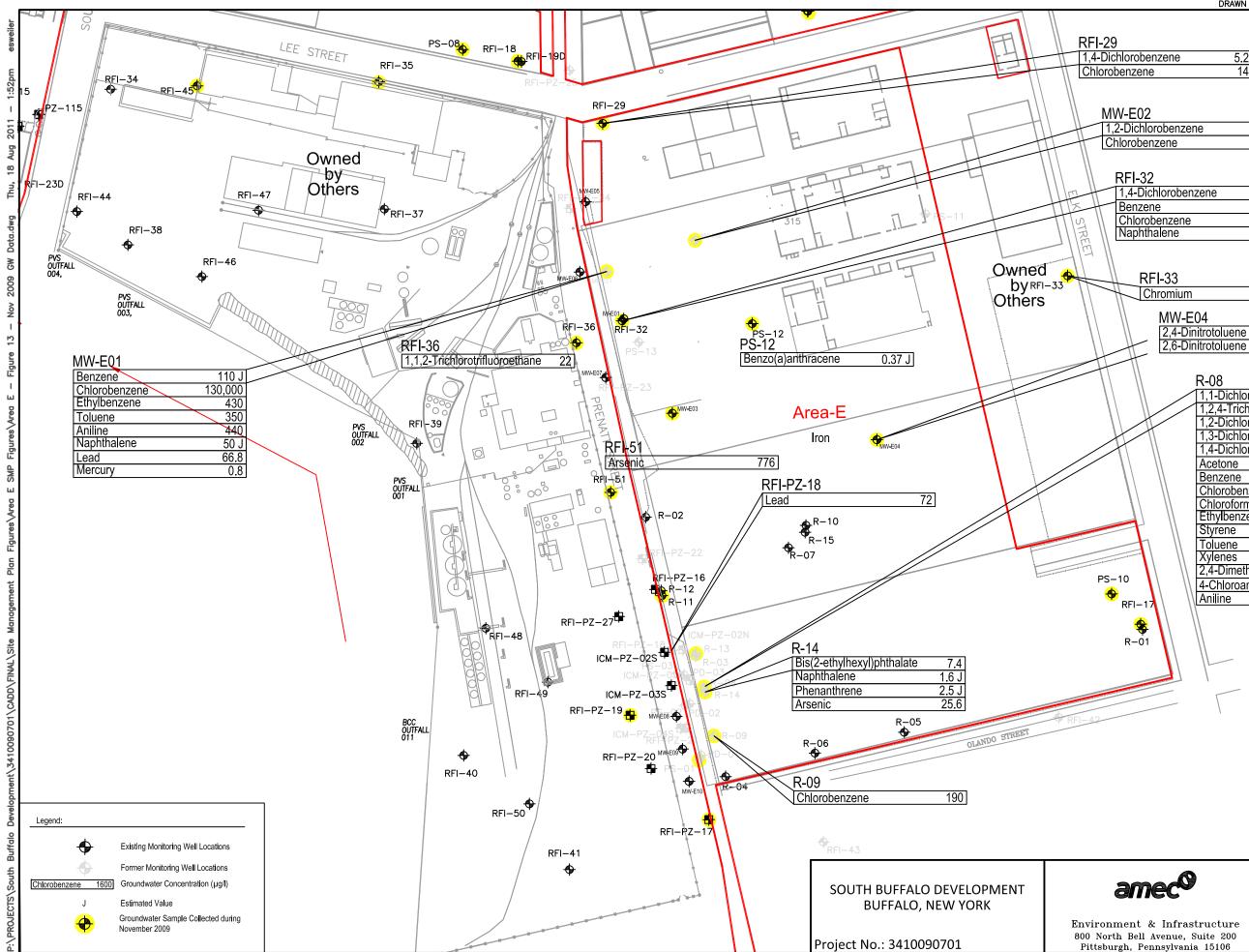


Legend			
 FILL	Black and Brown, Moist, Sand and Gravel, Some Brick and Silt	SOUTH BUFFALO DEVELOPMENT	
	Approximate Location of Removed LNAPL Soils	BUFFALO, NEW YORK	
	Approximate Groundwater Elevation	Project No.: 3410090701	Environr 800 Nort Pittsbur


CROSS-SECTION I-I"



DRAWN BY: NEL 6-28-2011 APPROVED BY: ESW 7-25-2011



CROSS-SECTION J-J'

Legend	
T	Groundwater Elevation
CS-16 (2'-3')	Soil Sample Location Interval
	Monitoring Well Screen Interval
	Shallow Excavation Area
\square	Deep Excavation Area
	Silt, Crushed Stone, Gravel, Brick, and
	ous Building Demolition Debris and Silt Tills, with varying amounts of
-	Sand Seams
	, Soft, Clay with limited occurrence
of fine Sand	d Seams

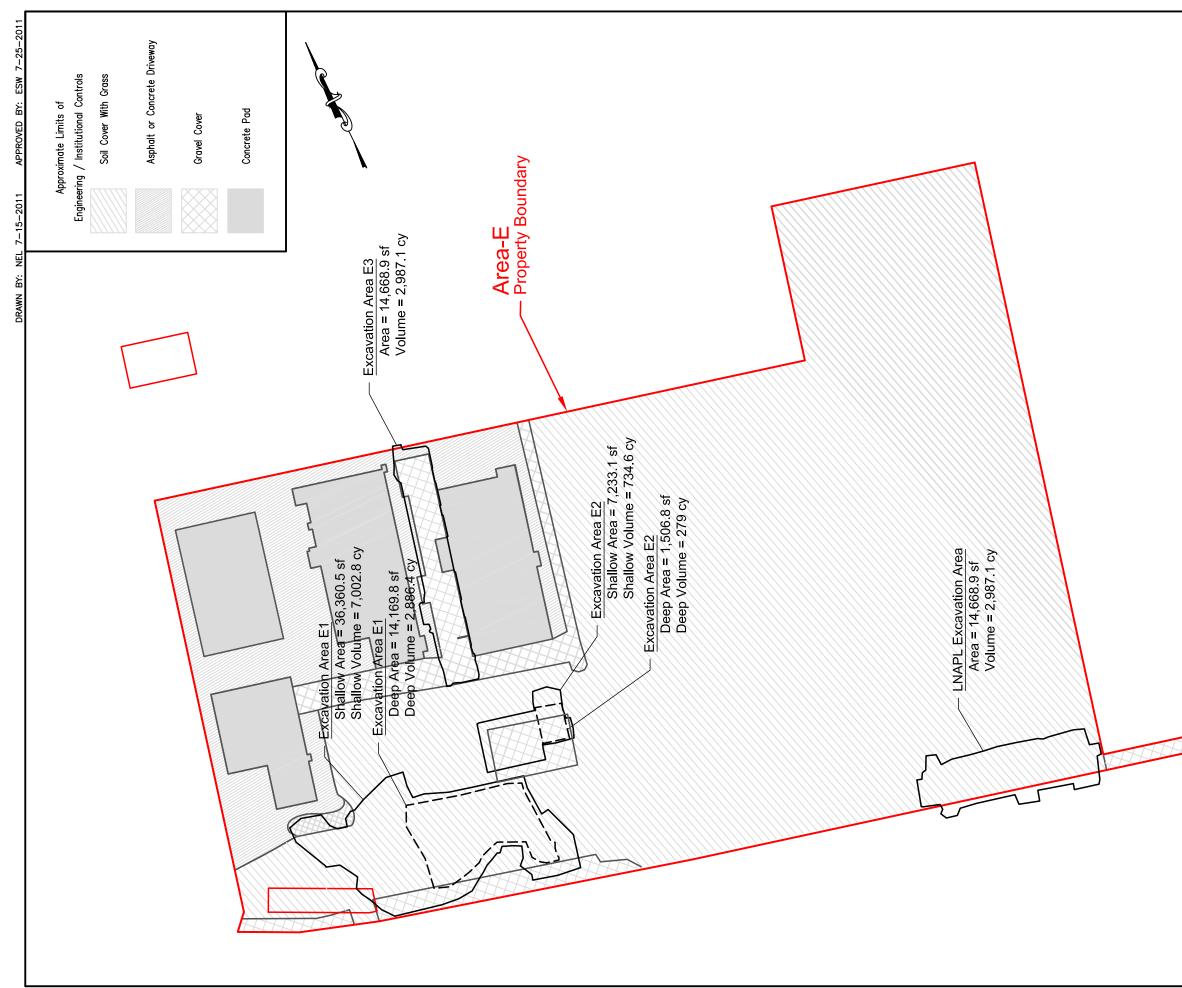
benzene	5.2
ene	14

hlorobenzene	7.2
penzene	11

Dichlorobenzene	49 J
zene	420
probenzene	28,000
hthalene	13 J

CI	nromium	65.5
	MW-E04	
	2,4-Dinitrotoluene	150
/	2,6-Dinitrotoluene	290

R-08


	N-00	
/	1,1-Dichloroethane	77
	1,2,4-Trichlorobenzene	13
	1,2-Dichlorobenzene	2,300
	1,3-Dichlorobenzene	24
	1,4-Dichlorobenzene	300
	Acetone	59
	Benzene	24
	Chlorobenzene	72
	Chloroform	30
\	Ethylbenzene	7.4
//	Styrene	27
//	Toluene	43
//	Xylenes	18
//	2,4-Dimethylphenol	59 J
//	4-Chloroaniline	140 J
- //	Aniline	4,800

150 150 SCALE: 1"=150'

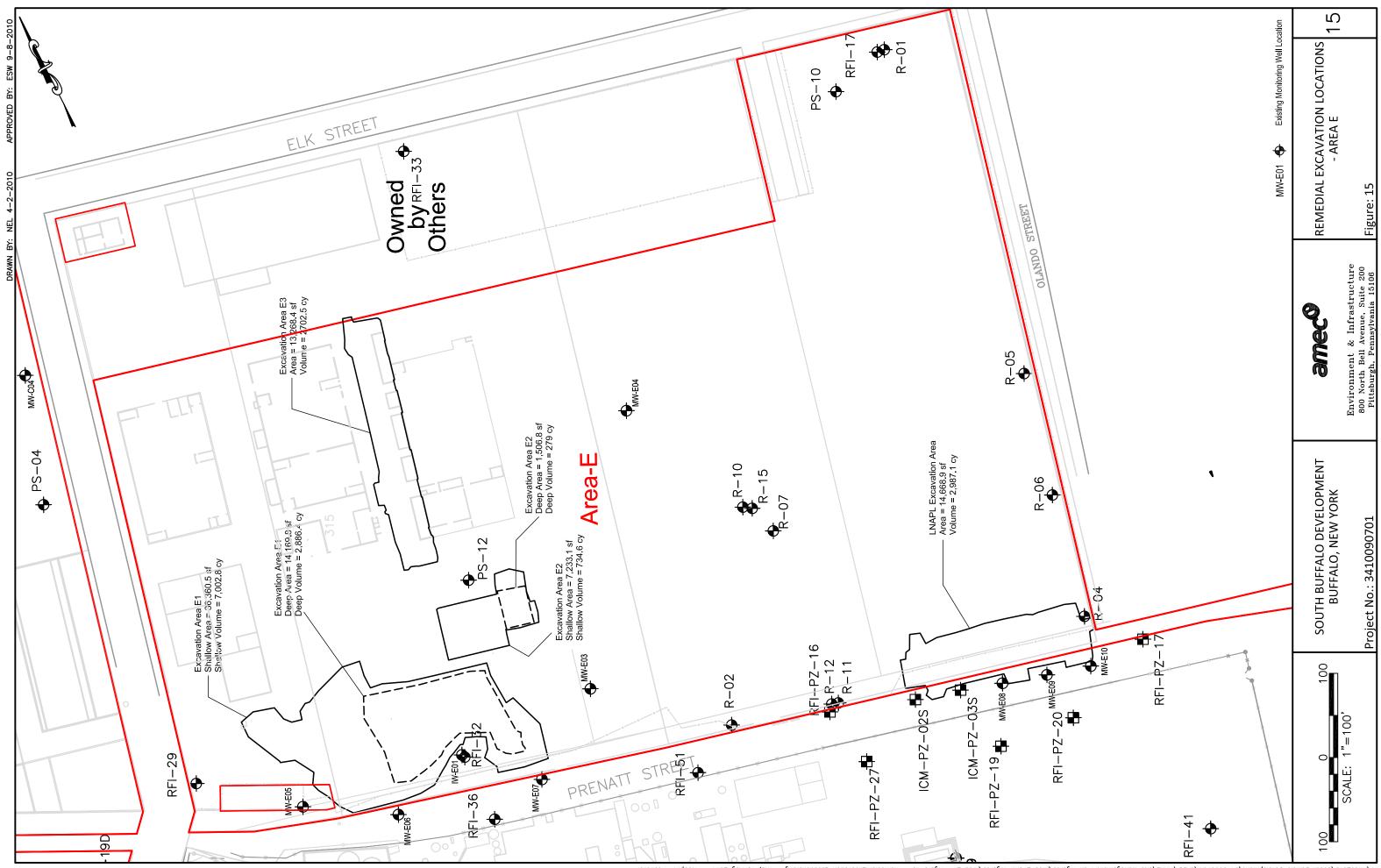
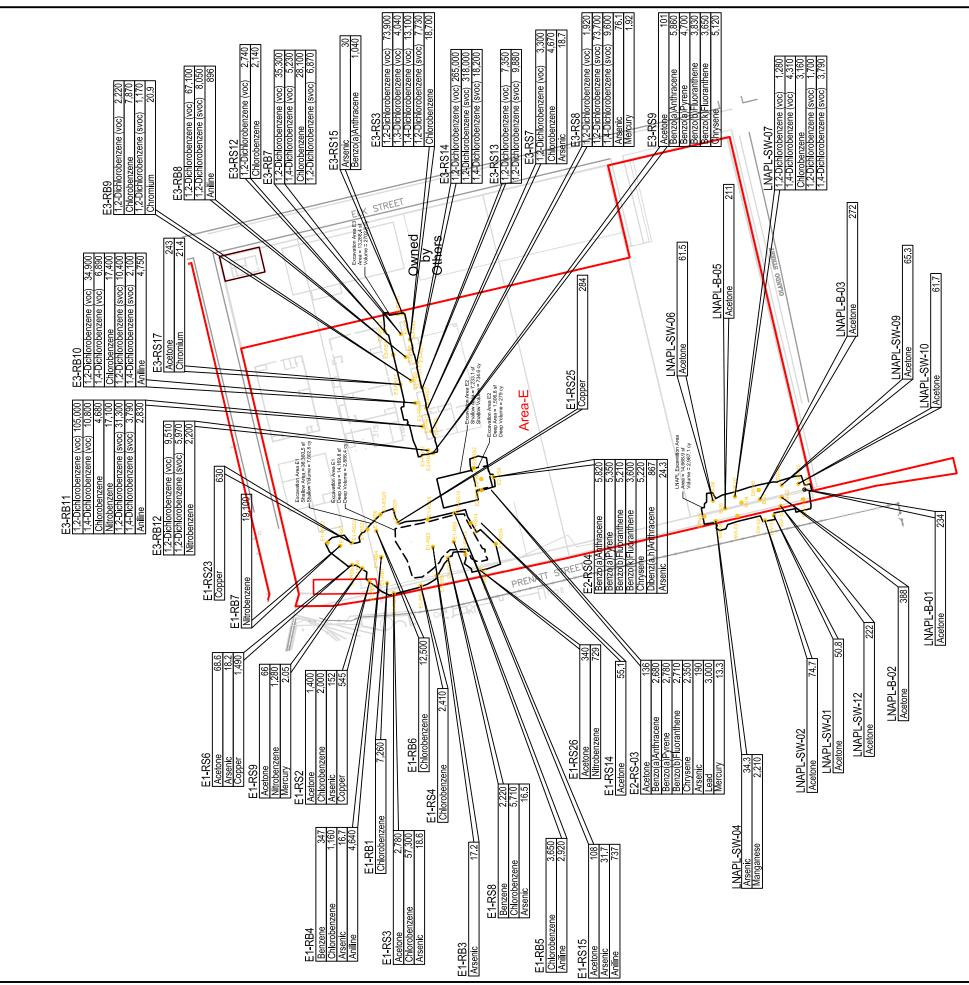
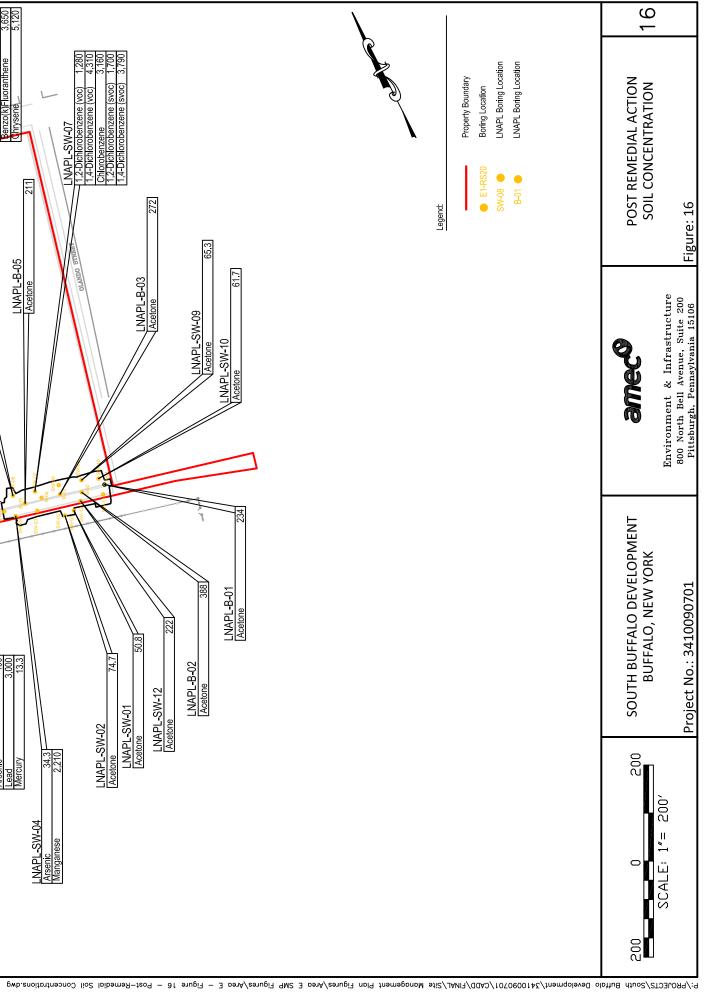
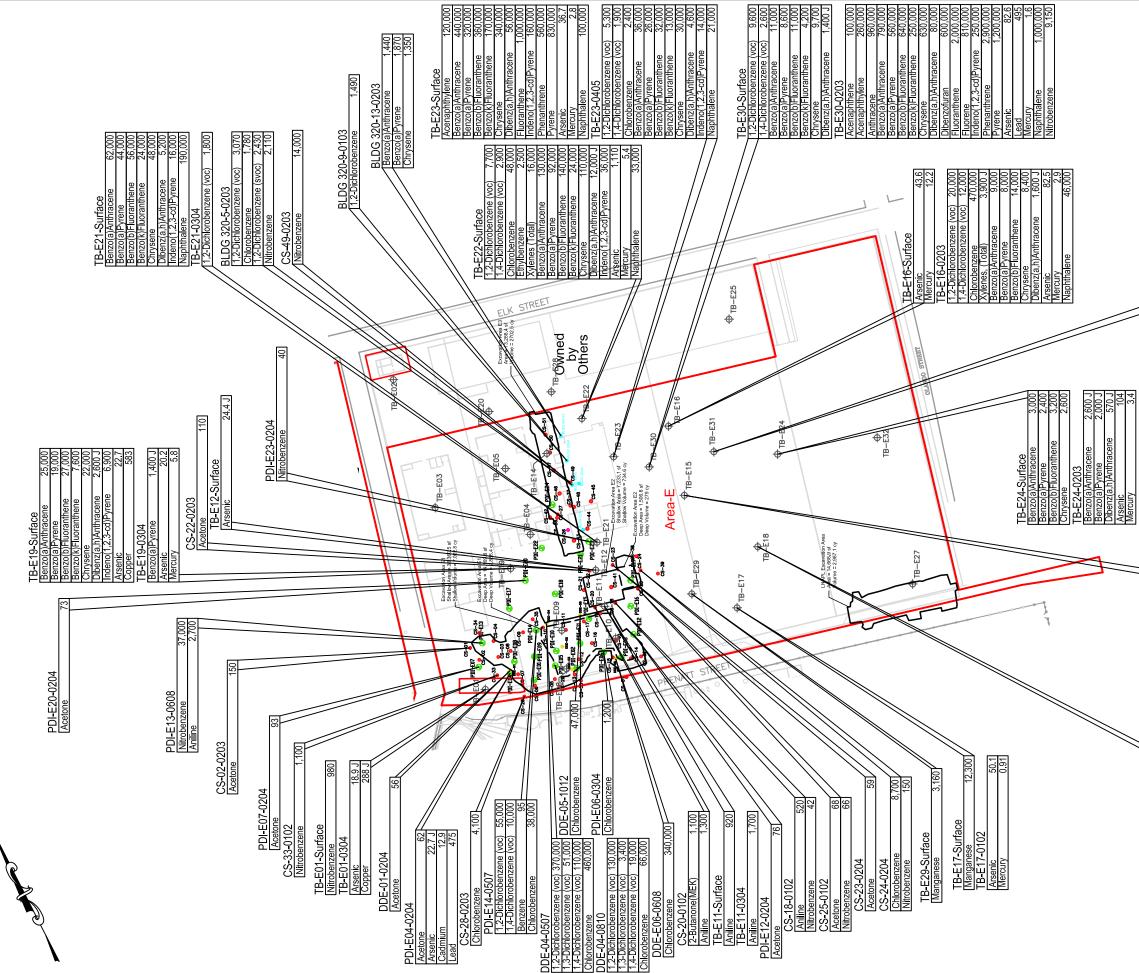

AREA E MONITORING WELL NY CLASS GA **GROUNDWATER EXCEEDANCES** NOVEMBER 2009

Figure: 13

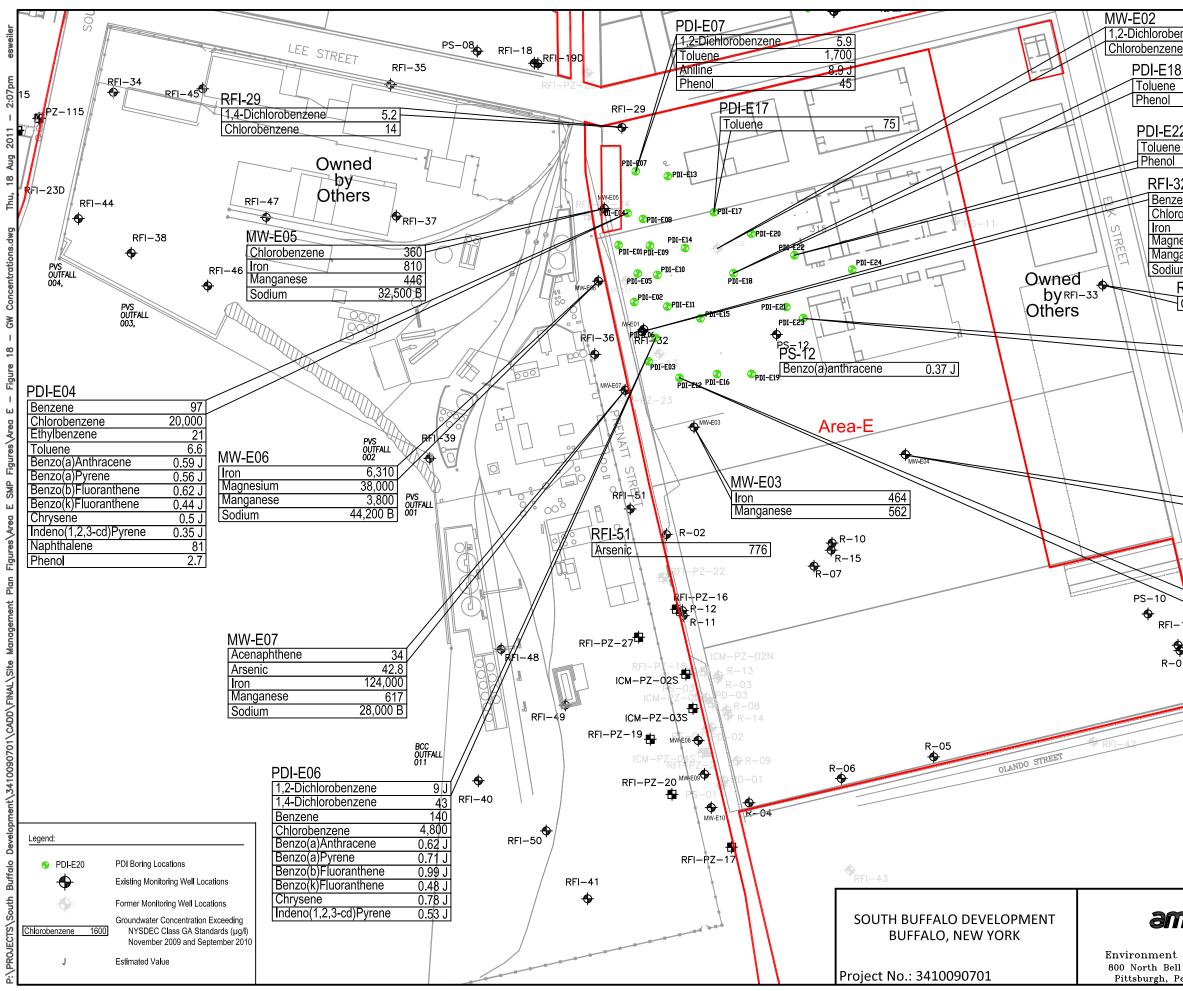
13




, P	14	
 ENGINEERING AND INSTITUTIONAL CONTROLS Integrated cover system consist of 1 foot of soil /asphalt povement/concrete pavement/building slabs Vapor mitigation/vapor intrusion evaluations must be carried out in new or re-occupied structures and or site redevelopment. Use of groundwater in the entire Easement Area is restricted without water quality treatment as may be required by the New York State Department of Health. Future Intrusive Gite Easement Area is prohibited. Evaluation for potential vapor intrusion of any buildings is required. Agricultural use in the entire Easement Area is prohibited. Agricultural use in the entire Easement Area is prohibited. 	SITE COVER PLAN - AREA E	Figure: 14
	ameco	Environment & Infrastructure 800 North Bell Avenue, Suite 200 Pittsburgh, Pennsylvania 15106
The engineering and institutional controls for this Easement are set forth in the Site Management Plan (SMP). A copy of the SMP must be obtained from NYS Deportment of Environmental Conservation, Division of Environmental Remediation, Site Control Section, 625 Broadwoy, Albany, NY 12233.* or at derweb@ydec.state.nyus This property is subject to an Environmental by the New York State Deportment of Environmental Conservation pursuant to Title 36 of Article 71 of the New York Environmental Conservation Law.	SOUTH BUFFALO DEVELOPMENT BUFFALO, NEW YORK	Project No.: 3410090701
		SUALE' I = ICU



esweiler mqčð:í — í102 puA 81 ,udT


P.P.ROJECTS/South Buttalo Development/3410090701/CADD/FINAL/Site Management Plan Figures/Area E SMP Figures/Area E - Figure 15 - Remedial Excavation Locations.dwg

	ds tion		17	
Legend:	Property Boundary	J Estimated Value	POST REMEDIAL ACTION SOIL CONCENTRATION	Figure: 17
TB-E31-Surface TB-E31-Surface Benzo(a)Anthracene Arsenc Arsenc Aniline Lead Mercury TB-E31-0203 Aniline Aniline Aniline Aniline Aniline Aniline Aniline Aniline	Mercury 1.2		ameco	Environment & Infrastructure 800 North Bell Avenue, Suite 200 Pittsburgh, Pennsylvania 15106
TB-E15-Surface Benzo(a)Anthracene 4,300 J Benzo(a)Pyrene 2,100 J Benzo(b)Fluoranthene 5,800 J Chrysene 3,600 J Arsenic 234 Conseir 504	2-0203		SOUTH BUFFALO DEVELOPMENT BUFFALO, NEW YORK	Project No.: 3410090701
TB-E18-Surface Benzo(a)Anthracene 2.300 J Benzo(a)Prene 2.000 J Chrysene 2.600 J Arsenic 2.64 Arsenic 2.64	-0304 Anthracene 1.1)Pyrene 1.5)P-tuoranthene 1.5 (e 1.3			SCALE: 1"= 200'

2017010 7.0	~			
ne 7.2	- Caro			
	C.			
18 e 58	7			
6 50				
	-			
22				
ne 6	0			
	2			
-32				
	660			
	000 170			
	400			
	070			
ium 64,00	<u>0 B</u>			
Chromium	65.5			
PDI-E23 4-Chloroaniline	10.1			
Aniline	<u>10 J</u> 620			
Benzo(a)Anthra	cene 7.2 J			
Benzo(a)Pyrene	e 6 J			
Benzo(b)Fluora Chrysene				
Naphthalene	6.6 J 14 J			
Nitrobenzene	760			
MW-E04				
2,4-Dinitrol				
2,6-Dinitrot	toluene 290			
I-17 PDI-E	12			
1.2-Dichloropenzene 15				
-01	ne 130 benzene 330			
	1e 8.9			
Aniline	benzene <u>330</u> ne <u>8.9</u> e 14,000			
	150 0 150			
	150 0 150			
	SCALE: 1"=150'			
mart	2009 - 2010			
nec				
t 0. Tes Coursets (GROUNDWATER CONCENTRATIONS 18			

Environment & Infrastructure 800 North Bell Avenue, Suite 200 Pittsburgh, Pennsylvania 15106

Figure: 18

APPENDIX A

METES AND BOUNDS

BUFFALO COLOR SITE LEGAL DESCRIPTION

PORTION OF AREA E:

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie, State of New York, being part of Lot No. 133 of the Buffalo Creek Reservation, and more particularly bounded and described as follows:

BEGINNING at the intersection of the easterly line of Lee Street with the southerly line of Elk Street;

Thence easterly along the south line of Elk Street on a record deed bearing of 876° 17' 40"E and a measured bearing of 876° 10' 39"E a distance of 85.00 feet to a point;

Thence southerly on a record deed bearing of $S13^{\circ} 38' 00$ "W and measured bearing of $S13^{\circ} 45' 01$ "W a distance of 53.00 feet to a point;

Thence westerly on a record deed bearing of N76° 17' 40"W and measured bearing of N76° 10' 39"W a distance of 85.00 feet to a point on the east line of Lee Street;

Thence northerly along the east line of Lee Street on a record deed bearing of $N13^{\circ} 38'$ 00"E and measured bearing of $N13^{\circ} 45' 01$ "E a distance of 53.00 feet to the Point or Place of Beginning.

AREA E:

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie, State of New York, being part of Lot Nos. 133, 195 and 196 of the Buffalo Creek Reservation, and more particularly bounded and described as follows:

BEGINNING at the intersection of the easterly line of Lee Street with the northerly line of the former Prenatt Street;

Thence along the easterly line of Lee Street a record bearing of N13° 38' 00"E and measured bearing of N13° 45' 01"E a distance of 525.93 feet to the southerly line of lands conveyed to Elk-Lee, LLC by deed recorded in the Erie County Clerk's Office in Liber 11106 of deeds at page 9019;

Thence parallel with the south line of Elk Street S76° 10' 39"E east and along the southerly line of Elk-Lee, LLC, a distance of 831.47 feet to the westerly line of the former Maurice Street;

Thence N13^o 45' 01"E along the former west line of Maurice Street and along the east line of Elk-Lee, LLC a distance of 197.00 to the south line of Elk Street;

Thence S76° 10' 39"E along the south line of Elk Street a distance of 260.00 feet to the westerly line of Orlando Street;

Thence S13° 45' 01"W along the westerly line of Orlando Street a distance of 757.00 feet to a point on the north line of the former Prenatt Street;

Thence S76° 10' 39"E along the former north line of Prenatt Street a distance of 300.00 feet to the west line of Babcock Street;

Thence S13° 45' 01"W along the west line of Babcock Street a distance of 33.00 feet to the north east corner of lands conveyed to The Buffalo Creek Railroad Company by deed recorded in the Erie County Clerk's Office in Liber 6040 of deeds at page 437;

Thence N71° 48' 22"W along the north line of lands conveyed to The Buffalo Creek Railroad Company a distance of 170.56 feet to a point in the west line of Lot 197 distant 20 feet southerly, measured along the west line of Lot 197 from the north line of the former Prenatt Street;

Thence N76° 10' 39"W parallel with the north line of the former Prenatt Street, along the north line of lands conveyed to The Buffalo Creek Railroad Company a distance of 660.00 feet to a point in the west line of Lot 196 distant 20 feet southerly, measured along the west line of Lot 196 from the north line of the former Prenatt Street;

Thence N75° 10' 16"W along the north line of lands conveyed to The Buffalo Creek Railroad Company a distance of 398.50 feet to a point in the west line of Lot 195 distant 13 feet southerly, measured along the west line of Lot 195 from the north line of the former Prenatt Street;

Thence N71° 53' 01"W along the north line of lands conveyed to The Buffalo Creek Railroad Company a distance of 100.89 feet to a point in a line drawn parallel with and 25 feet southerly measured at right angles from the north line of the former Prenatt Street;

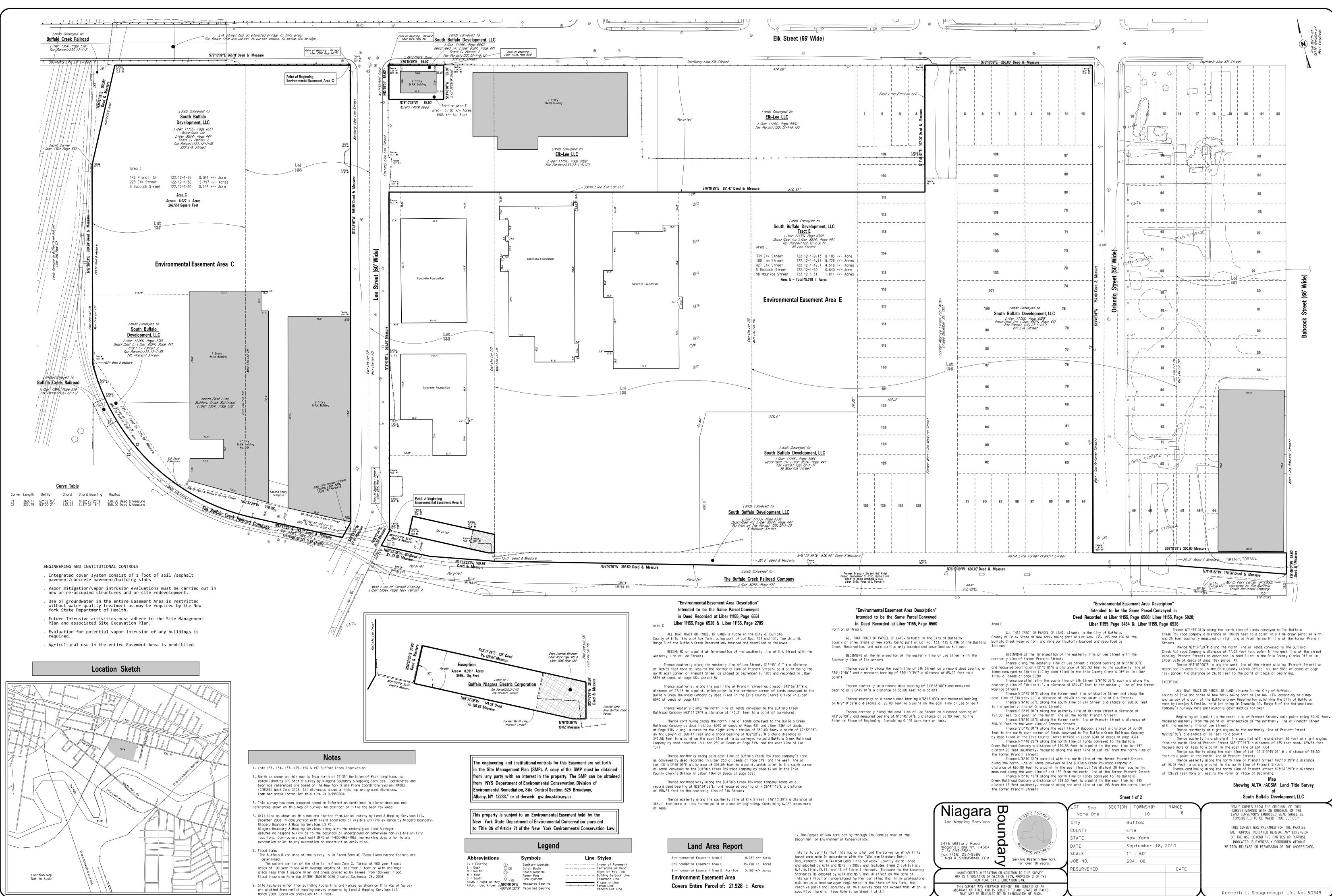
Thence N63° 37' 29"W along the north line of lands conveyed to The Buffalo Creek Railroad Company a distance of 77.02 feet to a point in the west line of the street closing (Prenatt Street) as described in the deed recorded in the Erie County Clerk's Office in Liber 5836 of deeds at page 182, parcel A;

Thence N43° 02' 06"E along the west line of the street closing (Prenatt Street) as described in the deed recorded in the Erie County Clerk's Office in Liber 5836 of deeds at page 182, parcel A a distance of 26.10 feet to the Point or Place of Beginning.

EXCEPTING:

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie, State of New York, being part of Lot No. 133, according to a map and survey of a part of the Buffalo Creek Reservation adjoining the City of Buffalo, made by Lovejoy and Emslie, said lot being in Township 10, Range 8 of the Holland Land Company's Survey, and more particularly bounded and described as follows:

BEGINNING at a point in the north line of the former Prenatt Street, said point being 30.47 feet, measured easterly from the point of intersection of the northerly line of the former Prenatt Street with the easterly line of Lee Street;


Thence northerly at right angles to the northerly line of the former Prenatt Street N26^o 22' 30"E a distance of 30 feet to a point;

Thence easterly in a straight line parallel with and distant 30 feet at right angles from the north line of the former Prenatt Street S63° 37' 29"E a distance of 135 feet deed, 129.84 feet measured more or less to a point in the east line of Lot 133;

Thence southerly along the east line of Lot 133 S13° 45' 01"W a distance of 28.50 feet to a point in the north line of the former Prenatt Street;

Thence westerly along the north line of the former Prenatt Street $N76^{\circ}$ 10' 39"W a distance of 10.02 feet to an angle point in the north line of the former Prenatt Street;

Thence continuing along the north line of the former Prenatt Street N63^o 37' 29"W a distance of 126.29 feet more or less to the Point or Place of Beginning.

6. Site features other than Building Footprints and Fences as shown on this Map of Survey are plotted from aerial mapping survey prepared by Land & Mapping Services LLC

March 2009 Location precision +/- 1 foot.

Logona				
Abbreviations	Symbols	Line	Styles	
Ex = Existing (S) E = East ECB N = North (S) W = West (C) S = South of Way (C) P(DW = Picht of Way (C) P(DW = Picht of Way (C) P(DW = Picht of Way (C) (C) (C) (C) (C) (C) (C) (C)	Sanitary Manhole Catch Basin Storm Manhole Power Pole Fire Hydrant		Crown of Pavemer Centerline of Roa Right of Way Line Building Setback L Easement Line	
R.O.W. = Right of Way A.K.A. = also known as N90°00'00"E <i>N90°00'00"E</i>	Measured Bearing Z Recorded Bearing	××××	Property Line Fence Line Record Lot Line	

Covers Entire Parcel of: 21.928 ± Acres

relative positional accuracy of this survey does not exceed that which is specified therein. (See Note 6. on Sheet 1 of 3.)

