# Interim Remedial Measures (IRM) Work Plan

Railroad Realignment Phase I-III Business Park Areas Lackawanna, New York BCP Site No.s C915197– C915199

October 2010

0071-010-124

Prepared For:

Tecumseh Redevelopment Inc. Richfield, Ohio

Prepared By:





2558 Hamburg Turnpike, Suite 300, Buffalo, NY | phone: (716) 856-0635 | fax: (716) 856-0583

## INTERIM REMEDIAL MEASURES (IRM) WORK PLAN FOR RAILROAD REALIGNMENT

TECUMSEH REDEVELOPMENT INC. LACKAWANNA, NEW YORK

October 2010

0071-009-124

Prepared for:

**TECUMSEH REDEVELOPMENT INC.** 

Prepared by:



In association with:



#### CERTIFICATION

I, <u>Thomas H. Forbes, P.E.</u>, certify that I am currently a NYS registered professional engineer and that this Interim Remedial Measures (IRM) Work Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

ma

10-22-10

Date

Thomas H. Forbes, P.E.

License No.: 070950-1

Registration State: New York

SEAL:

### IRM WORK PLAN FOR RAILROAD REALIGNMENT TECUMSEH REDEVELOPMENT SITE LACKAWANNA, NEW YORK

#### **Table of Contents**

| 1.0 INTRODUCTION                                       | 1              |
|--------------------------------------------------------|----------------|
| 1.1 Background                                         | 1              |
| 1.2 Purpose and Scope                                  |                |
| 1.3 Project Organization and Responsibilities          | 3              |
| 2.0 Pre-IRM Investigation                              | 4              |
| 2.1 Pre-IRM Sample Collection and Analysis             |                |
| 2.2 Pre-IRM Investigation Results                      |                |
| 2.2.1 Field Observations                               |                |
| 2.2.2 Analytical Results                               | 6              |
| 2.3 Supplemental Sampling                              |                |
| 3.0 TECHNICAL APPROACH                                 | 9              |
| 3.1 Pre-Mobilization Tasks                             | 9              |
| 3.1.1 Document Repository                              | 9              |
| 3.1.2 Pre-Construction Meeting                         |                |
| 3.1.3 Progress Meetings                                | 10             |
| 3.1.4 Health and Safety Plan Development               | 10             |
| 3.2 Temporary Facilities and Controls                  | 10             |
| 3.2.1 Temporary Construction Facilities                | 10             |
| 3.2.2 Dust Suppression                                 | 11             |
| 3.2.3 Storm Water Management                           | 11             |
| 3.3 Excavation, Disposal and Backfill of Hotspot Areas | 12             |
| 3.4 Rail Bed Construction                              |                |
| 3.4.1 Subgrade Preparation and Regrading               | 13             |
| 3.4.2 Potentially Impacted Soil/Fill                   |                |
| 3.4.3 Cover System Construction                        | 14             |
| 4.0 COMMUNITY AIR MONITORING                           | 15             |
| 5.0 DOCUMENTATION AND REPORTING                        | 16             |
| 5.1 Construction Monitoring                            |                |
| 5.2 Progress Reports                                   | 16             |
| 5.3 IRM Construction Closeout Report                   | 17             |
| 6.0 PROJECT SCHEDULE                                   |                |
| 0071 000 124                                           | TURNKEY        |
| 0071-009-124                                           | LEON MINH, LLO |

### IRM WORK PLAN FOR RAILROAD REALIGNMENT TECUMSEH REDEVELOPMENT SITE LACKAWANNA, NEW YORK

#### **Table of Contents**

| 7.0 | Site Management and Institutional Controls | 19 |
|-----|--------------------------------------------|----|
| 8.0 | REFERENCES                                 | 22 |

#### LIST OF TABLES

| Table 1 | Summary of Railro | ad Realignment So | il Analytical Results |
|---------|-------------------|-------------------|-----------------------|
|---------|-------------------|-------------------|-----------------------|

Table 2Summary of Soil Analytical Results for Hotspot Areas

#### LIST OF FIGURES

- Figure 1 Site Location and Vicinity Map
- Figure 2 Railroad Realignment Corridor Sample Locations
- Figures 3a-3d Planned Hotspot Excavation Limits

#### **APPENDICES**

- Appendix A Test Pit Logs
- Appendix B 2009 Investigation Analytical Data Package
- Appendix C 2010 Supplemental RI Analytical Data Packages
- Appendix D Project Documentation Forms
- Appendix E Site Health and Safety Plan and Community Air Monitoring Plan
- Appendix F Railroad Ballast Specifications



#### **1.0 INTRODUCTION**

This document presents the proposed scope of work for completion of an Interim Remedial Measure (IRM) at the Tecumseh Redevelopment Site in Lackawanna, New York (see Figure 1). The IRM is being performed on behalf of Tecumseh Redevelopment Inc. (Tecumseh) through the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP). Tecumseh and the NYSDEC have entered into separate Brownfields Cleanup Agreements (BCAs) for the Phase I, II, and III Business Park Areas of the Site, which will house the majority of the relocated rail line.

The proposed rail corridor realignment, which is planned for implementation by the Erie County Industrial Development Agency (IDA) with State and Federal funding, will relocate tracks currently running along the eastern boundary of the Phase I and II Business Park Areas of the Site (parallel to Route 5) to an alternate alignment along the western portion of the Phase I and II Business Park Areas and along the eastern perimeter of the Phase III Business Park Area (see Figure 2). The proposed corridor measures approximately 12,500 feet, with approximately 10,000 feet located on the Tecumseh property through Business Park Areas I, II, and III.

In May 2009, TurnKey Environmental Restoration, LLC (TurnKey) performed a Remedial Investigation (RI) at the Phase II Business Park Area (Ref. 1). As an extension of this work, a pre-IRM investigation was undertaken along the planned location for the railroad realignment. This IRM Work Plan includes a summary of pre-IRM investigation findings, and the planned approach for implementation of the IRM coincidental with construction of the relocated rail line.

#### 1.1 Background

South Buffalo Railroad (SBRR), now owned by Genesee and Wyoming, Inc. (G&W), operates short haul railroad services supplying local manufacturing plants and connecting them with CSX and Norfolk Southern lines. SBRR operates switching yards and provides rail service for the entire Tecumseh Site, as well as the adjacent Port of Buffalo (Gateway Metroport Canal). In order to maximize the redevelopment potential in the Business Park Areas along NYS Route 5 and improve the currently limited access to and from the Tecumseh property, active rail lines along NYS Route 5 will be relocated to



the western edge of the BCP Business Park Phases I and II as well as into a portion of BCP Business Park Phase III as shown in Figure 2. The relocated rail line will also better serve the medium and heavy industrial transportation needs further toward the western and interior portions of the Tecumseh property as well as the intermodal (e.g., ship to truck, rail to ship, etc.) transportation needs in the vicinity of the Gateway Metroport operation to the north.

Following construction of the relocated line, the improvement (track and ballast) will be owned by the IDA for a period of ten years, after which the asset will revert to Genesee and Wyoming, Inc. The underlying land will remain with Tecumseh Redevelopment, with use of the line governed by an access license between Tecumseh and G&W.

#### 1.2 **Purpose and Scope**

The proposed railroad relocation is slated to begin in late Fall 2010 prior to completion of remedial activities in the Business Park Areas. Accordingly, Tecumseh is proposing to remediate the portion of the railroad realignment that falls within the Business Parks as an IRM. The proposed scope of IRM activities includes:

- Excavating and disposing off-site impacted hotspot soil/fill material prior to rail corridor construction activities.
- Backfilling and compacting the excavations with NYSDEC Beneficial Use Determination (BUD)-approved iron slag.
- Regrading (minor cut) and leveling the corridor to facilitate placement of ballast as the railroad bed. Proper soil/fill management techniques will be employed to identify and manage any additional impacted soil/fill, if encountered.
- Importing and placing a minimum one foot thick layer of ballast and rail ties over the subgrade fill to serve as a cover system beneath the newly constructed tracks<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup> The subject IRM will pertain only to the tracked area covered by ballast and ties. Ultimately, additional cover may be required across the remainder of the rail corridor and other occupied areas of the Business Parks.



This IRM Work Plan has been prepared in accordance with Section 5.3.b of NYSDEC's May 2010 DER-10 Technical Guidance for Site Investigation and Remediation. As such, it addresses the following items:

- A description of the remedial actions to be undertaken as part of the IRM and the basis for the actions (Sections 2.0 and 3.0).
- The location and description of any temporary construction facilities (Section 3.2).
- Dust, storm water, and erosion control measures required for minimizing potential releases of soil/fill outside the work zone during construction (Section 3.2).
- Health, safety, and community air monitoring procedures (Sections 3.1.4 and 4.0.
- A description of documentation sampling, which was performed in September and October 2010 to pre-establish hotspot excavation limits (Section 2.3).
- Equipment decontamination and site restoration requirements, including requirements for subgrade backfill and cover materials (Sections 3.3 and 3.4).
- Project documentation requirements and anticipated construction schedule (Sections 5.0 and 6.0).
- A description of institutional controls and Site Management requirements that will be implemented as part of the overall remedy for the Business Park Sites (Section 7.0).
- A summary of drawings and information to be provided as part of the Construction Completion Report (Section 5.3).

#### 1.3 **Project Organization and Responsibilities**

TurnKey will implement the hotspot removal and backfill work, on behalf of Tecumseh Redevelopment, on a design-build basis. Remaining construction activities outlined in this IRM Work Plan will be conducted by the Erie County IDA's contractor, with TurnKey providing observation and documentation of the IRM activities. The NYSDEC Division of Environmental Remediation will monitor the remedial actions to verify that the work is performed in accordance with the approved IRM Work Plan.



#### 2.0 Pre-IRM Investigation

NYSDEC's remedial program regulations (6NYCRR Part 375) require removal of source area materials to the extent feasible. The primary objective of the pre-IRM investigation was to check for the presence of grossly-impacted slag/fill (as identified through visual and olfactory observations and PID readings) as well as inorganic "hotspots" within the realignment area so that they can be appropriately addressed prior to placement of the ballast and railroad tie cover system.

The investigation approach, which involved excavation of a series of test pits along the proposed rail alignment, was documented in the RI Work Plan for the Phase II Business Park Area (Ref. 1). In May of 2009, 48 test pits were excavated along the proposed railroad realignment area within Tecumseh's property (see Figure 2) to allow for visual/olfactory and photoionization detector (PID) assessment of subsurface conditions and to obtain representative samples for chemical characterization. Although 52 test pits were originally planned, four of these test pits were not completed as the locations fell at the center of the South Return Water Trench (RR-TP-24 and RR-TP-48) or the existing railroad track (RR-TP-14 and RR-TP-15). The test pit locations were focused on the portion of the planned rail realignment that fell within Business Parks II and III, since the Remedial Investigation in Business Park I as well as required hotspot soil removal activities in that portion of the Site were already complete at the time of the subject pre-IRM investigation. The test pits, which were spaced at approximate 100-foot intervals, were excavated to native soils or the top of the water table with the majority of the samples collected from the shallow (0-2 feet below grade) slag/fill to characterize the interval of greatest potential exposure. Upon completion of each test pit the associated slag/fill material was returned to the excavation in the opposite order in which it was removed and compacted to match existing grade. Test pit logs are presented in Appendix A.

Following the investigation, the planned rail corridor realignment was slightly altered to accommodate South Buffalo Railroad's final design requirements. As a result, Test Pits RR-TP-17 through RR-TP-23 and RR-TP-47 through RR-TP-52 fell south of the final rail corridor. However, certain test pits excavated in support of the Phase III BPA remedial investigation (i.e., Test Pits BPA 3-TP-52, 53, 54, and 81) are now



proximate to the realignment area and are therefore included in the discussion of the Pre-IRM investigation results presented herein. Similarly, certain test pits advanced during the RI for the Phase II Business Park Area (Test Pits BPA 2-TP-24, 30, 34, 74, and 92) are also described herein as they also fall within the railroad corridor.

#### 2.1 **Pre-IRM Sample Collection and Analysis**

As indicated above, the pre-IRM investigation was geared toward identifying grossly-impacted slag/fill and inorganic "hotspot" areas within the realignment area. Because inorganics are not readily discernible in the field, representative soil/slag-fill samples were collected from alternating test pits for analysis of select inorganic constituents of potential concern (COPCs), including arsenic, barium, cadmium, chromium, lead and mercury. The Work Plan also specified that if any test pit exhibited elevated PID readings (greater than 20 ppm) in the test pit atmosphere or in the excavated spoils a second representative aliquot from the associated soil/slag-fill location would be analyzed for Target Compound List (TCL) Volatile Organic Compounds (VOCs). In addition, two test pits were subjected to additional analysis based upon field observations: at RR-TP-30, slag/fill was analyzed for PCBs based upon the presence of an apparent transformer pad in that area; and an apparent floating layer on the water table at RR-TP-49 prompted analysis of deeper slag/soil at the water table interface for TCL VOCs and semi-volatile organic compounds (SVOCs).

#### 2.2 **Pre-IRM Investigation Results**

#### 2.2.1 Field Observations

During the pre-IRM test pit investigation no visual or olfactory evidence of potential impact was documented with the exception of the above-described observation on the water table at TP-49 (which does not fall within the final realigned corridor limits). The highest PID reading (5.3 ppm) was measured at 3 feet below grade in test pit RR-TP-26; the remaining test pits exhibited PID readings ranging from 0-3 ppm (see test pit logs in Appendix A). Similarly, the above-referenced Phase II and III Business Park Area Test Pits proximate to the realignment exhibited low PID readings and no visual or olfactory evidence of impact with the exception of Test Pit BPA-3-TP-54, which exhibited



moderate odor and a maximum PID reading of 102 ppm in the saturated zone beginning at 7.5 feet below grade. However, test pits proximate to the planned rail realignment (BPA-3-TP-52 and 53) indicated no odors and a maximum PID reading of only 7ppm. In addition, analytical results from unsaturated soils at BPA-3-TP-54 indicated only trace levels of VOCs. Thus it appears that the field observation at BPA-3-TP-54 is isolated in the saturated zone at that location.

#### 2.2.2 Analytical Results

Table 1 presents a summary of the test pit analytical data for the pre-IRM investigation. The laboratory analytical data package is included in Appendix A. Table 1 also includes a summary of the Phase II and III Business Park Area RI test pits proximate to the rail realignment (where sampled). For purposes of comparison, Table 1 presents Part 375 commercial soil cleanup objectives (SCOs) as well as industrial SCOs per 6NYCRR Part 375. Comparison of the soil/fill results to Commercial and Industrial SCOs is appropriate based on the industrial nature of the rail operation and the planned commercial and industrial redevelopment of the Business Park Areas per the BCP applications filed for these areas. As indicated on Table 1, arsenic concentrations in 22 of the 30 slag/fill samples (approx 73%) exceeded the Part 375 Commercial and Industrial SCO of 16 ppm, with exceedances ranging from 16.8 to 149 parts per million (ppm). No VOCs were detected with the exception of trace (estimated) concentrations well below the SCOs at BPA-3-TP-54, BPA-2-TP-30 and RR-TP-49. In addition, certain semivolatile organic compounds (SVOCS), specifically benzo(b)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene were detected in the proximate Business Park Area RI test pits slightly above restricted-commercial and/or industrial SCOs. Finally, test pit RR-TP-30 exhibited Aroclor 1260 at 52 ppm, which is approximately two times the industrial SCO.

#### 2.3 Supplemental Sampling

Although no evidence of product or grossly impacted soil/fill was encountered, Test pit RR-TP-30 exhibited elevated PCB detections and three others (RR-TP-4, RR-TP-12, and RR-TP-42) exhibited arsenic in the 0-2' depth interval at concentrations above 100 ppm (i.e., approaching an order of magnitude greater than the SCO). Although



elevated arsenic concentrations are prevalent across the Site, these test pit areas are considered by the NYSDEC to be indicative of hot spots that need to be addressed prior to placement of the ballast & track.

To define the lateral extent of these hotspot areas, TurnKey conducted a supplemental investigation in the vicinity of these four test pits. On August 19, 2010, a TurnKey project scientist excavated shallow test pits (approximately 25 feet in each compass direction) from the original test pit. Sidewall samples (0-2 foot) were collected and analyzed for the parameter of concern (arsenic or PCBs) at each of these supplemental sampling locations. In addition, a composite sample was collected from the floor of the supplemental test pits to verify that a 2-foot excavation depth was sufficient. Representative samples for TCLP metals analysis were also collected from the hotspot areas to assess off-site disposal options.

Table 2 summarizes the results from the supplemental sampling; Appendix C contains the laboratory analytical data package. As shown on Table 2, none of the locations exhibited hazardous waste characteristics based upon TCLP metals results. In addition, PCB concentrations are substantially lower at the supplemental locations surrounding RR-TP-30 and at the 2-foot depth interval (and are in fact below the commercial SCOs). Similarly, arsenic levels drop off to levels well below 100 ppm at all of the supplemental test pits surrounding RR-TP-04 with the exception of RR-TP-04 west, which yielded arsenic concentrations of approximately 125 ppm. However, because this western location is proximate to existing rail line with ballast (which will remain as part of the new corridor) the excavation will be limited to approximately 25 feet in the western direction.

At the remaining two locations an additional round of supplemental sampling was required to determine the extent of the arsenic impacts. The supplemental sampling work was undertaken on September 30, 2010. At RR-TP-12, additional sampling was performed from the 0-2' BGS depth at distances of 35 and 50 feet north of the original test pit due to the presence of arsenic at 126 ppm a distance of 25 feet north of RR-TP-12. (Although the sample collected 25 feet west of RR-TP-12 also yielded an elevated arsenic level, additional samples were not completed further west due to the presence of active rail line with ballast, therefore the excavation will be limited to 25-feet in the western direction). At RR-TP-42 additional sampling was performed from the 0-2' BGS interval at distances of 35-feet north and 35-feet and 50-feet south of the original location



because of the presence of elevated arsenic at the 25-foot intervals in these same compass directions. No samples were collected further east of RR-TP-42 due to the presence of an active substation in that area of the Site.

Results of the September 30<sup>th</sup> sampling are presented on Table 2. Because arsenic remained present at substantially elevated levels at 50 feet north of RR-TP-12 and 50 feet south of RR-TP-42, a third and final round of samples was collected from the 0-2 foot depth interval an additional 25 feet away from these locations (i.e., RR-TP-12 North-75 and RR-TP-42 South-75). The samples were collected on October 13, 2010. As shown on Table 2, the arsenic results at these locations dropped to below 100 ppm in both instances.



#### 3.0 TECHNICAL APPROACH

#### 3.1 **Pre-Mobilization Tasks**

#### 3.1.1 Document Repository

Citizen Participation (CP) Plans have been prepared for each of the Tecumseh Business Park Sites. Upon approval of this IRM Work Plan, a final hard copy will be made available for public review at the NYSDEC Region 9 office and the Lackawanna Public Library.

#### 3.1.2 Pre-Construction Meeting

A project coordination meeting will be held with key representatives of the Project Team both before the hotspot excavation work and prior to clearing/placement of cover materials. Attendees at the initial (pre-hotspot removal) meeting will include TurnKey's Project Manager and the remediation contractor. The designated NYSDEC Project Manager and New York State Department of Health (NYSDOH) representative will also be notified and invited to attend. At the subsequent (pre-rail construction) meeting, attendees will include these same individuals as well as the Project Manager/Engineer for the rail relocation project and Erie County representatives. Agenda items will include:

- Construction schedule.
- Work sequencing.
- Designation of responsibilities, contact personnel and pager/phone numbers.
- Project documentation requirements.
- Staging of equipment.
- Transportation routes/site egress.
- Health and safety requirements.
- Temporary controls (dust suppression, storm water management).
- Work hours.
- Site security.

TurnKey will prepare meeting minutes for distribution to attendees following the project coordination meeting.



#### 3.1.3 Progress Meetings

Progress meetings will be conducted on a regular basis throughout the construction period. Progress meetings will be attended by TurnKey and the rail relocation Project Manager, contractor personnel, and, if appropriate, key subcontractors. NYSDEC and NYSDOH will have access to all progress meetings.

#### 3.1.4 Health and Safety Plan Development

The April 2010 Site Health and Safety Plan (HASP) for Brownfield Cleanup Program (Appendix E), prepared in accordance with the requirements of 40 CFR 300.150 of the NCP and 29 CFR 1910.120 and previously approved by the NYSDEC for Business Park investigation work, will be used for the IRM activities described herein. TurnKey will be responsible for site control and for the health and safety of its authorized site workers. All contractors and other parties involved in onsite construction will be required to develop a HASP as or more stringent than TurnKey's HASP. The HASP will be subject to revision, as necessary, based on new information that is discovered during the IRM.

TurnKey will also be responsible for the performance of community air monitoring during intrusive activities involving subgrade disturbance as discussed in Section 4.0 of this Work Plan.

#### 3.2 Temporary Facilities and Controls

#### 3.2.1 Temporary Construction Facilities

The former Water Quality Control Station 3A garage located on the Phase III Business Park Site will serve as field office for the personnel involved in hotpot removal and IRM cover system observation work. Additional temporary construction facilities (field trailer) may be installed by the County's contractor prior to initiation of cover system construction. The location of the facilities will be discussed with the NYSDEC during the pre-construction meeting.



#### 3.2.2 Dust Suppression

Dust suppression will be an integral component of the hotspot excavation and regrading activities. During hot spot excavation and regrading work, water will be sprayed across the surface of the work area as necessary to mitigate airborne dust formation and migration and assure conformance with community air monitoring thresholds. Water will also be sprayed as needed to control visible dust migration from the handling, placement, and compaction of cover material. Other dust suppression techniques that may be used to supplement the water spray include:

- Applying water on haul roads.
- Hauling materials in properly tarped containers or vehicles.
- Restricting vehicle speeds on-site.

All reasonable attempts will be made to keep visible and/or fugitive dust to a minimum and adhere to particulate emissions limits identified in the Community Air Monitoring Plan (Section 4.0).

#### 3.2.3 Storm Water Management

Due to the highly permeable nature of the slag/fill material, its coarse gradation, and the relatively flat topography in the proposed work area, storm water ponding/runoff is not expected to pose a significant soil particulate or contaminant transport pathway due to IRM activities. Nevertheless, the project will encompass over 1-acre of property. Accordingly, the County's contractor has prepared a Storm Water Management Plan for the rail relocation work and has filed an NOI application for SPDES coverage under General Permit for Storm Water Discharges from Construction Activity (i.e., GP-0-10-001).

During the preceding hotspot removal work, TurnKey will undertake specific measures to assure proper management of storm water and preclude migration of contaminants to surface waters or other areas of the Site. These will include:

• Direct loading of trucks where feasible to avoid staging of impacted materials.



- Use of poly sheeting for lay-down and daily cover if staging of impacted materials is necessary.
- Prompt backfilling of excavations upon completion.

#### 3.3 Excavation, Disposal and Backfill of Hotspot Areas

Planned IRM activities involve excavation of hotspot soil/fill areas with off-site disposal at an approved commercial landfill facility(s). Hotspot soil/fill areas will be removed to pre-established excavation limits based on the pre-removal characterization testing and subsequent documentation sampling discussed in Section 2.0. Excavation limits are shown on Figures 3a through 3d and described below:

- **RR-TP-30**: Excavation will proceed to a depth of 2 feet below grade at an approximate 50' x 50' area centered on RR-TP-30. PCB-impacted soil/fill will be disposed at a permitted RCRA Subtitle C landfill.
- **RR-TP-4:** Excavation will proceed to a depth of 2 feet below grade at an approximate 50' x 50' area centered on RR-TP-4. Arsenic-impacted soil/fill will be disposed at a permitted RCRA Subtitle D sanitary landfill facility.
- **RR-TP-12:** Excavation will proceed to a depth of 2 feet below grade with lateral dimensions of approximately 75' N x 25' S x 25' E x 25' W of RR-TP-12. Arsenic-impacted soil/fill will be disposed at a permitted RCRA Subtitle D sanitary landfill facility.
- **RR-TP-42:** Excavation will proceed to a depth of 2 feet below grade with lateral dimensions of approximately 35' N x 75' S x 25' E x 25' W of RR-TP-42. Arsenic-impacted soil/fill will be disposed at a permitted RCRA Subtitle D sanitary landfill facility.

The excavation areas will be backfilled with Beneficial Use Determination (BUD)approved steel slag (BUD#555-9-15) and compacted to 95% of modified proctor density prior to placement of ballast. Additional documentation samples will not be collected as the hotspot areas have been defined by sampling conducted during the supplemental investigation described in Section 2.3.

#### 3.4 Rail Bed Construction

#### 3.4.1 Subgrade Preparation and Regrading

Following the hotspot removal work, TurnKey will be on-site periodically during corridor preparation activities to observe Erie County's designated rail construction contractor operations, verify that appropriate Site Management Plan requirements are fulfilled during site clearing work, and verify that no slag/fill materials are removed from the Site unless they are properly characterized and disposed at a permitted offsite disposal facility.

Site preparation activities will begin with removing any loose debris and trash located on the surface of the property. Wooded vegetation will be chipped for mulch and spread onsite. Any exposed steel scrap will be removed from the Site for scrap recovery purposes. Minor regrading to fill in low spots and achieve subgrade elevations will be performed. If cut is necessary to achieve grade, spoils will be reused as fill in low areas or spread onsite near the cut area provided it does not exhibit field evidence of impact. Additional import fill, if necessary, will be comprised of (BUD)-approved steel slag (BUD#555-9-15). Pre- and post-grading elevation measurements will be made to document final subgrade elevations. Erie County's engineering firm, C & S Engineers, Inc., is currently finalizing the Construction Documents showing grading elevations, which will be available on-site for review during construction.

#### 3.4.2 Potentially Impacted Soil/Fill

If field evidence of potentially impacted soil/fill is encountered during regrading activities, TurnKey will arrange for the subject material to be stockpiled on polyethylene sheeting in an accessible location near the impacted area. The location of staged materials will be coordinated with the NYSDEC Project Manager, but will remain within the same Business Park Area as the source to avoid administrative issues associated with import/export of these materials among differing BCP sites. Field evidence of impact is defined as having readily identifiable visual or olfactory signs of contamination, including product, tars, or elevated PID readings (i.e., sustained readings >20 ppm). The stockpiled material will be covered with polyethylene sheeting to prevent infiltration of precipitation and wind erosion.



All impacted soil/fill removal work will be directed by an experienced TurnKey scientist. Removal will continue until visually impacted soil/fill is removed or NYSDEC agrees that no further removal of deleterious soil/fill is required.

The stockpiled material will be characterized per the requirements of a suitable permitted offsite disposal facility, and an appropriate disposal plan will be developed and submitted to the NYSDEC for approval and implementation.

#### 3.4.3 Cover System Construction

Construction of the railroad bed cover system will follow regrading activities. The railroad bed cover system will involve placement of a minimum 1-foot layer comprised of ballast material meeting the requirements of the specification in Appendix F and embedded wood rail ties. Since the ballast layer and ties will be visually discernible from the underlying slag and will be covered by active rail (minimizing potential for inadvertent removal during other site work), no demarcation material or layer will be installed.

Ballast material shall be compacted in accordance with rail construction contract requirements to mitigate potential for settlement. Verification of ballast material cover depth will be independently verified by TurnKey through survey level measurements relative to adjacent grade spaced no greater than 100 feet on center. Depth verification measurements will be included in the IRM Construction Closeout Report discussed later in this Work Plan.



#### 4.0 COMMUNITY AIR MONITORING

Real-time community air monitoring will be performed by TurnKey during all intrusive IRM activities at the Site, including hotspot removal and grading activities involving soil/fill cut. A Community Air Monitoring Plan (CAMP) is included with TurnKey's HASP. Particulate and vapor monitoring will be performed at a distance of approximately 100 feet downwind of the work area during excavation and grading activities involving subgrade disturbance. In addition, no visible dust will be allowed beyond the site perimeter during these activities or during import/cover material placement/compaction activities. The CAMP is consistent with the requirements for community air monitoring at remediation sites as established by the NYSDOH and NYSDEC. Accordingly, it follows procedures and practices outlined under NYSDOH's Generic Community Air Monitoring Plan (dated June 20, 2000) and NYSDEC Technical Assistance and Guidance Memorandum (TAGM) 4031: Fugitive Dust Suppression and Particulate Monitoring Program at Inactive Hazardous Waste Sites.

#### 5.0 DOCUMENTATION AND REPORTING

TurnKey will be periodically on-site during regrading and cover material placement to document IRM activities. Such documentation will include, at minimum, reports of construction activities, community air monitoring results, and photographs and sketches, as necessary.

#### 5.1 Construction Monitoring

Standard reporting procedures for site activities will include preparation of a daily report and, when appropriate, problem identification and corrective measures reports. Appendix D contains sample project documentation forms. Information that may be included on the daily report form includes:

- Processes and locations of construction under way.
- Equipment and personnel working in the area, including subcontractors.
- A description of off-site materials received, including any quality verification (certification) documentation.

The completed reports will be available on-site and will be submitted to the NYSDEC as part of the IRM Construction Closeout Report.

Problem identification and corrective measures reports will be completed whenever major field problems are encountered and corrective measures are necessary. These reports will be attached to the monthly progress reports. The NYSDEC will be promptly notified of problems requiring modifications to this Work Plan prior to proceeding or completion of the construction item. Changes or additions will be noted in the Construction Closeout Report.

Photo documentation of IRM activities will be prepared by TurnKey throughout the duration of the project as necessary to convey typical work activities and whenever changed conditions or special circumstances arise. Photos will be provided in digital format.

#### 5.2 **Progress Reports**

TurnKey will prepare and submit to NYSDEC monthly progress reports that include:

- Activities performed during reporting period.
- Results of tests or other pertinent data.
- Work scheduled for the upcoming reporting period.
- Other actions/information pertinent to the project.
- Percentage of completion, delays encountered or anticipated that may affect the schedule, and a description of efforts made to mitigate those delays or anticipated delays.

#### 5.3 IRM Construction Closeout Report

An IRM Construction Closeout Report (CCR) will be prepared and submitted to the NYSDEC after the cover system is constructed. The report will be submitted within 60 days of completion of the work. The CCR will be prepared consistent with the requirements of Section 5.8 of DER-10 and will include:

- Text describing the hotspot removal, regrading and cover system construction activities performed
- A description of any problems encountered, deviations from the Work Plan and associated corrective measures taken; and other pertinent information necessary to document that the Site activities were carried out in accordance with this Work Plan.
- A Site or area planimetric map showing the extent of hotspot areas excavated.
- The mass of hotspot material excavated and offsite disposal facilities per scale receipts from off-site disposal facility.
- Survey record drawings, as provided by the County's Engineer, showing the grade prior to and following cover system placement and Benchmarks.
- Tabular summary of volume/type/source of cover system material.
- Copies of daily inspection reports and, if applicable, problem identification and corrective measure reports.
- A certification by a licensed NYS Professional Engineer in accordance with Section 1.5 of DER-10

The IRM Construction Report will be included as an appendix to each of the Final Engineering Reports for BPA I, II, and III.



#### 6.0 **PROJECT SCHEDULE**

Hotspot removal and backfill activities will be initiated within 3 weeks of approval of this Work Plan, and are tentatively scheduled for initiation in early November 2010. Construction activities related to the rail corridor relocation are slated to begin in late December 2010. It is anticipated that the IRM field activities will be completed within approximately four weeks of initiation barring significant weather delays or issues related to acceptability by the offsite disposal facility(s). The NYSDEC Project Manager will be notified 7 days in advance of all field activities.



#### 7.0 Site Management and Institutional Controls

The IRM activities described herein are expected to become an integral component of the final remedy for the associated Phase I-III Business Park Areas. Because the IRM employs a cover system to achieve the remedial objectives (representing a Track IV cleanup under the BCP), it will be necessary to prepare and implement a Site Management Plan to assure that the IRM remains effective throughout the post-remedial period as described below.

#### 7.1 Site Management Plan

Site Management Plan (SMPs) will be prepared and submitted concurrent with the Final Engineering Reports (FERs) for the Phase I-III Business Park Sites. The purpose of the Site Management Plan is to assure that proper procedures are in place to provide for long-term protection of human health and the environment after remedial construction is complete. The SMP is comprised of four main components:

- Engineering and Institutional Control Plan
- Site Monitoring Plan
- Operation and Maintenance Plan
- Inspections, Reporting, and Certifications

#### 7.1.1 Engineering and Institutional Control Plan

An institutional control in the form of a new Environmental Easement will be necessary to limit future use of each of the Business Park Sites to restricted (commercial or industrial) applications and prevent groundwater use for potable purposes. An existing deed restriction is on file for the Tecumseh Site limiting reuse to commercial/industrial applications. However, industrial uses are loosely defined and allow incidental commercial-type facilities such as offices and laboratories, provided that they do not allow for occupancy by multiple numbers of persons under the age of 18. The deed restriction also prohibits construction or use of groundwater extraction wells (excluding monitoring and remediation wells).

Concurrent with completion of remedial measures Tecumseh will prepare an Engineering and Institutional Control (EC/IC) Plan for each of the Business Park Areas that will include a complete description of all institutional and/or engineering controls



employed on the Business Park Sites, including the mechanisms that will be used to continually implement, maintain, monitor, and enforce such controls. The EC/IC Plan will include:

- A description of all EC/ICs on the site.
- The basic implementation and intended role of each EC/IC.
- A description of the key components of the ICs set forth in the Environmental Easement.
- A description of the features to be evaluated during each required inspection and periodic review, including the EC/IC certification, reporting, and Site monitoring.
- Any other provisions necessary to identify or establish methods for implementing the EC/ICs required by the Site remedy, as determined by the NYSDEC.

#### 7.1.2 Site Monitoring Plan

The Site Monitoring Plan will describe the measures for evaluating the performance and effectiveness of the final remedy to reduce or mitigate contamination at the Site, including:

- Sampling and analysis of all appropriate media (e.g., groundwater).
- Assessing compliance with applicable NYSDEC standards, criteria and guidance, particularly ambient groundwater standards and Part 375 SCOs for soil.
- Assessing achievement of the remedial performance criteria.
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and
- Preparing the necessary reports for the various monitoring activities.

#### 7.1.3 Operation and Maintenance Plan

An Operation & Maintenance (O&M) plan governing maintenance of the IRM cover system and other Site cover system, to the extent employed, will be prepared. The O&M plan will include:

• Operation and maintenance activities necessary to allow individuals unfamiliar with the Site to maintain the cover systems.



- An O&M contingency plan in the event of cover system failure.
- Periodic evaluations to confirm that the remedy continues to be effective for the protection of public health and the environment. If necessary, the O&M Plan will be updated to reflect changes in Site conditions or the manner in which the cover system is maintained.

#### 8.0 **REFERENCES**

- 1. TurnKey Environmental Restoration, LLC. 2009. Remedial Investigation/Alternatives Analysis Report Work Plan for Phase II Business Park Site. March.
- 2. DER-10/Technical Guidance for Site Investigation and Remediation, prepared by New York State Department of Environmental Conservation, May 3, 2010.





1.4





#### TABLE 1

#### SUMMARY OF RAILROAD REALIGNMENT SOIL ANALYTICAL RESULTS

IRM Work Plan for Railroad Realignment Tecumseh Redevelopment Inc. Lackawanna, New York

|                                  | A MARINE                                 | No.             |                    | Constanting and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 | 2                        | C VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.1.M                 | in the second                   |                             |                         | CONCEPTS OF            | New Yor                   | C. C | 0                          |                        | S. 4.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                          | 1000                  |                                |                    | and the same         | The second   |                 | 191725 (S              |                |              | 1. A. |                    |                    |
|----------------------------------|------------------------------------------|-----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|---------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------|-----------------------------|-------------------------|------------------------|---------------------------|------------------------------------------|----------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------|-----------------------|--------------------------------|--------------------|----------------------|--------------|-----------------|------------------------|----------------|--------------|-------------------------------------------|--------------------|--------------------|
|                                  |                                          | 1               | <u> </u>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>         |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         | les                    | t Pit Local               | tion and                                 | Sample D                   | lepth                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | <u></u>                                  | -                     | 1.                             | <u></u>            |                      |              |                 | 10000                  |                |              |                                           | Restricted<br>SCOs | Restricted<br>SCOs |
| Parameter <sup>1</sup>           | RR-<br>TP-2                              | RR-<br>TP-4     | RR-<br>TP-6        | RR-<br>TP-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RR-<br>TP-10     | RR-<br>TP-12          | RR-<br>TP-16                    | RR-<br>TP-18             | BPA 3-<br>TP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RR-<br>TP-20           | RR-<br>TP-22                    | BPA 2-<br>TP-24             | BPA 3-<br>TP-81         | RR-<br>TP-26           | BPA 2-<br>TP-30           | RR-<br>TP-28                             | RR-<br>TP-30               | BPA 2-<br>TP-34        | RR-<br>TP-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RR-<br>TP-34 | RR-<br>TP-36                             | RR-<br>TP-38          | RR-<br>TP-40                   | RR-<br>TP-42       | BPA 2-<br>TP-92      | RR-<br>TP-44 | BPA 2-<br>TP-74 | RR-<br>TP-46           | RR-<br>TP-49   | RR-<br>TP-50 | RR-<br>TP-52                              | Commercial         | Industrial         |
|                                  | -                                        | and many shally | Providence of the  | a service and a service of the servi | - A COMPANY DATE | and the second second | and a state of the state of the | Contraction in Astronomy | and the second sec | Company and the second | And a state of the state of the | a south a standard a second | a series and the series | The particular and the | A CONTRACTOR OF THE OWNER | ALL STREET, STREET,                      | and the fail of the second | a star a second second | and the second sec |              | and the ball of the ball                 | and the second second | and a part of the state of the | and a state of the | a station and states |              | 0.0 - 2.0       | and a second second of |                |              |                                           | (ppm)              | (ppm)              |
| 8260B Full List Volatile Organic |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0-2.0         | 0.0-2.0               | 0.0-2.0                         | 0.0-2.0                  | 0.0-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0-2.0                | 0.0-2.0                         | 0.0-2.0                     | 0.0-2.0                 | 0.0-2.0                | 0.0-2.0                   | 0.0-2.0                                  | 0.0-2.0                    | 0.0-2.0                | 0.0-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0-2.0      | 0.0-2.0                                  | 0.0 - 2.0             | 0.0 - 2.0                      | 0.0 - 2.0          | 0.0 - 2.0            | 0.0 2.0      | 1               |                        |                |              |                                           |                    | Second             |
| 1,1,1-Trichloroethane            |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |                                 |                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                 |                             |                         |                        | ND                        |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | ND                   |              | ND              |                        | 0.002 J        | ND           |                                           | 500                | 1,000              |
| Acetone                          |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          | 0.008 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                 |                             |                         |                        | ND                        |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | ND                   |              | ND              |                        | ND             | ND           |                                           | 500                | 1,000              |
| Carbon disulfide                 | -                                        |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       | -                               |                          | 0.002 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                 |                             |                         |                        | ND                        |                                          | -                          | -                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                          |                       |                                |                    | ND                   |              | ND              |                        | ND             | ND           |                                           | NA                 | NA                 |
| Methylene chloride               |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |                                 |                          | 0.015 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                 |                             |                         |                        | 0.003 J                   |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | ND                   |              | ND              |                        | 0.003 J        | ND           |                                           | 500                | 1,000              |
| n-Butylbenzene                   |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |                                 |                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                 |                             |                         |                        | ND                        |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          | -                     |                                |                    | ND                   |              | ND              |                        | ND             | ND           |                                           | 500                | 1000               |
| Trichloroethene                  |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |                                 |                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | -                               |                             |                         |                        | ND                        |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | ND                   |              | ND              |                        | 0.003 J        | ND           |                                           | 200                | 400                |
| Vinyl chloride                   | -                                        |                 |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                       |                                 |                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                 |                             |                         |                        | ND                        |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | ND                   |              | ND              |                        | ND             | ND           |                                           | 13                 | 27                 |
| Total VOCs                       | 0                                        | 0               | 0                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                | 0                     | 0                               | 0                        | 0.025 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                      | 0                               | 0                           | 0                       | 0                      | 0.0028                    | 0                                        | 0                          | 0                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0            | 0                                        | 0                     | 0                              | 0                  | 0                    | 0            | 0               | 0                      | 0.0077         | 0            | 0                                         |                    | Carlo and          |
| TCL Semi-Volatile Organic Com    | oounds (S                                | VOCs) -         | mg/kg <sup>3</sup> | is and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a san            | S. S. F.              |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.17                 |                                 |                             |                         |                        |                           |                                          | 5. Care                    |                        | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                          | 1. 200                |                                |                    |                      |              |                 |                        |                |              |                                           |                    |                    |
| Acenaphthene                     |                                          |                 |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                       | -                               |                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                 | ND                          | 0.092 J                 |                        | ND                        |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          | -                     | -                              |                    | ND                   |              | ND              |                        | ND             |              |                                           | 500                | 1,000              |
| Acenaphthylene                   |                                          |                 |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                |                       |                                 |                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                 | 0.24 DJ                     | 0.98                    | -                      | 0.08 DJ                   |                                          |                            | -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | 0.15 DJ              |              | 1.2 DJ          |                        | ND             |              |                                           | 500                | 1,000              |
| Anthracene                       |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |                                 |                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                 | 0.18 DJ                     | 0.61                    |                        | 0.1 DJ                    |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | ND                   |              | 0.81 DJ         |                        | ND             |              |                                           | 500                | 1,000              |
| Benzo(a)anthracene               |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |                                 |                          | 0.34 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                      | -                               | 1.1 D                       | 3.9                     |                        | 0.83 D                    |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | 0.7 DJB              |              | 5 DB            |                        | 0.45 DJ        | -            |                                           | 5.6                | 11                 |
| Benzo(b)fluoranthene             |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       | -                               |                          | 0.24 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | -                               | 1.5 D                       | 5.6                     |                        | 1.4 D                     |                                          | -                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | 0.9 DJB              |              | 6 DB            |                        | ND             | -            |                                           | 5.6                | 11                 |
| Benzo(k)fluoranthene             |                                          |                 | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |                                 |                          | 0.19 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                 | 0.59 DJ                     | 1.6                     |                        | 0.53 DJ                   |                                          | -                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       | -                              |                    | 0.88 DJ              |              | 2.8 DJ          |                        | ND             | -            |                                           | 56                 | 110                |
| Benzo(g,h,i)perylene             |                                          |                 | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       | -                               |                          | 0.28 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                      |                                 | 0.88 D                      | 2.2                     |                        | 0.98 D                    |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          | -                     |                                |                    | 0.69 DJ              |              | 3.4 DJ          |                        | ND             | -            |                                           | 500                | 1,000              |
| Benzo(a)pyrene                   | -                                        |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                | -                     | -                               | -                        | 0.22 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | -                               | 1.2 D                       | 4.1                     |                        | 1.1 D                     | -                                        | -                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       | -                              |                    | 0.8 DLJ              |              | 4.6 DL          |                        | ND             | -            |                                           | 1                  | 1.1<br>NA          |
| Carbazole                        |                                          |                 | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       | -                               |                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | -                               | ND                          | ND                      |                        | 0.04 DJ                   |                                          | -                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | ND                   |              | ND              |                        | ND<br>0.35 D I | -            |                                           | NA<br>56           | NA<br>110          |
| Chrysene                         | -                                        |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          | 0.56 BJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | -                               | 1.3 D                       | 3.8 B                   |                        | 0.96 D                    |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          | -                     |                                |                    | 1 DJB<br>0.27 DJ     |              | 4.6 DB          |                        | 0.35 DJ<br>ND  | -            |                                           | 0.56               | 1.1                |
| Dibenzo(a,h)anthracene           | -                                        |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | -                               | 0.26 DJ                     | 0.68 J                  |                        | 0.25 DJ                   |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -            |                                          |                       | -                              |                    | 0.27 D3              |              | ND              |                        | ND             | -            |                                           | NA                 | NA                 |
| Dibenzofuran                     | -                                        |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          | ND<br>0.35 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                 | 0.05 DJ                     | 0.1 J                   |                        | ND<br>1.1 D               |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | 0.9 DJB              |              | 8.6 DB          |                        | ND             | -            |                                           | 500                | 1,000              |
| Fluoranthene<br>Fluorene         |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          | 0.35 J<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                 | 2.2 D<br>0.04 DJ            | 7.2<br>0.19 J           |                        | ND                        |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       | -                              |                    | ND                   |              | ND              |                        | ND             | -            |                                           | 500                | 1,000              |
| Indeno(1,2,3-cd)pyrene           |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          | 0.21 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                 | 0.81 D                      | 2.3                     |                        | 0.81 D                    |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | 0.48 DJ              |              | 2.8 DJ          |                        | ND             |              |                                           | 5.6                | 11                 |
| 2-Methylnaphthalene              |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       | -                               |                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                 | 0.05 DJ                     |                         |                        | 43 DJ                     |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | ND                   |              | ND              |                        | ND             | -            |                                           | NA                 | NA                 |
| Naphthalene                      |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                 | 0.06 DJ                     |                         |                        | 0.04 DJ                   |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | ND                   |              | ND              |                        | ND             |              |                                           | 500                | 1,000              |
| Phenanthrene                     | -                                        | -               |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                       | -                               | -                        | 0.41 BJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                 | ND                          | 2.6                     |                        | 0.38 DJ                   |                                          |                            |                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -            |                                          |                       |                                |                    | 0.4 DJB              |              | 2.8 DJB         |                        | ND             |              |                                           | 500                | 1,000              |
| Pyrene                           |                                          |                 |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                       |                                 | -                        | 0.43 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                 | ND                          | 5.4                     |                        | 0.99 D                    |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | 0.93 DJ              |              | 7.4 D           |                        | ND             |              |                                           | 500                | 1,000              |
| Total PAHs                       | 0                                        | 0               | 0                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                | 0                     | 0                               | 0                        | 3.23 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                      | 0                               | 10.5                        | 41.5                    | 0                      | 52.59                     | 0                                        | 0                          | 0                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0            | 0                                        | 0                     | 0                              | 0                  | 8.11                 | 0            | 50.9            | 1.000                  | 0.80           | Service -    |                                           | a start and        |                    |
| TAL Metals - mg/kg               | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 | Section of               | 1.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100 000                |                                 |                             |                         | 1923                   | S. S. C. L.               |                                          |                            | S. C. S. S.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C. C. C.     | 1992                                     | 83925                 |                                | Sale and           | and the set          |              |                 | 3.4530                 |                |              |                                           |                    |                    |
| Arsenic                          | 75                                       | 143             | 66.9               | 60.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.2             | 147                   | 13.5                            | ND                       | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66.6                   | 13.8                            | 86.9                        | 48.5                    | 104                    | 15.9                      | ND                                       | 15.9                       | 13.2                   | 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 83.5         | 62.1                                     | 19                    | 57.1                           | 149                | 26.7                 | 65.3         | 47.4            | 16.8                   |                | 40.6         | 44.3                                      | 16                 | 16                 |
| Barium                           | 158                                      | 86.6            | 91.2               | 93.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92.6             | 110                   | 49.7                            | 125                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84.5                   | 93.2                            | 96                          |                         | 81.6                   | 68.1                      | 66                                       | 109                        | 103                    | 90.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.4         | 46                                       | 90.8                  | 151                            | 142                | 10.4                 | 91.3         | 88.8            | 116                    |                | 80.1         | 44.3                                      | 400                | 10,000             |
| Cadmium                          | 3.05                                     | 0.649           | 1.02               | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND               | 2.61                  | ND                              | ND                       | 4.3 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.531                  | 0.646                           | 1.14                        | 0.5                     | 1.79                   | ND                        | 1.23                                     | 5.69                       | 2.49                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND           | ND                                       | 0.919                 | ND                             | 1.31               | 0.914                | 7.01         | 1.87            | 1.66                   |                | ND           | ND                                        | 9.3                | 60                 |
| Chromium                         | 140                                      | 106             | 126                | 368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250              | 158                   | 45.4                            | 27.2                     | 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.2                   | 96.4                            | 46                          | 52.1                    | 77.5                   | 245                       | 464                                      | 41.9                       | 55.3                   | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.2         | 31                                       | 146                   | 26                             | 74.6               | 26.3                 | 227          | 91.4            | 325                    |                | 175          | 26.1                                      | 1500               | 6,800              |
| Lead                             | 321                                      | 154             | 211                | 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63.9             | 986                   | 119                             | 31.6                     | 549 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.2                   | 189                             | 103                         | 119                     | 179                    | 68.7                      | 272                                      | 207                        | 265                    | 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121          | 237                                      | 325                   | 172                            | 207                | 543                  | 1030         | 290             | 280                    |                | 100          | 49.1                                      | 1000               | 3,900              |
| Mercury                          | 0.399                                    | 0.11            | 0.322              | 0.895 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0899           | 0.271                 | 0.0679                          | 0.0662                   | 0.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.153                  | 0.155                           | 0.135                       | 0.123                   | 0.0864                 | 0.0749                    | 0.0891                                   | 0.0882                     | 0.375                  | 0.233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.302        | 0.297                                    | 1.04 D                | 0.404                          | 2.38               | 0.035                | 0.475 D      |                 | 0.209                  |                | 1.99 D       |                                           | 2.8                | 5.7                |
| Aluminum                         |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         |                        | 7570                      |                                          |                            | -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          | -                     |                                |                    | -                    | -            | 7760            |                        |                |              |                                           | NA                 | NA                 |
| Beryllium                        |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -                     |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         |                        | ND                        |                                          |                            | -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          | -                     | -                              |                    |                      |              | 0.97            |                        |                |              |                                           | 590                | 2,700              |
| Calcium                          |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | -                               |                             |                         |                        | 97700 D                   | -                                        | -                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    |                      |              | 1.87            |                        |                | -            |                                           | NA<br>NA           | NA                 |
| Cobalt                           |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         | -                      | ND                        |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    |                      |              | 4.51            |                        |                |              |                                           | 270                | 10,000             |
| Copper                           |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         |                        | 70.6                      | -                                        |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          | -                     | -                              |                    |                      |              | 120<br>ND       |                        |                |              |                                           | 270                | 10,000             |
| Cyanide<br>Iron                  |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                      |                                 | -                           |                         |                        | ND<br>83600 D             |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          | -                     | -                              |                    |                      |              | 45100           |                        |                | -            |                                           | NA                 | NA                 |
| Iron<br>Magnesium                |                                          |                 | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         |                        | 19800 D                   |                                          | -                          |                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -            | -                                        |                       |                                |                    |                      |              | 9020            |                        |                | -            |                                           | NA                 | NA                 |
| Magnesium                        |                                          |                 |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 | -                           |                         |                        | 15100 D                   |                                          |                            |                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | -                                        |                       |                                |                    |                      |              | 3770 D          |                        |                |              |                                           | 10,000             | 10,000             |
| Nickel                           |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         |                        | 17.9                      |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                | -                  |                      |              | 20              |                        |                |              |                                           | 310                | 10,000             |
| Potassium                        |                                          | -               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         |                        | 1190                      |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    |                      |              | 900             |                        |                |              |                                           | NA                 | NA                 |
| Silver                           |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         |                        | ND                        |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    |                      |              | 0.508           |                        |                |              |                                           | 1500               | 6,800              |
| Sodium                           |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         |                        | 386                       |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    |                      |              | 234             |                        |                |              |                                           | NA                 | NA                 |
| /anadium                         |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         |                        | 269                       |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    |                      |              | 39.7            |                        |                |              |                                           | NA                 | NA                 |
| Zinc                             |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         |                        | 159                       |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    |                      |              | 380             |                        |                |              |                                           | 10000              | 10,000             |
| PCBs - mg/kg <sup>3</sup>        |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         |                        |                           | È.                                       |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                       |                                |                    |                      |              |                 |                        | -              |              |                                           |                    |                    |
| Aroclor 1254                     |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         |                        | 0.12                      |                                          | ND                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | ND                   |              | ND              |                        |                |              |                                           | 1                  | 25                 |
|                                  |                                          |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -                     |                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                 |                             |                         |                        |                           |                                          |                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                          |                       |                                |                    | ND                   |              | ND              |                        |                |              |                                           | 1                  | 25                 |

Notes: 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect. 2. SCO values per 6 NYCRR Part 375-6 3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparison to SCOs.