Kenneth L. Slaugenhoupt Lic. No. 50349

C COPYRIGHT 2007 NIAGARA BOUNDARY AND MAPPING SERVICES L.S.P.C.

APPENDIX B

EXCAVATION WORK PLAN

APPENDIX B – EXCAVATION WORK PLAN

This Excavation Work Plan (EWP) specifies requirements for excavation and grading activities, stockpiling and soil staging areas, onsite reuse criteria, waste characterization sampling, soil loading and transportation, and requirements for offsite disposal. The plan also addresses steps that will be taken in the event that buried drums, underground storage tanks, pipes or sewers are encountered during future construction activities.

B-1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the site owner or their representative will notify the Department. Currently, this notification will be made to:

> Mr. Martin Doster Regional Hazardous Waste Remediation Engineer NYSDEC Region 9 Division of Environmental Remediation 270 Michigan Avenue Buffalo, NY 14203

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent, plans for site re-grading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control,
- A summary of environmental conditions anticipated in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work,
- A summary of the applicable components of this EWP,
- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120,

- A copy of the contractor's health and safety plan, in electronic format, if it differs from the HASP provided in Appendix D of this SMP,
- Identification of disposal facilities for potential waste streams, and
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

B-2 SOIL SCREENING METHODS

Visual, olfactory and instrument-based soil screening will be performed by a qualified environmental professional during all remedial and development excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed regardless of when the invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the Certificate of Completion COC.

Where possible, soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal, material that requires testing, material that can be returned to the subsurface, and material that can be used as cover soil.

Additional discussion pertaining to soil screening for on-site reuse or off-site disposal is contained in Section B-7 of this EWP.

B-3 STOCKPILE METHODS

Excavated soils associated with remaining contamination will be stockpiled on the property for characterization when direct loadout of soil for off-site disposal is not appropriate. Specific locations for the stockpile areas will be determined during construction. Stockpile areas will be lined with poly sheeting having a thickness of at least 10 mils.

Soil stockpiles will be continuously encircled with a berm consisting of poly covered earth, hay bales, wooden frames, and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points. Existing concrete curbs and slabs may also be used as part of the stockpile system provided that they are covered with the 10mil poly sheeting. Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected, and damaged tarp covers will be promptly replaced. Spray-on dust suppression agents may be applied when soil is not being added or removed to reduce the infiltration of precipitation and the migration of dust. When a temporary stockpile area is no longer needed, all used plastic liners and berm construction materials will be properly disposed.

As an alternative to temporary stockpiles, rolloff boxes (tarped and lined as necessary) may be used for on-site accumulation of excavated materials.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC.

A daily record of the accumulation date(s), origination point, estimated volume (in cubic yards), date/location of on-Site reuse, sampling and characterization details, and date of off-Site transportation, as appropriate, for each separate soil stockpile will be maintained by the owner.

Soils that require off-Site disposal will not be stockpiled for more than 90 days after completion of the specific excavation. Characterization samples of the stockpiled material will be collected within two weeks (14 calendar days) after completion of an excavation; standard laboratory turnaround (approximately 3 weeks) will be used for all laboratory testing unless an expedited turnaround time is required. Soils ide1ntified for on-Site reuse beneath the cover system, as determined via the process described below, will not be stockpiled on-Site for more than 180 days without NYSDEC approval.

B-4 MATERIALS EXCAVATION AND LOAD OUT

A qualified environmental professional or person under their supervision will oversee all invasive work and the excavation and load-out of all excavated material.

For excavation work below the cover system, a Professional Engineer's (P.E.'s) representative with construction/remediation experience, representing the property owner or developer, will monitor excavations or disturbances that will extend below the site cover system. The site owner at the time of intrusive work must provide a P.E. stamped/signed

certification that excavation work below the cover system and subsequent repair/replacement of the cover system was conducted in a manner consistent with this Plan.

The owner of the property and its contractors are solely responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the site.

Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

A truck wash will be operated on-site when determined necessary by the qualified environmental professional. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the site until the activities performed under this section are complete.

Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the site are clean of dirt and other materials derived from the site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials.

B-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

All trucks will be inspected and, if determined necessary by the qualified environmental professional, washed prior to leaving the site. Truck wash waters will be collected and disposed of in an appropriate manner.

Truck transport routes will be developed to take into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport; (g) community input [where necessary].

Trucks will be prohibited from stopping and idling in the neighborhood outside the project site.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development.

Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

B-6 MATERIALS DISPOSAL OFF-SITE

All soil/fill/solid waste excavated and removed from beneath the site cover system will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. If disposal of soil/fill from this site is proposed for unregulated off-site disposal (i.e., clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from this site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the pre-excavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate (i.e., hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc). Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Track 1 unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility).

B-7 ON-SITE MATERIALS REUSE

Chemical criteria for on-site reuse of material have been approved by NYSDEC and are discussed in the following paragraphs. The qualified environmental professional will ensure that procedures defined for materials reuse in this SMP are followed and that unacceptable excavated material does not remain on-site. Contaminated on-site material, including historic fill and contaminated soil, that is acceptable for re-use on-site will be placed below the demarcation layer or impervious surface, and will not be reused within a cover soil layer, within landscaping berms, or as backfill for subsurface utility lines.

Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing on-site will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the site will not be reused on-site.

B-7.1 Site-Specific Action Levels

To evaluate soils for potential reuse on-Site as fill beneath the site cover system, the following process will be used.

<u>Step 1</u> - Determine if Excavated Material is "Grossly Contaminated": For the purposes of this project, "grossly contaminated" soil exhibits one or more of the following characteristics:

- Visual indication of non-aqueous phase liquid (NAPL);
- Visual indication of other separate phase materials of concern, such as elemental mercury; and/or

• Sustained or repeated periodic photoionization detector (PID) readings, as obtained in ambient air at the surface of the excavated material, of greater than 10 ppm above background levels over a 1-minute interval.

Discolored soil will not be considered "grossly contaminated" if it does not exhibit any of the above characteristics.

If excavated material is identified as "grossly contaminated", it will be characterized for off-Site disposal. Any excavated material that does not meet the definition of "grossly contaminated" will be evaluated as defined in Step 2 below.

<u>Step 2</u> – Compare to Site-Specific Action Levels (SSALs): Samples of the excavated material will be sampled and characterized at a NYSDEC-approved off-Site laboratory using the procedures described in this document. The results of the characterization testing will then be screened against the SSALs. The soils will be considered to meet the SSALs if concentrations of tested constituents meet the following parameters:

- Individual VOCs < Commercial SCOs
- Total SVOCs < 500 ppm
- Individual PCB Aroclors < Commercial SCOs
- Metals < 10x Commercial SCOs

It should be noted that the SSALs are not remedial action levels or cleanup goals for the Site remedy. It is further understood that the SSALs will not be used as triggers for additional remediation beyond that specified in the AAR, except as follows: If concentrations of any analyzed metal exceeds the SSAL, then TCLP testing will be completed on that sample for that metal. If the TCLP result exceeds the TCLP limit for that metal, then additional sampling in the area of excavation from which the soil originated will be proposed to determine if additional remediation is warranted. The determination of whether additional action is warranted will be made by assessing the TCLP data, as well as Site specific information. If it is determined that additional investigation is warranted, that investigation should focus on the potential for those metals to have an impact on groundwater. If discolored soils are encountered during the field work, special attention will be given to that area to assess possible impacts upon groundwater.

If the excavated material is not "grossly contaminated" and all sample results meet the SSALs, then the excavated material can be reused on Site as structural fill placed beneath the cover system. If the excavated material does not meet the requirements of either Step 1 or Step 2, or if for any reason the material is not suitable for reuse on site, it will be taken off-Site for proper disposal

B-7.2 Sampling And Characterization Of Stockpiled Soil

For stockpiled soil that may be reused as fill and is not "grossly contaminated" as determined based on Step 1 above, one composite sample will be collected for every 100 cubic yards (or portion thereof) of stockpiled soil. The composite sample will be collected from five locations from each 100 cubic yard volume. Photoionization detector (PID) measurements will be recorded for each of the five individual locations. One grab sample will be collected from the individual location with the highest PID measurement. If none of the five individual sample locations exhibit PID readings, one location will be selected at random. The composite sample will be analyzed by a NYSDOH ELAP-certified laboratory for Target Compound List (TCL) SVOCs (plus aniline), PCBs, and Target Analyte List (TAL) metals plus cyanide. The grab sample will be analyzed for TCL VOCs. The full list of TCL VOCs and SVOCs is provided as Attachment A of this EWP. If off-Site disposal is expected, an additional composite sample will be collected for TCLP analysis and other characterization tests, as specified by the disposal facility.

Soil samples will be composited by placing equal portions of soil from each of the five individual sample locations into a pre-cleaned, stainless steel (or Pyrex glass) mixing bowl. The soil will be thoroughly homogenized using a stainless steel or disposable plastic scoop or trowel and transferred to pre-cleaned jars provided by the laboratory. Sample jars will then be labeled and a chain-of-custody form will be prepared.

Any stockpiled soil with TCLP/characterization results that indicate the material is hazardous waste (as defined under RCRA) will be subject to the applicable hazardous waste storage, labeling, handling, transportation and disposal regulations.

B-8 FLUIDS MANAGEMENT

Pumping of water (i.e., ground water and/or storm water) that has accumulated in an excavation, if necessary, will be done in such a manner as to prevent the migration of particulates, soil, or unsolidified concrete materials and prevent damage to the existing subgrade. Water pumped from the excavations may be discharged to the BSA sewer system, after BSA approval has been obtained. If the water quality is such that the BSA will not approve the discharge to a sewer, or if the water cannot be sufficiently treated so that BSA approval is obtained, it will be stored in temporary storage tanks, characterized, and transported off-Site for proper disposal. Runoff from the surface will be controlled to prevent discharges to storm sewers or the Buffalo River.

All liquids to be removed from the site, including excavation dewatering and groundwater monitoring well purge and development waters, will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the site unless otherwise approved.

Any discharge of water generated during large-scale construction activities to surface waters (i.e., the Buffalo River) will be performed under a SPDES permit.

B-9 COVER SYSTEM RESTORATION

After the completion of soil removal and any other invasive activities, the cover system will be restored in a manner that complies with the RAWP and cover system design details. The demarcation layer, consisting of black woven geotextile, will be replaced to provide a visual reference of the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this Site Management Plan. If the type of cover system changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt), this will constitute a modification of the cover element of the remedy and the upper surface of the 'Remaining Contamination'. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in any updates to the SMP.

B-10 BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the site.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the site.

All imported soils will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.7(d). Backfill and cover soil must not exceed the lower of the Commercial or Protection of Groundwater SCOs as discussed in B-10.1 and B-10.2 Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC. Solid waste will not be imported onto the site without a Beneficial Use Determination and a prior NYSDEC approval.

Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

B-10.1 Structural Fill Beneath The Cover System

Excavated material, crushed asphalt or concrete from building demolition, and clean fill/borrow material brought on Site for use as structural fill beneath the Site cover system must meet the following criteria:

All materials from on-Site sources must be shown through testing to have concentrations of constituents that are less than or equal to the SSALs.

Material from off-Site sources intended for use as site backfill shall meet the Commercial SCOs (Protection of Public Health) or Protection of Groundwater SCOs established in 6NYCRR 375-6.7(d), whichever is more stringent, except as follows: The following material may be imported for use as backfill, without chemical testing, for use beneath pavement, buildings, or below the cover system, provided it contains less than 10% by weight of material which would pass through a size 200 sieve and consists of:

- Rock or stone, consisting of virgin material from a permitted mine or quarry; or
- Recycled concrete or brick from a Department registered construction and demolition debris processing facility which conforms to Section 304 of the New York Department of Transportation Standard Specifications Construction and Materials Volume I (2002).

Off-Site borrow materials intended for use on the Site which require chemical testing will be tested via collection of one composite sample per 500 cubic yards of material from each source area. The sample will be analyzed for TCL VOCs, TCL SVOCs, PCBs, and TAL metals plus cyanide. If more than 1,000 cubic yards of material are borrowed from a given off-Site source area and both samples of the first 1,000 cubic yards meet the SSALs, the sample collection frequency will be reduced to one composite for every 2,500 cubic yards of additional material from the same source, up to 5,000 cubic yards. For borrow sources greater than 5,000 cubic yards, sampling frequency will be reduced to one sample per 5,000 cubic yards, provided all earlier samples met the SSALs.

B-10.2 Cover System Soils

The cover soil material will meet the following criteria:

- Off-Site borrow soils will be documented as having originated from locations having no evidence of disposal or release of hazardous, toxic or radioactive substances, wastes or petroleum products.
- Off-Site soils intended for use as site cover will not be defined as a solid waste in accordance with 6NYCRR Part 360-1.2(a).

If off-Site soil intended for use as cover material is considered "virgin", it will be further documented in writing to be native soil material from areas not having supported any known prior industrial or commercial development or agricultural use. Off-Site soils to be used as cover soils must not exceed the lower of the Commercial or Protection of Groundwater SCOs.

Non-virgin soils will be tested via collection of one composite sample per 500 cubic yards of material from each source area. The sample will be analyzed for TCL VOCs, TCL SVOCs, PCBs, and TAL metals plus cyanide. If more than 1,000 cubic yards of soil are borrowed from a given off-site non-virgin soil source area and both samples of the first 1,000 cubic yards meet the specified SCOs, the sample collection frequency will be reduced to one composite for every 2,500 cubic yards of additional soils from the same source, up to 5,000 cubic yards. For borrow sources greater than 5,000 cubic yards, sampling frequency will be reduced to one sample per 5,000 cubic yards, provided all earlier samples met the specified SCOs.

The topsoil used for the final cover will be fertile, friable, natural loam surface soil, capable of sustaining plant growth, and free of clods or hard earth, plants or roots, sticks or other extraneous material harmful to plant growth.

Grassed areas will be seeded with a sustainable perennial mixture with appropriate erosion control measures taken until the perennial grasses are established, as specified by the local soil conservation district.

To reduce the disturbance of the surface cover material, clean soil berms will be constructed in areas where shallow-rooted trees and shrubs will be planted. The berms will be of sufficient thickness to allow the excavation of only clean fill deep enough to plant the tree or shrub root ball. The berm material will contain sufficient organic material to allow tree and/or shrub growth, and will be of sufficient strength to support trees and/or shrubs at their maximum height.

B-11 STORMWATER POLLUTION PREVENTION

For excavations that will exceed 1-acre in surface area, coverage will be obtained under the NYSDEC SPDES General Permit for Storm Water Discharges from Construction Activities that are classified as "Associated with Industrial Activity", Permit #GP-93-06 (Construction Storm Water General Permit). Requirements for coverage under the Construction Storm Water General Permit include the submittal of a Notice of Intent (NOI) form and the development of a Storm Water Pollution Prevention Plan (SWPPP). The SWPPP will fulfill all permit requirements and will be prepared in accordance with the latest NYSDEC guidance for preparing SWPPP and with latest version of the New York State Stormwater Management Design Manual. This SWPPP, in accordance with permit requirements, will provide the following information:

- A background discussion of the scope of the construction project.
- A statement of the storm water management objectives.
- An evaluation of post-development runoff conditions.
- A description of proposed storm water control measures.
- A description of the type and frequency of maintenance activities required to support the control measure.

The SWPPP will address issues such as erosion prevention, sedimentation control, hydraulic loading, pollutant loading, ecological protection, physical site characteristics that impact design, and site management planning. All descriptions of proposed features and structures at the Site will include a description of structure placement, supporting engineering data and calculations, construction scheduling, and references to established detailed design criteria. The SWPPP will conform to all requirements as established by applicable regulatory agencies.

Proven soil conservation practices, including Best Management Practices such as those described in the latest version of the New York State Stormwater Management Design Manual, will be incorporated in construction and development plans to mitigate soil erosion, off-site sediment migration, and water pollution from erosion. Temporary erosion control measures such as silt fencing and/or hay bales will be placed around soil stockpiles and bare surface soil during demolition activities, as specified by the local soil conservation district. Stockpiles will be graded and compacted as necessary for positive surface water runoff and dust control. Stockpiles of soil will be placed a minimum of 50 feet from the property boundaries.

Temporary erosion and sedimentation control measures will be used during active demolition/construction stages. Prior to any demolition/construction activity, temporary

erosion and sediment control measures will be installed and maintained until such time that permanent erosion control measures are installed and effective. The following temporary measures will be incorporated into demolition/construction activities:

Silt fences will be placed around active demolition/construction areas that result in soil disturbance.

Hay bales will be placed and staked around stockpiled soil under the plastic to create a berm.

Plastic covers will be placed on stockpiled soil to reduce rain water infiltration and dust.

Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional.

All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials.

Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters

Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

Removed sediment will be stockpiled and characterized as specified for excavated soil. The perimeter silt fences will remain in place until demolition/construction activities in the area are completed and vegetative cover or other erosion control measures are adequately

14

established. Silt fences will be provided and installed in accordance with the New York Guidelines for Urban Erosion and Sediment Control.

Permanent erosion control measures will be incorporated into the construction plans for the site-wide cover system and will include limiting steep slopes, routing runoff to surface water collection channels, limiting flow velocities in the collection channels to the extent practical, and lining collection channels, where appropriate. In areas where flow will be concentrated (i.e., collection channels) the channel slopes and configuration will be designed to maintain channel stability. Permanent measures and facilities will be installed as early as possible during construction phases.

Any final slopes greater than 33 percent will be reinforced, and will have a demarcation layer under the clean cover to indicate if erosion has extended to the subgrade. Following the placement of final cover soils over regraded areas, a revegetation program will be implemented to establish permanent vegetation. The areas to be grassed will be seeded in stages as construction is completed with 100 lbs/acre of seed with a sustainable perennial mixture.

In addition to the above seed mixture, mulch, mulch blankets, or synthetic fabric will be placed to prevent erosion during turf establishment. Mulch will be placed on all slopes less than 15% and a mulch blanket on all slopes greater than 15%. Synthetic erosion control fabric will be placed in drainage ditches and swales.

B-12 CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment, and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for a full list of analytes (TAL metals, TCL volatiles and semi-volatiles, TCL pesticides and PCBs), unless the site history and previous sampling results provide a sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the periodic reports prepared pursuant to Section 5 of the SMP.

If "grossly contaminated" soil is encountered in an excavation, the owner may choose to expand the excavation until no further "grossly contaminated" material remains visible within the excavation, or the owner may develop a plan for the characterization and remediation of the material for NYSDEC approval. The plan will be based on the type and extent of material encountered.

B-12.1 Buried Drums Or Underground Storage Tanks

If buried drums or underground storage tanks (USTs) are encountered during excavation activities, NYSDEC will be notified. USTs will be registered with NYSDEC as required per 6 NYCRR Part 375-1.8. Any buried drums and/or USTs encountered will be evaluated within the excavation via visual assessment and PID readings, provided that worker health and safety is protected. Subsequently, a Removal Plan will be prepared for NYSDEC approval. Drums and/or USTs will be excavated and removed in accordance with a site-specific Health and Safety Plan while following all applicable Federal, State, and local regulations. Removed drums and underground storage tanks will be properly characterized and disposed off-site. The soil surrounding the buried drums or underground storage tanks will be considered as potentially contaminated and will be characterized in accordance with methods prescribed in this Plan.

B-12.2 Underground Pipes And Sewers

Inactive storm or sanitary sewer pipes that will not be reused and are encountered within the limits of an excavation will be removed and any exposed ends will be plugged/capped at the walls of the excavation. If pipes are large, the use of flowable fill may be considered. Based on Site knowledge, no underground chemical/process pipes are expected; if any are encountered during grading or excavation activities, they will be cut, drained, and removed from within the excavation limits. Drained materials will be collected and properly disposed off-Site. Pipe sections left in the ground (if any) which will not be reused will be capped/plugged after draining and the potential for migration of contaminants along the pipe bedding will be assessed and mitigated via placement of impermeable collars or other barriers, as appropriate.

B-13 COMMUNITY AIR MONITORING PLAN

A Community Air Monitoring Plan (CAMP) prepared following the guidance in Appendix 1A of DER-10, Generic Community Air Monitoring Plan, will be provided as part of the project Health and Safety Plan for activities involving subgrade excavation, grading, and soil handling activities. Particulate and VOC monitoring will be performed along the downwind occupied perimeter in accordance with the CAMP. The CAMP will include:

- Details of the perimeter air monitoring program
- Action levels to be used
- Methods for air monitoring
- Analytes measured and instrumentation to be used
- A figure showing the location of air sampling stations based on generally prevailing wind conditions. These locations will be adjusted on a daily or more frequent basis based on actual wind directions to provide an upwind and at least two downwind monitoring stations.

Exceedances of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers.

B-14 ODOR CONTROL PLAN

An Odor Control Plan may not be required. However if nuisance odors are identified at the site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the property owner's qualified environmental professional, and any measures that are implemented will be discussed in the Periodic Review Report.

All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods. Trucks or rolloff containers used to contain odor-producing soils prior to off-site disposal will be covered or tarped.

If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

B-15 DUST CONTROL PLAN

Dust suppression techniques will be used at the Site in accordance with applicable NYSDEC guidance to control fugitive dust. The surface of unvegetated earthen or disturbed soil/fill areas will be wetted with water or other dust suppressive agents to control dust during demolition/construction. Any subgrade material left exposed during extended interim periods (greater than 90 days) prior to placement of a final cover will be covered with a temporary cover system (i.e., tarps, spray type cover system, etc.) or planted with vegetation to control fugitive dust to the extent practicable. Particulate and VOC monitoring will be performed along the downwind occupied perimeter during subgrade excavation, grading, and handling activities in accordance with the CAMP to be provided as part of the project Health and Safety Plan.

Dust suppression techniques that may be used at the Site include applying water on roadways, wetting equipment, spraying water on buckets during excavation and dumping, hauling materials in properly covered or watertight containers, covering excavated areas and

material after excavation activity ceases, establishing vegetative cover immediately after placement of cover soil, and reducing the excavation size and/or number of excavations. The use of atomizing sprays is recommended where practical so that excessively wet areas will not be created, but fugitive dust will be suppressed.

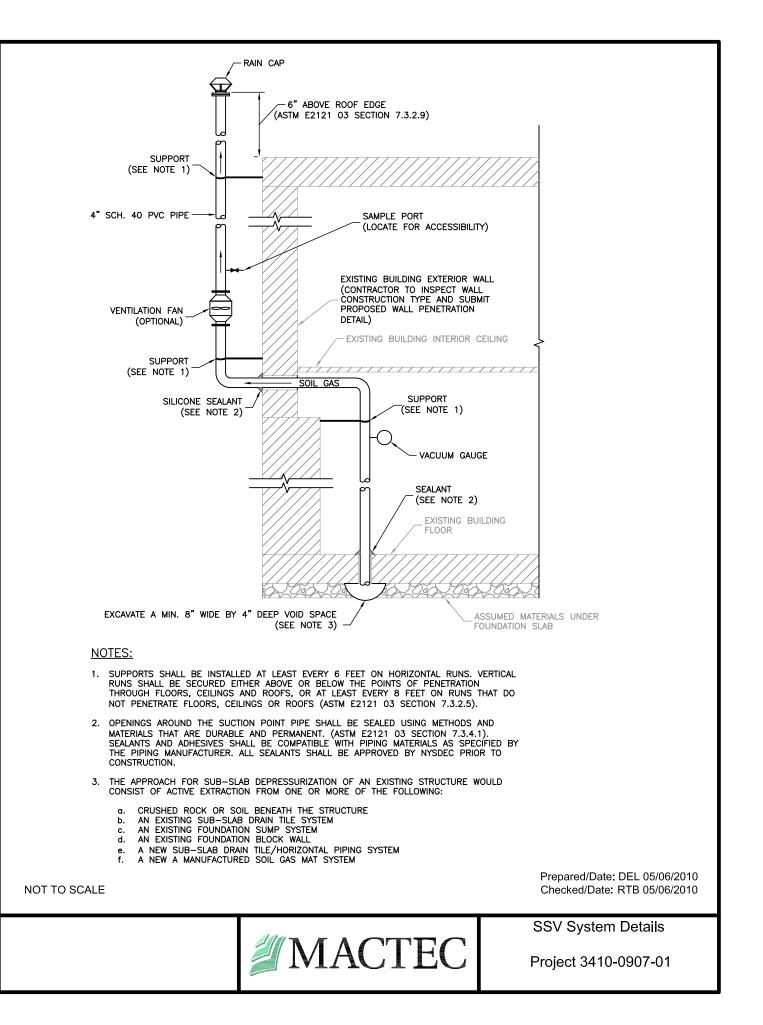
A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved though the use of dedicated on-site water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.

B-16 OTHER NUISANCES

A plan will be developed and utilized by the contractor for all work to ensure compliance with local noise control ordinances.

ATTACHMENT B-1


TARGET COMPOUND LIST OF SEMI-VOLATILE AND VOLATILE ORGANIC COMPOUNDS

SVOCS	
	BENZYL ALCOHOL BIPHENYL
2,2'-DICHLORODIISOPROPYLETHER	BIS(2-CHLOROETHOXY)METHANE
2,4,5-TRICHLOROPHENOL	BIS(2-CHLOROETHYL)ETHER
2,4,6-TRICHOLORPHENOL	BIS(2-ETHYLHEXYL)PHTHALATE
2,4-DICHLOROPHENOL	BUTYLBENZYL PHTHALATE
2,4-DIMETHYLPHENOL	CAPROLACTAM
2,4-DINITROPHENOL	CARBAZOLE
2,4-DINITROTOLUENE	CHRYSENE
2,6-DINITROPHENOL	DI-N-BUTYL PHTHALATE
2,6-DINITROTOLUENE	DI-N-OCTYL PHTHALATE
2-CHLORONAPHTHALENE	DIBENZO(A,H)ANTHRACENE
2-CHLOROPHENOL	DIBENZOFURAN
2-METHYLNAPHTHALENE	DIETHYL PHTHALATE
2-METHYLPHENOL	DIMETHYL PHTHALATE
2-NITROANILINE	FLUORANTHENE
2-NITROPHENOL	FLUORENE
3,3'-DICHLOROBENZIDINE	HEXACHLOROBENZENE
3-METHYLPHENOL	HEXACHLOROBUTADIENE
3-NITROANILINE	HEXACHLOROCYCLOPENTADIENE
4,6-DINITRO-2-METHLYPHENOL	HEXACHLOROETHANE
4-BROMOPHENOL PHENYL ETHER	INDENO(1,2,3-CD)PYRENE
4-CHLORO-3-METHYLPHENOL	ISOPHORONE
4-CHLOROANILINE	N-NITROSOI-N-PROPYLAMINE
4-CHLOROPHENYL PHENYL ETHER	N-NITROSODIMETHYLAMINE
4-METHYLPHENOL	N-NITROSODIPHENYLAMINE
4-NIRTOANILINE	NAPHTHALENE
4-NITROPHENOL	NITROBENZENE
ACENAPHTHENE	O-NITROANANILINE
ACENAPHTHYLENE	PENTACHLOROPHENOL
ACETOPHENONE	PHENANTHRENE
ANILINE	PHENOL
ANTHRACENE	PYRENE
BENZIDINE	
BENZO(A)ANTHRACENE	1
BENZO(A)PYRENE	7
BENZO(B)FLUORANTHENE	1
BENZO(G,H,I)PERYLENE	1
BENZO(K)FLUORANTHENE	1
BENZOIC ACID	1

VOCS
1,1,1-TRICHLOROETHANE
1,1,2,2-TETRALCHLOROETHANE
1,1,2-TRICHLOROETHANE
1,1,2-TRICHLOROTRIFLUOROETHANE
1,1-DICHOLROETHANE
1,1-DICHLOROETHENE
1,2,4-TRICHLOROBENZENE
1,2-DICHLOROBENZENE
1,2-DICHLOROETHANE
1,2-DICHLOROPROPANE
1,3-DICHLOROBENZENE
1,4-DICHLOROBENZENE
2-BUTANONE
2-CHLOROETHYL VINYL ETHER
2-HEXANON
4-METHYL-2-PENTANONE
ACETONE
BENZENE
BROMODICHLOROMETHANE
BROMOFORM
BROMOMETHANE
CARBON DISULFIDE
CARBON TETRACHLORIDE
CHLOROBENZENE
CHLORODIBROMOMETHANE
CHLOROETHANE
CHLOROFORM
CHLOROMETHANE
CIS-1,2-DICHLOROETHENE
CIS-1,3-DICHLOROPROPENE
CYCLOHEXANE
ETHYLBENZENE
ISOPROPYLBENZENE
METHYL ACETATE
METHYLCYCLOHEXANE
METHYLENE CHLORIDE
STYRENE
TETRACHLOROETHENE
TOLUENE
TRANS-1,2-DICHLOROETHENE
TRANS-1,3-DICHLOROPROPENE
TRICHLOROETHENE
TRICHLOROFLUOROMETHANE
VINYL ACETATE
VINYL CHLORIDE
XYLENES, TOTAL

APPENDIX C

VAPOR INTRUSION MITIGATION INFORMATION

APPENDIX D

HEALTH AND SAFETY PLAN

SITE-SPECIFIC HEALTH & SAFETY PLAN (HASP)

for the

Project Name: Former Buffalo Color Areas C & E Project Location: Buffalo, NY Project No.:

This HASP, which must be kept on site, addresses the health and safety hazards of each task conducted by employees for this project, including the requirements and procedures for worker protection (per 29 CFR 1910.120). The HASP was developed based on the hazards know or suspected to be present at the site, specifically as they relate to the work to be conducted by employees. The hazards and controls within this HASP do not necessarily address all the hazards associated with subcontractor personnel. Subcontractors may adopt this HASP; however they will be responsible for reviewing and revising/amending the HASP to ensure that it addresses hazards unique to their operations.

The Site Health and Safety Officer (SHSO) can change or amend this document only with agreement from the Division Environmental Health and Safety Manager (DEHSM). The SHSO must initial any change made to the HASP at the relevant section and document the amendment date below.

Prepared by:		
Approved by:		
	SHSO	Date
	Field Lead	Date
	Project Manager	Date
Date(s) of Amendment(s):		

All site workers shall read this HASP. A pre-entry briefing conducted by the SHSO shall be held prior to initiating this project. Items to be covered during the briefing can be found on the Site Safety Orientation form (Appendix G). All applicable sections of this HASP shall be reviewed during this briefing. The SHSO shall review the information covered in the pre-entry briefing meeting with any worker not in attendance at the initial meeting prior to commencing work. Brief meetings will be held at the beginning of each work day to discuss important safety and health issues concerning tasks performed on that day and documented on the Daily Safety Meeting checklist (Appendix H). After reading the HASP and attending a pre-entry briefing, workers shall sign the following acknowledgment statement:

Field Team Review: I acknowledge that I have read the requirements of this HASP, and agree to abide by the procedures and limitations specified herein. I also acknowledge that I have been given an opportunity to have my questions regarding the HASP and its requirements answered prior to performing field activities. Health and safety training and medical surveillance requirements applicable to my field activities at this site are current and will not expire during on-site activities.

NAME	DATE	NAME	DATE

TABLE OF CONTENTS

1.0	SITE	DESCRIPTION	1
	1.1	SITE HISTORY	1
2.0	KEY	PERSONNEL AND HEALTH AND SAFETY RESPONSIBILITIES	2
3.0	WOF	RKER TRAINING	6
4.0	MED	DICAL SURVEILLANCE	6
5.0	SITE	CONTROL	6
	5.1	WORK ZONES	6
	5.2	BUDDY SYSTEM	6
	5.3	SITE ACCESS	6
	5.4	GENERAL SAFE WORK PRACTICES	6
6.0	HAZ	ARD ANALYSIS	6
	6.1	CONTAMINANTS OF CONCERN	6
	6.2	JOB HAZARD ANALYSIS	7
7.0	AIR	MONITORING	7
8.0	PER	SONAL PROTECTIVE EQUIPMENT	9
9.0	DEC	ONTAMINATION	9
10.0	EME	RGENCY RESPONSE	
	10.1	HOSPITAL ROUTE MAP	
	10.2	EMERGENCY CONTACTS	
	10.3	EMERGENCY RESPONSE EQUIPMENT	12
	10.4	COMMUNICATIONS	15
	10.5	EMERGENCY RESPONSE PROCEDURES	15
11.0	GO1	FINED SPACE ENTRY	17
11.0	CON		
12.0		L CONTAINMENT	17
	SPIL	L CONTAINMENT	

TABLE OF CONTENTS

Page

LIST OF TABLES

Table

Table		Page
Table 2.1	Key Personnel and Health and Safety Responsibilities	3
Table 3.1	Training/Medical Surveillance/Respiratory	5
Table 5.1	General Safe Work Practices	6
Table 7-1	Action Levels per Monitoring Instrument	
Table 7-2	Air Monitoring Action Level Summary	
Table 8-1	PPE and Monitoring Requirements Summary	11
Table 10.1	Emergency Contacts	14
Table 10.2	Emergency Procedures	

LIST OF FIGURES

Figure		Page
Figure 1.1	Site Map	2
Figure 2.1	Project Organizational Chart	3
Figure 10.1	Hospital Route Map	13

TABLE OF CONTENTS

LIST OF APPENDICES

Appendix

APPENDIX A	CONTAMINANT FACT SHEETS
APPENDIX B	JOB HAZARD ANALYSIS PER TASK(S)
APPENDIX C	DECONTAMINATION PROCEDURES & EQUIPMENT PER TASK(S)
APPENDIX D	INCIDENT ANALYSIS FORMS
APPENDIX E	MATERIAL SAFETY DATA SHEETS
APPENDIX F	SHSO SUMMARY
APPENDIX G	SITE SAFETY ORIENTATION FORM
APPENDIX H	DAILY TAILGATE SAFETY MEETING CHECKLIST
APPENDIX I	DAILY SITE SAFETY AND HEALTH CHECKLIST

1.0 SITE DESCRIPTION

The Site is located on the south side of the City of Buffalo, Erie County, New York, in an area of heavy industrial development that dates to the mid-1800s. The Site occupies approximately 47 acres near and adjacent to the Buffalo River and consists of four distinct areas (Areas A, B, C, and E). The Site layout is shown on Figure 1-1. The work addressed by the plan will occur on Areas C and E. These areas are described below.

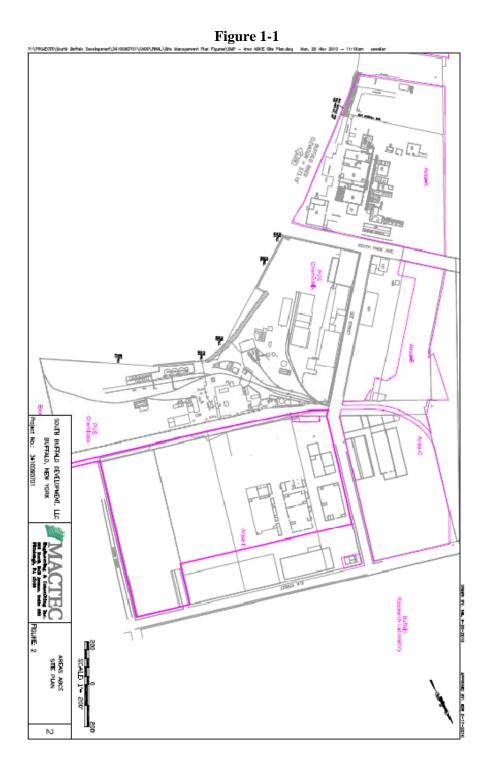
Area C is located on the northwestern corner of the Site. It is fenced and accessible by vehicle from gated entrances along Lee Street. Area C covers approximately six acres and includes the former powerhouse building and former ice house. The northern half of the property, where the remedial excavation work will occur, is vacant and open. Area C is bounded by Elk Street to the north, Lee Street to the east, a rail spur and Area B to the south, and railroad tracks to the west.

Area E covers approximately 25.5 acres and is located on the northeastern side of the Site. Former BCC Building 322 and surrounding property totaling about 9.1 acres is under new ownership and is not part of the BCA. The remaining 16.4 acres of Area E is owned and under redevelopment by SBD under the BCA. The western side of Area E presently includes various former production buildings, maintenance sheds, a former laboratory, the former wastewater treatment plant (which at one time included several surface impoundments) and a large AST farm. The eastern half of Area E is vacant, with much of it grass-covered. Area E is bounded by Elk Street to the north, Orlando Street to the east (across which is the Exxon Mobil bulk petroleum terminal), and Prenatt Street to the south.

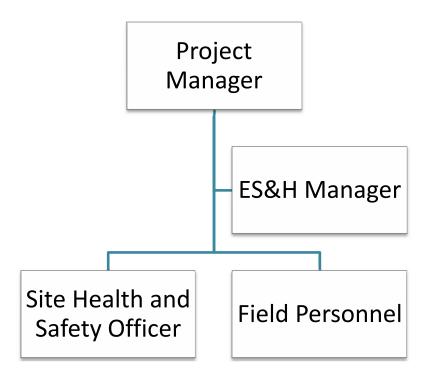
1.1 SITE HISTORY

Originally founded as the Schoellkopf Aniline and Dye Company in 1879, the plant produced dyes and organic chemicals based primarily on aniline and various aniline derivatives. Beginning in 1977 until manufacturing operations ceased in 2003, the operations at BCC mainly involved production of Indigo dye, alkylanilines, anhydrides, and dye intermediates.

The plant was reorganized into the National Aniline Chemical Company in 1916. It became one of the five companies that merged to create Allied Chemical Corporation (Allied Chemical) in 1920. The existing dye-making facility and the right to produce certain dyes and intermediates were sold by Allied Chemical to Buffalo Color Corporation (BCC) on July 1, 1977. At the time of the sale, the plant was divided into eight areas designated with the letters A, B, C, D, E, F, G, and H. BCC purchased the manufacturing areas A through E, while Allied Chemical retained the acid plant (sold to PVS in 1981), the research and development facility on Area F, and the parking lots on Areas G (Elk Street) and H (Smith Street).


In 2005, BCC filed for bankruptcy. During the bankruptcy proceedings, some of the facility's production equipment was sold and removed from the site. In conjunction with the bankruptcy, the office building and former plant hospital located at 100 Lee Street on Area B and the warehouse building (Building 322) located near Elk Street on Area E, along with some of the land under and around those buildings, were sold to other parties. Agreements are in place to preserve access rights to the land for the purposes of any required environmental investigation and remediation activities. The remaining buildings and property on Areas A, B, C and E were purchased by SBD in 2008. Since June of 2009, SBD has been performing demolition of the former chemical dye plan. As of the date of this HASP, all buildings, storage tanks and ancillary structures have been removed from Area E. Structures on Area C will be preserved for future rehabilitation and redevelopment; the majority of chemicals and asbestos materials have been removed from the Area C structures (the remedial excavation work described herein will not require Mactec personnel to enter any Area C structures).

	Tasks	Initial Level of PPE
	 Work with Soils 	Level D or Modified Level D
\square	 Work with Groundwater 	Level D
\square	General Construction Activities	Level D


The following tasks are to be performed at the site (check the box if task is to be performed by employees):

2.0 KEY PERSONNEL AND HEALTH AND SAFETY RESPONSIBILITIES

Figure 2-1 shows the project organizational chart. Table 2-1 describes health and safety responsibilities for key project personnel.

Figure 2-1 - Project Organization Chart

TABLE 2-1

KEY PERSONNEL HEALTH AND SAFETY RESPONSIBILITIES

ENVIRONMENTAL HEALTH AND SAFETY MANAGER	FIELD LEAD (FL)	SITE HEALTH & SAFETY OFFICER (SHSO)	PROJECT PERSONNEL
 Implement appropriate corporate health and safety policies, or environmental projects Approve HASP and Amendments Maintain exposure monitoring records Notify Corporate ES&H Manager in the event of an emergency situation Verify that corrective actions recommended on Incident Analysis Forms have been implemented 	 See that personnel receive this plan, are aware of its provisions, and are aware of the potential hazards associated with site operations, are instructed in safe work practices, and are familiar with emergency procedures, and these actions are documented Determine that appropriate monitoring and personnel protective equipment are available Monitor the Field Logbooks to ensure the health and safety work practices are employed Coordinate with SHSO so that emergency response procedures are implemented Ensure corrective actions recommended on Incident Analysis Forms are implemented 	 Implement project HASP; report to the Project Manager for action if any deviations from the anticipated conditions exist; and authorize the cessation of work at site investigations if necessary Confirm that prior to a hazardous waste site visit, site personnel meet the proper medical requirements and have the health and safety training to qualify them to perform their assigned tasks. Identify all site personnel with special medical conditions. Conduct pre-entry briefing and tailgate safety meetings. Document meetings on Daily Tailgate Safety Meeting Checklist (See Appendix H) Verify that all monitoring equipment and personal protective equipment is operating correctly according to manufacturer's instructions and such equipment and record results. Conduct daily inspections of jobsite using the Daily Site Safety And Health Checklist (See Appendix I) Implement site emergency and follow-up procedures 	 Be familiar with and abide by the HASP Notify the SHSO of any special medical conditions (e.g., allergies) Immediately report any accidents and/or unsafe conditions to the SHSO No individual shall go on site where he/she does not have the required safety training

3.0 WORKER TRAINING

Upon designation of a specific project team, Table 3.1 will be completed to summarize the training experience of the project team with respect to 29 CFR 1910.120(e), 29 CFR 1910.38, and 29 CFR 1910.1200.

4.0 MEDICAL SURVEILLANCE

Upon designation of a specific project team, Table 3.1 will be completed to indicate the workers who participate in the company's Medical Surveillance Program [29 CFR 1910.120(f)]. All workers who could potentially be exposed to concentrations of contaminants above the OSHA Permissible Exposure Limits (PELs) for 30 days per year or more must be included in the Medical Surveillance Program. Any site specific medical surveillance conducted for site workers will also be listed on the table

5.0 SITE CONTROL

Site control procedures, as required by 29 CFR 1910.120(d) and MACTEC ESH 2.9.A - Hazardous Waste Operations and Emergency Response Program, will be implemented before the start of site tasks to control worker exposures to contaminants.

5.1 WORK ZONES

The specific locations and dimension of work zones will be determined at the site by the OSC Safety Officer based on field conditions and relative to the location of the work activity. The Exclusion Zone (EZ) is considered the area immediately surrounding the excavation locations. The Contamination Reduction Zone (CRZ) is considered to be the area surrounding the EZ. The decontamination zone will be established by OSC, preferably at a location upwind of the work area. Work zones will be maintained through the use of:

- Warning Tape
- ☑ Visual Observations

5.2 BUDDY SYSTEM

When required by contract or when conditions exist that could be dangerous to life and health, a buddy system shall be implemented. The buddy system requires that at least 2 individuals (regardless of employer) must be working at the site and in contact with each other.

Yes No □ Buddy System required?

TABLE 3.1

TRAINING/MEDICAL SURVEILLANCE/RESPIRATORY PROTECTION RECORDS

		Names of Field Team Members					
	Required?						
Training/Medical	Req	Dates	Dates	Dates	Dates	Dates	Dates
Medical Surveillance							
Site Specific Medical Testing:							
40-Hour Initial							
8-Hour Supervisor ¹							
8-Hour Refresher							
First Aid/CPR ^{1,2}							
Respirator Fit Test ¹							
Respirator Brand ¹							
Hazard Communication							
Confined Space Entry ¹							
Fall Protection ¹							
Ladder Safety ¹							
Biological Hazards ¹							
Excavation Safety ¹							
Client Required ¹							

¹ If Applicable ² At least one worker must be trained in First Aid/CPR and have received Bloodborne Pathogen training. ³ Required if acting as LF or SSHO

5.3 SITE ACCESS

Access to the site will be controlled using the following method(s):

Sign in/sign out log	Guard	
Identification badges	Other:	

5.4 GENERAL SAFE WORK PRACTICES

General safe work practices to be implemented during work activities at this site are included in Table 5.1.

TABLE5.1

GENERAL SAFE WORK PRACTICES

- Minimize contact with excavated or contaminated materials. Plan work areas, decontamination areas, and
 procedures accordingly. Do not place equipment or drums on the ground. Do not sit on drums or other
 materials. Do not sit or kneel on the ground in the Exclusion Zone or CRZ. Avoid standing in or walking
 through puddles or stained soil.
- Smoking, eating, or drinking after entering the work zone and before decontamination will not be allowed. Use of illegal drugs and alcohol are prohibited.
- Practice good housekeeping. Keep everything orderly and out of potentially harmful situations.
- In an unknown situation, always assume the worst conditions.
- Be observant of your immediate surroundings and the surroundings of others. It is a team effort to notice and warn of impending dangerous situations. Withdrawal from a hazardous situation to reassess procedures is the preferred course of action.
- Conflicting situations may arise concerning safety requirements and working conditions and must be addressed and resolved rapidly by the SHSO, Field Lead and Project Manager to relieve any motivations or pressures to circumvent established safety policies.
- Unauthorized breaches of specified safety protocol will not be allowed. Workers unwilling or unable to comply with the established procedures will be discharged.

6.0 HAZARD ANALYSIS

6.1 CONTAMINANTS OF CONCERN

Pertinent site information (e.g. records of chemicals used, records of disposal) and previous sampling data (e.g. groundwater, soil, sediment) have been reviewed to determine the contaminants of concern for this project. The primary known or suspected contaminants for the site within the work areas are:

- VOCs (chlorobenzene, benzene, dichlorobenzene, trichlorobenzene)
- SVOCs (aniline, nitrobenzene)
- Metals (arsenic and mercury)

Appendix A contains Contaminant Fact Sheets for each of these contaminants of concern.

Health hazards shall be evaluated using air monitoring equipment (Section 7.0) and controlled by implementing personal protective equipment (Section 8.0).

JOB HAZARD ANALYSIS 6.2

Job Hazard Analyses will be conducted for each task associated with this project. The following JHAs can be found in Appendix B.

Activity Specific JHAs:	Hazard Specific JHAs:

7.0 **AIR MONITORING**

Section 6.1 lists the known and suspected contaminant of concern at the site. Table 7-1 table lists NOTE: the monitoring instruments and upgrade/action limits that will be used by at the site:

				Upgrade	e/Action Levels	
		Meter	Level D	Level C	Level B	Action
\boxtimes	Photo	bionization Detector ¹				
	\square	10.0-10.6 eV	<4 ppm	\geq 4 ppm	≥ 75 ppm	
		11.0-11.7 eV		2	2	
	Flame	e Ionization Detector ¹		2	2	
	Detec	ctor Tubes ¹				
		Benzene	< 0.5 ppm	\geq 0.5 ppm	\geq 5 ppm	
		Vinyl Chloride	< 0.5 ppm	< 0.5 ppm	> 0.5 ppm	
	Dust	Meter ¹				
		Respirable	$< 1.5 \text{ mg/m}^{3}$	\geq 1.5 mg/m ³	\geq 15 mg/m ³	
		Total	$< 5 \text{ mg/m}^3$	$\geq 5 \text{ mg/m}^3$	\geq 50 mg/m ³	
	LEL/	O ₂ Meter				
		LEL ²				> 10% back off
		Oxygen ¹	19.5% - 23.5%	19.5% - 23.5%	< 19.5% or > 23.5%	
	Hydro	ogen Sulfide Meter ¹	< 5 ppm	< 5 ppm	\geq 5 ppm	
	Carbo	on Monoxide ¹	<12 ppm	< 12 ppm	\geq 12 ppm	

 Table 7-1

 Action Levels per Monitoring Instrument

¹ Monitor breathing zone

² Monitor source (e.g., well, cuttings, borehole, etc.)

The work area and breathing zone will be monitored regularly for site workers.

Periodic monitoring shall be conducted when the possibility of an IDLH condition or flammable atmosphere has developed or when there is indication that exposures may have risen over permissible exposure limits or published exposure levels since prior monitoring. Situations where it shall be considered whether the possibility that exposures have risen are as follows:

- When work begins on a different portion of the site.
- When contaminants other than those previously identified are being handled.
- When a different type of operation is initiated (e.g., drum opening as opposed to exploratory well drilling.)
- When employees are handling leaking drums or containers or working in areas with obvious liquid contamination (e.g., a spill or lagoon.)

The breathing zone will be screened at regular intervals using the PID to give an indication of the potential for the presence of organic vapors. Detector tubes (DTs) for benzene and other compounds may also be used

to monitor the breathing zone upon the detection of PID readings above background levels in the immediate vicinity of the borehole excavation.

If sustained PID readings exceed 5 ppm or benzene readings exceed 4 ppm, work will be stopped, the area evacuated, and the Site Health and Safety Officer notified. If work is stopped due to elevated levels of benzene or organic vapors, then consideration will be given to proceedings with the work using Level B PPE.

All monitoring equipment will be calibrated before each day of use. Results will be documented in the Field Logbook.

Areas of airborne dust and odor should be avoided. Skin contact with soil, sediment, surface water and ground water should be avoided.

8.0 PERSONAL PROTECTIVE EQUIPMENT

The initial level of protection required for each task is provided in Section 1.0 and Table 8-1. The individual PPE required for each task is listed in the JHAs. Table 8-1 summarizes the PPE required for all tasks to be conducted by workers. The level of protection may be upgraded or downgraded according to the action guidelines provided in Section 7.0. Level of PPE used each day shall be indicated in the Field Logbook. When using PPE, workers must adhere to OSHA regulations (29 CFR 1910.120[g] and 29 CFR 1910 Subpart I).

If respirators are worn, workers must adhere to OSHA regulations (29 CFR 1910.134). Table 3.1 provides a record of the site workers' last annual fit test. Beards (e.g., facial hair interfering with the respirator seal) are not allowed when respirators are worn. Fit testing will be completed prior to any use of respirators at the Buffalo Color site.

9.0 DECONTAMINATION

PPE shall be decontaminated as per 29 CFR 1910.120(k). The decontamination procedures, equipment, and decontamination solution required for each task are provided in Appendix C.

Re-usable safety gear will be washed with soap and water prior to re-use or removing from the work zone. Sampling tools, etc. will be decontaminated as described in the design documents, or as directed by the SHSO. All decontamination fluids and other decontamination-related wastes will be handled in accordance with the design documents. The disposition of this material and disposable safety gear will be the responsibility of the site owner. Safety gear that cannot be decontaminated will be disposed of as an investigative derived waste (IDW) in accordance with the design documents.

PID/FID Reading ^{1,2}	Detector Tube ¹ Benzene	Detector Tube ¹ Vinyl Chloride	Dust Meter ¹	LEL ² /O ₂ ¹	Action	Level of PPE
< 0.5 ppm ²					Continue to monitor with PID	Level D / Modified Level D
\geq 0.5 ppm ¹					Begin monitoring breathing zone with PID.	Level D / Modified Level D
$0.5-4 \text{ ppm}^1$					Continue to monitor with PID	Level D / Modified Level D
\geq 4 ppm ¹ to 75 ppm					Continue to monitor with PID	Level C
\geq 75 ppm ¹					Stop work and evacuate area, Notify SSHO	Level B
				> 10% LEL ² (as monitored by OSC)	Stop work. Evacuate area. If action levels continue to be exceeded, contact SHSO, consider return with ventilation system and spark proof/intrinsically safe equipment.	Back Off
				$< 19.5\% \text{ O2}^1$ > 25.5% O2^1 (as monitored by OSC)	Stop work and evacuate area, Notify SSHO	Level B

Table 7-2 Air Monitoring Action Level Summary

¹ Monitor breathing zone ² Monitor source (e.g., excavation, borehole, etc.)

Table 8-1 PPE and Monitoring Requirements Summary

				Init	ial	Lev	el of PPE *						
🛛 Level D			Modified Level D		Leve	el C		Level B			Level A		
					Sta	nda	rd PPE						
Hard Hat	Safety	shoe:	s 🛛 Safety glasses		Boo	ot Co	vers 🗌 Ru	ubber Boots	□ Ap	orons	High V	isibility Vest	
				Eye a	and	Fac	e Protection	l					
🗌 Welding g	U Welding glasses U Welding helmet				Face	e shie	eld	Chemica	l goggle	es	U Welding screens		
Hearing Protection													
Ear plugs			Ear Muffs				Ear plugs	and muffs		Ot	her		
				Resp	pira	tory	Protection						
None	Upgrac	le Onl	ly 🛛 Full Face AF	'R [Half	Face APR	Cart. Type: M	ISA GM	AC or E	quivalent	D PAPR	
Airline res	pirator		SCBA				Dust mask						
				Pr	ote	ctive	e Clothing						
Tyvek® c	overalls		Poly-coated Tyv	ek®			Saranex® Cov	veralls	🗌 Fı	ally enc	apsulating su	ut	
Cotton cov	veralls		Modesty Clothing	3			Fire resistant of	clothing		ther			
		-		H	Ian	d Pr	otection						
□ None			Cotton gloves		Leat	her g	gloves	Cut-resis	tant glo	oves	ves Glove liners		
		- T			0	uter	<u>Gloves</u>						
Nitrile Nitrile			Viton®	[]]	Buty	/1		Neopren	e		Other_		
					In	nner (Gloves						
Nitrile Nitrile			U Vinyl				Latex			Ot	her		
	I			Monit	tori	ng F	Requirement	ts			1		
🗌 Oxygen		🗌 Fl	lammable gases/vapor	s	Тох	kic G	as/vapors	Hydroge	en Sulfi	ide	Carbon M	onoxide	
Asbestos			Full time IH cove	erage			Part time IH c	overage	B	e, Hg, C	Cr, Pb		
Metals Sp	ecify:												
🛛 Organic V	apors Spec	ify: <u>B</u>	Benzene, Chlorobenzer	ne (PID	for	total	VOCs, detect	tor tubes may	be used	for spe	cific compou	<u>inds)</u>	
□ None			TLD required				CAM		🗌 Ra	adon			
Full time I	RCT covera	ge	Part time RCT co	verage			Radioactive ai particulates	ir	0	ther			
Other					-		Other						

10.0 EMERGENCY RESPONSE

The following emergency response information is provided as per 29 CFR 1910.120(j).

10.1 HOSPITAL ROUTE MAP

A Hospital Route Map is included as Figure 10-1.

10.2 EMERGENCY CONTACTS

A list of contacts and telephone numbers for the applicable local off-site emergency responders is provided in Table 10-1. The nature of the site work and contaminants of concern should be reviewed and the ability of off-site responders to respond to reasonably anticipated emergencies should be confirmed. If there are any concerns with off-site responsibilities they should be contacted directly.

10.3 EMERGENCY RESPONSE EQUIPMENT

The following emergency response equipment is required for this project, will be provided by the Contractor, and shall be readily available.

- Field First Aid Kit
- Fire Extinguisher
 - Type A (Combustible materials)
 - Type B (Flammable liquids and gases)
 - Type C (Doesn't conduct electricity to be used on electrical equipment)
 - Type ABC
- Eyewash (Note: 15 minutes of free-flowing fresh water)
- SCBA
- □ Shower
- Other:

FIGURE 10-1

HOSPITAL ROUTE MAP

Directions	Distance
1: Start out going SOUTHWEST on LEE ST toward S PARK AVE.	0.1 miles
2: Turn LEFT onto S PARK AVE.	0.9 miles
3: Stay STRAIGHT to go onto ABBOTT RD/CR-4.	1.1 miles
4: End at 565 Abbott Rd Buffalo, NY 14220-2039, US	
Total Est. Time: 6 minutes Total Est. Distance: 2.16 miles	
5 In Struckes Creek	Aurora Expy Ebenezer

Start:

End:

TABLE 10.1EMERGENCY CONTACTS

NAME		LEPHONE UMBERS	DATE OF PRE- EMERGENCY NOTIFICATION (if applicable)
Fire Department / Ambulance: City of Buffalo		911	
Hospital: Mercy Hospital	710	6-826-7000	
Police Department: City of Buffalo		911	
Site Health And Safety Officer:	Office:	Cell:	
Client Contact:	Office:	Cell:	
Site Representative:		Cell:	
Project Manager:	Office:	Cell:	
ES&H Manager:	Office:	Home: Cell:	
NYSDEC Region 9: Eugene Melnyk (or current designee)	Office: 716-851-7220		
Client Site Rep.:		Cell:	
Resident Inspector:		Cell:	
Lead Design Engineer:	Office:		

10.4 COMMUNICATIONS

On-site communications will be conducted through the use of:

\boxtimes	Verbal	
\boxtimes	Two-way radio	
\bowtie	Cellular telephone	
\boxtimes	Hand signals	
	Hand gripping throat	Out of air, can't breathe
	Grip partner's wrist or both hands around waist	Leave area immediately
	Hands on top of head	Need assistance
	Thumbs up	
	Thumbs down	
\boxtimes	Horn	
	Siren	
	Other:	

Off-site communications will be conducted through the use of:

Cellular phone

Pay phone - location:

Other: _____

10.5 EMERGENCY RESPONSE PROCEDURES

In the event that an on-site emergency develops, the procedures delineated in Table 11.2 are to be followed immediately.

Within 24 hours after any emergency response, the Incident Analysis Forms provided in Appendix D shall be completed and returned to the ES&H Manager.

TABLE 10.2

EMERGENCY PROCEDURES

- The SHSO (or alternate) should be immediately notified via the on-site communication system. The SHSO assumes control of the emergency response.
- If applicable, the SHSO shall notify off-site emergency responders (e.g. fire department, hospital, police department, etc.) and shall inform the response team as to the nature and location of the emergency on-site.
- If applicable, the SHSO evacuates the site. Site workers should move to the predetermined evacuation point (See Site Map).
- For small fires, flames should be extinguished using the fire extinguisher. Large fires should be handled by the local fire department.
- In an unknown situation or if responding to toxic gas emergencies, appropriate PPE, including SCBAs, should be donned.
- If chemicals are accidentally spilled or splashed into eyes or on skin, use eyewash and/or shower.
- If a worker is injured, first aid shall be administered by certified first aid provider.
- Before continuing site operations after emergency involving toxic gases, the SHSO shall don a SCBA and utilize appropriate air monitoring equipment to verify that the site is safe.
- An injured worker shall be decontaminated appropriately.
- After the response, the SHSO shall follow-up with the required company reporting procedures, including the Incident Analysis Forms (Appendix D).

11.0 CONFINED SPACE ENTRY

Yes	<u>No</u>	
		The task(s) for this p

The task(s) for this project involve confined space entry.

If yes, see applicable JHA in Appendix B.

12.0 SPILL CONTAINMENT

<u>Yes</u> <u>No</u>


 The task(s) for this project involve drum/tank/container sampling, excavation, transportation, etc.

If yes, see Appendix J for spill containment procedures.

13.0 HAZARD COMMUNICATION

The following procedures shall be followed for all chemicals brought on site (e.g., decontamination solution, sample preservatives, etc.): Chemical containers (primary and secondary) shall be correctly and clearly labeled with the name of the chemical and the hazard(s) associated with that chemical (e.g. flammable, corrosive, etc.).

- Workers have received training on the hazards of these chemicals as indicated in Table 3.1.
- A Material Safety Data Sheet for each chemical listed below is included in Appendix E.

When chemicals are used on site, workers must adhere to the OSHA regulation (29 CFR 1910.1200).

14.0 RECORD KEEPING

At the end of the project, the following items shall be maintained in the project file:

- HASP
- Incident Analysis Forms (if applicable)
- SHSO Summary (Appendix I)

APPENDIX A

CONTAMINANT FACT SHEETS

CONTAMINANT FACT SHEET

					HEALTH	I HAZARD DATA				
	•	Color: Physical State:	<u>colorless or v</u> Solid Liquid	<u>vhite</u> X	Carcinogen: OSHA IARC NTP ACGIH	X X X X	Source	TWA (units)	STEL (units)	C (units)
CONTAMINA FACT SHEE		Odor:	Gas	mothball-like	NIOSH Skin absorbable: Skin corrosive:	X yes no X yes no X	OSHA PEL	75 ppm		
Chemical Name: 1,4-Dichlorobenzene CAS Number: 106-46-7		Odor Threshold: Vapor Density:	-	0.12 ppm 5.08 g/L	Signs/Symptoms of Acute Headache, eye irritation a profuse rhinitis, nausea, v jaundice, cirrhosis, anore	nd swelling, /omiting,	ACGIH TLVs	10 ppm		
Synonyms: para-Dichlorobenzene Dichlorocide		Ionization Potent	• •	8.98 eV 150 ppm	weight.		NIOSH RELs	Lowest Feasible		
	AIR MON	ITORING			PERSONAL PROTE	ECTIVE EQUIPMENT	FI	RE/REACTIV	ITY DATA	
Туре	Brand/Model	Calibrations	Relative	Meter	Recommended Protective	e Clothing Materials:	Flash Point:	150°F		
	No.	Method/Media	Response Conversio	or Specific on Action		ile, Rubber	LEL/UEL:	2.5%/Unknow	<u>vn</u>	
DID	No.		Response Conversio Factor	or Specific on Action Level	Suits Viton, Nitr Gloves Viton, Nitr	ile, Rubber	LEL/UEL: <u>Fire Extinguishi</u> Dry Chemical Water Spray		vn Foam CO ₂	$\frac{x}{x}$
PID		Method/Media Isobutylene 100 ppm	Response Conversio	or Specific on Action	Suits Viton, Nitr	ile, Rubber ile, Rubber iton, Nitrile	<u>Fire Extinguishi</u> Dry Chemical	ing Media: <u>X</u> <u>X</u> S:	Foam	$\frac{x}{x}$
PID	No. HNu w/	Isobutylene	Response Conversio Factor	or Specific on Action Level	Suits Viton, Nitr Gloves Viton, Nitr	ile, Rubber ile, Rubber iton, Nitrile tion (ppm): 1000 WA x 10= 50 ppm	Fire Extinguishi Dry Chemical Water Spray Incompatibilities	ing Media: <u>X</u> <u>X</u> S:	Foam	<u>×</u> <u>×</u>

2003 by MACTEC Engineering & Consulting, Inc.

CONTAMINANT FACT SHEET

					HEALTH	I HAZARD DAT	4				
	2	Color: Physical State:	<u>colorless or wł</u> Solid Liquid	hite X	Carcinogen: OSHA IARC NTP ACGIH	X		Source	TWA (units)	STEL (units)	C (units)
CONTAMINA FACT SHEE		Odor:	Gas _	nothball-like	NIOSH Skin absorbable: Skin corrosive:	yes no _X yes no _X		OSHA PEL	75* ppm		
Chemical Name: 1,3-Dichlorobenzene CAS Number: 541-73-1		Odor Threshold: Vapor Density: Vapor Pressure	5	Jnk 5.08 g/L 5 mm Hg	Signs/Symptoms of Acut Headache, eye irritation a profuse rhinitis, nausea, jaundice, cirrhosis, anore	nd swelling, /omiting,	_	ACGIH TLVs * based on the Li	10* ppm mits for 1,4 di	chlorobenzen	e
Synonyms: m-Dichlorobenzene, m-dichlor meta-dichlorobenzene, m-phenylenedichloride	obenzol	Ionization Potent		3.98 eV	weight.		_	NIOSH RELs			
	AIR MON	ITORING			PERSONAL PROT	ECTIVE EQUIPN	IENT	FI	RE/REACTIV	ITY DATA	
Туре	Brand/Model No.	Calibrations Method/Media	Relative Response o Conversion	n Action	Recommended Protective Suits Viton, Nitr	e Clothing Materia ile, Rubber	<u>als:</u>	Flash Point: LEL/UEL:	145.4 °F		*****
	No.	Method/Media	Response o Conversion Factor	or Specific Action Level	Suits Viton, Nitr Gloves Viton, Nitr	ile, Rubber ile, Rubber	<u>als:</u>		<u>Unknown</u>	Foam CO ₂	<u>×</u>
Type PID	No. HNu w/	Method/Media Isobutylene	Response of Conversion	or Specific Action	Suits Viton, Nitr Gloves Viton, Nitr	ile, Rubber	<u>als:</u>	LEL/UEL: <u>Fire Extinguish</u> Dry Chemical Water Spray	Unknown ing Media: X X		<u>x</u> <u>x</u>
	No.	Method/Media	Response o Conversion Factor	or Specific Action Level	Suits Viton, Nitr Gloves Viton, Nitr	ile, Rubber ile, Rubber iton, Nitrile	<u>als:</u>	LEL/UEL: <u>Fire Extinguish</u> Dry Chemical	<u>Unknown</u> ing Media: <u>X</u> <u>X</u> s: g agents, alun	CO ₂	
	No. HNu w/	Method/Media Isobutylene	Response o Conversion Factor	or Specific Action Level	Suits Viton, Nitr	ile, Rubber ile, Rubber iton, Nitrile tion (ppm): WA x 10=		LEL/UEL: <u>Fire Extinguish</u> Dry Chemical Water Spray <u>Incompatibilities</u> Strong oxidizing	<u>Unknown</u> ing Media: <u>X</u> <u>X</u> s: g agents, alun	CO ₂	

2003 by MACTEC Engineering & Consulting, Inc.

CONTAMINANT FACT SHEET

					HEALTH	HAZARD DATA	N				
	1		Colorless to pale y Solid Liquid X		Carcinogen: OSHA IARC NTP ACGIH			Source	TWA (units)	STEL (units)	C (units)
CONTAMINA FACT SHEE		Odor:	Gas	- natic	NIOSH Skin absorbable: Skin corrosive:	yes no _> yes no _X		OSHA PEL			50 ppm
Chemical Name: 1,2- Dichlorobenzene CAS Number: 95-50-1		Odor Threshold: Vapor Density:	5.07		Signs/Symptoms of Acute Irritation of nose and eyes kidney damage, skin bliste	, liver and	_	ACGIH TLVs	25 ppm	50 ppm	
Synonyms: ortho-dichlorobenzene o-dichlorobenzol		Ionization Potent	al (IP): <u>9.06</u> 200					NIOSH RELs			50 ppm
								· · · · · · · · · · · · · · · · · · ·			
	AIR MO	NITORING			PERSONAL PROTE		IENT	Fl	RE/REACTIV	TY DATA	
Туре	Brand/Model	Calibrations	Relative	Meter	Recommended Protective	Clothing Materia	*1*1*1*1*1*1*1*1*1*1*1*1	Flash Point:	151 ⁰ F	TY DATA	
Туре			Relative Response or Conversion	Meter Specific Action		Clothing Materia	*1*1*1*1*1*1*1*1*1*1*1*1			TY DATA	
Туре	Brand/Model No.	Calibrations Method/Media	Response or Conversion Factor	Specific Action Level	Recommended Protective Suits Viton, PE/I Gloves Viton	Clothing Materia	*1*1*1*1*1*1*1*1*1*1*1*1	Flash Point:	151 ⁰ F 2.2% / 9.2%	Foam CO ₂	X
Type	Brand/Model No. HNu	Calibrations Method/Media Isobutylene	Response or Conversion	Specific Action	Recommended Protective Suits Viton, PE/	Clothing Materia	*1*1*1*1*1*1*1*1*1*1*1*1	Flash Point: LEL/UEL: <u>Fire Extinguish</u> Dry Chemical Water Spray	<u>151⁰ F</u> <u>2.2% / 9.2%</u> <u>ing Media:</u> <u>X</u> X	Foam	
	Brand/Model No.	Calibrations Method/Media	Response or Conversion Factor	Specific Action Level	Recommended Protective Suits Viton, PE/I Gloves Viton	Clothing Materia	*1*1*1*1*1*1*1*1*1*1*1*1	Flash Point: LEL/UEL: <u>Fire Extinguish</u> Dry Chemical	<u>151⁰ F</u> <u>2.2% / 9.2%</u> <u>ing Media:</u> <u>X</u> <u>X</u> <u>S:</u> s, aluminum, c	Foam CO ₂	Х
	Brand/Model No. HNu	Calibrations Method/Media Isobutylene	Response or Conversion Factor	Specific Action Level	Recommended Protective Suits Viton, PE/I Gloves Viton	Clothing Materia	*1*1*1*1*1*1*1*1*1*1*1*1	Flash Point: LEL/UEL: <u>Fire Extinguish</u> Dry Chemical Water Spray <u>Incompatibilities</u> Strong oxidizers	<u>151⁰ F</u> <u>2.2% / 9.2%</u> <u>ing Media:</u> <u>X</u> <u>X</u> <u>S:</u> s, aluminum, c	Foam CO ₂	Х
	Brand/Model No. HNu	Calibrations Method/Media Isobutylene	Response or Conversion Factor	Specific Action Level	Recommended Protective Suits Viton, PE/I Gloves Viton Boots Viton	ECIothing Materia EVAL tion (ppm):		Flash Point: LEL/UEL: <u>Fire Extinguish</u> Dry Chemical Water Spray <u>Incompatibilities</u> Strong oxidizers	<u>151⁰ F</u> <u>2.2% / 9.2%</u> <u>ing Media:</u> <u>X</u> <u>X</u> <u>S:</u> s, aluminum, c	Foam CO ₂	Х

2003 by MACTEC Engineering & Consulting, Inc.

CONTAMINANT FACT SHEET

		HEAL	TH HAZARD DAT	ΓA								
	1	Color: Physical State:	Colorless Solid <u>X</u> Liquid X	_<63 °F >63 °F	Carcinogen:	OSHA IARC NTP ACGIH	_		Source	TWA (units) ppm	STEL (units) ppm	C (units) ppm
CONTAMINA FACT SHEE		Odor:	Gas Aromatic o	dor	Skin absorbab Skin corrosive	Yes	No No	_	OSHA PELs			
Chemical Name: 1,2,4-Trichlorobenzene CAS Number: 120-82-1		Odor Threshold: Vapor Density: Vapor Pressure	6.26 1 mmHg		Irritates eyes,	ms of Acute Ex skin, mucous m lamage, possibl ects.	nembranes	_	ACGIH TLVs			C5 ppm
Synonyms: Unsym-Trichlorobenzene, 1,2,4-Trichlorobenzene		Ionization Poten	tial (IP) <u>Unk</u> <u>N.D.</u>						NIOSH RELs			C5 ppm
فستجذب فيستحدث والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمت												
	AIR MONITORIN	IG			PERSON	AL PROTECTI	VE EQUIPM	ENT	FI	RE/REACTIVI	TY DATA	
Туре	AIR MONITORIN Brand/Model No.	I G Calibrations Method/Media	Relative Response or Conversion Factor	Meter Specific Action Level	Recommender Suits	d Protective Clo Saranex = low Tychem 9400 Barricade = h	othing Materi v ppm) and	*1*1*1*1*1*1*1*1*1*1	Flash Point: LEL/UEL:	222 ⁰ F 2.5% - 6.6%		
Type PID with 10.2 - 10.6 eV lamp	Brand/Model No.	Calibrations	Response or Conversion Factor	Specific Action	Recommende	d Protective Clo Saranex = low Tychem 9400	othing Materi v ppm) and	*1*1*1*1*1*1*1*1*1*1	Flash Point: LEL/UEL: <u>Fire Extinguish</u> Dry Chemical	222 ⁰ F 2.5% - 6.6%	@ 302 ⁰ F Foam	
PID with 10.2 - 10.6 eV lamp Dust Meter	Brand/Model No.	Calibrations Method/Media	Response or Conversion Factor	Specific Action Level	Recommender Suits	d Protective Clo Saranex = low Tychem 9400 Barricade = h	othing Materi v ppm) and	*1*1*1*1*1*1*1*1*1*1	Flash Point: LEL/UEL: <u>Fire Extinguish</u> Dry Chemical Water Spray <u>Incompatibilitie</u>	222 °F 2.5% - 6.6% ing Media:	@ 302 ⁰ F Foam CO ₂	
PID with 10.2 - 10.6 eV lamp	Brand/Model No.	Calibrations Method/Media 100 ppm isobutyle	Response or Conversion Factor	Specific Action Level 5.4 ppm	Recommender Suits Gloves Boots Service Limit	d Protective Clc Saranex = low Tychem 9400 Barricade = h Viton, PVC PVC	othing Materi v ppm and igh conc. (ppm):	<u>als:</u> 54 ppm	Flash Point: LEL/UEL: <u>Fire Extinguish</u> Dry Chemical Water Spray	222 °F 2.5% - 6.6% ing Media:	@ 302 ⁰ F Foam CO ₂	
PID with 10.2 - 10.6 eV lamp Dust Meter **Action limit will be based on soil concentrations. Contact C. Sundquist for	Brand/Model No.	Calibrations Method/Media 100 ppm isobutyle	Response or Conversion Factor	Specific Action Level 5.4 ppm	Recommender Suits Gloves Boots Service Limit MUC 1/2 Mas	d Protective Clc Saranex = low Tychem 9400 Barricade = h Viton, PVC PVC	othing Materi v ppm l and igh conc. (ppm): A x 10 =5	<u>als:</u> 54 ppm 	Flash Point: LEL/UEL: <u>Fire Extinguish</u> Dry Chemical Water Spray <u>Incompatibilitie</u>	222 °F 2.5% - 6.6% ing Media:	@ 302 ⁰ F Foam CO ₂	

2003 by MACTEC Engineering & Consulting, Inc.

ATTACHMENT A

CONTAMINANT FACT SHEET

					HEALTH	HAZARD DAT	A				
	•	Physical State:	colorless Solid Liquid X	_	Carcinogen: OSHA IARC NTP ACGIH	X		Source	TWA (units)	STEL (units)	C (units)
CONTAMINA FACT SHEE		Odor:	Gas	- ond	NIOSH Skin absorbable: Skin corrosive:	yes no _> yes no _>		OSHA PEL	75 ppm		
Chemical Name: Chlorobenzene CAS Number: 108-90-7		Odor Threshold: Vapor Density:	<u>1.3</u> 3.88	ppm 3 g/L	Signs/Symptoms of Acute Irritant to eyes, skin, nose CNS depressant, drowsin	e, dizziness		ACGIH TLVs	10 ppm		
Synonyms: Monochlorobenzene		Ionization Potent		7 eV 0 ppm				NIOSH RELs			
	AIR MON	ITORING			PERSONAL PROTE	CTIVE EQUIPN	IENT	F	RE/REACTIV	ITY DATA	
Туре	Brand/Model No.	Calibrations Method/Media	Relative Response or Conversion	Meter Specific Action		e Clothing Mater ricade, Tychem, r, Trellchem		Flash Point: LEL/UEL:	82ºF 1.3/9.6%		
			Factor	Level	Gloves PVA, Teflo Barricade,	on, Viton, Responder		<u>Fire Extinguis</u> Dry Chemical Water Spray		Foam CO₂	<u></u>
PID	Micro tip 10.6 eV	Isobutylene	2.63	26.3	Boots Teflon, Vit	on		Incompatibiliti	~~		
PID	Hnu 10.2 eV	100 ppm Isobutylene 100 ppm	1.3	13			_	Incompatibiliti Strong oxidize			
FID	Century OVA	Methane	2.0	20	Service Limit Concentra		1000				
					MUC 1/2 Mask APR=T MUC Full-Face APR=T	-	<u>50 ppm</u> 50 ppm				
Checked by: Emmet F. Cu	ırtis		Date: 12/5/03								

2003 by MACTEC Engineering & Consulting, Inc.

Note: The recommended protective clothing materials assumes that potential for direct contact (by splashing, dust inhalation, or other means) with the contaminants exists. Professional judgment and knowledge of on-site hazards should be used in selecting PPE appropriate to the concentration of the contaminant (trace vs percentage) to which the individual is likely to be exposed.

APPENDIX A

CONTAMINANT FACT SHEET

						HI	EALTH HA	AZARD DATA				
		Color: Colorle	ess		Carci	nogen: OSHA	X			TWA	STEL	С
	1	Physical State: Solid				IARC	X		Source	(units)	(units)	(units)
			Liquid	Х		NTP						
			Gas			ACGIH	X					
		Odor: A	romatic			NIOSH	X					
CONTAMINA		Odor Thresho	d <u>4.68</u>	ppm	Skin	absorbable: <u>YES</u>						
FACT SHEE	T.	Vapor Density	: <u>2.7 g/L</u>		Skin	corrosive: <u>No</u>						
Chemical Name:		Ionization Pot	ential (IP): 9.24	eV	Signs	/Symptoms of Acu	ute Exposure	e:				
Benzene		IDLH: 500 pp	m		Eye, sk	tin and nose irritati	ion; headacl	ne, nausea, staggered	OSHA	1	5	
CAS Number: 71-43-	2				gait,	drowsiness, dizz sions and unconsc	ziness, hea	adaches, vomiting,	PELs	ppm	ppm	
Synonyms: Phenyl hydride Benzol					convar	sions and anconse	erousitess		ACGIH	0.5	2.5	
<u>i nenyi nyunde Denzor</u>									TLVs	ppm	ppm	
									NIOSH	0.1	1	
									RELs	ppm	ppm	
	AIR MONIT					EDGONAL DDO		FOURDATING				•
Туре	Brand/Model	Calibrations	Relative	Meter		PERSONAL PRO	DIECHVE	EQUIPMENT	-	FIRE/REACT	IVII Y DAI	A
туре	No.	Method/Med	Response or	Specific	Bason	mended Protective	o Clothing N	Actorials	Flash Point:	<u>12 °F</u> 1.2/ 7.8%		
		ia	Conversion Factor	Action Level	Suits			, CPF3, Responder		ishing Media:		
PID	Micro tip	Isobutylene	1.80	0.4		Tychem		-	-	al <u>X</u>	Foam X	<u> </u>
	10.6 eV	100 ppm							Water Spray	X	CO ₂ <u>X</u>	
					Glove	s Viton, Teflon, Po		cohol (PVA) - do				
					Deata	not use in wat Teflon			Incompatibi	<u>lities</u> : ently with oxidizers	halagana	ulfunio opidi nitnio
					DOOLS	1011			acid	entry with oxidizers	s, naiogens, s	
									Attacks plas	tic and rubber.		
					Servic	e Limit Concentrat	tion (ppm):	1000				
						1/2 Mask APR = 7						
					MUC	Full-Face APR = T	TWA x 50 =	= <u>20 ppm</u>				
Checked by: Joanne Bacchus	<u>. </u>	-	06/04/	Date: 08								

ATTACHMENT A

CONTAMINANT FACT SHEET

		HEAL	TH HAZARD DAT	A							
	1	Color: Physical State:	Colorless to Solid Liquid X		IAF NT			Source	TWA (units) ppm	STEL (units) ppm	C (units) ppm
CONTAMINA FACT SHEE		Odor:	Gas	odor	Skin absorbable Skin corrosive:	OSH X Yes X No Yes No	_	OSHA PELs	5 ppm Skin		
Chemical Name: Aniline CAS Number: 62-53-3		Odor Threshold: Vapor Density: Vapor Pressure	3.22 0.6 mmHg		Signs/Symptoms o Headache, lassitud cyanosis, ataxia, dy irritate eyes, Tachy	de, dizziness, yspenea on effort, /cardia,		ACGIH TLVs	2 ppm Skin		
Synonyms: Aminobenzene, Aniline oil, Benzenamine, Phenylamine		Ionization Poten	tial (IP) <u>7.70 eV</u> <u>Ca [100 pp</u>	m]	Methhemoglobinen Carcinogen	nin, Cirrhosis,	_	NIOSH RELs *LFC = Lowes	*LFC at Feasible Co	ncentration	
	AIR MONITORI	IG			PERSONAL F	PROTECTIVE EQUIP	MENT	FI	RE/REACTIVI	TY DATA	
Туре	Brand/Model No.	Calibrations Method/Media	Relative Response or Conversion Factor	Meter Specific Action Level	Suits Sa	otective Clothing Mate ranex st = Butyl, Viton,	erials:	Flash Point: LEL/UEL: Fire Extinguish	<u>158 °F</u> <u>1.3% - 11</u> %		
PID with 10.2 - 10.6 eV lamp Dräger tube - Aniline 0.5/a	Any	100 ppm isobutyle	0.2	0.4 ppm* *Level B Only	Boots But		_	Dry Chemical Water Spray	X X X	Foam CO ₂	X X
					Service Limit Con		 	Incompatibilitie Strong Oxidize toluene diisocy	rs, Strong Acio	ds,	
-						$PR = TWA \times 10 = $	N/A				
					MUC Full-Face A	PR = TWA x 10 =	N/A				

2003 by MACTEC Engineering & Consulting, Inc.