 Definitions:
 RR-TP-2 = test pit advanced and sampled as part of the Railroad Corridor Investigation.
 \*-\* = Sample not analyzed for parameter.

 BPA 2-TP-24 = test pit was advanced and sampled as part of Business Park investigation.
 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

 ND = Parameter not detected above laboratory detection limit.
 B = Analyte was detected in the associated method blank .

 NA = SCO has not been established for this compound.
 D = All compounds were identified in an analysis at the secondary dilution factor.

 Exceedance of Commercial and Industrial SCO
 Exceedance of Commercial and Industrial SCO



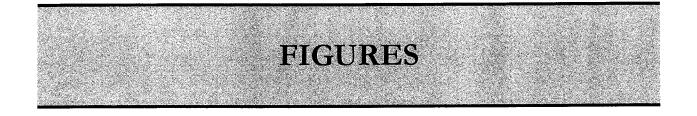
#### TABLE 2

#### SUMMARY OF SUPPLEMENTAL TEST PIT SOIL ANALYTICAL RESULTS

#### IRM Work Plan for Railroad Realignment Tecumseh Redevelopment Inc. Lackawanna, New York

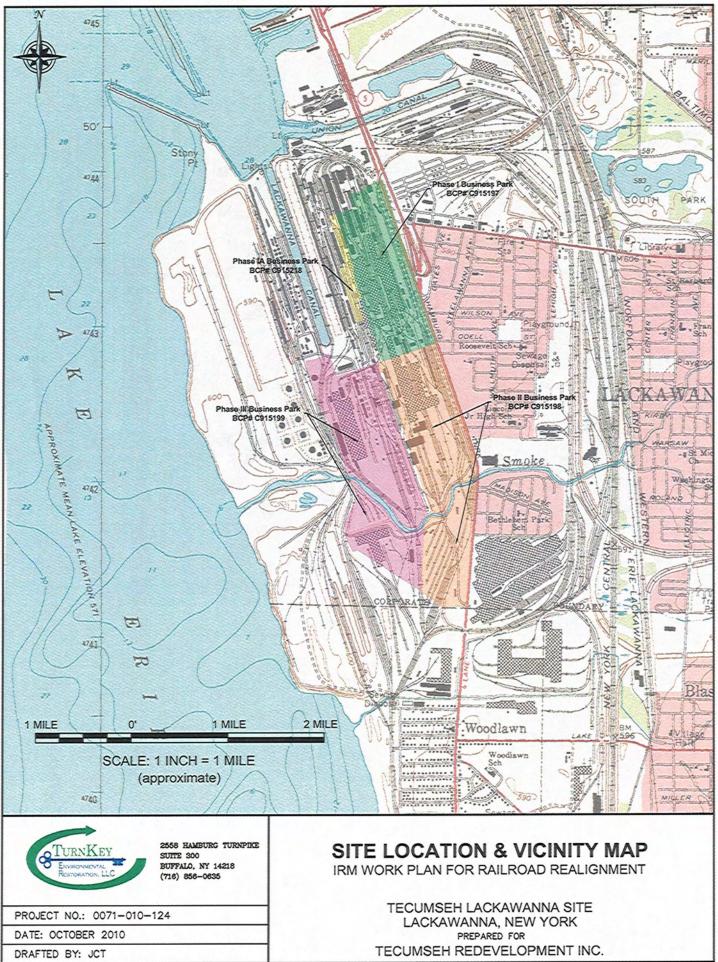
|                        |                          |                              |                         |                         |                        |                       |                          |                          |                          |                       |                      | Test                 | Pit Locati             | on and Sa             | ample Dep                | oth                   |                              |                              |                              |                      |                      |                        |                       |                       |                      |                      |                        |
|------------------------|--------------------------|------------------------------|-------------------------|-------------------------|------------------------|-----------------------|--------------------------|--------------------------|--------------------------|-----------------------|----------------------|----------------------|------------------------|-----------------------|--------------------------|-----------------------|------------------------------|------------------------------|------------------------------|----------------------|----------------------|------------------------|-----------------------|-----------------------|----------------------|----------------------|------------------------|
| Parameter <sup>1</sup> | RR-<br>TP-04<br>North-25 | RR-<br>TP-04<br>South-<br>25 | RR-<br>TP-04<br>East-25 | RR-<br>TP-04<br>West-25 | RR-<br>TP-04<br>Bottom | RR-<br>TP-12<br>North | RR-<br>TP-12<br>North-35 | RR-<br>TP-12<br>North-50 | RR-<br>TP-12<br>North-75 | RR-<br>TP-12<br>South | RR-<br>TP-12<br>East | RR-<br>TP-12<br>West | RR-<br>TP-12<br>Bottom | RR-<br>TP-42<br>North | RR-<br>TP-42<br>North-35 | RR-<br>TP-42<br>South | RR-<br>TP-42<br>South-<br>35 | RR-<br>TP-42<br>South-<br>50 | RR-<br>TP-42<br>South-<br>75 | RR-<br>TP-42<br>East | RR-<br>TP-42<br>West | RR-<br>TP-42<br>Bottom | RR-<br>TP-30<br>North | RR-<br>TP-30<br>South | RR-<br>TP-30<br>East | RR-<br>TP-30<br>West | RR-<br>TP-30<br>Bottom |
|                        | 0-2' BGS                 | 0-2' BGS                     | 0-2' BGS                | 0-2' BGS                | 2' BGS                 | 0-2' BGS              | 0-2' BGS                 | 0-2' BGS                 | 0-2' BGS                 | 0-2' BGS              | 0-2' BGS             | 0-2' BGS             | 2' BGS                 | 0-2' BGS              | 0-2' BGS                 | 0-2' BGS              | 0-2' BGS                     | 0-2' BGS                     | 0-2' BGS                     | 0-2' BGS             | 0-2' BGS             | 2' BGS                 | 0-2' BGS              | 0-2' BGS              | 0-2' BGS             | 0-2' BGS             | 2' BGS                 |
| TAL Metals (mg/k       | (g)                      |                              |                         |                         |                        |                       |                          |                          |                          |                       |                      |                      |                        |                       |                          |                       |                              |                              |                              |                      |                      |                        |                       |                       |                      |                      |                        |
| Total Arsenic          | 47                       | 43.9                         | 48.3                    | 112                     | 40.2                   | 126                   | 246                      | 162                      | 87.9                     | 83                    | 49.1                 | 157                  | 39.4                   | 114                   | 84.6                     | 136                   | 372                          | 127                          | 71.8                         | 147                  | 35.6                 | 37.1                   | -                     | -                     | -                    | -                    | -                      |
| PCBs (mg/kg)           |                          |                              |                         |                         |                        |                       |                          |                          |                          |                       |                      |                      |                        |                       |                          |                       |                              |                              |                              |                      |                      |                        |                       |                       |                      |                      |                        |
| Aroclor 1254           | -                        | -                            | -                       | -                       | -                      | -                     | -                        | -                        | -                        | -                     | -                    | -                    | -                      | -                     | -                        | -                     | -                            | -                            | -                            | -                    | -                    | -                      | 0.046                 | ND                    | ND                   | 0.51                 | ND                     |
| Aroclor 1260           | -                        | -                            | -                       | -                       |                        | -                     | -                        | -                        | -                        | -                     | -                    | -                    | -                      | -                     | -                        | -                     | -                            | -                            | -                            | -                    | -                    | -                      | 0.11                  | 0.12                  | 0.047                | ND                   | 0.26                   |

#### Notes:

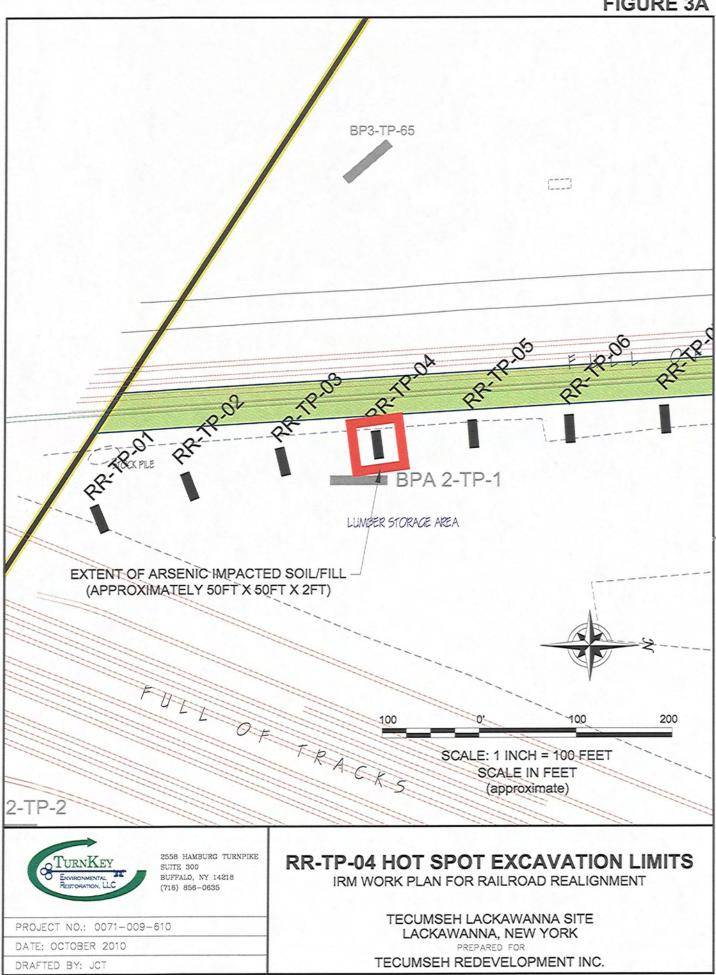

Only those parameters detected in at least one sample are included.
 6NYCRR Part 375 Soil Cleanup Objectives (SCOs).
 BGS = Below Ground Surface; ND = Not Detected

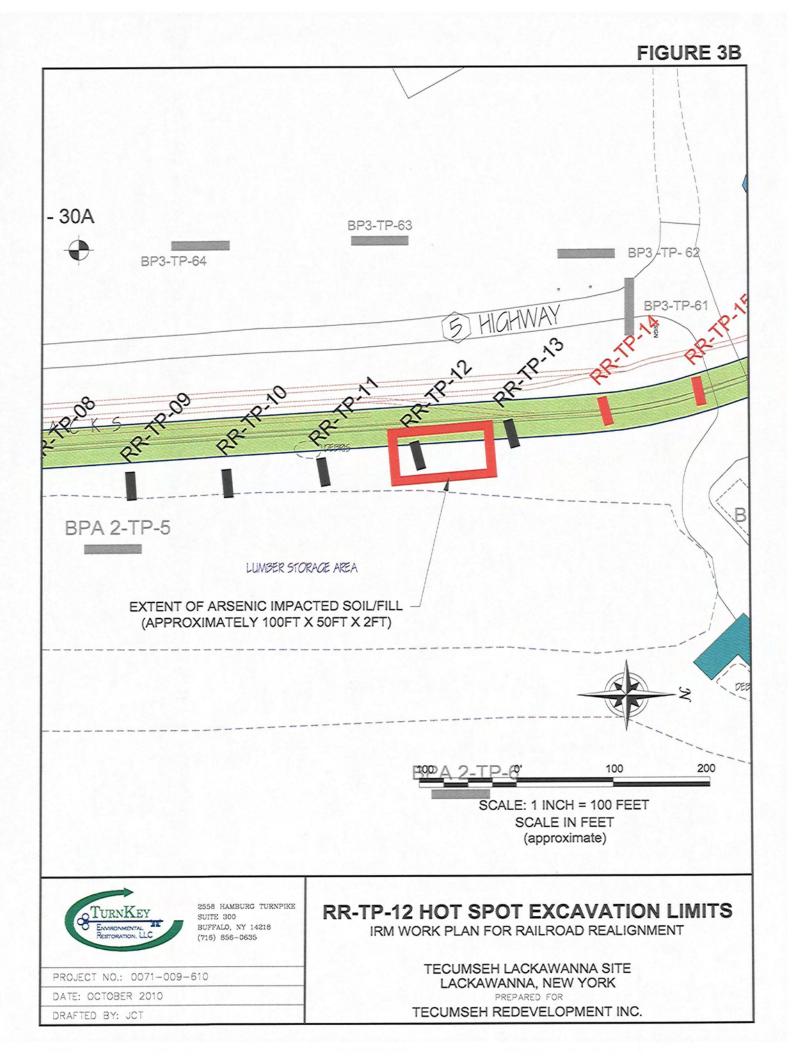
| Parameter       | RR-<br>TP-04<br>TCLP | RR-<br>TP-12<br>TCLP | RR-<br>TP-30<br>TCLP | RR-<br>TP-42<br>TCLP | Regulatory<br>Limit<br>(mg/L) <sup>1</sup> |
|-----------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------------|
| TCLP Metals (mg | /L)                  |                      |                      |                      |                                            |
| Arsenic         | 0.0131               | 0.0104               | ND                   | 0.0168               | 5                                          |
| Barium          | 0.397                | 0.306                | 0.537                | 0.487                | 100                                        |
| Cadmium         | 0.0039               | 0.0158               | 0.0023               | 0.0069               | 1                                          |
| Chromium        | 0.0086               | ND                   | ND                   | ND                   | 5                                          |
| Lead            | 0.0431               | 0.02                 | 0.0229               | 0.0749               | 5                                          |
| Mercury         | ND                   | ND                   | ND                   | ND                   | 0.2                                        |
| Selenium        | ND                   | ND                   | ND                   | ND                   | 1                                          |
| Silver          | ND                   | ND                   | ND                   | ND                   | 5                                          |

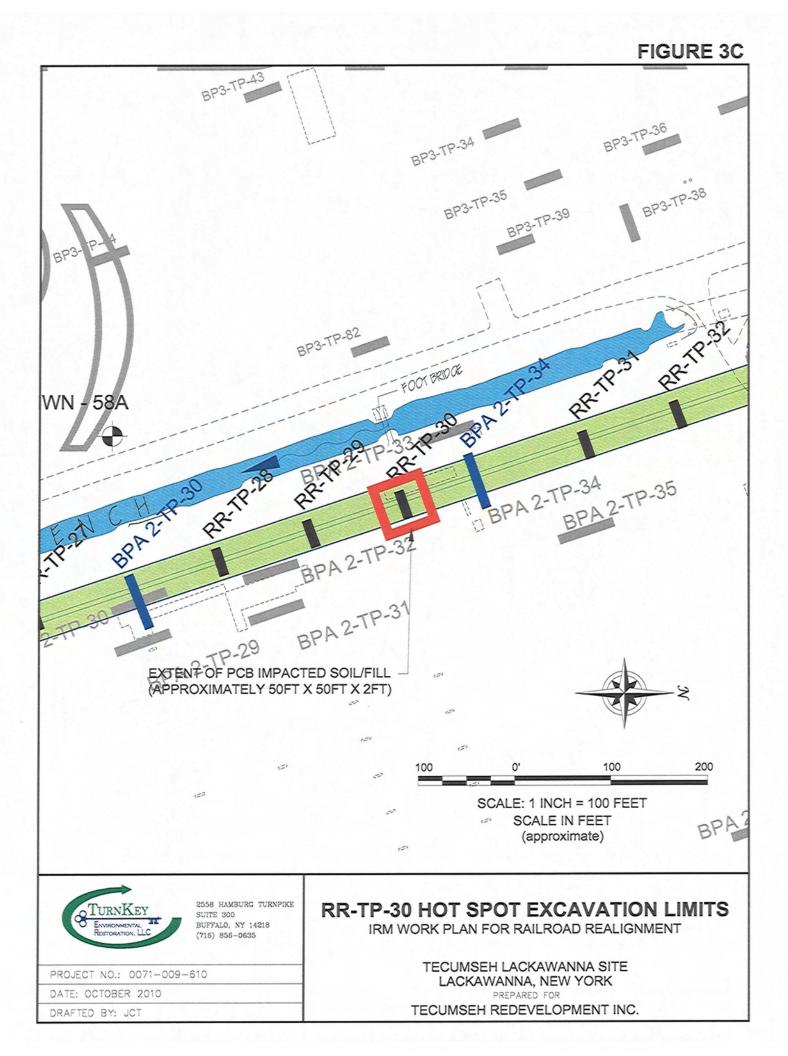
#### Notes:

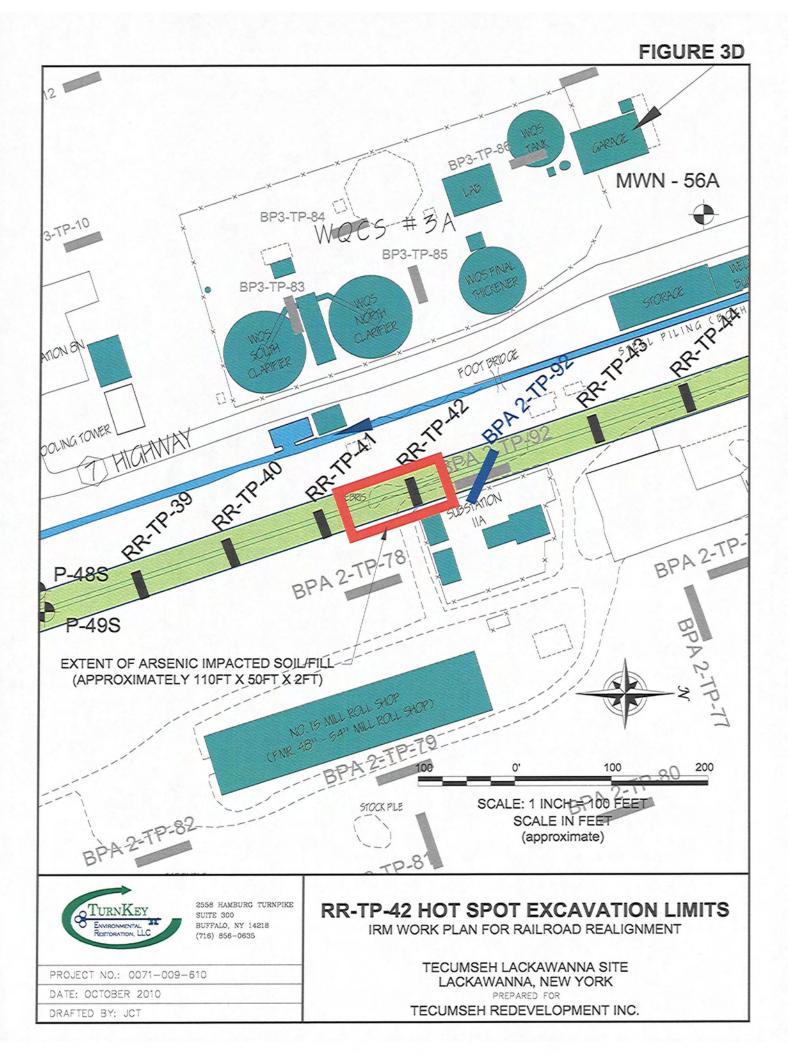

1. Per 40 CFR Part 261

IRM Work Plan Railroad Realignment Tecumseh Redevelopment Site





#### FIGURE 1




#### FIGURE 3A









# **APPENDIX A**

## **TEST PIT LOGS**



## **APPENDIX B**

## 2009 RAIL CORRIDOR INVESTIGATION ANALYTICAL DATA PACKAGE



# **APPENDIX C**

## 2010 SUPPLEMENTAL INVESTIGATION ANALYTICAL DATA PACKAGES



# **APPENDIX D**

**PROJECT DOCUMENTATION FORMS** 



## **APPENDIX E**

SITE HEALTH AND SAFETY PLAN AND COMMUNITY AIR MONITORING PLAN



# **APPENDIX F**

**RAILROAD BALLAST SPECIFICATIONS** 



Where the adjacent pavement is asphalt concrete and the new overlay surface course is 1 1/2 inch thick, then the thickness of the surface course of the shoulder may be increased to 1 1/2 inch and the course of Bituminous Stabilized Course (option 1), Type 1 Base Course (option 2), or Type 3 Binder Course (option 3) may be decreased by 1/2 inch.

Material requirements and quality control methods pertaining to this work shall be as required under Sections 302, 304, and 403 in conformance with the procedures contained in appropriate Department publications in effect on the date of advertisement for bids.

**303-3 CONSTRUCTION DETAILS.** The construction details shall be the same as those in Subsections 302-3, 304-3 and 405 3. Under Options 3, 4 & 5, the Subbase Course material shall be placed at the same time as the underlying Subbase Course. For Option 5, vibratory compaction equipment appearing on the current "Approved List - Bituminous Concrete Vibratory Compaction Equipment" shall be required if the entire Sinch lift of asphalt concrete Type 3 is to be placed as a single lift. For Option 4, the asphalt concrete shall be placed in two lifts.

**303-4 METHOD OF MEASUREMENT.** The quantity of Optional Flexible Shoulder shall be the number of square yards of satisfactorily completed shoulder computed from the payment lines on the plan or from revised payment lines established in writing by the Engineer.

**303-5 BASIS OF PAYMENT.** The unit price big for this work shall include the cost of furnishing all labor, material and equipment necessary to complete the work.

When an asphalt concrete material is placed in one operation in both the shoulder and pavement area, a deduction from the weight delivered shall be made for the asphalt concrete placed in the shoulder. The quantity to be deducted will be determined by multiplying the computed solume of such material placed in the shoulder within the payment likes times a factor of 1.9 tons/cubic yard

Payment will not be made for losses of material resulting from compaction, foundation settlement, erosion, or any other causes. The cost of such losses shall be included in the price bid for this item.

If the Contractor elects to use Options 3, 4 or 5, the cost of the additional 1 include subbase course material necessary to bring the section to grade shall be included in the price bid for this item.

If there is an asphalt price adjustment provision in the contract, the adjustment to be made shall be computed assuming a conversion factor of one hundredth (0.01) of a ton of asphalt per square yard of Optional Flexible Shoulder.

#### Payment will be made under:

Item

302.01

Item

Optional Flexible Shoulder

**Pay Unit** Square Yan

#### **SECTION 304 - SUBBASE COURSE**

#### 304-1 DESCRIPTION

**304-1.01 General.** The work consists of furnishing, placing and compacting a subbase course in conformity with the lines, grades, thicknesses and typical sections shown on the plans, or as determined by field conditions and ordered in writing by the Engineer.

**304-1.02 Optional Type.** Unless otherwise stated in the plans or in the proposal, select any of the four options as follows:

**Option A.** Subbase construction consisting of two separate layers of Type 4 and Type 3 Subbase Course.

Option B. Subbase construction consisting of a single layer of Type 1 Subbase Course.

**Option C.** Subbase construction consisting of a single layer of Type 2 Subbase Course.

Option D. Subbase construction consisting of a single layer of Type 4 Subbase Course.

**304-1.03 Definitions.** Deleterious: Any material that does not consist of concrete, asphalt, glass, brick, stone, sand, gravel or blast furnace slag, when these materials are used in subbase in conformance with the specification requirements, OR any material which, in the opinion of the Director, Geotechnical Engineering Bureau, may adversely affect the performance of the product either during handling, during construction, or in its final application.

#### 304-2 MATERIALS

**304-2.01 Test and Control Methods.** The Department will perform materials tests and quality control methods pertaining to the work of this section in conformance with the procedures contained in the appropriate Departmental publications which are current on the date of advertisement for bids. These publications are available upon request to the Regional Director or the Director, Geotechnical Engineering Bureau.

**304-2.02 Material Requirements.** Provide suitable material conforming to the requirements of Section 203 and to the requirements contained herein.

Provide a subbase material which meets the specification material requirements and is within the Contractor's capabilities to place and fine grade to the required tolerances. Should the subbase course become unstable at any time prior to the placement of the overlying course, correct the unstable condition to the satisfaction of the Engineer at no additional cost to the State. Perform any required modification prior to placing the material on the grade.

If used, glass shall conform to the applicable paragraph of Section 203.

If Recycled Portland Cement Concrete Aggregate (RCA) is used and it comes from other than a Department of Transportation project, provide documentation showing that the material obtained is from a NYSDEC registered or permitted construction and demolition (C&D) debris processing facility as specified in Section 360-16.1 of 6NYCRR Part 360, "Solid Waste Management Facilities".

If Blast Furnace Slag is to be used, provide documentation showing that it has undergone a NYSDEC beneficial use determination (BUD) prior to its use as specified in 6NYCRR Part 360-1.15, "Solid Waste Management Facilities".

For Types 1, 3 and 4 furnish materials consisting of approved Blast Furnace Slag, Stone, Sand, and Gravel, or blends of these materials with not more than 30 percent by weight of glass. Alternately, the following materials are also acceptable under these types as a replacement for the materials mentioned above:

Alternate A. At least 95 percent, by weight, of Recycled Portland Cement Concrete Aggregate (RCA), and free from organic and other deleterious material. This material may contain up to 5% by weight asphalt and/or brick.

*Alternate B.* A mixture of Recycled Portland Cement Concrete Aggregate (RCA) conforming to Alternate A above mixed with stone, sand, gravel or blast furnace slag. This material may contain up to 5% by weight asphalt and/or brick.

*Alternate C.* Bituminous material that is reclaimed from bituminous pavement and/or shoulders (Reclaimed Asphalt Pavement, or RAP) on a project constructed by the Department of Transportation and is well-graded from coarse to fine and free from organic or other deleterious material, including tar. This material is at least 95 percent, by weight, reclaimed bituminous material and has a maximum top size, at time of placement, of 2 inches. The gradation requirements for the different Types listed below do not apply when the material consists of RAP. No soundness or Plasticity Index testing will be required for this Alternate.

If, in the opinion of the Regional Geotechnical Engineer, this material becomes unstable during construction, it may be necessary to add a mixture of natural suitable material to the RAP. Acceptance of the final product shall be based on an evaluation by the Regional Geotechnical Engineer. Provide written documentation that the reclaimed bituminous material originated on a Department of Transportation project. Include an identifier, such as State Highway, Construction Contract or Departmental Project Identification Number (PIN).

For Type 2, furnish materials consisting of approved Blast Furnace Slag or of Stone which is the product of crushing or blasting ledge rock, or a blend of Blast Furnace Slag and of Stone.

| TABLE 304-1 PERCENT PASSING BY WEIGHT |          |         |         |         |  |  |  |  |  |  |
|---------------------------------------|----------|---------|---------|---------|--|--|--|--|--|--|
| Sieve Size                            |          | Туре    |         |         |  |  |  |  |  |  |
| Designation                           | 1        | 2       | 3       | 4       |  |  |  |  |  |  |
| 4 inch                                | -        | -       | 100     | -       |  |  |  |  |  |  |
| 3 inch                                | 100      | -       | -       | -       |  |  |  |  |  |  |
| 2 inch                                | 90 - 100 | 100     | -       | 100     |  |  |  |  |  |  |
| 1/4 inch                              | 30 - 65  | 25 - 60 | 30 - 75 | 30 - 65 |  |  |  |  |  |  |
| No. 40                                | 5 - 40   | 5 - 40  | 5 - 40  | 5 - 40  |  |  |  |  |  |  |
| No. 200                               | 0 - 10   | 0 - 10  | 0 - 10  | 0 - 10  |  |  |  |  |  |  |

A. Gradation. Gradation shall conform to Table 304-1.

**B.** Soundness. Material for Types 1, 2 and 4 will be accepted on the basis of Magnesium Sulfate Soundness Loss after four cycles of 20 percent or less, unless material meeting the requirements of Alternate C (304-2.02) is used. Material for Type 3 will be accepted on the basis of a Magnesium Sulfate Soundness Loss after four cycles of 30 percent or less.

**C. Plasticity Index.** The required Plasticity Index of the material passing the No. 40 sieve is 5.0 or less.

**D. Elongated Particles.** A flat or elongated particle is defined herein as one which has its greatest dimension more than three times its least dimension. Provide material consisting of particles where not more than 30 percent, by weight, of the particles retained on a 1/2 inch sieve are flat or elongated. When the State elects to test for this requirement, material with a percentage greater than 30 will be rejected. Acceptance for this requirement will normally be based on a visual inspection by the Engineer.

**304-2.03 Stockpiling.** Stockpile all material except as noted herein.

- A. Material furnished under Type 3 will not be required to be stockpiled unless it contains RCA or glass.
- B. Stockpiling of the reclaimed bituminous material for Alternate C is not required.

Stockpile construction requirements, sampling, testing and acceptance/rejection procedures are stipulated in the appropriate Departmental publication.

**304-2.04 Material for Temporary Work.** Material used as a subbase for the construction of temporary work may be approved by a Departmental Geotechnical Engineer by visual inspection in accordance with the procedure in the current Departmental publication. Do not incorporate material so approved into the final project without following the appropriate acceptance procedure for the item of intended use.

#### **304-3 CONSTRUCTION DETAILS**

**304-3.01 General.** Notify the Engineer in writing of which placement option, material option (if applicable) and/or material type is proposed for use, at least 14 calendar days prior to performing the work. If it is proposed that more than one option or type is to be used, submit a plan to the Engineer describing where each option or type is proposed for use. This plan must be approved by the Engineer prior to incorporating it into the project. The State reserves the right to disapprove the use of more than one option on a project. Use uniform subbase types and materials between the roadbed limits.

## 304-3.02 Placement

- Place the upper course material on the grade in a manner to minimize segregation, using equipment and procedures approved by the Engineer. Do not perform uncontrolled spreading from piles dumped on the grade.
- The maximum compacted layer thickness is 15 inches, or as shown on the plans. In confined areas as defined by the Engineer the maximum compacted layer thickness is 6 inches. The minimum loose lift thickness is 1.5 times the maximum particle size.
- Place Type 1 with a minimum compacted layer thickness of 6 inches.
- Do not place Type 3 material within 4 inches of the bottom of a pavement course.
- Do not place materials blended with glass in contact with synthetic liners, geogrids, geotextiles or other geosynthetics. Ensure that glass incorporated into subbase is thoroughly mixed so that glass constitutes no more than 30 percent by weight anywhere in the subbase.
- When placing material under Option A, place and compact each material in a separate lift.

**304-3.03 Compaction.** When the moisture content is within the limits for proper compaction, compact the material in accordance with the requirements of  $\S203-3.12$ , Compaction. Density tests are not required for the acceptance of these courses.

If a subbase course is disturbed by frost action prior to paving, re-compact the subbase where directed by the Engineer.

**304-3.04 Traffic and Contamination.** The movement of highway traffic over the final surface of the subbase may be permitted at locations designated by, and under such restrictions as ordered by the Engineer, provided such movements take place prior to the final finishing of this course to the specified tolerance. Do not allow highway traffic to move over subbase containing glass. The movement of construction equipment on this course may be permitted at locations designated by and under such restrictions as ordered by the Engineer. At locations where permission is granted for such movement, place and maintain the temporary surface of the course, upon which the construction traffic is running, at least 2 inches above the final surface of the course. Just prior to paving and after all construction traffic not required for the removal has ceased, remove the 2 inches protective layer, and prepare and compact the exposed surface of the course to the specified tolerance.

No payment will be made for furnishing, placing, maintaining, removing and disposing of the 2 inches thick protective layer. Include the cost thereof in the price bid for Subbase Course.

If, in the opinion of the Engineer, the subbase is damaged or mixed with the subgrade or any other material due to the Contractor's operation, remove such material and replace it with the appropriate subbase material at no additional cost to the State.

**304-3.05 Tolerance.** Place Types 1, 2 or 4 so that after compaction the top surface of the course does not extend more than 1/4 inch above nor more than 1/4 inch below true grade for the course at any location. Place Type 3 course so that the finished surface does not extend above the true grade and surface for this course at any location.

#### **304-4 METHOD OF MEASUREMENT**

**304-4.01 Subbase Course.** The quantity is the number of cubic yards of material, computed from payment lines shown on the plans or, where changes have been ordered, from payment lines established by the Engineer.

#### **304-5 BASIS OF PAYMENT**

**304-5.01 Subbase Course.** The unit price bid for this work includes the cost of furnishing all labor, material and equipment necessary to complete the work. Include the cost of adding water in the price bid unless the items for furnishing and applying water are included in the contract. No direct payment will be made for losses of material resulting from compaction, foundation settlement, erosion, or any other cause. Include the cost of such losses in the price bid for this item. No deductions will be made for the volumes occupied by manholes, catch basins and other such objects.

No additional payment will be made for the protective layer, as stated in 304-3.04.

Progress payments will be made after the subbase course has been properly placed and compacted. Payment will be made at the unit price bid for 75 percent of the quantity. The balance of the quantity will be paid for after the final finishing to the required tolerance and just prior to the placing of the next course.

#### Payment will be made under:

| I uyncine men c | i made materi                 |
|-----------------|-------------------------------|
| Item No.        | Item                          |
| 304.11          | Subbase Course, Type 1        |
| 304.12          | Subbase Course, Type 2        |
| 304.13          | Subbase Course, Type 3        |
| 304.14          | Subbase Course, Type 4        |
| 304.15          | Subbase Course, Optional Type |

Pay Unit Cubic Yard Cubic Yard Cubic Yard Cubic Yard Cubic Yard

## SECTIONS 305 AND 306 (VACANT)

## SECTION 307 - HYDRATED LIME STABILIZED SUBGRADE

**307-1 DESCRIPTION.** Hydrated lime stabilized subgrade shall consist of the in-place sy ograde soil mixed unformly with hydrated lime and moistened, compacted and cured in accordance with these specification, the plans and as specified by the Engineer.

## 307-2 MATERIALS

**307-2.01 Lime Stablization.** Materials for lime stabilization shall meet the requirements of the following:

Water Hydrated Lime 712-01 712-04

Hydrated lime which has slaked prior to mixing, for any reason, shall not be incorporated in the work.

**307-2.02 Surface Treatment.** When a surface treatment is required to protect the completed lime stabilized course as specified in §307-3.11, the uncerials for surface treatment shall meet the following requirements:

Asphalt Emulsion - (RS-2) Coarse Aggregate - 1A size 702-**5**101 703-02

#### 307-3 CONSTRUCTION DETAIL

**307-3.01 Equipment.** No work will be permitted until all necessary equipment is on hand, inspected and approved by the Engineer.

**A.** Scarifiers. A grader-scarifier, heavy disc harrow, heavy plow or untary pulverizing mixer shall be used for the initial scarification of the soil. The equipment shall be capable of scarifying the soil to the full depth of stabilized treatment.

**B.** Mixels. A rotary pulverizing mixer or heavy plow shall be used for all mixing of the hydrated lime with the subgrade soil. The use of a heavy plow will be permitted only if the rotary pulverizing mixer is not capable of adequately mixing the lime-soil mixture to the full depth of treatment. Rotary mixers shall be equivalent to the Seaman Duo-Stabilizer Model DS730 or the Brothers Master Mixer Model LSPRM84A.

## Erie County Industrial Development Agency East Harbor Rail Lead Relocation

## Sub-Ballast

This item shall be paid for under NYSDOT Specification 304.14. For this project, based on Geotechnical Evaluations, a 6 inch layer of sub-ballast will consist of the foundation course for the railroad roadbed. The material shall be composed of either caliche, argillaceous limestone, conglomerate, gravel, crushed slag, or other granular materials.

The materials shall meet the requirement herein after as specified by special note. Aggregate retained on a No 10 sieve shall consist of hard, durable particles or fragments of stone, gravel, sand or slag. Materials that break up when alternatively frozen and thawed or soaked and dried shall not be used. Allowable wear, based on the Los Angeles abrasion test, shall not be greater than 50%. A higher or lower percentage of wear may be specified by the Engineer.

It is the intent of this special note is that the sub-ballast shall consist of gradations as set forth in the following table.

| Sieve Size           | 2"   | 1'     | 3/4"  | No 10 | No 40 | No 200 |
|----------------------|------|--------|-------|-------|-------|--------|
| % Pass (optimum)     | 100% | 95%    | 67%   | 38%   | 21%   | 7%     |
| % Pass (Permissible) | 100% | 90-100 | 50-84 | 26-50 | 12-30 | 0-10   |

The sub-ballast shall be constructed on the properly prepared subgrade in conformance with the plans, specifications and sections provided for this project. The maximum compacted thickness of the subballast shall not exceed 7 inches or another compacted lift shall be provided. Each lift must be compacted to not less than 95% of the maximum density and to within 2% of the optimal moisture content, as determined by ASTM D 1557.

#### ITEM C675.1399 – FURNISH, PLACE AND COMPACT BALLAST BASE COURSE

#### Description

The work shall consist of furnishing, placing and compacting stone ballast for the construction of tracks, and/or turnouts, and/or the reconstruction of rail-highway grade crossings as indicated in the contract documents or where directed by the Engineer.

#### **Materials**

Materials Specification 703-02, Coarse Aggregate shall apply except as modified herein.

All stone ballast shall be composed of angular fragments of rock, reasonably uniform in quality, and having specified durability and wear resistance qualities. Screened gravel, crushed gravel, marble, sandstone, argillaceous limestones, argillaceous dolomites or crushed slag are not acceptable for use as stone ballast.

All physical requirements and limitations on deleterious materials for crushed stone ballast are listed in Table 703-90 (below).

Stone ballast shall be handled in such a manner that it is kept clean and free from segregation. Any stone which requires washing or scrubbing to insure cleanliness shall be washed at the quarry or crusher site. The gradation requirements of stone sizes shall conform to Table 703-91 (below), "Size Gradation-Stone Ballast."

All sampling and testing shall be done in accordance with Engineer written instructions. Each portion of a quarry exhibiting a variation in quality of stone shall be tested separately. The test results shall not be averaged. The Engineer reserves the right to sample and test the stone ballast up to and including the point of use.

## ITEM C675.1399 - FURNISH, PLACE AND COMPACT BALLAST BASE COURSE

| TABLE 703-90                                                         |                   |                   |                   |  |  |  |  |
|----------------------------------------------------------------------|-------------------|-------------------|-------------------|--|--|--|--|
| BALLAST CLASS TESTS <sup>(1)</sup>                                   |                   |                   |                   |  |  |  |  |
| Ballast                                                              |                   |                   |                   |  |  |  |  |
|                                                                      | NY1               | NY2               | NY3               |  |  |  |  |
| Magnesium Sulfate Test (NYSDOT 703-7P) <sup>(2)</sup>                |                   |                   |                   |  |  |  |  |
| Max. percent loss by weight at 10 cycles                             | 18                | 18                | 18                |  |  |  |  |
| Freezing and Thawing Test (NYSDOT 703-8P) <sup>(3)</sup>             |                   |                   |                   |  |  |  |  |
| Max. percent loss by weight at 25 cycles                             | 10                | 10                | 10                |  |  |  |  |
| Los Angeles Abrasion Test (AASHTO T96)                               |                   |                   |                   |  |  |  |  |
| Max. percent loss by weight (Grading A or B)                         | 15 <sup>(4)</sup> | 20 <sup>(4)</sup> | 35 <sup>(4)</sup> |  |  |  |  |
| Wax. percent loss by weight (cruding / or b)                         |                   | 45 <sup>(5)</sup> | 45 <sup>(5)</sup> |  |  |  |  |
|                                                                      |                   | Constanting       |                   |  |  |  |  |
| Flat and Elongated Pieces (ASTM C125)                                |                   |                   |                   |  |  |  |  |
| Max. percent by weight of:<br>Flat or Elongated to the Degree of 3:1 | 30                | 30                | 30                |  |  |  |  |
| Flat or Elongated to the Degree of 5:1                               | 10                | 10                | 10                |  |  |  |  |
|                                                                      |                   |                   |                   |  |  |  |  |
| Impedance Test (NYSDOT 703-12G)                                      |                   |                   |                   |  |  |  |  |
| Impedance, K ohms                                                    | 2.6+              | 2.6+              | 2.6+              |  |  |  |  |
|                                                                      |                   |                   |                   |  |  |  |  |
| Petrographic Test                                                    |                   |                   |                   |  |  |  |  |
| Shale or other deleterious materials <sup>(6)</sup>                  | 1.0               | 1.0               | 1.0               |  |  |  |  |
| Clay balls or lumps                                                  | 0.2               | 0.2               | 0.2               |  |  |  |  |
| Materials passing the 75 m sieve (NYSDOT 703-2P)                     | 0.7               | 0.7               | 0.7               |  |  |  |  |

<sup>(1)</sup> To determine its conformance to specification limits, processed crushed stone may be tested at any point after completion of processing. The manufactured material shall be separated into the primary sizes indicated in Table 703-5, "Primary Sizes". Each size fraction shall conform to the requirements 703-90,

<sup>(2)</sup> Magnesium Sulfate loss applies to No. 2 primary size fraction.
<sup>(3)</sup> The freeze-thaw loss applies to the No. 3 primary size fraction, but the Engineer reserves the option to test the No. 2 primary size fraction.
<sup>(4)</sup> Loss applies to limestone, dolomite, quartzite, and trap rock.
<sup>(5)</sup> Loss applies to granite, anorthosite, and gabbro.
<sup>(6)</sup> Argillaceous limestone's and dolomites are considered to be deleterious materials.

## ITEM C675.1399 – FURNISH, PLACE AND COMPACT BALLAST BASE COURSE

|             |                     | PERCENT BY WEIGHT |             |             |             |           |            |      |                |                 |
|-------------|---------------------|-------------------|-------------|-------------|-------------|-----------|------------|------|----------------|-----------------|
| SIZE<br>NO. | NOMINAL<br>SIZE     | 2 1⁄2"            | 2"          | 1 1⁄2"      | 1"          | 3⁄4"      | 1⁄2"       | 3/8" | No. 4<br>Sieve | No. 10<br>Sieve |
| CR3-4       | 2" – ½"             | 100               | 98 -<br>100 | 60 -<br>85  | 20 -<br>40  | 5-15      | 0-5        | 0-1  | -              | -               |
| 4           | 1½" – ¾"            | -                 | 100         | 90 -<br>100 | 20 -<br>55  | 0-15      | -          | 0-5  | -              | -               |
| 5           | 1" – 3/8"           | -                 | -           | 100         | 90 -<br>100 | 40-<br>75 | 15 -<br>35 | 0-15 | 0-5            | -               |
| 57          | 1" – No. 4<br>Sieve | -                 | -           | 100         | 95 -<br>100 | -         | 25 -<br>60 | -    | 0-10           | 0-5             |

TABLE 703-91 SIZE GRADATION - STONE BALLAST AMOUNTS FINER THAN EACH SIEVE\*

\* Sieves shall meet the requirements of ASTM designation E-11

#### **Construction Details**

Self-spreading vehicles of a type approved by the Engineer may be used. When stone is initially spread by self-spreading vehicles, a power grader of a type approved by the Engineer may be used to assist the spreading operation. If results of spreading with the power grader are found to be unsatisfactory, permission for use of a grader may be withdrawn. Alternate methods of spreading may be approved by the Engineer for limited areas such as grade crossings. The stone ballast shall be shaped to a true section conforming to the ballast section shown on the plans and thoroughly compacted until the surface is true and unyielding.

Compaction may be done with rollers or with vibratory compactors subject to the following requirements:

- The contractor shall place ballast on the graded and compacted sub-base with the maximum lift thickness being determined by the compaction equipment selected and the requirements for proper compaction as given in Section 203-3.12 of the Standard Specifications.
- The top grade of the ballast base course shall be a minimum of 2 in. below the bottom of tie elevation as determined from the top of rail profile shown in the contract documents, the rail section, tie plate thickness, and nominal tie thickness being used at a particular location.
- The requirements for Standard Proctor Maximum Density and Moisture Control shall not apply for ballast, however, compaction shall be continued until the stones are firmly interlocked and the surface is true and unyielding.

## ITEM C675.1399 – FURNISH, PLACE AND COMPACT BALLAST BASE COURSE

• The ballast from 2 inches below the tie grade line to the finished surface shall be placed, tamped and dressed after the proposed track is in place, and will be paid for under its respective item.

#### Method of Measurement

The work will be measured as the number of tons of stone ballast is placed and compacted.

#### **Basis of Payment**

The unit price bid per ton shall include the cost of all labor, material and equipment necessary to complete the work.

|                     | Recommended Limiting Values of Testing for Ballast Material | -anita Traprock Quartzite Limestane Domestic Blast Steel ASTM Test<br>Limestone Furnace Slag | 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% C 117 | 2.60 2.60 2.60 2.60 2.60 2.30 2.90 C 127 | 1.0 1.0 2.0 2.0 5.0 2.0 C 127 | 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% C   42 | 35% 25% 30% 35% 35% 40% 30% See Note #1 | 5.0% 5.0% 5.0% 5.0% 5.0% C 88 | 5.0%         5.0%         5.0%         5.0%         5.0%         5.0%         CRD-C 119 | Materials having gradations containing particles retained on the 1" sieve shall be tested by ASTM C 535. Materials having graduations with 100% | sleve shall be tested by ASIM C 131.<br>The llmlt for specific gravity is a minimum value. Limits for the tests are maximum values. | .E NO. 2 Recommended Ballast Graduations | l Size 3" 2-1/2" 2" 1/2" 1" 34" /2" 38" No. 4 No. 8<br>Opening 3" 2-1/2" 2" 1/2" 1" 34" /2" 38" No. 4 No. 8 | - 34" 100 90 - 100 25 - 60 0 - 10 0 - 5 | 38" 100 80 - 100 60 - 85 50 - 70 25 - 50 5 - 20 0 - 10 0 - 3 | - 1" 100 95 - 100 35 - 70 0 - 15 0 - 5 | - 34" 100 90 - 100 60 - 90 10 - 35 0 - 10 0 - 3 | - 34" 100 90 - 100 20 - 55 0 - 15 0 - 5 | - 36" - 36" - 100 90 - 100 40 - 75 15 - 35 0 - 15 0 - 5 | No.4 100 95 - 100 95 - 100 0 - 10 0 - 5 | on Numbers 24, 25, 3, a-A and 4 are main line ballast materials.<br>on Numbers 5 and 57 are yard ballast materials. |
|---------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------|-------------------------------|--------------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|----------------------------------------|-------------------------------------------------|-----------------------------------------|---------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                     |                                                             |                                                                                              | •                                   | 5                                        | 2.                            | •0                                   | 36                                      | ື້                            | ů<br>                                                                                   | y ASTM C 5                                                                                                                                      |                                                                                                                                     | <i></i> и                                | E                                                                                                           |                                         | ۱<br>ک                                                       | - 1                                    | Т                                               | ı                                       | - 1                                                     | - 1                                     | llast mat                                                                                                           |
|                     |                                                             | 1 mestane                                                                                    | I • 0%                              |                                          |                               | 0. 5%                                | 35%                                     | 5. 0%                         | 5, 0%                                                                                   | I be tested t                                                                                                                                   | x mum values.                                                                                                                       | aduat I on                               | 1//2"                                                                                                       | 1                                       | - 70                                                         | Т                                      | - 90                                            | - 100                                   |                                                         |                                         | In Ilne ba<br>aterials.                                                                                             |
|                     | 1                                                           |                                                                                              | *0 *                                | . 60                                     | 0.                            |                                      | 30%                                     | °, 0%                         | 5. 0%                                                                                   | i" steve shal                                                                                                                                   | tests are max                                                                                                                       |                                          | 5                                                                                                           |                                         | - 85                                                         | 00   1                                 | - 100                                           |                                         |                                                         |                                         | d 4 are ma<br>1 ballast m                                                                                           |
|                     | .lmitin                                                     |                                                                                              |                                     | 5                                        |                               | 0                                    |                                         | ىي<br>                        |                                                                                         | ed on the                                                                                                                                       | Its for the                                                                                                                         |                                          | - 1/2"                                                                                                      | 1                                       | L                                                            | 100                                    | 001                                             |                                         |                                                         |                                         | 3, a-A ar<br>are yarc                                                                                               |
|                     |                                                             | Traproc                                                                                      |                                     |                                          | 0 <b>*</b> I                  |                                      | 25%                                     |                               |                                                                                         | oles retair                                                                                                                                     |                                                                                                                                     | Recomme                                  |                                                                                                             |                                         |                                                              |                                        |                                                 |                                         |                                                         |                                         | 24, 25,<br>5 and 57                                                                                                 |
|                     |                                                             | Gran'i ta                                                                                    | l . 0%                              | 2. 60                                    | 1.0                           | 0. 5%                                | 35%                                     | 5. 0%                         | 5. 0%                                                                                   | containing parti                                                                                                                                | STM C 131.<br>/1+y 1s a minimum                                                                                                     | $\sim$                                   | - d                                                                                                         |                                         | 1                                                            | 2" -  "                                | 2" - 34"                                        | 1                                       | " - 3 <sub>6</sub> "                                    | " - No. 4                               | Graduation Numbers<br>Graduation Numbers                                                                            |
|                     | TABLE No.                                                   |                                                                                              | Passing                             | <1†y                                     | ÷                             | Friable                              |                                         | sulfate)                      | ated                                                                                    | g gradations                                                                                                                                    | tested by AS<br>specific grav                                                                                                       | <b>⊢−</b>                                | S                                                                                                           |                                         | 2-                                                           |                                        |                                                 |                                         |                                                         |                                         | 1                                                                                                                   |
| 11                  | Τ,                                                          | ΞRTΥ                                                                                         |                                     | lfic Gravity<br>te #2)                   | un Percent                    |                                      | Degrada†1on                             | Sodlum S                      | or Elongated<br>cles                                                                    | lals having                                                                                                                                     | shail be<br>Imlt for s                                                                                                              |                                          | S1Ze<br>No.                                                                                                 | 24                                      | 25                                                           | m                                      | 4A                                              | 4                                       | ۍ<br>ا                                                  | 57                                      | Note #                                                                                                              |
| DESIGN FILE: UNLPIT |                                                             | PROPERTY                                                                                     | Percent Material<br>No. 200 Sieve   | Bulk Specific G<br>(See Note #2)         | Absorption                    | Clay Lumps &<br>5 Cycles             | Deg                                     | Soundness (Sodlum Sulfate)    | Flat and/or El<br>Particles                                                             | Note #1 - Mater1                                                                                                                                | sleve<br>Note #2 - The I                                                                                                            |                                          |                                                                                                             | E                                       | CX                                                           | H                                      | [B]                                             | IT                                      | 99                                                      | °G"                                     | 9                                                                                                                   |

EXHIBIT "G"

i j

## ITEM C675.15 – FURNISH AND PLACE STONE BALLAST SURFACING COURSE ON TRACKS

## **Description:**

The work shall consist of furnishing and placing stone ballast for the raising and surfacing of tracks, turnouts, track crossings and road crossings where indicated in the contract documents or where directed by the Engineer.