Note: The recommended protective clothing materials assumes that potential for direct contact (by splashing, dust inhalation, or other means) with the contaminants exists. Professional judgment and knowledge of on-site hazards should be used in selecting PPE appropriate to the concentration of the contaminant (trace vs percentage) to which the individual is likely to be exposed.

					HEALTH HAZARD DATA				
		Color:			Carcinogen: OSHA		TWA	STEL	С
		Physical State	: Solid		IARC	Source	<u>(units)</u>	<u>(units)</u>	<u>(units)</u>
			Liquid		NTP				
CONTAMINAN	ſ		Gas		ACGIH				
FACT SHEET		Odor:			NIOSH				
Chemical Name:		Odor Thresho	ld		Skin absorbable:				
		Vapor Density	/:		Skin corrosive:				
CAS Number:	<u> </u>	Ionization Pot	ential (IP):		Signs/Symptoms of Acute Exposure:				
Synonyms:		IDLH:				OSHA			
						PELs			
						ACGIH TLVs			
						NIOSH			
						RELs			
	AIR MONITO	DINC						CTIVITY DAT	
Туре	Brand/Model	Calibrations	Relative	Meter	PERSONAL PROTECTIVE EQUIPMENT				
турс	No.	Method/Med	Resonse or	Specific					
		ia	Conversion	Action	Recommended Protective Clothing Materials:	-			
			Factor	Level	Suits	-	<u>ishing Media</u> : al	Foam	
						-			
					Gloves	in aller oprug			
						Incompatibi	lities:		
					Boots				
					Service Limit Concentration (ppm): MUC 1/2 Mask APR = TWA x 10 =				
					$MUC Full-Face APR = TWA \times 50 =$				
Checked by:			Date:	-		-			

APPENDIX A

JOB HAZARD ANALYSIS PER TASK(S)

Job Title: Mobilization/Demobilization and Site Preparation

Date of Analysis: 8/15/06

Minimum Recommended PPE*: <u>High visibility vest</u>, hard hat, steel-toed boots, safety glasses, hearing protection *See HASP for all required PPE

Key Work Steps	Hazards/Potential Hazards	Safe Practices
1. Prepare for Site	1A) N/A	1A) Prior to leaving for site
Visit		 Obtain and review HASP prior to site visit, if possible
		 Determine PPE needs – bring required PPE to the site, if not otherwise being provided at the site (e.g., steel toed boots)
		 Determine training and medical monitoring needs and ensure all required Health and Safety training and medical monitoring has been received and is current
		 Ensure all workers are fit for duty (alert, well rested, and mentally and physically fit to perform work assignment)
		 If respiratory protection is required/potentially required, ensure that training and fit-testing has occurred within the past year.
		Familiarize yourself with route to the site
	1B) Vehicle defects	1B) Inspect company owned/leased vehicle for defects such as:
		 Flat tires
		 Windshield wipers worn or torn
		Oil puddles under vehicle
		 Headlights, brake lights, turn signals not working
	1C) Insufficient emergency	1C) Insufficient emergency equipment, unsecured loads
	equipment, unsecured loads	 Ensure vehicle has first aid kit and that all medications are current (if first aid kits are not provided at the site)
		 Ensure vehicle is equpped with warning flashers and/or flares and that the warning flashers work
		 Cell phones are recommended to call for help in the event of an emergency
		 Vehicles carrying tools must have a safety cage in place. All tools must be properly secured
		 Vehicles must be equipped with chocks if the vehicle is to be left running, unattended.
		 Ensure sufficient gasoline is in the tank
2. Operating	2A) Collisions, unsafe driving	2A) Drive Defensively!
vehicles – general	conditions	 Seat belts must be used at all times when operating any vehicle on company business.
		 Drive at safe speed for road conditions
		 Maintain adequate following distance
		 Pull over and stop if you have to look at a map
		 Try to park so that you don't have to back up to leave.
		 If backing in required, walk around vehicle to identify any hazards (especially low level hazards that may be difficult to see when in the vehicle) that might be present. Use a spotter if necessary
3. Driving to the	3A) Dusty, winding, narrow roads	3A) Dusty, winding, narrow roads
jobsite	ory Duoty, which g, harrow roads	 Drive confidently and defensively at all times.
		 Go slow around corners, occasionally clearing the windshield.
	3B) Rocky or one-lane roads	3B) Rocky or one-lane roads
		 Stay clear of gullies and trenches, drive slowly over rocks.
		 Yield right-of-way to oncoming vehiclesfind a safe place to pull over.
	3C) Stormy weather, near confused	3C) Stormy weather, near confused tourists
	tourists	 Inquire about conditions before leaving the office.
		 Be aware of oncoming storms.
		 Drive to avoid accident situations created by the mistakes of others.

Job Title: Mobilization/Demobilization and Site Preparation

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	3D) When angry or irritated	 3D) When angry or irritated Attitude adjustment; change the subject or work out the problem before driving the vehicle. Let someone else drive.
	3E) Turning around on narrow roads	 3E) Turning around on narrow roads Safely turn out with as much room as possible. Know what is ahead and behind the vehicle. Use a backer if available.
	3F) Sick or medicated	 3F) Sick or medicated Let others on the crew know you do not feel well. Let someone else drive.
	3G) On wet or slimy roads	3G) On wet or slimy roadsDrive slow and safe, wear seatbelts.
	3H) Animals on road	 3H) Animals on road Drive slowly, watch for other animals nearby. Be alert for animals darting out of wooded areas
4. Gain permission to enter site	4A) Hostile landowner, livestock, pets	 4A) Hostile landowner, livestock, pets Talk to land owner, be courteous and diplomatic Ensure all animals have been secured away from work area
5. Mobilization/ Demobilization of Equipment and Supplies	5A) Struck by Heavy Equipment/Vehicles	 5A) Struck by heavy equipment Be aware of heavy equipment operations. Keep out of the swing radius of heavy equipment. Ground personnel in the vicinity of heavy equipment operations will be within the view of the operator at all times Employees shall wear a high visibility vest or T-shirt (reflective vest required if working at night). Ground personnel will be aware of the counterweight swing and maintain an adequate buffer zone. Ground personnel will not stand directly behind heavy equipment when it is in operation.
	5B) Struck by Equipment/Supplies	 5B) Struck by Equipment/Supplies Workers will maintain proper space around their work area, if someone enters it, stop work. When entering another worker's work space, give a verbal warning so they know you are there.
	5C) Overexertion Unloading/Loading Supplies	 5C) Overexertion Unloading/Loading Supplies Train workers on proper body mechanics, do not bend or twist at the waist while exerting force or lifting. Tightly secure all loads to the truck bed to avoid load shifting while in transit.
	5D) Caught in/on/between	 5D) Caught in/on/between Do not place yourself between two vehicles or between a vehicle and a fixed object.
	5E) Slip/Trip/Fall	 5E) 1E). Slip/Trip/Fall Mark all holes and low spots in area with banner tape. Instruct personnel to avoid these areas. Drivers will maintain 3 point contact when mounting/dismounting vehicles/equipment. Drivers will check surface before stepping, not jumping down.

Job Title: Mobilization/Demobilization and Site Preparation

Key Work Steps	6 Hazards/Potential Hazards	Safe Practices
	5F) Vehicle accident	 5F) Vehicle accident Employees should follow MACTEC vehicle operation policy and be aware of all stationary and mobile vehicles.
6. Site Preparation	6A) Slip/Trip/Fall	 6A) Slip/Trip/Fall Mark all holes and low spots in area with banner tape. Instruct personnel to avoid these areas
 Installation of soi erosion and sediment controls 	,	 7A) Overexertion Workers will be trained in the proper method of placing erosion controls. Do not bend and twist at the waist while lifting or exerting force.
	7B) Struck by Equipment/Supplies	 7C) Struck by Equipment/Supplies Workers will maintain proper space around their work area, if someone enters it, stop work. When entering another worker's work space, give a verbal warning so they know you are there.
8. Driving back from the jobsite	8A) See hazards listed under item #3	8A) See safe work practices under item #3

Job Title: Field Work - General

Date of Analysis: <u>8/15/06</u>

Minimum Recommended PPE*: hard hat, steel-toed boots, safety glasses

*See HASP for all required PPE

Key Work Steps	Hazards/Potential Hazards	Safe Practices
 Mobilization/ Demobilization and Site Preparation 	1A) See Mobilization/Demobilization and Site Preparation JHA	1A) See Mobilization/Demobilization and Site Preparation JHA
2. Communication	2A) Safety, crew unity	2A) Talk to each other.
		 Log all workers and visitor on and off the site.
		 Let other crewmembers know when you see a hazard.
		 Avoid working near known hazards.
		 Always know the wherabouts of fellow crewmembers.
		 Carry a radio and spare batteries or cell phone
		 Review Emergency Evacuation Procedures (see below).
3. Walking and	3A) Falling down, twisted ankles and	3A) Always watch your footing.
working in the field	knees, poor footing	 Horseplay is strictly prohibited
licia		 Slow down and use extra caution around logs, rocks, and animal holes.
		 Extremely steep slopes (>50%) can be hazardous under wet or dry conditions; consider an alternate route.
		 Wear laced boots with a minimum 8" high upper and non-skid Vibram- type soles for ankle support and traction.
	3B) Falling objects	3B) Protect head agains falling objects.
		 Wear your hardhat for protection from falling limbs and pinecones, and from tools and equipment carried by other crewmembers.
		 Stay out of the woods during extremely high winds.
	3C) Chemical/Toxicological Hazards	3C) Chemical/Toxicological Hazards
		 See HASP for appropriate level of PPE
		 Use monitoring equipment, as outlined in HASP, to monitor breathing zone
		 Read MSDSs for all chemicals brought to the site
		 Be familiar with hazards associated with site contaminants.
		 Ensure that all containers are properly labelled
		 Decon thoroughly prior to consumption of food, beverage or tobacco.
	3D) Damage to eyes	3D) Protect eyes:
		 Watch where you walk, ecpecially around trees and brush with limbs sticking out.
		 Exercise caution when clearing limbs from tree trunks. Advise wearing eye protection.
		 Ultraviolet light from the sun can be damaging to the eyes; look for sunglasses that specify significant protection from UV-A and UV-B radiation. If safety glasses require, use one's with tinted lenses
	3E) Bee and wasp stings	3E) See JHA for Insect Stings and Bites
	3F) Ticks and infected mosquitos	3F) See JHA for Insect Stings and Bites
	3G) Wild Animals	3G) Wild Animals
		 Avoid phyisical contact with wild animals
		 Do not threaten and/or conrner animals
		 Make noise to get the animal to retreat.
		 Stay in or return to vehicle/equipment if in danger

Job Title: Field Work - General

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	3H) Contact with poisonous plants or the oil from those plants:	 3H) Contact with poisonous plants or the oil from those plants: Look for signs of poisonous plants and avoid. Ensure all field workers can identify the plants. Mark identified poisonous plants with spray paint if working at a fixed location. Do not allow plant to touch any part of your body/clothing. Wear PPE as described in the HASP and wear Tyveks, gloves and boot covers if contact with plant is likely Always wash gloves before removing them. Discard PPE in accordance with the HASP. Use commercially available products such as Ivy Block or Ivy Wash as appropriate.
		POISON IVY (Rhus toxicondendron L) POISON OAK (Rhus diversiloba) POISON SUMAC
	3I) Back Injuries	 31) Back Injuries Site personnel will be instructed on proper lifting techniques. Mechanical devices should be used to reduce manual handling of materials. Split heavy loads in to smaller loads Team lifting should be utilized if mechanical devices are not available.
	3J) Shoveling	 Make sure that path is clear prior to lift. 3J) Shoveling Select the proper shovel for the task. A long handled, flat bladed shovel is recommend for loose material Inspect the handle for splinters and/or cracks Ensure that the blade is securely attached to the handle Never be more than 15 inches from the material you are shoveling Stand with your feet about hip width for balance and keep the shovel close to your body. Bend from the knees (not the back) and tighten your stomach muscles as you lift. Avoid twisting movements. If you need to move the snow to one side reposition your feet to face the direction the snow will be going. Avoid lifting large shoveling too much at once. When lifting heavy material, pick up less to reduce the weight lifted. Pace yourself to avoid getting out of breath and becoming fatigued too soon. Be alert for signs of stress such as pain, numbness, burning and tingling. Stop immediately if you feel any of these symptoms.
	3K) Slips/Trips/Falls	 3K) Slips/Trips/Falls Maintain work areas safe and orderly; unloading areas should be on even terrain; mark or repair possible tripping hazards. Site SHSO inspect the entire work area to identify and mark hazards. Maintain three points of contact when climbing ladders or onto/off of equipment

Job Title: Field Work - General

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	3L) Overhead Hazards	 3L) Overhead Hazards Personnel will be required to wear hard hats that meet ANSI Standard Z89.1. All ground personnel will stay clear of suspended loads. All equipment will be provided with guards, canopies or grills to protect the operator from falling or flying objects. All overhead hazards will be identified prior to commencing work operations.
	3M) Dropped Objects	3M) Dropped Objects
	3N) Noise	 Steel toe boots meeting ANSI Standard Z41 will be worn. 3N) Noise Hearing protection will be worn with a noise reduction rating capable of maintaining personal exposure below 85 dBA (ear muffs or plugs); all equipment will be equipped with manufacturer's required mufflers. Hearing protection shall be worn by all personnel working in or near heavy equipment.
	3O) Eye Injuries	3O) Eye Injuries
	3P) Heavy Equipment (overhead hazards, spills, struck by or against)	 Safety glasses meeting ANSI Standard Z87 will be worn. 3P) Heavy Equipment All operators will be trained and qualified to operate equipment Equipment will have seat belts. Operators will wear seat belts when operating equipment. Do not operate equipment on grades that exceed manufacturer's recommendations. Equipment will have guards, canopies or grills to protect from flying objects. Ground personnel will stay clear of all suspended loads. Personel are prohibited from riding on the buckets, or elsewhere on the equipment except for designated seats with proper seat belts or lifts specifically designed to carry workers. Ground personnel will wear high visibility vests Spill and absorbent materials will be readily available. Drip pans, polyethylene sheeting or other means will be used for secondary containment. Ground personnel will stay out of the swing radius of excavators. Eye contact with operators will be made before approaching equipment. Operator will acknowledge eye contact by removing his hands from the controls. Equipment will not be approached on blind sides. All equipment will be equipped with backup alarms and use spotters when significant physical movement of equipment occurs on-site, (i.e., other than in place excavation or truck loading).

Job Title: Field Work - General

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	3Q) Struck by vehicle/equipment	3Q) Struck by vehicle/equipment
		 Be aware of heavy equipment operations.
		 Keep out of the swing radius of heavy equipment.
		 Ground personnel in the vicinity of vehicles or heavy equipment operations will be within the view of the operator at all times.
		 Ground personnel will be aware of the counterweight swing and maintain an adequate buffer zone.
		 Ground personnel will not stand directly behind heavy equipment when it is in operation.
		 Drivers will keep workers on foot in their vision at all times, if you lose sight of someone, Stop!
		 Spotters will be used when backing up trucks and heavy equipment and when moving equipment.
		 High visibility vests will be worn when workers are exposed to vehicular traffic at the site or on public roads.
	3R) Struck/cut by tools	3R) Struck/cut by tools
		 Cut resistant work gloves will be worn when dealing with sharp objects.
		 All hand and power tools will be maintained in safe condition.
		 Do not drop or throw tools. Tools shall be placed on the ground or worksurface or handed to another employee in a safe manner.
		 Guards will be kept in place while using hand and power tools.
	3S) Caught in/on/between	3S) Caught in/on/between
		 Workers will not position themselves between equipment and a stationary object.
		 Workers will not wear long hair down (place in pony-tail and tuck into shirt) or jewelry if working with tools/machinery.
	3T) Contact with Electricity/Lightning	3T) Contact with Electricity/Lighting
		 All electrical tools and equipment will be equipped with GFCI.
		 Electrical extension cords will be of the "Hard" or "Extra Hard" service type.
		 All extension cords shall have a three-blade grounding plug.
		 Personnel shall not use extension cords with damaged outer covers, exposed inner wires, or splices.
		 Electrical cords shall not be laid across roads where vehicular traffic may damage the cord without appropriate guarding.
		 All electrical work will be conducted by a licensed electrician.
		 All equipment will be locked out and tagged out and rendered in a zero energy state prior to commencing any operation that may exposed workers to electrical, mechanical, hydraulic, etc. hazards.
		 All utilities will be marked prior to excavation activities.
		 All equipment will stay a minimum of 10 feet from overhead energized electrical lines (50 kV). This distance will increase by 4 inches for each 10 kV above 50 kV. Rule of Thumb: Stay 10 feet away from all overhead powerlines known to be 50 kV or less and 35 feet from all others.)
		 The SHSO shall halt outdoor site operations whenever lightning is visible, outdoor work will not resume until 30 minutes after the last sighting of lightning.
	3U) Equipment failure	3U) Equipment failure
		 All equipment will be inspected before use. If any safety problems are noted, the equipment should be tagged and removed from service until repaired or replaced.

Job Title: Field Work - General

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	3V) Hand & power tool usage.	 3V) Hand & power tool usage Daily inspections will be performed. Ensure guards are in place and are in good condition. Remove broken or damaged tools from service. Use the tool for its intended purpose. Use in accordance with manufacturers instructions. No tampering with electrical equipment is allowed (e.g., splicing cords, and the performance of
		cutting the grounding prong off plug, etc.)See JHA for Power Tool Use - Electrical and Power Tool Use - Gasoline
	3W) Fire Protection	 3W) Fire Protection Ensure that adequate number and type of fire extinguishers are present at the site Inspect fire extinguishers on a monthly basis – document All employees who are expected to use fire exinguishers will have received training on an annual basis. Obey no-smoking policy Open fires are prohibited Maintain good housekeeping. Keep rubbish and combustibles to a minimum. Keep flammable liquids in small containers with lids closed or a safety can. When dispensing flammable liquids, do in well vented area and bond
	3X) Confined Space Entry	and ground containers. 3X) Confined Space Entry
		 See JHA for Confined Space Entry
4. Environmental health considerations	4A) Heat Stress	 4A) Take precautions to prevent heat stress Remain constantly aware of the four basic factors that determine the degree of heat stress (air temperature, humidity, air movement, and heat radiation) relative to the surrounding work environmental heat load. Know the signs and symptoms of heat exhaustion, heat cramps, and heat stroke. Heat stroke is a true medical emergency requiring immediate emergency response action.
		 NOTE: The severity of the effects of a given environmental heat stress is decreased by reducing the work load, increasing the frequency and/or duration of rest periods, and by introducing measures which will protect employees from hot environments. Maintain adequate water intake by drinking water periodically in small amounts throughout the day (flavoring water with citrus flavors or extracts enhances palatability).
		 Allow approximately 2 weeks with progressive degrees of heat exposure and physical exertion for substantial acclimatization. Acclimatization is necessary regardless of an employee's physical condition (the better one's physical condition, the quicker the
		 acclimatization). Tailor the work schedule to fit the climate, the physical condition of employees, and mission requirements. A reduction of work load markedly decreases total heat stress. Lessen work load and/or duration of physical exertion the first days of heat exposure to allow gradual acclimatization. Alternate work and rest periods. More severe conditions may require longer rest periods and electrolyte fluid replacement.

Job Title: Field Work - General

Key Work Steps	Hazards/Potential Hazards	Safe Practices						
	4B) Wet Bulb Globe Temperature	4B) WBGT						
	(WBGT) Index	 Curtail or suspend physical work when conditions are extremely severe (see attached Heat Stress Index). 						
		 Compute a Wet Bulb Globe Temperature Index to determine the level of physical activity (take WBGT index measurements in a location that is similar or closely approximates the environment to which employees will be exposed). 						
		WBGT THRESHOLD VALUES FOR INSTITUTING PREVENTIVE MEASURES						
		80-90 degrees F Fatigue possible with prolonged exposure and physical activity.						
		90-105 degrees F Heat exhaustion and heat stroke possible with prolonged exposure and physical activity.						
		105-130 degrees FHeat exhaustion and heat stroke are likely with prolonged heat exposure and physical activity.						
	4C) Cold Extremes	4C) Take precautions to prevent cold stress injuries						
		 Cover all exposed skin and be aware of frostbite. While cold air will not freeze the tissues of the lungs, slow down and use a mask or scarf to minimize the effect of cold air on air passages. 						
		 Dress in layers with wicking garments (those that carry moisture away from the body – e.g., cotton) and a weatherproof slicker. A wool outer garment is recommended. 						
		 Take layers off as you heat up; put them on as you cool down. 						
		 Wear head protection that provides adequate insulation and protects the ears. 						
		 Maintain your energy level. Avoid exhaustion and over-exertion which causes sweating, dampens clothing, and accelerates loss of body heat and increases the potential for hypothermia. 						
		 Acclimate to the cold climate to minimize discomfort. 						
		 Maintain adequate water/fluid intake to avoid dehydration. 						
	4D) Wind	4D) Effects of the wind						
		 Wind chill greatly affects heat loss (see attached Wind Chill Index). 						
		 Avoid marking in old, defective timber, especially hardwoods, during periods of high winds due to snag hazards. 						
	4E) Thunderstorms	4E) Thunderstorms						
		 Monitor weather channels to determine if electrical storms are forcased. 						
		 Plan ahead and identify safe locations to be in the event of a storm. (e.g., sturdy building, vehicle, etc.) 						
		 Suspend all field work at the first sound of thurnder. You should be in a safe place when the time between the lightning and thunder is less than 30 seconds. 						
		 Only return to work 30 minutes after the after the last strike or sound of thunder 						

Έ	40	45	50	55	60	65	70	75	80	85	90	95	100	With Prolonged Exposure
														and/or Physical Activity
	_		_						Hea	t In	dex			Extreme Danger
106	124	130	137											
104								Т						Heat stroke or sunstroke
102	114	119	124	130	137				em	JEIC	าเนเ	e)		highly likely
100														Danger
98	105	109	113	117	123	128	134							Sunstroke, muscle cramps,
96	101	104	108	112	116	121	126	132						and/or heat exhaustion likely
94	97	100	103	106	110	114	119	124	129	135				anuror near exhaustion likely
92	94	96	99	101	105	108	112	116	121	126	131			Extreme Caution
90	91	93	95	97	100	103	106	109	113	117	122	127	132	Sunstroke, muscle cramps,
88	88	89	91	93	95	98	100	103	106	110	113	117	121	and/or heat exhaustion possible
86	85	87	88	89	91	93	95	97	100	102	105	108	112	
84	83	84	85	86	88	89	90	92	94	96	98	100	103	Caution
82	81	82	83	84	84	85	86	88	89	90	91	93	95	Fatigue possible
80	80	80	81	81	82	82	83	84	84	85	86	86	87	i aligue possible
	108 106 102 100 98 96 94 92 90 88 86 84 82	110 136 108 130 106 124 104 119 102 114 100 109 98 105 96 101 94 97 92 94 90 91 88 88 86 85 84 83 82 81	11013610813013710612413010411912410211411910010911498105109961011049497100929496909193888889868587848384828182	110136910813013710812413013710612413013710411912413110211411912410010911411898105109113961011041089497100103929496999091939588888991868587888483848582818283	F40455055110136108130137106124130137104119124131137102114119124130100109114118124981051091131179610110410811294971001031069294969910190919395978888899193868587888984838485868281828384	F4045505560110136 </td <td>F4045505560651101361081301371061241301371041191241311371021141191241301371021141191241301371001091141181241291369810510911311712312896101104108112116121949710010310611011492949699101105108909193959710010388888991939598868587888991938483848586888982818283848485</td> <td>F404550556065701101361081301371061241301371041191241311371021141191241301371001091141181241291369810510911311712312813496101104108112116121126949710010310611011411992949699101105108112909193959710010310688888991939598100868587888991939584838485868889908281828384848586</td> <td>F 40 45 50 55 60 65 70 75 110 136 -</td> <td>F 40 45 50 55 60 65 70 75 80 110 136 I</td> <td>F 40 45 50 55 60 65 70 75 80 85 110 136 -</td> <td>F 40 45 50 55 60 65 70 75 80 85 90 110 136 -</td> <td>F 40 45 50 55 60 65 70 75 80 85 90 95 110 136 -</td> <td>F 40 45 50 55 60 65 70 75 80 85 90 95 100 100 136 -</td>	F4045505560651101361081301371061241301371041191241311371021141191241301371021141191241301371001091141181241291369810510911311712312896101104108112116121949710010310611011492949699101105108909193959710010388888991939598868587888991938483848586888982818283848485	F404550556065701101361081301371061241301371041191241311371021141191241301371001091141181241291369810510911311712312813496101104108112116121126949710010310611011411992949699101105108112909193959710010310688888991939598100868587888991939584838485868889908281828384848586	F 40 45 50 55 60 65 70 75 110 136 -	F 40 45 50 55 60 65 70 75 80 110 136 I	F 40 45 50 55 60 65 70 75 80 85 110 136 -	F 40 45 50 55 60 65 70 75 80 85 90 110 136 -	F 40 45 50 55 60 65 70 75 80 85 90 95 110 136 -	F 40 45 50 55 60 65 70 75 80 85 90 95 100 100 136 -

Relative Humidity (%)^{furnished by National Weather Service Gray, ME}

									Tem	pera	ture	(°F)							
	Calm	40	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45
	5	36	31	25	19	13	7	1	-5	-11	-16	-22	-28	-34	-40	-46	-52	-57	-63
	10	34	27	21	15	9	3	-4	-10	-16	-22	-28	-35	-41	-47	-53	-59	-66	-72
	15	32	25	19	13	6	0	-7	-13	-19	-26	-32	-39	-45	-51	-58	-64	-71	-77
	20	30	24	17	11	4	-2	-9	-15	-22	-29	-35	-42	-48	-55	-61	-68	-74	-81
Ę	25	29	23	16	9	3	-4	-11	-17	-24	-31	-37	-44	-51	-58	-64	-71	-78	-84
Ē	30	28	22	15	8	1	-5	-12	-19	-26	-33	-39	-46	-53	-60	-67	-73	-80	-87
Wind (mph)	35	28	21	14	7	0	-7	-14	-21	-27	-34	-41	-48	-55	-62	-69	-76	-82	-89
W	40	27	20	13	6	-1	-8	-15	-22	-29	-36	-43	-50	-57	-64	-71	-78	-84	-91
	45	26	19	12	5	-2	-9	-16	-23	-30	-37	-44	-51	-58	-65	-72	-79	-86	-93
	50	26	19	12	4	-3	-10	-17	-24	-31	-38	-45	-52	-60	-67	-74	-81	-88	-95
	55	25	18	11	4	-3	-11	-18	-25	-32	-39	-46	-54	-61	-68	-75	-82	-89	-97
	60	25	17	10	3	-4	-11	-19	-26	-33	-40	-48	-55	-62	-69	-76	-84	-91	-98
	Frostbite Times 30 minutes 10 minutes 5 minutes																		
	Wind Chill (°F) = 35.74 + 0.6215T - 35.75(V ^{0.16}) + 0.4275T(V ^{0.16})																		
						Whe	ere, T=	Air Ter	nperat	ure (°	F) V=	Wind S	speed	(mph)			Effe	ctive 1	1/01/01

Job Title: Excavation and Backfilling

Date of Analysis: 8/20/07

Minimum Recommended PPE*: <u>High visibility vest</u>, hard hat, steel-toed boots, safety glasses, hearing protection *See HASP for all required PPE

Key Work Steps	Hazards/Potential Hazards	Safe Practices
 Identify location of underground utilities 	 Encountering electrical, gas, communications, water, or other underground utility lines 	 1A) Identify utility locations prior to mobilizing: Contact "Dig Safe" and obtain a permit (or one call center) to have underground utilities located and marked prior to any subsurface work on site. Use facility engineers and/or employ a private utility locator for utilities on private property
2. Excavation of soils	2A) Underground utilities	 2A) Underground utilities Work at adequate offsets from utility locations For areas where utility locations cannot be verified, workers must hand dig for the first 3 feet Immediately cease work if unknown utility markings are discovered. Conform to utility clearances based on voltage of lines. For powerlines of 50 KV or less stay at least 10 feet away. For powerlines of > 50 KV, add an additional 0.4 inches per KV over 50 KV. Rule of thumb: Stay 10 feet away if powerline known to be 50 KV or less. Stay 35 feet away for lines > 50 KV or if voltage is unknown.
	2B) Vapor/Dust Exposure	 2B) Vapor/Dust Exposure Conduct breathing zone air monitoring as described in the HASP. Implement dust control measures as applicable. Wear proper PPE (see HASP).
	2C) Odors	 2C) Odors Implement odor control mitigation in accordance with the Site Management Plan.
	2D) Heavy Equipment	2D) Heavy Equipment See General Site Hazards
	2E) Cave-ins	 2E) Cave-ins Excavation work must be conduct in accordance with OSHA 1926 Subpart P (650-652) Excavations including but not limited to: Designate a competent person to inspect, decide soil classification, proper sloping, the correct shoring, or sheeting for the excavation Walls and faces of trenches 5 feet or more deep, and all excavations in which employees may be exposed to danger from moving ground or cave-in shall be guarded by a shoring system, sloping of the ground, or some other equivalent means. Cordon-off the perimeter of the excavation to delineate cave-in hazard area. Construct diversion ditches or dikes to prevent surface water from entering excavation. Collect ground water/rain water from excavation and dispose of properly Store spoils, materials and equipment at least 2 feet from the edge of the excavation; prevent excessive loading of the excavation face. Inspect excavations (when personnel entry is required) daily, any time conditions change and document the inspection.
	2F) Slips/Trips/Falls	 2F) Slips/Trips/Falls Provide sufficient egress (stairs, ladders, or ramps) when workers enter excavations over 4 feet in depth, and place these structures so that workers travel no more than 25 feet to reach ladders. Provide at least two means of exit for personnel working in excavations. Maintain minimum safe distance from the excavation and only approach the excavation on the short side.

Job Title: <u>Excavation and Backfilling</u>

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	2G) Site Security	 2G) Site Security Fill in excavation prior to leaving the site or provide barricades or fencing (able to withstand 200 lbs. of vertical pressure) to protect the excavation from the public and place warning signs on fence/barricade. Consider hiring a security guard If cover excavation with plywood or other material, ensure cover is labeled with the words "cover" or "hole."
3). Backfilling of Soils	3A) Heavy Equipment	 3A) Heavy Equipment See General Site Hazards (Heavy Equipment)
	3B) Cave-ins	3B) Cave-insSee 2E above.

Job Title: Drilling Operation

Date of Analysis: 4/21/06

Minimum Recommended PPE*: <u>High visibility vest, hard hat, steel-toed boots, safety glasses, hearing protection, leather gloves</u>

*See HASP for all required PPE

Key Work Steps	Hazards/Potential Hazards	Safe Practices
1. Drive drilling rig onto site	1A) Malfunction of vehicle/equipment	 1A) Drivers shall perform a pre-operational check of equipment, read and be familiar with any operator's manual.
		 Report all needed repairs promptly.
		 Operators shall not use defective/unsafe equipment.
	1B) Wreck of drill rig while being driven	1B) Wreck of drill rig while being driven
		 All drivers shall be properly licensed.
		 Supervisors shall verify that drivers are capable and qualified on each type of equipment before allowing the equipment to be used unsupervised.
		 Keep wind shields, windshield wipers, side mirrors and side windows clean
		 Drivers shall conduct a pre-operation vehicle safety check
		 Drivers shall plan ahead to minimize or eliminate the need for backing. Always check to the rear before backing and use an observer when available. If an observer is not available, the driver shall walk around the vehicle to make sure rear is clear prior to backing.
		 Seat belts shall be worn when driving by driver and passengers.
		 Choose the safest location possible to park equipment. Avoid parking in blind spots of other equipment.
		 Driver is to be sure the back-up alarm is working
		 Adjust vehicle speed for load and weather. Tire chains should be utilized as dictated by weather conditions.
		 Operators should always check and be sure of load height.
		 When operating a vehicle off the roadway, be aware of possible hidden objects in the grass and unstable terrain.
		 The mast shall always be in a lowered position when moving the drill rig.
		 Never allow anyone between truck and trailer when backing to hook trailer
		 Make sure tilt beds or ramps are secured before putting trailer in use
		 Perform periodic checks of equipment on long trips to assure the load is secure.
		 Do not leave equipment unattended with the engine running. Shut off engine and set the parking brake when equipment is not in use.
2. Mounting and dismounting equipment	2A) Fall while mounting and dismounting equipment	2A) When mounting and dismounting equipment, use steps and handhold. Do not jump from vehicle.
3. Loading/unloading	3A) Crush and pinch points created	3A) Crush and pinch points created when loading/unloading equipment
of equipment	when loading/unloading equipment	 Be aware of crushing and pinching hazards when loading, unloading and fastening down equipment.
		 Make sure cargo is properly loaded, secured and covered using only approved chain and load binders. Check for loose material on bed and trailer. Secure loose material.
		 Wear protective equipment consistent with the hazard (hard hats, safety glasses, leather gloves, safety shoes, etc.)
		 Hook/unhook on stable ground with the trailer secure.
4. Rig equipment	4A) Crushing injuries, slip trips and	4A) Rig equipment operation.
operation.	falls, material under stress, power equipment operations, utility lines,	 Before use, inspect cable, chain or wire for wear and replace if necessary.
	overhead loads, flying particles, rope or cable blocks, equipment limitations, lifting and pinch points	 Observe OSHA guidelines for use of cable clamps, safety latches, chains and slings.
		 Know rated capacity of chain, cable or wire rope being used and never

Job Title: Drilling Operation

Key Work Steps	Hazards/Potential Hazards	Safe Practices
		exceed the rating.
		 Avoid overloading and sudden jerks.
		 Wear appropriate personal protective equipment with the hazard, including hard hats, safety glasses, leather gloves and safety shoes.
		 Check loads to be lifted for balance and have the rigging inspected to ensure a safe and balanced condition exists.
		 Do not allow employees to stand or work under suspended loads.
		 Awkward loads shall have taglines attached to control the load.
		 Review signals and operator communications with crew. Only one person shall direct the operator.
		 Review the area for utility lines, tree limbs and other overhead hazards. Work no closer than 10 feet to active overhead power lines. Follow OSHA guidelines.
		 Personnel working tag lines shall review the area for slipping, tripping and falling hazards. If not possible to eliminate the hazards, take precautions to avoid them.
5. Stabilize rig with	5A) Crushing injuries, slip, trip, fall	5A) Crushing injuries, slip, trip, fall hazards and potential back injuries.
hydraulic jack/pads	hazards and potential back	 Use proper lifting techniques.
	injuries.	 Ensure jack is rated for weight/operation with safe limits
		 Assure that area is clear of personnel and obstacles.
		 Place pads under jacks to prevent them from sinking into the ground.
6. Start/operate drill	6A) Moving machinery parts, buried	6A) Moving machinery parts, buried and overhead utilities, drill rod stacking,
rig	and overhead utilities, drill rod stacking, lifting, winching, cathead operations, moving equipment,	lifting, winching, cathead operations, moving equipment, noise, adverse weather conditions, animals, slippery surfaces, uneven terrain, poisonous plants/snakes/insects and overhead hazards
	noise, adverse weather conditions, animals, slippery surfaces, uneven terrain, poisonous	 Wear appropriate personal protective equipment consistent with the hazard (hard hat, safety glasses, leather gloves, safety shoes, etc.)
	plants/snakes/insects and	 Avoid contact with rotating equipment
	overhead hazards	 When cathead is in use, assure a safe travel path for the rope by using proper techniques. Avoid standing on the rope.
		 Observe and stay clear (minimum of 10 feet for nominal system voltage, utility lines, rated 50kV and an additional 0.4 inch for each kV over 50kV or twice the length of the line insulator, but never less than 10 feet) of overhead utility lines.
		 In transit with no load and boom lowered, the equipment clearance shall be a minimum of 4 feet for voltage less than 50kV and 10 feet for voltages over 50kV up to and including 345kV and 16 feet for voltages up to and including 750kV.
		 A person shall be designated to observe clearance of the equipment and give timely warning for all operations where it is difficult for the operator to maintain the desired clearance by visual means.
		 Have underground utility lines properly located and marked prior to drilling.
		 Employees on foot must use extreme caution to stay clear of operating equipment. Always establish eye contact with the operator before approaching the equipment.
		 Be aware of drop-offs, uneven ground and potential hidden objects which may cause loss of control when maneuvering drill rigs or create unstable drill set-ups. In heavily wooded area, scout to locate hidden objects.
		 Drill rod stacking must not exceed a length of 1.5 times the height of the tower.
		 Be aware of poisonous plants, insects, snakes, animals and animal waste products and carcasses. Wear long sleeve shirts, gloves, and high top boots when hazards cannot be avoided. Proper first aid supplies, insect repellents shall accompany field crews.