#### Materials:

Materials Specification 703-02, Coarse Aggregate shall apply except as modified herein.

All stone ballast shall be composed of angular fragments of rock, reasonably uniform in quality, and having specified durability and wear resistance qualities. Screened gravel, crushed gravel, marble, sandstone, argillaceous limestones, argillaceous dolomites or crushed slag are not acceptable for use as stone ballast.

All physical requirements and limitations on deleterious materials for crushed stone ballast are listed in Table 703-90 (below).

Stone ballast shall be handled in such a manner that it is kept clean and free from segregation. Any stone which requires washing or scrubbing to insure cleanliness shall be washed at the quarry or crusher site. The gradation requirements of stone sizes shall conform to Table 703-91 (below), "Size Gradation-Stone Ballast."

All sampling and testing shall be done in accordance with Engineer written instructions. Each portion of a quarry exhibiting a variation in quality of stone shall be tested separately. The test results shall not be averaged. The Engineer reserves the right to sample and test the stone ballast up to and including the point of use.

## ITEM C675.15 - FURNISH AND PLACE STONE BALLAST SURFACING COURSE **ON TRACKS**

| TABLE 703-90                                             |                   |                   |                   |  |  |  |  |
|----------------------------------------------------------|-------------------|-------------------|-------------------|--|--|--|--|
| BALLAST CLASS TESTS <sup>(1)</sup>                       |                   |                   |                   |  |  |  |  |
|                                                          | Bal               | Ballast Class     |                   |  |  |  |  |
|                                                          | NY1               | NY2               | NY3               |  |  |  |  |
| Magnesium Sulfate Test (NYSDOT 703-7P) <sup>(2)</sup>    |                   |                   |                   |  |  |  |  |
| Max. percent loss by weight at 10 cycles                 | 18                | 18                | 18                |  |  |  |  |
|                                                          |                   |                   |                   |  |  |  |  |
| Freezing and Thawing Test (NYSDOT 703-8P) <sup>(3)</sup> |                   |                   |                   |  |  |  |  |
| Max. percent loss by weight at 25 cycles                 | 10                | 10                | 10                |  |  |  |  |
|                                                          |                   |                   |                   |  |  |  |  |
| Los Angeles Abrasion Test (AASHTO T96)                   |                   |                   |                   |  |  |  |  |
| Max. percent loss by weight (Grading A or B)             | 15 <sup>(4)</sup> | 20 <sup>(4)</sup> | 35 <sup>(4)</sup> |  |  |  |  |
|                                                          |                   | 45 <sup>(5)</sup> | 45 <sup>(5)</sup> |  |  |  |  |
|                                                          |                   |                   |                   |  |  |  |  |
| Flat and Elongated Pieces (ASTM C125)                    |                   |                   |                   |  |  |  |  |
| Max. percent by weight of:                               |                   |                   |                   |  |  |  |  |
| Flat or Elongated to the Degree of 3:1                   | 30                | 30                | 30                |  |  |  |  |
| Flat or Elongated to the Degree of 5:1                   | 10                | 10                | 10                |  |  |  |  |
| Impedance Test (NYSDOT 703-12G)                          |                   |                   | S.                |  |  |  |  |
| Impedance, K ohms                                        | 2.6+              | 2.6+              | 2.6+              |  |  |  |  |
|                                                          |                   |                   |                   |  |  |  |  |
| Petrographic Test                                        |                   |                   |                   |  |  |  |  |
| Shale or other deleterious materials <sup>(6)</sup>      | 1.0               | 1.0               | 1.0               |  |  |  |  |
| Clay balls or lumps                                      | 0.2               | 0.2               | 0.2               |  |  |  |  |
| Materials passing the 75 m sieve (NYSDOT 703-2P)         | 0.7               | 0.7               | 0.7               |  |  |  |  |

<sup>&</sup>lt;sup>(1)</sup> To determine its conformance to specification limits, processed crushed stone may be tested at any point after completion of processing. The manufactured material shall be separated into the primary sizes indicated in Table 703-5, "Primary Sizes". Each size fraction shall conform to the requirements 703-90, Stone Ballast.

 <sup>(2)</sup> Magnesium Sulfate loss applies to No. 2 primary size fraction.
 <sup>(3)</sup> The freeze-thaw loss applies to the No. 3 primary size fraction, but the Engineer reserves the option to test the No. 2 primary size fraction.

<sup>(4)</sup> Loss applies to limestone, dolomite, quartzite, and trap rock.
 <sup>(5)</sup> Loss applies to granite, anorthosite, and gabbro.

<sup>(6)</sup> Argillaceous limestone's and dolomites are considered to be deleterious materials.

# ITEM C675.15 – FURNISH AND PLACE STONE BALLAST SURFACING COURSE ON TRACKS

| 0175        |                                                                 | PERCENT BY WEIGHT |             |             |             |                  |            |      |                |                 |
|-------------|-----------------------------------------------------------------|-------------------|-------------|-------------|-------------|------------------|------------|------|----------------|-----------------|
| SIZE<br>NO. | NOMINAL<br>SIZE                                                 | 2 1⁄2"            | 2"          | 1 1⁄2"      | 1"          | <sup>3</sup> ⁄4" | 1⁄2"       | 3/8" | No. 4<br>Sieve | No. 10<br>Sieve |
| CR3-4       | 2" – ½"                                                         | 100               | 98 -<br>100 | 60 -<br>85  | 20 -<br>40  | 5-15             | 0-5        | 0-1  | -              | -               |
| 4           | 1 <sup>1</sup> ⁄ <sub>2</sub> " – <sup>3</sup> ⁄ <sub>4</sub> " | -                 | 100         | 90 -<br>100 | 20 -<br>55  | 0-15             | -          | 0-5  | -              | -               |
| 5           | 1" – 3/8"                                                       | -                 | -           | 100         | 90 -<br>100 | 40-<br>75        | 15 -<br>35 | 0-15 | 0-5            | <b>k</b> a      |
| 57          | 1" – No. 4<br>Sieve                                             | -                 | -           | 100         | 95 -<br>100 | -                | 25 -<br>60 | -    | 0-10           | 0-5             |

## TABLE 703-91 SIZE GRADATION - STONE BALLAST AMOUNTS FINER THAN EACH SIEVE\*

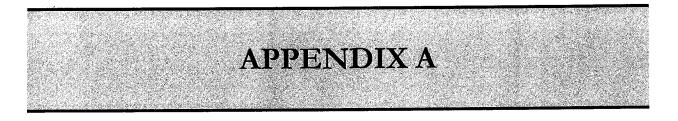
\* Sieves shall meet the requirements of ASTM designation E-11

## **Construction Details:**

Stone Ballast shall not be distributed, until track and turnouts have been lined to within 2 in. of final alignment.

The ballast required for raising and surfacing track shall be distributed from hopper bottom or special ballast railroad cars, or alternate method of distribution approved by the Engineer, in the quantities as shown in the contract documents or ordered by the Engineer as necessary for the raise. Immediately after distributing the ballast, the track shall be dressed as necessary to permit continued operation of normal train service including proper operation of switches, frogs, guard rails, and flange areas.

The rail cars used to transport the ballast shall be in good condition, so that leakage of ballast does not occur, and so that the spreading operation can be controlled. The rail cars or other equipment shall be free of any debris or foreign material that might contaminate the ballast.


The requirements for Standard Proctor Maximum Density and Moisture Control shall not apply for ballast, however, compaction shall be continued until the stones are firmly interlocked and the surface is true and unyielding.

## Method of Measurement:

This work will be measured as the number of tons of stone ballast furnished, and placed.

## Basis of Payment:

The unit price bid per ton shall include the cost of all labor, material and equipment necessary to complete the work.



## **TEST PIT LOGS**



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-1

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

|                      | 10                                                             | SUBSURFACE PROFILE                                                                                             |                       |                            |                           |         |
|----------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|---------------------------|---------|
| Depth<br>(fbgs)      | Elev.<br>/Depth                                                | Description<br>(ASTM D2488: Visual-Manual Procedure)                                                           | Lithologic Symbol     | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample             | Remarks |
| 0.0-                 | 0.0                                                            | Ground Surface                                                                                                 |                       |                            |                           |         |
| 5.0                  | -6.5<br>6.5                                                    | End of Test Pit                                                                                                |                       | 0.0                        |                           |         |
| 10.0-                |                                                                | here and the second |                       | Li                         |                           |         |
| Ex                   | cavated                                                        | By: Zoladz Construction                                                                                        | Test Pit Location: No | t to Scale                 |                           |         |
| Ex<br>Le<br>Wi<br>De | cavation<br>angth: 30'<br>idth: 3'<br>apth: 6.5'<br>apth to W. | 'ater: 6'                                                                                                      |                       | BRANKS                     | E<br>KACKS<br>B<br>B<br>C | MWS-30A |
| 01                   |                                                                | acts: none<br>Ibservations: none                                                                               | Chane 2               | BPA 2-TP-1                 |                           | =       |

Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-2

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc. Site Location: Lackawanna, NY

#### SUBSURFACE PROFILE PID VOCs Lab Description Remarks Sample Depth Elev. (ASTM D2488: Visual-Manual Procedure) Lithologic Symbol /Depth (fbgs) ppm 1000 2000 Ground Surface 0.0 0.0-Fill Dark brown, moist, cindery ash, brick and slag, loose when disturbed RR-TP-2 (0-2') 0.0 5.0--7.5 End of Test Pit 10.0-Excavated By: Zoladz Construction Test Pit Location: Not to Scale MWS - 30A Excavator Type: John Deere 892 ELC 0 3 Excavation Date(s): 5-11-09 Length: 30' Width: 3' Depth: 7.5' TRACKS 68 ALL. Depth to Water: 7' 8 680 8 Visual Impacts: none BPA BPA 2-TP-1 Olfactory Observations: none LINESS SCOOLS AREA Comments: Collected MS & MSD samples 50 Sheet: 1 of 1

Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-3

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

| 12182                                    | 18                                                                                   | SUBSURFACE PROFILE                                                                            |                       |                            | 1             | S. C. S. S. S. |
|------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|----------------------------|---------------|----------------|
| Depth<br>(fbgs)                          | Elev.<br>/Depth                                                                      | Description<br>(ASTM D2488: Visual-Manual Procedure)                                          | Lithologic Symbol     | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample | Remarks        |
| 0.0-                                     | 0.0                                                                                  | Ground Surface                                                                                |                       |                            |               |                |
| 5.0                                      | -7.0<br>7.0                                                                          | Fill<br>Dark brown, moist, cindery ash, bricks and slag, loose when disturbed                 |                       | 0.0                        |               |                |
| 10.0-                                    |                                                                                      | By: Zoladz Construction                                                                       | Test Pit Location: No | the Coole                  |               |                |
| Ex<br>Ex<br>Le<br>Wi<br>De<br>Vis<br>Ofi | cavator 1<br>cavation<br>ngth: 30'<br>dth: 3'<br>pth: 7.0'<br>pth to Wa<br>sual Impa | Type: John Deere 892 ELC<br>Date(s): 5-11-09<br>ater: 6.5'<br>acts: none<br>bservations: none |                       | BRASHES                    |               | MWS-30A        |

Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-4

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

| Non and and and and and and and and and an |                                                   | SUBSURFACE PROFILE                                                                             |                        |                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
|--------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------|-------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Depth<br>fbgs)                             | Elev.<br>/Depth                                   | Description<br>(ASTM D2488: Visual-Manual Procedure)                                           | Lithologic Symbol      | 0                       | PID<br>VOCs | Lab<br>Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Remarks   |
| 0.0-                                       | 0.0                                               | Ground Surface                                                                                 |                        |                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
|                                            | 0.0                                               | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed                   |                        |                         |             | RR-TP-4<br>(0-2')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| -                                          |                                                   |                                                                                                |                        | 0.3                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 5.0-                                       |                                                   |                                                                                                |                        |                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
|                                            | -7.5<br>7.5<br>-8.0<br>8.0                        | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff<br>End of Test Pit |                        | 0.0                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 10.0 -                                     |                                                   | By: Zoladz Construction                                                                        | Test Pit Location: Not | to Sca                  | le          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
|                                            |                                                   | Type: John Deere 892 ELC                                                                       |                        | - Carolano - C          |             | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MWS - 30A |
| E                                          |                                                   | Date(s): 5-11-09                                                                               |                        | B                       | A Past      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *         |
| Le                                         |                                                   |                                                                                                | A ROR BUT FOR          | Concession in which the |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| W                                          | idth: 3'                                          |                                                                                                | * * * * * * * * *      |                         |             | and the second se |           |
| W                                          | epth: 8'                                          |                                                                                                |                        | 70                      | LL OF I     | RACKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| W<br>De<br>De                              | epth: 8'<br>epth to W                             | fater: 7.5'                                                                                    | 1                      | 20                      | 11 OF 1     | 2 A C X S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 8       |
| W<br>De<br>De<br>Vi                        | epth: 8'<br>epth to W<br>isual Impa               | acts: none                                                                                     |                        | 7 U<br>3                | BPA 2-TP-1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| W<br>De<br>De<br>Vi                        | epth: 8'<br>epth to W<br>isual Impa<br>Ifactory C | acts: none<br>Observations: none                                                               | Then 2                 | 3                       | r r         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BP/       |
| W<br>De<br>De<br>Vi                        | epth: 8'<br>epth to W<br>isual Impa               | acts: none<br>Observations: none                                                               | Chan 2 1               | 3                       | BPA 2-TP-1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BPA       |

Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-5

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

|                |                            | SUBSURFACE PROFILE                                                                             |                        |                          |               |           |
|----------------|----------------------------|------------------------------------------------------------------------------------------------|------------------------|--------------------------|---------------|-----------|
| Depth<br>fbgs) | Elev.<br>/Depth            | Description<br>(ASTM D2488: Visual-Manual Procedure)                                           | Lithologic Symbol      | PID<br>VOCs<br>1000 2000 | Lab<br>Sample | Remarks   |
| 0.0-           | 0.0                        | Ground Surface                                                                                 |                        |                          |               |           |
| -              |                            | Fill<br>Dark brown, moist, sindery ash, bricks and slag, loose when disturbed                  |                        | 0.0                      |               |           |
| -<br>5.0 —     |                            |                                                                                                |                        |                          |               |           |
|                | -8.5<br>8.5<br>-9.0<br>9.0 | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff<br>End of Test Pit |                        | 0.0                      |               |           |
|                | cavated                    | By: Zoladz Construction                                                                        | Test Pit Location: Not | to Scale                 |               |           |
| E)<br>E)<br>Le | cavator                    | Type: John Deere 892 ELC<br>Date(s): 5-8-09                                                    | Ĺ                      | HPROTES                  | 0             | MWS - 30A |
|                | epth: 9'                   |                                                                                                |                        | 07 5                     | RACKS         |           |
| D              | epth to W                  | later: 8'                                                                                      |                        |                          | 80 6          | 7 8       |
| -              |                            | acts: none                                                                                     |                        | 3-1-1-1                  | -             | BP/       |
| vi             |                            |                                                                                                | -soans 2               | PDA 2 TO 4               |               | 1         |
| Vi<br>O        |                            | Dbservations: none                                                                             | -scane 2               | BPA 2-TP-1               |               | =         |
| Vi<br>O        | factory O                  | Dbservations: none                                                                             | - San 2                |                          | 1             | 5         |

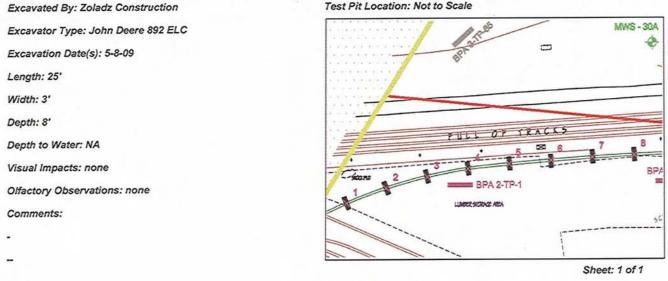
Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-6

Logged By: BMG

Checked By: BCH




Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

| - HON           |                 | SUBSURFACE PROFILE                                                           |                   | PID  |                   |         |
|-----------------|-----------------|------------------------------------------------------------------------------|-------------------|------|-------------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol | VOCs | Lab<br>Sample     | Remarks |
| 0.0-            | 0.0             | Ground Surface                                                               |                   | Į    |                   |         |
|                 | 0.0             | Fill<br>Dark brown, moist, sindery ash, brick and slag, loose when disturbed |                   | 0.0  | RR-TP-6<br>(0-2') |         |
| 1               | -7.5<br>7.5     |                                                                              |                   |      |                   |         |
| 1               | 7.5             | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff  |                   | 0.0  |                   |         |
| 10.0            | -8.0<br>8.0     | End of Test Pit                                                              |                   |      |                   |         |



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-7

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                 |                                      | SUBSURFACE PROFILE                                                                                                                                                              |                       |                            |               |           |
|-----------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|---------------|-----------|
| Depth<br>(fbgs) | Elev.<br>/Depth                      | Description<br>(ASTM D2488: Visual-Manual Procedure)                                                                                                                            | Lithologic Symbol     | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample | Remarks   |
| 0.0             | 0.0                                  | Ground Surface                                                                                                                                                                  |                       |                            |               |           |
| 5.0             | -7.5<br>-7.5<br>-7.5<br>-8.0<br>-8.0 | Fill<br>Dark brown, moist, sindery ash, bricks and slag, loose when disturbed<br>Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff<br>End of Test Pit |                       | 0.3                        |               |           |
| 10.0-           |                                      |                                                                                                                                                                                 |                       | L                          | 1             |           |
| Ex<br>Ex        | cavator                              | Type: John Deere 892 ELC<br>Date(s): 5-8-09                                                                                                                                     | Test Pit Location: No | t to Scale                 | 0             | MWS - 30A |

Length: 25'

Width: 3'

Depth: 8'

Depth to Water: 8'

Visual Impacts: none

Olfactory Observations: none

Comments: Relocated TP 15' to the south

- on same center line

-

2

8

-

50

SP/

TRACKS

07

BPA 2-TP-1

LUNDER SCORAZ MEA

FIL.

Project No: 0071-009-124

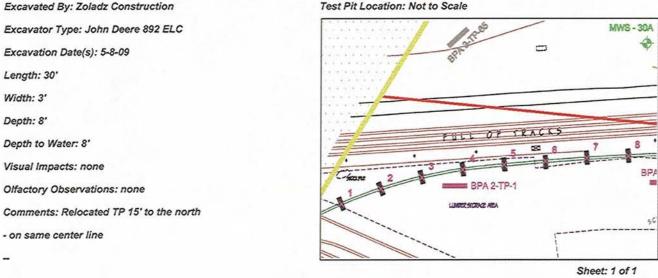
Project: Railroad realignment

Test Pit I.D.: RR-TP-8

Logged By: BMG

Checked By: BCH




TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

1

50

Client: Tecumseh Redevelopment, Inc.

|                 |                 | SUBSURFACE PROFILE                                                               | -                 | the Real | PID         |               | 1000              |  |
|-----------------|-----------------|----------------------------------------------------------------------------------|-------------------|----------|-------------|---------------|-------------------|--|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                             | Lithologic Symbol | VOCs     | VOCs<br>ppm | Lab<br>Sample | Remarks           |  |
| 0.0-            | 0.0             | Ground Surface                                                                   |                   | L        |             |               |                   |  |
| -               | 0.0             | Fill<br>Dark brown, moist, sindery ash, brick and slag, loose when disturbed     |                   |          |             |               | RR-TP-8<br>(0-2') |  |
| -               |                 |                                                                                  |                   | 0.0      |             |               |                   |  |
| 5.0-            |                 |                                                                                  |                   |          |             |               |                   |  |
| -               | -7.5<br>7.5     | Silty Clay                                                                       |                   | 0.0      |             |               |                   |  |
| 10.0            | -8.0<br>8.0     | Gray, moist, medium plastic fines with trace fine sand, stiff<br>End of Test Pit | _== == ==         |          |             |               |                   |  |



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-9

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

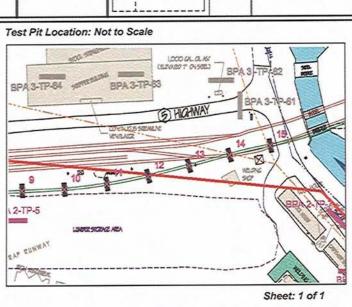
|                 |                 | SUBSURFACE PROFILE                                                               |                       | and the second second      |               |         |
|-----------------|-----------------|----------------------------------------------------------------------------------|-----------------------|----------------------------|---------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                             | Lithologic Symbol     | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample | Remarks |
|                 | 0.0             | Ground Surface                                                                   |                       |                            |               |         |
| 0.0             | -7.5            | Fill<br>Dark brown, moist, sindery ash, bricks and slag, loose when disturbed    |                       | 1.2                        |               |         |
| +               | -8.0            | Gray, moist, medium plastic fines with trace fine sand, stiff<br>End of Test Pit |                       | +                          |               |         |
| 10.0 -          | cavated         |                                                                                  | Test Pit Location: No | t to Scale                 |               |         |

Excavator Type: John Deere 892 ELC Excavation Date(s): 5-8-09 Length: 30'

Width: 3'

Depth: 8'

\_


Depth to Water: NA

Visual Impacts: none

Olfactory Observations: none

Comments: Relocated TP 15' to the north

on same center line

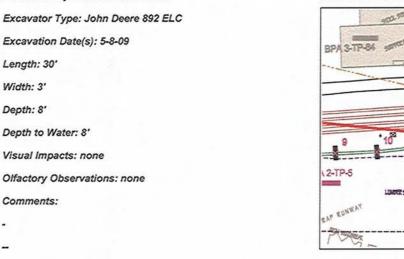


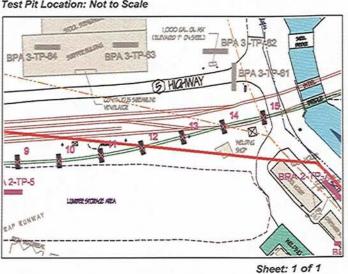
Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-10

Logged By: BMG


Checked By: BCH




TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

|                                |                            | SUBSURFACE PROFILE                                                                             |                   |      |     |                    |         |
|--------------------------------|----------------------------|------------------------------------------------------------------------------------------------|-------------------|------|-----|--------------------|---------|
| Depth<br>(fbgs)                | Elev.<br>/Depth            | Description<br>(ASTM D2488: Visual-Manual Procedure)                                           | Lithologic Symbol | VOCs | ppm | Lab<br>Sample      | Remarks |
|                                | 0.0                        | Ground Surface                                                                                 |                   |      |     |                    |         |
| 0.0 —<br>-<br>-<br>-<br>-<br>- | 0.0                        | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed                   |                   | 0.0  |     | RR-TP-10<br>(0-2') |         |
| -                              | -7.5<br>7.5<br>-8.0<br>8.0 | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff<br>End of Test Pit |                   | 0.0  |     |                    |         |
| 10.0-                          |                            |                                                                                                |                   | L    |     |                    |         |





Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-11

Logged By: BMG

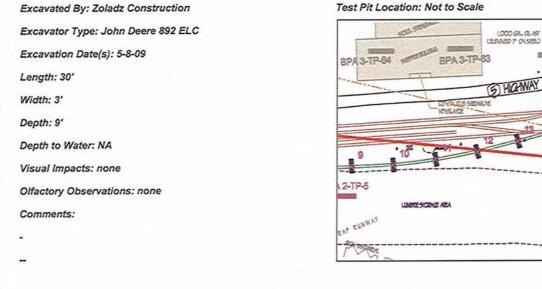
Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

BPA 3-TP

14


8

Sheet: 1 of 1

TRACK

Client: Tecumseh Redevelopment, Inc.

| CONTRACTOR DATE                                                                             |                                                                                                                                                                                 | the start of the start of the | PID  | 12012 4          | the state of the s |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pth Elev.<br>gs) /Depth                                                                     | Description<br>(ASTM D2488: Visual-Manual Procedure)                                                                                                                            | Lithologic Symbol             | VOCs | Cs Lab<br>Sample | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.0                                                                                         | Ground Surface                                                                                                                                                                  |                               |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Fill<br>Dark brown, moist, cindery ash, bricks and slag, loose when disturbed<br>Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff<br>End of Test Pit |                               | 0.0  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-12

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

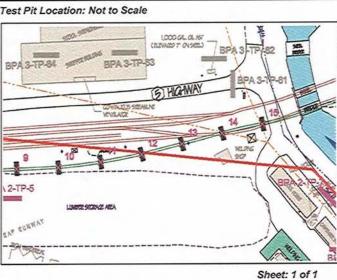
Site Location: Lackawanna, NY

|                |                            | SUBSURFACE PROFILE                                                                                                                                          |                       |                            | Part a             |         |
|----------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|--------------------|---------|
| Depth<br>fbgs) | Elev.<br>/Depth            | Description<br>(ASTM D2488: Visual-Manual Procedure)                                                                                                        | Lithologic Symbol     | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample      | Remarks |
| 0.0-           | 0.0                        | Ground Surface                                                                                                                                              |                       |                            |                    |         |
| 0.0            | -7.5<br>7.5<br>-8.0<br>8.0 | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed<br>Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff |                       | 0.0                        | RR-TP-12<br>(0-2') |         |
|                | 8.0                        | End of Test Pit                                                                                                                                             |                       |                            |                    |         |
| 0.0            |                            | By: Zoladz Construction                                                                                                                                     | Test Pit Location: No | to Scale                   |                    |         |

Excavation Date(s): 5-8-09

Length: 30'

Width: 3'


Depth: 8'

Depth to Water: 8'

Visual Impacts: none

Olfactory Observations: none

Comments:



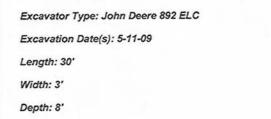
Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-13

Logged By: BMG

Checked By: BCH

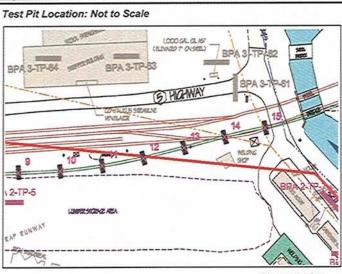



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment

Site Location: 1951 Hamburg Turnpike

|                 |                 | SUBSURFACE PROFILE                                                                             |                   | 1.18                       |     |               |         |
|-----------------|-----------------|------------------------------------------------------------------------------------------------|-------------------|----------------------------|-----|---------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                                           | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | ppm | Lab<br>Sample | Remarks |
|                 | 0.0             | Ground Surface                                                                                 |                   |                            |     |               |         |
| 0.0             | 0.0             | Fill<br>Dark brown, moist, sindery ash, bricks and slag, loose when disturbed                  |                   | 0.0<br>                    |     |               |         |
|                 | -7.5<br>7.5     |                                                                                                |                   |                            |     |               |         |
| 10.0            | -8.0<br>8.0     | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff<br>End of Test Pit | <u></u>           | 0.0                        |     |               |         |




Depth to Water: NA

Visual Impacts: none

Olfactory Observations: none

Comments:



Sheet: 1 of 1

Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-16

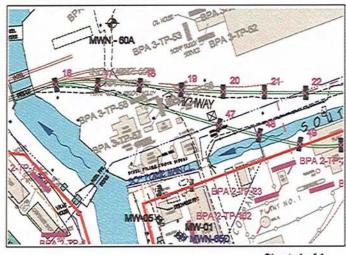
Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.


Site Location: Lackawanna, NY

|                             |                            | SUBSURFACE PROFILE                                                                             |                   |      | and the            |      |               |         |
|-----------------------------|----------------------------|------------------------------------------------------------------------------------------------|-------------------|------|--------------------|------|---------------|---------|
| Depth<br>(fogs)             | Elev.<br>/Depth            | Description<br>(ASTM D2488: Visual-Manual Procedure)                                           | Lithologic Symbol | VOCs | ppm                | VOCs | Lab<br>Sample | Remarks |
|                             | 0.0                        | Ground Surface                                                                                 |                   |      |                    |      |               |         |
| 0.0—<br>-<br>-<br>5.0—<br>- | 0.0                        | Fill<br>Dark brown, moist, cindery ash, brick and stag, loose when disturbed                   |                   | 0.0  | RR-TP-16<br>(0-2') |      |               |         |
| 10.0                        | -9.0<br>9.0<br>-9.5<br>9.5 | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff<br>End of Test Pit |                   | 0.0  |                    |      |               |         |

Test Pit Location: Not to Scale

Excavator Type: John Deere 892 ELC Excavation Date(s): 5-11-09 Length: 30' Width: 3' Depth: 9.5' Depth to Water: 9.5' Visual Impacts: none Olfactory Observations: none Comments:

Excavated By: Zoladz Construction



Sheet: 1 of 1

Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-17

Logged By: BMG

Checked By: BCH

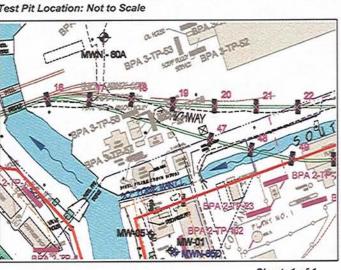


TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                             |                 | SUBSURFACE PROFILE                                                            | ALL SALES              |                            |                    |         |
|-----------------------------|-----------------|-------------------------------------------------------------------------------|------------------------|----------------------------|--------------------|---------|
| )epth<br>fbgs)              | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                          | Lithologic Symbol      | PID<br>VOCs<br>0 1000 2000 | 2000 Lab<br>Sample | Remarks |
|                             | 0.0             | Ground Surface                                                                |                        |                            |                    |         |
| 0.0—<br>-<br>-<br>5.0—<br>- | 0.0             | Fill<br>Dark brown, moist, cindery ash, bricks and slag, loose when disturbed |                        | 0.0                        |                    |         |
| -                           | -8.0<br>8.0     | End of Test Pit                                                               |                        |                            |                    |         |
| E)<br>E)                    | cavator 1       | rype: John Deere 892 ELC<br>Date(s): 5-11-09                                  | Test Pit Location: Not |                            | PASTRA STRA        | 2       |


Depth: 8'

Depth to Water: 7.5'

Visual Impacts: none

Olfactory Observations: none

Comments:



Sheet: 1 of 1

Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-18

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

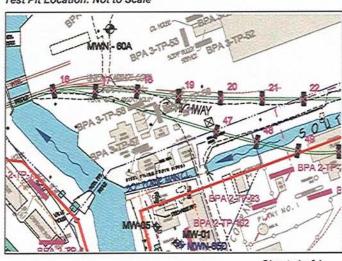
| 2%                          |                 | SUBSURFACE PROFILE                                                           |                       |           |                        | - Vel              |         |
|-----------------------------|-----------------|------------------------------------------------------------------------------|-----------------------|-----------|------------------------|--------------------|---------|
| Depth<br>(fbgs)             | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol     | 0         | PID<br>VOCs<br>1000 20 | Lab<br>Sample      | Remarks |
|                             | 0.0             | Ground Surface                                                               |                       |           |                        | ji                 |         |
| 0.0-<br>-<br>-<br>5.0-<br>- | -7.5<br>7.5     | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed |                       | 0.0       |                        | RR-TP-18<br>(0-2') |         |
| 10.0                        |                 | By: Zoladz Construction                                                      | Test Pit Location: No | t to Scal |                        |                    |         |

Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-12-09

Length: 30'

Width: 3'


Depth: 7.5'

Depth to Water: 7'

Visual Impacts: none

Olfactory Observations: none

Comments:



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-19

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

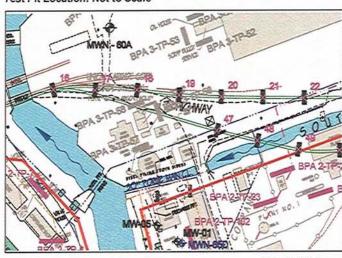
|                |                 | SUBSURFACE PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |   | DID         |      |               |         |
|----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|-------------|------|---------------|---------|
| Depth<br>fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithologic Symbol | 0 | PID<br>VOCs | 2000 | Lab<br>Sample | Remarks |
| 0.0            | 0.0             | Ground Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |   |             |      |               |         |
|                | -7.0<br>7.0     | Fill<br>Dark brown, moist, cindery ash, bricks and slag, loose when disturbed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |   |             |      |               |         |
| 10.0-          |                 | A second s |                   |   |             |      |               |         |

Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-12-09

Length: 30'

Width: 3'


Depth: 7'

Depth to Water: 6.5'

Visual Impacts: none

Olfactory Observations: none

Comments:



Project No: 0071-009-124

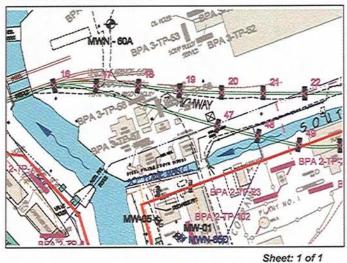
Project: Railroad realignment

Test Pit I.D.: RR-TP-20

Logged By: BMG

Checked By: BCH




TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                               |                 | SUBSURFACE PROFILE                                                           |                   |                            |                    |         |
|-------------------------------|-----------------|------------------------------------------------------------------------------|-------------------|----------------------------|--------------------|---------|
| Depth<br>(fbgs)               | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample      | Remarks |
|                               | 0.0             | Ground Surface                                                               |                   |                            |                    |         |
| 0.0 —<br>-<br>-<br>5.0 —<br>- |                 | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed |                   | 2.6                        | RR-TP-20<br>(0-2') |         |
|                               | -7.5<br>7.5     | End of Test Pit                                                              | 1                 |                            |                    |         |
| 10.0                          |                 |                                                                              |                   |                            |                    |         |

Excavator Type: John Deere 892 ELC Excavation Date(s): 5-12-09 Length: 30' Width: 3' Depth: 7.5' Depth to Water: 7' Visual Impacts: none Olfactory Observations: none Comments:



Project No: 0071-009-124

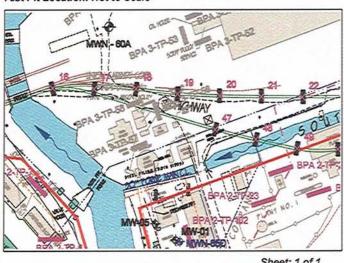
Project: Railroad realignment

Test Pit I.D.: RR-TP-21



Checked By: BCH




TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc

Site Location: Lackawanna, NY

| and a          | 1               | SUBSURFACE PROFILE                                                            | -                 | PID                        |               |         |
|----------------|-----------------|-------------------------------------------------------------------------------|-------------------|----------------------------|---------------|---------|
| Depth<br>fogs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                          | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample | Remarks |
| 0.0-           | 0.0             | Ground Surface                                                                |                   |                            |               |         |
|                | -8.0            | Fill<br>Dark brown, moist, cindery ash, bricks and slag, loose when disturbed |                   | 0.0                        |               |         |
| -              |                 | End of Test Pit.                                                              |                   |                            |               |         |

Excavator Type: John Deere 892 ELC Excavation Date(s): 5-12-09 Length: 30' Width: 3' Depth: 8' Depth to Water: 7.5' Visual Impacts: none Olfactory Observations: none Comments:



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-22

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

| 2            |                 | SUBSURFACE PROFILE                                                           |                   | 010                   |      | - Alas             |         |
|--------------|-----------------|------------------------------------------------------------------------------|-------------------|-----------------------|------|--------------------|---------|
| epth<br>ogs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol | PID<br>VOCs<br>0 1000 | 2000 | Lab<br>Sample      | Remarks |
| 0.0          | 0.0             | Ground Surface                                                               |                   |                       |      |                    |         |
| -            | 0.0             | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed |                   |                       |      | RR-TP-22<br>(0-2') |         |
| -            |                 |                                                                              |                   | 0.0                   |      |                    |         |
| -0.          |                 |                                                                              |                   |                       |      |                    |         |
|              |                 |                                                                              |                   |                       |      |                    |         |
| ŀ            | -9.5<br>9.5     | End of Test Pit                                                              |                   |                       |      |                    |         |
| 0-           |                 |                                                                              |                   | L                     | J    |                    |         |

Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-12-09

Length: 30'

Width: 3'

Depth: 9.5'

Depth to Water: 9'

Visual Impacts: none

Olfactory Observations: none

Comments:



WN-60A BPA 3-TP-53



| Phase III BPA Remedial Investigation      | TEST PIT I.D.:                                            | <b>BPA 3-TP-52</b>                                                                            |
|-------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 0071-008-300                              | Excavation Date:                                          | 08/25/08                                                                                      |
| ArcelorMittal Tecumseh Redevelopment, Inc | Excavation Method:                                        | Case 9030                                                                                     |
| Tecumseh, Phase III BPA                   | Logged / Checked By:                                      | BG/BH                                                                                         |
|                                           | 0071-008-300<br>ArcelorMittal Tecumseh Redevelopment, Inc | 0071-008-300 Excavation Date:<br>ArcelorMittal Tecumseh Redevelopment, Inc Excavation Method: |

| Test Pit Loc<br>Refer to Figur |                                | e III report for ex             | xact location      |                     |                  | it Cross Section:        | GI                        | RASS & T        | OPSOIL                         |
|--------------------------------|--------------------------------|---------------------------------|--------------------|---------------------|------------------|--------------------------|---------------------------|-----------------|--------------------------------|
| Ŷ                              |                                | - 57A<br>BPA 3<br>PA 3-TP-58    |                    | 3-TP-52<br>TP-56    | Grade            | 2'-<br>4'-<br>6'-<br>8'- | FIL                       | L               |                                |
| TIM                            |                                | Length:                         | 10.0 ft.           | (approx             |                  | 10'                      |                           |                 |                                |
| Start:<br>End:                 | 12:50<br>13:40                 | Width:<br>Depth:                | 3.0 ft.<br>8.5 ft. | (approx<br>(approx  |                  |                          |                           |                 |                                |
| Depth<br>(fbgs)                | 13.40                          | Depui.                          | USCS               | Symbol & escription |                  |                          | PID<br>Headspace<br>(ppm) | Photos<br>Y / N | Samples<br>Collected<br>(fbgs) |
| 0.0 - 0.5                      |                                | nd topsoil:<br>noist, silt with | some slag, l       | oose                |                  |                          | 0.5                       | Y               | YES                            |
| 0.5 - 8.5                      | Fill:<br>Brown, n<br>disturbed |                                 | with cindery       | ash, brick          | and little Silt, | dense, loose when        | 2.3                       | Y               | YES                            |
| 8.5                            | End of T                       | est Pit                         |                    |                     |                  |                          |                           |                 |                                |
|                                |                                |                                 |                    |                     |                  |                          |                           | ۹.,*            |                                |
| COMMENTS                       | 5:                             |                                 |                    |                     |                  |                          |                           |                 |                                |
| GROUNDV                        | VATER ENC                      | OUNTERED:                       |                    | VES                 | NO               | If yes, depth t          | to GW:                    | 8.5'            |                                |
| VISUAL IM                      | PACTS:                         |                                 |                    | YES                 | V NO             | Describe:                |                           |                 |                                |
| OLFACTOR                       | RY OBSER                       | ATIONS:                         |                    | YES                 | V NO             | Describe:                |                           |                 |                                |
| NON-NATI                       | VE FILL EN                     | COUNTERED                       | :                  | VES                 | NO               |                          | Slag, ash, and            | d brick         |                                |
| OTHER OF                       | BSERVATIO                      | NS:                             |                    | YES                 | V NO             | Describe:                |                           |                 |                                |
| SAMPLES                        | COLLECTE                       | D:                              |                    |                     |                  | Sample I.D.:             |                           | TP-52 (0-2      | )                              |
|                                |                                |                                 |                    |                     |                  | Sample I.D.:             |                           |                 |                                |



| Phase III BPA Remedial Investigation      | TEST PIT I.D.:                                            | <b>BPA 3-TP-53</b>                                                                            |
|-------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 0071-008-300                              | Excavation Date:                                          | 08/25/08                                                                                      |
| ArcelorMittal Tecumseh Redevelopment, Inc | Excavation Method:                                        | Case 9030                                                                                     |
| Tecumseh, Phase III BPA                   | Logged / Checked By:                                      | BG/BH                                                                                         |
|                                           | 0071-008-300<br>ArcelorMittal Tecumseh Redevelopment, Inc | 0071-008-300 Excavation Date:<br>ArcelorMittal Tecumseh Redevelopment, Inc Excavation Method: |

| Test Pit Loc<br>Refer to Figur | cation: NO7<br>re in the Phas  | TO SCALE                          | act location              |                      | Test Pi          | t Cross Section:         | GI                        | RASS & T        | OPSOIL                         |
|--------------------------------|--------------------------------|-----------------------------------|---------------------------|----------------------|------------------|--------------------------|---------------------------|-----------------|--------------------------------|
| BPA 3'                         | *<br>N - 57A<br>B              | BPA 3-TP-53<br>BPA 3-TP-53<br>BPI | -54<br>13-TP-52<br>-TP-56 | BPA 3-TF             |                  | 2'-<br>4'-<br>6'-<br>8'- | FII                       | L               |                                |
| TIM                            | 1E                             | Length:                           | 8.0 ft.                   | (approx.             |                  | 10'                      |                           |                 |                                |
| Start:<br>End:                 | 13:40<br>14:50                 | Width:<br>Depth:                  | 3.0 ft.<br>7.5 ft.        | (approx.<br>(approx. |                  |                          |                           |                 |                                |
| Depth<br>(fbgs)                | 14.00                          | j Dopun                           | USCS                      | Symbol & escription  |                  |                          | PID<br>Headspace<br>(ppm) | Photos<br>Y / N | Samples<br>Collected<br>(fbgs) |
| 0.0 - 0.5                      |                                | nd topsoil:<br>noist, silt with   | some slag, l              | loose                |                  |                          | 2.6                       | Y               | YES                            |
| 0.5 - 1.5                      | Fill:<br>Gray, m               | oist, Slag fill wi                | th ash, little            | Silt, dense          |                  |                          | 2.6                       | Y               | YES                            |
| 1.5 - 7.5                      | Fill:<br>Brown, r<br>disturbed |                                   | with cindery              | ash, brick           | and little Silt, | dense, loose when        | 7.2                       | Y               | YES                            |
| 7.5                            | End of T                       | est Pit                           |                           |                      |                  |                          |                           |                 |                                |
| COMMENTS                       | s:                             |                                   |                           |                      | 1991             |                          |                           |                 | -                              |
| GROUND                         | WATER ENG                      | COUNTERED:                        |                           | VES                  | NO NO            | If yes, depth t          | o GW:                     | 7.0'            |                                |
| VISUAL IM                      | IPACTS:                        |                                   |                           | YES                  | V NO             | Describe:                |                           |                 |                                |
| OLFACTO                        | RY OBSER                       | VATIONS:                          |                           | YES                  | VN NO            | Describe:                |                           |                 |                                |
| NON-NATI                       | VE FILL EN                     | COUNTERED                         | :                         | VES                  | NO NO            |                          | Slag, ash, an             | d brick         |                                |
| OTHER OF                       | BSERVATIO                      | DNS:                              |                           | YES                  | V NO             | Describe:                |                           |                 |                                |
| SAMPLES                        | COLLECTE                       | ED:                               |                           | 1.1.1                |                  | Sample I.D.:             |                           | TP-53 (0-2      | ")                             |
|                                |                                |                                   |                           |                      |                  | Sample I.D.:             |                           |                 |                                |



| Project:     | Phase III BPA Remedial Investigation      | TEST PIT I.D.:       | <b>BPA 3-TP-54</b> |
|--------------|-------------------------------------------|----------------------|--------------------|
| Project No.: | 0071-008-300                              | Excavation Date:     | 08/25/08           |
| Client:      | ArcelorMittal Tecumseh Redevelopment, Inc | Excavation Method:   | Case 9030          |
| Location:    | Tecumseh, Phase III BPA                   | Logged / Checked By: | BG/BH              |

| Test Pit Loca<br>Refer to Figure | in the Phase            | III report for ex                 | act location                    | A                             |            |                        | oss Section:       | ⊌ GI                      | RASS & T        | OPSOIL                         |
|----------------------------------|-------------------------|-----------------------------------|---------------------------------|-------------------------------|------------|------------------------|--------------------|---------------------------|-----------------|--------------------------------|
| BP                               | MWN -                   | 57A<br>BPA 3                      | A 3-TP-54<br>TP-53<br>BPA 3     | TP-52                         | SPA        | 4'<br>8'<br>12'<br>16' | SIL                | FIL<br>TY CLAY —          | I.<br>7         |                                |
| TIME<br>Start:<br>End:           | E<br>14:50<br>15:15     | Length:<br>Width:<br>Depth:       | 10.0 ft.<br>3.0 ft.<br>11.0 ft. | (approx<br>(approx<br>(approx | x.)<br>x.) | 20'                    |                    |                           |                 |                                |
| Depth<br>(fbgs)                  | 10.10                   | Depui.                            | USCS                            | Symbol 8<br>escription        | & Soil     |                        |                    | PID<br>Headspace<br>(ppm) | Photos<br>Y / N | Samples<br>Collected<br>(fbgs) |
| 0.0 - 0.5                        | Grass and<br>Brown, mo  | d topsoil:<br>bist, silt with s   | ome slag, k                     | oose                          |            |                        |                    | 1.3                       | Y               | YES                            |
| 0.5 - 2.0                        | Fill:<br>Gray, mois     | st, Slag fill wit                 | th ash, little                  | Silt, dense                   | e          |                        |                    | 1.3                       | Y               | YES                            |
| 2.0 - 10.5                       |                         | bist to wet (7.<br>e 7.5 - 9.5'), |                                 |                               |            | brick and              | ittle Silt, dense, | 102<br>(7.5 - 10.5')      | Y               | NO                             |
| 10.5 - 11.5                      | Silty Clay<br>Brown, mo | :<br>bist, Silty Clay             | v, medium p                     | lasticity, s                  | tiff       |                        |                    | NA                        | Y               | NO                             |
| 11.5                             | End of Tes              | st Pit                            | ÷.                              |                               |            |                        |                    |                           |                 |                                |
| COMMENTS:                        |                         | Two vertica                       | I I beams in                    | test pit                      |            |                        |                    |                           |                 |                                |
| GROUNDW                          | ATER ENCO               | OUNTERED:                         |                                 | V YES                         |            | NO                     | If yes, depth      | to GW:                    | 7.5'            |                                |
| VISUAL IMF                       | PACTS:                  |                                   |                                 | YES                           | N          | NO                     | Describe:          |                           |                 |                                |
| OLFACTOR                         | OLFACTORY OBSERVATIONS: |                                   |                                 |                               |            | 10                     | Describe:          | Moderate odor             |                 |                                |
| NON-NATIV                        | E FILL ENC              | OUNTERED:                         |                                 | VES                           |            | 10                     |                    | Slag, ash, and            | d brick         |                                |
| OTHER OBS                        | SERVATION               | S:                                |                                 | YES                           | N          | 10                     | Describe:          |                           |                 |                                |
| SAMPLES C                        | COLLECTED               | :                                 |                                 |                               |            |                        | Sample I.D.:       |                           | TP-54 (0-2      | ')                             |
|                                  |                         |                                   |                                 |                               |            |                        | Sample I.D.:       |                           |                 |                                |



| Phase III BPA Remedial Investigation      | TEST PIT I.D.:                                            | BPA 3-TP-54A                                                                                  |
|-------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 0071-008-300                              | Excavation Date:                                          | 08/26/08                                                                                      |
| ArcelorMittal Tecumseh Redevelopment, Inc | Excavation Method:                                        | Case 9030                                                                                     |
| Tecumseh, Phase III BPA                   | Logged / Checked By:                                      | BG/BH                                                                                         |
|                                           | 0071-008-300<br>ArcelorMittal Tecumseh Redevelopment, Inc | 0071-008-300 Excavation Date:<br>ArcelorMittal Tecumseh Redevelopment, Inc Excavation Method: |

| Test Pit Loc<br>Refer to Figur | in the Ohee           | a III cannot far a              | xact location               | 1                      |            | Pit Cros   | ss Section:   | GI GI                     | RASS & T        | OPSOIL                         |
|--------------------------------|-----------------------|---------------------------------|-----------------------------|------------------------|------------|------------|---------------|---------------------------|-----------------|--------------------------------|
| 1 H                            | A 3:1PT               | - 57A<br>BPA 3                  | A 3-TP-54<br>-TP-53<br>BRA3 | -TP-52                 | PA         | 4'         | SIL           | FIL<br>fyclay –           | а.<br>1         |                                |
| TIN<br>Start:                  | 1E<br>11:20           | Length:<br>Width:               | 10.0 ft.<br>3.0 ft.         | (approx<br>(approx     | (.)        | 20'—       |               |                           |                 |                                |
| End:                           | 11:35                 | Depth:                          | 10.0 ft.                    | (approx                |            |            |               |                           |                 |                                |
| Depth<br>(fbgs)                |                       |                                 |                             | Symbol 8<br>escription |            |            |               | PID<br>Headspace<br>(ppm) | Photos<br>Y / N | Samples<br>Collected<br>(fbgs) |
| 0.0 - 0.5                      |                       | nd topsoil:<br>noist, silt with | some slag, l                | oose                   |            |            |               | 3.0                       | Y               | NO                             |
| 0.5 - 1.5                      | Fill:<br>Gray, m      | oist, Slag fill w               | ith ash, little             | Silt, dense            | 9          |            |               | 3.0                       | Y               | NO                             |
| 1.5 - 9.5                      | Fill:<br>Brown, r     | noist to wet (8                 | '), Slag fill w             | ith cindery            | ash, brick | and little | Silt, dense,  | 11.0                      | Y               | NO                             |
| 9.5 - 10                       | Silty Cla<br>Brown, r | ny:<br>noist, Silty Cla         | y, medium p                 | plasticity, s          | tiff       |            |               | NA                        | Y               | NO                             |
| 10                             | End of T              | est Pit                         |                             |                        |            |            |               |                           |                 |                                |
| COMMENTS                       | ):<br>:               | Located 30                      | south of TI                 | P-54                   |            |            |               |                           |                 | 1                              |
| GROUNDV                        | VATER ENG             | COUNTERED                       |                             | V YES                  |            |            | If yes, depth | to GW:                    | 8'              |                                |
| VISUAL IM                      | PACTS:                |                                 |                             | YES                    | V NO       |            | Describe:     |                           |                 |                                |
| OLFACTOR                       | RY OBSER              | VATIONS:                        |                             | YES                    | V NO       |            | Describe:     |                           |                 |                                |
| NON-NATI                       | VE FILL EN            | COUNTERED                       | ):                          | VES                    | 🗌 NO       |            |               | Slag, ash, an             | d brick         |                                |
| OTHER OF                       | BSERVATIC             | NS:                             |                             | YES                    | V NO       |            | Describe:     |                           |                 |                                |
| SAMPLES                        | COLLECTE              | D:                              |                             |                        |            |            | Sample I.D.:  |                           |                 |                                |
|                                |                       |                                 |                             |                        |            |            | Sample I.D.:  |                           |                 |                                |



| Project:     | Phase III BPA Remedial Investigation      | TEST PIT I.D.:       | <b>BPA 3-TP-81</b> |
|--------------|-------------------------------------------|----------------------|--------------------|
| Project No.: | 0071-008-300                              | Excavation Date:     | 08/22/08           |
| Client:      | ArcelorMittal Tecumseh Redevelopment, Inc | Excavation Method:   | Case 9030          |
| Location:    | Tecumseh, Phase III BPA                   | Logged / Checked By: | BG/BH              |

| Test Pit Loo<br>Refer to Figur |                                |                                 | xact location       | -18                 | Test Pi<br>Grade | t Cross Section:  | ⊮ GI                      | RASS & T        | OPSOIL                         |
|--------------------------------|--------------------------------|---------------------------------|---------------------|---------------------|------------------|-------------------|---------------------------|-----------------|--------------------------------|
| BP                             | A 3-TP-AX                      |                                 | BPA 3-7             | Parte -             |                  |                   | FIL                       | JL.             |                                |
| TIN<br>Start:                  | 1E<br>10:20                    | Length:<br>Width:               | 10.0 ft.<br>3.0 ft. | (approx             |                  | 10'-              |                           |                 |                                |
| End:                           | 11:00                          | Depth:                          | 9.8 ft.             | (approx<br>(approx  |                  |                   |                           |                 |                                |
| Depth<br>(fbgs)                |                                |                                 |                     | Symbol & escription |                  |                   | PID<br>Headspace<br>(ppm) | Photos<br>Y / N | Samples<br>Collected<br>(fbgs) |
| 0.0 - 0.5                      |                                | nd topsoil:<br>moist, silt with | some slag, l        | oose                |                  |                   | 0.6                       | Y               | YES                            |
| 0.5 - 1.0                      | Fill:<br>Gray, m<br>disturbe   | oist, Slag fill w<br>d          | ith cindery a       | sh and little       | e Silt, dense, l | oose when         | 0.6                       | Y               | YES                            |
| 1.0 - 9.5                      | Fill:<br>Brown, r<br>disturbed |                                 | with cindery        | ash, brick          | and little Silt, | dense, loose when | 1.1                       | Y               | YES                            |
| 9.5 - 9.8                      | Silty Cla<br>Brown, r          | ay:<br>noist, Silty Cla         | y, medium p         | lasticity, fir      | m                |                   | NA                        | Y               | NO                             |
| 9.8                            | End of T                       | est Pit                         | _                   |                     |                  |                   |                           |                 |                                |
| COMMENTS                       | 5:                             |                                 |                     |                     |                  |                   |                           |                 |                                |
| GROUNDV                        | VATER ENG                      | COUNTERED:                      | 6                   | VES                 | NO               | If yes, depth t   | o GW:                     | 9.0'            |                                |
| VISUAL IM                      | PACTS:                         |                                 |                     | YES                 | ✓ NO             | Describe:         |                           |                 |                                |
| OLFACTO                        | RY OBSER                       | VATIONS:                        |                     | YES                 | V NO             | Describe:         |                           |                 |                                |
| NON-NATI                       | VE FILL EN                     | COUNTERED                       | );                  | VES                 | D NO             |                   | Slag, ash, and            | d brick         |                                |
| OTHER OF                       | BSERVATIC                      | NS:                             |                     | YES                 | V NO             | Describe:         |                           |                 |                                |
| SAMPLES                        | COLLECTE                       | D:                              |                     |                     |                  | Sample I.D.:      |                           | TP-81 (0-2      | )                              |
|                                |                                |                                 |                     |                     |                  | Sample I.D.:      |                           |                 |                                |

Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-23



Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

| and the second  |                    | SUBSURFACE PROFILE                                                                                                                                           | and the second    |     |                            |      |               |                                       |
|-----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|----------------------------|------|---------------|---------------------------------------|
| Depth<br>(fbgs) | Elev.<br>/Depth    | Description<br>(ASTM D2488: Visual-Manual Procedure)                                                                                                         | Lithologic Symbol | 0   | PID<br>VOCs<br>ppm<br>1000 | 2000 | Lab<br>Sample | Remarks                               |
|                 | 0.0                | Ground Surface                                                                                                                                               | 1                 |     |                            |      |               |                                       |
| 0.0             | <u>-9.5</u><br>9.5 | Fill<br>Dark brown, moist, cindery ash, bricks and slag, loose when disturbed<br>Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff |                   | 0.0 |                            |      |               |                                       |
| ľ               | -11.5<br>11.5      | End of Test Pit                                                                                                                                              |                   |     |                            |      |               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

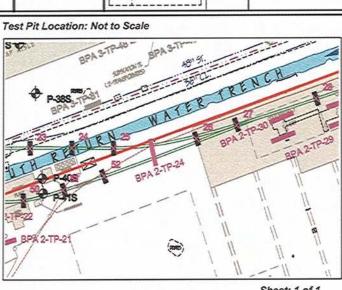
Excavated By: Zoladz Construction

Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-12-09

Length: 30'

Width: 3'


Depth: 11.5'

Depth to Water: 9.5'

Visual Impacts: none

Olfactory Observations: none

Comments:



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: BPA 2-TP-24

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

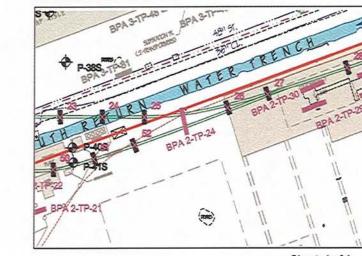
Excavated By: Zoladz Construction

Excavation Date(s): 5-7-09

Depth to Water: 7.5' Visual Impacts: none

Olfactory Observations: none Comments: 3' wide concrete footer

- excavated on both sides


Length: 60' Width: 3' Depth: 7.5'

Excavator Type: John Deere 892 ELC

Site Location: Lackawanna, NY

| 100             |                 | SUBSURFACE PROFILE                                                           |                   |     |                            |      | 000                      |         |
|-----------------|-----------------|------------------------------------------------------------------------------|-------------------|-----|----------------------------|------|--------------------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol | 0   | PID<br>VOCs<br>ppm<br>1000 | 2000 | Lab<br>Sample            | Remarks |
| 0.0             | 0.0             | Ground Surface                                                               |                   |     |                            |      |                          |         |
| -               | 0.0             | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed |                   |     |                            |      | BPA<br>2-TP-24<br>(0-2') |         |
| -               |                 |                                                                              |                   | 0.2 |                            |      |                          |         |
| 5.0-            |                 |                                                                              |                   |     |                            |      |                          |         |
| -               |                 |                                                                              |                   |     |                            |      |                          |         |
| -               | -7.5<br>7.5     | End of Test Pit                                                              |                   |     |                            |      |                          |         |

Test Pit Location: Not to Scale



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-25

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                 | No. Sel            | SUBSURFACE PROFILE                                                    |                   |     |                            |      | 100           |         |
|-----------------|--------------------|-----------------------------------------------------------------------|-------------------|-----|----------------------------|------|---------------|---------|
| Depth<br>(fbgs) | 0.0 Ground Surface | Description<br>(ASTM D2488: Visual-Manual Procedure)                  | Lithologic Symbol | 0   | PID<br>VOCs<br>ppm<br>1000 | 2000 | Lab<br>Sample | Remarks |
| 0.0             | 0.0                |                                                                       | *****             |     |                            |      |               |         |
| 5.0             | -7.5<br>7.5        | Dark brown, moist, cindery ash, bricks and slag, loose when disturbed |                   | 2.0 |                            |      |               |         |
| 10.0            |                    |                                                                       |                   |     |                            |      |               |         |

Excavated By: Zoladz Construction

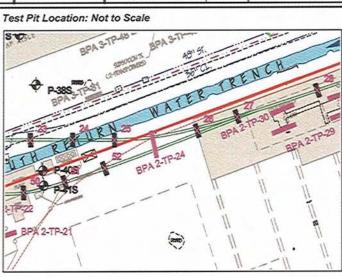
Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-7-09

Length: 30'

Width: 3'

Depth: 7.5'


Depth to Water: 7.5'

Visual Impacts: none

Olfactory Observations: none

Comments: 10' wide concrete transformer pad

excavated on both sides



Project No: 0071-009-124

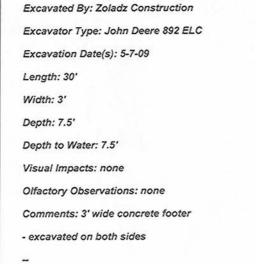
Project: Railroad realignment

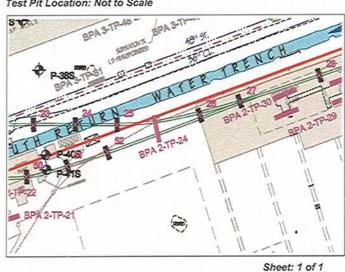
Test Pit I.D.: RR-TP-26

Logged By: BMG

Checked By: BCH




TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635


Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                 | _               |                                                                              |                   |       |                               | ()                 |         |
|-----------------|-----------------|------------------------------------------------------------------------------|-------------------|-------|-------------------------------|--------------------|---------|
|                 |                 | SUBSURFACE PROFILE                                                           |                   | 7.0.5 |                               |                    |         |
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol | 0     | PID<br>VOCs<br>ppm<br>1000 20 | Lab<br>Sample      | Remarks |
| 0.0-            | 0.0             | Ground Surface                                                               |                   |       |                               |                    |         |
| -               | 0.0             | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed |                   |       |                               | RR-TP-26<br>(0-2') |         |
|                 |                 |                                                                              |                   | 5.3   |                               |                    |         |
| _               |                 |                                                                              |                   |       |                               | _                  |         |
| 5.0 —           |                 |                                                                              |                   |       |                               |                    |         |
| -               |                 |                                                                              |                   |       |                               |                    |         |
| -               | -7.5<br>7.5     | End of Test Pit                                                              |                   |       |                               |                    |         |
| -               |                 |                                                                              |                   |       |                               |                    |         |
| 10.0-           |                 |                                                                              |                   |       |                               |                    |         |

Test Pit Location: Not to Scale





Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-27

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

| 17. A           |                 | SUBSURFACE PROFILE                                   |                       |          |                            |      |               |         |
|-----------------|-----------------|------------------------------------------------------|-----------------------|----------|----------------------------|------|---------------|---------|
| Depth<br>(fbgs) | Elev,<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure) | Lithologic Symbol     | 0_       | PID<br>VOCs<br>ppm<br>1000 | 2000 | Lab<br>Sample | Remarks |
|                 | 0.0             | Ground Surface                                       |                       |          |                            |      |               |         |
| 0.0             | -7.5<br>7.5     | End of Test Pit                                      |                       |          |                            |      |               |         |
| 10.0 -          | cavated         | By: Zoladz Construction                              | Test Pit Location: No | t to Sca | nle                        | ]    |               |         |

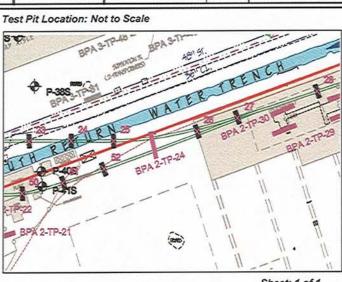
Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-7-09

Length: 30'

Width: 3'

Depth: 7.5'


Depth to Water: 7.5'

Visual Impacts: none

Olfactory Observations: none

Comments: 10' wide concrete transformer pad

- excavated on both sides



Project No: 0071-009-124

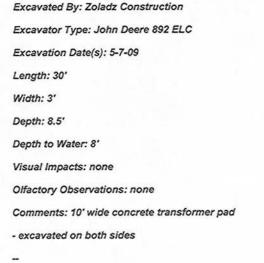
Project: Railroad realignment

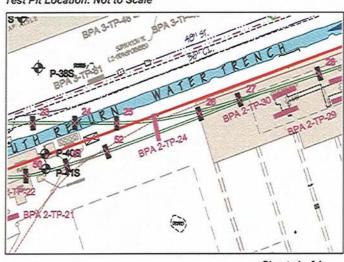
Test Pit I.D.: BPA 2-TP-30

Logged By: BMG

#### Checked By: BCH




TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635


Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

| -            |                 | SUBSURFACE PROFILE                                                           |                   | 010                       |                          |         |
|--------------|-----------------|------------------------------------------------------------------------------|-------------------|---------------------------|--------------------------|---------|
| epth<br>bgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol | PID<br>VOCs<br>0 1000 200 | Lab<br>Sample            | Remarks |
|              | 0.0             | Ground Surface                                                               |                   |                           |                          |         |
| 0.0          | 0.0             | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed |                   |                           | BPA<br>2-TP-30<br>(0-2') |         |
|              |                 |                                                                              |                   | 0.0                       |                          |         |
| i.o —        |                 |                                                                              |                   |                           |                          |         |
| -            |                 |                                                                              |                   |                           |                          |         |
| 1            | -8.5            |                                                                              |                   |                           |                          |         |
| -            | -8.5<br>8.5     | End of Test Pit                                                              |                   |                           |                          |         |

Test Pit Location: Not to Scale





Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-28

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                 |                 | SUBSURFACE PROFILE                                                           |                   |         |                          | 1                  | S. S. S. S. |
|-----------------|-----------------|------------------------------------------------------------------------------|-------------------|---------|--------------------------|--------------------|-------------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol | 0       | PID<br>VOCs<br>1000 2000 | Lab<br>Sample      | Remarks     |
| 0.0             | 0.0             | Ground Surface                                                               |                   |         |                          |                    |             |
|                 | -8.5<br>8.5     | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed |                   | 0.0     |                          | RR-TP-28<br>(0-2') |             |
| -               | 8.5             | End of Test Pit                                                              |                   |         |                          |                    |             |
| 10.0-           |                 |                                                                              |                   | L       |                          | 1                  |             |
| Ex<br>Ex<br>Le  | cavator T       | ype: John Deere 892 ELC<br>Date(s): 5-7-09                                   | P385 TAS          | 1P.46 - | WATER                    | TRE                | NCH 12      |

BPA 2-TP-2

BPA 2-TP-24

(00)

Depth: 8.5'

Depth to Water: 8'

Visual Impacts: none

Olfactory Observations: none

Comments: 3' wide concrete footer

- excavated on both sides

Sheet: 1 of 1

BPA 2-TP

1

11

BPA

Project No: 0071-009-124

Depth to Water: 7.5' Visual Impacts: none

Comments:

Olfactory Observations: none

Project: Railroad realignment

Test Pit I.D.: RR-TP-29

Logged By: BMG

#### Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                                         | SUBSURFACE PROFILE                                                            |                        |                            | 1             |         |
|-----------------------------------------|-------------------------------------------------------------------------------|------------------------|----------------------------|---------------|---------|
| lepth Elev.<br>/Depth                   | Description<br>(ASTM D2488: Visual-Manual Procedure)                          | Lithologic Symbol      | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample | Remarks |
| 0.0 0.0                                 | Ground Surface                                                                |                        |                            |               |         |
| 5.0-                                    | Fill<br>Dark brown, moist, cindery ash, bricks and slag, loose when disturbed |                        | 0.0                        |               |         |
| 7.5<br>-<br>-<br>Excavated<br>Excavator | Type: John Deere 892 ELC<br>Date(s): 5-7-09                                   | Test Pit Location: Not | Post lapA 27               | 100 miles     | BPAC    |

cout BPA 27

Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-30

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

| 200            |                 | SUBSURFACE PROFILE                                                           |                   |     |                            |      |                    |         |
|----------------|-----------------|------------------------------------------------------------------------------|-------------------|-----|----------------------------|------|--------------------|---------|
| Depth<br>fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol | 0   | PID<br>VOCs<br>ppm<br>1000 | 2000 | Lab<br>Sample      | Remarks |
| 0.0-           | 0.0             | Ground Surface                                                               |                   | L   |                            |      |                    |         |
| 5.0            | 0.0             | Fill<br>Dark brown, moist, cindery ash, brick and stag, loose when disturbed |                   | 0.0 |                            |      | RR-TP-30<br>(0-2') |         |
| -              | -7.0<br>7.0     | End of Test Pit                                                              |                   |     |                            |      |                    |         |

Excavator Type: John Deere 892 ELC

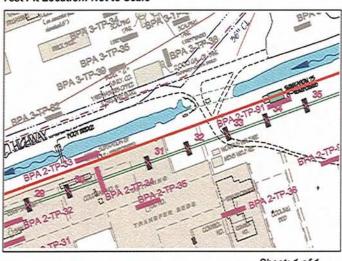
Excavation Date(s): 5-7-09

Length: 30'

Width: 3'

Depth: 7'

Depth to Water: 6.5'


Visual Impacts: none

Olfactory Observations: none

Comments: 10' wide concrete transformer pad

- excavated on both sides

-- collect PCB sample from surface near pad



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: BPA 2-TP-34

Logged By: BMG

#### Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

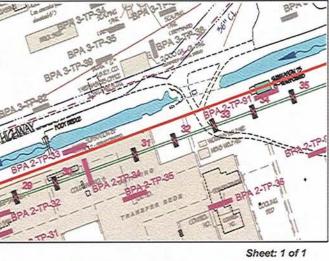
|              | 124             | SUBSURFACE PROFILE                                                    |                       | and the second second      |                          |         |
|--------------|-----------------|-----------------------------------------------------------------------|-----------------------|----------------------------|--------------------------|---------|
| epth<br>bgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                  | Lithologic Symbol     | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample            | Remarks |
| 0.0          | 0.0             | Ground Surface                                                        |                       |                            |                          |         |
|              | 0.0             | Fill<br>Dark brown, moist, cindery ash and slag, loose when disturbed |                       | 0.0                        | BPA<br>2-TP-34<br>(0-2') |         |
|              | -7.5<br>7.5     | End of Test Pit                                                       |                       |                            |                          |         |
| 0.0-         |                 |                                                                       |                       | L                          |                          |         |
| Ex           | cavated l       | By: Zoladz Construction                                               | Test Pit Location: No | t to Scale                 |                          |         |

Excavation Date(s): 5-6-09

Length: 20'

Width: 3'

Depth: 7.5'


Depth to Water: 7'

Visual Impacts: none

Olfactory Observations: none

Comments:





Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-31

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

| 10-             |                 | SUBSURFACE PROFILE                                                            |                   |     |                            |      |               |         |
|-----------------|-----------------|-------------------------------------------------------------------------------|-------------------|-----|----------------------------|------|---------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                          | Lithologic Symbol | 0   | PID<br>VOCs<br>ppm<br>1000 | 2000 | Lab<br>Sample | Remarks |
| 0.0             | 0.0             | Ground Surface                                                                |                   |     |                            |      |               |         |
|                 | -7.0            | Fill<br>Dark brown, moist, cindery ash, bricks and slag, loose when disturbed |                   | 0.0 |                            |      |               |         |
| -               | 7.0             | End of Test Pit                                                               |                   |     |                            |      |               |         |
| 10.0            | -               |                                                                               |                   | L   |                            | J    |               |         |

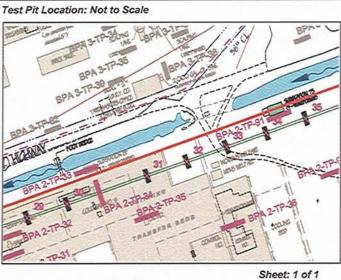
Excavated By: Zoladz Construction

Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-6-09

Length: 30'

Width: 3'


Depth: 7'

Depth to Water: 6.5'

Visual Impacts: none

Olfactory Observations: none

Comments:



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-32

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment

Site Location: 1951 Hamburg Tumpike

| 323                 |                                                              | SUBSURFACE PROFILE                                                    |                       |                          |                    |         |
|---------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------|--------------------------|--------------------|---------|
| )epth<br>fbgs)      | Elev.<br>/Depth                                              | Description<br>(ASTM D2488: Visual-Manual Procedure)                  | Lithologic Symbol     | PID<br>VOCs<br>0 1000 20 | Lab<br>Sample      | Remarks |
| 0.0-                | 0.0                                                          | Ground Surface                                                        |                       |                          |                    |         |
| -                   | 0.0                                                          | Fill<br>Dark brown, moist, sindery ash and slag, loose when disturbed |                       |                          | RR-TP-32<br>(0-2') |         |
| -                   |                                                              |                                                                       |                       | 0.0                      |                    |         |
| 5.0-                |                                                              |                                                                       |                       |                          |                    |         |
|                     | -7.0<br>7.0                                                  | End of Test Pit                                                       |                       |                          |                    |         |
| 10.0-               |                                                              |                                                                       |                       |                          |                    |         |
| E                   | cavated                                                      | By: Zoladz Construction                                               | Test Pit Location: No | t to Scale               |                    | -       |
|                     |                                                              | Type: John Deere 892 ELC<br>Date(s): 5-6-09                           |                       |                          |                    |         |
|                     |                                                              |                                                                       | 1                     |                          |                    |         |
| W                   | idth: 3'<br>apth: 7'                                         |                                                                       |                       |                          |                    |         |
| W<br>De             | idth: 3'<br>opth: 7'                                         | ater: 6'                                                              |                       |                          |                    |         |
| W<br>De<br>De       | idth: 3'<br>apth: 7'<br>apth to Wa                           | ater: 6'<br>acts: none                                                |                       |                          |                    |         |
| W<br>De<br>De<br>Vi | idth: 3'<br>opth: 7'<br>opth to W.<br>sual Impa              |                                                                       |                       |                          |                    |         |
| W<br>De<br>De<br>Vi | idth: 3'<br>opth: 7'<br>opth to W.<br>sual Impa              | acts: none<br>Ibservations: none                                      |                       |                          |                    |         |
| W<br>De<br>De<br>Vi | idth: 3'<br>opth: 7'<br>opth to Wi<br>sual Impa<br>factory O | acts: none<br>Ibservations: none                                      |                       |                          |                    |         |

Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-33

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

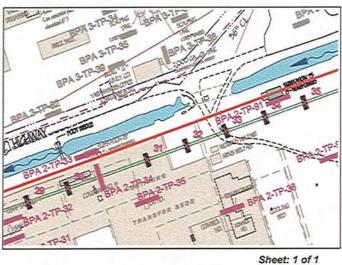
|                 | 1.57.88         | SUBSURFACE PROFILE                                                                                                 |                   | 200 | DID                        |      |               |         |
|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------|-------------------|-----|----------------------------|------|---------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                                                               | Lithologic Symbol | 0   | PID<br>VOCs<br>ppm<br>1000 | 2000 | Lab<br>Sample | Remarks |
| 0.0-            | -7.0<br>7.0     | Ground Surface<br>Fill<br>Dark brown, moist, cindeny ash, bricks and slag, loose when disturbed<br>End of Test Pit |                   | 0.0 |                            |      |               |         |

Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-6-09

Length: 30'

Width: 3'


Depth: 7'

Depth to Water: 6.5'

Visual Impacts: none

Olfactory Observations: none

Comments:



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-34

Logged By: BMG

#### Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                 |                                | SUBSURFACE PROFILE                                                          |                   |                            |                    |         |
|-----------------|--------------------------------|-----------------------------------------------------------------------------|-------------------|----------------------------|--------------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth                | Description<br>(ASTM D2488: Visual-Manual Procedure)                        | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample      | Remarks |
| 0.0             | 0.0                            | Ground Surface                                                              |                   | L                          |                    |         |
| -               | 0.0                            | Fill<br>Dark brown, moist, cindery ash and slag, loose when disturbed       |                   | 0.2                        | RR-TP-34<br>(0-2') |         |
| 5.0             |                                |                                                                             |                   |                            |                    |         |
| -               |                                |                                                                             |                   |                            |                    |         |
| -               | -8.5                           |                                                                             |                   |                            |                    |         |
| -               | 8.5                            | Peat<br>Brown, moist, decaying wood pieces and roots, spongy                |                   | 0.0                        |                    |         |
| 10.0-           | -10.5<br>10.5<br>-11.0<br>11.0 | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff |                   | 0.0                        |                    |         |
|                 | 11.0                           | End of Test Pit                                                             |                   |                            |                    |         |

Excavated By: Zoladz Construction

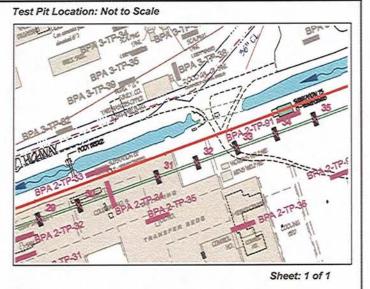
Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-6-09

Length: 30'

Width: 3'

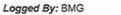
Depth: 11'


Depth to Water: 5.5'

Visual Impacts: none

Olfactory Observations: none

Comments:


•



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-35



Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

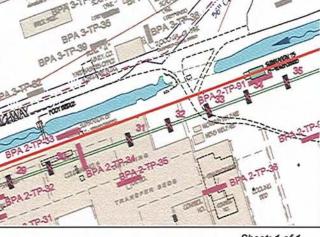
| 1              |                 | SUBSURFACE PROFILE                                                           |                        |                            |                       |
|----------------|-----------------|------------------------------------------------------------------------------|------------------------|----------------------------|-----------------------|
| Depth<br>fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol      | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample Remarks |
| 0.0            | 0.0             | Ground Surface                                                               |                        |                            |                       |
|                |                 | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed |                        | 2.7                        |                       |
| +              | -9.0<br>9.0     | Ciller Class                                                                 |                        |                            |                       |
| 10.0-          |                 | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff  |                        | 0.0                        |                       |
| H              | -10.5<br>10.5   | End of Test Pit                                                              |                        |                            |                       |
| ]              |                 |                                                                              | Test Pit Location: Not |                            |                       |

Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-6-09

Length: 30'

Width: 3'


Depth: 10.5'

Depth to Water: 6'

Visual Impacts: none

Olfactory Observations: none

Comments:



Sheet: 1 of 1

BP

Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-36

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

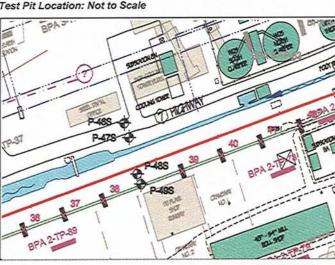
|                |                 | SUBSURFACE PROFILE                                                    |                   |                            |                    |         |
|----------------|-----------------|-----------------------------------------------------------------------|-------------------|----------------------------|--------------------|---------|
| Depth<br>fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                  | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample      | Remarks |
|                | 0.0             | Ground Surface                                                        |                   |                            |                    |         |
| - 0.0          | 0.0             | Fill<br>Dark brown, moist, cindery ash and slag, loose when disturbed |                   | 0.0                        | RR-TP-36<br>(0-2') |         |
| 5.0 —          | -6.0<br>6.0     | End of Test Pit                                                       |                   |                            |                    |         |
| 10.0           |                 |                                                                       |                   |                            |                    |         |

Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-6-09

Length: 30'

Width: 3'


Depth: 6'

Depth to Water: 5'

Visual Impacts: none

Olfactory Observations: none

Comments:



Project No: 0071-009-124

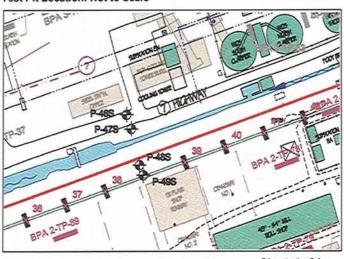
Project: Railroad realignment

Test Pit I.D.: RR-TP-37

Logged By: BMG

Checked By: BCH

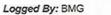



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                 |                 | SUBSURFACE PROFILE                                                    |                       |     |                            |      |               |         |
|-----------------|-----------------|-----------------------------------------------------------------------|-----------------------|-----|----------------------------|------|---------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                  | Lithologic Symbol     | 0   | PID<br>VOCs<br>ppm<br>1000 | 2000 | Lab<br>Sample | Remarks |
| 0.0-            | 0.0             | Ground Surface                                                        |                       |     |                            |      |               |         |
| 5.0             | -6.5<br>6.5     | FIII<br>Dark brown, moist, cindery ash and slag, loose when disturbed |                       | 0.0 |                            |      |               |         |
| -               |                 | By: Zoladz Construction                                               | Test Pit Location: No |     |                            |      |               |         |


Excavator Type: John Deere 892 ELC Excavation Date(s): 5-6-09 Length: 30' Width: 3' Depth: 6.5' Depth to Water: 6' Visual Impacts: none Olfactory Observations: none Comments:



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-38

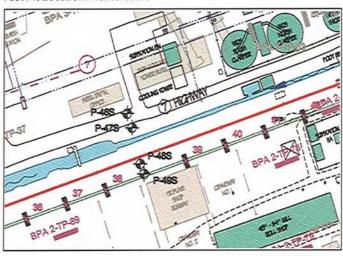


Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.


Site Location: Lackawanna, NY

| -               |                 | SUBSURFACE PROFILE                                                    |                   |                            |                    |         |
|-----------------|-----------------|-----------------------------------------------------------------------|-------------------|----------------------------|--------------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                  | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample      | Remarks |
| 0.0             | 0.0             | Ground Surface                                                        |                   |                            |                    |         |
| -               | 0.0             | Fill<br>Dark brown, moist, cindery ash and slag, loose when disturbed |                   |                            | RR-TP-38<br>(0-2') |         |
| -               |                 |                                                                       |                   | 0.0                        |                    |         |
| 5.0-            | -6.0<br>6.0     |                                                                       |                   |                            |                    |         |
| -               | 6.0             | End of Test Pit                                                       |                   |                            |                    |         |

Test Pit Location: Not to Scale

Excavator Type: John Deere 892 ELC Excavation Date(s): 5-6-09 Length: 30' Width: 3' Depth: 6' Depth to Water: 5' Visual Impacts: none Olfactory Observations: none Comments:

Excavated By: Zoladz Construction



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-39

Logged By: BMG

#### Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                 |                 | SUBSURFACE PROFILE                                                    |                   |     |            |        |              |         |
|-----------------|-----------------|-----------------------------------------------------------------------|-------------------|-----|------------|--------|--------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                  | Lithologic Symbol | V   | PID<br>OCs | 2000 S | Lab<br>ample | Remarks |
| 0.0-            | 0.0             | Ground Surface                                                        |                   |     |            |        |              |         |
| 5.0 -           | -6.5<br>6.5     | Fill<br>Dark brown, moist, cindery ash and slag, loose when disturbed |                   | 0.0 |            |        |              |         |
| 10.0            |                 |                                                                       |                   |     | <u>,</u>   |        |              |         |

Excavated By: Zoladz Construction

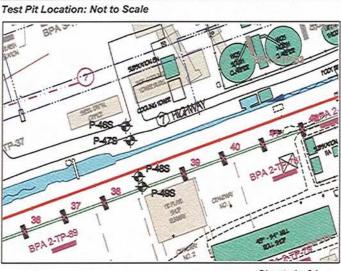
Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-6-09

Length: 30'

Width: 3'

Depth: 6.5'


Depth to Water: 6'

Visual Impacts: none

Olfactory Observations: none

Comments: 7" steel pipe with 3" and two 1" pipes inside

- encountered at 6" below grade, bent not broke



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-40

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                          |                 | SUBSURFACE PROFILE                                                    |                   |                            |                    |         |
|--------------------------|-----------------|-----------------------------------------------------------------------|-------------------|----------------------------|--------------------|---------|
| Depth<br>(fbgs)          | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                  | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample      | Remarks |
|                          | 0.0             | Ground Surface                                                        |                   |                            |                    |         |
| 0.0—<br>—<br>—<br>—<br>— | 0.0             | Fill<br>Dark brown, moist, cindery ash and slag, loose when disturbed |                   | 0.1                        | RR-TP-40<br>(0-2') |         |
| 5.0-                     | -6.0            |                                                                       |                   |                            |                    |         |
| -                        | -6.0            | End of Test Pit                                                       |                   |                            |                    |         |
| 10.0                     |                 |                                                                       | -                 | LiJ                        |                    |         |

Excavated By: Zoladz Construction

Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-6-09

Length: 30'

Width: 3'

Depth: 6'

Depth to Water: 6'

Visual Impacts: none

Olfactory Observations: none

Comments:

-



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-41

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

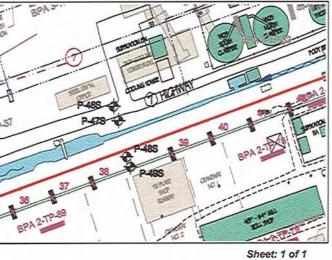
Site Location: Lackawanna, NY

| 5              | 100 The         | SUBSURFACE PROFILE                                                            |                       |                            | * 1           |         |
|----------------|-----------------|-------------------------------------------------------------------------------|-----------------------|----------------------------|---------------|---------|
| Depth<br>fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                          | Lithologic Symbol     | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample | Remarks |
| 0.0-           | 0.0             | Ground Surface                                                                |                       |                            |               |         |
|                | -5.0<br>5.0     | Fill<br>Dark brown, moist, cindery ash, bricks and slag, loose when disturbed |                       | 0.0                        |               |         |
| 0.0-           |                 |                                                                               |                       | L                          |               |         |
| Ex             | cavated I       | By: Zoladz Construction                                                       | Test Pit Location: No | t to Scale                 |               |         |
|                |                 | Type: John Deere 892 ELC<br>Date(s): 5-13-09                                  | BPAS                  | - Fait                     |               |         |

Length: 30'

Width: 3'

Depth: 5'


Depth to Water: NA

Visual Impacts: none

Olfactory Observations: none

Comments:

-



Project No: 0071-009-124

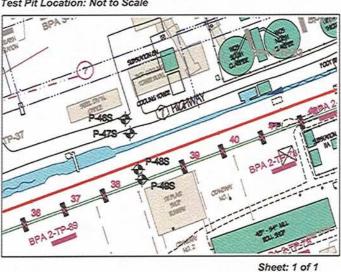
Project: Railroad realignment

Test Pit I.D.: RR-TP-42

Logged By: BMG

Checked By: BCH




TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                 |                 | SUBSURFACE PROFILE                                                                                       |                   |                            |                    |         |
|-----------------|-----------------|----------------------------------------------------------------------------------------------------------|-------------------|----------------------------|--------------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                                                     | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample      | Remarks |
| -               | 0.0             | Ground Surface                                                                                           |                   |                            |                    |         |
| 0.0             | -8.0            | Fill<br>Dark brown, moist, cindery ash, brick and slag (with some mill scale ?),<br>loose when disturbed |                   | 0.0                        | RR-TP-42<br>(0-2') |         |
| 10.0            | 8.0             | End of Test Pit                                                                                          |                   |                            |                    |         |

Excavator Type: John Deere 892 ELC Excavation Date(s): 5-13-09 Length: 30' Width: 3' Depth: 8.0' Depth to Water: 7' Visual Impacts: none Olfactory Observations: none Comments:



Project No: 0071-009-124

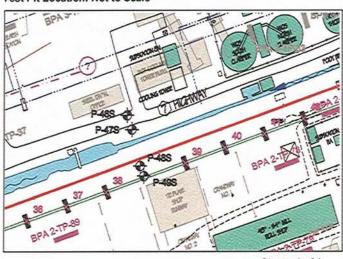
Project: Railroad realignment

Test Pit I.D.: BPA 2-TP-92

Logged By: BMG

Checked By: BCH




TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                 | SUBSURFACE PROFILE |                                                                              |                   |                            |               |         | 100                      |  |
|-----------------|--------------------|------------------------------------------------------------------------------|-------------------|----------------------------|---------------|---------|--------------------------|--|
| Depth<br>(fbgs) | Elev.<br>/Depth    | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample | Remarks |                          |  |
| -               | 0.0                | Ground Surface                                                               |                   |                            |               |         |                          |  |
| 0.0             | 0.0                | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed |                   |                            |               |         | BPA<br>2-TP-92<br>(0-2') |  |
| -<br>5.0 -      | -6.0               |                                                                              |                   | 0.0                        |               |         |                          |  |
| T               | 6.0                | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff  |                   | 0.0                        |               |         |                          |  |
|                 | -7.0               | Gray, moist, medium plasue intes with valee inte same, suit                  |                   |                            |               |         |                          |  |
| -               | 7.0                | End of Test Pit                                                              |                   |                            |               |         |                          |  |

Excavator Type: John Deere 892 ELC Excavation Date(s): 5-13-09 Length: 25' Width: 3' Depth: 7.0' Depth to Water: 6.5' Visual Impacts: none Olfactory Observations: none Comments: Sample heavy (metal ?)



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-43

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

| SUBSURFACE PROFILE |                 |                                                                               |                   |                            |               |         |
|--------------------|-----------------|-------------------------------------------------------------------------------|-------------------|----------------------------|---------------|---------|
| Depth<br>(fbgs)    | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                          | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample | Remarks |
| 0.0-               | 0.0             | Ground Surface                                                                | 1                 |                            |               |         |
|                    | -5.0<br>5.0     | Fill<br>Dark brown, moist, cindery ash, bricks and slag, loose when disturbed |                   | 0.0                        |               |         |
| -                  |                 | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff   |                   | 0.0                        |               |         |
|                    | -6.5<br>6.5     | End of Test Pit                                                               | ×                 |                            |               |         |
| -                  |                 |                                                                               |                   |                            |               |         |

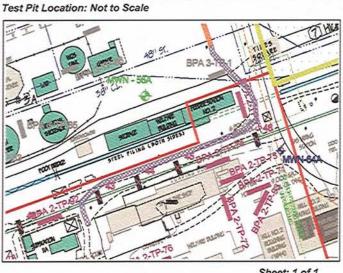
Excavated By: Zoladz Construction

Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-13-09

Length: 25'

Width: 3'


Depth: 6.5'

Depth to Water: 5'

Visual Impacts: none

Olfactory Observations: none

Comments:



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-44

Logged By: BMG

#### Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

| SUBSURFACE PROFILE |                 |                                                                              |                   |                            | 1                  |         |
|--------------------|-----------------|------------------------------------------------------------------------------|-------------------|----------------------------|--------------------|---------|
| Depth<br>(fbgs)    | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample      | Remarks |
|                    | 0.0             | Ground Surface                                                               |                   |                            |                    |         |
| 0.0                |                 | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed |                   | 0.0                        | RR-TP-44<br>(0-2') |         |
| -                  | -5.5<br>5.5     | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff  |                   | 0.0                        |                    |         |
| -                  | -7.0<br>7.0     | End of Test Pit                                                              | <u>x x x</u>      |                            | 1.1                |         |
| -                  |                 |                                                                              |                   |                            |                    |         |

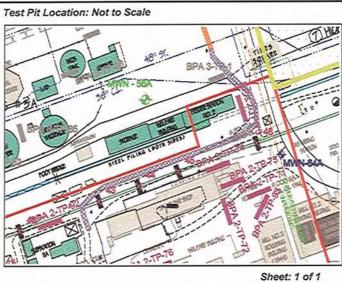
Excavated By: Zoladz Construction

Excavator Type: John Deere 892 ELC

Excavation Date(s): 5-13-09

Length: 30'

Width: 3'


Depth: 7.0'

Depth to Water: 4.5'

Visual Impacts: none

Olfactory Observations: none

Comments:



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-45

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

| SUBSURFACE PROFILE |                 |                                                                               |                   |                            |               |         |
|--------------------|-----------------|-------------------------------------------------------------------------------|-------------------|----------------------------|---------------|---------|
| Depth<br>(fbgs)    | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                          | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample | Remarks |
| 0.0-               | 0.0             | Ground Surface                                                                | 1                 |                            |               |         |
|                    |                 | Fill<br>Dark brown, moist, cindery ash, bricks and slag, loose when disturbed |                   | 0.0                        |               |         |
| +                  | -6.0<br>6.0     | End of Test Pit                                                               |                   |                            |               |         |
| -                  |                 |                                                                               |                   |                            |               |         |

Test Pit Location: Not to Scale

Excavator Type: John Deere 892 ELC Excavation Date(s): 5-13-09 Length: 30' Width: 3' Depth: 6' Depth to Water: 5' Visual Impacts: none Olfactory Observations: none Comments:

Excavated By: Zoladz Construction



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: BPA 2-TP-74

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|              | 2               | SUBSURFACE PROFILE                                                           |                        |        |                          |                          |         |
|--------------|-----------------|------------------------------------------------------------------------------|------------------------|--------|--------------------------|--------------------------|---------|
| epth<br>bgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol      | 0      | PID<br>VOCs<br>1000 2000 | Lab<br>Sample            | Remarks |
| 0.0-         | 0.0             | Ground Surface                                                               |                        |        |                          |                          |         |
| 5.0          |                 | Fill<br>Dark brown, moist, cindery ash, brick and stag, toose when disturbed |                        | 0.0    |                          | 8PA<br>2-TP-74<br>(0-2') |         |
|              | -6.0<br>6.0     | End of Test Pit                                                              |                        |        |                          |                          |         |
| Ex           | cavated E       | By: Zoladz Construction                                                      | Test Pit Location: Not | to Sca | ale                      |                          |         |
| Exe<br>Lei   |                 | 'ype: John Deere 892 ELC<br>Date(s): 5-13-09                                 |                        | H.     | ABILIST.<br>BPA          |                          |         |

Depth to Water: 5.5'

Visual Impacts: none

Olfactory Observations: none

Comments:

-

Sheet: 1 of 1

2.18

Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-46

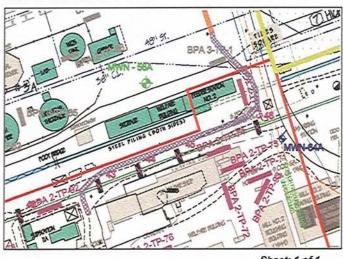
Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.


Site Location: Lackawanna, NY

|                |                 | SUBSURFACE PROFILE                                                           |                   |                            |                    |         |
|----------------|-----------------|------------------------------------------------------------------------------|-------------------|----------------------------|--------------------|---------|
| Depth<br>fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample      | Remarks |
| 0.0-           | 0.0             | Ground Surface                                                               |                   |                            |                    |         |
|                | 0.0             | Fill<br>Dark brown, moist, cindery ash, brick and slag, loose when disturbed |                   | 0.0                        | RR-TP-46<br>(0-2') |         |
| -              | -7.0<br>7.0     | End of Test Pit                                                              |                   |                            |                    |         |
| 10.0           |                 |                                                                              |                   |                            |                    |         |

Test Pit Location: Not to Scale

Excavator Type: John Deere 892 ELC Excavation Date(s): 5-13-09 Length: 30' Width: 3' Depth: 7.0' Depth to Water: 6.5' Visual Impacts: none Olfactory Observations: none Comments:

Excavated By: Zoladz Construction



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-47

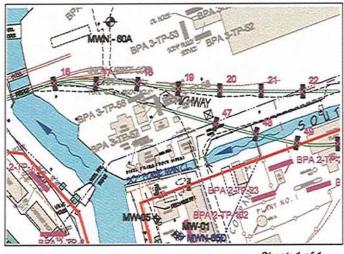
Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.


Site Location: Lackawanna, NY

|                             |                 | SUBSURFACE PROFILE                                                            |                   | No. IS |             |      |               |         |
|-----------------------------|-----------------|-------------------------------------------------------------------------------|-------------------|--------|-------------|------|---------------|---------|
| Depth<br>(fbgs)             | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                          | Lithologic Symbol | 0      | PID<br>VOCs | 2000 | Lab<br>Sample | Remarks |
|                             | 0.0             | Ground Surface                                                                |                   |        |             |      |               |         |
| 0.0<br>-<br>-<br>-<br>5.0 - |                 | Fill<br>Dark brown, moist, cindery ash, bricks and slag, loose when disturbed |                   | 0.0    |             |      |               |         |
| +                           | -6.0            | 0/// 0/                                                                       |                   |        |             |      |               |         |
| -                           | -8.5<br>8.5     | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff   |                   | 0.0    |             |      |               |         |
| [                           | 8.5             | End of Test Pit                                                               |                   |        |             |      |               |         |
| 10.0-                       |                 |                                                                               |                   |        |             |      |               |         |

Test Pit Location: Not to Scale

Excavator Type: John Deere 892 ELC Excavation Date(s): 5-13-09 Length: 30' Width: 3' Depth: 8.5' Depth to Water: 7.5' Visual Impacts: none Olfactory Observations: none Comments:

Excavated By: Zoladz Construction



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-49

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                 |                 | SUBSURFACE PROFILE                                                            |                   |         |                                |               |         |
|-----------------|-----------------|-------------------------------------------------------------------------------|-------------------|---------|--------------------------------|---------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                          | Lithologic Symbol | 0       | PID<br>VOCs<br>ppm<br>1000 200 | Lab<br>Sample | Remarks |
| 0.0             | 0.0             | Ground Surface                                                                |                   |         |                                |               |         |
| 5.0             | 0.0             | Fill<br>Dark brown, moist, sindery ash, bricks and slag, loose when disturbed |                   | <br>0.0 |                                |               |         |
|                 | -7.5<br>7.5     |                                                                               |                   |         |                                | (7)           |         |
| 2.00            | -8.0            | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff   |                   | 0.0     |                                |               |         |
| 10.0            | 8.0             | End of Test Pit                                                               |                   |         |                                |               |         |

Test Pit Location: Not to Scale

Excavated By: Zoladz Construction

Excavator Type: John Deere 892 ELC

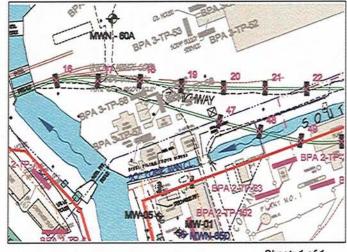
Excavation Date(s): 5-7-09

Length: 20'

Width: 3'

Depth: 8'

Depth to Water: 7.5'


Visual Impacts: none

Olfactory Observations: none

Comments: Unknown oil like material floating on

- water with no visable source

-- collected sample for SVOC & VOC per BH



Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-50

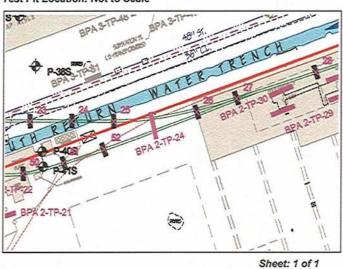
Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.


Site Location: Lackawanna, NY

|                 |                 | SUBSURFACE PROFILE                                                           |                   |                            |                    |         |
|-----------------|-----------------|------------------------------------------------------------------------------|-------------------|----------------------------|--------------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol | PID<br>VOCs<br>0 1000 2000 | Lab<br>Sample      | Remarks |
| 0.0             | 0.0             | Ground Surface                                                               |                   |                            |                    |         |
| -               | 0.0             | Fill<br>Dark brown, moist, sindery ash, brick and slag, loose when disturbed |                   |                            | RR-TP-50<br>(0-2') |         |
| 5.0             |                 |                                                                              |                   | 0.6                        |                    |         |
| -               | -7.5<br>7.5     |                                                                              |                   |                            |                    |         |
| -               | 7.5             | Silty Clay<br>Gray, moist, medium plastic fines with trace fine sand, stiff  |                   | 0.0                        |                    |         |
| 10.0-           | -11.0           |                                                                              |                   |                            |                    |         |
|                 | 11.0            | End of Test Pit                                                              |                   |                            |                    |         |

Test Pit Location: Not to Scale

Excavator Type: John Deere 892 ELC Excavation Date(s): 5-7-09 Length: 30' Width: 3' Depth: 11' Depth to Water: 8' Visual Impacts: none Olfactory Observations: none Comments:

Excavated By: Zoladz Construction



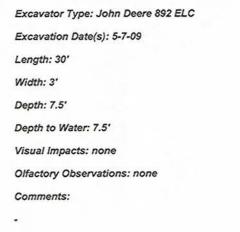
Project No: 0071-009-124

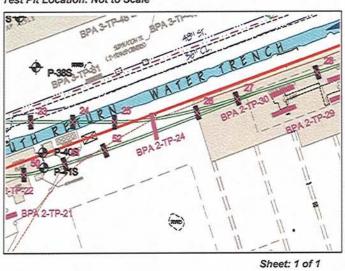
Project: Railroad realignment

Test Pit I.D.: RR-TP-51

Logged By: BMG

#### Checked By: BCH





TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

|                 |                 | SUBSURFACE PROFILE                                                            |                       |                       |               |         |
|-----------------|-----------------|-------------------------------------------------------------------------------|-----------------------|-----------------------|---------------|---------|
| Depth<br>(fbgs) | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                          | Lithologic Symbol     | PID<br>VOCs<br>0 1000 | Lab<br>Sample | Remarks |
|                 | 0.0             | Ground Surface                                                                |                       |                       |               |         |
| 0.0             | -7.5<br>7.5     | Fill<br>Dark brown, moist, sindery ash, bricks and slag, loose when disturbed |                       | 0.0                   |               |         |
| 10.0            |                 | End of Test Pit<br>By: Zoladz Construction                                    | Test Pit Location: No |                       |               |         |





Project No: 0071-009-124

Project: Railroad realignment

Test Pit I.D.: RR-TP-52

Logged By: BMG

Checked By: BCH



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY (716) 856-0635

Client: Tecumseh Redevelopment, Inc.

Site Location: Lackawanna, NY

| 1                             |                 | SUBSURFACE PROFILE                                                           |                        |     |                            |      |                    |         |
|-------------------------------|-----------------|------------------------------------------------------------------------------|------------------------|-----|----------------------------|------|--------------------|---------|
| Depth<br>(fbgs)               | Elev.<br>/Depth | Description<br>(ASTM D2488: Visual-Manual Procedure)                         | Lithologic Symbol      | 0   | PID<br>VOCs<br>ppm<br>1000 | 2000 | Lab<br>Sample      | Remarks |
|                               | 0.0             | Ground Surface                                                               |                        |     |                            |      |                    |         |
| 0.0 —<br>-<br>-<br>5.0 —<br>- | -7.5<br>7.5     | Fill<br>Dark brown, moist, sindery ash, brick and slag, loose when disturbed |                        | 1.7 |                            |      | RR-TP-52<br>(0-2') |         |
| -                             |                 | By: Zoladz Construction                                                      | Test Pit Location: Not |     |                            | ]    |                    |         |

Excavator Type: John Deere 892 ELC

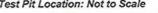
Excavation Date(s): 5-7-09

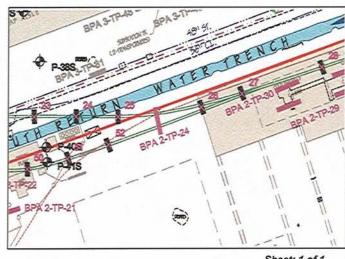
Length: 30'

Width: 3'

Depth: 7.5'

Depth to Water: 7.5'


Visual Impacts: none


Olfactory Observations: none

Comments: 3' wide concrete footer

- excavated on both sides







# **APPENDIX B**

### 2009 RAIL CORRIDOR INVESTIGATION ANALYTICAL DATA PACKAGE





Analytical Report

Work Order: RSE0369

Project Description TURNKEY - TECUMSEH REDEVELOPMENT SITE

For:

Bryan Hann

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

S.

Brian Fischer

Project Manager Brian.Fischer@testamericainc.com

Thursday, May 28, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.



THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

### TestAmerica Buffalo Current Certifications

### As of 1/27/2009

| STATE          | Program                          | Cert # / Lab ID  |
|----------------|----------------------------------|------------------|
| Arkansas       | CWA, RCRA, SOIL                  | 88-0686          |
| California*    | NELAP CWA, RCRA                  | 01169CA          |
| Connecticut    | SDWA, CWA, RCRA, SOIL            | PH-0568          |
| Florida*       | NELAP CWA, RCRA                  | E87672           |
| Georgia*       | SDWA, NELAP CWA, RCRA            | 956              |
| Illinois*      | NELAP SDWA, CWA, RCRA            | 200003           |
| Iowa           | SW/CS                            | 374              |
| Kansas*        | NELAP SDWA, CWA, RCRA            | E-10187          |
| Kentucky       | SDWA                             | 90029            |
| Kentucky UST   | UST                              | 30               |
| Louisiana *    | NELAP CWA, RCRA                  | 2031             |
| Maine          | SDWA, CWA                        | N Y0044          |
| Maryland       | SDWA                             | 294              |
| Massachusetts  | SDWA, CWA                        | M-NY044          |
| Michigan       | SDWA                             | 9937             |
| Minnesota      | SDWA,CWA, RCRA                   | 036-999-337      |
| New Hampshire* | NELAP SDWA, CWA                  | 233701           |
| New Jersey*    | NELAP, SDWA, CWA, RCRA,          | NY455            |
| New York*      | NELAP, AIR, SDWA, CWA, RCRA, CLP | 10026            |
| Oklahoma       | CWA, RCRA                        | 9421             |
| Pennsylvania * | NELAP CWA,RCRA                   | 68-00281         |
| Tennessee      | SDWA                             | 02970            |
| Texas *        | NELAP CWA, RCRA                  | T104704412-08-TX |
| USDA           | FOREIGN SOIL PER MIT             | S-41579          |
| USDOE          | Department of Energy             | DOECAP-STB       |
| Virginia       | SDWA                             | 278              |
| Washington*    | NELAP CWA,RCRA                   | C1677            |
| Wisconsin      | CWA, RCRA                        | 998310390        |
| West Virginia  | CWĄ,RCRA                         | 252              |

\*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com



THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

#### **Case Narrative**

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

There are pertinent documents appended to this report, 2 pages, are included and are an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.



| Turnkey/Benchmark              | Work Order: RSE0369                                                         | Received: | 05/11/09       |
|--------------------------------|-----------------------------------------------------------------------------|-----------|----------------|
| 726 Exchange Street, Suite 624 |                                                                             | Reported: | 05/28/09 17:38 |
| Buffalo, NY 14210              | Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE<br>Project Number: TURN-0009 |           |                |

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to the lab MDL. It must be noted that results reported below lab standard quantitation limits (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

| SpecificMethod | Analyte        | <u>Units</u> | Client RL | Lab PQL |
|----------------|----------------|--------------|-----------|---------|
| 8270C          | 4-Methylphenol | ug/kg dry    | 170       | 1600    |

IestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

#### DATA QUALIFIERS AND DEFINITIONS

- B Analyte was detected in the associated Method Blank.
- B3 Target analyte detected in calibration blank at or above the method reporting limit.
- **C-01** To reduce matrix interference, the sample extract has undergone sulfuric acid clean-up, method 3665A, which is specific to hydrocarbon contamination.
- D02 Dilution required due to sample matrix effects
- D08 Dilution required due to high concentration of target analyte(s)
- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- L1 Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits.
- M1 The MS and/or MSD were outside the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
- QSU Sulfur (EPA 3660) clean-up performed on extract.
- R2 The RPD exceeded the acceptance limit.
- **Z6** Surrogate recovery was below acceptance limits.

#### ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                                                   |              | Executi    | ve Summ          | ary - I  | Detectior              | ns          |                |                       |           |                |
|-------------------------------------------------------------------|--------------|------------|------------------|----------|------------------------|-------------|----------------|-----------------------|-----------|----------------|
|                                                                   | Sample       | Data       |                  |          | L L                    | Dilution    | Date           |                       | Seq/      |                |
| Analyte                                                           | Result       | Qualifiers | <b>Rpt Limit</b> | MDL      |                        | Factor      | Analyzed       | Analyst               | -         | Method         |
| Sample ID: RSE0369-01 (RR-TP-40                                   | - Solid)     |            |                  |          | Sampled                | 1: 05/06/09 | 09:45          | Recvd: 0              | 5/11/09 1 | 1:45           |
| General Chemistry Parameters                                      | 87           |            | 0.010            | NR       | %                      | 1.00        | 05/14/09 07:12 | LT                    | 9E13102   | Dry Weight     |
| Percent Solids Total Metals by SW 846 Series Methods              |              |            |                  |          |                        |             |                |                       |           |                |
| Arsenic                                                           | 57.1         |            | 10.0             | NR       | mg/kg dry              | 1.00        | 05/13/09 23:14 |                       | 9E12064   | 6010B          |
| Barium                                                            | 151          |            | 1.00             | NR       | mg/kg dry              | 1.00        | 05/13/09 23:14 |                       | 9E12064   | 6010B          |
| Chromium                                                          | 26.0         |            | 2.00             | NR       | mg/kg dry              | 1.00        | 05/13/09 23:14 |                       | 9E12064   | 6010B          |
| Lead                                                              | 172          |            | 5.0              | NR       | mg/kg dry              | 1.00        | 05/13/09 23:14 |                       | 9E12064   | 6010B          |
| Mercury                                                           | 0.404        |            | 0.0228           | NR       | mg/kg dry              | 1.00        | 05/13/09 14:37 | MM                    | 9E12055   | 7471A          |
| Sample ID: RSE0369-02 (RR-TP-38                                   | - Solid)     |            |                  |          | Sampled                | I: 05/06/09 | 10:45          | Recvd: 05/11/09 11:45 |           |                |
| General Chemistry Parameters                                      |              |            |                  |          |                        |             |                |                       | 0540400   | Deviate        |
| Percent Solids<br>Total Metals by SW 846 Series Methods           | 85           |            | 0.010            | NR       | %                      | 1.00        | 05/14/09 07:14 | LT                    | 9E13102   | Dry Weight     |
| Arsenic                                                           | 19.0         |            | 10.0             | NR       | mg/kg dry              | 1.00        | 05/13/09 23:39 |                       | 9E12064   | 6010B          |
| Barium                                                            | 90.8         |            | 1.00             | NR       | mg/kg dry              | 1.00        | 05/13/09 23:39 | TWS                   | 9E12064   | 6010B          |
| Cadmium                                                           | 0.919        |            | 0.500            | NR       | mg/kg dry              | 1.00        | 05/13/09 23:39 | TWS                   | 9E12064   | 6010B          |
| Chromium                                                          | 146          |            | 2.00             | NR       | mg/kg dry              | 1.00        | 05/13/09 23:39 | TWS                   | 9E12064   | 6010B          |
| Lead                                                              | 325          |            | 5.0              | NR       | mg/kg dry              | 1.00        | 05/13/09 23:39 | TWS                   | 9E12064   | 6010B          |
| Mercury                                                           | 1.04         | D08        | 0.0454           | NR       | mg/kg dry              | 2.00        | 05/13/09 17:02 | ММ                    | 9E12055   | 7471A          |
| Sample ID: RSE0369-03 (RR-TP-36 - Solid)                          |              |            |                  |          | Sampled                | I: 05/06/09 | 11:15          | Recvd: 0              | 5/11/09 1 | 1:45           |
| General Chemistry Parameters                                      |              |            |                  |          |                        |             |                |                       |           |                |
| Percent Solids<br>Total Metals by SW 846 Series Methods           | 85           |            | 0.010            | NR       | %                      | 1.00        | 05/14/09 07:16 | LT                    | 9E13102   | Dry Weight     |
| Arsenic                                                           | 62.1         |            | 10.0             | NR       | mg/kg dry              | 1.00        | 05/13/09 23:56 | TWS                   | 9E12064   | 6010B          |
| Barium                                                            | 46.0         |            | 1.00             | NR       | mg/kg dry              | 1.00        | 05/13/09 23:56 | TWS                   | 9E12064   | 6010B          |
| Chromium                                                          | 31.0         |            | 2.00             | NR       | mg/kg dry              | 1.00        | 05/13/09 23:56 | TWS                   | 9E12064   | 6010B          |
| Lead                                                              | 237          |            | 5.0              | NR       | mg/kg dry              | 1.00        | 05/13/09 23:56 | TWS                   | 9E12064   | 6010B          |
| Mercury                                                           | 0.297        |            | 0.0218           | NR       | mg/kg dry              | 1.00        | 05/13/09 14:44 | MM                    | 9E12055   | 7471A          |
| Sample ID: RSE0369-04 (RR-TP-34                                   | Solid)       |            |                  |          | Sampled                | I: 05/06/09 | 13-15          | Recvd: 0              | 5/11/09 1 | 1:45           |
| General Chemistry Parameters                                      | eena,        |            |                  |          | -                      | -           |                |                       |           |                |
| Percent Solids                                                    | 82           |            | 0.010            | NR       | %                      | 1.00        | 05/14/09 07:18 | i LT                  | 9E13102   | Dry Weight     |
| Total Metals by SW 846 Series Methods                             |              |            | 40.0             |          | mallia dai             | 1 00        | 05/14/09 00:01 | TWS                   | 9E12064   | 6010B          |
| Arsenic                                                           | 83.5         |            | 10.0             | NR       | mg/kg dry              | 1.00        | 05/14/09 00:01 |                       | 9E12064   | 6010B          |
| Barium                                                            | 51.4         |            | 1.00             | NR<br>NR | mg/kg dry<br>mg/kg dry | 1.00        | 05/14/09 00:01 |                       | 9E12064   | 6010B          |
| Chromium                                                          | 29.2         |            | 2.00             |          | mg/kg dry              | 1.00        | 05/14/09 00:01 |                       | 9E12064   | 6010B          |
| Lead                                                              | 121<br>0.302 |            | 5.0<br>0.0240    | NR<br>NR | mg/kg dry<br>mg/kg dry | 1.00        | 05/13/09 14:46 |                       | 9E12055   | 7471A          |
| Mercury                                                           |              |            | 0.0240           |          |                        |             |                |                       |           |                |
| Sample ID: RSE0369-05 (RR-TP-32 -<br>General Chemistry Parameters | Solid)       |            |                  |          | Sampled                | 1: 05/06/09 | 14:30          | Recvd: 0              | 5/11/09 1 | 1:45           |
| Percent Solids                                                    | 87           |            | 0.010            | NR       | %                      | 1.00        | 05/14/09 07:20 | LT                    | 9E13102   | Dry Weight     |
| Total Metals by SW 846 Series Methods                             |              |            |                  |          |                        |             |                |                       |           |                |
| Arsenic                                                           | 30.5         |            | 10.0             | NR       | mg/kg dry              | 1.00        | 05/14/09 00:06 | TWS                   | 9E12064   | 6010B          |
| Barium                                                            | 90.2         |            | 1.00             | NR       | mg/kg dry              | 1.00        | 05/14/09 00:06 | TWS                   | 9E12064   | 6010B          |
| Cadmium                                                           | 17.0         |            | 0.500            | NR       | mg/kg dry              | 1.00        | 05/14/09 00:06 | TWS                   | 9E12064   | 6010B          |
| Chromium                                                          | 115          |            | 2.00             | NR       | mg/kg dry              | 1.00        | 05/14/09 00:06 | TWS                   | 9E12064   | 6010B          |
| Lead                                                              | 206          |            | 5.0              | NR       | mg/kg dry              | 1.00        | 05/14/09 00:06 | TWS                   | 9E12064   | 6010B          |
| Mercury                                                           | 0.233        |            | 0.0240           | NR       | mg/kg dry              | 1.00        | 05/13/09 14:47 | MM                    | 9E12055   | 7 <b>4</b> 71A |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

### **TestAmerica**

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| <u> </u>                              |             | Executiv     | ve Summ    | ary - I    | Detection  | S         |                                         |            |                    |                |
|---------------------------------------|-------------|--------------|------------|------------|------------|-----------|-----------------------------------------|------------|--------------------|----------------|
|                                       | Sample      | Data         |            |            | ם          | ilution   | Date                                    |            | Seq/               |                |
| Analyte                               | Result      | Qualifiers   | Rpt Limit  | MDL        | Units      | Factor    | Analyzed                                | Analyst    | Batch              | Method         |
| Sample ID: RSE0369-06 (RR-TP-30       | - Solid)    |              |            |            | Sampled    | : 05/07/0 | 9 08:45                                 | Recvd: 0   | 5/11/09 1          | 1:45           |
| General Chemistry Parameters          |             |              |            |            | -          |           |                                         |            |                    |                |
| Percent Solids                        | 58          |              | 0.010      | NR         | %          | 1.00      | 05/14/09 07:22                          | 2 LT       | 9E13102            | Dry Weight     |
| Polychlorinated Biphenyls by EPA Met  |             |              |            |            |            |           |                                         |            |                    |                |
| Aroclor 1260                          | 52000       | QSU, D08     | 2800       | 600        | ug/kg dry  | 100       | 05/13/09 09:29                          | JM         | 9Ë12035            | 8082           |
| Total Metals by SW 846 Series Methods | -           |              |            |            |            |           |                                         |            |                    |                |
| Arsenic                               | 15.9        |              | 10.0       | NR         | mg/kg dry  | 1.00      | 05/14/09 00:11                          |            | 9E12064            | 6010B          |
| Barium                                | 109         |              | 1.00       | NR         | mg/kg dry  | 1.00      | 05/14/09 00:11                          |            | 9E12064            | 6010B          |
| Cadmium                               | 5.69        |              | 0.500      | NR         | mg/kg dry  | 1.00      | 05/14/09 00:11                          |            | 9E12064            | 6010B          |
| Chromium                              | 41.9        |              | 2.00       | NR         | mg/kg dry  | 1.00      | 05/14/09 00:11                          |            | 9E12064            | 6010B          |
| Lead                                  | 207         |              | 5.0        | NR         | mg/kg dry  | 1.00      | 05/14/09 00:11                          |            | 9E12064            | 6010B          |
| Mercury                               | 0.0882      |              | 0.0358     | NR         | mg/kg dry  | 1.00      | 05/13/09 14:49                          | ) MM       | 9E12055            | 7471A          |
| Sample ID: RSE0369-07 (BPA2-TP-3      | 34 - Solid) |              |            |            | Sampled:   | : 05/06/0 | 9 16:30                                 | Recvd: 0   | 5/11/09 1          | 1:45           |
| General Chemistry Parameters          |             |              |            |            |            |           |                                         |            |                    |                |
| Percent Solids                        | 91          |              | 0.010      | NR         | %          | 1.00      | 05/14/09 07:24                          | I LT       | 9E13102            | Dry Weight     |
| Total Metals by SW 846 Series Methods | L           |              |            |            |            |           |                                         |            |                    |                |
| Arsenic                               | 13.2        |              | 10.0       | NR         | mg/kg dry  | 1.00      | 05/14/09 00:16                          | s tws      | 9E12064            | 6010B          |
| Barium                                | 103         |              | 1.00       | NR         | mg/kg dry  | 1.00      | 05/14/09 00:16                          | 5 TWS      | 9E12064            | 6010B          |
| Cadmium                               | 2.49        |              | 0.500      | NR         | mg/kg dry  | 1.00      | 05/14/09 00:16                          | S TWS      | 9E12064            | 6010B          |
| Chromium                              | 55.3        |              | 2.00       | NR         | mg/kg dry  | 1.00      | 05/14/09 00:16                          | s tws      | 9E12064            | 6010B          |
| Lead                                  | 265         |              | 5.0        | NR         | mg/kg dry  | 1.00      | 05/14/09 00:16                          | s tws      | 9E12064            | 6010B          |
| Mercury                               | 0.375       |              | 0.0228     | NR         | mg/kg dry  | 1.00      | 05/13/09 14:51                          | MM         | 9E12055            | 7471A          |
| Sample ID: RSE0369-08 (RR-TP-28       | - Solid)    |              |            |            | Sampled:   | 05/07/0   | 9 09:15                                 | Recvd: 0   | 5/11/09 1          | 1:45           |
| General Chemistry Parameters          | <b>,</b>    |              |            |            | Campica    |           | • • • • • • • • • • • • • • • • • • • • |            |                    |                |
| Percent Solids                        | 88          |              | 0.010      | NR         | %          | 1.00      | 05/14/09 07:26                          | 5 LT       | 9E13102            | Dry Weight     |
| Total Metals by SW 846 Series Methods |             |              |            |            |            |           |                                         |            |                    |                |
| Barium                                | 66.0        |              | 1.00       | NR         | mg/kg dry  | 1.00      | 05/14/09 00:21                          | TWS        | 9E12064            | 6010B          |
| Cadmium                               | 1.23        |              | 0.500      | NR         | mg/kg dry  | 1.00      | 05/14/09 00:21                          | TWS        | 9E12064            | 6010B          |
| Chromium                              | 464         |              | 2.00       | NR         | mg/kg dry  | 1.00      | 05/14/09 00:21                          | TWS        | 9E12064            | 6010B          |
| Lead                                  | 272         |              | 5.0        | NR         | mg/kg dry  | 1.00      | 05/14/09 00:21                          | TWS        | 9E12064            | 6010B          |
| Mercury                               | 0.0891      |              | 0.0223     | NR         | mg/kg dry  | 1.00      | 05/13/09 14:55                          | 5 MM       | 9E12055            | 7471A          |
| •                                     |             |              |            |            | <b>0</b>   | 0510710   | 0 40.45                                 | Decude Of  | -                  | 4.45           |
| Sample ID: RSE0369-09 (BPA2-TP-3      | 50 - Solia) |              |            |            | Sampled:   | 05/07/0   | 9 10:15                                 | Recvd: 0   | 5/11/09 1          | 1:45           |
| General Chemistry Parameters          | 83          |              | 0.010      | NR         | %          | 1.00      | 05/14/09 07:28                          | 3 LT       | 9E13102            | Dry Weight     |
| Percent Solids                        |             |              | 0.010      | INIX       | 70         | 1.00      | 03/14/03 07.20                          | , ,,       | 5210102            | Bry Weight     |
| Polychlorinated Biphenyls by EPA Meth | 120         | 0811         | 19         | 4.1        | unllin dai | 1.00      | 05/13/09 09:58                          | tch        | 9E12035            | 8082           |
| Aroclor 1254<br>Aroclor 1260          | 360         | QSU<br>QSU   | 19         | 4.1        | ug/kg dry  | 1.00      | 05/13/09 09:58                          | JM         | 9E12035            | 8082           |
| Semivolatile Organics by GC/MS        | 300         | 030          | 19         | 4.1        | ug/kg dry  | 1.00      | 03/10/03 03.30                          | JIM        | 5212000            | 0002           |
|                                       | 43          | D02,J        | 800        | 9.7        | ualka day  | 4.00      | 05/20/09 23:48                          | JLG        | 9E11087            | 8270C          |
| 2-Methylnaphthalene                   | 80          | D02,J        | 800        | 6.5        | ug/kg dry  | 4.00      | 05/20/09 23:48                          | JLG        | 9E11087            | 8270C          |
| Acenaphthylene                        |             |              |            |            | ug/kg dry  | 4.00      | 05/20/09 23:48                          |            | 9E11087            | 8270C          |
| Anthracene<br>Renze(a)anthracene      | 99<br>830   | D02,J<br>D02 | 800<br>800 | 20<br>14   | ug/kg dry  | 4.00      | 05/20/09 23:48                          | JLG<br>JLG | 9E11087            | 8270C<br>8270C |
| Benzo(a)anthracene                    | 1100        | D02<br>D02   | 800        | 14         | ug/kg dry  | 4.00      | 05/20/09 23:48                          | JLG        | 9E11087            | 8270C          |
| Benzo(a)pyrene                        |             |              |            |            | ug/kg dry  |           | 05/20/09 23:48                          |            | 9E11087<br>9E11087 | 8270C<br>8270C |
| Benzo(b)fluoranthene                  | 1400        | D02          | 800        | 15<br>0.6  | ug/kg dry  | 4.00      | 05/20/09 23:48                          | JLG        | 9E11087            | 8270C<br>8270C |
| Benzo(ghi)perylene                    | 980<br>530  | D02          | 800        | 9.6<br>8 8 | ug/kg dry  | 4.00      | 05/20/09 23:48                          | JLG        | 9E11087<br>9E11087 | 8270C<br>8270C |
| Benzo(k)fluoranthene                  | 530<br>39   | D02,J        | 800<br>800 | 8.8<br>0.2 | ug/kg dry  | 4.00      | 05/20/09 23:48                          | JLG        | 9E11087            | 8270C<br>8270C |
| Carbazole                             | 39<br>860   | D02,J        | 800<br>800 | 9.2<br>8.0 | ug/kg dry  | 4.00      |                                         | JLG        | 9E11087<br>9E11087 | 8270C<br>8270C |
| Chrysene                              | 960         | D02          | 800        | 8.0        | ug/kg dry  | 4.00      | 05/20/09 23:48                          | JLG        | 9E1100/            | 02700          |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                       |               | Executiv   | ve Summ   | ary - I | Detection              | าร          |                |          |                    |            |
|---------------------------------------|---------------|------------|-----------|---------|------------------------|-------------|----------------|----------|--------------------|------------|
|                                       | Sample        | Data       |           |         |                        | Dilution    | Date           |          | Seq/               |            |
| Analyte                               | Result        | Qualifiers | Rpt Limit | MDL     | Units                  | Factor      | Analyzed       | Analyst  | Batch              | Method     |
| Sample ID: RSE0369-09 (BPA2-TP-       | 30 - Solid) - | cont.      |           |         | Sampled                | I: 05/07/09 | 10:15          | Recvd: 0 | 5/11/09 1          | 1:45       |
| Semivolatile Organics by GC/MS - cont |               |            |           |         |                        |             |                |          |                    |            |
| Dibenzo(a,h)anthracene                | 250           | D02,J      | 800       | 9.4     | ug/kg dry              | 4.00        | 05/20/09 23:48 | JLG      | 9E11087            | 8270C      |
| Fluoranthene                          | 1100          | D02        | 800       | 12      | ug/kg dry              | 4.00        | 05/20/09 23:48 | JLG      | 9E11087            | 8270C      |
| Indeno(1,2,3-cd)pyrene                | 810           | D02        | 800       | 22      | ug/kg dry              | 4.00        | 05/20/09 23:48 | JLG      | 9E11087            | 8270C      |
| Naphthalene                           | 38            | D02,J      | 800       | 13      | ug/kg dry              | 4.00        | 05/20/09 23:48 |          | 9E11087            | 8270C      |
| Phenanthrene                          | 380           | D02,J      | 800       | 17      | ug/kg dry              | 4.00        | 05/20/09 23:48 |          | 9E11087            | 8270C      |
| Pyrene                                | 990           | D02        | 800       | 5.2     | ug/kg dry              | 4.00        | 05/20/09 23:48 | JLG      | 9E11087            | 8270C      |
| Total Metals by SW 846 Series Methods | <u>8</u>      |            |           |         |                        |             |                |          |                    | _          |
| Aluminum                              | 7570          |            | 11.7      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:26 |          | 9E12064            | 6010B      |
| Arsenic                               | 15.9          |            | 10.0      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:26 |          | 9E12064            | 6010B      |
| Barium                                | 68.1          |            | 10.0      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:26 |          | 9E12064            | 6010B      |
| Calcium                               | 97700         | D08        | 585       | NR      | mg/kg dry              | 10.0        | 05/14/09 16:35 |          | 9E12064            | 6010B      |
| Chromium                              | 245           |            | 10.0      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:26 |          | 9E12064            | 6010B      |
| Copper                                | 70.6          |            | 10.0      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:26 |          | 9E12064            | 6010B      |
| Iron                                  | 83600         | D08        | 117       | NR      | mg/kg dry              | 10.0        | 05/14/09 16:35 |          | 9E12064            | 6010B      |
| Lead                                  | 68.7          |            | 10.0      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:26 |          | 9E12064            | 6010B      |
| Magnesium                             | 19800         |            | 23.4      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:26 |          | 9E12064            | 6010B      |
| Manganese                             | 15100         | D08        | 10.0      | NR      | mg/kg dry              | 10.0        | 05/14/09 16:35 |          | 9E12064            | 6010B      |
| Nickel                                | 17.9          |            | 10.0      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:26 |          | 9E12064            | 6010B      |
| Potassium                             | 1190          |            | 35.1      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:26 |          | 9E12064            | 6010B      |
| Sodium                                | 386           |            | 164       | NR      | mg/kg dry              | 1.00        | 05/14/09 00:26 |          | 9E12064            | 6010B      |
| Vanadium                              | 269           |            | 10.0      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:26 |          | 9E12064            | 6010B      |
| Zinc                                  | 159           |            | 10.0      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:26 | S TWS    | 9E12064            | 6010B      |
| Mercury                               | 0.0749        |            | 0.0234    | NR      | mg/kg dry              | 1.00        | 05/13/09 14:56 | 6 MM     | 9E12055            | 7471A      |
| Volatile Organic Compounds by EPA 8   | <u>260B</u>   |            |           |         |                        |             |                |          |                    |            |
| Methylene Chloride                    | 2.8           | J          | 5.7       | 0.40    | ug/kg dry              | 1.00        | 05/13/09 20:53 | CDC      | 9E13076            | 8260B      |
| Sample ID: RSE0369-10 (RR-TP-26       | - Solid)      |            |           |         | Sampled                | 1: 05/07/09 | ) 11:40        | Recvd: 0 | 5/11/09 1          | 1:45       |
| General Chemistry Parameters          |               |            |           |         |                        |             |                |          |                    |            |
| Percent Solids                        | 85            |            | 0.010     | NR      | %                      | 1.00        | 05/14/09 07:30 | ) LT     | 9E13102            | Dry Weight |
| Total Metals by SW 846 Series Methods | 5             |            |           |         |                        |             |                |          |                    |            |
| Arsenic                               | 104           |            | 10.0      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:31 | I TWS    | 9E12064            | 6010B      |
| Barium                                | 81.6          |            | 1.00      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:31 | I TWS    | 9E12064            | 6010B      |
| Cadmium                               | 1.79          |            | 0.500     | NR      | mg/kg dry              | 1.00        | 05/14/09 00:31 | I TWS    | 9E12064            | 6010B      |
| Chromium                              | 77.5          |            | 2.00      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:31 | I TWS    | 9E12064            | 6010B      |
| Lead                                  | 179           |            | 5.0       | NR      | mg/kg dry              | 1.00        | 05/14/09 00:31 | I TWS    | 9E12064            | 6010B      |
| Mercury                               | 0.0864        |            | 0.0241    | NR      | mg/kg dry              | 1.00        | 05/13/09 14:58 | B MM     | 9E12055            | 7471A      |
|                                       | Solid)        |            |           |         | Sampled                | I: 05/07/09 | 14.15          | Recvd: 0 | 5/11/00 1          | 1-45       |
| Sample ID: RSE0369-11 (RR-TP-52       | - 30liu)      |            |           |         | Sampleo                | 1: 05/07/08 | / 14.15        | Recvu. V | 5/11/09 1          | 1.45       |
| General Chemistry Parameters          | 88            |            | 0.010     | NR      | %                      | 1.00        | 05/14/09 07:32 | 2 LT     | 9E13102            | Dry Weight |
| Percent Solids                        |               |            | 0.010     | INIX    | 70                     | 1.00        | 00/14/00 07:02 | ,        | 0210102            | Dif Hoight |
| Total Metals by SW 846 Series Methods | _             |            | 40.0      |         | man llen alme          | 1 00        | 05/14/00 00:30 |          | 9E12064            | 6010B      |
| Arsenic                               | 44.3          |            | 10.0      |         | mg/kg dry<br>mg/kg dry | 1.00        | 05/14/09 00:36 |          | 9E12064<br>9E12064 | 6010B      |
| Barium                                | 44.3          |            | 1.00      |         | mg/kg dry              | 1.00        | 05/14/09 00:36 |          | 9E12064<br>9E12064 | 6010B      |
| Chromium                              | 26.1          |            | 2.00      | NR      | mg/kg dry              | 1.00        | 05/14/09 00:36 |          | 9E12064<br>9E12064 | 6010B      |
| Lead                                  | 49.1          |            | 5.0       | NR      | mg/kg dry              | 1.00        | 05/14/09 00:36 |          | 9E12064            | 7471A      |
| Mercury                               | 0.0485        |            | 0.0225    | NR      | mg/kg dry              | 1.00        | 05/13/09 14:59 |          |                    |            |
| Sample ID: RSE0369-12 (RR-TP-50       | - Solid)      |            |           |         | Sampled                | 1: 05/07/09 | 15:15          | Recvd: 0 | 5/11/09 1          | 1:45       |
| General Chemistry Parameters          |               |            |           |         |                        |             |                |          |                    |            |
| Percent Solids                        | 90            |            | 0.010     | NR      | %                      | 1.00        | 05/14/09 07:34 | I LT     | 9E13102            | Dry Weight |
|                                       |               |            |           |         |                        |             |                |          |                    |            |

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                                        |                  | Executi            | ve Summ   | ary - I | Detectior              | ıs                 |                  |          |               |            |
|--------------------------------------------------------|------------------|--------------------|-----------|---------|------------------------|--------------------|------------------|----------|---------------|------------|
| Analyte                                                | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL     |                        | Dilution<br>Factor | Date<br>Analyzed | Analyst  | Seq/<br>Batch | Method     |
| Sample ID: RSE0369-12 (RR-TP-5                         |                  |                    |           |         | Sampled                |                    |                  | Recvd: 0 |               | 1:45       |
| Total Metals by SW 846 Series Metho                    |                  | 116.               |           |         | Jampieu                | . 05/07/0          | 5 15.15          |          |               |            |
| Arsenic                                                | 40.6             |                    | 10.0      | NR      | mg/kg dry              | 1.00               | 05/14/09 00:41   | TWS      | 9E12064       | 6010B      |
| Barium                                                 | 80.1             |                    | 1.00      | NR      | mg/kg dry              | 1.00               | 05/14/09 00:41   | TWS      | 9E12064       | 6010B      |
| Chromium                                               | 175              |                    | 2.00      | NR      | mg/kg dry              | 1.00               | 05/14/09 00:41   | TWS      | 9E12064       | 6010B      |
| Lead                                                   | 100              |                    | 5.0       | NR      | mg/kg dry              | 1.00               | 05/14/09 00:41   | TWS      | 9E12064       | 6010B      |
| Mercury                                                | 1.99             | D08                | 0.206     | NR      | mg/kg dry              | 10.0               | 05/13/09 17:04   | MM       | 9E12055       | 7471A      |
| Sample ID: RSE0369-13 (RR-TP-4                         | 9 - Solid)       |                    |           |         | Sampled                | • 05/07/0          | 9 15 45          | Recvd: 0 | 5/11/09 1     | 1:45       |
| General Chemistry Parameters                           | 3 - 30liu)       |                    |           |         | Sampleu                | . 05/07/0          | 5 15.45          |          |               | 1.40       |
|                                                        | 77               |                    | 0.010     | NR      | %                      | 1.00               | 05/14/09 07:36   | LT       | 9E13102       | Dry Weight |
| Percent Solids                                         |                  |                    | 0.010     |         |                        |                    |                  |          |               |            |
| Semivolatile Organics by GC/MS                         | 450              | D02,J              | 8600      | 150     | ug/kg dry              | 40.0               | 05/20/09 09:55   | JLG      | 9E11087       | 8270C      |
| Benzo(a)anthracene                                     | 350              | D02,J              | 8600      | 85      | ug/kg dry<br>ug/kg dry | 40.0               | 05/20/09 09:55   | JLG      | 9E11087       | 8270C      |
| Chrysene                                               |                  | 002,5              | 8000      | 00      | uy/ky ury              | 40.0               | 00/20/00 00:00   | 020      |               |            |
| Volatile Organic Compounds by EPA                      |                  |                    | 6.2       | 0.45    |                        | 1.00               | 05/13/09 21:18   | CDC      | 9E13076       | 8260B      |
| 1,1,1-Trichloroethane                                  | 2.1              | J                  | 6.2       | 0.45    | ug/kg dry              |                    | 05/13/09 21:18   | CDC      | 9E13076       | 8260B      |
| Methylene Chloride                                     | 2.9              | J                  | 6.2       | 0.43    | ug/kg dry              | 1.00               |                  |          | 9E13076       | 8260B      |
| Trichloroethene                                        | 2.7              | J                  | 6.2       | 0.43    | ug/kg dry              | 1.00               | 05/13/09 21:18   | CDC      | 9213070       | 02000      |
| Sample ID: RSE0369-14 (RR-TP-1                         | 0 - Solid)       |                    |           |         | Sampled                | : 05/08/0          | 9 09:15          | Recvd: 0 | 5/11/09 1     | 1:45       |
| General Chemistry Parameters                           |                  |                    |           |         |                        |                    |                  |          |               |            |
| Percent Solids                                         | 91               |                    | 0.010     | NR      | %                      | 1.00               | 05/14/09 07:38   | LT       | 9E13102       | Dry Weight |
| Total Metals by SW 846 Series Method                   | ds               |                    |           |         |                        |                    |                  |          |               |            |
| Arsenic                                                | 25.2             |                    | 10.0      | NR      | mg/kg dry              | 1.00               | 05/14/09 00:59   | TWS      | 9E12064       | 6010B      |
| Barium                                                 | 92.6             |                    | 1.00      | NR      | mg/kg dry              | 1.00               | 05/14/09 00:59   | TWS      | 9E12064       | 6010B      |
| Chromium                                               | 250              |                    | 2.00      | NR      | mg/kg dry              | 1.00               | 05/14/09 00:59   | TWS      | 9E12064       | 6010B      |
| Lead                                                   | 63.9             |                    | 5.0       | NR      | mg/kg dry              | 1.00               | 05/14/09 00:59   | TWS      | 9E12064       | 6010B      |
| Mercury                                                | 0.0899           |                    | 0.0221    | NR      | mg/kg dry              | 1.00               | 05/13/09 15:03   | MM       | 9E12055       | 7471A      |
| Sample ID: RSE0369-15 (RR-TP-8                         | - Solid)         |                    |           |         | Sampled                | : 05/08/0          | 9 11:15          | Recvd: 0 | 5/11/09 1     | 1:45       |
| General Chemistry Parameters                           | Condy            |                    |           |         | Campica                |                    |                  |          |               |            |
|                                                        | 92               |                    | 0.010     | NR      | %                      | 1.00               | 05/14/09 07:40   | LT       | 9E13102       | Dry Weight |
| Percent Solids<br>Total Metals by SW 846 Series Method |                  |                    | 0.010     |         |                        |                    |                  |          |               | • -        |
|                                                        | 60.2             |                    | 10.0      | NR      | mg/kg dry              | 1.00               | 05/14/09 01:04   | TWS      | 9E12064       | 6010B      |
| Arsenic                                                | 93.5             |                    | 1.00      | NR      | mg/kg dry              | 1.00               | 05/14/09 01:04   |          | 9E12064       | 6010B      |
| Barium                                                 | 1.60             |                    | 0.500     | NR      | mg/kg dry              | 1.00               | 05/14/09 01:04   |          | 9E12064       | 6010B      |
| Cadmium                                                | 368              |                    | 2.00      | NR      | mg/kg dry              | 1.00               | 05/14/09 01:04   | TWS      | 9E12064       | 6010B      |
| Chromium                                               | 212              |                    | 5.0       | NR      | mg/kg dry              | 1.00               | 05/14/09 01:04   | TWS      | 9E12064       | 6010B      |
| Lead                                                   | 0.895            | D08                | 0.0407    | NR      | mg/kg dry              | 2.00               | 05/13/09 17:05   | MM       | 9E12055       | 7471A      |
| Mercury                                                |                  | 000                | 0.0407    |         | ing/ing ary            | 2.00               |                  |          |               |            |
| Sample ID: RSE0369-16 (RR-TP-6                         | - Solid)         |                    |           |         | Sampled                | : 05/08/0          | )9 13:40         | Recvd: 0 | 5/11/09 1     | 1:45       |
| General Chemistry Parameters                           |                  |                    |           |         |                        |                    |                  |          |               |            |
| Percent Solids                                         | 86               |                    | 0.010     | NR      | %                      | 1.00               | 05/14/09 07:42   | LT       | 9E13102       | Dry Weight |
| Total Metals by SW 846 Series Method                   | <u>ds</u>        |                    |           |         |                        |                    |                  |          |               |            |
| Arsenic                                                | 66.9             |                    | 10.0      | NR      | mg/kg dry              | 1.00               | 05/14/09 01:09   |          | 9E12064       | 6010B      |
| Barium                                                 | 91.2             |                    | 1.00      | NR      | mg/kg dry              | 1.00               | 05/14/09 01:09   |          | 9E12064       | 6010B      |
| Cadmium                                                | 1.02             |                    | 0.500     | NR      | mg/kg dry              | 1.00               | 05/14/09 01:09   |          | 9E12064       | 6010B      |
| Chromium                                               | 126              |                    | 2.00      | NR      | mg/kg dry              | 1.00               | 05/14/09 01:09   | TWS      | 9E12064       | 6010B      |
| Lead                                                   | 211              |                    | 5.0       | NR      | mg/kg dry              | 1.00               | 05/14/09 01:09   |          | 9E12064       | 6010B      |
| Mercury                                                | 0.322            |                    | 0.0223    | NR      | mg/kg dry              | 1.00               | 05/13/09 15:06   | MM       | 9E12055       | 7471A      |
| Sample ID: RSE0369-17 (BPA2-TF                         | 2.24 - Salid)    |                    |           |         | Sampled                | . 05/07/0          | 9 13.50          | Recvd: 0 | 5/11/09 1     | 1:45       |
| Sample ID: KSEU309-17 (DFA2-16                         | -24 - 30iiu)     |                    |           |         | Sampieu                | . 05/07/0          | 5 13.55          |          |               |            |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                      |                     | Executi             | ve Summ    | ary -    | Detection                           | IS           |                                  |            |           |            |
|--------------------------------------|---------------------|---------------------|------------|----------|-------------------------------------|--------------|----------------------------------|------------|-----------|------------|
|                                      | Sample              | Data                |            |          | D                                   | lution       | Date                             |            | Seq/      |            |
| Analyte                              | Result              | Qualifiers          | Rpt Limit  | MDL      | Units                               | Factor       | Analyzed                         | Analyst    | Batch     | Method     |
| Sample ID: RSE0369-17 (BPA2-TF       | -24 - Solid) -      | cont.               |            |          | Sampled                             | : 05/07/0    | 9 13:50                          | Recvd: 0   | 5/11/09 1 | 1:45       |
| General Chemistry Parameters         |                     |                     |            |          |                                     |              |                                  |            |           |            |
| Percent Solids                       | 85                  |                     | 0.010      | NR       | %                                   | 1.00         | 05/14/09 07:44                   | LT         | 9E13102   | Dry Weight |
| Semivolatile Organics by GC/MS       |                     |                     |            |          |                                     |              |                                  |            |           |            |
| 2-Methylnaphthalene                  | 54                  | D02,J               | 790        | 9.5      | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Acenaphthylene                       | 240                 | D02,J               | 790        | 6.4      | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Anthracene                           | 180                 | D02,J               | 790        | 20       | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Benzo(a)anthracene                   | 1100                | D02                 | 790        | 14       | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Benzo(a)pyrene                       | 1200                | D02                 | 790        | 19       | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Benzo(b)fluoranthene                 | 1500                | D02                 | 790        | 15       | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Benzo(ghi)perylene                   | 880                 | D02                 | 790        | 9.4      | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Benzo(k)fluoranthene                 | 590                 | D02,J               | 790        | 8.7      | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Chrysene                             | 1300                | D02                 | 790        | 7.9      | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Dibenzo(a,h)anthracene               | 260                 | D02,J               | 790        | 9.2      | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Dibenzofuran                         | 51                  | D02,J               | 790        | 8.2      | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Fluoranthene                         | 2200                | D02                 | 790        | 11       | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Fluorene                             | 37                  | D02,J               | 790        | 18       | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Indeno(1,2,3-cd)pyrene               | 810                 | D02                 | 790        | 22       | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Naphthalene                          | 57                  | D02,J               | 790        | 13       | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Phenanthrene                         | 930                 | D02                 | 790        | 16       | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Pyrene                               | 1800                | D02                 | 790        | 5.1      | ug/kg dry                           | 4.00         | 05/21/09 00:11                   | JLG        | 9E11087   | 8270C      |
| Total Metals by SW 846 Series Method | <u>ds</u>           |                     |            |          |                                     |              |                                  |            |           |            |
| Arsenic                              | 86.9                |                     | 10.0       | NR       | mg/kg dry                           | 1.00         | 05/14/09 03:44                   | TWS        | 9E12068   | 6010B      |
| Barium                               | 96.0                |                     | 1.00       | NR       | mg/kg dry                           | 1.00         | 05/14/09 03:44                   | TWS        | 9E12068   | 6010B      |
| Cadmium                              | 1.14                |                     | 0.500      | NR       | mg/kg dry                           | 1.00         | 05/14/09 03:44                   |            | 9E12068   | 6010B      |
| Chromium                             | 46.0                |                     | 2.00       | NR       | mg/kg dry                           | 1.00         | 05/14/09 03:44                   |            | 9E12068   | 6010B      |
| Lead                                 | 103                 |                     | 5.0        | NR       | mg/kg dry                           | 1.00         | 05/14/09 03:44                   | TWS        | 9E12068   | 6010B      |
| Mercury                              | 0.135               |                     | 0.0232     | NR       | mg/kg dry                           | 1.00         | 05/13/09 15:07                   | MM         | 9E12055   | 7471A      |
| Sample ID: RSE0369-18 (BLIND 1       | - Solid)            |                     |            |          | Sampled:                            | : 05/07/0    | 09 08:00                         | Recvd: 0   | 5/11/09 1 | 1:45       |
| General Chemistry Parameters         |                     |                     |            |          |                                     |              |                                  |            |           |            |
| Percent Solids                       | 89                  |                     | 0.010      | NR       | %                                   | 1.00         | 05/14/09 07: <b>4</b> 6          | LT         | 9E13102   | Dry Weight |
| Semivolatile Organics by GC/MS       |                     |                     |            |          |                                     |              |                                  |            |           |            |
| 2-Methylnaphthalene                  | 97                  | D02,J               | 760        | 9.1      | ug/kg dry                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 8270C      |
| Acenaphthene                         | 42                  | D02,J               | 760        | 8.9      | ug/kg dry                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 8270C      |
| Acenaphthylene                       | 730                 | D02,J               | 760        | 6.2      | ug/kg dry                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 8270C      |
| Anthracene                           | 460                 | D02,J               | 760        | 19       | ug/kg dry                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 8270C      |
| Benzo(a)anthracene                   | 2300                | D02                 | 760        | 13       | ug/kg dry                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 8270C      |
| Benzo(a)pyrene                       | 2300                | D02                 | 760        | 18       | ug/kg dry                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 8270C      |
| Benzo(b)fluoranthene                 | 2900                | D02                 | 760        | 15       | ug/kg dry                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 8270C      |
| Benzo(ghi)perylene                   | 1600                | D02                 | 760        | 9.1      | ug/kg dry                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 8270C      |
| Benzo(k)fluoranthene                 | 1300                | D02                 | 760        | 8.3      | ug/kg dry                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 8270C      |
| Chrysene                             | 2500                | D02                 | 760        | 7.5      | ug/kg dry                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 8270C      |
| Dibenzo(a,h)anthracene               | 460                 | D02,J               | 760        | 8.9      | ug/kg dry                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 8270C      |
| Dibenzofuran                         | 63                  | D02,J               | 760        | 7.9      | ug/kg dry                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 8270C      |
| Fluoranthene                         | 4200                | D02                 | 760        | 11       | ug/kg dry                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 8270C      |
| Fluorantinene                        |                     |                     |            |          |                                     |              |                                  |            | 0011097   | 8270C      |
|                                      | 1400                | D02                 | 760        | 21       | ug/ka drv                           | 4.00         | 05/21/09 00:34                   | JLG        | 9E11087   | 02/00      |
| Indeno(1,2,3-cd)pyrene               |                     |                     | 760<br>760 | 21<br>13 | ug/kg dry<br>ug/kg dry              | 4.00<br>4.00 | 05/21/09 00:34<br>05/21/09 00:34 | JLG<br>JLG | 9E11087   | 8270C      |
|                                      | 1400<br>110<br>1400 | D02<br>D02,J<br>D02 |            |          | ug/kg dry<br>ug/kg dry<br>ug/kg dry |              |                                  |            |           |            |

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

### **Executive Summary - Detections**

| Analyte                               | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst  | Seq/<br>Batch | Method     |
|---------------------------------------|------------------|--------------------|-----------|-----|-----------|--------------------|------------------|----------|---------------|------------|
| Sample ID: RSE0369-18 (BLIND 1 -      | Solid) - cont    |                    |           |     | Sampleo   | d: 05/07/0         | 9 08:00          | Recvd: 0 | 5/11/09 1     | 1:45       |
| Total Metals by SW 846 Series Method  | <u>s</u>         |                    |           |     |           |                    |                  |          |               |            |
| Arsenic                               | 223              |                    | 10.0      | NR  | mg/kg dry | 1.00               | 05/14/09 04:09   | ) TWS    | 9E12068       | 6010B      |
| Barium                                | 151              |                    | 1.00      | NR  | mg/kg dry | 1.00               | 05/14/09 04:09   | ) TWS    | 9E12068       | 6010B      |
| Cadmium                               | 2.08             |                    | 0.500     | NR  | mg/kg dry | 1.00               | 05/14/09 04:09   | ) TWS    | 9E12068       | 6010B      |
| Chromium                              | 206              |                    | 2.00      | NR  | mg/kg dry | 1.00               | 05/14/09 04:09   | ) TWS    | 9E12068       | 6010B      |
| Lead                                  | 164              |                    | 5.0       | NR  | mg/kg dry | 1.00               | 05/14/09 04:09   | 9 TWS    | 9E12068       | 6010B      |
| Mercury                               | 0.112            |                    | 0.0217    | NR  | mg/kg dry | 1.00               | 05/28/09 14:12   | 2 MM     | 9E28026       | 7471A      |
| Sample ID: RSE0369-19 (RR-TP-12       | - Solid)         |                    |           |     | Sampleo   | d: 05/08/0         | 9 13:40          | Recvd: 0 | 5/11/09 1     | 1:45       |
| General Chemistry Parameters          |                  |                    |           |     |           |                    |                  |          |               |            |
| Percent Solids                        | 87               |                    | 0.010     | NR  | %         | 1.00               | 05/14/09 07:48   | 3 LT     | 9E13102       | Dry Weight |
| Total Metals by SW 846 Series Methods | <u>s</u>         |                    |           |     |           |                    |                  |          |               |            |
| Arsenic                               | 147              |                    | 10.0      | NR  | mg/kg dry | 1.00               | 05/14/09 04:27   | 7 TWS    | 9E12068       | 6010B      |
| Barium                                | 110              |                    | 1.00      | NR  | mg/kg dry | 1.00               | 05/14/09 04:27   | 7 TWS    | 9E12068       | 6010B      |
| Cadmium                               | 2.61             |                    | 0.500     | NR  | mg/kg dry | 1.00               | 05/14/09 04:27   | 7 TWS    | 9E12068       | 6010B      |
| Chromium                              | 158              |                    | 2.00      | NR  | mg/kg dry | 1.00               | 05/14/09 04:27   | 7 TWS    | 9E12068       | 6010B      |
| Lead                                  | 986              |                    | 5.0       | NR  | mg/kg dry | 1.00               | 05/14/09 04:27   | 7 TWS    | 9E12068       | 6010B      |
| Mercury                               | 0.271            |                    | 0.0228    | NR  | mg/kg dry | 1.00               | 05/13/09 15:09   | э мм     | 9E12055       | 7471A      |



THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

### Sample Summary

| SAMPLE IDENTIFICATION | LAB NUMBER | Client Matrix | Date/Time<br>Sampled | Date/Time<br>Received |
|-----------------------|------------|---------------|----------------------|-----------------------|
| RR-TP-40              | RSE0369-01 | Solid         | 05/06/09 09:45       | 05/11/09 11:45        |
| RR-TP-38              | RSE0369-02 | Solid         | 05/06/09 10:45       | 05/11/09 11:45        |
| RR-TP-36              | RSE0369-03 | Solid         | 05/06/09 11:15       | 05/11/09 11:45        |
| RR-TP-34              | RSE0369-04 | Solid         | 05/06/09 13:15       | 05/11/09 11:45        |
| RR-TP-32              | RSE0369-05 | Solid         | 05/06/09 14:30       | 05/11/09 11:45        |
| RR-TP-30              | RSE0369-06 | Solid         | 05/07/09 08:45       | 05/11/09 11:45        |
| BPA2-TP-34            | RSE0369-07 | Solid         | 05/06/09 16:30       | 05/11/09 11:45        |
| RR-TP-28              | RSE0369-08 | Solid         | 05/07/09 09:15       | 05/11/09 11:45        |
| BPA2-TP-30            | RSE0369-09 | Solid         | 05/07/09 10:15       | 05/11/09 11:45        |
| RR-TP-26              | RSE0369-10 | Solid         | 05/07/09 11:40       | 05/11/09 11:45        |
| RR-TP-52              | RSE0369-11 | Solid         | 05/07/09 14:15       | 05/11/09 11:45        |
| RR-TP-50              | RSE0369-12 | Solid         | 05/07/09 15:15       | 05/11/09 11:45        |
| RR-TP-49              | RSE0369-13 | Solid         | 05/07/09 15:45       | 05/11/09 11:45        |
| RR-TP-10              | RSE0369-14 | Solid         | 05/08/09 09:15       | 05/11/09 11:45        |
| RR-TP-8               | RSE0369-15 | Solid         | 05/08/09 11:15       | 05/11/09 11:45        |
| RR-TP-6               | RSE0369-16 | Solid         | 05/08/09 13:40       | 05/11/09 11:45        |
| BPA2-TP-24            | RSE0369-17 | Solid         | 05/07/09 13:50       | 05/11/09 11:45        |
| BLIND 1               | RSE0369-18 | Solid         | 05/07/09 08:00       | 05/11/09 11:45        |
| RR-TP-12              | RSE0369-19 | Solid         | 05/08/09 13:40       | 05/11/09 11:45        |