Job Title: Drilling Operation

Key Work Steps	Hazards/Potential Hazards	Safe Practices
		high groundwater resulting in muddy soils brought to the surface by augers and the utilization of bentonite drilling fluid.
		 Inspect all cables and clamps prior to winching operation. Stand clear of winching operations.
		 Use proper lifting techniques. Get help or use lifting equipment.
		 Suspend drilling operations during electrical storms
		 Be aware of overhead hazards which may come in contact with the drill rig, when moving or setting up equipment.
		 Complete a daily operations checklist to ensure that equipment is working properly. Make special note of emergency kill switches.
	6B) Contaminated soils, buried power or gas lines, landfills and	6A) Contaminated soils, buried power or gas lines, landfills and containment of spills
	containment of spills	 During drilling operations, always be aware of the possibility of encountering potentially hazardous materials, such as petroleum hydrocarbons, herbicides, pesticides, chemical manufacturing by- products or solid waste materials.
		 In the event that any unknown or questionable materials are encountered, then the drilling operations are to be suspended immediately until further instructions are received from supervision.
		 Do not handle any suspected contaminated materials unless trained to do so and proper protective methods are followed.
		 During drilling operations, always be aware of the possibility of striking an unlocated or improperly located gas or power line.
		 In the event a buried utility line is struck, drilling operations are to be suspended immediately.
		 If the utility line is electric, keep personnel at least 10 feet from all metal surfaces connected with the drill rig.
		- If the utility is gas, then the area is to be evacuated and secured. Immediate notification to the utility company is MANDATORY.
		 In the event of a gas or oil spill, the proper authorities are to be contacted immediately so that containment operations can be implemented.
7. Attach auger to drill	7A) Auger coming loose from drill	7A) Auger coming loose from drill Insert a holding pin in auger
		 Insert a holding pin in auger
		 Use personal protective equipment such as leather gloves, safety glasses, hard hat and safety shoes.
		Be aware of hand and finger positions when inserting holding pin
 Start drill by lever operations 	8A) Operation of wrong lever	8A) Label levers as to their operation and review equipment manual.
 Maintain proper auger drill speed with down hole pressure speed. 	9A) Unstable rig from improper speed of auger	9A) Use of trained drill rig personnel and follow equipment manual specification.
10. When auger has dug into ground unhook pin and insert another auger on top of the previous auger	10A) Auger coming loose (reference item #7)	10A) Insert another catch pin into newly installed auger (reference item #7)
11. Insert PVC pipe into hollow stem auger in 10 foot sections	11A) Reference Hazard item #6a	11A) Reference Control item #6A
12. Install filter pack (50 pound bags of sand) into hole (by pouring) to filter water into screen	12A) Back injuries, slips and falls	12A) Proper lifting procedures, team lifting and use of mechanical devices. Wear proper foot wear and maintain area in good housekeeping condition.

Job Title: Drilling Operation

Key Work Steps	Hazards/Potential Hazards	Safe Practices
13. Reverse auger after each five foot section of sand is installed	13A) Reference hazard item #4	14A) Reference Control item #4
14. Install Betonies on top of sand (3 foot) to seal up area above sand.	14A) Reference hazard item #12	14B) Reference control item #12
15. Remove auger	15A) Auger falling	15A) Insert auger- maintain auger at ground surface to prevent auger from falling into hole.
16. Release auger tension and remove pins. Remove auger from hole.	16A) Reference hazard item #4	16A) Reference control item #4
17. Lower drill head attached to auger remaining in bore hole attach with a pin	17A) Reference hazard in item #4	17A) Reference control in item #4
18. Decontamination of drill equipment- usually pressure water	18A) Contamination of personnel and environment	18A) Follow health and safety plan, dress to proper EPA level, contain material washed from contaminated equipment with proper containment materials. Trained/authorized personnel to use pressure washer and assure area is clean of personnel prior to operation of pressure water device.
19. Mix grout on site and fill/place in hole between the well pipe and bore hole wall	19A) Reference hazard item #12	19A) Reference control item #12
20. Cut PVC pipe off at determined height with a hand saw	20A) cutting of hand with hand saw	20A) Be aware of where hands are placed prior and during cutting with hand saw
21. Install a protective cover and fill with grout.	21A) Reference hazard item #12	21A) Reference control item #12
22. Driving drilling rig offsite.	22A) Reference item # 1	22A) Reference item #1.

Job Title: Soil Sampling

Date of Analysis: <u>5/1/07</u>

Minimum Recommended PPE*: <u>High visibility vest</u>, hard hat, steel-toed boots, safety glasses, hearing protection *See HASP for all required PPE

Ke	y Work Steps	Н	azards/Potential Hazards		Safe Practices
	Prepare for	1A)	Chemical exposure	1A)	Chemical Exposure
	sampling event	_			 Read HASP and determine air monitoring and PPE needs.
2. N	<i>Nobilization</i>	4A)	See JHA Mobilization/Demobilization/Site Preparation	2A)	See JHA Mobilization/Demobilization/Site Preparation
	General Site Hazards	3A)	See JHA Field Work - General	3A)	See JHA Field Work - General
	Carrying equipment	4B)	Back or muscle strain	4A)	Back or muscle strain
to	o site location				 Use proper lifting techniques when lifting pumps or generators
					 Use mechanical aids if available
		_			 Use 2 person lift for heavy items
	Calibrate	5A)	Exposure to calibration gases	5A)	Exposure to calibration gases
	nonitoring equipment				 Review equipment manuals
U	quipment				 Calibrate in a clean, well ventilated area
	Preparing sampling	6A)	Contact with poisonous plants or	6A)	Contact with poisonous plants or the oil from those plants:
IC	ocation		the oil from poisonous plants		 Look for signs of poisonous plants and avoid.
					 Wear PPE as described in the HASP.
					 Do not touch anything part of your body/clothing.
					 Always wash gloves before removing them.
					 Discard PPE in accordance with the HASP.
		6B)	Contact with biting insects (i.e., spiders, bees, etc.)	6B)	Contact with stinging/biting insects
					 Discuss the types of insects expected at the Site and be able to identify them.
					 Look for signs of insects in and around the well.
					 Wear Level of PPE as described in the HASP. At a minimum, follow guidelines in the JHA "Insects Stings and Bites."
					 If necessary, wear protective netting over your head/face.
					 Avoid contact with the insects if possible.
					 Inform your supervisor and the Site Health and Safety Supervisor if you have any allergies to insects and insect bites. Make sure you have identification of your allergies with you at all times and appropriate response kits if applicable.
					 Get medical help immediately if you are bitten by a black widow or brown recluse, or if you have a severe reaction to any spider bite or bee sting.
		6C)	Exposure to hazardous Inhalation	6C)	Exposure to hazardous substances
			and contact with hazardous		 Wear PPE as identified in HASP.
			substances (VOC contaminated soil); flammable atmospheres.		 Review hazardous properties of site contaminants with workers before sampling operations begin
					 Monitor breathing zone air in accordance with HASP to determine levels of contaminants present.
					 When decontaminating equipment wear additional eye/face protection over the safety glasses such as a face shield.
		6D)	Back strain due to lifting or moving	6D)	Back strain
			equipment to sampling locations		 Use mechanical aids when possible, if mechanical aids are not available, use two person lifts for heavy items.
					 Use proper lifting techniques

Job Title: Soil Sampling

Date of Analysis: <u>5/1/07</u>

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	6E) Foot injuries from dropped	6E) Foot Injuries
	equipment	 Be aware when moving objects, ensure you have a good grip when lifting and carrying objects.
		 Do not carry more than you can handle safely
		Wear steel toed boots
 Collecting soil samples 	7A) Working around drill rigs	7A) See JHA - Drilling
	7B) Encountering underground or overhead utilities	7B) Have all utilities located.
	7C) Fire/Explosion/Contamination	7C) Fire/Explosion/Contamination hazard from refueling generators
	hazard from refueling generators	 Turn the generator off and let it cool down before refueling
		 Segregate fuel and other hydrocarbons from samples to minimize contamination potential
		 Transport fuels in approved safety containers. The use of containers other than those specifically designed to carry fuel is prohibited See JHA for Gasoline use
	7D) Electrocution	7D) Electrocution
		 A ground fault circuit interrupter (GFCI) device must protect all AC electrical circuits.
		 Use only correctly grounded equipment. Never use three-pronged cords which have had the third prong broken off.
		 Make sure that the electrical cords from generators and power tools are not allowed to be in contact with water
		 Do not stand in wet areas while operating power equipment
		 Always make sure all electrically-powered sampling equipment is in good repair. Report any problems so the equipment can be repaired or replaced.
		 When unplugging a cord, pull on the plug rather than the cord.
		 Never do repairs on electrical equipment unless you are both authorized and qualified to do so.
	7E) Exposure to contaminants	7E) Exposure to Contaminants
		 Stand up wind when sampling
		 Monitor breathing zone with appropriate monitoring equipment (see HASP)
		 Wear chemical resistant PPE as identified in HASP
		 See section 4C) under Safe Practices above
	7F) Exposure to preservatives	7F) Exposure to preservatives
		 Work in a well ventilated area, upwind of samples
		 Wear chemical resistant PPE as identified in HASP
	ZC) Slips/trips/folls	Review MSDSs 7G) Slips/trips/falls
	7G) Slips/trips/falls	Ground can become wet/muddy
		 Wear good slip resistant footwear
	7H) Lifting Injury	7H) Lifting injury
		 Use proper lifting techniques when carrying quantities of samples
		 Use proper ergonomics when hand digging for samples
	7I) Eye injury	 7I) Eye Injury Wear eye protection when using picks or similar devices to loosen soi
	7J) Fire	7J) Fire
		 When using gas powered auger, maintain fire watch whenever fueling or otherwise handling gasoline
		 See JHA - Gasoline

Job Title: Soil Sampling

Date of Analysis: <u>5/1/07</u>

Key Work Steps	Hazards/Potential Hazards	Safe Practices
8. Soil sampling using floor corer	8A) Back injury	 8A) Back Injury Use proper lifting techniques when moving floor corer and generator Use mechanincal aids if available Use two person lift for heavy items.
	8B) Electric Shock	 8B) Electric Shock Use electric cords free from defects Keep cords out of water Ensure all electrical equipment is properly grounded Use GFCI
	8C) Hearing	8C) HearingWear hearing protection
	8D) Fire	 8D) Fire When using generator, maintain fire watch whenever refueling or otherwise handling gasoline See JHA - Gasoline
	8E) Contamination	 8E) Contamination Use appropriate PPE for the contaminants of concern (see HASP). Minimize sample contact Label sample in accordance with procedures Monitor breathing zone levels.

Job Title: Groundwater Sampling

Date of Analysis: <u>9/21/06</u>

Minimum Recommended PPE*: <u>steel-toed boots, safety glasses, chemical resistant gloves</u> *See HASP for all required PPE

Key Work Steps	Hazards/Potential Hazards	Safe Practices
1. Mobilization	1A) See JHA Mobilization/Demobilization/Site Preparation	1A) See JHA Mobilization/Demobilization/Site Preparation
 General Site Hazards 	2A) See JHA Field Work - General	2A) See JHA Field Work - General
	2B) Chemical exposure	2B) Chemical Exposure
		 Read HASP and determine air monitoring and PPE needs.
3. Calibrate	3A) Exposure to calibration gases	3A) Exposure to calibration gases
monitoring equipment		 Review equipment manuals
- 1-1		Calibrate in a clean, well ventilated area
4. Opening the well	4A) Contact with poisonous plants or	4A) Contact with poisonous plants or the oil from those plants:
cap, taking water level readings	the oil from poisonous plants	 Look for signs of poisonous plants and avoid.
lever readings		 Ensure all field workers can identify the plants. Mark identified poisonous plants with spray paint if working at a fixed location.
		 Wear PPE as described in the HASP.
		 Do not touch any part of your body/clothing.
		 Always wash gloves before removing them.
		 Discard PPE in accordance with the HASP.
		 Use commercially available products such as Ivy Block or Ivy Wash as appropriate.
	4B) Contact with biting insects (i.e.,	4B) Contact with stinging/biting insects
	spiders, bees, etc.) which may have constructed a nest in the well	 Discuss the types of insects expected at the Site and be able to identify them.
	cap/well.	 Look for signs of insects in and around the well.
		 Wear Level of PPE as described in the HASP. At a minimum, follow guidelines in the JHA "Insects Stings and Bites."
		 If necessary, wear protective netting over your head/face.
		 Avoid contact with the insects if possible.
		 Inform your supervisor and the Site Health and Safety Supervisor if you have any allergies to insects and insect bites. Make sure you have identification of your allergies with you at all times and appropriate response kits if applicable.
		 Get medical help immediately if you are bitten by a black widow or brown recluse, or if you have a severe reaction to any spider bite or bee sting.
	4C) Exposure to hazardous Inhalation	4C) Exposure to hazardous substances
	and contact with hazardous substances (VOC contaminated	 Wear PPE as identified in HASP.
	groundwater/ soil); liquid splash; flammable atmospheres.	 Review hazardous properties of site contaminants with workers before sampling operations begin
		 Immediately monitor breathing zone after opening well to determine exposure and verify that level of PPE is adequate – see Action Levels in HASP
		 Monitor headspace in well. After the initial headspace reading (if required by the Work Plan), allow the well to vent for several minutes before obtaining water level and before sampling.
		 When decontaminating equipment wear additional eye/face protection over the safety glasses such as a face shield.
	4D) Back strain due to lifting bailers or	4D) Back strain
	pumps and from moving equipment to well locations	 Use mechanical aids when possible, if mechanical aids are not available, use two person lifts for heavy items.
		 Use proper lifting techniques

Job Title: Groundwater Sampling

Key Work Steps	Hazards/Potential Hazards	Safe Practices
	4E) Foot injuries from dropped	4E) Foot Injuries
	equipment	 Be aware when moving objects, ensure you have a good grip when lifting and carrying objects.
		 Do not carry more than you can handle safely
		Wear Steel toed boots
5. Collecting water	5A) Fire/Explosion/Contamination	5A) Fire/Explosion/Contamination hazard from refueling generators
samples	hazard from refueling generators	 Turn the generator off and let it cool down before refueling
		 Segregate fuel and other hydrocarbons from samples to minimize contamination potential
		 Transport fuels in approved safety containers. The use of containers other than those specifically designed to carry fuel is prohibited
		 See JHA for Gasoline use
	5B) Electrocution	5B) Electrocution
		 A ground fault circuit interrupter (GFCI) device must protect all AC electrical circuits.
		 Use only correctly grounded equipment. Never use three-pronged cords which have had the third prong broken off.
		 Make sure that the electrical cords from generators and power tools are not allowed to be in contact with water
		 Do not stand in wet areas while operating power equipment
		 Always make sure all electrically-powered sampling equipment is in good repair. Report any problems so the equipment can be repaired or replaced.
		 When unplugging a cord, pull on the plug rather than the cord.
		 Never do repairs on electrical equipment unless you are both authorized and qualified to do so.
	5C) Exposure to contaminants	5C) Exposure to Contaminants
		 Stand up wind when sampling
		 Monitor breathing zone with appropriate monitoring equipment (see HASP)
		 Wear chemical resistant PPE as identified in HASP
		 See section 4C) under Safe Practices above
	5D) Infectious water born diseases	5D) Infectious water born diseases
		 Wear chemical resistant gloves and other PPE – as identified in HASP
		 Prevent water from contacting skin
		 Wash exposed skin with soap and water ASAP after sampling event
		 Ensure that all equipment is adequately decontaminated using a 10% bleach solution
	5E) Exposure to water preservatives	5E) Exposure to water preservatives
		 Work in a well ventilated area, upwind of samples
		 Wear chemical resistant PPE as identified in HASP
		 When preserving samples always add acid to water, avoid the opposite.
		See JHA Working with Preservatives
	5F) Slips/trips/falls	5F) Slips/trips/falls
		 Ground can become wet/muddy, created by spilled water Diagonal protocol prot
		Place all purged water in drums for removal
		Wear good slip resistant footwear
	5G) Repetitive Motion and other Ergonomic Issues	 5G) Ergonomic Issues Use mechanical means where possible to raise and lower equipment into well. Atteracts raising and lowering equipment between field compliant to mean field complia
		 Alternate raising and lowering equipment between field sampling team members, and alternate bailing the well. Use safe lifting techniques.

Job Title: Groundwater Sampling

Key Work Steps	Hazards/Potential Hazards	Safe Practices
6. Sample Processing	6A) Contaminated water	 6A) Contaminated water Wear appropriate PPE as identified in HASP Decontaminate outside of bottles Prevent water from contacting skin Work in well ventilated area – upwind of samples Waste will be returned to the operation office for storage and disposal
7. Shipping Samples	7A) Freeze burns, back strain, hazardous chemical exposure, sample leakage	 7A) Freeze burns, back strain, hazardous chemical exposure, sample leakage Wear appropriate chemical resistant gloves as identified in HASP. Wear leather or insulated gloves when handling dry ice. Follow safe lifting techniques – get help lifting heavy coolers. Samples that contain hazardous materials under the DOT definition, must be packaged, manifested and shipped by personnel that have the appropriate DOT HAZMAT training.

APPENDIX C

DECONTAMINATION PROCEDURES & EQUIPMENT PER TASK(S)

APPENDIX C1

DECONTAMINATION PROCEDURES & EQUIPMENT

Task(s) _All Tasks_____ Decontamination Solution: <u>Detergent and Water</u>

	MODIFIED LEV	EL D & LEVEL C
Station 1:	Equipment Drop	Deposit equipment used on-site (tools, sampling devices and containers, monitoring instruments, radios, etc. on plastic drop cloths. Segregation at the drop reduces the probability of cross contamination. During hot weather operations, a cool-down station may be set up within this area.
Station 2:	Outer Garment, Boots, and Gloves Wash and Rinse	Scrub outer boots, outer gloves, and splash suit with decon solution or detergent water. Rinse off using copious amounts of water.
Station 3:	Outer Boot and Glove Removal	Remove outer boots and gloves. Deposit in container with plastic liner.
Station 4: (Level C only)	Canister or Mask Change	If worker leaves exclusion zone to change canister (or mask), this is the last step in the decontamination procedure. Worker's canister is exchanged, new outer gloves and boot covers are donned, joints are taped, and worker returns to duty.
Station 5:	Boot, Gloves and Outer Garment Removal	Boots, chemical resistant splash suit, and inner gloves are removed and deposited in separate containers lined with plastic.
Station 6: (Level C only)	Face Piece Removal	Facepiece is removed. Avoid touching face with fingers. Facepiece is deposited on plastic sheet.
Station 7:	Field Wash	Hands and face are thoroughly washed. Shower as soon as possible.

APPENDIX D

INCIDENT ANALYSIS FORMS

Check one Initial Report: Update: Final Report: Local Office ID Number: Number:	IN	CIDENT ANALYSI ork Product Prepared	S REPORT <u>in Anticipation of Litigation</u> Division ES&H Manager Tracking	Category C: Category B: Category A:
	Se Hi Pr s from: Immediat	oject Manager: e Supervisor:	Report Date:	days: hr
A. Type of incident being	First-aid Case	pply) Medical Treatment Environmental Release	Hospitalization Required Regulatory Inspection] Fatality] Notice of Violation
Vehicle Incident	 Other (please describe): describe the part of the body 			
			al released into the environment: and supply inspector contact informati	on:
	dent Description (All ersons involved in the incident,		, as needed, to ensure all details related to	the mordent are captured.
B. List the names of any v	vitnesses, their employer, and a	a local/company telephone nu	mber or address:	
C. What was the employe	e(s) doing just prior to the incid	dent?		
D. What happened?				
E. What object or substan	ce directly harmed the employe	ee?		
F. List any damaged eque equipment or property.		n motor vehicles) model and	serial number and estimated costs to	o repair/replace damaged
Section 4 - Incid	-			
A. Was a Job Hazard Ana	lysis (JHA) completed for the	work being performed? YES	□ NO □ Who prepared the JH	A?

- B. When and who was the last safety officer (i.e. LHSR, supervisor, ES&H Manager, etc.) at your work site?
- C. When and what safety training **<u>directly related</u>** to the incident has the person(s) involved had?

Section 5 - Incident Investigation Results

#	Cau	isal Factors (Attach and number any additional pages as needed to	o completely address this sec	tion)		
1						
2						
3						
4						
5						
		items represent major root cause categories which have been determined to b your Division's ES&H Manager.)	e Less Than Adequate (LTA). A	A more detailed determinat	ion of the root ca	use will be facilitated, if
	1. 2. 3. 4.	Equipment Reliability Program Implementation Administrative / Management Systems Immediate Supervision Training	6. Co	uman Factors Engin ommunications rsonal Performance		
	oot use#	Corrective Actions to be taken (Attach additional pages as needed to completely address this section)	Responsible Person	Proposed Completion Date	Closed on Date	Verified by and Date Verified
			Responsible Person			
			Responsible Person			
			Responsible Person			
			Responsible Person			
			Responsible Person			
			Responsible Person			

Section 6 – Approvals

Incident investigated by (signatures):			
Employee(s):	Date:	Employee's Supervisor:	Date:
LHSR/Project/Office Manager:	Date:	ES&H Manager:	Date:

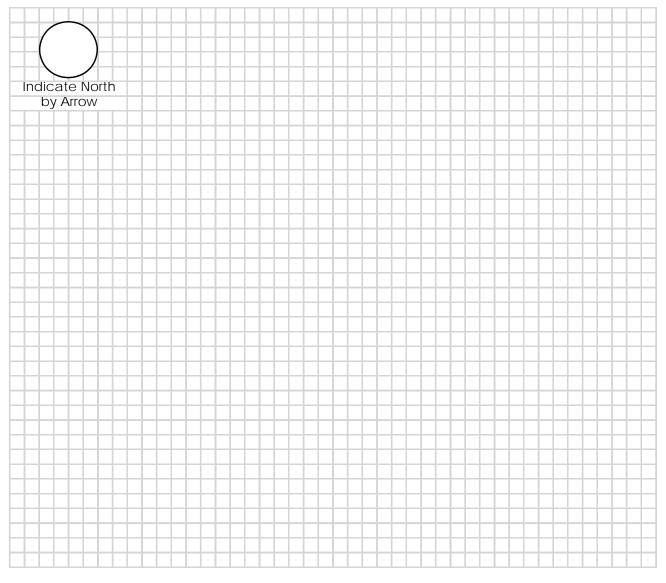
VEHICLE INCIDENT REPORT Revision 1

Attorney-Client Work Product Prepared in Anticipation of Litigation

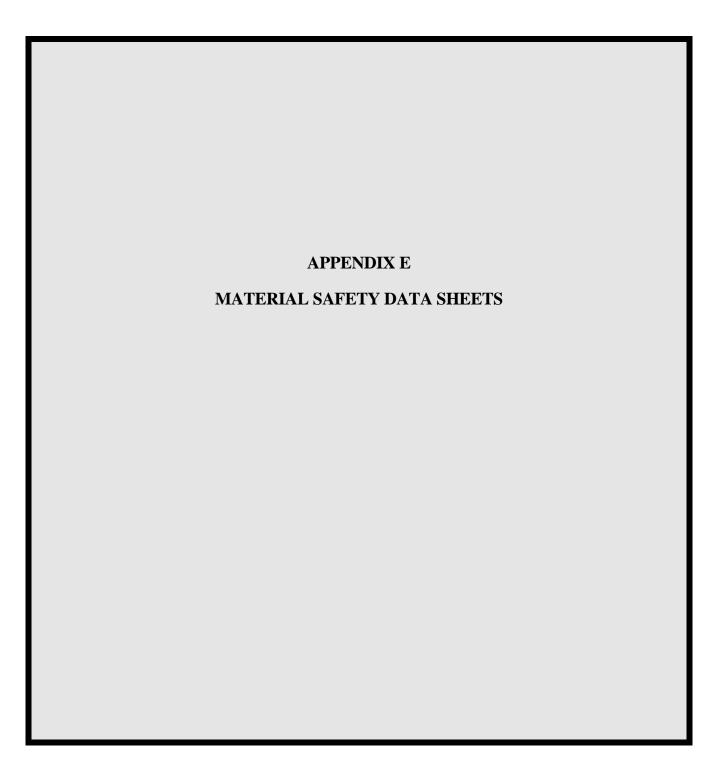
Vere police summoned to scene?	Vec 🗌 No Police Departs	ment and Location:		lent:
-	-			
	ter 5 funite and Budge funite			
Section 2 - Company Driver	and Vehicle			
Driver's name:		D/L #	State:	
Driver's home office address:		Driver's Phone #		
Company Vehicle # Year _	Model	License #	State	
Company car? 🔲 Yes 🗌 No	Owned by e	employee? 🗌 Yes 🗌 No		
Leased/rented from				
Passenger/Witness Name(s)	Address:		Phone:	
Passenger/Witness Name(s)	Address:		Phone:	
Passenger/Witness Name(s)	Address:		Phone:	
Damage to vehicle:				
Injuries to employee(s):				
Injuries to others:				
		No Personal business Y		
Section 3 - Other Driver and	Vehicle Information	To Where:		
Section 3 - Other Driver and Driver's Name:	Vehicle Information	To Where: D/L #	State	
Section 3 - Other Driver and Driver's Name: Current Address	Vehicle Information	To Where: D/L # City	State State	
Section 3 - Other Driver and Driver's Name: Current Address Telephone Home:	Vehicle Information	To Where: D/L # City Cell:	State State	
Section 3 - Other Driver and Driver's Name: Current Address Telephone Home:	Vehicle Information Work: Address:	To Where: D/L # City	State State	
Section 3 - Other Driver and Driver's Name: Current Address Telephone Home: Reg. Owner's Name:	Work: Address:(verif	To Where: D/L # City Cell: City:	State State State:	
Section 3 - Other Driver and Driver's Name: Current Address Telephone Home: Reg. Owner's Name: The Other Vehicle: Make	Vehicle Information Work: Address: (verif Model	To Where: D/L # City Cell: City: jy registration document)	State State State: State	
Section 3 - Other Driver and Driver's Name: Current Address Telephone Home: Reg. Owner's Name: The Other Vehicle: Make Insurance company name:	Vehicle Information Work: Address:(verif	To Where: D/L # City Cell: City: y registration document) Year License #	State State State: State	
Section 3 - Other Driver and Driver's Name: Current Address Telephone Home: Reg. Owner's Name: The Other Vehicle: Make Insurance company name: Policy No	Vehicle Information Work: Address: (verif) Model Address: Co	To Where: D/L # City Cell: City: y registration document) Year License #	State State State: State Phone #	
Section 3 - Other Driver and Driver's Name: Current Address Telephone Home: Reg. Owner's Name: The Other Vehicle: Make Insurance company name: Policy No Passenger/Witness Name(s)	Vehicle Information Work: Address: Model Address: Address:	To Where: D/L # City City Cell: City: <i>y registration document)</i> Year License # ntact Person	State	
The Other Vehicle: Make Insurance company name: Policy No Passenger/Witness Name(s) Passenger/Witness Name(s)	Vehicle Information Work: Address: Model Address: Co Address: Co Address:	To Where: D/L # City Cell: y registration document) Year License # ntact Person	State	
Section 3 - Other Driver and Driver's Name:	Vehicle Information Work: Address: Model Address: Co Address: Co Address:	To Where: D/L # City Cell: Cell: Cell: City:	State	
Section 3 - Other Driver and Driver's Name:	Vehicle Information Work: Address: Model Address: Co Address: Co Address:	To Where: D/L # City Cell: Cell: Cell: City:	State	
Section 3 - Other Driver and Driver's Name: Current Address Telephone Home: Reg. Owner's Name: The Other Vehicle: Make Insurance company name: Policy No Passenger/Witness Name(s) Passenger/Witness Name(s)	Vehicle Information Work: Address: Model Address: Co Address: Co Address:	To Where: D/L # City Cell: City: City: Year License # Year License #	State	
Section 3 - Other Driver and Driver's Name:	Vehicle Information Work: Address: Model Address: Co Address: Co Address:	To Where: D/L # City Cell: City: City: Year License # Year License #	State	
Section 3 - Other Driver and Driver's Name:	Vehicle Information Work: Address: Address: Model Address: Co Address: Address: Address: Address: Model Address: Co Address: Address: Address: Address:	To Where: D/L # City Cell: City: City: Year License # Year License #	State	

Things to Do First In The Event Of a Motor Vehicle Incident

- 1. Most important: STOP.
- 2. Call 911 if there are injuries.
- 3. <u>Call for an officer</u> if the incident occurred on public property (streets, highways or roads). Disputes often arise between the parties involved as to who was at fault; therefore, a police report is important. If an officer is unable to attend the scene of the accident, a counter police report may be filed at most stations. Insurance companies rely on police reports to determine liability.
- 4. Complete the Incident Investigation Report and the Vehicle Incident Report forms. It is important that both these forms are completed in detail. Include a diagram of the incident on the back of the report. Incomplete information may lead to delays in processing associated claims and in helping to prevent this type of incident from occurring again.
- 5. Express no opinion as to who was at fault. This is for the insurance companies to determine.
- 6. <u>Give only information that is required</u> by the authorities or as directed by contractual requirements.
- 7. <u>Sign only those statements required</u> by the authorities or as directed by contractual requirements. Do not sign away your rights or the company's rights.
- 8. If you are injured or think you were injured, tell your supervisor and see a physician. Your supervisor will notify your Worker's Compensation insurance carrier, your Division's ES&H Manager and the Corporate Director of ES&H by phone, email or fax.
- 9. Your supervisor will forward both completed incident reports immediately to your Division's ES&H Manager.


Vehicle Crash Diagram

Instructions:


- > < 2
- 2. Use a solid line to show path before incident and use a dotted line to show path after incient

- 3. Show pedestrian/non-motorist by:

- 5. Indicate north by arrow as: 6. Show street or highway names or numbers
- 7. Show signs, signals, warning and traffic controls.

Prepared by:

NOTE:

The Material Safety Data Sheets which apply to this field activity are provided as a separate document and are to be kept with this HASP in the field support vehicle/office.

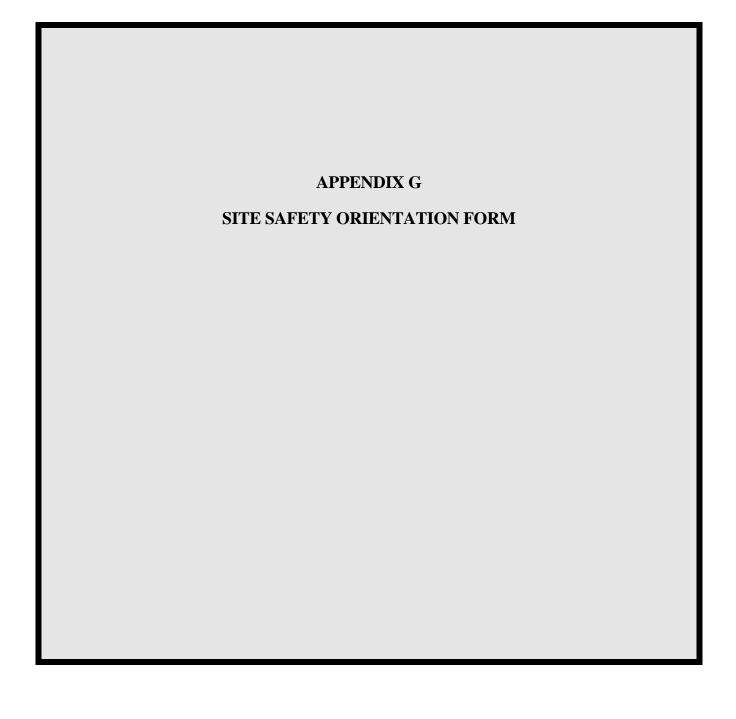
APPENDIX F

SHSO SUMMARY

APPENDIX F

SHSO SUMMARY

To be completed by SHSO following completion of each phase of field work.


During the work covered by this Site Specific Health and Safety Plan, there were:

(check one)

- No violations of the Safety Plan provisions and no incidents involving injury, illness or personnel contamination.
- The following violations of the Safety plan provisions or incidents involving injury, illness or personnel contamination occurred. (Provide details of type of violation or incident, who was involved, circumstances, and first aid or medical treatment required.)

If violation or incident occurred, describe corrective actions taken to prevent reoccurrence.

Project/Task Name:	
Project/Task Number:	
Dates in Field:	
Signature:	
	(SHSO)
Date:	

SITE SAFETY ORIENTATION

Project:	Site:
Project Number:	Date:

All applicable items listed below are to be reviewed on the first day of site activities and when new workers arrive on site. Training provider, please initial each item covered in the training, or note "NA" as applicable.

Participating employees must print and sign their name in the spaces provided below:

APPENDIX H

DAILY TAILGATE SAFETY MEETING CHECKLIST

DAILY TAILGATE SAFETY MEETING CHECKLIST

Projec	et:	Site:					
Date:	Date: Location:						
To be	To be reviewed on the first day of site activities and when new workers arrive on site:						
	Alternate for Health & Safety:						
	ion of on-site HASP:						
	raining requirements:	See HASP					
Speci	fic medical surveillance requirements:	See HASP					
				Cl	neck-	off:	
	enda:				Date	9	
Duri	ng the project, one or more of the agenda ite	ms could be selected for the required daily site training.					
							_
1.	Planned work for this day (discuss)						
2.	Physical hazards and controls (discuss/						
3.	Chemical hazards and controls (discuss						
4.	Biological hazards and controls (discus						
5.	Personal protective equipment Modifie						
6.	Personal protective equipment required	per the hazard assessment:					
	SPECIFY TYPE						
	Protective coveralls		-				
	Safety glasses/goggles	ANSI approved	-				
	Hard hat	ANSI approved	-				
	Foot protection	Safety toe boots & overboots	-				
	Work gloves		-				
	Chemical gloves	Neoproene outer, nitrile inner	-				
	Hearing protection		_				
	Other		_				
7.	Review inspection, decontamination, a above stated PPE.	ind maintenance procedures and the limitations of the					
0	Decontamination procedure (discuss/re	view)					
8. 9.	Exclusion zone maintained	view)					
9. 10.	Site emergency response plan (discuss/	review					H
10.	Signs and symptoms of overexposure to			H			H
11.	General health and safety rules	o chemicals anticipated on site					H
12.	•	relating to site activities including: (discuss/review)					H
13.	Drilling/boring	relating to site activities including. (discuss/review)					H
15.	UST			H			H
15. 16.	Excavations (including UG utility locat	tions)		H			H
17.	Heavy equipment			П			H
18.	Slips, trips, and falls		Н	Н			H
19.	Lockout/tagout			П			Π
20.	Working in temperature extremes			П			ΠI
20.	Rain or other weather advisories			\square			
22.	Other health & safety issues (discuss/ne	ote)		Π			ΠI
		,					

DAILY TAILGATE SAFETY MEETING CHECKLIST

I have participated in the daily safety meeting discussing the topics indicated on the reverse and fully understand my responsibility for complying with all health and safety requirements. I have had the opportunity to have my questions on site health and safety issues and procedures answered.

Employee Name	Employee Signature	Date
		· · · · · · · · · · · · · · · · · · ·
		·
		· · · · · · · · · · · · · · · · · · ·
		·
		·
		·
		·
Name and Signature of person	a conducting training	Date

APPENDIX I

WEEKLY HEALTH AND SAFETY CHECKLIST

WEEKLY SITE SAFETY AND HEALTH CHECKLIST

Site:	Date:			
Proj	Project Number: Project Manager:			
Cone	lucted by:			
Nam	es of employee's onsite:			
		Y	Ν	NA
	SP, Training and Documentation:			
1.	Are emergency phone numbers posted?	H		
2. 3.	Are directions to the nearest emergency medical care posted? Is the OSHA Poster posted?	H	H	H
3. 4.	Is there a SSHP at the site?	H	H	H
ч.	a. Is it current and address all tasks?	H	H	H
	b. Does it address all know/suspected hazards?	Н	H	Н
	c. Are JHAs included for <u>all</u> tasks?	П	Ħ	
	d. Are employees following the procedures as outlined in the JHAs?			
	e. Is it approved?			
	f. Have all field members signed off that they have read it?			
5.	Are there MSDSs for required materials/chemicals brought to the site?			
6.	Are all containers properly labeled, as to content, hazard?	Ц	Ц	Ц
7.	Is there list of chemicals brought to the site? Do the names on the list match the name on the label and MSDS?	Ц	Ц	Ц
8.	Do applicable workers have their 40-hour initial training and are current in their refreshers?	H	H	H
9. 10	Do the Field Lead and Health and Safety Officer have Supervisory training?	H	H	H
10. 11.	Are all applicable workers current in their physicals? Are Tailgate Safety Meetings taking place and documented?	H	H	H
	Are there means to minimize heat or cold stress on-site?	H	H	H
	Is eating, drinking, smoking, etc. only done in areas free from toxic materials?	H	H	H
	Are two people used to lift equipment or materials weighting more than 50 lbs.?	Ħ	Ħ	Ħ
	Are the locations of electrical power lines and other utilities identified prior to digging or drilling?			
	and Monitoring Instruments:			
	Does the PPE being worn match what is required in the HASP and JHAs?			
	Is hearing protection worn when noise makes conversation difficult at a distance of 2 feet?	Ц	Ц	Ц
18.	Are approved respirators and cartridges worn when needed?	Ц	Ц	Ц
	a. Are cartridges changed daily, unless specified otherwise in the HASP?	H	H	H
10	b. Are cartridges appropriate for the contaminants at the site? Are <u>all</u> air monitoring instruments identified in the HASP being used and calibrated daily, as required?	H	H	H
19.	a. Do employees know upgrade/downgrade action levels?	H	H	H
Firs	a. Do employees know upgrade/downgrade action revers?			
	Are there eyewash bottles on-site? Solution not expired?			
	Are first aid kits on-site and adequately stocked (including blood borne pathogen equipment)?		\Box	
	Is there always at least one person on site current in their first aid/CPR training?			
Fire	e Safety:			
23.	Is there a charged fire extinguisher on-site?			
	a. Have workers, who would use extinguishers, received fire extinguisher training in past year?	Ц	Ц	Ц
	b. Are fire extinguishers visually inspected monthly and are the inspections documented?	님		H
24	c. Have fire extinguishers been professionally inspected within the past year?	H	H	H
24.	Are flammable liquids (e.g., gasoline) being stored safety (e.g., in safety cans and 20 feet from combustibles)? Are flammable liquid dispensing systems bonded (metal to metal)?	H	H	H
	npressed Gas:			
	Are cylinders stored in a secure manner, with caps on, upright and protected from damage?			
	Are cylinders protected from snow, rain, etc.?	П	Ħ	П
	Are cylinder caps in place before cylinders are moved?		\Box	
	Are fuel gas and oxygen cylinders stored a minimum of 20 feet apart?			
30.	Are propane cylinders stored and used only outside of buildings?			
	icles:		_	
	Are employees wearing their seat belts and not talking on cell phones while car is in motion?	Ц	Ц	Ц
32.	Do Company vehicles have the "How's my Driving" decals?			