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                    |                  |                    | Analytic  | al Re | port      |                    |                  |         |               |            |
|------------------------------------|------------------|--------------------|-----------|-------|-----------|--------------------|------------------|---------|---------------|------------|
| Analyte                            | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL   | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0369-01 (RR-TP-      | 40 - Solid)      |                    |           |       | Samp      | led: 05/06         | /09 09:45        | Recvd:  | 05/11/09      | 11:45      |
| General Chemistry Parameters       |                  |                    |           |       |           |                    |                  |         |               |            |
| Percent Solids                     | 87               |                    | 0.010     | NR    | %         | 1.00               | 05/14/09 07:12   | LT      | 9E13102       | Dry Weight |
| Total Metals by SW 846 Series Meth | ods              |                    |           |       |           |                    |                  |         |               |            |
| Arsenic                            | 57.1             |                    | 10.0      | NR    | mg/kg dry | 1.00               | 05/13/09 23:14   | TWS     | 9E12064       | 6010B      |
| Barium                             | 151              |                    | 1.00      | NR    | mg/kg dry | 1.00               | 05/13/09 23:14   | TWS     | 9E12064       | 6010B      |
| Cadmium                            | ND               |                    | 0.500     | NR    | mg/kg dry | 1.00               | 05/13/09 23:14   | TWS     | 9E12064       | 6010B      |
| Chromium                           | 26.0             |                    | 2.00      | NR    | mg/kg dry | 1.00               | 05/13/09 23:14   | TWS     | 9E12064       | 6010B      |
| Lead                               | 172              |                    | 5.0       | NR    | mg/kg dry | 1.00               | 05/13/09 23:14   | TWS     | 9E12064       | 6010B      |
| Mercury                            | 0.404            |                    | 0.0228    | NR    | mg/kg dry | 1.00               | 05/13/09 14:37   | ММ      | 9E12055       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                    |                  |                    | Analytic  | cal Re | port      |                    |                  |         |               |                |
|------------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|----------------|
| Analyte                            | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method         |
| Sample ID: RSE0369-02 (RR-TP-      | 38 - Solid)      |                    |           |        | Samp      | led: 05/06         | /09 10:45        | Recvd:  | 05/11/09      | 11:45          |
| General Chemistry Parameters       |                  |                    |           |        |           |                    |                  |         |               |                |
| Percent Solids                     | 85               |                    | 0.010     | NR     | %         | 1.00               | 05/14/09 07:14   | LT      | 9E13102       | Dry Weight     |
| Total Metals by SW 846 Series Meth | ods              |                    |           |        |           |                    |                  |         |               |                |
| Arsenic                            | 19.0             |                    | 10.0      | NR     | mg/kg dry | 1.00               | 05/13/09 23:39   | TWS     | 9E12064       | 6010B          |
| Barium                             | 90.8             |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/13/09 23:39   | TWS     | 9E12064       | 6010B          |
| Cadmium                            | 0.919            |                    | 0.500     | NR     | mg/kg dry | 1.00               | 05/13/09 23:39   | TWS     | 9E12064       | 6010B          |
| Chromium                           | 146              |                    | 2.00      | NR     | mg/kg dry | 1.00               | 05/13/09 23:39   | TWS     | 9E12064       | 6010B          |
| Lead                               | 325              |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/13/09 23:39   | TWS     | 9E12064       | 6010B          |
| Mercury                            | 1.04             | D08                | 0.0454    | NR     | mg/kg dry | 2.00               | 05/13/09 17:02   | MM      | 9E12055       | 7 <b>47</b> 1A |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                                |                  |                    | Analytic  | al Re | port      |                    |                  |         |               |                |
|------------------------------------------------|------------------|--------------------|-----------|-------|-----------|--------------------|------------------|---------|---------------|----------------|
| Analyte                                        | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL   | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method         |
| Sample ID: RSE0369-03 (RR-TP-                  | 36 - Solid)      |                    |           |       | Samp      | led: 05/06/        | /09 11:15        | Recvd:  | 05/11/09      | 11:45          |
| General Chemistry Parameters<br>Percent Solids | 85               |                    | 0.010     | NR    | %         | 1.00               | 05/14/09 07:16   | LT      | 9E13102       | Dry Weight     |
| Total Metals by SW 846 Series Meth             |                  |                    |           |       |           |                    |                  |         |               |                |
| Arsenic                                        | 62.1             |                    | 10.0      | NR    | mg/kg dry | 1.00               | 05/13/09 23:56   | TWS     | 9E12064       | 6010B          |
| Barium                                         | 46.0             |                    | 1.00      | NR    | mg/kg dry | 1.00               | 05/13/09 23:56   | TWS     | 9E12064       | 6010B          |
| Cadmium                                        | ND               |                    | 0.500     | NR    | mg/kg dry | 1.00               | 05/13/09 23:56   | TWS     | 9E12064       | 6010B          |
| Chromium                                       | 31.0             |                    | 2.00      | NR    | mg/kg dry | 1.00               | 05/13/09 23:56   | TWS     | 9E12064       | 6010B          |
| Lead                                           | 237              |                    | 5.0       | NR    | mg/kg dry | 1.00               | 05/13/09 23:56   | TWS     | 9E12064       | 6010B          |
| Mercury                                        | 0.297            |                    | 0.0218    | NR    | mg/kg dry | 1.00               | 05/13/09 14:44   | MM      | 9E12055       | 7 <b>4</b> 71A |

THE LEADER IN ENVIRONMENTAL TESTING

### Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                                |                  |                    | Analytic  | cal Rej | port      |                    |                  |         |               |            |
|------------------------------------------------|------------------|--------------------|-----------|---------|-----------|--------------------|------------------|---------|---------------|------------|
| Analyte                                        | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL     | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0369-04 (RR-TP-3                 | 34 - Solid)      |                    |           |         | Sampl     | led: 05/06/        | /09 13:15        | Recvd:  | 05/11/09      | 11:45      |
| General Chemistry Parameters<br>Percent Solids | 82               |                    | 0.010     | NR      | %         | 1.00               | 05/14/09 07:18   | LT      | 9E13102       | Dry Weight |
| Total Metals by SW 846 Series Meth             | ods              |                    |           |         |           |                    |                  |         |               |            |
| Arsenic                                        | 83.5             |                    | 10.0      | NR      | mg/kg dry | 1.00               | 05/14/09 00:01   | TWS     | 9E12064       | 6010B      |
| Barium                                         | 51.4             |                    | 1.00      | NR      | mg/kg dry | 1.00               | 05/14/09 00:01   | TWS     | 9E12064       | 6010B      |
| Cadmium                                        | ND               |                    | 0.500     | NR      | mg/kg dry | 1.00               | 05/14/09 00:01   | TWS     | 9E12064       | 6010B      |
| Chromium                                       | 29.2             |                    | 2.00      | NR      | mg/kg dry | 1.00               | 05/14/09 00:01   | TWS     | 9E12064       | 6010B      |
| Lead                                           | 121              |                    | 5.0       | NR      | mg/kg dry | 1.00               | 05/14/09 00:01   | TWS     | 9E12064       | 6010B      |
| Mercury                                        | 0.302            |                    | 0.0240    | NR      | mg/kg dry | 1.00               | 05/13/09 14:46   | MM      | 9E12055       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                                |                     |                    | Analytic  | cal Re | port      |                    |                  |         |               |                |
|------------------------------------------------|---------------------|--------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|----------------|
| Analyte                                        | Sample<br>Result    | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method         |
| Sample ID: RSE0369-05 (RR-TP-                  | 32 - Solid)         |                    |           |        | Samp      | led: 05/06         | /09 14:30        | Recvd:  | 05/11/09      | 11:45          |
| General Chemistry Parameters<br>Percent Solids | 87                  |                    | 0.010     | NR     | %         | 1.00               | 05/14/09 07:20   | LT      | 9E13102       | Dry Weight     |
| Total Metals by SW 846 Series Meth<br>Arsenic  | <u>1005</u><br>30.5 |                    | 10.0      | NR     | mg/kg dry | 1.00               | 05/14/09 00:06   | TWS     | 9E12064       | 6010B          |
| Barium                                         | 90.2                |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/14/09 00:06   | TWS     | 9E12064       | 6010B          |
| Cadmium                                        | 17.0                |                    | 0.500     | NR     | mg/kg dry | 1.00               | 05/14/09 00:06   | TWS     | 9E12064       | 6010B          |
| Chromium                                       | 115                 |                    | 2.00      | NR     | mg/kg dry | 1.00               | 05/14/09 00:06   | TWS     | 9E12064       | 6010B          |
| Lead                                           | 206                 |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/14/09 00:06   | TWS     | 9E12064       | 6010B          |
| Mercury                                        | 0.233               |                    | 0.0240    | NR     | mg/kg dry | 1.00               | 05/13/09 14:47   | MM      | 9E12055       | 7 <b>4</b> 71A |

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                      |                     |            | Analytic  | cal Re | port      |            |                |         |          |            |
|--------------------------------------|---------------------|------------|-----------|--------|-----------|------------|----------------|---------|----------|------------|
|                                      | Sample              | Data       |           |        |           | Dilution   | Date           |         | Seq/     |            |
| Analyte                              | Result              | Qualifiers | Rpt Limit | MDL    | Units     | Factor     | Analyzed       | Analyst | Batch    | Method     |
| Sample ID: RSE0369-06 (RR-TP-        | 30 - Solid)         |            |           |        | Samp      | led: 05/07 | /09 08:45      | Recvd:  | 05/11/09 | 11:45      |
| General Chemistry Parameters         |                     |            |           |        |           |            |                |         |          |            |
| Percent Solids                       | 58                  |            | 0.010     | NR     | %         | 1.00       | 05/14/09 07:22 | LT      | 9E13102  | Dry Weight |
| Polychlorinated Biphenyls by EPA I   | <u> Method 8082</u> |            |           |        |           |            |                |         |          |            |
| Aroclor 1016                         | ND                  | QSU, D08   | 2800      | 550    | ug/kg dry | 100        | 05/13/09 09:29 | JM      | 9E12035  | 8082       |
| Aroclor 1221                         | ND                  | QSU, D08   | 2800      | 550    | ug/kg dry | 100        | 05/13/09 09:29 | JM      | 9E12035  | 8082       |
| Aroclor 1232                         | ND                  | QSU, D08   | 2800      | 550    | ug/kg dry | 100        | 05/13/09 09:29 | JM      | 9E12035  | 8082       |
| Aroclor 1242                         | ND                  | QSU, D08   | 2800      | 610    | ug/kg dry | 100        | 05/13/09 09:29 | JM      | 9E12035  | 8082       |
| Aroclor 1248                         | ND                  | QSU, D08   | 2800      | 550    | ug/kg dry | 100        | 05/13/09 09:29 | JM      | 9E12035  | 8082       |
| Aroclor 1254                         | ND                  | QSU, D08   | 2800      | 600    | ug/kg dry | 100        | 05/13/09 09:29 | JM      | 9E12035  | 8082       |
| Aroclor 1260                         | 52000               | QSU, D08   | 2800      | 600    | ug/kg dry | 100        | 05/13/09 09:29 | JM      | 9E12035  | 8082       |
| Surr: Decachlorobiphenyl (34-148%)   | *                   | QSU, D08   |           |        |           |            | 05/13/09 09:29 | JM      | 9E12035  | 8082       |
| Surr: Tetrachloro-m-xylene (35-134%) | *                   | QSU, D08   |           |        |           |            | 05/13/09 09:29 | JM      | 9E12035  | 8082       |
| Total Metals by SW 846 Series Meth   | <u>ods</u>          |            |           |        |           |            |                |         |          |            |
| Arsenic                              | 15.9                |            | 10.0      | NR     | mg/kg dry | 1.00       | 05/14/09 00:11 | TWS     | 9E12064  | 6010B      |
| Barium                               | 109                 |            | 1.00      | NR     | mg/kg dry | 1.00       | 05/14/09 00:11 | TWS     | 9E12064  | 6010B      |
| Cadmium                              | 5.69                |            | 0.500     | NR     | mg/kg dry | 1.00       | 05/14/09 00:11 | TWS     | 9E12064  | 6010B      |
| Chromium                             | 41.9                |            | 2.00      | NR     | mg/kg dry | 1.00       | 05/14/09 00:11 | TWS     | 9E12064  | 6010B      |
| Lead                                 | 207                 |            | 5.0       | NR     | mg/kg dry | 1.00       | 05/14/09 00:11 | TWS     | 9E12064  | 6010B      |
|                                      | 0.0882              |            | 0.0358    | NR     | mg/kg dry | 1.00       | 05/13/09 14:49 |         | 9E12055  | 7471A      |
| Mercury                              | 0.0002              |            | 0.0000    | NIX.   | mg/kg ury | 1.50       | 00/10/00 14.40 |         | 02.2000  |            |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                                |                  |                    | Analytic  | cal Re | port      |                    |                  |         |               |            |
|------------------------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|------------|
| Analyte                                        | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0369-07 (BPA2-1                  | P-34 - Solid)    |                    |           |        | Samp      | led: 05/06         | /09 16:30        | Recvd:  | 05/11/09      | 11:45      |
| General Chemistry Parameters<br>Percent Solids | 91               |                    | 0.010     | NR     | %         | 1.00               | 05/14/09 07:24   | LT      | 9E13102       | Dry Weight |
| Total Metals by SW 846 Series Meth<br>Arsenic  | 13.2             |                    | 10.0      | NR     | mg/kg dry | 1.00               | 05/14/09 00:16   | TWS     | 9E12064       | 6010B      |
| Barium                                         | 103              |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/14/09 00:16   | TWS     | 9E12064       | 6010B      |
| Cadmium                                        | 2.49             |                    | 0.500     | NR     | mg/kg dry | 1.00               | 05/14/09 00:16   | TWS     | 9E12064       | 6010B      |
| Chromium                                       | 55.3             |                    | 2.00      | NR     | mg/kg dry | 1.00               | 05/14/09 00:16   | TWS     | 9E12064       | 6010B      |
| Lead                                           | 265              |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/14/09 00:16   | TWS     | 9E12064       | 6010B      |
| Mercury                                        | 0.375            |                    | 0.0228    | NR     | mg/kg dry | 1.00               | 05/13/09 14:51   | ММ      | 9E12055       | 7471A      |

#### TestAmeric O

THE LEADER IN ENVIRONMENTAL TESTING

### Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

#### Work Order: RSE0369

05/11/09 Received: 05/28/09 17:38 Reported:

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE TURN-0009 Project Number:

|                                     |                  |                    | Analytic  | cal Re | oort      |                    |                  |                       |               |                |  |
|-------------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|-----------------------|---------------|----------------|--|
| Analyte                             | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst               | Seq/<br>Batch | Method         |  |
| Sample ID: RSE0369-08 (RR-TP-2      | 8 - Solid)       |                    |           |        | Samp      | led: 05/07         | /09 09:15        | Recvd: 05/11/09 11:45 |               |                |  |
| General Chemistry Parameters        |                  |                    |           |        |           |                    |                  |                       |               |                |  |
| Percent Solids                      | 88               |                    | 0.010     | NR     | %         | 1.00               | 05/14/09 07:26   | LT                    | 9E13102       | Dry Weight     |  |
| Total Metals by SW 846 Series Metho | <u>ods</u>       |                    |           |        |           |                    |                  |                       |               |                |  |
| Arsenic                             | ND               |                    | 10.0      | NR     | mg/kg dry | 1.00               | 05/14/09 00:21   | TWS                   | 9E12064       | 6010B          |  |
| Barium                              | 66.0             |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/14/09 00:21   | TWS                   | 9E12064       | 6010B          |  |
| Cadmium                             | 1.23             |                    | 0.500     | NR     | mg/kg dry | 1.00               | 05/14/09 00:21   | TWS                   | 9E12064       | 6010B          |  |
| Chromium                            | 464              |                    | 2.00      | NR     | mg/kg dry | 1.00               | 05/14/09 00:21   | TWS                   | 9E12064       | 6010B          |  |
| Lead                                | 272              |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/14/09 00:21   | TWS                   | 9E12064       | 6010B          |  |
| Mercury                             | 0.0891           |                    | 0.0223    | NR     | mg/kg dry | 1.00               | 05/13/09 14:55   | ММ                    | 9E12055       | 7 <b>4</b> 71A |  |

### TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                            |                  |                    | Analytic  | cal Re | port                   |                    |                  |        |                 |                     |
|--------------------------------------------|------------------|--------------------|-----------|--------|------------------------|--------------------|------------------|--------|-----------------|---------------------|
| Analyte                                    | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units                  | Dilution<br>Factor | Date<br>Analyzed | Analvs | Seq/<br>t Batch | Method              |
| Sample ID: RSE0369-09 (BPA2-1              |                  |                    |           |        |                        |                    | /09 10:15        |        | 05/11/09        |                     |
|                                            | n oo oona,       |                    |           |        | Jampie                 | a. 05/07           | 105 10.15        | neeru. |                 | 11.40               |
| General Chemistry Parameters               |                  |                    |           |        | 0/                     | 4 00               | 05/14/00 07:09   | LT     | 9E13102         |                     |
| Percent Solids                             | 83               |                    | 0.010     | NR     | %                      | 1.00               | 05/14/09 07:28   |        |                 | Dry Weight<br>9012A |
| Cyanide                                    | ND               |                    | 1.1       | 1.0    | mg/kg dry              | 1.00               | 05/13/09 08:44   | jmm    | 9E13038         | 9012A               |
| Polychlorinated Biphenyls by EPA           | Method 8082      |                    |           |        |                        |                    |                  |        |                 |                     |
| Aroclor 1016                               | ND               | QSU                | 19        | 3.8    | ug/kg dry              | 1.00               | 05/13/09 09:58   | JM     | 9E12035         | 8082                |
| Arocior 1221                               | ND               | QSU                | 19        | 3.8    | ug/kg dry              | 1.00               | 05/13/09 09:58   | JM     | 9E12035         | 8082                |
| Aroclor 1232                               | ND               | QSU                | 19        | 3.8    | ug/kg dry              | 1.00               | 05/13/09 09:58   | JM     | 9E12035         | 8082                |
| Aroclor 1242                               | NĎ               | QSU                | 19        | 4.2    | ug/kg dry              | 1.00               | 05/13/09 09:58   | JM     | 9E12035         | 8082                |
| Aroclor 1248                               | ND               | QSU                | 19        | 3.8    | ug/kg dry              | 1.00               | 05/13/09 09:58   | JM     | 9E12035         | 8082                |
| Aroclor 1254                               | 120              | QSU                | 19        | 4.1    | ug/kg dry              | 1.00               | 05/13/09 09:58   | tch    | 9E12035         | 8082                |
| Aroclor 1260                               | 360              | QSU                | 19        | 4.1    | ug/kg dry              | 1.00               | 05/13/09 09:58   | JM     | 9E12035         | 8082                |
| Surr: Decachlorobiphenyl (34-148%)         | 114 %            | QSU                |           |        |                        |                    | 05/13/09 09:58   | JM     | 9E12035         | 8082                |
| Surr: Tetrachloro-m-xylene (35-134%)       | 86 %             | QSU                |           |        |                        |                    | 05/13/09 09:58   | JM     | 9E12035         | 8082                |
| Semivolatile Organics by GC/MS             |                  |                    |           |        |                        |                    |                  |        |                 |                     |
|                                            | ND               | D02                | 800       | 170    | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 2,4,5-Trichlorophenol                      | ND               | D02                | 800       | 53     | ug/kg dry<br>ug/kg dry | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 2,4,6-Trichlorophenol                      | ND               | D02                | 800       | 42     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 2,4-Dichlorophenol                         | ND               | D02                | 800       | 220    | ug/kg dry<br>ug/kg dry | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 2,4-Dimethylphenol                         | ND               | D02                | 1600      | 280    |                        | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 2,4-Dinitrophenol                          | ND               | D02                | 800       | 120    | ug/kg dry<br>ug/kg dry | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 2,4-Dinitrotoluene                         | ND               | D02                | 800       | 200    | ug/kg dry<br>ug/kg dry | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 2,6-Dinitrotoluene                         | ND               | D02                | 800       | 53     | ug/kg dry<br>ug/kg dry | 4,00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 2-Chloronaphthalene                        | ND               | D02                | 800       | 41     | ug/kg dry<br>ug/kg dry | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 2-Chlorophenol                             | 43               | D02,J              | 800       | 9.7    | ug/kg dry<br>ug/kg dry | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 2-Methylnaphthalene                        | ND               | D02                | 800       | 25     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 2-Methylphenol                             | ND               | D02                | 1600      | 260    | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 2-Nitroaniline                             | ND               | D02                | 800       | 36     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 2-Nitrophenol                              | ND               | D02                | 800       | 700    | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 3,3'-Dichlorobenzidine                     | ND               | D02                | 1600      | 180    | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 3-Nitroaniline                             | ND               | D02                | 1600      | 280    | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 4,6-Dinitro-2-methylphenol                 | ND               | D02                | 800       | 250    | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 4-Bromophenyl phenyl ether                 | ND               | D02                | 800       | 33     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 4-Chloro-3-methylphenol<br>4-Chloroaniline | ND               | D02                | 800       | 230    | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 4-Chlorophenyl phenyl ether                | ND               | D02                | 800       | 17     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 4-Methylphenol                             | ND               | D02                | 800       | 44     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 4-Nitroaniline                             | ND               | D02                | 1600      | 89     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| 4-Nitrophenol                              | ND               | D02                | 1600      | 190    | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| Acenaphthene                               | ND               | D02                | 800       | 9.4    | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| Acenaphthylene                             | 80               | D02,J              | 800       | 6.5    | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| Acetophenone                               | ND               | D02                | 800       | 41     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| Anthracene                                 | 99               | D02,J              | 800       | 20     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| Atrazine                                   | ND               | D02                | 800       | 35     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| Benzaldehyde                               | ND               | D02                | 800       | 87     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| Benzo(a)anthracene                         | 830              | D02                | 800       | 14     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| Benzo(a)pyrene                             | 1100             | D02                | 800       | 19     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| Benzo(b)fluoranthene                       | 1400             | D02                | 800       | 15     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| Benzo(ghi)perylene                         | 980              | D02                | 800       | 9.6    | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| Benzo(k)fluoranthene                       | 530              | D02,J              | 800       | 8.8    | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| Biphenyl                                   | ND               | D02                | 800       | 50     | ug/kg dry              | 4.00               | 05/20/09 23:48   | JLG    | 9E11087         | 8270C               |
| TestAmerica Buffalo                        |                  |                    |           |        | 0.0                    |                    |                  |        |                 |                     |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                      |                  |                    | Analytic   | cal Re    | port                   |                    |                                  |                   |                    |                |
|--------------------------------------|------------------|--------------------|------------|-----------|------------------------|--------------------|----------------------------------|-------------------|--------------------|----------------|
| Analyte                              | Sample<br>Result | Data<br>Qualifiers | Rpt Limit  | MDL       | Units                  | Dilution<br>Factor | Date<br>Analyzed                 | Analys            | Seq/<br>st Batch   | Method         |
| Sample ID: RSE0369-09 (BPA2          | -TP-30 - Solid)  | - cont.            |            |           | Samp                   | led: 05/07         | /09 10:15                        | Recvd: 05/11/09 1 |                    | 11:45          |
| Semivolatile Organics by GC/MS -     | <u>cont.</u>     |                    |            |           |                        |                    |                                  |                   |                    |                |
| Bis(2-chloroethoxy)methane           | ND               | D02                | 800        | 43        | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Bis(2-chloroethyl)ether              | ND               | D02                | 800        | 69        | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| 2,2'-Oxybis(1-Chloropropane)         | ND               | D02                | 800        | 83        | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Bis(2-ethylhexyl) phthalate          | ND               | D02                | 800        | 260       | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Butyl benzyl phthalate               | ND               | D02                | 800        | 210       | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Caprolactam                          | ND               | D02                | 800        | 340       | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Carbazole                            | 39               | D02,J              | 800        | 9.2       | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Chrysene                             | 960              | D02                | 800        | 8.0       | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Dibenzo(a,h)anthracene               | 250              | D02,J              | 800        | 9.4       | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Dibenzofuran                         | ND               | D02                | 800        | 8.3       | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Diethyl phthalate                    | ND<br>ND         | D02                | 800        | 24        | ug/kg dry              | 4.00               | 05/20/09 23:48<br>05/20/09 23:48 | JLG               | 9E11087<br>9E11087 | 8270C<br>8270C |
| Dimethyl phthalate                   | ND               | D02<br>D02         | 800<br>800 | 21<br>280 | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087<br>9E11087 | 8270C<br>8270C |
| Di-n-butyl phthalate                 | ND               | D02<br>D02         | 800        | 19        | ug/kg dry              | 4.00<br>4.00       | 05/20/09 23:48                   | JLG<br>JLG        | 9E11087            | 8270C          |
| Di-n-octyl phthalate                 | 1100             | D02                | 800        | 12        | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Fluoranthene                         | ND               | D02                | 800        | 18        | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
|                                      | ND               | D02                | 800        | 40        | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
|                                      | ND               | D02                | 800        | 40        | ug/kg dry<br>ug/kg dry | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
|                                      | ND               | D02                | 800        | 240       | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Hexachlorocyclopentadiene            | ND               | D02                | 800        | 62        | ug/kg dry<br>ug/kg dry | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Hexachloroethane                     | 810              | D02                | 800        | 22        | ug/kg dry<br>ug/kg dry | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Indeno(1,2,3-cd)pyrene<br>Isophorone | ND               | D02                | 800        | 40        | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Naphthalene                          | 38               | D02,J              | 800        | 13        | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Nitrobenzene                         | ND               | D02                | 800        | 35        | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| N-Nitrosodi-n-propylamine            | ND               | D02                | 800        | 63        | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| N-Nitrosodiphenylamine               | ND               | D02,L              | 800        | 44        | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Pentachlorophenol                    | ND               | D02                | 1600       | 270       | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Phenanthrene                         | 380              | D02,J              | 800        | 17        | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Phenol                               | ND               | D02                | 800        | 84        | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Pyrene                               | 990              | D02                | 800        | 5.2       | ug/kg dry              | 4.00               | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Surr: 2,4,6-Tribromophenol (39-146%) | 85 %             | D02                |            |           |                        |                    | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Surr: 2-Fluorobiphenyl (37-120%)     | 90 %             | D02                |            |           |                        |                    | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Surr: 2-Fluorophenol (18-120%)       | 69 %             | D02                |            |           |                        |                    | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Surr: Nitrobenzene-d5 (34-132%)      | 86 %             | D02                |            |           |                        |                    | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Surr: Phenol-d5 (11-120%)            | 78 %             | D02                |            |           |                        |                    | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Surr: p-Terphenyl-d14 (58-147%)      | 90 %             | D02                |            |           |                        |                    | 05/20/09 23:48                   | JLG               | 9E11087            | 8270C          |
| Total Metals by SW 846 Series Met    | hods             |                    |            |           |                        |                    |                                  |                   |                    |                |
| Aluminum                             | 7570             |                    | 11.7       | NR        | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS               | 9E12064            | 6010B          |
| Antimony                             | ND               |                    | 17.6       | NR        | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS               | 9E12064            | 6010B          |
| Arsenic                              | 15.9             |                    | 10.0       | NR        | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS               | 9E12064            | 6010B          |
| Barium                               | 68.1             |                    | 10.0       | NR        | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS               | 9E12064            | 6010B          |
| Beryllium                            | ND               |                    | 10.0       | NR        | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS               | 9E12064            | 6010B          |
| -                                    |                  |                    |            |           |                        |                    | 05/14/09 00:26                   | TWS               | 9E12064            | 6010B          |
| Cadmium                              | ND<br>07700      | Dee                | 10.0       | NR        | mg/kg dry              | 1.00               |                                  |                   |                    |                |
| Calcium                              | 97700            | D08                | 585        | NR        | mg/kg dry              | 10.0               | 05/14/09 16:35                   | TWS               | 9E12064            | 6010B          |
| Chromium                             | 245              |                    | 10.0       | NR        | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS               | 9E12064            | 6010B          |
| Cobalt                               | ND               |                    | 10.0       | NR        | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS               | 9E12064            | 6010B          |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

### **TestAmeric**

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/28/09 17:38 Reported:

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE TURN-0009 Project Number:

|                                            | Analytical Report |                    |            |              |                        |                    |                                  |            |                    |                |  |  |
|--------------------------------------------|-------------------|--------------------|------------|--------------|------------------------|--------------------|----------------------------------|------------|--------------------|----------------|--|--|
| Analyte                                    | Sample<br>Result  | Data<br>Qualifiers | Rpt Limit  | MDL          | Units                  | Dilution<br>Factor | Date<br>Analyzed                 | Analys     | Seq/<br>t Batch    | Method         |  |  |
| Sample ID: RSE0369-09 (BPA2                | -TP-30 - Solid)   | - cont.            |            |              | Sampl                  | ed: 05/07          | /09 10:15                        | Recvd      | 05/11/09           | 11:45          |  |  |
| Total Metals by SW 846 Series Me           | thods - cont.     |                    |            |              | -                      |                    |                                  |            |                    |                |  |  |
| Copper                                     | 70.6              |                    | 10.0       | NR           | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS        | 9E12064            | 6010B          |  |  |
| Iron                                       | 83600             | D08                | 117        | NR           | mg/kg dry              | 10.0               | 05/14/09 16:35                   | TWS        | 9E12064            | 6010B          |  |  |
| Lead                                       | 68.7              |                    | 10.0       | NR           | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS        | 9E12064            | 6010B          |  |  |
| Magnesium                                  | 19800             |                    | 23.4       | NR           | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS        | 9E12064            | 6010B          |  |  |
| •                                          | 15100             | D08                | 10.0       | NR           | mg/kg dry              | 10.0               | 05/14/09 16:35                   | TWS        | 9E12064            | 6010B          |  |  |
| Manganese                                  | 13100             | 000                |            |              |                        | 1.00               | 05/14/09 00:26                   | TWS        | 9E12064            | 6010B          |  |  |
| Nickel                                     |                   |                    | 10.0       | NR           | mg/kg dry              |                    |                                  |            |                    |                |  |  |
| Potassium                                  | 1190              |                    | 35.1       | NR           | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS        | 9E12064            | 6010B          |  |  |
| Selenium                                   | ND                |                    | 10.0       | NR           | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS        | 9E12064            | 6010B          |  |  |
| Silver                                     | ND                |                    | 10.0       | NR           | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS        | 9E12064            | 6010B          |  |  |
| Sodium                                     | 386               |                    | 164        | NR           | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS        | 9E12064            | 6010B          |  |  |
| Thallium                                   | ND                | D02                | 70.3       | NR           | mg/kg dry              | 10.0               | 05/14/09 16:35                   | TWS        | 9E12064            | 6010B          |  |  |
| Vanadium                                   | 269               |                    | 10.0       | NR           | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS        | 9E12064            | 6010B          |  |  |
| Zinc                                       | 159               |                    | 10.0       | NR           | mg/kg dry              | 1.00               | 05/14/09 00:26                   | TWS        | 9E12064            | 6010B          |  |  |
| Mercury                                    | 0.0749            |                    | 0.0234     | NR           | mg/kg dry              | 1.00               | 05/13/09 14:56                   | MM         | 9E12055            | 7471A          |  |  |
| Volatile Organic Compounds by E            | PA 8260B          |                    |            |              |                        |                    |                                  |            |                    |                |  |  |
| 1.1.1-Trichloroethane                      | ND                |                    | 5.7        | 0.41         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 1,1,2,2-Tetrachloroethane                  | ND                |                    | 5.7        | 0.92         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 1,1,2-Trichloroethane                      | ND                |                    | 5.7        | 0.28         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane      | ND                |                    | 5.7        | 0.60         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 1,1-Dichloroethane                         | ND                |                    | 5.7        | 0.28         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 1,1-Dichloroethene                         | ND                |                    | 5.7        | 0.69         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 1,2,4-Trichlorobenzene                     | ND                |                    | 5.7        | 0.34         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 1,2,4-Trimethylbenzene                     | ND                |                    | 5.7        | 0.41         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 1,2-Dibromo-3-chloropropane                | ND                |                    | 5.7        | 1.1          | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 1,2-Dibromoethane                          | ND                |                    | 5.7        | 0.22         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 1,2-Dichlorobenzene                        | ND                |                    | 5.7        | 0.85         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076<br>9E13076 | 8260B<br>8260B |  |  |
| 1,2-Dichloroethane                         | ND<br>ND          |                    | 5.7<br>5.7 | 0.28<br>0.29 | ug/kg dry              | 1.00<br>1.00       | 05/13/09 20:53<br>05/13/09 20:53 | CDC<br>CDC | 9E13076            | 8260B          |  |  |
| 1,2-Dichloropropane                        | ND                |                    | 5.7        | 0.29         | ug/kg dry<br>ug/kg dry | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 1,3,5-Trimethylbenzene                     | ND                |                    | 5.7        | 0.80         | ug/kg dry<br>ug/kg dry | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene | ND                |                    | 5.7        | 0.79         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 2-Butanone                                 | ND                |                    | 28         | 7.7          | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 2-Hexanone                                 | ND                |                    | 28         | 2.0          | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| p-Cymene                                   | ND                |                    | 5.7        | 0.45         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| 4-Methyl-2-pentanone                       | ND                |                    | 28         | 1.9          | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| Acetone                                    | ND                |                    | 28         | 1.2          | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| Benzene                                    | ND                |                    | 5.7        | 0.28         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| Bromodichloromethane                       | ND                |                    | 5.7        | 0.29         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| Bromoform                                  | ND                |                    | 5.7        | 0.52         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| Bromomethane                               | ND                |                    | 5.7        | 0.52         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| Carbon disulfide                           | ND                |                    | 5.7        | 0.49         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| Carbon Tetrachloride                       | ND                |                    | 5.7        | 0.21         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| Chlorobenzene                              | ND                |                    | 5.7        | 0.25         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| Dibromochloromethane                       | ND                |                    | 5.7        | 0.31         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| Chloroethane                               | ND                |                    | 5.7        | 0.92         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| Chloroform                                 | ND                |                    | 5.7        | 0.35         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076            | 8260B          |  |  |
| Chloromethane                              | ND                |                    | 5.7        | 0.34         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 9E13076<br>9E13076 | 8260B<br>8260B |  |  |
| cis-1,2-Dichloroethene                     | ND                |                    | 5.7        | 0.28         | ug/kg dry              | 1.00               | 05/13/09 20:53                   | CDC        | 3613070            | 02000          |  |  |
| TestAmerica Buffalo                        |                   |                    |            |              |                        |                    |                                  |            |                    |                |  |  |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

05/11/09

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                       |               |            | Analytic  | al Rep | oort      |           |                |         |          |        |
|---------------------------------------|---------------|------------|-----------|--------|-----------|-----------|----------------|---------|----------|--------|
|                                       | Sample        | Data       |           |        |           | Dilution  | Date           |         | Seq/     |        |
| Analyte                               | Result        | Qualifiers | Rpt Limit | MDL    | Units     | Factor    | Analyzed       | Analyst | Batch    | Method |
| Sample ID: RSE0369-09 (BPA2-T         | P-30 - Solid) | ) - cont.  |           |        | Sampl     | ed: 05/07 | /09 10:15      | Recvd:  | 05/11/09 | 11:45  |
| Volatile Organic Compounds by EPA     | A 8260B - con | <u>t.</u>  |           |        |           |           |                |         |          |        |
| cis-1,3-Dichloropropene               | ND            |            | 5.7       | 0.32   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Cyclohexane                           | ND            |            | 5.7       | 0.26   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Dichlorodifluoromethane               | ND            |            | 5.7       | 0.47   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Ethylbenzene                          | ND            |            | 5.7       | 0.39   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Isopropylbenzene                      | ND            |            | 5.7       | 0.37   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Methyl Acetate                        | ND            |            | 5.7       | 0.31   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Methyl-t-Butyl Ether (MTBE)           | ND            |            | 5.7       | 0.56   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Methylcyclohexane                     | ND            |            | 5.7       | 0.37   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Methylene Chloride                    | 2.8           | J          | 5.7       | 0.40   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| m-Xylene & p-Xylene                   | ND            |            | 11        | 0.95   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| n-Butvlbenzene                        | ND            |            | 5.7       | 0.49   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| n-Propylbenzene                       | ND            |            | 5.7       | 0.43   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| p-Xylene                              | ND            |            | 5.7       | 0.28   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| sec-Butylbenzene                      | ND            |            | 5.7       | 0.49   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Styrene                               | ND            |            | 5.7       | 0.28   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| tert-Butylbenzene                     | ND            |            | 5.7       | 0.59   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Tetrachloroethene                     | ND            |            | 5.7       | 0.76   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Toluene                               | ND            |            | 5.7       | 0.96   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| trans-1,2-Dichloroethene              | ND            |            | 5.7       | 0.58   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| trans-1,3-Dichloropropene             | ND            |            | 5.7       | 0.28   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Trichloroethene                       | ND            |            | 5.7       | 0.39   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Trichlorofluoromethane                | ND            |            | 5.7       | 1.8    | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Vinyl chloride                        | ND            |            | 11        | 0.23   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Xylenes, total                        | ND            |            | 11        | 0.95   | ug/kg dry | 1.00      | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Surr: 1,2-Dichloroethane-d4 (64-126%) | 104 %         |            |           |        |           |           | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Surr: 4-Bromofluorobenzene (72-126%)  | 112 %         |            |           |        |           |           | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |
| Surr: Toluene-d8 (71-125%)            | 106 %         |            |           |        |           |           | 05/13/09 20:53 | CDC     | 9E13076  | 8260B  |

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                 | Analytical Report |                    |           |     |           |                    |                  |                       |               |            |  |  |
|---------------------------------|-------------------|--------------------|-----------|-----|-----------|--------------------|------------------|-----------------------|---------------|------------|--|--|
| Analyte                         | Sample<br>Result  | Data<br>Qualifiers | Rpt Limit | MDL | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst               | Seq/<br>Batch | Method     |  |  |
| Sample ID: RSE0369-10 (RR-T     | P-26 - Solid)     |                    |           |     | Samp      | led: 05/07         | /09 11:40        | Recvd: 05/11/09 11:45 |               |            |  |  |
| General Chemistry Parameters    |                   |                    |           |     |           |                    |                  |                       |               |            |  |  |
| Percent Solids                  | 85                |                    | 0.010     | NR  | %         | 1.00               | 05/14/09 07:30   | LT                    | 9E13102       | Dry Weight |  |  |
| Total Metals by SW 846 Series M | ethods            |                    |           |     |           |                    |                  |                       |               |            |  |  |
| Arsenic                         | 104               |                    | 10.0      | NR  | mg/kg dry | 1.00               | 05/14/09 00:31   | TWS                   | 9E12064       | 6010B      |  |  |
| Barium                          | 81.6              |                    | 1.00      | NR  | mg/kg dry | 1.00               | 05/14/09 00:31   | TWS                   | 9E12064       | 6010B      |  |  |
| Cadmium                         | 1.79              |                    | 0.500     | NR  | mg/kg dry | 1.00               | 05/14/09 00:31   | TWS                   | 9E12064       | 6010B      |  |  |
| Chromium                        | 77.5              |                    | 2.00      | NR  | mg/kg dry | 1.00               | 05/14/09 00:31   | TWS                   | 9E12064       | 6010B      |  |  |
| Lead                            | 179               |                    | 5.0       | NR  | mg/kg dry | 1.00               | 05/14/09 00:31   | TWS                   | 9E12064       | 6010B      |  |  |
| Mercury                         | 0.0864            |                    | 0.0241    | NR  | mg/kg dry | 1.00               | 05/13/09 14:58   | ММ                    | 9E12055       | 7471A      |  |  |

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

| Analytical Report                  |                  |                    |           |     |           |                    |                  |                       |               |            |
|------------------------------------|------------------|--------------------|-----------|-----|-----------|--------------------|------------------|-----------------------|---------------|------------|
| Analyte                            | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst               | Seq/<br>Batch | Method     |
| Sample ID: RSE0369-11 (RR-TP-      | ·52 - Solid)     |                    |           |     | Samp      | led: 05/07         | /09 14:15        | Recvd: 05/11/09 11:45 |               |            |
| General Chemistry Parameters       |                  |                    |           |     |           |                    |                  |                       |               |            |
| Percent Solids                     | 88               |                    | 0.010     | NR  | %         | 1.00               | 05/14/09 07:32   | LT                    | 9E13102       | Dry Weight |
| Total Metals by SW 846 Series Meth | nods             |                    |           |     |           |                    |                  |                       |               |            |
| Arsenic                            | 44.3             |                    | 10.0      | NR  | mg/kg dry | 1.00               | 05/14/09 00:36   | TWS                   | 9E12064       | 6010B      |
| Barium                             | 44.3             |                    | 1.00      | NR  | mg/kg dry | 1.00               | 05/14/09 00:36   | TWS                   | 9E12064       | 6010B      |
| Cadmium                            | ND               |                    | 0.500     | NR  | mg/kg dry | 1.00               | 05/14/09 00:36   | TWS                   | 9E12064       | 6010B      |
| Chromium                           | 26.1             |                    | 2.00      | NR  | mg/kg dry | 1.00               | 05/14/09 00:36   | TWS                   | 9E12064       | 6010B      |
| Lead                               | 49.1             |                    | 5.0       | NR  | mg/kg dry | 1.00               | 05/14/09 00:36   | TWS                   | 9E12064       | 6010B      |
| Mercury                            | 0.0485           |                    | 0.0225    | NR  | mg/kg dry | 1.00               | 05/13/09 14:59   | MM                    | 9E12055       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

| Analytical Report                   |                  |                    |           |     |           |                    |                  |                       |               |            |  |
|-------------------------------------|------------------|--------------------|-----------|-----|-----------|--------------------|------------------|-----------------------|---------------|------------|--|
| Analyte                             | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst               | Seq/<br>Batch | Method     |  |
| Sample ID: RSE0369-12 (RR-TP-5      | i0 - Solid)      |                    |           |     | Sampl     | led: 05/07/        | /09 15:15        | Recvd: 05/11/09 11:45 |               |            |  |
| General Chemistry Parameters        |                  |                    |           |     |           |                    |                  |                       |               |            |  |
| Percent Solids                      | 90               |                    | 0.010     | NR  | %         | 1.00               | 05/14/09 07:34   | LT                    | 9E13102       | Dry Weight |  |
| Total Metals by SW 846 Series Metho | ods              |                    |           |     |           |                    |                  |                       |               |            |  |
| Arsenic                             | 40.6             |                    | 10.0      | NR  | mg/kg dry | 1.00               | 05/14/09 00:41   | TWS                   | 9E12064       | 6010B      |  |
| Barium                              | 80.1             |                    | 1.00      | NR  | mg/kg dry | 1.00               | 05/14/09 00:41   | TWS                   | 9E12064       | 6010B      |  |
| Cadmium                             | ND               |                    | 0.500     | NR  | mg/kg dry | 1.00               | 05/14/09 00:41   | TWS                   | 9E12064       | 6010B      |  |
| Chromium                            | 175              |                    | 2.00      | NR  | mg/kg dry | 1.00               | 05/14/09 00:41   | TWS                   | 9E12064       | 6010B      |  |
| Lead                                | 100              |                    | 5.0       | NR  | mg/kg dry | 1.00               | 05/14/09 00:41   | TWS                   | 9E12064       | 6010B      |  |
| Mercury                             | 1.99             | D08                | 0.206     | NR  | mg/kg dry | 10.0               | 05/13/09 17:04   | ММ                    | 9E12055       | 7471A      |  |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                |                  |                    | Analytic  | cal Re | port      |                    |                                  |        |                    |                |
|--------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|----------------------------------|--------|--------------------|----------------|
| Analyte                        | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed                 | Analys | Seq/<br>t Batch    | Method         |
| Sample ID: RSE0369-13 (RR-TP-  | 49 - Solid)      |                    |           |        | Samp      | ed: 05/07          | /09 15:45                        | Recvd: | 05/11/09           | 11:45          |
| General Chemistry Parameters   |                  |                    |           |        |           |                    |                                  |        |                    |                |
| Percent Solids                 | 77               |                    | 0.010     | NR     | %         | 1.00               | 05/14/09 07:36                   | LT     | 9E13102            | Dry Weight     |
| Semivolatile Organics by GC/MS |                  |                    |           |        |           |                    |                                  |        |                    |                |
| 2,4,5-Trichlorophenol          | ND               | D02                | 8600      | 1900   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 2,4,6-Trichlorophenol          | ND               | D02                | 8600      | 560    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 2,4-Dichlorophenol             | ND               | D02                | 8600      | 450    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 2,4-Dimethylphenol             | ND               | D02                | 8600      | 2300   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 2,4-Dinitrophenol              | ND               | D02                | 17000     | 3000   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 2,4-Dinitrotoluene             | ND               | D02                | 8600      | 1300   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 2,6-Dinitrotoluene             | ND               | D02                | 8600      | 2100   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 2-Chloronaphthalene            | ND               | D02                | 8600      | 570    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9Ë11087            | 8270C          |
| 2-Chlorophenol                 | ND               | D02                | 8600      | 430    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 2-Methylnaphthalene            | ND               | D02                | 8600      | 100    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 2-Methylphenol                 | ND               | D02                | 8600      | 260    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 2-Nitroaniline                 | ND               | D02                | 17000     | 2700   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 2-Nitrophenol                  | ND               | D02                | 8600      | 390    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 3,3'-Dichlorobenzidine         | ND               | D02                | 8600      | 7500   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 3-Nitroaniline                 | ND               | D02                | 17000     | 2000   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
|                                | ND               | D02                | 17000     | 2900   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 4,6-Dinitro-2-methylphenol     | ND               | D02                | 8600      | 2700   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 4-Bromophenyl phenyl ether     | ND               | D02                | 8600      | 350    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 4-Chloro-3-methylphenol        | ND               | D02                | 8600      | 2500   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 4-Chloroaniline                | ND               | D02                | 8600      | 180    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 4-Chiorophenyl phenyl ether    | ND               | D02                | 8600      | 470    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 4-Methylphenol                 | ND               | D02                | 17000     | 950    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 4-Nitroaniline                 | ND               | D02                | 17000     | 2100   |           | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 4-Nitrophenol                  | ND               | D02                | 8600      | 100    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Acenaphthene                   | ND               | D02                | 8600      | 70     | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Acenaphthylene                 | ND               | D02                | 8600      | 440    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Acetophenone                   |                  | D02<br>D02         | 8600      | 220    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Anthracene                     | ND               | D02<br>D02         |           |        | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Atrazine                       | ND               |                    | 8600      | 380    | ug/kg dry |                    | 05/20/09 09:55                   |        | 9E11087            | 8270C          |
| Benzaldehyde                   | ND               | D02                | 8600      | 930    | ug/kg dry | 40.0               |                                  | JLG    | 9E11087<br>9E11087 | 8270C<br>8270C |
| Benzo(a)anthracene             | 450              | D02,J              | 8600      | 150    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087<br>9E11087 | 8270C          |
| Benzo(a)pyrene                 | ND               | D02                | 8600      | 210    | ug/kg dry | 40.0               | 05/20/09 09:55<br>05/20/09 09:55 | JLG    | 9E11087            | 8270C          |
| Benzo(b)fluoranthene           | ND               | D02                | 8600      | 170    | ug/kg dry | 40.0               |                                  | JLG    |                    | 8270C<br>8270C |
| Benzo(ghi)perylene             | ND               | D02                | 8600      | 100    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            |                |
| Benzo(k)fluoranthene           | ND               | D02                | 8600      | 94     | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Biphenyl                       | ND               | D02                | 8600      | 530    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Bis(2-chloroethoxy)methane     | ND               | D02                | 8600      | 460    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Bis(2-chloroethyl)ether        | ND               | D02                | 8600      | 740    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| 2,2'-Oxybis(1-Chloropropane)   | ND               | D02                | 8600      | 890    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Bis(2-ethylhexyl) phthalate    | ND               | D02                | 8600      | 2700   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Butyl benzyl phthalate         | ND               | D02                | 8600      | 2300   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Caprolactam                    | ND               | D02                | 8600      | 3700   | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Carbazole                      | NÐ               | D02                | 8600      | 99     | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Chrysene                       | 350              | D02,J              | 8600      | 85     | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Dibenzo(a,h)anthracene         | ND               | D02                | 8600      | 100    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Dibenzofuran                   | ND               | D02                | 8600      | 89     | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Diethyl phthalate              | ND               | D02                | 8600      | 260    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
| Dimethyl phthalate             | ND               | D02                | 8600      | 220    | ug/kg dry | 40.0               | 05/20/09 09:55                   | JLG    | 9E11087            | 8270C          |
|                                |                  |                    |           |        |           |                    |                                  |        |                    |                |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| Analytical Report                     |                 |            |           |      |           |           |                |        |          |        |  |
|---------------------------------------|-----------------|------------|-----------|------|-----------|-----------|----------------|--------|----------|--------|--|
|                                       | Sample          | Data       |           |      |           | Dilution  | Date           |        | Seq/     |        |  |
| Analyte                               | Result          | Qualifiers | Rpt Limit | MDL  | Units     | Factor    | Analyzed       | Analys | Batch    | Method |  |
| Sample ID: RSE0369-13 (RR-TP-         | 49 - Solid) - ( | cont.      |           |      | Sampl     | ed: 05/07 | /09 15:45      | Recvd: | 05/11/09 | 11:45  |  |
| Semivolatile Organics by GC/MS - c    | ont.            |            |           |      |           |           |                |        |          |        |  |
| Di-n-butyl phthalate                  | ND              | D02        | 8600      | 2900 | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Di-n-octyl phthalate                  | ND              | D02        | 8600      | 200  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Fluoranthene                          | ND              | D02        | 8600      | 120  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Fluorene                              | ND              | D02        | 8600      | 200  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Hexachlorobenzene                     | ND              | D02        | 8600      | 420  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Hexachlorobutadiene                   | ND              | D02        | 8600      | 440  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Hexachlorocyclopentadiene             | ND              | D02        | 8600      | 2600 | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Hexachloroethane                      | ND              | D02        | 8600      | 660  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Indeno(1,2,3-cd)pyrene                | ND              | D02        | 8600      | 240  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Isophorone                            | ND              | D02        | 8600      | 430  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Naphthalene                           | ND              | D02        | 8600      | 140  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Nitrobenzene                          | ND              | D02        | 8600      | 380  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| N-Nitrosodi-n-propylamine             | ND              | D02        | 8600      | 670  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| N-Nitrosodiphenylamine                | ND              | D02,L      | 8600      | 470  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Pentachlorophenol                     | ND              | D02        | 17000     | 2900 | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Phenanthrene                          | ND              | D02        | 8600      | 180  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Phenol                                | ND              | D02        | 8600      | 900  | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Pyrene                                | ND              | D02        | 8600      | 55   | ug/kg dry | 40.0      | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Surr: 2,4,6-Tribromophenol (39-146%)  | 110 %           | D02        |           |      |           |           | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Surr: 2-Fluorobiphenyl (37-120%)      | 64 %            | D02        |           |      |           |           | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Surr: 2-Fluorophenol (18-120%)        | 22 %            | D02        |           |      |           |           | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Surr: Nitrobenzene-d5 (34-132%)       | 32 %            | D02,Z6     |           |      |           |           | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Surr: Phenol-d5 (11-120%)             | 33 %            | D02        |           |      |           |           | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Surr: p-Terphenyl-d14 (58-147%)       | 62 %            | D02        |           |      |           |           | 05/20/09 09:55 | JLG    | 9E11087  | 8270C  |  |
| Volatile Organic Compounds by EP      | A 8260B         |            |           |      |           |           |                |        |          |        |  |
| 1,1,1-Trichloroethane                 | 2.1             | J          | 6.2       | 0.45 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,1,2,2-Tetrachloroethane             | ND              |            | 6.2       | 1.0  | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,1,2-Trichloroethane                 | ND              |            | 6.2       | 0.31 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND              |            | 6.2       | 0.66 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,1-Dichloroethane                    | ND              |            | 6.2       | 0.31 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,1-Dichloroethene                    | ND              |            | 6.2       | 0.76 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,2,4-Trichlorobenzene                | ND              |            | 6.2       | 0.38 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,2,4-Trimethylbenzene                | ND              |            | 6.2       | 0.45 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,2-Dibromo-3-chloropropane           | ND              |            | 6.2       | 1.2  | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,2-Dibromoethane                     | ND              |            | 6.2       | 0.24 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,2-Dichlorobenzene                   | ND              |            | 6.2       | 0.94 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,2-Dichloroethane                    | ND              |            | 6.2       | 0.31 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,2-Dichloropropane                   | ND              |            | 6.2       | 0.32 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,3,5-Trimethylbenzene                | ND              |            | 6.2       | 0.40 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1.3-Dichlorobenzene                   | ND              |            | 6.2       | 0.88 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 1,4-Dichlorobenzene                   | ND              |            | 6.2       | 0.87 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 2-Butanone                            | ND              |            | 31        | 8.5  | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 2-Hexanone                            | ND              |            | 31        | 2.2  | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| p-Cymene                              | ND              |            | 6.2       | 0.50 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| 4-Methyl-2-pentanone                  | ND              |            | 31        | 2.0  | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Acetone                               | ND              |            | 31        | 1.4  | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Benzene                               | ND              |            | 6.2       | 0.30 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Bromodichloromethane                  | ND              |            | 6.2       | 0.32 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

| Analytical Report                     |                 |            |           |      |           |           |                |        |          |        |  |
|---------------------------------------|-----------------|------------|-----------|------|-----------|-----------|----------------|--------|----------|--------|--|
|                                       | Sample          | Data       |           |      |           | Dilution  | Date           |        | Seq/     |        |  |
| Analyte                               | Result          | Qualifiers | Rpt Limit | MDL  | Units     | Factor    | Analyzed       | Analys | Batch    | Method |  |
| Sample ID: RSE0369-13 (RR-TP-4        | 19 - Solid) - ( | cont.      |           |      | Sampl     | ed: 05/07 | /09 15:45      | Recvd: | 05/11/09 | 11:45  |  |
| Volatile Organic Compounds by EPA     | A 8260B - con   | <u>t.</u>  |           |      |           |           |                |        |          |        |  |
| Bromoform                             | ND              |            | 6.2       | 0.57 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Bromomethane                          | ND              |            | 6.2       | 0.57 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Carbon disulfide                      | ND              |            | 6.2       | 0.53 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Carbon Tetrachloride                  | ND              |            | 6.2       | 0.23 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Chlorobenzene                         | ND              |            | 6.2       | 0.27 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Dibromochloromethane                  | ND              |            | 6.2       | 0.34 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Chloroethane                          | ND              |            | 6.2       | 1.0  | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Chloroform                            | ND              |            | 6.2       | 0.38 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Chloromethane                         | ND              |            | 6.2       | 0.38 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| cis-1,2-Dichloroethene                | ND              |            | 6.2       | 0.31 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| cis-1,3-Dichloropropene               | ND              |            | 6.2       | 0.36 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Cvclohexane                           | ND              |            | 6.2       | 0.29 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Dichlorodifluoromethane               | ND              |            | 6.2       | 0.51 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Ethylbenzene                          | ND              |            | 6.2       | 0.43 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Isopropylbenzene                      | ND              |            | 6.2       | 0.41 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Methvi Acetate                        | ND              |            | 6.2       | 0.34 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Methyl-t-Butyl Ether (MTBE)           | ND              |            | 6.2       | 0.61 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Methylcyclohexane                     | ND              |            | 6.2       | 0.40 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Methylene Chloride                    | 2.9             | J          | 6.2       | 0.43 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| m-Xylene & p-Xylene                   | ND              |            | 12        | 1.0  | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| n-Butylbenzene                        | ND              |            | 6.2       | 0.54 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| n-Propylbenzene                       | ND              |            | 6.2       | 0.47 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| o-Xylene                              | ND              |            | 6.2       | 0.31 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| sec-Butylbenzene                      | ND              |            | 6.2       | 0.54 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Styrene                               | ND              |            | 6.2       | 0.31 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| tert-Butylbenzene                     | ND              |            | 6.2       | 0.65 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Tetrachloroethene                     | ND              |            | 6.2       | 0.84 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Toluene                               | ND              |            | 6.2       | 1.1  | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| trans-1,2-Dichloroethene              | ND              |            | 6.2       | 0.64 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| trans-1,3-Dichloropropene             | ND              |            | 6.2       | 0.30 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Trichloroethene                       | 2.7             | J          | 6.2       | 0.43 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Trichlorofluoromethane                | ND              |            | 6.2       | 1.9  | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Vinyl chloride                        | ND              |            | 12        | 0.25 | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Xylenes, total                        | ND              |            | 12        | 1.0  | ug/kg dry | 1.00      | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Surr: 1,2-Dichloroethane-d4 (64-126%) | 101 %           |            |           |      | -=        |           | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Surr: 4-Bromofluorobenzene (72-126%)  | 100 %           |            |           |      |           |           | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
|                                       |                 |            |           |      |           |           | 05/13/09 21:18 | CDC    | 9E13076  | 8260B  |  |
| Surr: Toluene-d8 (71-125%)            | 108 %           |            |           |      |           |           | 03/13/09 21:10 | CDC    | 3213070  | 02000  |  |