WEEKLY SITE SAFETY AND HEALTH CHECKLIST

	Are vehicles parked in a safe manner? Are traffic cones used, if required?	Y	N	
	Are company vehicle inspected weekly and the inspections documented? Are materials stored in vehicles in a neat, orderly and secure manner so that they won't become a distraction			
55.	to the driver, become a projectile hazard in the event of a sudden stop or crash or fall from the vehicle when in transport?			
Elec	trical:			
	Is at least a 10 foot clearance maintained between equipment and power lines?			
	Are all electrically operated tools grounded?	H		H
	Are GFCI's used?	H	H	H
	Are exposed wiring and cords in good condition (not frayed or deteriorated)? Do extension cords have a grounding conductor?	H	H	H
	Are extension cords only used in one continuous length (not daisy chained)?	H	H	H
	Are extension cords kept out of wet areas?			
	Has a lockout/tagout system been established, if required?			
	d and Power Tools:			
	Are tools and equipment used by employees in good condition or tagged out of service?			
	Are guards and safety devices in place on power tools?			
	king and Working Surfaces:			
	Do stairways into trailers/buildings that have 4 steps or more, have hand rails? Is good housekeeping being maintained at the site?	H	H	H
	Are all ladders in good condition, stored against damage and properly secured when in use?	H	H	H
	Are approved manlifts provided for the lifting of personnel (e.g., cherry pickers, scissor lifts, etc.)?	H	H	Η
	Are personnel in manlifts wearing approved fall protection devices when required?	П	Ħ	П
	Is fall protection used when working at elevations greater than 6 feet?			
	Are ladders inspected prior to use?			
	Are all ladders in good condition and defective ladders tagged out of service?			
	folding:	_	_	
	Is scaffolding placed on a flat, firm surface?	Н		Ц
	Are scaffold planks free of mud, ice, grease, etc.?	H	H	H
	On scaffolds where platforms are overlapped, is planking overlapped a minimum of 12 inches? Does scaffold planking extend over end supports between 6 to 18 inches (dependent upon platform length)?	H	H	H
	Are employees restricted from working on scaffolds during storms and high winds?	H	H	H
	Is required perimeter guarding (top rail, mid rail, and toe board) present?	H	H	H
	Has a competent person been designated to oversee scaffold construction and inspect daily?	H	H	Н
	avations:			
61.	Has entrance into excavations greater than 4 feet deep prohibited unless the following precautions are taken?			
	a. The sides of excavations sloped or shored to prevent cave ins if over 5 feet deep?			
	b. Excavations greater than 4 feet deep been monitored for hazardous atmospheres (i.e., LEL/O2)?			
	c. Ladders or ramps used in excavations over 4 feet deep?	Ц	Ц	Ц
	d. Means of egress available so as to require no more than 25 feet of lateral travel?	H	H	
62	e. Excavation inspected daily by competent persons and documented?	H	H	H
62.	Is excavated material placed a minimum of 24 inches from the excavation? vy Equipment:			
	Is heavy equipment shut down for fueling and maintenance?			
	Are backup alarms installed and working on mobile equipment?	Ħ	Ħ	Ħ
	Are riders prohibited on heavy equipment?	\Box		
66.	Are guards and safety appliances in place and used?			
	Are operators using the "three point" system when mounting/dismounting equipment?			
~ ~	fined Space Entry:		_	
68.	Are there confined spaces at the site that will be entered? If yes:	Ц	H	
	a. Is the permit completely filled out and approved prior to entry?	H		H
	b. Are confined spaces thoroughly emptied of the hazardous substances prior to entry?c. Is ventilation provided prior to entry?	H	H	H
	 d. Is air within the confined space tested for oxygen deficiency, LEL and toxic substances in that order? 	H	H	H
	 e. Is there an assigned safety standby outside the space who is adequately trained? 	H	H	H
	f. Has a rescue plan been established?	Ц	П	Ц
	g. Is an entry supervisor present at each permit-required entry?			
		_	_	

WEEKLY SITE SAFETY AND HEALTH CHECKLIST

	h. Are required extraction/fall protection devices bein	g used? $\mathbf{Y} = \begin{bmatrix} \mathbf{Y} \\ \mathbf{D} \end{bmatrix}$	
Deco	econtamination:		
69.	Are decontamination stations set up on site?		
70.	. Is decontamination water properly contained and dispose	ed of?	
71.	. Are all pieces of equipment inspected for proper deconta	mination before leaving the site?	
Wor	orking on or Near Water:		
72.	2. Has a float plan been filed if working from a boat?		
	. Are personal floatation devices available and being used		
74.	Are Coast Guard requirements being followed when boa	ting on navigable waters?	

Γ

Findings	Corrected on
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	

I-1

APPENDIX E

SITE COVER INSPECTION CHECKLIST

SOIL COVER INSPECTION CHECKLIST Former Buffalo Color Facility, Area E, Buffalo, NY

Date: Weather:

Personnel (Organization):

Instructions: Complete the checklist of evaluation items and then complete specific data items. Field measurements should be made with a cloth tape and noted on a Site plan. Estimated measurements shall be so noted. All field notes and documentation, including hand sketches, photographs, and notes made on the Site plan, should be attached to the completed checklist to further define conditions or problems.

EVALUATION ITEMS CONDITION: (Check)

	Action Required					
(Write NA if not applicable)		Acceptable	Not Acceptable	Yes	No	Remarks
1.	Integrity of Soil Cover					
a.	Runoff/Erosion Damage					
b.	Settlement					
c.	Missing/Insufficient grass/vegetation					
d.	Animal Burrows					
2.	Surface Pavement					
a.	Condition					
3.	At-Grade/Basement Concrete Sla	abs (occupied st	ructures)			
a.	Condition					

<u>SPECIFIC DATA ITEMS</u> (Write NA if not applicable)

Area(s):

- **1.** Approximate size in feet area(s) (List separately)
 - a) _____ feet by
 - b) feet by c) feet by

2. Deepest point of area(s) (e.g. erosion/damage) measured from the adjacent surface (List separately)

- feet a)
- b) _____ feet
- c) feet

SOIL COVER INSPECTION CHECKLIST (CONTINUED) Former Buffalo Color Facility, Area E, Buffalo, NY

- 3. Attach a hand sketch or photograph to the attached Site plan showing the location(s) of the area(s). Identify each area by using the letter a, b, c, etc. from Question 1.
- 4. Approximate size in feet of any settlement area within the area(s). (List separately.)
 - a) _____ feet by _____
 - b) _____ feet by _____
 - c) feet by
- 5. Approximate size and location of animal burrows. (Attach a sketch showing approximate locations.)
- 6. Approximate depth of settlement area(s) measured from the adjacent surface. (List separately.)
 - a) _____ feet
 - b) _____ feet
 - c) _____ feet
- 7. Attach a hand sketch or photograph to the attached Site plan showing the location of the settlement area(s). Identify each area by using the letter a, b, or c, etc. from Question 6.

NA

- 8. Approximate size and depth of eroded area(s).
 - a) _____ feet
 - b) _____ feet
 - c) _____ feet
- 9. Attach a sketch or photograph to the attached Site plan showing location of any eroded area(s).

None

Signature of Inspector(s)

Attachments

Yes No

Other Comments:

APPENDIX F

MONITORING WELL CONSTRUCTION LOGS

11		~			PROJECT: Former Buffalo Color	BORING:	MW-E01
	MA		' ' -	i (🗋	LOCATION: Buffalo, NY		MW-E01
	TATT				JOB NUMBER: 3410090701		10/27/2009
					CLIENT: South Buffalo Development	DATE:	10/27/2009
Drille	er:	SJB Dr	illers		Drilling Method: Hallow Stem Auger		
	Scientist:	Greg O			Bore Hole Diameter: 6.5 inch		
	eyor:		a Boundar	v	Auger Size: 4 inch		
	nd Elevation:	NA		,	Sampling Device: Split Spoon		
North		104413	12		Sampling Device: Split Spoon Total Depth: 12 feet		
		104413				Deter	
East					Depth to Water:	Date:	
Ref.	Elevation:	586.99	1		GW Elevation: NA	Date:	WELL DIAGRAM:
DEPTH (ft-bgs)	ANALYTICAL SAMPLE	PID READING	SPLIT SPOON BLOWS PER 6 INCHES	% RECOVERY	SOIL DESCRIPTION	SOIL	Steel Casing Stick-up
			6	50	Grey, Moist, silty SAND, some GRAVEL		Concrete 0-1'
1			8				
			6				
2			15			FILL	2" Dia. PVC Riser
		108	4	20	Black, Moist, silty SAND		
- 3			2	23			
5		1					
			1				
4		3225	4		Black, Wet, silty SAND, some GRAVEL (Sheen)		
_		1			Auger to 12 feet bgs		Sand Pack 1-12'
5							
		1					
6		1					
		1					10 feet of 0.01"
- 7		1					Slot Size PVC
,		1					SIGE SIZE PVC
8		1					
		1					
9							
.		1					
10		1					
		1					
11		1					
12		1					
.2		1			Pottom of Poring at 12 feet has		
		1			Bottom of Boring at 12 feet bgs		
13							
-		1					
14		1					
		1					
15							
		1					
16		1					
-		1					
17							
17							
18							
		1					
19		1					
		1					
20							
	ED BY: ESW	1	1	1	1	I	<u> </u>
						DACE. 1 of 1	
CHEC	KED BY: GSC	,				PAGE: 1 of 1	

11					PROJECT: Former Buffalo Color	BORING:	MW-E02
	MA		' ' -		LOCATION: Buffalo, NY		MW-E02
					JOB NUMBER: 3410090701	START:	10/29/2009
					CLIENT: South Buffalo Development		10/29/2009
Drille	r:	SJB Dr	illers		Drilling Method: Hallow Stem Auger		-
	Scientist:	Greg O			Bore Hole Diameter: 6.5 inch		
Surve			a Boundary	/	Auger Size: 4 inch		
	nd Elevation:	NA	,	/	Sampling Device: Split Spoon		
North		104428	39.20		Total Depth: 11.5 Feet		
Easti	-	107917			Depth to Water:	Date:	
	Elevation:	NA	1.21		GW Elevation: NA	Date:	
Kel. E						Date.	WELL DIAGRAM:
DEPTH (ft-bgs)	ANALYTICAL SAMPLE	PID READING	SPLIT SPOON BLOWS PER 6 INCHES	% RECOVERY	SOIL DESCRIPTION	SOIL	Flush Mount Well Casing
		0.2	8	100	Plack Maint SILT SAND and CRAVEL		
- 1		0.2	8 5 5	100	Black, Moist, SILT, SAND, and GRAVEL	FILL	Concrete 0-0.5'
2			6		Grey, Moist, stiff CLAY		2" Dia. PVC Riser
3		0.1	6 7 8 9	75	Gray and Brown, Moist, silty CLAY		
- 5		0.2	4	100	Brown and Gray, Moist, CLAY		Sand Pack 0.5-10.5'
6			6 7				
- 7			7 9	100		CL	10 feet of 0.01" Slot Size PVC
8			9 11				
9			2 3	100			
10			4 4				H
11							
12					Bottom of Boring at 11.5 Feet		
13							
14							
15							
16							
17							
18							
19							
20							
CREAT						PAGE : 1 of 1	

11		~			PROJECT: Former Buffalo Color	BORING:	MW-E03
	MA	$(\)$	Ίľ		LOCATION: Buffalo, NY		MW-E03
					JOB NUMBER: 3410090701		10/28/2009
					CLIENT: South Buffalo Development		10/29/2009
Drille	er:	SJB Dr	rillers		Drilling Method: Hallow Stem Auger		
	Scientist:	Greg C			Bore Hole Diameter: 6.5 inch		
	eyor:	-	a Boundary	v	Auger Size: 4 inch		
	ind Elevation:	NA		,	Sampling Device: Split Spoon		
Nort		104412	29.69		Total Depth: 13 Feet		
East	-	107940			Depth to Water:	Date:	
	Elevation:	588.44			GW Elevation: NA	Date:	
ILEI.		000.44		1		Date.	WELL DIAGRAM:
DEPTH (ft-bgs)	ANALYTICAL SAMPLE	PID READING	SPLIT SPOON BLOWS PER 6 INCHES	% RECOVERY	SOIL DESCRIPTION	SOIL CLASSIFICATION	Steel Casing Stick-up
- 1		0.1	2 3	100	Gray, Moist, GRAVEL and CLAY, trace SAND		Concrete 0-1'
\vdash			3		Brown and Black, Moist, SILT, SAND, and GRAVEL		
2			4				2" Dia. PVC Rise
		0.1	4	100	1	FILL	
- 3		0.1	4	100			
\vdash			4				
- 4			4				
		0.4		400	4		
		0.1	2	100			Sand Pack 1-13
5			3				
			4		Brown, Wet, silty fine to medium SAND, little CLAY		
6			6		4		
I		0.1	3	100			10 feet of 0.01"
7			4				Slot Size PVC
-			6		Brown and Grey, Wet, CLAY		
8		<u> </u>	8	ļ	4		
_							
9							
_							
10						CL	
11							
12							
13							
_					Bottom of Boring at 13 Feet		
14							
-							
15							
16							
17							
18							
19							
20							
	TED BY: ESW	I		•		I	
	KED BY: GSC					PAGE: 1 of 1	

1					PROJECT:	Former Buffalo Color	E	BORING:	MW-E	04	
2	MA		' ' -	i (🗋	LOCATION:	Buffalo, NY		NELL:	MW-E		
	I TATT				JOB NUMBER:	3410090701		START:			9
					CLIENT:	South Buffalo Development		DATE:	10/28/		
Drille	er:	SJB Dr	illers		Drilling Method:	Hallow Stem Auger				_00	-
	Scientist:	Greg O			Bore Hole Diameter:	6.5 inch					
	eyor:		Boundary		Auger Size:	4 inch					
	ind Elevation:	NA			Sampling Device:	Split Spoon					
	hing:	104440)4.61		Total Depth:	11.5					
East		107959			Depth to Water:		r	Date:			
	Elevation:	554.51			GW Elevation:	NA		Date:			
	tuli011.	001.01				1977	ľ	- 415.	w	ELL	DIAGRAM:
DEPTH (ft-bgs)	ANALYTICAL SAMPLE	PID READING	SPLIT SPOON BLOWS PER 6 INCHES	% RECOVERY		SOIL DESCRIPTION		SOIL CLASSIFICATION		1	Steel Casing Stick-up
		0.1	3	100	Black, Moist, silty SAND and	GRAVEL					Concrete 0-0.5'
- 1			4		,, . , <u>.</u>						
			9					FILL			-
2		1	9 7								2" Dia. PVC Riser
			6	100	1						
3			4	.00	Gray and Brown, Wet, CLAY	trace SAND					-
⊢ ľ			4		City and Drown, Wet, OLAT				╽╽┝		-
- 4		1	4						-		-
			4		4				╽╽┝		Sand Deals O 5 11 7
											Sand Pack 0.5-11.5
5									▎▎┝		-
┣		1							╽╽┝		-
6		1							╽║┠		-
		1							╎│└		10 feet of 0.01"
7		1									Slot Size PVC
		1									-
8		1									-
		1									-
9		1									-
L 1											_
10											-
		1									-
11		1									-
		1									-
12					Bottom of Boring at 11.5 Fee	t					-
13		1									-
		1									-
14											-
		1									-
15											=
13		1									-
- 10		1									-
16		1									-
		1									-
17											-
											-
18		1									-
		1									_
19											_
		1									-
20											
CREA	TED BY: ESW	/									
CHEC	KED BY: GSC						PAGE: 1	1 of 1			

						BODING		05	
1	M A		TT		PROJECT: Former Buffalo Color	BORING:			
					LOCATION: Buffalo, NY	WELL:	MW-E	:05	
	2				JOB NUMBER: 3410090701	START:			
					CLIENT: South Buffalo Development	DATE:	8/26/2	2010)
Drille		SJB Dr	-		Drilling Method: Auger Rotary				
	I Scientist:	Eric We			Bore Hole Diameter: 6.5 inch				
	eyor:	-	a Boundar	у	Auger Size: 4.25 inch				
Grou	Ind Elevation:	584.05			Sampling Device: Split Spoon				
Nort	hing:	104415	9.83		Total Depth: 14 feet				
East	ing:	107903	85.60		Depth to Water: 5.44	Date:	8/26/2	2010)
Ref.	Elevation:	586.65			GW Elevation: 581.21	Date:	8/26/2	2010)
			/S				W	ELL	DIAGRAM:
DEPTH (ft-bgs)	ANALYTICAL SAMPLE	PID READING	SPLIT SPOON BLOWS PER 6 INCHES	% RECOVERY	SOIL DESCRIPTION	SOIL CLASSIFICATION		7	Stick-up Protective Steel Casing
		0	2	40	Black, Purple, Tan, Moist, SAND, SILT, BRICK and COAL pieces				Concrete Collar
- 1		Ĭ	3						0-1'
\vdash		1	3						2" PVC Riser
- 2		1	3						2 FVU KISEF
					4				-
		0	1	0					Bentonite Seal
3			1			FILL			1-3'
			1						-
4			2						_
		1.3	1	50	Brown, Wet, SAND, little Silt				_
5			2						- Sand Pack 3-13'
			4						-
- 6			3		Brown, Wet, stiff CLAY some Sand				-
				00					-
			3	80	Brown and Gray, Moist, very stiff CLAY, trace fine sand			-	0.01" Slotted PVC
7			8					-	Screen 3-13'
_		40.9	7						-
8			7						-
			3	60		CL			-
9		38.9	5						-
			7						
10			9						_
			3	90	1				-
- 11		69.5	2	-					-
\vdash			3		Gray, Wet, soft CLAY, fine Sand Partings		1 📑		-
- 12		11.1	3						-
		- · · · ·	2	100	Becomes very soft	CL			=
- 43		25.0		100	Decomes very solt	0L			-
13		25.2	3						-
- 1		1	3		At 13 feet Fine to medium Gravel Seam				-
14		<u> </u>	2						
		1			Boring Completed at 14 feet BGS				-
15		1							_
		1							-
16									=
		1							-
17		1							-
\vdash		1							-
									-
18									-
									-
19		1							-
		1							-
20									
CREAT	TED BY: SCC								
CHEC	KED BY: ESW	/			PAG	GE: 1 of 1			

1		~			PROJECT: Former Buffalo Color	BORING	: MW-E06
	MA	()	<u>'</u> ` -	() ·	LOCATION: Buffalo, NY	WELL:	MW-E06
	I TATU				JOB NUMBER: 3410090701	START:	0800
					CLIENT: South Buffalo Development	DATE:	8/26/2010
Drille	er:	SJB Dr	rillina		Drilling Method: Auger Rotary		
	Scientist:	Eric W	-				
	eyor:		a Boundar	v	Bore Hole Diameter: 6.5 inch Auger Size: 4.25 inch		
	ind Elevation:	584.39		,	Sampling Device: Split Spoon		
Nort		104410			Total Depth: 14 feet		
East	-	107913			Depth to Water: 6.07	Date:	8/26/2010
	-	586.89					
Rei.	Elevation:	500.09	1	1	GW Elevation: 580.82	Date:	8/26/2010 WELL DIAGRAM:
DEPTH (ft-bgs)	ANALYTICAL SAMPLE	PID READING	SPLIT SPOON BLOWS PER 6 INCHES	% RECOVERY	SOIL DESCRIPTION	SOIL CLASSIFICATION	Stick-up Protective Steel Casing
		0	4	60	Black, Moist, SAND, GRAVEL, and COAL		Concrete Collar
1			4				0-1'
			4		Brown, Moist, SAND, some Gravel, and trace coal		2" PVC Riser
2			9			FILL	
		0	14	60	Black and Brown, Moist, SAND, fine GRAVEL, and COAL pieces	FILL	Bentonite Seal
3			13				1-3'
			6				
- 4			4				
		0	3	50	Brown, Wet, Medium SAND, some Silt		1
5			2			SM	Sand Pack 3-13'
5					Prown Saturated Modium SAND Vary losse		Sand Pack 3-13
		1	3		Brown, Saturated, Medium SAND, Very loose		
6		<u> </u>	3		4	SW	
-		0	4	80			0.01" Slotted PVC
7		1	4				Screen 3-13'
LI		1	5		Brown and Gray, Mottled, CLAY, trace fine sand		
8			9		4		
		0	5	5			
9		1	5				
			6				
10		1	8				
		0	3	90	Gray, Wet, Medium stiff CLAY, trace fine sand partings	CL	
11			3				
		1	4				
- 12			5				
		0	3	100	1		
13			3	100			
			3		Gray, Wet, Very soft CLAY, trace fine sand partings		┤╘┹┺┛
- 14			2		Gray, wer, very son OLAT, nace line same partings	CL	
14		<u> </u>	2	<u> </u>	Paring Completed at 14 fact BCS		+
		1			Boring Completed at 14 feet BGS		
15							
		1					
16		1					
17		1					
		1					
18		1					
		1					
19							
		1					
20							
	TED BY: SCC				۱		L
	KED BY: ESW				D۸	GE: 1 of 1	
UNEU	LODI. LON	1			FA		

	MA		ТЕ		PROJECT: Former Buffalo Color LOCATION: Buffalo, NY	BORING: WELL:	MW-E07 MW-E07
			LL		JOB NUMBER: 3410090701	START:	
					CLIENT: South Buffalo Development	DATE:	8/25/2010
Drille		SJB Dr	-		Drilling Method: Auger Rotary		
-	Scientist:	Eric We			Bore Hole Diameter: 6.5 inch		
	eyor:	-	a Boundar	y	Auger Size: 4.25 inch		
	Ind Elevation:	584.27			Sampling Device: Split Spoon		
	hing:	104405			Total Depth: 16 feet		- / /
East		107930 586.97			Depth to Water: 6.25	Date:	8/25/2010
Ref.	Elevation:	560.97			GW Elevation: 580.72	Date:	8/25/2010 WELL DIAGRAM:
DEPTH (ft-bgs)	ANALYTICAL SAMPLE	PID READING	SPLIT SPOON BLOWS PER 6 INCHES	% RECOVERY	SOIL DESCRIPTION	SOIL CLASSIFICATION	Stick-up Protective
			7	40	Dark Brown, Dry, SAND, SILT, and GRAVEL		Concrete Collar
1			10				0-2'
			12				2" PVC Riser
2		4.4	10			FILL	
		0	5	10	Dark Brown, Moist, SAND and CLAY		Bentonite Seal
3			25				2-4'
			16				
4			4				
_		0	7	10	Light Gray, Some Red, Wet, Very soft, CLAY		
5			1				Sand Pack 4-14'
_			2				
6			1				
_		0	2	0			0.01" Slotted PVC
7			2				Screen 4-14'
-			2				
8			1				
-		0	2	20	Light gray, Wet, Very soft, CLAY		
9			1				
			1				┃┃┣┥┃ -
10			1			CL	│ <mark>│┝┥</mark> │ -
		0	1	0			│ <mark>│</mark> ┝┥│ -
11			1				
12			1				
12		0	2	30	Brownish gray, Wet, Very soft, CLAY trace small gravel		
- 13			1	- 50	Brownish gray, wer, very son, OLAT have shidii glavei		
			1				
- 14			1				
		0	WH	40	1		
15			WH				-
			WH				-
16			1				-
					Boring Completed at 16 feet BGS		
17							-
18							-
							-
19							
							-
20							
	TED BY: SCC						
CHEC	KED BY: ESW	1			F	PAGE: 1 of 1	

11					PROJECT: Former Buffalo Color	BORING:	MW-E08	
	MA	l T	ΤH	Ú D	LOCATION: Buffalo, NY	WELL:	MW-E08	
					JOB NUMBER: 3410090701	START:		
		0 10 0			CLIENT: South Buffalo Development	DATE:	8/25/2010	
Driller		SJB Dri	-		Drilling Method: Auger Rotary Bore Hole Diameter: 6.5 inch			
Survey	Scientist:	Eric We	a Boundary					
-	d Elevation:	583.29	Doundary	ý	Auger Size: 4.25 inch Sampling Device: Split Spoon			
Northi		104391	3.27		Total Depth: 14 feet			
Eastin	-	107984			Depth to Water: 14.85	Date:	8/25/2010	
	evation:	585.89			GW Elevation: 571.04	Date:	8/25/2010	
-bgs)		DING	I BLOWS HES	'ER Y		ATION	WELL DIAGRA	M:
DEPTH (ft-bgs)	ANALYTICAL SAMPLE	PID READING	SPLIT SPOON BLOWS PER 6 INCHES	% RECOVERY	SOIL DESCRIPTION	SOIL CLASSIFICATION	Stick-up Pro	
		0	5	70	Black, Dry, Fine to coarse SAND, Fine GRAVEL, COAL		Concrete	Collar
1			4				0-1	
-			7				2" PVC	Riser
2			5		Some purple	FILL		
-		0	4	60			Bentonite	
3			3 3 2		Orange, Brown, Moist, Coarse SAND		1-3	
_			1	50	Gray, Wet, Medium stiff, Sandy CLAY, trace small gravel			
5			1				Sand Pac	:k 3-13'
			1			CL		
6		36.3	3					
			2	100	Gray, Wet, Fine to medium SAND		0.01" Slotte	ed PVC
7			2				Screen	3-13'
		29.4	2					
8			3			SW		
_			1	90	Dark Gray and Black, Wet, Fine to Coarse SAND, trace wood, oily odor	000		
9		469	1					
-			1					
10			2					
-			1	50	Dark Gray and Black, Wet, CLAY, little fine SAND, trace wood, Strong			
11		189	2		oily odor			
			2					
12		58.3	4		4	CL		
- 4.5			2	70				
13		228	2 3					
14		220	3					
			5		Boring Completed at 14 feet BGS		1	
15								
16								
17								
18								
_								
19								
_								
20 CREATE	D BY: SCC							

1		\mathbf{O}			PROJECT: Former Buffalo Color	BORING	: MW-E	09	
	MA			ù Chin	LOCATION: Buffalo, NY	WELL:	MW-E	09	
					JOB NUMBER: 3410090701	START:	0800		
					CLIENT: South Buffalo Development Drilling Method: Auger Rotary	DATE:	8/25/2	2010	
Drille	er:	SJB Dr	-						
Field	Scientist:	Eric We			Bore Hole Diameter: 6.5 inch				
	eyor:	-	a Boundary	/	Auger Size: 4.25 inch				
	Ind Elevation:	584.38			Sampling Device: Split Spoon				
	hing:	104389			Total Depth: 14 feet				
East	-	107989			Depth to Water: 12.71	Date:	8/25/2		
Ref.	Elevation:	586.98			GW Elevation: 574.27	Date:	8/25/2		
DEPTH (ft-bgs)	ANALYTICAL SAMPLE	PID READING	SPLIT SPOON BLOWS PER 6 INCHES	% RECOVERY	SOIL DESCRIPTION	SOIL CLASSIFICATION		_	DIAGRAM: Stick-up Protective Steel Casing
		0	3	40	Black, Some Tan and Purple, Fine to Coarse SAND, Some fine				Concrete Collar
1			4		Gravel and Coal				0-1'
			5						2" PVC Riser
2		1	5						-
		0	5	60	1	FILL			Bentonite Seal
- 3		1	5						1-3'
- 4			5 6		Brown and Gray, Moist, Sandy CLAY, trace coal				-
		0	3	60	Brown and Gray, Wet, Soft CLAY		1 🗖		-
5		-	4						Sand Pack 3-13'
			1			CL			-
- 6			3						-
Ŭ		0	5	30	Brownish Gray, Very Wet, Fine to medium SAND, trace gravel		┥ 💽	-	0.01" Slotted PVC
- 7		0		30	Brownish Gray, very wei, Fine to medium SAND, trace graver				-
- '			7				╎┃┣	-	Screen 3-13
-			5				╵╹┣	-	-
8			6		4	SW	╎│┣	-	-
-		0	2	80	Dark Gray, Very Wet, SAND, some Silt, oil-like odor		╎│┣	-	-
9			2				╎│┣	-	-
-			1				╵╹┣	4	-
10			2				╡┃┣		-
_		0	1	80	Dark Gray, Some Black, Saturated, Medium stiff Sandy CLAY, trace woo	0			-
11		1	1		pieces, Oily odor		📙		-
L			1						
12			2		4	CL			-
L		0	2	90	Dark Gray, Wet, Medium stiff CLAY, Little SAND, some wood pieces				-
13		1	3						
			3						-
14			3						
					Boring Completed at 14 feet BGS		1		
15		1					1		-
									-
16		1					1		-
									-
17									-
							1		=
18		1					1		-
		1					1		-
19		1					1		-
		1					1		-
20		1					1		-
	TED BY: SCC	1	1						
	KED BY: ESW				PAGE	: 1 of 1			
					1702				

1					PROJECT:	Former Buffalo Color	BORING	MW-E1	0
2	MA	M ()	╵┃╵┣┥	ù 🗌	LOCATION:	Buffalo, NY	WELL:	MW-E1	0
					JOB NUMBER:	3410090701	START:	1400	
					CLIENT:	South Buffalo Development	DATE:	8/24/20	10
Drille	er:	SJB Dr	illing		Drilling Method:	Auger Rotary			
Field	Scientist:	Eric We	eiler		Bore Hole Diameter:	6.5 inch			
Surv	eyor:	Niagara	a Boundary	y	Auger Size:	4.25 inch			
Grou	and Elevation:	583.16			Sampling Device:	Split Spoon			
Nort	hing:	104388	33.86		Total Depth:	20 feet			
East	ing:	107994	15.37		Depth to Water:	10.20	Date:	8/25/20	10
Ref.	Elevation:	585.76			GW Elevation:	575.56	Date:	8/25/20	10
DEPTH (ft-bgs)	ANALYTICAL SAMPLE	PID READING	SPLIT SPOON BLOWS PER 6 INCHES	% RECOVERY		SOIL DESCRIPTION	SOIL CLASSIFICATION	WE	LL DIAGRAM:
DEPTI							_		Stick-up Protective Steel Casing
1 2		0	4 4 6 6	70	COAL	t, Fine to coarse SAND, Fine GRAVEL, some			Concrete Collar 0-1' 2" PVC Riser
3		0	5 8 8 9	60	Black and Tan, Moist, Coa	arse SAND, trace fine gravel and coal	FILL		Bentonite Seal
5		0	5 9 5 6	90	Brown, Wet, Medium to fir	ne SAND, trace clay	SW		Sand Pack 3-13.5
- 7		0	5 8 8 3	80	Brown, Wet, Medium stiff	Sandy CLAY, trace wood	CL		0.01" Slotted PVC Screen 3.5-13.5'
9		0	2 2 2 4	30	Brown, Wet, Medium SAN	ID, Some SILT, oily odor	SM		
11		0	1 1 1 2	60	Brownish Gray, Wet, Sand	dy CLAY, trace wood			
- 13 - 14		0	2 3 3 3 2	80	Gray, Wet, CLAY, SAND,	trace small pieces of wood	CL		
15		0	1 1 1	80	Gray, Wet, SAND, trace s	mall pieces of wood, Some Silt			
16 17		0	1 1 2 1	60	-		SM		
18 19		0	2 1 1	80					
	TED BY: SCC		1 1		Boring Completed at 20 fe				
CHEC	KED BY: ESW	1				PAC	SE: 1 of 1		

MONIT		V	The second		-	1	Soil Investigations and Monitoring Well Installations 1091 Jamison Road • Elma, NY 14059 • (716) 655-1717
HOLEN					-		SURF. ELV
PROJEC	ТĿ	lyd	col	ogy	, i	nve	stigation LOCATION Near Elk Street and NE corner of
8K89	Ī	ee	St	ree	et,	Sc	outh Buffalo, NY property
CLIENT							CORPORATION DATE STARTED <u>11/24/89</u> COMPLETED <u>11/24/89</u> GATIONS LTD.
DEPTH	DLE			MPL	ER		DESCRIPTION & CLASSIFICATION WELL WATER TABLE & REMARKS
FEET	SAMPLE NO.		6/12	12/18	18/24	N	
	1	1	3			6	Extremely moist black gravelly (SAND- SILT-CLAY) fill with 15 to 25% gravel (1) Loamy soil fill v little gravel to
				3	3	-	and slag fragments, little fine to $ \mu $ feet over clayey
	2	3		310			(ML) 1.0 4 diversion feet over assorted
		No.	4	3		7	
	3	Λ	- Ke		5		CLAY) fill, some silt, firm, (CL)1.5 Wet black cinders and slag, loose2.2 Extremely moist to wet distinctly mottled brown (SILTY-SAND) tending towards (SANDY SILT) were fine and towards (SANDY SILT) were fine and towards (SANDY SILT)
5	2	4	7			14	mottled brown (SILTY-SAND) tending
				7	10		(cowards (SANDI-SILI) very line and Or Lake sedment to
					10		\ loose, soil material tends to liquify (1) Compath bentanite and
							(1) Cement bentonite gro (ML) 3.5 (2) Bentonite seal.
		1.0					Extremely moist distinctly mottled
							brown (CLAYEY-SILT), stiff with nearly vertical gray desiccation cracks,
10		-					(CL) 6.0
			5				Boring completed at 6.0 feet. No water at completion.
			_				OVM Readings
					1		Sample Depth ppm
							$\begin{array}{cccccccccccccccccccccccccccccccccccc$
. H.S							3 4.0 - 6.0 0
1.5							3. 그 가슴 가슴 바람이 있는 것은 것을 가장하는 것이 가슴을 가장하는 것이다. 가슴 가슴 가슴 가슴 가슴 가슴 가슴 가슴 가슴 가슴 가슴 가슴 가슴
15			-				
		-			-		
	-				8	-	
2							
		1		1.0			

	Y	1	Z	1	-	1	/	Soil Investigations and Monitoring Well Install 1091 Jamison Road • Elma, NY 14059 • (7			717				
MONI'					5			SURF.						S -= T - +	
					y i	nve	estigatio				r of	build	ling 3	16	
8K89		611					outh Buff			02110		~~~~			
CLIENT	В	UFI	FAL	0 0	COL	OR	CORPORAT	ION DATE STARTED12/2	4/8	9	COMPI	ETED	1/24/	89	
		AR.		TIAN		ric	GATIONS L	ID.			Sole with				
DEPTH FEET	SAMPL NO.	0 /	SA	MPL	ER			DESCRIPTION & CLASSIFICATION	W	ELL	w	ATER TAE	BLE & REM	IARKS	
	5	5	6/12	18	124	N	Fyt	remely moist to 2.0 feet, wet be-	-68	1		G .] .			
	1	5	5		0010	8	low	y, grayish brown gravelly (SAND) 1 with 15 to 25% fine size crushed gular gravel, medium and coarse te sand, loose to 2.0 feet, very ose below, (SW) 4.0	2	3/11				vel wit to 4.0	
			1	3	-	0	fil	1 with 15 to 25% fine size crushed	122	11,1				assorte	
	2	4		2. 20	5		ang	Jular gravel, medium and coarse	D	1	2.0			5 feet	
	4	T	2			2	100	bse below. (SW) 4.((2)	3.0			sorted ted sar	
			2	1		3	Wet	dark gray slag and cinders,	1					e silt	
	3	2			1		loc	se 4.5 : distinctly mottled brown (SILTY-	NC					t over	
5	5	4	2			5	SAN	D), very fine and fine size sand,	-1	sand				e sedin boring.	
				3		5	l lit		p					bentor	
	4	4			7			tends to flow when disturbed, nly bedded, (SM) 5.5	otted	size			grout.	Dentor	111
	-	-	9			17		remely moist distinctly mottled	slo	#2 8				ite sea	al.
				8		10	bro	wn (CLAYEY-SILT), very stiff with	0	Par					
	-			EN	15			rly vertical gray desiccation cks, (CL) 8.0	₩.		8.0		en ven		
						E.O			1						
10	1	1.2					Bor	ring completed at 8.0 feet.					at 7.5	and the second second second second second second second second second second second second second second second	
10							189.01%				ow g. plet:	ce at			
							1			Com					
			7							Sam			dings pth		
				6			1			#		LC.	pu	pp	лп
	-		-		_				1	1			- 2.0	0	
										2 3			- 4.0	0	
20302										4			- 8.0	0	
15				100 E											
			-		-										
	-		-		-		-								
8-		1					100.3								
		1000	-						1						
	-														

1 .

MONIT HOLE N PROJEC	POR		V	A	-	/	Soil Investigations and Monitoring Well Installations
PROJEC							1091 Jamison Road • Elma, NY 14059 • (716) 655-1717
							SURF. ELV.
01100	TI	yar	orc	ogy	in	vesti	gation LOCATION Southwest of building 320
8689	L	ee	Str	reet	L ø	South	Buffalo, NY
CLIENT							PORATION DATE STARTED <u>11/27/89</u> COMPLETED <u>11/27/89</u> ONS LTD.
	ha	10	BLC	ws	ON		
DEPTH FEET	SAMPLE NO.	0/	6	12	18/	N	DESCRIPTION & CLASSIFICATION WELL WATER TABLE & REMARKS
	1	4		18	724		Extremely moist black cinders, ash,
			13	20		33	slag, possibly foundary sand, dense [1] [1] feet over silty lake
				-	15		in place, loose when disturbed 2.0 ve sediment to 4.0 fee Extremely moist distinctly mottled 2.0 ver clayey lake
	2	5	5				brown (CLAYEY-SILT), stiff with $\left = \frac{\omega_{1/2}}{2} \right _{2}$ sediment to end of
			5	7		12	nearly vertical gray desiccation cracks, (ML-CL) (1) Cement-bentonite
	3	4			8		
5		-	6			14	<pre>cracks, (ML-CL)</pre>
	-	-		8	9		vertical gray desiccation cracks, $\begin{bmatrix} 0^{12} \\ 6 \\ 0 \end{bmatrix}$
							$(CL) \qquad 6.0 \neq 6.0 \qquad 6.0$
	-						Boring completed at 6.0 feet. No water at completion.
1	-			-	_		
							OVM Readings Sample Depth ppm
10							1 0.0 - 2.0 0
10			-		-		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
							5 4.0 - 0.0 0
	-						
s lange		-			-		
15	-						
		-			_		
		-				277	
				-		25	
				_			
		-	+				
	-	1	1				

N = NUMBER OF BLOWS TO DRIVE _____ " SPOON _____ WITH _____ 140 Ib. WT. FALLING _____ O_ " PER BLOW.

mn LOGGED BY Donald W. Owens/Soil Scientist

SHEET _____ OF _____

	7	X	N	1	_	1	Soil Investigations and Monitoring Well Installe						
MONIT							1091 Jamison Road • Elma, NY 14059 • (7		5-17	17			
HOLE N							SURF.			20	The second second second second second second second second second second second second second second second s		
							Estigation LOCATION East tank	par	<u>K</u> #	30			
8K89	-						COPPORATION	/00			11/27/00		
CLIENT							CORPORATION DATE STARTED 11/27 GATIONS LTD.	/89	ain i	COMPLET	ED 11/2//89		
DEPTH	PLE.			WS				WE	LL				
FEET	SAMPLE NO.	0/6	6/12	12/18	18/	N	DESCRIPTION & CLASSIFICATION			WAT	WATER TABLE & REMARKS		
	1	7	11				Extremely moist to 0.9 feet wet be-	Ð			Select stone back		
			11	9		20	low, gray crushed angular cobbles and gravel, loose when disturbed	PVC	(1)		fill to 2.0 feet over clayey soil		
	2	4			6		2.0			2.0	fill to 4.5 feet		
	-	-	5		++	10	Extremely moist dark gray (CLAYEY- SILT) fill, stiff, massive soil		(2)	3.0	over clayey lake sediment to end		
		No.		5	12		structure, (CL) 4.5 Moist to extremely moist distinctly	1" PVC			of boring.		
	3	4	5			100	mottled brown (CLAYEY-SILT), very		sand		(1) Cement-benton-		
			5	9		14	stiff, thinly laminated with nearly vertical gray desiccation cracks,	ed	e s		ite grout. (2) Bentonite sea		
	4	5			11		(CL) 8.0	ott	size				
		Ľ	7			16	Boring completed at 8.0 feet.	L0 slotted Screen	#2				
				9	13			#10		8.0			
										HEARING HALL BEST	evel at 7.9 feet round surface at		
10	-	100								mplet			
											OVM Readings		
		-							Sa	mple 1	Depth ppm 0.0 - 2.0 0		
		-								2	2.0 - 4.0 0		
										3 4	4.0 - 6.0 0 6.0 - 8.0 0		
	-		-		-								
15													
	-												
						-							
	-												
	-		-										
	-	-	-		-								

mn LOGGED BY Donald W. Owens/Soil Scientist

SHEET _____ 0F _____

MONITORING WE	LL/PIEZOMETER CO	INSTRUCTION DIAGRAM	ante en altraste Constante autoritatione
Project: Interim Corrective Measure AOC Project No. <u>P05-084</u> Boring No Date Insta Field Technician: Brian Benson Latitude:		Driller Drilling Method Development Method Longitude:	SJB Services CFA/Split Spoon Sanmpling Surge/Bail/Pump
Checked By:			
Measuring Point			
Elévation	Stick-up of Cas	ing Above Round Surface:	**2.1'
Ground Elevation	Type of Surface	e Seal/Other Protection:	Portland Cement
Elevation (Type of Surface	e Casing:	Steel
	ID of Surface C	asing _	4" Square
	Diameter of Bo	rehole:	4 1/4" ID
	Riser Pipe ID:	-	2"
	Type of Riser P	ipe:	PVC
	Type of Backfill	£	Portland Cement
	Depth of Top of	Seal:	6.9'
	Type of Seal:	-	Bentonite
	Depth of Top of	Sand	9.9'
	Depth of Top of	Screen:	11.9'
	Type of Screen	i	Johnson Well Screen
	Slot Size x Len	gth:	0.01" x 10'
	ID of Screen:	-	2"
	Type of Sandpa	ack:	Filepro No. 1
	Depth from Bot	tom of Screen	21.9'
	Depth of Sedim	ent Sump with Plug:	21.9'
	Depth of Botton	n of Borehole:	22.4'
* Geo-Con project number ** Top of casing measurement made with the lid open. *** Top of riser pipe to top of casing is 0.2'			ONSTRUCTION DIAGRAM BUFFALO COLOR SITE BUFFALO, NEW YORK MACTEC.INC.