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                                                                        |                  |                    | Analytic  | cal Re | port      |                    |                  |         |               |            |
|----------------------------------------------------------------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|------------|
| Analyte                                                                                | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0369-14 (RR-TP-10 - Solid) Sampled: 05/08/09 09:15 Recvd: 05/11/09 11:45 |                  |                    |           |        |           |                    |                  |         |               | 11:45      |
| General Chemistry Parameters                                                           |                  |                    |           |        |           |                    |                  |         |               |            |
| Percent Solids                                                                         | 91               |                    | 0.010     | NR     | %         | 1.00               | 05/14/09 07:38   | LT      | 9E13102       | Dry Weight |
| Total Metals by SW 846 Series Me                                                       | <u>thods</u>     |                    |           |        |           |                    |                  |         |               |            |
| Arsenic                                                                                | 25.2             |                    | 10.0      | NR     | mg/kg dry | 1.00               | 05/14/09 00:59   | TWS     | 9E12064       | 6010B      |
| Barium                                                                                 | 92.6             |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/14/09 00:59   | TWS     | 9E12064       | 6010B      |
| Cadmium                                                                                | ND               |                    | 0.500     | NR     | mg/kg dry | 1,00               | 05/14/09 00:59   | TWS     | 9E12064       | 6010B      |
| Chromium                                                                               | 250              |                    | 2.00      | NR     | mg/kg dry | 1.00               | 05/14/09 00:59   | TWS     | 9E12064       | 6010B      |
| Lead                                                                                   | 63.9             |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/14/09 00:59   | TWS     | 9E12064       | 6010B      |
| Mercury                                                                                | 0.0899           |                    | 0.0221    | NR     | mg/kg dry | 1.00               | 05/13/09 15:03   | ММ      | 9E12055       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                   |                  |                    | Analytic  | cal Re | port      |                    |                  |         |               |            |
|-----------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|------------|
| Analyte                           | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0369-15 (RR-TP      | -8 - Solid)      |                    |           |        | Samp      | led: 05/08         | /09 11:15        | Recvd:  | 05/11/09      | 11:45      |
| General Chemistry Parameters      |                  |                    |           |        |           |                    |                  |         |               |            |
| Percent Solids                    | 92               |                    | 0.010     | NR     | %         | 1.00               | 05/14/09 07:40   | LT      | 9E13102       | Dry Weight |
| Total Metals by SW 846 Series Met | hods             |                    |           |        |           |                    |                  |         |               |            |
| Arsenic                           | 60.2             |                    | 10.0      | NR     | mg/kg dry | 1.00               | 05/14/09 01:04   | TWS     | 9E12064       | 6010B      |
| Barium                            | 93.5             |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/14/09 01:04   | TWS     | 9E12064       | 6010B      |
| Cadmium                           | 1.60             |                    | 0.500     | NR     | mg/kg dry | 1.00               | 05/14/09 01:04   | TWS     | 9E12064       | 6010B      |
| Chromium                          | 368              |                    | 2.00      | NR     | mg/kg dry | 1.00               | 05/14/09 01:04   | TWS     | 9E12064       | 6010B      |
| Lead                              | 212              |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/14/09 01:04   | TWS     | 9E12064       | 6010B      |
| Mercury                           | 0.895            | D08                | 0.0407    | NR     | mg/kg dry | 2.00               | 05/13/09 17:05   | ММ      | 9E12055       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                   |                  |                    | Analytic  | cal Re | port      |                    |                  |         |               |            |
|-----------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|------------|
| Analyte                           | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0369-16 (RR-TF      | P-6 - Solid)     |                    |           |        | Sampl     | ed: 05/08          | /09 13:40        | Recvd:  | 05/11/09      | 11:45      |
| General Chemistry Parameters      |                  |                    |           |        |           |                    |                  |         |               |            |
| Percent Solids                    | 86               |                    | 0.010     | NR     | %         | 1.00               | 05/14/09 07:42   | LT      | 9E13102       | Dry Weight |
| Total Metals by SW 846 Series Met | thods            |                    |           |        |           |                    |                  |         |               |            |
| Arsenic                           | 66.9             |                    | 10.0      | NR     | mg/kg dry | 1.00               | 05/14/09 01:09   | TWS     | 9E12064       | 6010B      |
| Barium                            | 91.2             |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/14/09 01:09   | TWS     | 9E12064       | 6010B      |
| Cadmium                           | 1.02             |                    | 0.500     | NR     | mg/kg dry | 1.00               | 05/14/09 01:09   | TWS     | 9E12064       | 6010B      |
| Chromium                          | 126              |                    | 2.00      | NR     | mg/kg dry | 1.00               | 05/14/09 01:09   | TWS     | 9E12064       | 6010B      |
| Lead                              | 211              |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/14/09 01:09   | TWS     | 9E12064       | 6010B      |
| Mercury                           | 0.322            |                    | 0.0223    | NR     | mg/kg dry | 1.00               | 05/13/09 15:06   | ММ      | 9E12055       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| Analytical Report              |                  |                    |            |     |           |                    |                  |        |                  |            |  |
|--------------------------------|------------------|--------------------|------------|-----|-----------|--------------------|------------------|--------|------------------|------------|--|
| Analyte                        | Sample<br>Result | Data<br>Qualifiers | Rpt Limit  | MDL | Units     | Dilution<br>Factor | Date<br>Analyzed | Analys | Seq/<br>st Batch | Method     |  |
| Sample ID: RSE0369-17 (BPA2-T  | P-24 - Solid)    |                    |            |     | Sampl     | ed: 05/07          | /09 13:50        | Recvd: | 05/11/09         | 11:45      |  |
| General Chemistry Parameters   |                  |                    |            |     |           |                    |                  |        |                  |            |  |
| Percent Solids                 | 85               |                    | 0.010      | NR  | %         | 1.00               | 05/14/09 07:44   | LT     | 9E13102          | Dry Weight |  |
| Semivolatile Organics by GC/MS |                  |                    |            |     |           |                    |                  |        |                  |            |  |
| 2,4-Dinitrotoluene             | ND               | D02                | 790        | 120 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| 2,6-Dinitrotoluene             | ND               | D02                | 790        | 190 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| 2-Chloronaphthalene            | ND               | D02                | 790        | 53  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| 2-Methylnaphthalene            | 54               | D02,J              | 790        | 9.5 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| 2-Nitroaniline                 | ND               | D02                | 1500       | 250 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| 3,3'-Dichlorobenzidine         | ND               | D02                | 790        | 690 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| 3-Nitroaniline                 | ND               | D02                | 1500       | 180 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| 4-Bromophenyl phenyl ether     | ND               | D02                | 790        | 250 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| 4-Chloroaniline                | ND               | D02                | 790        | 230 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| 4-Chlorophenyl phenyl ether    | ND               | D02                | 790        | 17  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| 4-Nitroaniline                 | ND               | D02                | 1500       | 88  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Acenaphthene                   | ND               | D02                | 790        | 9.2 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Acenaphthylene                 | 240              | D02,J              | 790        | 6.4 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Acetophenone                   | ND               | D02                | 790        | 40  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Anthracene                     | 180              | D02,J              | 790        | 20  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Atrazine                       | ND               | D02                | 790        | 35  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Benzaldehyde                   | ND               | D02                | 790        | 86  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Benzo(a)anthracene             | 1100             | D02                | 790        | 14  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Benzo(a)pyrene                 | 1200             | D02                | 790        | 19  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Benzo(b)fluoranthene           | 1500             | D02                | 790        | 15  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Benzo(ghi)perylene             | 880              | D02                | 790        | 9.4 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Benzo(k)fluoranthene           | 590              | D02,J              | 790        | 8.7 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Benzyl alcohol                 | ND               | D02                | 1500       | 38  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Biphenyl                       | NĎ               | D02                | 790        | 49  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Bis(2-chloroethoxy)methane     | ND               | D02                | 790        | 43  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Bis(2-chloroethyl)ether        | ND               | D02                | 790        | 68  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| 2,2'-Oxybis(1-Chloropropane)   | ND               | D02                | 790        | 82  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Bis(2-ethylhexyl) phthalate    | ND               | D02                | 790        | 250 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Butyl benzyl phthalate         | ND               | D02                | 790        | 210 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Caprolactam                    | ND               | D02                | 790        | 340 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Chrysene                       | 1300             | D02                | 790        | 7.9 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Dibenzo(a,h)anthracene         | 260              | D02,J              | 790        | 9.2 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Dibenzofuran                   | 51               | D02,J              | 790        | 8.2 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Diethyl phthalate              | ND               | D02                | 790        | 24  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Dimethyl phthalate             | ND               | D02                | 790        | 21  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Di-n-butyl phthalate           | ND               | D02                | 790        | 270 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Di-n-octyl phthalate           | ND               | D02                | 790        | 18  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Fluoranthene                   | 2200             | D02                | 790        | 11  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Fluorene                       | 37               | D02,J              | 790        | 18  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Hexachlorobenzene              | ND               | D02                | 790<br>700 | 39  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Hexachlorobutadiene            | ND               | D02                | 790        | 40  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Hexachlorocyclopentadiene      | ND               | D02                | 790        | 240 | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Hexachloroethane               | ND               | D02                | 790        | 61  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Indeno(1,2,3-cd)pyrene         | 810              | D02                | 790        | 22  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Isophorone                     | ND               | D02                | 790        | 39  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Naphthalene                    | 57<br>ND         | D02,J              | 790        | 13  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |
| Nitrobenzene                   | ND               | D02                | 790        | 35  | ug/kg dry | 4.00               | 05/21/09 00:11   | JLG    | 9E11087          | 8270C      |  |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                      |                  |                    | Analytic  | cal Re | port       |                    |                  |          |               |        |
|--------------------------------------|------------------|--------------------|-----------|--------|------------|--------------------|------------------|----------|---------------|--------|
| Analyte                              | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units      | Dilution<br>Factor | Date<br>Analyzed | Analyst  | Seq/<br>Batch | Method |
| Sample ID: RSE0369-17 (BPA2-T        |                  |                    |           |        | led: 05/07 |                    |                  | 05/11/09 |               |        |
| Semivolatile Organics by GC/MS - c   | ont.             |                    |           |        |            |                    |                  |          |               |        |
| N-Nitrosodi-n-propylamine            | ND               | D02                | 790       | 62     | ug/kg dry  | 4.00               | 05/21/09 00:11   | JLG      | 9E11087       | 8270C  |
| N-Nitrosodiphenylamine               | ND               | D02,L              | 790       | 43     | ug/kg dry  | 4.00               | 05/21/09 00:11   | JLG      | 9E11087       | 8270C  |
| Phenanthrene                         | 930              | D02                | 790       | 16     | ug/kg dry  | 4.00               | 05/21/09 00:11   | JLG      | 9E11087       | 8270C  |
| <sup>o</sup> yrene                   | 1800             | D02                | 790       | 5.1    | ug/kg dry  | 4.00               | 05/21/09 00:11   | JLG      | 9Ë11087       | 8270C  |
| Surr: 2,4,6-Tribromophenol (39-146%) | 86 %             | D02                |           |        |            |                    | 05/21/09 00:11   | JLG      | 9E11087       | 8270C  |
| Surr: 2-Fluorobiphenyl (37-120%)     | 95 %             | D02                |           |        |            |                    | 05/21/09 00:11   | JLG      | 9E11087       | 8270C  |
| Surr: 2-Fluorophenol (18-120%)       | 69 %             | D02                |           |        |            |                    | 05/21/09 00:11   | JLG      | 9E11087       | 8270C  |
| Surr: Nitrobenzene-d5 (34-132%)      | 92 %             | D02                |           |        |            |                    | 05/21/09 00:11   | JLG      | 9E11087       | 8270C  |
| Surr: Phenol-d5 (11-120%)            | 80 %             | D02                |           |        |            |                    | 05/21/09 00:11   | JLG      | 9E11087       | 8270C  |
| Surr: p-Terphenyl-d14 (58-147%)      | 93 %             | D02                |           |        |            |                    | 05/21/09 00:11   | JLG      | 9E11087       | 8270C  |
| Total Metals by SW 846 Series Meth   | ods              |                    |           |        |            |                    |                  |          |               |        |
| Arsenic                              | 86.9             |                    | 10.0      | NR     | mg/kg dry  | 1.00               | 05/14/09 03:44   | TWS      | 9E12068       | 6010B  |
| Barium                               | 96.0             |                    | 1.00      | NR     | mg/kg dry  | 1.00               | 05/14/09 03:44   | TWS      | 9E12068       | 6010B  |
| Cadmium                              | 1.14             |                    | 0.500     | NR     | mg/kg dry  | 1.00               | 05/14/09 03:44   | TWS      | 9E12068       | 6010B  |
| Chromium                             | 46.0             |                    | 2.00      | NR     | mg/kg dry  | 1.00               | 05/14/09 03:44   | TWS      | 9E12068       | 6010B  |
| ead                                  | 103              |                    | 5.0       | NR     | mg/kg dry  | 1,00               | 05/14/09 03:44   | TWS      | 9E12068       | 6010B  |
| /lercury                             | 0.135            |                    | 0.0232    | NR     | mg/kg dry  | 1.00               | 05/13/09 15:07   | MM       | 9E12055       | 7471A  |

THE LEADER IN ENVIRONMENTAL TESTING

### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| Analytical Report              |                  |                    |           |     |                        |                    |                  |        |                 |                |  |
|--------------------------------|------------------|--------------------|-----------|-----|------------------------|--------------------|------------------|--------|-----------------|----------------|--|
| Analyte                        | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL | Units                  | Dilution<br>Factor | Date<br>Analyzed | Analys | Seq/<br>t Batch | Method         |  |
| Sample ID: RSE0369-18 (BLIND   | D1 - Solid)      |                    |           |     | Samp                   | led: 05/07         | /09 08:00        | Recvd: | 05/11/09        | 11:45          |  |
| General Chemistry Parameters   |                  |                    |           |     |                        |                    |                  |        |                 |                |  |
| Percent Solids                 | 89               |                    | 0.010     | NR  | %                      | 1.00               | 05/14/09 07:46   | LT     | 9E13102         | Dry Weight     |  |
| Semivolatile Organics by GC/MS |                  |                    |           |     |                        |                    |                  |        |                 |                |  |
| 2,4-Dinitrotoluene             | ND               | D02                | 760       | 120 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| 2,6-Dinitrotoluene             | ND               | D02                | 760       | 180 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| 2-Chloronaphthalene            | ND               | D02                | 760       | 51  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| 2-Methylnaphthalene            | 97               | D02,J              | 760       | 9.1 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| 2-Nitroaniline                 | ND               | D02                | 1500      | 240 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| 3,3'-Dichlorobenzidine         | ND               | D02                | 760       | 660 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| 3-Nitroaniline                 | ND               | D02                | 1500      | 170 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| 4-Bromophenyl phenyl ether     | ND               | D02                | 760       | 240 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| 4-Chloroaniline                | ND               | D02                | 760       | 220 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| 4-Chlorophenyl phenyl ether    | NĎ               | D02                | 760       | 16  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| 4-Nitroaniline                 | ND               | D02                | 1500      | 84  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Acenaphthene                   | 42               | D02,J              | 760       | 8.9 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Acenaphthylene                 | 730              | D02,J              | 760       | 6.2 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Acetophenone                   | ND               | D02                | 760       | 39  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Anthracene                     | 460              | D02,J              | 760       | 19  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Atrazine                       | ND               | D02                | 760       | 34  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
|                                | ND               | D02                | 760       | 83  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Benzaldehyde                   | 2300             | D02                | 760       | 13  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Benzo(a)anthracene             | 2300             | D02                | 760       | 18  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Benzo(a)pyrene                 | 2900             | D02                | 760       | 15  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Benzo(b)fluoranthene           | 1600             | D02                | 760       | 9.1 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Benzo(ghi)perylene             | 1300             | D02                | 760       | 8.3 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Benzo(k)fluoranthene           | ND               | D02                | 1500      | 36  | ug/kg dry<br>ug/kg dry | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Benzyl alcohol                 | ND               | D02                | 760       | 47  |                        | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Biphenyl                       | ND               | D02                | 760       | 41  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Bis(2-chloroethoxy)methane     | ND               | D02                | 760       | 65  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Bis(2-chloroethyl)ether        |                  |                    |           |     | ug/kg dry              |                    | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| 2,2'-Oxybis(1-Chloropropane)   | ND               | D02                | 760       | 79  | ug/kg dry              | 4.00               | 05/21/09 00:34   |        | 9E11087         | 8270C          |  |
| Bis(2-ethylhexyl) phthalate    | ND               | D02                | 760       | 240 | ug/kg dry              | 4.00               |                  | JLG    | 9E11087         | 8270C          |  |
| Butyl benzyl phthalate         | ND               | D02                | 760       | 200 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    |                 | 8270C<br>8270C |  |
| Caprolactam                    | ND               | D02                | 760       | 330 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         |                |  |
| Chrysene                       | 2500             | D02                | 760       | 7.5 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Dibenzo(a,h)anthracene         | 460              | D02,J              | 760       | 8.9 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Dibenzofuran                   | 63               | D02,J              | 760       | 7.9 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Diethyl phthalate              | ND               | D02                | 760       | 23  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Dimethyl phthalate             | ND               | D02                | 760       | 20  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Di-n-butyl phthalate           | ND               | D02                | 760       | 260 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Di-n-octyl phthalate           | ND               | D02                | 760       | 18  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Fluoranthene                   | 4200             | D02                | 760       | 11  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Fluorene                       | ND               | D02                | 760       | 17  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Hexachlorobenzene              | ND               | D02                | 760       | 38  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Hexachlorobutadiene            | ND               | D02                | 760       | 39  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Hexachlorocyclopentadiene      | ND               | D02                | 760       | 230 | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Hexachloroethane               | ND               | D02                | 760       | 58  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Indeno(1,2,3-cd)pyrene         | 1400             | D02                | 760       | 21  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Isophorone                     | ND               | D02                | 760       | 38  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Naphthalene                    | 110              | D02,J              | 760       | 13  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |
| Nitrobenzene                   | ND               | D02                | 760       | 33  | ug/kg dry              | 4.00               | 05/21/09 00:34   | JLG    | 9E11087         | 8270C          |  |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                      |                  |                    | Analytic  | cal Re | port      |                    |                  |         |               |        |
|--------------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|--------|
| Analyte                              | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method |
| Sample ID: RSE0369-18 (BLIND '       | 1 - Solid) - co  | ont.               |           |        | Samp      | ed: 05/07          | /09 08:00        | Recvd:  | 05/11/09 ·    | 11:45  |
| Semivolatile Organics by GC/MS - c   | ont.             |                    |           |        |           |                    |                  |         |               |        |
| N-Nitrosodi-n-propylamine            | ND               | D02                | 760       | 60     | ug/kg dry | 4.00               | 05/21/09 00:34   | JLG     | 9E11087       | 8270C  |
| N-Nitrosodiphenylamine               | ND               | D02,L              | 760       | 41     | ug/kg dry | 4.00               | 05/21/09 00:34   | JLG     | 9E11087       | 8270C  |
| Phenanthrene                         | 1400             | D02                | 760       | 16     | ug/kg dry | 4.00               | 05/21/09 00:34   | JLG     | 9E11087       | 8270C  |
| Pyrene                               | 3600             | D02                | 760       | 4.9    | ug/kg dry | 4.00               | 05/21/09 00:34   | JLG     | 9E11087       | 8270C  |
| Surr: 2,4,6-Tribromophenol (39-146%) | 89 %             | D02                |           |        |           |                    | 05/21/09 00:34   | JLG     | 9E11087       | 8270C  |
| Surr: 2-Fluorobiphenyl (37-120%)     | 103 %            | D02                |           |        |           |                    | 05/21/09 00:34   | JLG     | 9E11087       | 8270C  |
| Surr: 2-Fluorophenol (18-120%)       | 7 <b>9 %</b>     | D02                |           |        |           |                    | 05/21/09 00:34   | JLG     | 9E11087       | 8270C  |
| Surr: Nitrobenzene-d5 (34-132%)      | 101 %            | D02                |           |        |           |                    | 05/21/09 00:34   | JLG     | 9E11087       | 8270C  |
| Surr: Phenol-d5 (11-120%)            | 91 %             | D02                |           |        |           |                    | 05/21/09 00:34   | JLG     | 9E11087       | 8270C  |
| Surr: p-Terphenyl-d14 (58-147%)      | 92 %             | D02                |           |        |           |                    | 05/21/09 00:34   | JLG     | 9E11087       | 8270C  |
| Total Metals by SW 846 Series Meth   | <u>ods</u>       |                    |           |        |           |                    |                  |         |               |        |
| Arsenic                              | 223              |                    | 10.0      | NR     | mg/kg dry | 1.00               | 05/14/09 04:09   | TWS     | 9E12068       | 6010B  |
| Barium                               | 151              |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/14/09 04:09   | TWS     | 9E12068       | 6010B  |
| Cadmium                              | 2.08             |                    | 0.500     | NR     | mg/kg dry | 1.00               | 05/14/09 04:09   | TWS     | 9E12068       | 6010B  |
| Chromium                             | 206              |                    | 2.00      | NR     | mg/kg dry | 1.00               | 05/14/09 04:09   | TWS     | 9E12068       | 6010B  |
| Lead                                 | 164              |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/14/09 04:09   | TWS     | 9E12068       | 6010B  |
| Mercury                              | 0.112            |                    | 0.0217    | NR     | mg/kg dry | 1.00               | 05/28/09 14:12   | ММ      | 9E28026       | 7471A  |

THE LEADER IN ENVIRONMENTAL TESTING

### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                                                                        |                  |                    | Analytic  | al Re | port      |                    |                  |         |               |            |
|----------------------------------------------------------------------------------------|------------------|--------------------|-----------|-------|-----------|--------------------|------------------|---------|---------------|------------|
| Analyte                                                                                | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL   | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0369-19 (RR-TP-12 - Solid) Sampled: 05/08/09 13:40 Recvd: 05/11/09 11:45 |                  |                    |           |       |           |                    |                  |         | 11:45         |            |
| General Chemistry Parameters                                                           |                  |                    |           |       |           |                    |                  |         |               |            |
| Percent Solids                                                                         | 87               |                    | 0.010     | NR    | %         | 1.00               | 05/14/09 07:48   | LT      | 9E13102       | Dry Weight |
| Total Metals by SW 846 Series Meth                                                     | ods              |                    |           |       |           |                    |                  |         |               |            |
| Arsenic                                                                                | 147              |                    | 10.0      | NR    | mg/kg dry | 1.00               | 05/14/09 04:27   | TWS     | 9E12068       | 6010B      |
| Barium                                                                                 | 110              |                    | 1.00      | NR    | mg/kg dry | 1.00               | 05/14/09 04:27   | TWS     | 9E12068       | 6010B      |
| Cadmium                                                                                | 2.61             |                    | 0.500     | NR    | mg/kg dry | 1.00               | 05/14/09 04:27   | TWS     | 9E12068       | 6010B      |
| Chromium                                                                               | 158              |                    | 2.00      | NR    | mg/kg dry | 1.00               | 05/14/09 04:27   | TWS     | 9E12068       | 6010B      |
| Lead                                                                                   | 986              |                    | 5.0       | NR    | mg/kg dry | 1.00               | 05/14/09 04:27   | TWS     | 9E12068       | 6010B      |
| Mercury                                                                                | 0.271            |                    | 0.0228    | NR    | mg/kg dry | 1.00               | 05/13/09 15:09   | ММ      | 9E12055       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

### SAMPLE EXTRACTION DATA

| Parameter                      | Batch     | Lab Number | ₩t⁄Vol<br>Extracted | Units | Extract<br>Volume | Units | Date           | Analyst | Extraction Method |
|--------------------------------|-----------|------------|---------------------|-------|-------------------|-------|----------------|---------|-------------------|
| General Chemistry Parameter    | s         |            |                     |       |                   |       |                |         |                   |
| 9012A                          | 9E13038   | RSE0369-09 | 0.54                | g     | 50.00             | mL    | 05/12/09 11:30 | RJK     | Cn Digestion      |
| Dry Weight                     | 9E13102   | RSE0369-01 | 10.00               | 9     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-02 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-03 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-04 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-05 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-06 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-07 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-08 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-09 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-10 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-11 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-12 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-13 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-14 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-15 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-16 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-17 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-18 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Dry Weight                     | 9E13102   | RSE0369-19 | 10.00               | g     | 10.00             | g     | 05/13/09 22:45 | LT      | Dry Weight        |
| Polychlorinated Biphenyls by E | EPA Metho | d 8082     |                     |       |                   |       |                |         |                   |
| 8082                           | 9E12035   | RSE0369-06 | 30.52               | g     | 10.00             | mL    | 05/12/09 21:36 | LT      | 3550B GC          |
| 8082                           | 9E12035   | RSE0369-09 | 30.93               | g     | 10.00             | mL    | 05/12/09 21:36 | LT      | 3550B GC          |
| Semivolatile Organics by GC/M  | NS        |            |                     |       |                   |       |                |         |                   |
| 8270C                          | 9E11087   | RSE0369-18 | 30.23               | g     | 1.00              | mL    | 05/12/09 08:00 | BL      | 3550B MB          |
| 8270C                          | 9E11087   | RSE0369-17 | 30.40               | g     | 1.00              | mL    | 05/12/09 08:00 | BL      | 3550B MB          |
| 8270C                          | 9E11087   | RSE0369-09 | 30.46               | g     | 1.00              | mL    | 05/12/09 08:00 | BL      | 3550B MB          |
| 8270C                          | 9E11087   | RSE0369-13 | 30.73               | g     | 1.00              | mL    | 05/12/09 08:00 | BL      | 3550B MB          |
| Total Metals by SW 846 Series  |           |            |                     |       |                   |       |                |         | 20500             |
| 6010B                          | 9E12064   | RSE0369-01 | 0.48                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                          | 9E12064   | RSE0369-11 | 0.48                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                          | 9E12068   | RSE0369-17 | 0.49                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                          | 9E12068   | RSE0369-19 | 0.49                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                          | 9E12064   | RSE0369-03 | 0.50                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                          | 9E12064   | RSE0369-16 | 0.50                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                          | 9E12068   | RSE0369-18 | 0.50                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                          | 9E12064   | RSE0369-06 | 0.51                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                          | 9E12064   | RSE0369-10 | 0.51                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                          | 9E12064   | RSE0369-09 | 0.51                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991



THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0369

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

### SAMPLE EXTRACTION DATA

| Parameter                    | Batch     | Lab Number | Wt/Vol<br>Extracted | Units | Extract<br>Volume | Units | Date           | Analyst | Extraction Method |
|------------------------------|-----------|------------|---------------------|-------|-------------------|-------|----------------|---------|-------------------|
| 6010B                        | 9E12064   | RSE0369-15 | 0.51                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                        | 9E12064   | RSE0369-07 | 0.52                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                        | 9E12064   | RSE0369-14 | 0.52                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                        | 9E12064   | RSE0369-08 | 0.53                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                        | 9E12064   | RSE0369-05 | 0.53                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                        | 9E12064   | RSE0369-02 | 0.53                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                        | 9E12064   | RSE0369-04 | 0.54                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 6010B                        | 9E12064   | RSE0369-12 | 0.54                | g     | 50.00             | mL    | 05/13/09 10:30 | MLD     | 3050B             |
| 7471A                        | 9E12055   | RSE0369-05 | 0.58                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7471A                        | 9E12055   | RSE0369-06 | 0.58                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7471A                        | 9E12055   | RSE0369-07 | 0.58                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7 <b>4</b> 71A               | 9E12055   | RSE0369-10 | 0.59                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7 <b>4</b> 71A               | 9E12055   | RSE0369-14 | 0.60                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7 <b>4</b> 71A               | 9E12055   | RSE0369-01 | 0.61                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7471A                        | 9E12055   | RSE0369-19 | 0.61                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7471A                        | 9E12055   | RSE0369-11 | 0.61                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A             |
| 7471A                        | 9E12055   | RSE0369-08 | 0.61                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7471A                        | 9E12055   | RSE0369-17 | 0.61                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7471A                        | 9E12055   | RSE0369-04 | 0.61                | g     | 50.00             | mL    | 05/13/09 13:45 | MM      | 7471A_            |
| 7471A                        | 9E12055   | RSE0369-09 | 0.62                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7471A                        | 9E12055   | RSE0369-02 | 0.62                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7471A                        | 9E12055   | RSE0369-16 | 0.63                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7471A                        | 9E12055   | RSE0369-12 | 0.64                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A             |
| 7471A                        | 9E12055   | RSE0369-15 | 0.64                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7471A                        | 9E12055   | RSE0369-03 | 0.65                | g     | 50.00             | mL    | 05/13/09 13:45 | ММ      | 7471A_            |
| 7471A                        | 9E28026   | RSE0369-18 | 0.62                | g     | 50.00             | mL    | 05/28/09 13:15 | ММ      | 7 <b>4</b> 71A    |
| Volatile Organic Compounds b | y EPA 826 | 60B        |                     |       |                   |       |                |         |                   |
| 8260B                        | 9E13076   | RSE0369-13 | 5.19                | g     | 5.00              | mL    | 05/13/09 18:29 | CDC     | 5030B MS          |
| 8260B                        | 9E13076   | RSE0369-09 | 5.29                | g     | 5.00              | mL    | 05/13/09 18:29 | CDC     | 5030B MS          |



THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

### LABORATORY QC DATA

| Analyte                     | Seq/<br>Batch | Source<br>Result | Spike<br>Level | MRL | MDL | Units     | Result | %<br>REC | % REC<br>Limits | % RPD<br>RPD Limit | Qualifier |
|-----------------------------|---------------|------------------|----------------|-----|-----|-----------|--------|----------|-----------------|--------------------|-----------|
| General Chemistry Paramet   | ters          |                  |                |     |     |           |        |          |                 |                    |           |
| Blank Analyzed: 05/13/09 (9 | 9E13038-BLK1) |                  |                |     |     |           |        |          |                 |                    |           |
| Cyanide                     | 9E13038       |                  |                | 1.0 | 0.9 | mg/kg wet | ND     |          |                 |                    |           |
| LCS Analyzed: 05/13/09 (9E  | E13038-BS1)   |                  |                |     |     |           |        |          |                 |                    |           |
| Cyanide                     | 9E13038       |                  | 34.4           | 0.9 | 0.8 | mg/kg wet | 25.9   | 75       | 40-160          |                    |           |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                 |                         |                  | LA             | BORAT | ORY QC | DATA      |        |          |                 |          |              |           |
|---------------------------------|-------------------------|------------------|----------------|-------|--------|-----------|--------|----------|-----------------|----------|--------------|-----------|
| Analyte                         | Seq/<br>Batch           | Source<br>Result | Spike<br>Level | MRL   | MDL    | Units     | Result | %<br>REC | % REC<br>Limits | %<br>RPD | RPD<br>Limit | Qualifier |
| Polychlorinated Biphenyls by E  |                         |                  |                |       |        |           |        |          |                 |          |              |           |
| Blank Analyzed: 05/13/09 (9E12  | 035-BLK1)               |                  |                |       |        |           |        |          |                 |          |              |           |
| Aroclor 1016                    | 9E12035                 |                  |                | 17    | 3.2    | ug/kg wet | ND     |          |                 |          |              | QSU       |
| Aroclor 1221                    | 9E12035                 |                  |                | 17    | 3.2    | ug/kg wet | ND     |          |                 |          |              | QSU       |
| Aroclor 1232                    | 9E12035                 |                  |                | 17    | 3.2    | ug/kg wet | ND     |          |                 |          |              | QSU       |
| Aroclor 1242                    | 9E12035                 |                  |                | 17    | 3.6    | ug/kg wet | ND     |          |                 |          |              | QSU       |
| Aroclor 1248                    | 9E12035                 |                  |                | 17    | 3.3    | ug/kg wet | ND     |          |                 |          |              | QSU       |
| Aroclor 1254                    | 9E12035                 |                  |                | 17    | 3.5    | ug/kg wet | ND     |          |                 |          |              | QSU       |
| Aroclor 1260                    | 9E12035                 |                  |                | 17    | 3.5    | ug/kg wet | ND     |          |                 |          |              | QSU       |
| Surrogate: Decachlorobiphenyl   |                         |                  |                |       |        | ug/kg wet |        | 105      | 34-148          |          |              | QSU       |
| Surrogate: Tetrachloro-m-xylene |                         |                  |                |       |        | ug/kg wet |        | 97       | 35-134          |          |              | QSU       |
| LCS Analyzed: 05/13/09 (9E120   | 35-BS1)                 |                  |                |       |        |           |        |          |                 |          |              |           |
| Aroclor 1016                    | 9E12035                 |                  | 170            | 17    | 3.2    | ug/kg wet | 144    | 87       | 59-154          |          |              | QSU       |
| Aroclor 1221                    | 9E12035                 |                  |                | 17    | 3.2    | ug/kg wet | ND     |          | 0-200           |          |              | QSU       |
| Aroclor 1232                    | 9E12035                 |                  |                | 17    | 3.2    | ug/kg wet | ND     |          | 0-200           |          |              | QSU       |
| Arocior 1242                    | 9E12035                 |                  |                | 17    | 3.6    | ug/kg wet | ND     |          | 0-200           |          |              | QSU       |
| Aroclor 1248                    | 9E12035                 |                  |                | 17    | 3.3    | ug/kg wet | ND     |          | 0-200           |          |              | QSU       |
| Aroclor 1254                    | 9E12035                 |                  |                | 17    | 3.5    | ug/kg wet | ND     |          | 0-200           |          |              | QSU       |
| Aroclor 1260                    | 9E12035                 |                  | 170            | 17    | 3.5    | ug/kg wet | 162    | 97       | 51-179          |          |              | QSU       |
| Surrogate: Decachlorobiphenyl   |                         |                  |                |       |        | ug/kg wet |        | 102      | 34-148          | 2.000    |              | QSU       |
| Surrogate: Tetrachloro-m-xylene |                         |                  |                |       |        | ug/kg wet |        | 97       | 35-134          |          |              | QSU       |
| LCS Dup Analyzed: 05/13/09 (98  | E12035-BSD <sup>-</sup> | 1)               |                |       |        |           |        |          |                 |          |              |           |
| Aroclor 1016                    | 9E12035                 |                  | 160            | 16    | 3.2    | ug/kg wet | 142    | 86       | 59-154          | 1        | 50           | QSU       |
| Aroclor 1221                    | 9E12035                 |                  |                | 16    | 3.2    | ug/kg wet | ND     |          | 0-200           |          | 200          | QSU       |
| Aroclor 1232                    | 9E12035                 |                  |                | 16    | 3.2    | ug/kg wet | ND     |          | 0-200           |          | 200          | QSU       |
| Aroclor 1242                    | 9E12035                 |                  |                | 16    | 3.6    | ug/kg wet | ND     |          | 0-200           |          | 200          | QSU       |
| Aroclor 1248                    | 9E12035                 |                  |                | 16    | 3.2    | ug/kg wet | ND .   |          | 0-200           |          | 200          | QSU       |
| Aroclor 1254                    | 9E12035                 |                  |                | 16    | 3.5    | ug/kg wet | ND     |          | 0-200           |          | 200          | QSU       |
| Aroclor 1260                    | 9E12035                 |                  | 160            | 16    | 3.5    | ug/kg wet | 161    | 98       | 51-179          | 1        | 50           | QSU       |
| Surrogate: Decachlorobiphenyl   |                         |                  |                |       |        | ug/kg wet |        | 101      | 34-148          |          |              | QSU       |
| Surrogate: Tetrachloro-m-xylene |                         |                  |                |       |        | ug/kg wet |        | 95       | 35-134          |          |              | QSU       |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

### LABORATORY QC DATA

|                                 | Soul                  | Source | Spike |            |           |           |        | %   | % REC  | % RPD     |           |
|---------------------------------|-----------------------|--------|-------|------------|-----------|-----------|--------|-----|--------|-----------|-----------|
| Analyte                         | Seq/<br>Batc <u>h</u> | Result | Level | MRL        | MDL       | Units     | Result | REC | Limits | RPD Limit | Qualifier |
| Semivolatile Organics by GC/MS  | Datcii                | Nesun  | LUTU  |            |           | 01110     | Result |     | Liinw  |           |           |
| Blank Analyzed: 05/20/09 (9E110 | 87.BI K1)             |        |       |            |           |           |        |     |        |           |           |
| •                               | 9E11087               |        |       | 170        | 15        | ug/kg wet | ND     |     |        |           |           |
| 1,2,4,5-Tetrachlorobenzene      | 9E11087               |        |       | 320        | 4.7       | ug/kg wet | ND     |     |        |           |           |
| 1,2,4-Trichlorobenzene          | 9E11087               |        |       | 320        | 3.1       | ug/kg wet | ND     |     |        |           |           |
| 1,2-Dichlorobenzene             | 9E11087               |        |       | 320        | 39        | ug/kg wet | ND     |     |        |           |           |
| 1,2-Diphenylhydrazine           | 9E11087               |        |       | 320        | 13        | ug/kg wet | ND     |     |        |           |           |
| 1,3,5-Trinitrobenzene           | 9E11087               |        |       | 320        | 2.9       | ug/kg wet | ND     |     |        |           |           |
| 1,3-Dichlorobenzene             | 9E11087<br>9E11087    |        |       | 320        | 2.5<br>11 | ug/kg wet | ND     |     |        |           |           |
| 1,3-Dinitrobenzene              | 9E11087               |        |       | 320        | 2.2       | ug/kg wet | ND     |     |        |           |           |
| 1,4-Dichlorobenzene             | 9E11087<br>9E11087    |        |       | 320        | 320       | ug/kg wet | ND     |     |        |           |           |
| 1,4-Dinitrobenzene              | 9E11087<br>9E11087    |        |       | 320        | 36        | ug/kg wet | ND     |     |        |           |           |
| 1,4-Dioxane                     | 9E11087<br>9E11087    |        |       | 320        | 7.9       | ug/kg wet | ND     |     |        |           |           |
| 1,4-Naphthoquinone              |                       |        |       | 320        | 190       | -         | ND     |     |        |           |           |
| 1-Naphthylamine                 | 9E11087               |        |       | 320<br>170 | 190       | ug/kg wet | ND     |     |        |           |           |
| 2,3,4,6-Tetrachlorophenol       | 9E11087               |        |       | 640        | 170       | ug/kg wet | ND     |     |        |           |           |
| 1,4-Dihydroxyanthraquinone      | 9E11087               |        |       |            |           | ug/kg wet | ND     |     |        |           |           |
| 2,4,5-Trichlorophenol           | 9E11087               |        |       | 170        | 36        | ug/kg wet | ND     |     |        |           |           |
| 2,4,6-Trichlorophenol           | 9E11087               |        |       | 170        | 11        | ug/kg wet | ND     |     |        |           |           |
| 2,4-Dichlorophenol              | 9E11087               |        |       | 170        | 8.6       | ug/kg wet |        |     |        |           |           |
| 2,4-Dimethylphenol              | 9E11087               |        |       | 170        | 44        | ug/kg wet | ND     |     |        |           |           |
| 2,4-Dinitrophenol               | 9E11087               |        |       | 320        | 57        | ug/kg wet | ND     |     |        |           |           |
| 2,4-Dinitrotoluene              | 9E11087               |        |       | 170        | 25        | ug/kg wet | ND     |     |        |           |           |
| 1-Hydroxyanthraquinone          | 9E11087               |        |       | 640        | 240       | ug/kg wet | ND     |     |        |           |           |
| 2,6-Dichlorophenol              | 9E11087               |        |       | 320        | 320       | ug/kg wet | ND     |     |        |           |           |
| 2,6-Dinitrotoluene              | 9E11087               |        |       | 170        | 40        | ug/kg wet | ND     |     |        |           |           |
| 2-Acetylaminofluorene           | 9E11087               |        |       | 320        | 19        | ug/kg wet | ND     |     |        |           |           |
| 2-Chloronaphthalene             | 9E11087               |        |       | 170        | 11        | ug/kg wet | ND     |     |        |           |           |
| 2-Chlorophenol                  | 9E11087               |        |       | 170        | 8.3       | ug/kg wet | ND     |     |        |           |           |
| 2-Methylnaphthalene             | 9E11087               |        |       | 170        | 2.0       | ug/kg wet | ND     |     |        |           |           |
| 2-Methylphenol                  | 9E11087               |        |       | 170        | 5.0       | ug/kg wet | ND     |     |        |           |           |
| 2-Naphthylamine                 | 9E11087               |        |       | 320        | 21        | ug/kg wet | ND     |     |        |           |           |
| 2-Nitroaniline                  | 9E11087               |        |       | 320        | 53        | ug/kg wet | ND     |     |        |           |           |
| 2-Nitrophenol                   | 9E11087               |        |       | 170        | 7.5       | ug/kg wet | ND     |     |        |           |           |
| 2-Picoline                      | 9E11087               |        |       | 320        | 320       | ug/kg wet | ND     |     |        |           |           |
| 2-Toluidine                     | 9E11087               |        |       | 320        | 67        | ug/kg wet | ND     |     |        |           |           |
| 3 & 4 Methylphenol              | 9E11087               |        |       | 320        | 9.1       | ug/kg wet | ND     |     |        |           |           |
| 3,3'-Dichlorobenzidine          | 9E11087               |        |       | 170        | 140       | ug/kg wet | ND     |     |        |           |           |
| 3,3'-Dimethylbenzidine          | 9E11087               |        |       | 320        | 40        | ug/kg wet | ND     |     |        |           |           |
| 2-Chloroaniline                 | 9E11087               |        |       | 320        | 29        | ug/kg wet | ND     |     |        |           |           |
| 3-Methylcholanthrene            | 9E11087               |        |       | 320        | 29        | ug/kg wet | ND     |     |        |           |           |
| 3-Nitroaniline                  | 9E11087               |        |       | 320        | 38        | ug/kg wet | ND     |     |        |           |           |
| 4,6-Dinitro-2-methylphenol      | 9E11087               |        |       | 320        | 57        | ug/kg wet | ND     |     |        |           |           |
| 4-Aminobiphenyl                 | 9E11087               |        |       | 320        | 16        | ug/kg wet | ND     |     |        |           |           |
| 4-Bromophenyl phenyl ether      | 9E11087               |        |       | 170        | 52        | ug/kg wet | ND     |     |        |           |           |
| 4-Chloro-3-methylphenol         | 9E11087               |        |       | 170        | 6.7       | ug/kg wet | ND     |     |        |           |           |
| 4-Chloroaniline                 | 9E11087               |        |       | 170        | 48        | ug/kg wet | ND     |     |        |           |           |
| 4-Chlorophenyl phenyl ether     | 9E11087               |        |       | 170        | 3.5       | ug/kg wet | ND     |     |        |           |           |
|                                 |                       |        |       |            |           |           |        |     |        |           |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

### LABORATORY QC DATA

|                                           | Seq/    | Source | Spike<br>Level | MRL  | MDL  | ( Incides | Decult | %<br>REC   | % REC<br>Limits | %<br>RPN | RPD<br>Limit | Qualifier |
|-------------------------------------------|---------|--------|----------------|------|------|-----------|--------|------------|-----------------|----------|--------------|-----------|
| Analyte<br>Semivolatile Organics by GC/MS | Batch   | Result | Level          |      |      | Units     | Result | <u>NLU</u> | Linita          |          | LIIIIL       | Qualifier |
|                                           |         |        |                |      |      |           |        |            |                 |          |              |           |
| Blank Analyzed: 05/20/09 (9E110)          |         |        |                |      |      |           | ND     |            |                 |          |              |           |
| 4-Nitroaniline                            | 9E11087 |        |                | 320  | 18   | ug/kg wet | ND     |            |                 |          |              |           |
| 4-Nitrophenol                             | 9E11087 |        |                | 320  | 40   | ug/kg wet | ND     |            |                 |          |              |           |
| 4-Nitroquinoline-1-oxide                  | 9E11087 |        |                | 640  | 640  | ug/kg wet | ND     |            |                 |          |              |           |
| 7,12-Dimethylbenz[a]anthracene            | 9E11087 |        |                | 320  | 17   | ug/kg wet | ND     |            |                 |          |              |           |
| a,a-Dimethylphenethylamine                | 9E11087 |        |                | 320  | 320  | ug/kg wet | ND     |            |                 |          |              |           |
| Acenaphthene                              | 9E11087 |        |                | 170  | 1.9  | ug/kg wet | ND     |            |                 |          |              |           |
| Acenaphthylene                            | 9E11087 |        |                | 170  | 1.3  | ug/kg wet | ND     |            |                 |          |              |           |
| Acetophenone                              | 9E11087 |        |                | 170  | 8.4  | ug/kg wet | ND     |            |                 |          |              |           |
| Aniline                                   | 9E11087 |        |                | 320  | 90   | ug/kg wet | ND     |            |                 |          |              |           |
| Anthracene                                | 9E11087 |        |                | 170  | 4.2  | ug/kg wet | ND     |            |                 |          |              |           |
| Aramite                                   | 9E11087 |        |                | 320  | 320  | ug/kg wet | ND     |            |                 |          |              |           |
| Atrazine                                  | 9E11087 |        |                | 170  | 7.3  | ug/kg wet | ND     |            |                 |          |              |           |
| Benzaldehyde                              | 9E11087 |        |                | 170  | 18   | ug/kg wet | ND     |            |                 |          |              |           |
| Benzidine                                 | 9E11087 |        |                | 4900 | 2100 | ug/kg wet | ND     |            |                 |          |              |           |
| Benzo[a]anthracene                        | 9E11087 |        |                | 170  | 2.8  | ug/kg wet | ND     |            |                 |          |              |           |
| Benzo[a]pyrene                            | 9E11087 |        |                | 170  | 4.0  | ug/kg wet | ND     |            |                 |          |              |           |
| Benzo[b]fluoranthene                      | 9E11087 |        |                | 170  | 3.2  | ug/kg wet | ND     |            |                 |          |              |           |
| Benzo[g,h,i]perylene                      | 9E11087 |        |                | 170  | 2.0  | ug/kg wet | ND     |            |                 |          |              |           |
| Benzo[k]fluoranthene                      | 9E11087 |        |                | 170  | 1.8  | ug/kg wet | ND     |            |                 |          |              |           |
| Benzoic acid                              | 9E11087 |        |                | 4700 | 240  | ug/kg wet | ND     |            |                 |          |              |           |
| Benzyl alcohol                            | 9E11087 |        |                | 320  | 7.8  | ug/kg wet | ND     |            |                 |          |              |           |
| Biphenyl                                  | 9E11087 |        |                | 170  | 10   | ug/kg wet | ND     |            |                 |          |              |           |
| Bis(2-chloroethoxy)methane                | 9E11087 |        |                | 170  | 8.9  | ug/kg wet | ND     |            |                 |          |              |           |
| Bis(2-chloroethyl)ether                   | 9E11087 |        |                | 170  | 14   | ug/kg wet | NÐ     |            |                 |          |              |           |
| Bis(2-chloroisopropyl) ether              | 9E11087 |        |                | 170  | 17   | ug/kg wet | ND     |            |                 |          |              |           |
| 9-Octadecenamide                          | 9E11087 |        |                | 3200 | 790  | ug/kg wet | ND     |            |                 |          |              |           |
| Bis(2-ethylhexyl) phthalate               | 9E11087 |        |                | 170  | 53   | ug/kg wet | ND     |            |                 |          |              |           |
| Butyl benzyl phthalate                    | 9E11087 |        |                | 170  | 44   | ug/kg wet | ND     |            |                 |          |              |           |
| Caprolactam                               | 9E11087 |        |                | 170  | 71   | ug/kg wet | ND     |            |                 |          |              |           |
| Carbazole                                 | 9E11087 |        |                | 170  | 1.9  | ug/kg wet | ND     |            |                 |          |              |           |
| Chlorobenzilate                           | 9E11087 |        |                | 320  | 16   | ug/kg wet | ND     |            |                 |          |              |           |
| Chrysene                                  | 9E11087 |        |                | 170  | 1.6  | ug/kg wet | ND     |            |                 |          |              |           |
| Diallate                                  | 9E11087 |        |                | 320  | 8.6  | ug/kg wet | ND     |            |                 |          |              |           |
| Dibenz[a,h]anthracene                     | 9E11087 |        |                | 170  | 1.9  | ug/kg wet | ND     |            |                 |          |              |           |
| Anthraquinone                             | 9E11087 |        |                | 320  | 150  | ug/kg wet | ND     |            |                 |          |              |           |
| Dibenzo[a,e]pyrene                        | 9E11087 |        |                | 320  | 320  | ug/kg wet | ND     |            |                 |          |              |           |
| Dibenzofuran                              | 9E11087 |        |                | 170  | 1.7  | ug/kg wet | ND     |            |                 |          |              |           |
| Diethyl phthalate                         | 9E11087 |        |                | 170  | 5.0  | ug/kg wet | ND     |            |                 |          |              |           |
| Dimethoate                                | 9E11087 |        |                | 320  | 11   | ug/kg wet | ND     |            |                 |          |              |           |
| Dimethyl phthalate                        | 9E11087 |        |                | 170  | 4.3  | ug/kg wet | ND     |            |                 |          |              |           |
| Di-n-butyl phthalate                      | 9E11087 |        |                | 170  | 57   | ug/kg wet | ND     |            |                 |          |              |           |
| Di-n-octyl phthalate                      | 9E11087 |        |                | 170  | 3.8  | ug/kg wet | ND     |            |                 |          |              |           |
| Dinoseb                                   | 9E11087 |        |                | 320  | 320  | ug/kg wet | ND     |            |                 |          |              |           |
| Diphenylamine                             | 9E11087 |        |                | 320  | 320  | ug/kg wet | ND     |            |                 |          |              |           |
| Disulfoton                                | 9E11087 |        |                | 320  | 12   | ug/kg wet | ND     |            |                 |          |              |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