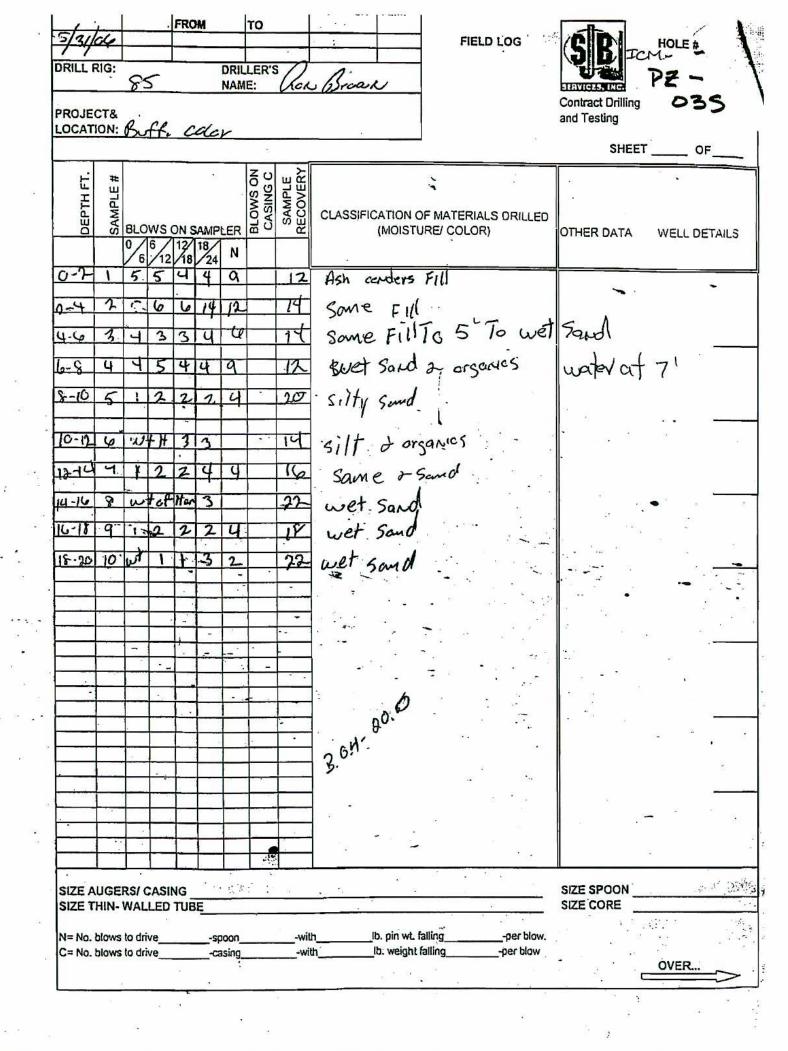
5/3/166		•	FRO	M		TO			IEMP					
DRILL RIG:	8	<				LER	3			FIELD LOG		(5) B	HOLE #2	PZ-0
ROJECT&				1	NAM		10					Contract Drilling and Testing		
OCATION.		ut.	ta	0	(2/	er 1	/6	eo Con]		SHEET	OF	
DEPTH FT.	BLC)WS	ON S	SAMP	LER	BLOWS ON CASING C	SAMPLE RECOVERY	CLASSIFIC		OF MATERIALS DRII JRE/ COLOR)		OTHER DATA	WELL DE	TAUS
	0/6	6/	12/	18/24	N				•			officit DATA	WELL DE	TAILO
)-2]	8	6	4	4	10		12	FI∥						
2-4/2	7	4	5	ĥ	11		18	FIL	(
4-63	5	10	6	5	22		10	wet so	and +	ccar				<u> </u>
08 4	3	2	3	3	5		0	NC REC	•					
7-10 5	WI	2	3	2	5		18	Sillyc	ccar.					
10-12 6	w	t.	2	2	3		201	silt 5. Save	and					
2-14 7	2	3	3	2	6		19.	Sarel	cre	ganics				
14.16 8	liut	I.	T	I	2		22	Some		a ⁶			8	
6-18 9	ivt	2	2	3	4		21	Some	æ	•		20		
15-20 10	4	2	2	2	Ц		16	Soud			<u>17</u>			
					-					а •				8
								2 5	ĩ			21	14 11.	
	1							1. 0	N.	*				
								ျက်ပ	, y,					
									90	×				
														<u></u>
												14		
	-					-				4)				- 25 - 5
		-	-							8. 8	141			
												SIZE SDOON		6
SIZE AUGE				Ę								SIZE SPOON		
N= No. blows C= No. blows					oon sing_		will wit), pin wt. fi b. weight f				22	
					55				e 1	9 40	1	· _	OVER	5

25 26

2 SURFACE CONDITIONS: THICKNESS: ASPHALT/ CONCRETE TOPSOIL ASPHALT_ CONCRETE GRAVEL COUNCRETE GRAVEL COUNCRETE GRAVEL COUNCED STONE OTHER DIAMETER OF CORE CORE DIAGRAM 3 GROUNDWATER READINGS: TIME/DATE CASING AT DEPTH BELOW (GS) GW WHEN FIRST ENCOUNTERED GW UPON COMPLETION OF SAMPLING GW AFTER CORING GW AFTER AUGE? CASING OUT OF GROUND WAS AN OBSERVATION / MONITORING WELL INSTALLED: TIME/DATE DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND AT <u>STICK</u> CONSIDERING THE INFORMATION ON THIS LOG IS VERY IMPORTANT, I CERTIFY THIS INFORMATION IS TRUE TO THE BEST OF MY ABILITY AND KNOWLEGE. SIGNATURE: MACH		WAS BORING OFFSET FROM T IF YES, HOW FAR ELEVATION DIFFERENCE WHY	HE STAKE WHAT	BORING L		S:	YES	_NO	
GROUNDWATER READINGS: TIME/DATE CASING AT DEPTH GW WHEN FIRST ENCOUNTERED	2	SURFACE CONDITIONS:	TOPSOIL ASPHALT CONCRE GRAVEL CRUSHE		-		ASPHAL	T/ CONCRE	ETE
TIME/DATE CASING AT DEPTH BELOW (GS) GW WHEN FIRST ENCOUNTERED GW UPON COMPLETION OF SAMPLING			3	DIAMETE	R OF COF	RE	CORE D	IAGRAM	
GW UPON COMPLETION OF SAMPLING GW AFTER CORING GW AFTER CORING GW AFTER AUGEP: CASING OUT OF GROUND WAS AN OBSERVATION/ MONITORING WELL INSTALLED: YES NO DRAW WELL DETAIL TO SCALE SHOWING ALL DEPTHS AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND GUARD PIPE WELL DETAILS GROUNDWATER READINGS IN WELL: TIME/DATE DEPTH (BELOW G.S.) QUANTITIES/ COMMENTS TOP OF SEAL AT FILTER SAND SLOT SIZE MO SLOT SIZE CONSIDERING THE INFORMATION ON THIS LOG IS VERY IMPORTANT, I CERTIFY THIS INFORMATION IS TRUE TO THE BEST OF MY ABILITY AND KNOWLEGE.	3	GROUNDWATER READINGS:		TIME/DA1	rs	CASING	GAT		(GS)
DRAW WELL DETAIL TO SCALE SHOWING ALL DEPTHS AND DIMENSIONS FOR DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND GUARD PIPE WELL DETAILS GROUNDWATER READINGS IN WELL: TIME/DATE DEPTH (BELOW G.S.) QUANTITIES/ COMMENTS UNTHING QUANTITIES/ COMMENTS		GW UPON COMPLETION OF S GW AFTER CORING GW AFTER AUGER: CASING			- - -				-
DIFFERENT MATERIALS USED AND HEIGHT OF STICK- UP AND GUARD PIPE WELL DETAILS GROUNDWATER READINGS IN WELL: TIME/DATE DEPTH (BELOW G.S.) QUANTITIES/ COMMENTS QUANTITIES/ COMMENTS TOP OF SEAL AT <u>S</u> FT TOP OF SEAL AT <u>S</u> FT TOP OF SCREEN AT <u>0</u> FT TOP OF SCREEN AT <u>0</u> FT FILTER SAND SLOT SIZE <u>6</u> DIAMETER <u>2</u> BOTTOM OF SCREEN <u>20</u> BOTTOM OF SAND AT <u>205</u> FT CONSIDERING THE INFORMATION ON THIS LOG IS VERY IMPORTANT, I CERTIFY THIS INFORMATION IS TRUE TO THE BEST OF MY ABILITY AND KNOWLEGE.		WAS AN OBSERVATION/ MON	ITORING V	VELL INSTA	ALLED:	X_YE	S	_NO	
GROUNDWATER READINGS IN WELL: CURB BOX_PRO CASING X TIME/DATE DEPTH (BELOW G.S.) PRO CASING X QUANTITIES/ COMMENTS TOP OF SEAL AT FT TOP OF SAND AT FT TOP OF SCREEN AT FT							D PIPE	ETAILS	98
TIME/DATE DEPTH (BELOW G.S.) PRO CASING X NOTHING FICTOR QUANTITIES/ COMMENTS TOP OF SEAL AT S TOP OF SAND AT FT TOP OF SAND AT FT TOP OF SCREEN AT OF SLOT SIZE FICTER SAND FILTER SAND SLOT SIZE O DIAMETER 2 BOTTOM OF SCREEN DO BOTTOM OF SAND AT DSFT BOTTOM OF SAND AT DSFT BOTTOM OF SAND AT DSFT CONSIDERING THE INFORMATION ON THIS LOG IS VERY IMPORTANT, I CERTIFY THIS INFORMATION IS TRUE TO THE BEST OF MY ABILITY AND KNOWLEGE.	3	GROUNDWATER READINGS II	N WELL:		CURB B	ox	<u> </u>		- n
TOP OF SAND AT 8 FT TOP OF SCREEN AT 0 FT FILTER SAND SLOT SIZE 10 DIAMETER 2 BOTTOM OF SCREEN 20 BOTTOM OF SAND AT 25FT CONSIDERING THE INFORMATION ON THIS LOG IS VERY IMPORTANT, I CERTIFY THIS INFORMATION IS TRUE TO THE BEST OF MY ABILITY AND KNOWLEGE.			G.S.)		PRO CA	SING X	=/	Mar C	
TOP OF SAND AT 8 FT TOP OF SCREEN AT 0 FT FILTER SAND SLOT SIZE 10 DIAMETER 2 BOTTOM OF SCREEN 20 BOTTOM OF SAND AT 25FT CONSIDERING THE INFORMATION ON THIS LOG IS VERY IMPORTANT, I CERTIFY THIS INFORMATION IS TRUE TO THE BEST OF MY ABILITY AND KNOWLEGE.		 	-	•		е. "А	11		2771:339:455-7:1
CONSIDERING THE INFORMATION ON THIS LOG IS VERY IMPORTANT, I CERTIFY THIS INFORMATION IS TRUE TO THE BEST OF MY ABILITY AND KNOWLEGE.	- 	QUANTITIES/ COMMENTS			TOP OF	SAND AT	8 FT		
CONSIDERING THE INFORMATION ON THIS LOG IS VERY IMPORTANT, I CERTIFY THIS INFORMATION IS TRUE TO THE BEST OF MY ABILITY AND KNOWLEGE.					DIAMET	IZE <u>10</u> ER 2	<u> </u>		
INFORMATION IS TRUE TO THE BEST OF MY ABILITY AND KNOWLEGE.					1				
	3	INFORMATION IS TRUE TO TH	HE BEST C	OF MY ABILI	TY AND K	NOWLEG	E.		

k. ..

.


MONITORIN	IG WELL/PI	EZOMETER CO	NSTRUCTION DIAGRAM	2019년 1월 2019년 1월 2019년 1월 2019년 1월 2019년 1월 2019년 1월 2019년 1월 2019년 1월 2019년 1월 2019년 1월 2019년 1월 2019년 1월 20 1월 2019년 1월 br>1월 2019년 1월 2
	DC pring No. ate Installed	Area E ICM-PZ-02N 6/1/2006	Driller Drilling Method Development Method	SJB Services CFA/Split Spoon Sampling Surge/Bail/Pump
Field Technician: Brian Benson Lat	titude:		_Longitude:	
Checked By:				
Measuring Point		Stick-up of Casi	ing Above Round Surface:	**2.3'
Ground	#3	Type of Surface	Seal/Other Protection:	Portland Cement
Elevation	~~~.	Type of Surface	Casing:	Steel
		ID of Surface C	asing	4" Square
		Diameter of Bor	ehole:	4 1/4" ID
		Riser Pipe ID:		2"
		Type of Riser P	ipe:	PVC
		Type of Backfill:		Portland Cement
		Depth of Top of	Seal:	4.1'
		Type of Seal:		Bentonite
		Depth of Top of	Sand	6.1'
		Depth of Top of	Screen:	7.1'
		Type of Screen:	:	Johnson Well Screen
		Slot Size x Leng	gth:	0.01" x 10'
		ID of Screen:		2"
		Type of Sandpa	ick:	Filepro No. 1
		Depth from Bott	om of Screen	17.1'
		Depth of Sedim	ent Sump with Plug:	17.1'
		Depth of Bottom	n of Borehole:	17.6'
* Geo-Con project number ** Top of casing measurement made with the lid o *** Top of riser pipe to top of casing is 0.2'	open.		MONITORING WELL CO	NSTRUCTION DIAGRAM BUFFALO COLOR SITE BUFFALO, NEW YORK MACTEC.INC.

DRILL RIG: PROJECT& OCATION:	85					то		~			FIELD L	.OG	In INI	HOL	.E #
ROJECT&	85	_	-	_									SHALL H		
ROJECT&		ñ			DRIL NAM	LER'S E:	Ron	Brown	, ,				STRUIGES ING	7cm	-720
	30 A		, <u>c</u>	0		/					`	•	Contract Drilli and Testing		
	1.60					ZO	×						<u>اسې</u>		_ OF
DEPTH FT, SAMPLE #	BLOV	WS C	DN S		ER	BLOWS O CASING (SAMPLE RECOVERY	CLASSIFIC			TERIALS (COLOR)	DRILLED	OTHER DATA	A WEL	
	6	/12	12/18	24	N	A.									
-2 1	16	514	-	-			9	Black So	nos a	ash C	ا دەلىرى	k: n			
· ki 2			8	0			14	ash Bra	is Fi	d		10 1100 - 120	6		
					_		11	Osh Brief	;N, -	San	ds: A	reative			
			3	2			16	Price	r						
-84	3	3	3	3				Sands 371						1.175 M.S.	
-05	NH	2	3	3		-	84	SANDO 5:	11 .	-11-			-		-
-12 6	, set	-H	In	3			क्षेत्र	moist sh		•			3.		4 C.
2-14 7	2	3	4	4		-	24	Jardos Sil	r trav	1 001	9 _0 53	1			
1-16 8					8	•				14					<u>+</u>
. 18 9	-	-			3			26		2 2				÷	a1) • -
-20 10	_	_	-							t S ^R a	a	2		10 M (1	t
		_		_							*e .			8	
	5								ŝ		t. į	÷*	4	10 10	
	a 							-				- 1	2) E.	22	
				-									(a) (
		_		_	-					19	•				
·			1	_			÷			(N			
								B.O.H	-15				÷.	6	
			+	-				B-0.			¢.				•
		_	_												
								14							
							-	N ^{AL}				1	8		
IZE AUGER				l									SIZE SPOON SIZE CORE		***
		3 4 -	000	÷)						e	•		OILL OUNL		
= No. blows t = No. blows t				spo cas	10 m 1		witt wit		b. pin wt b. weigh			per blow. Der blow	1. 1.	ŌVE	
			9	8								-			<u></u> >

	1	WAS BORING OFFSET FROM THE STAKE IF YES, HOW FARWHAT ELEVATION DIFFERENCE WHY	onconon		: `	YES	NO ICM	-PZ-02N
2	2	SURFACE CONDITIONS: THICKNE TOPSOIL ASPHALT CONCRE GRAVEL CRUSHEI OTHER			-	ASPHALT	CONCRETE	
			DIAMETER	R OF CORE		CORE DIA	GRAM	
	3	GROUNDWATER READINGS:	TIME/DAT	5	CASING AT	ſ	DEPTH BELOW (GS)
		GW WHEN FIRST ENCOUNTERED GW UPON COMPLETION OF SAMPLING GW AFTER CORING GW AFTER AUGER: CASING OUT OF GROUND						
		WAS AN OBSERVATION/ MONITORING W	ELL INSTAI	LLED:	YES _		Ю	
1	공 문 문	DRAW WELL DETAIL TO SCALE SHOWIN DIFFERENT MATERIALS USED AND HEIC			D GUARD P		TAILS	
×		GROUNDWATER READINGS IN WELL:		CURE BO	x		╤_→ ∏	
83 8	 	TIME/DATE DEPTH (BELOW G.S.)	# # 11	PRO CAS NOTHING		1		
20			4 ⁴¹ 20			40 17	Merkey lu	
20 24 1)		QUANTITIES/ COMMENTS		TOP OF S	SEAL AT 2 SAND AT 4 SCREEN AT			
				SLOT SIZ		ND		· .
150 ¹⁶	2				OF SCREEN	V15		Ξ
·	Ť		. .	BOTTOM	OF SAND A	T 15 FT-	²²	<u> </u>
	d ⁴	CONSIDERING THE INFORMATION ON T INFORMATION IS TRUE TO THE BEST O	HIS LOG IS	VERY IMP Y AND KN	ORTANT, I C OWLEGE.	CERTIFY	HIS	
			M					
			ал ай	j.	*			55
		it of Ki						

MONITORING	WELL/P	EZOMETER C	ONSTRUCTION DIAGRAM	he dame in a land a second second
	ig No. Installed	Area E ICM-PZ-03S 6/1/2006	Driller Drilling Method Development Method Longitude:	SJB Services CFA/Split Spoon Sampling Surge/Bail/Pump
Checked By:				
Measuring Point	11	Stick-up of Ca	sing Above Round Surface:	**2.2'
Ground	14 使	Type of Surfac	ce Seal/Other Protection:	Portland Cement
Elevation	~~~	Type of Surfa	ce Casing:	Steel
		ID of Surface	Casing	4" Square
		Diameter of B	orehole:	4 1/4" ID
		Riser Pipe ID:		2"
		Type of Riser	Pipe:	PVC
		Type of Backf	ill:	Portland Cement
		Depth of Top	of Seal:	6.9'
		Type of Seal:		Bentonite
		Depth of Top	of Sand	9.9'
		Depth of Top	of Screen:	11.9'
		Type of Scree	n:	Johnson Well Screen
		Slot Size x Le	ngth:	0.01" x 10'
		ID of Screen:		2"
		Type of Sand	pack:	Filepro No. 1
		Depth from Bo	ottom of Screen	21.9'
		Depth of Sedi	ment Sump with Plug:	21.9'
		Depth of Botto	om of Borehole:	22.5'
* Geo-Con project number ** Top of casing measurement made with the lid ope *** Top of riser pipe to top of casing is 0.2'	en.		MONITORING WELL CO	DNSTRUCTION DIAGRAM BUFFALO COLOR SITE BUFFALO, NEW YORK MACTEC.INC.

. •0

WHY	FFERENCE					
SURFACE CON	DITIONS.	THICKNE	SS [.]		ASPHALT/ (
		TOPSOIL				DONORETE
		ASPHALT				
		CONCRE	TE			
		GRAVEL				
1.14			D STONE			
		OTHER _				
	23	¥1				
			DIAMETER OF	CORE		
	8	4			CORE DIAG	RAM
		je.				
GROUNDWAT	ER READINGS	: .	TIME/DATE	CACING A	÷ ,	2021
			TIME/DATE	CASING A		DEPTH BELOW (GS)
0	14	· ·	×	ti ing	3) ²⁰	1) 1)
GW WHEN FIR GW UPON COI			8.	<i>t:</i>	- ³	
GW AFTER CO		SAMPLING	3 			
GW AFTER AU		30			-	
OUT OF GROU		8	(<u>*</u>			
82		÷.,	9 R ¹⁴	-		
WAS AN OBSE	RVATION/ MO	NITORING W	ELL INSTALLED:	YES	N	0
			IG ALL DEPTHS A SHT OF STICK- U			AILS
	ATERIALS USI ER READINGS DEPTH	ED AND HEIC	SHT OF STICK- U CUR PRO		PIPE	
DIFFERENT M	ATERIALS USI ER READINGS DEPTH	ED AND HEIC	SHT OF STICK- U CUR PRO	P AND GUARD F B BOX CASING_/	PIPE	
DIFFERENT M	ATERIALS USI ER READINGS DEPTH	ED AND HEIC	SHT OF STICK- U CUR PRO	P AND GUARD F B BOX CASING_/	PIPE	
DIFFERENT M. GROUNDWAT TIME/DATE	ATERIALS USI ER READINGS DEPTH (BELOV	ED AND HEIC	SHT OF STICK- U CUR PRO NOT	P AND GUARD F B BOX CASING_/ HING/		
DIFFERENT M	ATERIALS USI ER READINGS DEPTH (BELOV	ED AND HEIC	SHT OF STICK- U CUR PRO NOT	P AND GUARD F B BOX CASING / HING/ OF SEAL AT		
DIFFERENT M. GROUNDWAT TIME/DATE	ATERIALS USI ER READINGS DEPTH (BELOV	ED AND HEIC	SHT OF STICK- U CUR PRO NOT TOP TOP	P AND GUARD F B BOX CASING_/ HING/		
DIFFERENT M	ATERIALS USI ER READINGS DEPTH (BELOV	ED AND HEIC	SHT OF STICK- U CUR PRO NOT TOP TOP	P AND GUARD F B BOX CASING / HING OF SEAL AT OF SAND AT		
DIFFERENT M	ATERIALS USI ER READINGS DEPTH (BELOV	ED AND HEIC	SHT OF STICK- U CUR PRO NOT TOP TOP	P AND GUARD F E BOX CASING / HING OF SEAL AT OF SAND AT OF SCREEN AT		
DIFFERENT M. GROUNDWAT TIME/DATE	ATERIALS USI ER READINGS DEPTH (BELOV	ED AND HEIC	SHT OF STICK- U CUR PRO NOT TOP TOP	P AND GUARD F B BOX CASING / HING OF SEAL AT OF SAND AT OF SCREEN AT FILTER S/		
DIFFERENT M	ATERIALS USI ER READINGS DEPTH (BELOV	ED AND HEIC	SHT OF STICK- U CUR PRO NOT TOP TOP TOP	P AND GUARD F B BOX CASING / HING/ OF SEAL AT OF SAND AT OF SCREEN AT FILTER S/ T SIZE/O		
DIFFERENT M	ATERIALS USI ER READINGS DEPTH (BELOV	ED AND HEIC	SHT OF STICK- U CUR PRO NOT TOP TOP TOP SLO DIAM	P AND GUARD F B BOX CASING / HING OF SEAL AT OF SAND AT OF SCREEN AT FILTER S/ T SIZE /0 AETER 2"		
DIFFERENT M. GROUNDWAT TIME/DATE	ATERIALS USI ER READINGS DEPTH (BELOV	ED AND HEIC	SHT OF STICK- U CUR PRO NOT TOP TOP TOP SLO DIAM	P AND GUARD F B BOX CASING / HING/ OF SEAL AT OF SAND AT OF SCREEN AT FILTER S/ T SIZE/O		
DIFFERENT M	ATERIALS USI ER READINGS DEPTH (BELOV	ED AND HEIC	SHT OF STICK- U CUR PRO NOT TOP TOP - SLO DIAM BOT	P AND GUARD F B BOX CASING / HING OF SEAL AT OF SAND AT OF SCREEN AT FILTER S/ T SIZE /0 AETER 2"		
DIFFERENT M. GROUNDWATI TIME/DATE	ATERIALS USI ER READINGS DEPTH (BELOV	ED AND HEIC	SHT OF STICK-U CUR PRO NOT TOP TOP TOP TOP SLO DIAM BOT	P AND GUARD F B BOX CASING / HING OF SEAL AT _ OF SAND AT _ OF SCREEN AT FILTER S/ T SIZE _ /O AETER _ 2 " TOM OF SAND A		
DIFFERENT M. GROUNDWATH TIME/DATE QUANTITIES/ (CONSIDERING	ATERIALS USI ER READINGS DEPTH (BELOV COMMENTS	ED AND HEIC IN WELL: V G.S.)	SHT OF STICK- U CUR PRO NOT TOP TOP TOP TOP TOP TOP TOP TOP TOP T	P AND GUARD F B BOX CASING / HING OF SEAL AT OF SAND AT OF SCREEN AT FILTER S/ TOM OF SCREE TOM OF SAND A (IMPORTANT, 1)		
DIFFERENT M. GROUNDWATH TIME/DATE QUANTITIES/ (CONSIDERING	ATERIALS USI ER READINGS DEPTH (BELOV COMMENTS	ED AND HEIC IN WELL: V G.S.)	SHT OF STICK-U CUR PRO NOT TOP TOP TOP TOP SLO DIAM BOT	P AND GUARD F B BOX CASING / HING OF SEAL AT OF SAND AT OF SCREEN AT FILTER S/ TOM OF SCREE TOM OF SAND A (IMPORTANT, 1)		

.

•

MONITORING WELL/F	PIEZOMETER CO	DNSTRUCTION DIAGRAM	a provident de la dela compositione de la compositione de la compositione de la compositione de la composition
Project: Interim Corrective Measure AOC Project No. <u>P05-084</u> Boring No. Date Installed	Area E ICM-PZ-03N 6/1/2006	Driller Drilling Method Development Method	SJB Services CFA/Split Spoon Sampling Surge/Bail/Pump
Field Technician: Brian Benson Latitude:		Longitude:	
Checked By:			<
	-	<u></u>	
Measuring Point	Stick-up of Cas	sing Above Round Surface:	**2.2'
Ground	Type of Surfac	e Seal/Other Protection:	Portland Cement
Elevation	Type of Surfac	e Casing:	Steel
	ID of Surface (Casing	4" Square
	Diameter of Bo	orehole:	4 1/4" ID
	Riser Pipe ID:		2"
	Type of Riser I	Pipe:	PVC
	Type of Backfi	11:	Portland Cement
	Depth of Top of	of Seal:	4'
	Type of Seal:		Bentonite
	Depth of Top of	of Sand	6'
	Depth of Top of	of Screen:	7'
	Type of Scree	n:	Johnson Well Screen
	Slot Size x Ler	ngth:	0.01" x 10'
	ID of Screen:		2"
	Type of Sandp	ack:	Filepro No. 1
	Depth from Bo	ttom of Screen	17'
	Depth of Sedir	nent Sump with Plug:	17'
	Depth of Botto	m of Borehole:	17'
* Geo-Con project number ** Top of casing measurement made with the lid open. *** Top of riser pipe to top of casing is 0.2'		MONITORING WELL CO	DNSTRUCTION DIAGRAM BUFFALO COLOR SITE BUFFALO, NEW YORK MACTEC.INC.

	'	1471 -		FRC	ULEU M		TO	LEU	WEATHER	I CIMP						· · · · · · · · · · · · · · · · · · ·
6/1/0	6		_									FIELD LO	0G	GB	HOLE	#
DRILL RI	G:					DRIL	LER': E:	5	7.	•		a		STRATICES, INC.		pz - 03
PROJECT	T& DN:	Bu	Ho	10	Ce	lor	/6	<u>co-(</u>	้อก					Contract Drilling and Testing		
						10			i	sets it.				SHEE	IT	OF
DEPTH FT.	SAMPLE #	BLO	NSO	ON S	SAMP	LER	BLOWS ON CASING C	SAMPLE RECOVERY	CLASSIFI	CATION (MOIST	OF M	IATERIALS (/ COLOR)	RILLED	OTHER DATA	WELL	DETAILS
	C		6/12	12/18	18/24	N										
0.2	τ	6	24	27	27			24	nsh fill snow ors	1.	4			54		
	2	27	30	18	22			24	sour oris	h fi	n		8		1	
		<u>{</u>	÷	2	d			27		¥						
4 10	4	1 21	2	8 3	1				Sands: 1 Sands: 17			ă.	l.	•	3	
10-17	1-	-11	7		3			24	silve sil	#			10	1		
12-14	1	WH	7	3					U.J.4 , 3		; +					S.
		-						-	-					e.	2	
		_	_		·				9 Z	4 9	æ	5 11	я <u>1</u> 1		•	·
		্							-			,] ,		150 - E	а 19	
		_	•								/	· (``\`	2		2 1	· · ·
									13.6.1	15	0.00	j	2			
									13.	÷.		٠	и.			а 10 ¹¹ К.
	+		•	-			ŀ.			12		2. 2				•
	-								-				e.	2000 - 2000 1000 - 2000		
												2 1				*
		+							4							
		-							-		5.4					
SIZE AU										÷.	43			SIZE SPOON		
SIZE THI			20.25	TUB						الہ متع <u>ما</u>	fa)li	1		SIZE CORE		
N= No. bio C= No. bio						ioon Ising		wil wi		lb. pin wt. lb. weight			er blow. er blow		OVER.	
		đ		÷.						٠				•		

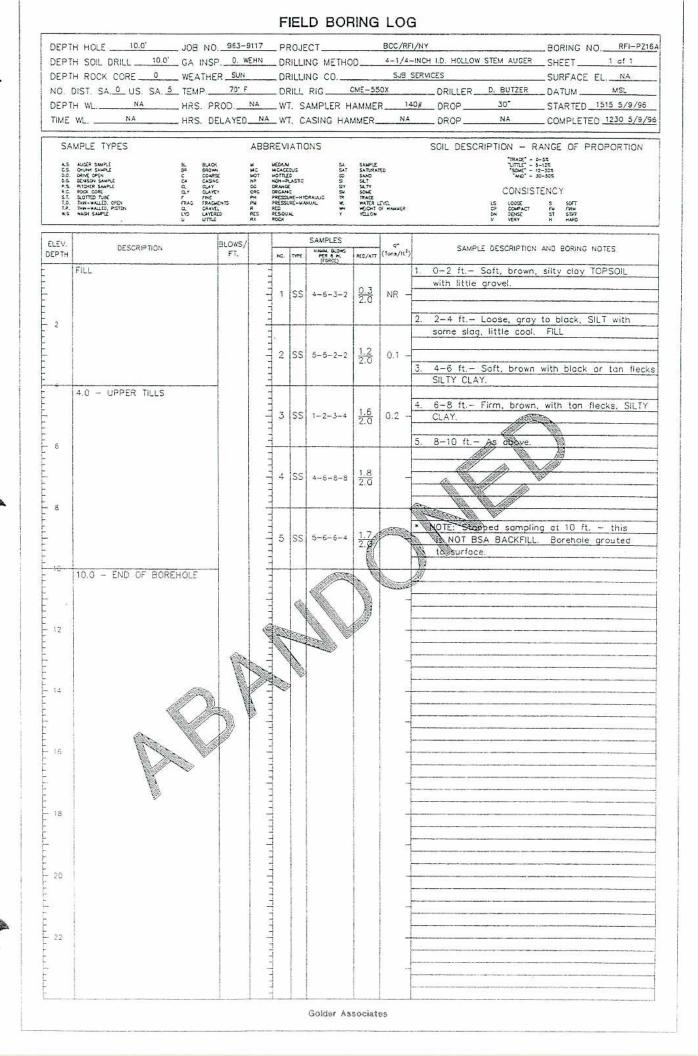
ж:

1	WAS BORING OFFSET FROM T IF YES, HOW FAR ELEVATION DIFFERENCE WHY	THE STAKE BORING LOCATIONS: WHAT DIRECTION	YES NONA-P2-03
2	SURFACE CONDITIONS:	THICKNESS: TOPSOIL ASPHALT CONCRETE GRAVEL CRUSHED STONE OTHER	ASPHALT/ CONCRETE
	9 * *	DIAMETER OF CORE	CORE DIAGRAM
3	GROUNDWATER READINGS:	TIME/DATE CASING A	T DEPTH BELOW (GS)
	GW WHEN FIRST ENCOUNTER GW UPON COMPLETION OF S GW AFTER CORING GW AFTER AUGER; CASING OUT OF GROUND		
i i i i i i i i i i i i i i i i i i i	DRAW WELL DETAIL TO SCAL		
	TIME/DATE DEPTH (BELOW	CURB BOX	
	QUANTITIES/ COMMENTS	TOP OF SEAL AT 2 TOP OF SAND AT 4 TOP OF SCREEN AT	FT
	*	FILTER SA SLOT SIZE	
		BOTTOM OF SAND A	NT/SPFT
		TION ON THIS LOG IS VERY IMPORTANT, I ON THIS LOG IS VERY IMPORTANT, I ON THE BEST OF MY ABILITY AND KNOWLEGE.	CERTIFY THIS

\$3

•

ater 10


Project: Interim Corrective Measure AOC	Area E Driller	SJB Services
Project No. P05-084 Boring No.	ICM-PZ-04S Drilling Method	CFA/Split Spoon Sampling
Date Installe	ed 6/1/2006 Development Method	Surge/Bail/Pump
Field Technician: Brian Benson Latitude:	Longitude:	
Checked By:		
		-
Measuring Point	Stick-up of Casing Above Round Surface	** 2,3'
Ground	Type of Surface Seal/Other Protection:	Portland Cement
Elevation	Type of Surface Casing:	Steel
	ID of Surface Casing	4" Square
	Diameter of Borehole:	4 1/4" ID
	Riser Pipe ID:	2"
	Type of Riser Pipe:	PVC
	Type of Backfill:	Portland Cement
	Depth of Top of Seal:	7.3'
	Type of Seal:	Bentonite
	Depth of Top of Sand	10.3'
	Depth of Top of Screen:	12.3'
	Type of Screen:	Johnson Well Screen
	Slot Size x Length:	0.01" x 10'
	ID of Screen:	2"
	Type of Sandpack:	Filepro No. 1
	Depth from Bottom of Screen	22.3'
	Depth of Sediment Sump with Plug:	22.3'
	Depth of Bottom of Borehole:	22.8'
* Geo-Con project number	MONITORING WELL C	ONSTRUCTION DIAGRAM BUFFALO COLOR SITI BUFFALO, NEW YORI

UKILLED |WEATHER |IEMP INTE UNULLEU FROM TO 1/10 FIELD LOG HOLE #0204 DRILL RIG: DRILLER'S 85 Brown NAME: PROJECT& BU Prole Contract Drilling f geo con and Testing colo LOCATION: SHEET ____ OF BLOWS ON SAMPLER BLOWS ON SAMPLER SAMPLER BROWS ON SAMPLER DEPTH FT. CLASSIFICATION OF MATERIALS DRILLED (MOISTURE/ COLOR) OTHER DATA WELL DETAILS 12/18/24 Ν 18 Sand gravel Ash Fill Brick 6 0-7 110 2 Same Fill To 4' 2-41 7 2 6 16 19 sand 4.6 3 14 3 6 10 10 It soud To Chay at 7' water at 65 3-8 4 1 6 3 N 5 NO RECI 00 8-10 5 3 4 8 4 15 22 wet soundy silt 1010 5 2 ì î 21 Same - organica 12.14 7 JH 3 34 6 19 Sand silt witten 22 14-14 8 25 Sandasilt 17234 16-18 9 At sound a silt 19-20 10 wt of Ham 2.0.7-20 SIZE SPOON SIZE AUGERS/ CASING SIZE CORE SIZE THIN- WALLED TUBE -with Ib. pin wt. fatling -per blow. -spoon N= No. blows to drive -per blow Ib, weight falling C= No. blows to drive -casing -with OVER.

LEVATION DIFFERENC	WHAT	<u> </u>		
URFACE CONDITIONS:	THICKNE	-SS:	ASPHALT/ CONCRE	TE
	TOPSOIL			
	ASPHAL	Т		
,	CONCRE			
2	GRAVEL			
15		D STONE		
	UTTER .		5	
	13	DIAMETER OF CORE		
			CORE DIAGRAM	
GROUNDWATER READI	NGS:	TIME/DATE C		
*			ASING AT DEPTH BELOW ((65)
			BELOW	(63)
W WHEN FIRST ENCO	UNTERED		- 	
GW UPON COMPLETION	OF SAMPLING			*
SW AFTER CORING				<u> </u>
SW AFTER AUGERS CAS	SING		2. B	
OUT OF GROUND	đi			
WAS AN OBSERVATION	MONITORING	WELL INSTALLED:	YES NO	
RAW WELL DETAIL TO	SCALE SHOW	NG ALL DEPTHS AND DIN	IENSIONS FOR	
그는 물건 이 것이 같다. 이 것 같아요. 영화 방법을 만들어야 할 수 있다. 가지 않는 것이 있는 것이 같아요.		GHT OF STICK- UP AND (2012년 24년 1월 2012년 2월 2012년 2월 2월 2월 2월 2012년 2월 2012년 2월 2012년 2월 2012년 2월 2012년 2월 2012년 2월 2012년 2월 2012년 2	2
<u>.</u>	2) 		WELL DETAILS	
GROUNDWATER READ	NGS IN WELL:	CLIDE BOX	×	7
TIME/DATE DE	PTH	CURE BOX_ PRO CASINO		-
on and a second s	ELOW G.S.)	NOTHING		
(C.			/	NUT .
	-	·		334
		а. Э		He
		·* . s		3
				8
	TC			1. Sec. 1. Sec
QUANTITIES/ COMMEN	TS	TOP OF SEA		
QUANTITIES/ COMMEN	TS	TOP OF SAN	ID AT SFT	
	TS	TOP OF SAN		
3 Bags Sond	TS	TOP OF SAN TOP OF SCF		
	TS	TOP OF SAN TOP OF SCF	ID AT FT REEN AT / • FT	
3 Bags Sond	TS	TOP OF SAN TOP OF SCF 	ID AT S FT REEN AT / 0 FT	
3 Bags Sond	TS	TOP OF SAN TOP OF SCF 	$\frac{\text{ID AT} & \text{FT}}{\text{REEN AT} / \circ \text{FT}}$	
3 Bags Sond	TS	TOP OF SAN TOP OF SCF 	ID AT S FT REEN AT / 0 FT	
3 Bags Sond	TS	TOP OF SAN TOP OF SCF 	$\frac{10 \text{ AT} & \text{FT}}{\text{REEN AT} / \circ \text{FT}}$	
3 Bags Sond	TS	TOP OF SAN TOP OF SCF 	$\frac{\text{ID AT} & \text{FT}}{\text{REEN AT} / \circ \text{FT}}$	

6) 20

DEPTI DEPTI NO. E DEPTI TIME	H ROCK CORE	GA INSI WEATHE TEMP HRS. PI	D. W R <u>P. CL</u> 70' F ROD ELAYED.	EHN CUDY NA NA	DF DF DF W ⁻¹	RILLI RILLI RILL F. S F. C	NG METHO NG CO RIG AMPLER H ASING HAM	D DME-55 AMME	SJ9 iox R14	-INCH I.D. HOLLOW STEM AUGER SERVICES DRILLER D. BUTZER 00 DROP 30" DROP NA	_SURFACE_EL <u>584.67</u> _DATUMMSL _STARTED_ <u>0815_5/10/96</u> _COMPLETED_ <u>0945_5/10/9</u>
A GOOD PRESS	AUGR SAMPL ONUM SAMPL DATE OFN SENSON SAMPL SENSON SAMPL SENSON SAMPL SENSON SE	A SLAD BH BROW COMP COMP CLAY C	k SE G TY KENTS LL ED	ADD WICT ND CORC PHN R RES RX	MEDIUM MCADE MOITLE NON-P ORANCE ORGAN	DUS D LASTIC C RE-HM RE-HA	SA SAT SI SY SY DAAULC TR	SANDE SATURA SAND SAT SLTY SOME TRACE WATER I WEIDAT YELOW		SOIL DESCRIPTION - R/ "made" - 5 "Sout" - 5 "Sout" - 1 "Work" - 2 CONSIST 5 10052 1 10052 1 10052 10052 10052 1005 1	-52 -125 -302 -503
ELEV.	DESCRIPTION		BLOWS/ FT.		NG.	TIPE	SAMPLES HANK BLOWS PER & N. (FORCE)	REC /ATT	q* (Tona/11 [*])	SAMPLE DESCRIPTION	AND BORING NOTES
-	85A BACKFILL					ss		<u>0.4</u> 2.0	NR -	1. 0-2 ft Loose, brown with little wood and gr	- to the sector of the sector
- 2				and a set of the	1	SS	2-2-4-10	0.6 2.0	NR -	 2-4 ft Loose, crush wood. Edge of sheet p 	
- 4					_			2.0		 4-6 ft Loose crushe RFIPZ16C2F* collected. 	
					3	SS	2-1-1-WH	<u>0.5</u> 2.0	NR -	 6-8 ft As above. 8-10 ft As above. 	
- 6					4	SS	2-1-WH-1	<u>0.2</u> 2.0	NR -	 10-12 ft Loose, gra some crushed limeston 12-14 ft Loose, crushed limeston 	e and some wood. FILL
- 6						SS	1-1-1-1	<u>0.3</u> 2.0	NR -	 NOTE: Sample RFiP2160 2-10 ft. due to low s descriptive samples co 	ample recovery. No
-					6	ss	5-1-WH-1	<u>0.2</u> 2.0	NR -		
- 12				and been free	7	ss	1-1-1-1	<u>0.1</u> 2.0	NR -		
- 14	14.0 - END OF BOREH	OLE		i e e e e e e e e e e e e e e e e e e e				_			
16									-		
- 18									-		
20									_		
									_		
- 22											

DEPT DEPT	H ROCK CORE	GA_INSF WEATHE	R CLOUDY	N (DRILI DRILI	LING METHO		4-1/4 SJB	-INCH I.D. HOLLOW STEM AUGER	BORING NO. RFI-PZ17 SHEET <u>1 of 1</u> SURFACE EL. <u>583.86</u> DATUM <u>MSL</u>
	H WLNA WLNA									_ STARTED1045_5/10/96 _ COMPLETED _1145_5/10/9
45.00.5 0.5 9.5 0.5 10.7 10.7	MPLE TYPES AUCE SAMPLE OPIN SAMPLE OPIN SAMPLE OPIN OPIN DOSSOF SAMPLE MODE OPIN TONE SAMPLE SAGTED THE FAMPARLED, OPIN TONE-SALLD, POSTEN WASH SAMPLE	E. BLACK BR BROWN C. COARS C. CASH C. CASH C. CASH C. CASY F. FAL FRAC FRAC LYO LAYER U UTTLE	и с ус ос с ус с ус с ус с ус с ус с ус с		DUN ACEOUS ITLED N-PLAST ANGE CANC CESSURE- ESSURE- SOUAL	C S SY SN HYDRAULC TR	SALIPLE SATURA SANO SLT SLTY SOME TRACE WATER I WEICHT YELLOW		SOIL DESCRIPTION - RA "RAAC" - G SOIL - V SOIL - V S	-5X -12X -30X 50X
LEV. EPTH	DESCRIPTION		BLOWS/ FT.		1a. THP	SAMPLES	RED/ATT	q* (Tons/11 ²)	SAMPLE DESCRIPTION	AND BORING NOTES
	BSA BACKFILL				1 55	5 3-3-5-7	<u>1.9</u> 2.0	0.5 -	1. 0-2 ft Compoct, rus purple blobs, CLAYEY S (slag). FILL	SILT with trace gravel
2					2 55	5 5-5-5-4	<u>1.7</u> 2.0	0.7 -	the second secon	e slag gravel. FILL
4				11					3. 4-6 ft Soft, red-br SILTY CLAY with with t	race wood. FILL
6				munt	3 S	S 1-1-1-WH	<u>1.9</u> 2.0	-	 6-8 ft As above with 8-10 ft As above to dark gray, SILT with tr 	o 8.2 ft. then loose, ace clay.
				للتناليت	4 S	S WH-1-1-2	<u>1.8</u> 2.0	-	Sample RFIPZ17C9F co wood. FILL 6. 10-12 ft Loose, dari clay, trace purple-blac	k gray SILT with some
δ				hundre	5 5	5 1-1-3-3	<u>2.0</u> 2.0	-	7. 12-14 ft As above substance. FILL	
10				+	6 5	5 WH-1-3-2	<u>1.8</u> 2.0	-		
12					7 5	5 WH-1-1-2	<u>1.9</u> 2.0	-		
-14	14.0 - END OF BOR	EHOLE		terrete						
18				يتبليتينا				-		
18								-		
20				1111111111						
- 22								-		
								-		

Ŷ

DEPT								LO		
	H HOLE14.0'									BORING NO. REI-PZ15
									-INCH I.D. HOLLOW STEM AUGER	
	H ROCK CORE									_SURFACE EL. 584.95 DATUM MSL
	H WLNA									_ DATUM
						ASING HAN				_ COMPLETED 1500 5/9/9
	MPLE TYPES AUGR SAMPS ONUM SAMPS DEMSON SAMPS NOT COOR ACCOUNT ACCOUNT DEMONITOR DEMON	BL BLACK BR BROWN C COARSE CA CASHC C CLAY CLY CLAYCY F FINE FRAG FRACE C DAVEL UND LAYTRE U UTTLE	u HIC HIC HIC HIC HIC HIC DRC DRC DRC HI HIC DRC DRC DRC DRC DRC DRC DRC DRC HIC HIC HIC HIC HIC HIC HIC HIC HIC HI	BREVI JEDAN JON-PO STAND RESS RED RESS RED RESS RED	OUS D LASTIC C RE-HY RE-WA	SA SAT SD SJ SJ SV SV SV SV SV SV	SAMPLE SATURAI SAND SLT SOME TRACE WATER L WEIDHT YELOW		SOIL DESCRIPTION - R. "THAT - P "THAT - P "Sourt - I "Ave" - 3 CONSIST US 1000 CONSIST US 1000 CONSIST US 1000 CONSIST US 1000 CONSIST US 1000 CONSIST	-51 -121 -301 501
ELEV. DEPTH	DESCRIPTION		BLOWS/	F	THPE	SAMPLES		q= (Tons/11 ²	SAMPLE DESCRIPTION	AND BORING NOTES
iter in	BSA BACKFILL			MG.	THPL	HANN, BLOWS PER 6 N. (FORCE)	REC/ATT	(idealy)it	1. 0-2 ft Loose, black	SHIT SLAG AND
	USA DAGRIEL			-					COAL FILL Sample f	
				1	SS	2-2-5-12	$\frac{1.6}{2.0}$	NR -		
				3					2. 2-4 ft Loose, gray	to block SILT with little
2				1					slag and grovel. FILL.	
				1	50	6-4-5-5	<u>1.8</u> 2.0	0.2 -		
					00	0 00	2.0	0.2 -	3. 4-6 ft As above wi	th trace wood. FILL
4										AU 7
				11					4. 6-8 ft Loose, black FILL.	, SILI with trace clay.
4				3	SS	1-2-1-1	$\frac{1.7}{2.0}$	0.2 -		
				-					5. 8-10 ft Loose, brow with trace clay. FILL	n to black stained SIL
6									with trace city. The	·
				-		WH-WH-	0.4		6. 10-12 ft As above.	
				4	SS	₩н-₩н	2.0	NR -	7. 12–14 ft. – As above.	
				-					7. 12 14 IC. AS ODOVE.	
0				-						
- в -				15	SS	WH-WH-	0.8	NR -		
				1	1	WH-WH	2.0	1 als		
10				1						
				-						
				- 6	SS	1-1- WH-WH	$\frac{1.1}{2.0}$	NR -		
				1						
12				+						
				7	SS	WH-WH-	1.2	ND		
				1	22	WH-WH	$\frac{1.2}{2.0}$	NR -		
-14				1						
	14.0 - END OF BORE	HOLE		1						
				-						
				1						
16				-				-		
				-				-		
10				11						
- 18										
				1						
				-						
20				-				-		
				11						
				1				-		
				1						
				1						
22				10	1 3		1			Contraction of the second second second second second
- 22				7	1		1 8			
22				untr				-		

R

(_

E

							RFI-17 SHEET of
							V
TEMP.	OT DRILL RIG ACKER	SOILMAX	DRILLER	R. \$11	ENER	STARTED	1345 5/13/96 COMPLETED 1500 5/13/9 TIME / DATE TIME / DATE
LOCATION /	COORDINATES N: 10302,40	E: 11561.35					
			ERIAL				212
							INTONITE SEALCHIPS
							STALLATION METHOD GRAVITY
							LTER PACK OTY 150 LBS.
							LTER PACK TYPENO. 0 MORIE SAND
GROUT TYPE	CEMENT / 5% BENTONITE	DRILLING N	UD TYPE	N	4	IN	STALLATION METHODGRAVITY
							<u></u>
	SOIL/ROCK DESCRIPTION		WF	LL SH	ETC		INSTALLATION NOTES
	CONSTRUCT DESCRIPTION	-				6-nch Square	F
		E	20	-	7+	- Steel Protective	E
2.0		-				Casing	+
	GROUND SURFACE			1			E
0.0	0.0-10.2 FT UPPER TILLS		H	1	H		
		E			M		E
	Typically soft to firm, brown, to gray-brown with				M		+
	occassional gray mattling,	E					E
2 0	SILTY CLAY to CLAYEY SILT, occassional silt to				14	Cement	+
	fine sand parting.	Ē		1	N	Bentonite	E
			3.0	1	R	2-inch DIA	+
		E		1	VA.	Riser	E
4.0				1	Y/		+
					1	- Bentonite Chips	
		<u> </u>	+-		M		P
		El l			V		E
6.0			<u>6.0</u>		4		+
		E	6.8				E
				1-			+
		E		1_			E
8.0				-	1 t	2-nch DIA	
		E		1-		Screen	E
		-		1-	11	-Monte No. C	
		E				Sond	E
10.0	10.2-12.0 FT	<u> </u>		1-	11	-8-nch DIA	E Well Depth = 14.11' btor.
	CLACIOLACUSTRINE CLAY	E		-	11	Borehole	
	Typically soft to v. soft,	-		-	1		WELL DEVELOPMENT NOTES
	brown with reddish brown	E	11.8	-			E
12:0	varving, CLAY with little	E	12.0		- Kanananan		Well developed with Stainless
	partings.	E					Steel bailer until 78 gallons
	12.0 FT END OF BOREHOLE	2	1				E (6 well volumes.) were
		L.					Fremoved. Temp., conductivity,
14.0		E					and pH of water stable within
		È I					F 10% over last two well volume
				-			For further details, see
							accompanying Well Developme
16.0							Field Records.
		1.1					F.
		E					E
		E I					₽
18.0		E	T				E
		E	1				
		E					E
20.0		<u> </u>					
		E					E
			+				+
		E					E
		No. 1	and the second sec			the second second second second second second second second second second second second second second second se	

	53-9117 PROJECT					
	D. WEHN DRILLING METHOD _4					
	CLOUDY DRILLING COMPANY					DATE/TIME 5/20/96 1045
темр	70'F DRILL RIG ACKER	SOILMAX DRILLER R. S	STEINER	STARTED	1300 5/17/96	COMPLETED 1415 5/17/96
LOCATION /	COORDINATES N: 9896.48	E: 10446.31			TIME / DATE	TIME / DATE
		MATERIALS IN	VENTOR	Y		
WELL CASING	2 in. dia10	I.f. WELL SCREEN2	_ in. dia	_5 I.f. BEN	TONITE SEAL	CHIPS
CASING TYPE	TYPE 316 STAINLESS	SCREEN TYPE CONTINUE	OUS WRAP	inst	ALLATION METHO	DGRAVITY
JOINT TYPE	FLUSH THREAD	SLOT SIZE 0.010 INCH		FIL T	ER PACK QTY.	200 LBS.
GROUT QUAN	TITY 20 GAL	CENTRALIZERS NONE		FIL T	ER PACK TYPE	NO. O MORIE SAND
GROUT TYPE	CEMENT / 5% BENTONITE	DRILLING MUD TYPE	NA		ALLATION METHO	DGRAVITY
	1)#/ELL C	KETCH		INICTAL	LATION NOTES
ELEV./DEPTH	SOIL/ROCK DESCRIPTION			1 1 1	INGTAL	LATION NOTES
		3.0	SI SI	-nch DIA		
2.0				osing		
0.0	GROUND SURFACE					
0.0	OLD TO UT FILL TO UNORE TE		LH .			
	0.8-3.0 FT FILL		M			
	Typically, variable proportions of					
2.0	reworked till, crushed		N	. Cement		
	stone, concrete and building demolition debris.		N	Bentonite	·	
	3.0-7.4 FT ALLUVIUM		1-	2-inch DIA		
	Typically compact to v.			Riser		
4.0	loose, dark gray to nearly			+		
	black, fine to very course SANDS, less commonly					
	varying proportions of			-Inch DIA		
	SAND, GRAVEL and SILT, occasionally interbedded		$\boldsymbol{\Lambda}$			
6.0	with leaves and or wood		VI-		-	
	bits.			lentonite hips		
		6.5	1/-			
120/07	7.4-11.2 FT UPPER TILLS		1			
8.0	Typically soft to firm,	7.5				
	brown, to gray-brown with					
	occassional gray mottling, SILTY CLAY to CLAYEY		-			
10.0	SILT, occassional silt to		-			
- 10.0	fine sand parting.			-inch DIA	Well Dept	th = 14.92' btor.
		-	- S	sreen		
	11.2-14.0 FT		-		WELL DE	VELOPMENT NOTES
12.0	GLACIOLACUSTRINE CLAY	- 24 -				
12.0	Typically soft to v. soft,	12.5		orie No. C	and the second second second second	oped with Stainless
	brown with reddish brown varving, CLAY with little		S	and		er until 10.8 gallons
	to trace silt or fine sand					volumes.) were
-14:6	partings.	14.0	enc. (2014 16/06.0			Temp., conductivity,
101081	14.0 FT - End of barhole.				And the same and and the statement	water stable within
d.					the second second second second second second second second second second second second second second second se	ast two well volumes
						r details, see
16.0					accompan	ying Well Development
1.47.17.17.2					Field Reco	rds.
51		F			-	
- 18.0					-	
AL 2004255		El l				
1						
		FI I I			ļ	
- 20.0		E				
- Y - Y						
					-	
10 1		F				
		F			1	

(~

	53-9117 PROJECT						
	D. WEHN DRILLING METHOD _4						
WEATHER	DRILLING COMPANY	SUB SERVICES			COLLAR EL	EV586.95	DATE/TIME 5/22/96 0810
TEMP. 6	ST DRILL RIG ACKER	SOILMAX DR	ILLERR.	STEINER	STARTED _	1020 5/21/96	COMPLETED 1200 5/21/96
LOCATION / C	COORDINATES N: 9779.62 E:	10744.19				INC / DATE	
	4 11 12 1347	MATER					
	in. dia10						1
	TYPE 316 STAINLESS						
	FLUSH THREAD						
	TITY						
GROUT TYPE	CEMENT/ 5% BENTONITE	DRILLING MUD	TYPE	NA		INSTALLATION METH	ODGRAVITY
7 <u>-2-2-2-2-2-</u>					<u></u>		
ELEV./DEPTH	SOL/ROCK DESCRIPTION		WELL	SKETCH	1	INST	LLATION NOTES
-		3.			6-nch Square		
- 2.0	E	2	²		Steel Protective Casing		
	ļ			11			
	GROUND SURFACE		_Ш_			E	
0.0	0.0-4.0 FT FILL		H1			FL	
-	Typically, variable proportions of					E	
-	reworked till, crushed		[1]	NH.		El	
- 2.0	stone, concrete and building demolition debris.		11	ML.		E	
-			N	N	Cement/ Bentonite	E	
		·		N	grout		
-			N	14	2-inch D Riser	IA [
4.0	4.0-10.6 FT UPPER TILLS	·	-N			<u> </u>	
		33				Ē	
Ē	Typically soft to firm,	·	-1/1	- KA-	-8-nch DIA Borehale	<u> </u>	
	brown, to gray-brown with accassional gray mottling,		VA	1A	Dolentite	Ę	
L F 6.0	SILTY CLAY to CLAYEY	·	1/1	11-			
E	SILT, occassional silt to		N/	A	- Bentonite	E	
F	fine sand parting.	·	-11	N	Chips		
-		<u>ا</u> ه	-4	4		Ę	
F 8.0		·					
[- L			Ę	
-		·		- -			
-				= [4]		[
F 10.0		·	_ =	-14			
-			- I- I-	-++	- 2-Inch DIA. Screen	E Well Dep	th = 14.93' btor.
-	10.6-13.0 FT GLACIOLACUSTRINE CLAY		-11-	_ -			
-	Typically soft to v. soft, brown with reddish brown			<u>_ †</u>	— Morie No. 0 Sand	F WELL DI	EVELOPMENT NOTES
E 12.0	varving, CLAY with little			- -		[
E	to trace silt or fine sand	12				the second	and with Chainland
	partings. 13.0 FT. — End of boring.	13		-		the second secon	oped with Stainless er until 9.5 gallons
F		:					volumes.) were
E 14.0						the second secon	Temp., conductivity,
F						the second	f water stable within
Ē							last two well volumes
Ē							er details, see
E 16.0							ying Well Development
E							the second second second second second second second second second second second second second second second se
-			-			Field Rec	brus.
- 18.0							
						F	
						[
		=				F}	
20.0				++-			
E						↓	
Ē				+			
F	1	EL 1 E		10.00	1	- T	

(~______

					TV
25.11 1 C 020121 C C 0	in the second second second second second second second second second second second second second second second				V. 583.04 DATE/TIME 5/9/96 100
	00F DRILL RIG CME-85 COORDINATES N: 10453.73 E: 1100		A. MILLER	STARTED	1525 4/22/96 COMPLETED 1630 4/22 TIME / DATE TIME / DATE
LUCATION / (COORDINATES N: 10455.75 E. 1100.	MATERIA	S INVEN	TORY	
WELL CASING	2 in, dia4.5 I.f.				ENTONITE SEAL CHIPS
	TYPE 316 STAINLESS				
	FLUSH THREAD				
					LTER PACK TYPENO. 0 MORIE SAND
GROUT TYPE	CEMENT/ 5% BENTONITE	DRILLING MUD TYPI	<u> </u>	IN	ISTALLATION METHOD GRAVITY
LEV./DEPTH	SOIL/ROCK DESCRIPTION	w	ELL SKET	ж	INSTALLATION NOTES
	E E				
.0	E				-
	F			Flush Mount	F
	GROUND SURFACE			Protective Casing	F
0.0	0.0-5.0 FT FILL	0.4		Expanding Well Plug	E
	variable proportions of		NN	Cement	-[]
	reworked till, crushed	14		Bentonite grout	E
.0	building demolition debris.				
	E			Bentonite Chips	F
			14	2-inch DIA	· F
.0	[3.9	44	Riser	-
					-
	5.0-8.7 FT UPPER TILLS	5.0		8- nch DIA	F
	JU-B./ FI UPPER HELS			Borehole	
6.0	Typically soft to firm,		- -		
	brown, to gray-brown with occassional gray mottling,				F
	SILTY CLAY to CLAYEY			2-inch DIA	-[
	fine sand parting.			Screen	E
8.0				Contraction and Contraction	
	8,7-10.1 FT				
	GLACIOLACUSTRINE CLAY			Morie No. 0	F
10.0	Typically soft to v. soft, brown with reddish brown varving, CLAY with little	10.0		Sard	
	varving, CLAY with little	10.1	March		Well Depth = 9.35' btor.
	to trace silt or fine sand				
	10.1 FT End of Borehole.		1 +	Morie No. 0 Sand	WELL DEVELOPMENT NOTES
12.0	12.0 FT End of Sompling		· Lipil		
	La contra de la co				Steel bailer until 10.5 gallon
	E				(7 well volumes.) were
1.0	E F				removed. Temp., conductivity
4.0	E				and pH of water stable with
	Ē				10% over last two well volum
	t				For further details, see
16.0	E				accompanying Well Developm
	E E				Field Records.
	[E				
	F				E
18.0					
	-				
	F				
20.0					
	1				F
					E
	r1				

5

5 	MONITOR	and the second second second second second second second second second second second second second second secon	ELL INS	TALLA	TION	LOG
A Insp. SAV	M Caller Company	25 Hours	MAKER	Ground Sav. Collar Sav	585.20 587.90	Sheet
Temp60°	Onli Rig_ <u>CME</u> -	85	Oriller C. Ackur	Started 074	C/3/91	Completed 1065 63/97
	in the 10.5	f Weil Screen	2 in.dia.	<u></u>	entonite Seal	"2" CHIPS
	SCH 40 PVC	Screen Type	Sen 40 PVG	Ir	stallation Method	GRAVITY
Court Quantity	~15 cal	Cantralizers	MA	R	iter Pack Type _	ONORE
Grout Type CE	<u>пеыт / Вендон ПЕ</u> 697,99	Orilling Mud Ty	pe <u>NA</u>	Ìr	stallation Method	GRAVITY
	Soil/Rock Description		WELL SKETCH	I Contraction	Ins	tallation Notes
		30'	═╢┎╪┱╟	6-inch	ļ	
	GROUND SURFACE			no-com	;	
22 <u>F</u> ;						
2				CEINEUT/ BENTOWITE GROUT		·····
4				- CENTRUITE		
6		7'-				
8		<u> </u>				
8.7' Up	per Tills	<u>[</u>		_#O Marete		
1.2 0	ACIOLACUSTRAE			-Snorack		
	CLAY	13' -			ļ	
-14 H.O E	ND OF BORDELE					
K 15.0 B	NO OF STOOL SMP	E]	
-	\$ ¹				Well	Development Notes
	-				See acco develop	mpanying well ment field record
					_ <u> </u>	
						an an an an an an an an an an an an an a
					ļ	
			·			
					1	
2 J					1	
L		₿			1	
E	¥				1	alen e an an an an an an an an an an an an an
		£			1	
E		E]	

1

٢.

M	IONITORI	NG W	/EL	LI	NS.	TAL	LAT	TION LOG
	Bri	Intel 1	V			Wet	NO. RP	
		SC IL	1 5 77	m Au	VIR	Gro	und Sev	583,60 Water Depth 4,432
	A DEVELOPERATION OF A CONTRACT.	< 113 <		IAF		Colt	ar Hey	
Temp. <u>65°</u>	Drill Rkg CME-E	35	Orille	<u>CAC</u>	KLEY	Star		5 6/3/97 Completed 1995 4
		A MA	TERIA	ILS IN	VENT	FORY		
Well Casing	_ in. dia 6_ 1.f	. Well Screen	2	in.	dia		I.f. Ber	ntonite Seal <u>1/2" CHIPS</u>
Casing Type	H 40 PVC	_ Screen Type		CH TL	J FV	(ins	tallation Method <u>CRAVITY</u> er Pack Qty. <u>20016</u>
								er Pack Type <u>* Morele</u>
Grout Quantity	8 gal	Drilling Mud	Type	N	/A		Ins	tailation Method
Grout Type N 10.	116.38		EIIE	\$35.6	2			
	/Rock Description		WE	ELL SK	1	:		Installation Notes
	Ē		4	- 1.5		~		
				FIB	PRET	E	FUSH	<u> </u>
44 F.11	GROUND SURFACE		19	1	Cas	22	j	
aa <u>Fill</u>		, 10"	0.0		11	2.04	ment	<u> </u>
1	Ę		,			- BE	eart	
.2	8X	2						
.3						7 BE	WTONNE	1
-						6	HAS	
- 4								
- 5			4					
			1		111.1			1
6 6.0 -52	BACKFILL	6		11				
7								ļ
	NIAUSTRINE					10	ACRIE	
-8 7.8' GLA	CIAY					- spr	omex	
9]
-10								
				同王	-			Well Development Note:
		E	,				-	
-12 120 DA	OF BRANE	12						See accompanying well development field rea
E I		E						
		}	+	+				
E		E						<u> </u>
E		Ę						
								1
E		↓	<u></u>					
F		E						
-								ļ
E								
E		E						
È I		E I	1					
E		<u>FI</u>	_					

-

				-		TION LOG
ota No963	-9117 Project	BCC REIN	Y	10	Wett No. <u>Re</u>	59440 Sheet at
A Insp. <u>SA</u>	Urilling Method	4.25 Hours	STAN M	KUR	Ground Eav.	<u>584.40</u> Water Depth <u>5.62</u> <u>878</u> <u>587.01</u> Date/Time6-17-97 c
eather <u>B</u>	Orilling Company	- 85	Oritler C. A	CKLIET	Started /32	5 C/2/97 Completed 1500 C/2
		WIATE	2		5 11 2	entonite Seal <u>"" CHIPS</u>
lell Casing	<u> </u>	I.f. Weil Screen Screen Type	Ser 4	D PV		stallation Method
	FUSH THREAM	Slot Size	# 10			ter Pack City 200 16
with Outputity	~ 15 sal	Centralizers	NA		Fi	ter Pack Type More E
irout Type 💪 N	<u>EMENT/BENTONITE</u> 9685.81	Critling Mud Typ	1641.8	14 18	in	stallation MethodGRAVITY
lav./Depth	Soil/Rock Description		and the second se			Installation Notes
		3 2.6-		51	6-inch	
2				4	ROOASING	
aa	GROUND SURF			H		
				11	coments/	1
•		E	E		GRAT	+
2				Ħ		
3	Upper Tills	[] 	8	B		
4						1
5					BENTONTE	
6		₿			CHIRS	
7	(1 7)			33		
8		8				
9				E	- #O MORELE	}
10						
11 10.	7' GLACIOLACUSTICIA	E		금광		Well Development Notes
	CLAY			= ::		
12						See accompanying well development field record
13		1 13-				Treate and
14						
A.0	END OF BREDUE					
		E I				
		₿				
	d d]
		Ettt-				
		₿				
	-					
0						
		<u></u> }				
		8				

-

MONITORI	NG WELL INS IA	ALLAHUNI	_04
Job No. 963-9117 Project <u>BCC</u> GA Inso. D. WEHN Oniling Method <u>41</u> Weather O <u>LIRCST</u> Orilling Company <u>5</u> Temp. <u>85°</u> E Orill Rig <u>CME</u>	JB SERVICES INC. 75 DRIVER D. BUTZER	Collar Elev. 587.41 Started 16:15 7/21/98	Date/Time N/A Completed 16:50 7/21/98
Well Casing <u>2</u> in. dia. <u>10.7</u> II. Casing Type <u>SCH 40 PVC</u> Joint Type <u>FLUSH THREAD</u> Grout Quantity <u>15 GAL</u> . Grout Type <u>95% CEMENT / 5% BENT</u> .	Well Screen 2 in. dia. Screen Type SLCTED SCH Siot Size O.CIC IAICH	<u>HC PUC</u> Installation Method ————————————————————————————————————	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>
	WELL SKETCH	In	stallation Notes
Elev./Depth Sall/Rock Description	3.4 3.4 5qu pre 3.0 50 50 50 50 50 50 50 50 50 5	king blinch : are steel. tective casing 2- Concrete : ment / tentonile :	
и			L DEVELOPMENT

APPENDIX G

GROUNDWATER SAMPLING LOG

FIELD	DATA REC	CORD - GR	OUNDWA	TER SAMPLI	NG				211	MACTEC
PROJECT				SAMPLE I.D.	. NUMBER					
WELL ID:				SAMPLI	NG EVENT					DATE
TIME	START	ENI	D		JOB NUMBE	R			SAMPLI	ERS
WATER L	EVEL / PUMP	SETTINGS		REMENT POINT P OF WELL RISER P OF PROTECTIVE C HER	CASING					
INITIAL DE TO WA			FT SCRE		FT					
	VELL PTH		FT							
V DIAME	VELL		IN							
TOTAL PUR	VOL. GED	G	AL							
PURGE D	DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pН	DISS. O2	TURBIDITY		DOX	
GALLONS	WATER (ft)	RATE (ml/m)	(deg. c)	(ms/cm)	(units)	(mg/L)	(ntu)	(m	nv)	COMMENTS
	INT DOCUMEN DF PUMP AILER MCO BLADDER	TATION		<u>G</u> TY POLYETHYLENE ITY POLYETHYLENE						
ANALYTI To Be Collecte	EOPUMP CAL PARAMET ad DC- ON-SITE LAB	ERS	<u>NU</u>	THOD IMBER D-8021		RESERVATIC METHOD HCL / 4 DEG	REQUI	RED		2 C- ON-SITE LAB
			8260 CLP CLP)B		HCL / 4 DEG 4 DEG. C 4 DEG. C		nL AG		с
	L INORGANICS ANIDE		CLP 335.			HNO3 to pH	<2 1 x 1 L I	P		_ INORGANICS ANIDE
Ma TO TS TK	S		USE	DEP EPA 415.1 EPA 160.2 EPA 351.2		HCL / 4 DEG H2SO4 to pH 4 DEG. C H2SO4 to pH	H <2 2 X 40 M 1 X 250	ML mL P	Mai TO TSS TKN	5
Oth	her her her									
PURGE O	BSERVATION	s				LOCATION	N SKETCH		_	
PURGE WA		NO	NUMBER OF GA GENERATED	LLONS						
		dedicated or dec / field blank requ								
SIGNATUR	E:			_						

APPENDIX H

SITE-WIDE INSPECTION FORM

SITE-WIDE INSPECTION FORM Former Buffalo Color Facility, Area E, Buffalo, NY

Date: Weather:

Personnel (Organization):

<u>Instructions:</u> Complete the checklist of evaluation items and then complete specific data items. Field measurements should be made with a cloth tape and noted on a Site plan. Estimated measurements shall be so noted. All field notes and documentation, including hand sketches, photographs, and notes made on the Site plan, should be attached to the completed checklist to further define conditions or problems.

EVALUATION ITEMS

CONDITION: (Check)

				Action		
·		Acceptable	Not A coontable	Yes	No	Remarks
(W	rite NA if not applicable)		Acceptable			
1.	Institutional Controls					
a.	Site Use					
2.	Engineering Controls					
a.	Soil Cover					
b.	Surface Pavement					
c.	At-Grade/Basement Slabs					
3.	Site Management Activities					
a.	Confirmation Sampling					
b.	Health & Safety Inspection					
c.	Other (specify)					
4.	Permits					
a.	Compliant?					
5.	O&M					
a.	Schedule being followed?					
	C C					
6.	Site Records					
a.	Up to date?					
	-					

SITE-WIDE INSPECTION FORM (CONTINUED) Former Buffalo Color Facility, Area E, Buffalo, NY

7.	General Site Condit	ions	
			-
		Signature of Inspector(s)	-
At	tachments		
	Yes	No	
Ot	her Comments:		

APPENDIX I

QUALITY ASSURANCE PROJECT PLAN

APPENDIX I - QUALITY ASSURANCE/QUALITY CONTROL

Quality assurance/quality control (QA/QC) procedures will be utilized throughout the project as described in the following sections. The project QA/QC protocol will be consistent with NYSDEC's Draft Technical Guidance for Site Investigation and Remediation (DER-10, December 2002).

D.1 LABORATORY ANALYSES

The primary goal of this section is to provide a description of the laboratory analytical program and the analytical methods used to analyze soil and water samples collected during field investigation activities. The majority of the analytical data will be generated using USEPA analytical procedures. Analyses will be completed using USEPA SW-846 methods (USEPA, 1996). Samples will be analyzed by a subcontract laboratory with NYSDOH ELAP Certification.

At this time, the analytical laboratory has not been selected for the RI/FS. Laboratory information and contacts will be included provided to NYSDEC when a laboratory is selected.

Analytical methods and parameters for are described in Sections 5.1 and 5.2 and are summarized below:

- Volatile Organic Compounds (VOCs) by Method 8260B
- Semivolatile Organic Compounds (SVOCs) by Method 8270C
- Polychlorinated biphenyls (PCBs) by Method 8082
- Metals by Methods 6000/7000 including mercury by Methods 7470A and 7471A
- Cyanide by Method 9012A
- Alcohols by Method 8015
- Hydrocarbons (diesel fuel compounds) by methods specified in the STARS #1 Memo
- Other inorganics in groundwater by various EPA Methods
- VOCs by EPA Method TO-15 (soil gas/air samples only)

The laboratory testing will be performed in accordance with procedures specified in the NYSDEC Analytical Services Protocol (ASP) [NYSDEC, 2000] and the published EPA SW-846 methods.

D.2 RECORDKEEPING

Notes regarding field activities, observations, and measurements will be documented in ink in a bound project logbook. Information to be recorded will include the following:

- The names of personnel on site and their organizations
- A time log that records the events that occur during each day on site
- A list of equipment used
- A description of sampling methods and procedures
- Sample types, locations, collection times and required laboratory analyses
- Weather conditions
- Instrument calibration results
- Water levels
- Well purging data
- Other information as necessary

D.3 EQUIPMENT DECONTAMINATION

In order to minimize the potential for cross contamination during sampling, disposable sampling equipment will be used when possible. Decontamination of non-disposable equipment will be performed prior to use at a new location or for sample collection. Decontamination of non-disposable sampling equipment will include a soap/water wash, potable water rinse, distilled water rinse, and wipe-drying with a clean cloth or air drying. During groundwater sampling, new pump tubing will be used at each well location. The submersible pump, if used, will be cleaned with a soap/water wash and distilled water rinse prior to purging/sampling each well.

D.4 QUALITY CONTROL SAMPLES

Quality control samples will be collected and analyzed as follows:

- An aqueous trip blank prepared by the laboratory will accompany each sample shipment. The trip blanks will be analyzed for the same VOC parameters as the soil and groundwater samples.
- Aqueous field blank samples will be collected during the soil and groundwater sampling events. One aqueous field blank will be collected during the RI/FS soil sampling and one aqueous field blank will be collected for each groundwater monitoring event. The field blanks will be collected by pouring analyte-free water (provided by the laboratory) over the sampling equipment and containerizing the rinsate in the appropriate laboratory bottles. The field blanks will be analyzed for the same parameters as the soil and groundwater samples.
- One duplicate groundwater sample will be collected from a specific monitoring well during each groundwater sampling event. The duplicate will be collected at the same time, using

the same procedures, and analyzed for the same parameters as the original groundwater sample.

- A matrix spike/matrix spike duplicate (MS/MSD) sample will be collected from a specific well during each groundwater monitoring event. MS/MSDs are known amounts of specific chemical constituents added by the laboratory to selected samples to evaluate the effect of the sample matrix on the preparation and analytical procedures. Matrix spikes are performed in duplicate and are referred to as MS/MSDs.
- One blank sample will be collected for analysis by EPA Method TO-15 during each sub-slab vapor and indoor/outdoor air sampling event completed at the Area B office building.

D.5 DATA REVIEW AND VALIDATION

Category B deliverables as defined in the NYSDEC ASP will be reported for all samples collected during remedial investigation activities. Analytical data will be validated by a MACTEC project chemist in accordance with NYSDEC Data Usability Summary Report (DUSR) guidelines (NYSDEC, 2002) and Honeywell Remediation program data validation procedures. Validation will be completed prior to use as final data in investigation reports. Three levels of validation are established for Honeywell projects. A data validation scope will be selected for each sample set based on the data quality goals and needs of that task.

D.5.1 Project Accuracy and Precision Goals

Accuracy and precision limits have been identified for the analytical quality control measurements that will be performed in association with the collection and analysis of field samples. A summary of project limits are summarized in Table 8-1. These limits were determined based on USEPA Region 2 data validation guidelines and the professional judgment of the project QAO. They represent QA/QC goals for the project to ensure that data meet a minimum quality standard for evaluation of site contamination and data use in remedial investigation reports. These limits will be used to review and evaluate data quality and data usability during data validation.

D.5.2 Data Validation Levels

Data validation will be completed for all remedial investigation samples and the data validation observations and actions will be summarized in a DUSR. Three general levels of data validation are described for data collected under the Honeywell Remediation Program. Validation Levels II, III, and IV have been established to provide standards for analytical data review and to allow projects to determine validation procedures that are appropriate for the data quality goals for each investigation task. Level II validation includes a review of basic QA/QC procedures and measurements that are associated with environmental laboratory analyses, and it represents a generic minimum review of data quality. Level II and Level IV are completed for investigation data that need more intensive validation to support additional data quality objectives or regulatory guidelines and to provide calculation and transcription. Remedial investigation samples will have Level II validation with 10 percent Level IV.

Level II includes the following data checks and evaluations:

- A review of the data set narrative to identify and issues that the lab reported in the data deliverable;
- A check of sample integrity (sample collection, preservation, and holding times);
- An evaluation of basic QC measurements used to assess the accuracy and precision of data including QC blanks, laboratory control samples (LCS), matrix spikes/matrix spike duplicates (MS/MSD), surrogate recovery when applicable, and field or lab duplicate results; and,
- A review of sample results, target compounds, and detection limits to verify that project analytical requirements are met.

Level III would include all of Level II plus some additional method-specific QC checks including instrument calibration, internal standard response for gas chromatography/mass spectrometry (GC/MS), and interference checks and serial dilutions data for inorganics.

Level IV would include all Level II and Level III checks with additional calculation and raw data checks to verify that no reporting errors have occurred. Data validation actions will be based on general USEPA National guidance documents (USEPA; 1999; USEPA, 2004) and the professional judgment of the project chemist and QAO.

MACTEC may use the EIM system to complete a computerized Level II validation of each data package to check that the project quality control requirements specified in subsections 4.2 and subsection 8.1. Data qualifiers will be applied to results that do not meet project goals. EIM will

produce a summary of data validation actions for each sample set. The summaries will be reviewed and approved by the project chemist prior to finalization of the validated data. The data will be evaluated/qualified based on the following parameters (if available/applicable) and specified criteria:

A DUSR will be prepared for data sets reported from each distinct sample collection effort. The validation report will include a summary of analytical methods performed, listings of samples included in the review, and summaries of data validation actions or observations.