### LABORATORY QC DATA

|                                                    | Seq/               | Source | Spike |      |      |           |        | %   | % REC  | % RPD            |           |
|----------------------------------------------------|--------------------|--------|-------|------|------|-----------|--------|-----|--------|------------------|-----------|
| Analyte                                            | Batch              | Result | Level | MRL  | MDL  | Units     | Result | REC | Limits | <b>RPD</b> Limit | Qualifier |
| Semivolatile Organics by GC/MS                     |                    |        |       |      |      |           |        |     |        |                  |           |
| Blank Analyzed: 05/20/09 (9E110                    | 87-BLK1)           |        |       |      |      |           |        |     |        |                  |           |
| Ethyl Methanesulfonate                             | 9E11087            |        |       | 320  | 45   | ug/kg wet | ND     |     |        |                  |           |
| Famphur                                            | 9E11087            |        |       | 640  | 30   | ug/kg wet | ND     |     |        |                  |           |
| Fluoranthene                                       | 9E11087            |        |       | 170  | 2.4  | ug/kg wet | ND     |     |        |                  |           |
| Fluorene                                           | 9E11087            |        |       | 170  | 3.8  | ug/kg wet | ND     |     |        |                  |           |
| Hexachlorobenzene                                  | 9E11087            |        |       | 170  | 8.1  | ug/kg wet | ND     |     |        |                  |           |
| Hexachlorobutadiene                                | 9E11087            |        |       | 170  | 8.4  | ug/kg wet | ND     |     |        |                  |           |
| Hexachlorocyclopentadiene                          | 9E11087            |        |       | 170  | 50   | ug/kg wet | ND     |     |        |                  |           |
| Hexachloroethane                                   | 9E11087            |        |       | 170  | 13   | ug/kg wet | ND     |     |        |                  |           |
| Hexachlorophene                                    | 9E11087            |        |       | 3200 | 3200 | ug/kg wet | ND     |     |        |                  |           |
| Hexachloropropene                                  | 9E11087            |        |       | 320  | 19   | ug/kg wet | ND     |     |        |                  |           |
| Indeno[1,2,3-cd]pyrene                             | 9E11087            |        |       | 170  | 4.5  | ug/kg wet | ND     |     |        |                  |           |
| Isodrin                                            | 9E11087            |        |       | 320  | 30   | ug/kg wet | ND     |     |        |                  |           |
| Isophorone                                         | 9E11087            |        |       | 170  | 8.2  | ug/kg wet | ND     |     |        |                  |           |
| Isosafrole                                         | 9E11087            |        |       | 320  | 26   | ug/kg wet | ND     |     |        |                  |           |
| Kepone                                             | 9E11087            |        |       | 640  | 48   | ug/kg wet | ND     |     |        |                  |           |
| Methapyrilene                                      | 9E11087            |        |       | 1500 | 970  | ug/kg wet | ND     |     |        |                  |           |
| Methyl Methanesulfonate                            | 9E11087            |        |       | 320  | 100  | ug/kg wet | ND     |     |        |                  |           |
| N,N-Dimethyl Formamide                             | 9E11087            |        |       | 640  | 210  | ug/kg wet | ND     |     |        |                  |           |
| Naphthalene                                        | 9E11087            |        |       | 170  | 2.7  | ug/kg wet | ND     |     |        |                  |           |
| Nitrobenzene                                       | 9E11087            |        |       | 170  | 7.3  | ug/kg wet | ND     |     |        |                  |           |
| NNitro-o-toluidine                                 | 9E11087            |        |       | 320  | 21   | ug/kg wet | ND     |     |        |                  |           |
| N-Nitrosodiethylamine                              | 9E11087            |        |       | 320  | 31   | ug/kg wet | ND     |     |        |                  |           |
| N-Nitrosodimethylamine                             | 9E11087            |        |       | 320  | 12   | ug/kg wet | ND     |     |        |                  |           |
| N-Nitrosodi-n-butylamine                           | 9E11087            |        |       | 320  | 24   | ug/kg wet | ND     |     |        |                  |           |
| N-Nitrosodi-n-propylamine                          | 9E11087            |        |       | 170  | 13   | ug/kg wet | ND     |     |        |                  |           |
| N-Nitrosodiphenylamine                             | 9E11087            |        |       | 170  | 9.0  | ug/kg wet | ND     |     |        |                  | L         |
| N-Nitrosomethylethylamine                          | 9E11087            |        |       | 320  | 31   | ug/kg wet | ND     |     |        |                  |           |
| N-Nitrosomorpholine                                | 9E11087            |        |       | 320  | 320  | ug/kg wet | ND     |     |        |                  |           |
|                                                    | 9E11087            |        |       | 320  | 44   | ug/kg wet | ND     |     |        |                  |           |
| N-Nitrosopiperidine                                | 9E11087            |        |       | 320  | 24   | ug/kg wet | ND     |     |        |                  |           |
| N-Nitrosopyrrolidine                               | 9E11087            |        |       | 320  | 11   | ug/kg wet | ND     |     |        |                  |           |
| 0,0,0-Triethyl phosphorothioate<br>Parathion-ethyl | 9E11087            |        |       | 320  | 8.9  | ug/kg wet | ND     |     |        |                  |           |
| •                                                  | 9E11087            |        |       | 320  | 12   | ug/kg wet | ND     |     |        |                  |           |
| Parathion-methyl<br>p-Dimethylamino azobenzene     | 9E11087            |        |       | 320  | 33   | ug/kg wet | ND     |     |        |                  |           |
|                                                    | 9E11087            |        |       | 320  | 38   | ug/kg wet | ND     |     |        |                  |           |
| Pentachlorobenzene                                 | 9E11087            |        |       | 320  | 33   | ug/kg wet | ND     |     |        |                  |           |
| Pentachloronitrobenzene                            | 9E11087            |        |       | 320  | 56   | ug/kg wet | ND     |     |        |                  |           |
| Pentachiorophenol                                  | 9E11087            |        |       | 320  | 27   | ug/kg wet | ND     |     |        |                  |           |
| Phenacetin                                         | 9E11087            |        |       | 170  | 3.4  | ug/kg wet | ND     |     |        |                  |           |
| Phenanthrene                                       | 9E11087            |        |       | 170  | 17   | ug/kg wet | ND     |     |        |                  |           |
| Phenol                                             | 9E11087            |        |       | 320  | 65   | ug/kg wet | ND     |     |        |                  |           |
| Phorate                                            | 9E11087            |        |       | 9700 | 750  | ug/kg wet | ND     |     |        |                  |           |
| Phthalic anhydride                                 | 9E11087            |        |       | 780  | 190  | ug/kg wet | ND     |     |        |                  |           |
| p-Phenylene diamine                                | 9E11087            |        |       | 320  | 7.5  | ug/kg wet | ND     |     |        |                  |           |
| Pronamide                                          | 9E11087<br>9E11087 |        |       | 170  | 1.1  | ug/kg wet | ND     |     |        |                  |           |
| Pyrene                                             | 3E 11007           |        |       |      | 1.1  | aging wer |        |     |        |                  |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| and the second s |              |                  | LA             | BORAT | ORY QC | DATA      | <u></u>  |          | 141-4           | -                  |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|----------------|-------|--------|-----------|----------|----------|-----------------|--------------------|-----------|
| Analista                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Seq/         | Source<br>Result | Spike<br>Level | MRL   | MDL    | Units     | Result   | %<br>REC | % REC<br>Limits | % RPD<br>RPD Limit | Qualifier |
| Analyte<br>Semivolatile Organics by GC/M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>Batch</u> | Result           | 20101          |       |        | 011103    | Result   |          | Linito          |                    | Quanton   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _            |                  |                |       |        |           |          |          |                 |                    |           |
| Blank Analyzed: 05/20/09 (9E11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                  |                | 200   | 02     | ua/ka wat | ND       |          |                 |                    |           |
| Pyridine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9E11087      |                  |                | 320   | 92     | ug/kg wet | ND<br>ND |          |                 |                    |           |
| Quinoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9E11087      |                  |                | 320   | 52     | ug/kg wet | ND       |          |                 |                    |           |
| Safrole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9E11087      |                  |                | 320   | 18     | ug/kg wet | ND       |          |                 |                    |           |
| Sulfotepp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9E11087      |                  |                | 320   | 320    | ug/kg wet |          |          |                 |                    |           |
| Tetraethyl lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9E11087      |                  |                | 970   | 160    | ug/kg wet | ND       |          |                 |                    |           |
| Thionazin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9E11087      |                  |                | 320   | 9.8    | ug/kg wet | ND       |          |                 |                    |           |
| Surrogate: 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                |       |        | ug/kg wet |          | 91       | 39-146          |                    |           |
| Surrogate: 2-Fluorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                  |                |       |        | ug/kg wet |          | 94       | 37-120          |                    |           |
| Surrogate: 2-Fluorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                  |                |       |        | ug/kg wet |          | 79       | 18-120          |                    |           |
| Surrogate: Nitrobenzene-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                |       |        | ug/kg wet |          | 87       | 34-132          |                    |           |
| Surrogate: Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                  |                |       |        | ug/kg wet |          | 85       | 11-120          |                    |           |
| Surrogate: p-Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                |       |        | ug/kg wet |          | 95       | 58-147          |                    |           |
| LCS Analyzed: 05/20/09 (9E110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87-BS1)      |                  |                |       |        |           |          |          |                 |                    |           |
| 1,2,4,5-Tetrachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9E11087      |                  | 3300           | 170   | 15     | ug/kg wet | 2950     | 89       | 0-200           |                    |           |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9E11087      |                  | 3300           | 330   | 4.8    | ug/kg wet | 2570     | 78       | 39-120          |                    |           |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9E11087      |                  | 3300           | 330   | 3.2    | ug/kg wet | 2370     | 72       | 18-120          |                    |           |
| 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9E11087      |                  |                | 330   | 40     | ug/kg wet | 3190     |          | 0-200           |                    |           |
| 1,3,5-Trinitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9E11087      |                  |                | 330   | 14     | ug/kg wet | ND       |          | 0-200           |                    |           |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9E11087      |                  | 3300           | 330   | 3.0    | ug/kg wet | 2400     | 72       | 14-120          |                    |           |
| 1,3-Dinitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9E11087      |                  | 3300           | 330   | 11     | ug/kg wet | ND       |          | 0-200           |                    |           |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9Ë11087      |                  | 3300           | 330   | 2.2    | ug/kg wet | 2430     | 73       | 34-120          |                    |           |
| 1,4-Dinitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9E11087      |                  | 3300           | 330   | 330    | ug/kg wet | ND       |          | 0-200           |                    |           |
| 1,4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9E11087      |                  | 3300           | 330   | 37     | ug/kg wet | ND       |          | 0-200           |                    |           |
| 1,4-Naphthoquinone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9E11087      |                  |                | 330   | 8.1    | ug/kg wet | ND       |          | 0-200           |                    |           |
| 1-Naphthylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9E11087      |                  |                | 330   | 200    | ug/kg wet | ND       |          | 0-200           |                    |           |
| 2,3,4,6-Tetrachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9E11087      |                  | 3300           | 170   | 170    | ug/kg wet | 3270     | 99       | 0-200           |                    |           |
| 1,4-Dihydroxyanthraquinone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9E11087      |                  |                | 660   | 110    | ug/kg wet | ND       |          | 0-200           |                    |           |
| 2,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9E11087      |                  | 3300           | 170   | 37     | ug/kg wet | 3120     | 94       | 59-126          |                    |           |
| 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9E11087      |                  | 3300           | 170   | 11     | ug/kg wet | 2900     | 87       | 59-123          |                    |           |
| 2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9E11087      |                  | 3300           | 170   | 8.8    | ug/kg wet | 2720     | 82       | 52-120          |                    |           |
| 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9E11087      |                  | 3300           | 170   | 45     | ug/kg wet | 2810     | 85       | 36-120          |                    |           |
| 2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9E11087      |                  | 3300           | 330   | 59     | ug/kg wet | 2670     | 80       | 35-146          |                    |           |
| 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9E11087      |                  | 3300           | 170   | 26     | ug/kg wet | 3350     | 101      | 55-125          |                    |           |
| 1-Hydroxyanthraquinone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9E11087      |                  |                | 660   | 250    | ug/kg wet | ND       |          | 0-200           |                    |           |
| 2,6-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9E11087      |                  |                | 330   | 330    | ug/kg wet | ND       |          | 0-200           |                    |           |
| 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9E11087      |                  | 3300           | 170   | 41     | ug/kg wet | 3160     | 95       | 66-128          |                    |           |
| 2-Acetylaminofluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9E11087      |                  |                | 330   | 19     | ug/kg wet | ND       |          | 0-200           |                    |           |
| 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9E11087      |                  | 3300           | 170   | 11     | ug/kg wet | 2870     | 86       | 57-120          |                    |           |
| 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9E11087      |                  | 3300           | 170   | 8.5    | ug/kg wet | 2530     | 76       | 38-120          |                    |           |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9E11087      |                  | 3300           | 170   | 2.0    | ug/kg wet | 2950     | 89       | 47-120          |                    |           |
| 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9E11087      |                  | 3300           | 170   | 5.2    | ug/kg wet | 2950     | 89       | 48-120          |                    |           |
| 2-Naphthylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9E11087      |                  |                | 330   | 22     | ug/kg wet | ND       |          | 0-200           |                    |           |
| 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9E11087      |                  | 3300           | 330   | 54     | ug/kg wet | 3180     | 96       | 61-130          |                    |           |
| 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9E11087      |                  | 3300           | 170   | 7.7    | ug/kg wet | 2680     | 81       | 50-120          |                    |           |
| 2-Picoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9E11087      |                  |                | 330   | 330    | ug/kg wet | ND       |          | 0-200           |                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                |       |        |           |          |          |                 |                    |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| Aminotatila Organics by GCMS         Data           LCS Analyzad: 05/2009 (0E11087-DS1)         330         69         upfrg wit         ND         0-200           2 Totudine         0E11087         3300         150         upfrg wit         ND         0-200           3.3 Ochthorbenzidine         9E11087         3300         170         150         upfrg wit         ND         0-200           2-Choroaniline         9E11087         330         29         upfrg wit         ND         0-200           2-Choroaniline         9E11087         3300         330         39         upfrg wit         ND         0-200           2-Choroaniline         9E11087         3300         330         39         upfrg wit         ND         0-200           2-Choroaniline         9E11087         3300         10         upfrg wit         ND         0-200           4-Choroaniline         9E11087         3300         170         53         upfrg wit         ND         0-200           4-Choroaniline         9E11087         3300         170         48         upfrg wit         3100         90         49-125           4-Choroaniline         9E11087         3300         170         48 <t< th=""><th></th><th></th><th></th><th>LA</th><th>BORAT</th><th></th><th>DATA</th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |          |        | LA    | BORAT |      | DATA      |        |     |        |           |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|--------|-------|-------|------|-----------|--------|-----|--------|-----------|-----------|
| Semitroiatile Orsanics by GCMS           LCS Analyzed: 5/2009 (BE11087-B51)           2-Toluidine         9E11087         330         69         up/ng wet         ND         0-200           3.4 Methylphenol         9E11087         3300         130         8.4         up/ng wet         2900         67         60-119           3.7-Dinethylbenizdine         9E11087         330         20         up/ng wet         ND         0-200           2-Charoannine         9E11087         330         30         up/ng wet         ND         0-200           3-Methylphanol         9E11087         3300         330         39         up/ng wet         ND         0-200           3-Methylphanol         9E11087         3300         30         39         up/ng wet         ND         0-200           4-Charoanthylphanol         9E11087         3300         170         5.9         up/ng wet         ND         0-200           4-Charoanthylphanol         9E11087         3300         170         48         up/ng wet         ND         0-200           4-Charoanthylphanol         9E11087         3300         170         48         up/ng wet         3100         99         49-120           4-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | Seq/     | Source | -     |       |      |           |        |     |        |           |           |
| Lick Analyzed: 05/20/09 (0E11087-BS1)         330         69         up/kg wet         8.0         -0.200           3.1 Methylphenid         9E11087         330         1.4         up/kg wet         2500         77         46-126           3.3 - Dichkorobenzidine         9E11087         3300         170         150         up/kg wet         2500         77         46-126           3.3 - Oinchronine         9E11087         330         30         up/kg wet         ND         -0.200           3.4 Methylphenid         9E11087         330         30         up/kg wet         ND         -0.200           3.4 Methylphenid         9E11087         3300         330         up/kg wet         400         0         0.200           3.4 Methylphenid         9E11087         3300         330         160         up/kg wet         3100         44         86-131           4.5 Christrylphenid         9E11087         3300         170         4.5         up/kg wet         220         85         63-128           4.4 Christrylphenid         9E11087         3300         170         4.6         up/kg wet         8100         9.200           7.1 Zohnethylphenid         9E11087         3300         170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |          | Result | Level | MRL   | MDL  | Units     | Result | REC | Limits | RPD Limit | Qualifier |
| 2-Tolukine         9E11067         330         330         94         Up/Say wet         2500         77           3 A Methyphenci         9E11067         3300         330         94         Up/Say wet         2500         77         48-126           3, 3-Dinktorbencime         9E11067         330         40         Up/Say wet         2500         77         48-126           3, 3-Dinktorbencime         9E11067         330         20         Up/Say wet         2500         77         48-126           2-Chloraniline         9E11087         330         330         Up/Say wet         3400         103         48-155           3-Altroaniline         9E11087         3300         170         53         Up/Say wet         310         93         48-155           4-Aminobyhenyl         9E11087         3300         170         48         Up/Say wet         210         94         49         49         49         49         49         49         49         49         49         49         40         40         49         49         49         49         49         49         40         40         49         49         49         49         49         49 <td< td=""><td>Semivolatile Organics by GC/M</td><td><u>S</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Semivolatile Organics by GC/M         | <u>S</u> |        |       |       |      |           |        |     |        |           |           |
| 2 - Joudney         N - Joudney         2 - Joudney         N - Joudney         N - Joudney         2 - Joudney         N - Joudney         N - Joudney         N - Joudney         2 - Joudney         N - Joudney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LCS Analyzed: 05/20/09 (9E110         | 87-BS1)  |        |       |       |      |           |        |     |        |           |           |
| 3 A Methyphenol         E11087         330         170         150         upk wet         2550         77         48-128           3.3-Dichtrobeniziene         E511067         330         40         upk wet         ND         0-200           3.3-Dichtrobeniziene         E511087         330         30         upk wet         ND         0-200           3-Mitroanline         E511087         330         330         upk wet         120         41         53-10           4-Animolophenyi         E511087         330         330         upk wet         130         43         49-155           4-Chitoro-Amethyphenol         E511087         330         170         43         upk wet         130         43         49-155           4-Chitoro-Smethyphenol         E511087         330         170         43         upk wet         230         44         450         44-15           4-Chitoro-Smethyphenol         E511087         330         170         36         upk wet         250         46         63-124           4-Chitoro-Smethyphenol         E511087         330         170         upk upk wet         310         97         4.13           A-Nitrobenitybhenol         E511087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-Toluidine                           | 9E11087  |        |       | 330   | 69   | ug/kg wet | ND     |     | 0-200  |           |           |
| 3Denktybendingene         Bin and a stress         Bar and a stress         Bar and a stress         Bar and a stress         Bar and a stress           2-Chioronaline         9E11087         330         29         up/kg wet         ND         0-200           3-Mitrybichantone         9E11087         330         30         up/kg wet         2820         85         61-127           3-Mitrybichantone         9E11087         330         30         up/kg wet         310         40         4500           4-Chioro-Smethylphenol         9E11087         3300         170         53         up/kg wet         3100         49         48-151           4-Chioro-Smethylphenol         9E11087         3300         170         49         up/kg wet         3100         49         49-125           4-Chioro-Smethylphenol         9E11087         3300         170         49         up/kg wet         3140         95         63-124           4-Mitropulnine-forwal         9E11087         300         300         170         up/kg wet         3140         95         63-124           4-Mitropulnine-forwal         9E11087         300         170         1.4         up/kg wet         3140         95         63-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 & 4 Methylphenol                    | 9E11087  |        | 3300  | 330   | 9.4  | ug/kg wet | 2900   | 87  | 50-119 |           |           |
| 3.4.0.methylentizitation         9         up/kg wet         ND         0-200           3.Methylichlanithrene         9E11087         330         30         up/kg wet         ND         0-200           3.Methylichlanithrene         9E11087         3300         330         up/kg wet         2820         8.85         61-127           3.Methylichlanithrene         9E11087         3300         330         58         up/kg wet         3400         10.3         49-155           4.Arimobipheryl         9E11087         3300         170         6.9         up/kg wet         320         9.4         68-131           4.Choros-methylphenol         9E11087         3300         170         6.9         up/kg wet         280         78         49-125           4.Chorosherylphenyl ether         9E11087         3300         170         3.8         up/kg wet         340         9E         63-128           4.Nitrophenol         9E11087         3300         170         3.8         up/kg wet         340         9E         63-128           4.Nitrophenol         9E11087         3300         170         1.4         up/kg wet         340         9E         45-120           A.Leophenorhe         9E11087<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,3'-Dichlorobenzidine                | 9E11087  |        | 3300  | 170   | 150  | ug/kg wet | 2550   | 77  | 48-126 |           |           |
| C-International between the set of the set | 3,3'-Dimethylbenzidine                | 9E11087  |        |       | 330   | 40   | ug/kg wet | ND     |     | 0-200  |           |           |
| Avertypicholaminene         BET1067         330         330         381         up/kg wet         2820         65         61-127           4.Comolenyiphenyi         BET1067         330         330         58         up/kg wet         ND         0.200           4.Aminobjhenyi         BET1067         3300         170         6.3         up/kg wet         3120         94         68-131           4.Chinoca-methylphenol         BET1067         3300         170         6.9         up/kg wet         2820         68         63-124           4.Chinoca-methylphenol         BET1067         3300         170         3.6         up/kg wet         2820         68         63-128           4.Chinoca-methylphenol         BET1067         3300         170         3.6         up/kg wet         320         68         43-137           4.Nitropulnoine-1-oxide         BET1067         3300         170         Up/kg wet         310         920         65-128           A.Nitropulnoine-1-oxide         BET1067         3300         170         2.0         up/kg wet         310         92         56-121           A.Chinophinene         SET1067         3300         170         2.0         up/kg wet         3100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-Chloroaniline                       | 9E11087  |        |       | 330   | 29   | ug/kg wet | ND     |     | 0-200  |           |           |
| A-Intradumine         B-Intra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-Methylcholanthrene                  | 9E11087  |        |       | 330   | 30   | ug/kg wet | ND     |     | 0-200  |           |           |
| A.D.Intro.2-metrylonetion         Entrol         Solution         Gas and the second                            | 3-Nitroaniline                        | 9E11087  |        | 3300  | 330   | 39   | ug/kg wet | 2820   | 85  |        |           |           |
| Hammongenerity         Beff 1067         3300         170         6.3         ug/kg wet         3120         94         58-131           4-Chronopengrip henyl ether         Beff 1067         3300         170         6.9         ug/kg wet         3100         93         49-125           4-Chronopengrip henyl ether         Beff 1067         3300         170         3.6         ug/kg wet         2820         88         63-124           4-Chronopengrip henyl ether         Beff 1067         3300         330         19         ug/kg wet         3140         95         63-124           4-Nitrophenol         Beff 1067         3300         330         17         ug/kg wet         3140         95         63-124           4-Nitrophenol         Beff 1067         3300         170         ug/kg wet         ND         0-200           A-Nitrophenol         Beff 1067         3300         170         1.4         ug/kg wet         301         91         53-120           Acenaphthylene         Beff 1067         3300         170         1.4         ug/kg wet         304         92         58-121           Acenaphthylene         Beff 1067         3300         170         1.8         ug/kg wet         3130<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,6-Dinitro-2-methylphenol            | 9E11087  |        | 3300  | 330   | 58   | ug/kg wet | 3400   | 103 | 49-155 |           |           |
| Homomeny preny breny breny         Bit nor         3300         170         6.9         ugkg wet         3100         93         49-125           4 Chloro-antiline         9E11087         3300         170         36         ugkg wet         2630         79         45-120           4 Chloro-antiline         9E11087         3300         170         36         ugkg wet         2630         78         45-120           4 Chloro-antiline         9E11087         3300         30         19         ugkg wet         3140         95         63-128           4 Nitrophenol         9E11087         3300         30         19         ugkg wet         ND         0-200           7,12-Dimethylbenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphenethylphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-Aminobiphenyl                       | 9E11087  |        |       | 330   | 16   | ug/kg wet | ND     |     | 0-200  |           |           |
| 4-Chloro-3-methylphenol         9E11087         3300         170         6.9         up/kg wet         2100         93         49-125           4-Chloroshamine         9E11087         3300         170         3.8         ug/kg wet         2830         78         63-124           4-Nitropaniline         9E11087         3300         330         11         ug/kg wet         3140         95         63-124           4-Nitropaniline-1-oxide         9E11087         330         330         11         ug/kg wet         ND         -0.200           a.e-Dimothylbenz[a]athtracene         9E11087         330         170         ug/kg wet         ND         -0.200           Acenaphthene         9E11087         3300         170         2.0         ug/kg wet         ND         -0.200           Acenaphthene         9E11087         3300         170         1.4         ug/kg wet         304         92         53-120           Acenaphthene         9E11087         3300         170         1.4         ug/kg wet         304         64-120           Acenaphthene         9E11087         3300         170         4.3         ug/kg wet         110         52         52-120           Anithracene </td <td></td> <td>9E11087</td> <td></td> <td>3300</td> <td>170</td> <td>53</td> <td>ug/kg wet</td> <td>3120</td> <td>94</td> <td>58-131</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 9E11087  |        | 3300  | 170   | 53   | ug/kg wet | 3120   | 94  | 58-131 |           |           |
| 4-Chlorosenilline         9E11087         3300         170         49         ug/kg wet         2830         79         49-120           4-Chlorophenyl phenyl eher         9E11087         3300         170         3.6         ug/kg wet         2920         88         63-124           4-Nitroophenyl phenyl eher         9E11087         3300         330         41         ug/kg wet         3250         98         43-137           4-Nitroophenol         9E11087         3300         330         41         ug/kg wet         ND         0-200           7,12-Dimethylbenethylamine         9E11087         3300         170         2.0         ug/kg wet         304         91         53-120           Acenaphthylene         9E11087         3300         170         8.6         ug/kg wet         2810         66-120           Acenaphthylene         9E11087         3300         170         8.6         ug/kg wet         280         86         45-120           Acenaphthylene         9E11087         3300         170         7.5         ug/kg wet         280         86         73-133           Aratine         9E11087         3300         170         7.5         ug/kg wet         810         65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 9E11087  |        | 3300  | 170   | 6.9  | ug/kg wet | 3100   | 93  | 49-125 |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 9E11087  |        | 3300  | 170   | 49   | ug/kg wet | 2630   | 79  | 49-120 |           |           |
| 4-Nitroaniline         9E 11087         3300         330         19         ug/kg weit         3140         95         63-128           4-Nitropanlonine-1-oxide         9E11087         3300         330         41         ug/kg weit         ND         0-200           4-Nitropanlonine-1-oxide         9E11087         330         17         ug/kg weit         ND         0-200           a,a-Dimethylphenethylannine         9E11087         3300         170         2.0         ug/kg weit         ND         0-200           Acenaphthylene         9E11087         3300         170         2.0         ug/kg weit         3040         91         53-120           Acenaphthylene         9E11087         3300         170         8.6         ug/kg weit         240         86         45-120           Acenaphthylene         9E11087         3300         170         4.3         ug/kg weit         3130         94         62-129           Anthracene         9E11087         3300         170         7.5         ug/kg weit         3130         94         62-129           Arazine         9E11087         3300         170         1.8         ug/kg weit         3130         96         65-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 9E11087  |        | 3300  | 170   | 3.6  | ug/kg wet | 2920   | 88  | 63-124 |           |           |
| 4-Nitroguinoline-1-oxide         5E11087         660         660         ug/kg wet         ND         0-200           7,12-Dimethylbenz[a]anthracene         9E11087         330         17         ug/kg wet         ND         0-200           a,e-Dimethylphenethylamine         9E11087         330         170         2,0         ug/kg wet         ND         0-200           Acenaphthene         9E11087         3300         170         2,0         ug/kg wet         3040         92         58-121           Acenaphthene         9E11087         3300         170         1.4         ug/kg wet         3040         92         58-121           Acenaphthylene         9E11087         3300         170         8.6         ug/kg wet         2840         86         45-120           Anthracene         9E11087         3300         170         7.5         ug/kg wet         130         94         62-129           Aramite         9E11087         300         170         7.5         ug/kg wet         ND         0-200           Atrazine         9E11087         300         170         2.9         ug/kg wet         170         95         65-133           Benzo[a]anthracene         9E11087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 9E11087  |        | 3300  | 330   | 19   | ug/kg wet | 3140   | 95  |        |           |           |
| Harding duration         Harding duration         Harding duration         Harding duration         ND         0-200           7,12-Dimethyleneltylamine         9E11087         330         330         ug/kg wet         ND         0-200           Acenaphthene         9E11087         3300         170         2.0         ug/kg wet         3010         91         53-120           Acenaphthene         9E11087         3300         170         1.4         ug/kg wet         3040         92         58-121           Acenaphthylene         9E11087         3300         170         4.3         ug/kg wet         2760         83         66-120           Anthracene         9E11087         3300         170         4.3         ug/kg wet         130         94         62-129           Aramite         9E11087         3300         170         7.5         ug/kg wet         ND         0-200           Arazine         9E11087         300         170         18         ug/kg wet         1810         55         21-120           Benzaldine         9E11087         300         170         2.9         ug/kg wet         330         100         64-133           Benzaldine         9E11087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-Nitrophenol                         | 9E11087  |        | 3300  | 330   | 41   | ug/kg wet | 3250   | 98  | 43-137 |           |           |
| 7,12-Dimethylbenz[ajanthracene       9E11087       330       17       ug/kg wet       ND       0-200         a.e-Dimethylphenethylamine       9E11087       330       170       2.0       ug/kg wet       ND       0.200         Acenaphthylene       9E11087       3300       170       2.0       ug/kg wet       304       92       58-121         Acenaphthylene       9E11087       3300       170       8.6       ug/kg wet       2760       83       66-120         Acenaphthylene       9E11087       3300       370       92       ug/kg wet       2760       83       66-120         Anthracene       9E11087       3300       170       4.3       ug/kg wet       2810       86       73-133         Aramite       9E11087       3300       170       7.5       ug/kg wet       1810       55       21-120         Aramite       9E11087       3300       170       18       ug/kg wet       1810       56       133         Benzolajnthracene       9E11087       300       170       4.0       ug/kg wet       3500       106       64-127         Benzolajnthracene       9E11087       300       170       2.9       ug/kg wet <td< td=""><td>4-Nitroquinoline-1-oxide</td><td>9E11087</td><td></td><td></td><td>660</td><td>660</td><td>ug/kg wet</td><td>ND</td><td></td><td>0-200</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-Nitroquinoline-1-oxide              | 9E11087  |        |       | 660   | 660  | ug/kg wet | ND     |     | 0-200  |           |           |
| a.eImetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphenetryphe   |                                       | 9E11087  |        |       | 330   | 17   | ug/kg wet | ND     |     | 0-200  |           |           |
| Accenaphthene         9E11087         3300         170         2.0         ug/kg wet         3010         91         53-120           Acenaphthylene         9E11087         3300         170         1.4         ug/kg wet         3040         92         58-121           Acenaphthylene         9E11087         3300         170         8.6         ug/kg wet         2760         83         66-120           Aniline         9E11087         3300         170         4.3         ug/kg wet         2760         83         66-120           Aniline         9E11087         3300         170         4.3         ug/kg wet         3130         94         62-129           Aramite         9E11087         3300         170         7.5         ug/kg wet         2860         86         73-133           Benzaldehyde         9E11087         3300         170         2.9         ug/kg wet         810         55         21-120           Benzolglaphracene         9E11087         3300         170         2.9         ug/kg wet         3170         96         65-133           Benzolglaphracene         9E11087         3300         170         2.0         ug/kg wet         3150         65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a.a-Dimethylphenethylamine            | 9E11087  |        |       | 330   | 330  | ug/kg wet | ND     |     | 0-200  |           |           |
| Accenaphthylene         9E11087         3300         170         1.4         ug/kg wet         3040         92         58-121           Acctophenone         9E11087         3300         170         8.6         ug/kg wet         2760         83         66-120           Aniline         9E11087         3300         170         4.3         ug/kg wet         2840         86         45-120           Anthracene         9E11087         3300         170         4.3         ug/kg wet         180         62-129           Aramite         9E11087         3300         170         7.5         ug/kg wet         1810         55         21-120           Aramite         9E11087         3300         170         18         ug/kg wet         170         96         65-133           Benzolglanthracene         9E11087         3300         170         2.9         ug/kg wet         3100         64-135           Benzolglanthracene         9E11087         3300         170         3.3         ug/kg wet         3150         65-133           Benzolglinyrene         9E11087         3300         170         1.8         ug/kg wet         3150         66-133           Benzolglinyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •••                                   | 9E11087  |        | 3300  | 170   | 2.0  | ug/kg wet | 3010   | 91  | 53-120 |           |           |
| Accephenone         9E11087         3300         170         8.6         ug/kg wet         2760         83         66-120           Aniline         9E11087         3300         330         92         ug/kg wet         2840         86         45-120           Aniline         9E11087         3300         170         4.3         ug/kg wet         3130         94         62-129           Aramite         9E11087         3300         170         7.5         ug/kg wet         86         73-133           Benzaldehyde         9E11087         3300         170         18         ug/kg wet         ND         20-120           Benzaldaphyde         9E11087         3300         170         2.9         ug/kg wet         3170         96         65-133           Benzolganthracene         9E11087         3300         170         4.0         ug/kg wet         3500         106         64-127           Benzolganthracene         9E11087         3300         170         1.8         ug/kg wet         3500         107         50-152           Benzolghitoranthene         9E11087         3300         170         1.8         ug/kg wet         350         50-152           Benzola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                     | 9E11087  |        | 3300  | 170   | 1.4  | ug/kg wet | 3040   | 92  | 58-121 |           |           |
| Aniline         9E11087         3300         330         92         ug/kg wet         2840         86         45-120           Anthracene         9E11087         3300         170         4.3         ug/kg wet         310         94         62-129           Aramite         9E11087         3300         170         4.3         ug/kg wet         ND         0-200           Aramite         9E11087         3300         170         7.5         ug/kg wet         1810         55         21-120           Benzaldehyde         9E11087         3300         170         2.9         ug/kg wet         3170         96         65-133           Benzolaphtracene         9E11087         3300         170         3.3         ug/kg wet         3500         106         64-127           Benzolaphtracene         9E11087         3300         170         3.3         ug/kg wet         3500         106         64-133           Benzolaphtracene         9E11087         3300         170         3.3         ug/kg wet         3500         106         64-132           Benzolaphtracene         9E11087         3300         170         1.8         ug/kg wet         3500         161         133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 9E11087  |        | 3300  | 170   | 8.6  | ug/kg wet | 2760   | 83  | 66-120 |           |           |
| Anthracene         Bell 1087         330         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         18         ug/kg wet         2860         86         73-133           Benzaldehyde         9E11087         3300         170         18         ug/kg wet         1810         55         21-120           Benzaldaphyde         9E11087         3300         5000         2100         ug/kg wet         3170         96         65-133           Benzolajanthracene         9E11087         3300         170         4.0         ug/kg wet         3300         166         44-127           Benzolghjfluoranthene         9E11087         3300         170         2.0         ug/kg wet         3500         106         64-135           Benzolghjfluoranthene         9E11087         3300         170         1.8         ug/kg wet         3150         95         58-138           Benzolghjfluoranthene         9E11087         3300         170         1.8         ug/kg wet         2480         75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 9E11087  |        | 3300  | 330   | 92   | ug/kg wet | 2840   | 86  | 45-120 |           |           |
| Aramite         9E11087         330         330         ug/kg wet         ND         0-200           Atrazine         9E11087         3300         170         7.5         ug/kg wet         2860         86         73-133           Benzaldehyde         9E11087         3300         170         18         ug/kg wet         1810         55         21-120           Benzdiane         9E11087         3300         5000         2100         ug/kg wet         1810         56         21-120           Benzdjajanthracene         9E11087         3300         170         2.9         ug/kg wet         3300         66-133           Benzdjajprene         9E11087         3300         170         4.0         ug/kg wet         3300         66-135           Benzdjajhfuoranthene         9E11087         3300         170         2.0         ug/kg wet         330         100         64-127           Benzdja, jjperylene         9E11087         3300         170         1.8         ug/kg wet         3150         95         58-138           Benzdja, jjperylene         9E11087         3300         170         1.8         ug/kg wet         2450         77         71-120           Benzdjkjhdv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Anthracene                            | 9E11087  |        | 3300  | 170   | 4.3  | ug/kg wet | 3130   | 94  | 62-129 |           |           |
| AtrazineDe LitorDe de litorToToToToUg/kg wet18105521-120Benzaldehyde9E 11087330050002100ug/kg wetND20-120Benzolajanthracene9E 1108733001702.9ug/kg wet31709665-133Benzolajanthracene9E 1108733001704.0ug/kg wet330010664-127Benzolajnthracene9E 1108733001703.3ug/kg wet333010064-135Benzolajnthracene9E 1108733001702.0ug/kg wet35009558-138Benzolajn, jiperylene9E 1108733001701.8ug/kg wet31509558-138Benzola caid9E 1108733001701.8ug/kg wet31509558-138Benzola caid9E 1108733001701.8ug/kg wet24807515-145Binkeryl eltorio9E 1108733001709.1ug/kg wet24807515-145Bis(2-chloroethoxy)methane9E 1108733001709.1ug/kg wet24807345-120Bis(2-chloroethoxy)methane9E 1108733001709.1ug/kg wet24607444-1209-Octadecenamide9E 11087330017018ug/kg wet30509261-133Bis(2-chloroisopropyl) ether9E 11087330017054ug/kg wet3100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 9E11087  |        |       | 330   | 330  | ug/kg wet | ND     |     | 0-200  |           |           |
| Benzaldehyde       9E11087       3300       170       18       ug/kg wet       1810       55       21-120         Benzolaine       9E11087       3300       5000       2100       ug/kg wet       ND       20-120         Benzolajanthracene       9E11087       3300       170       2.9       ug/kg wet       3170       96       65-133         Benzolajprene       9E11087       3300       170       4.0       ug/kg wet       3300       100       64-135         Benzolajprene       9E11087       3300       170       3.3       ug/kg wet       330       100       64-135         Benzolajhritoranthene       9E11087       3300       170       2.0       ug/kg wet       350       107       50-152         Benzolajhritoranthene       9E11087       3300       170       1.8       ug/kg wet       350       62-120         Benzolajalchol       9E11087       3300       170       1.8       ug/kg wet       2480       75       15-145         Binglachol       9E11087       3300       170       10       ug/kg wet       2400       73       45-120         Bis(2-choroethoxy)methane       9E11087       3300       170       14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 9E11087  |        | 3300  | 170   | 7.5  | ug/kg wet | 2860   | 86  | 73-133 |           |           |
| Benzidine         9E11087         3300         5000         2100         ug/kg wet         ND         20-120           Benzola Janthracene         9E11087         3300         170         2.9         ug/kg wet         3170         96         65-133           Benzola Jpyrene         9E11087         3300         170         4.0         ug/kg wet         3300         100         64-127           Benzolg Jpyrene         9E11087         3300         170         3.3         ug/kg wet         3300         100         64-135           Benzolg Jh Jperylene         9E11087         3300         170         2.0         ug/kg wet         350         50-152           Benzolg Jh Jperylene         9E11087         3300         170         1.8         ug/kg wet         3150         95         58-138           Benzola cid         9E11087         3300         170         1.8         ug/kg wet         6600         80         62-120           Benzyl alcohol         9E11087         3300         170         10         ug/kg wet         2850         77         71-120           Bis(2-chloroethoxy)methane         9E11087         3300         170         14         ug/kg wet         2460         74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 9E11087  |        | 3300  | 170   | 18   | ug/kg wet | 1810   | 55  | 21-120 |           |           |
| Benzo[a]anthracene         9E11087         3300         170         2.9         ug/kg wet         3170         96         65-133           Benzo[a]pyrene         9E11087         3300         170         4.0         ug/kg wet         3500         106         64-127           Benzo[b]fluoranthene         9E11087         3300         170         3.3         ug/kg wet         3300         100         64-135           Benzo[b]fluoranthene         9E11087         3300         170         2.0         ug/kg wet         3540         107         50-152           Benzo[k]fluoranthene         9E11087         3300         170         1.8         ug/kg wet         3150         95         58-138           Benzo[k]fluoranthene         9E11087         3300         170         1.8         ug/kg wet         3150         95         58-138           Benzo[k]fluoranthene         9E11087         3300         330         8.0         ug/kg wet         2480         75         15-145           Benzo[k]fluoranthane         9E11087         3300         170         10         ug/kg wet         2430         73         45-120           Bis(2-chloroethox/y)methane         9E11087         3300         170         18 </td <td>-</td> <td>9E11087</td> <td></td> <td>3300</td> <td>5000</td> <td>2100</td> <td>ug/kg wet</td> <td>ND</td> <td></td> <td>20-120</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                     | 9E11087  |        | 3300  | 5000  | 2100 | ug/kg wet | ND     |     | 20-120 |           |           |
| Benzo[a]pyrene9E1108733001704.0ug/kg wet350010664-127Benzo[b]fluoranthene9E1108733001703.3ug/kg wet333010064-135Benzo[g,h,i]perylene9E1108733001702.0ug/kg wet354010750-152Benzo[k]fluoranthene9E1108733001701.8ug/kg wet31509558-138Benzo[k]fluoranthene9E1108733004800240ug/kg wet66008062-120Benzyl alcohol9E11087330017010ug/kg wet25507771-120Biphenyl9E1108733001709.1ug/kg wet24307361-133Bis(2-chloroethyl)ether9E11087330017014ug/kg wet24007444-1209-Octadecenamide9E11087330017018ug/kg wet30509261-133Bis(2-chlyrobyl) ether9E11087330017054ug/kg wet3009261-133Bis(2-chlyrobyl) phthalate9E11087330017054ug/kg wet30509261-133Bis(2-chlyrobyl) phthalate9E11087330017054ug/kg wet31009361-129Bis(2-chlyrobyl) phthalate9E11087330017054ug/kg wet31009361-129Bis(2-chlyrobyl) phthalate9E11087330017073ug/kg wet3100<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 9E11087  |        | 3300  | 170   | 2.9  | ug/kg wet | 3170   | 96  | 65-133 |           |           |
| Benzo[b]fluoranthene         9E11087         3300         170         3.3         ug/kg wet         3330         100         64-135           Benzo[g,h,i]perylene         9E11087         3300         170         2.0         ug/kg wet         3540         107         50-152           Benzo[k]fluoranthene         9E11087         3300         170         1.8         ug/kg wet         3150         95         58-138           Benzo[k]fluoranthene         9E11087         8300         4800         240         ug/kg wet         6600         80         62-120           Benzolacid         9E11087         3300         330         8.0         ug/kg wet         2480         75         15-145           Benzyl alcohol         9E11087         3300         170         10         ug/kg wet         2550         77         71-120           Bis(2-chloroethoxy)methane         9E11087         3300         170         14         ug/kg wet         2430         73         45-120           Bis(2-chloroethyl)ether         9E11087         3300         170         18         ug/kg wet         2460         74         44-120           9-Octadecenamide         9E11087         3300         170         54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 9E11087  |        | 3300  | 170   | 4.0  | ug/kg wet | 3500   | 106 | 64-127 |           |           |
| Benzolg, h, i]perylene9E 1108733001702.0ug/kg wet354010750-152Benzolg, h[i]uoranthene9E 1108733001701.8ug/kg wet31509558-138Benzolc acid9E 1108783004800240ug/kg wet66008062-120Benzyl alcohol9E 1108733003308.0ug/kg wet24807515-145Biphenyl9E 11087330017010ug/kg wet25507771-120Bis(2-chloroethoxy)methane9E 1108733001709.1ug/kg wet24307345-120Bis(2-chloroisopropyl) ether9E 11087330017014ug/kg wet24607444-1209-Octadecenamide9E 11087330017018ug/kg wet30509261-133Bis(2-ethylhexyl) phthalate9E 11087330017054ug/kg wet30509261-133Butyl benzyl phthalate9E 11087330017045ug/kg wet31009361-129Caprolactam9E 11087330017073ug/kg wet31009361-129Cabazole9E 11087330017073ug/kg wet31009559-129Cabazole9E 11087330017019ug/kg wet31509559-129Cabazole9E 11087330017019ug/kg wet31509559-129 <t< td=""><td></td><td>9E11087</td><td></td><td>3300</td><td>170</td><td>3.3</td><td>ug/kg wet</td><td>3330</td><td>100</td><td>64-135</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 9E11087  |        | 3300  | 170   | 3.3  | ug/kg wet | 3330   | 100 | 64-135 |           |           |
| Benzo[k]fluoranthene         9E11087         3300         170         1.8         ug/kg wet         3150         95         58-138           Benzoic acid         9E11087         8300         4800         240         ug/kg wet         6600         80         62-120           Benzyl alcohol         9E11087         3300         330         8.0         ug/kg wet         2480         75         15-145           Biphenyl         9E11087         3300         170         10         ug/kg wet         2550         77         71-120           Bis(2-chloroethoxy)methane         9E11087         3300         170         9.1         ug/kg wet         2430         73         45-120           Bis(2-chloroethyl)ether         9E11087         3300         170         14         ug/kg wet         2460         74         44-120           9-Octadecenamide         9E11087         3300         170         18         ug/kg wet         3050         92         61-133           9-Octadecenamide         9E11087         3300         170         18         ug/kg wet         3050         92         61-133           Bis(2-ethylhexyl) phthalate         9E11087         3300         170         54         ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • •                                   | 9E11087  |        | 3300  | 170   | 2.0  | ug/kg wet | 3540   | 107 | 50-152 |           |           |
| Benzoic acid         9E11087         8300         4800         240         ug/kg wet         6600         80         62-120           Benzyl alcohol         9E11087         3300         330         8.0         ug/kg wet         2480         75         15-145           Biphenyl         9E11087         3300         170         10         ug/kg wet         2500         77         71-120           Bis(2-chloroethoxy)methane         9E11087         3300         170         9.1         ug/kg wet         2090         63         61-133           Bis(2-chloroethyl)ether         9E11087         3300         170         14         ug/kg wet         2460         74         44-120           9-Octadecenamide         9E11087         3300         170         18         ug/kg wet         3050         92         61-133           Bis(2-ethylhexyl) phthalate         9E11087         3300         170         18         ug/kg wet         2460         74         44-120           9-Octadecenamide         9E11087         3300         170         54         ug/kg wet         3050         92         61-133           Butyl benzyl phthalate         9E11087         3300         170         45         ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 9E11087  |        | 3300  | 170   | 1.8  | ug/kg wet | 3150   | 95  | 58-138 |           |           |
| Biphenyl       9E11087       3300       170       10       ug/kg wet       2550       77       71-120         Biphenyl       9E11087       3300       170       9.1       ug/kg wet       2090       63       61-133         Bis(2-chloroethoxy)methane       9E11087       3300       170       14       ug/kg wet       2430       73       45-120         Bis(2-chloroethyl)ether       9E11087       3300       170       18       ug/kg wet       2460       74       44-120         9-Octadecenamide       9E11087       3300       170       18       ug/kg wet       3050       92       61-133         Bis(2-ethylhexyl) phthalate       9E11087       3300       170       54       ug/kg wet       3050       92       61-133         Bis(2-ethylhexyl) phthalate       9E11087       3300       170       54       ug/kg wet       3100       93       61-129         Caprolactam       9E11087       3300       170       73       ug/kg wet       3190       96       54-133         Caprolactam       9E11087       3300       170       7.9       ug/kg wet       3150       95       59-129         Carbazole       9E11087       3300 <td></td> <td>9E11087</td> <td></td> <td>8300</td> <td>4800</td> <td>240</td> <td>ug/kg wet</td> <td>6600</td> <td>80</td> <td>62-120</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | 9E11087  |        | 8300  | 4800  | 240  | ug/kg wet | 6600   | 80  | 62-120 |           |           |
| Biphenyl       9E11087       3300       170       10       ug/kg wet       2550       77       71-120         Bis(2-chloroethoxy)methane       9E11087       3300       170       9.1       ug/kg wet       2090       63       61-133         Bis(2-chloroethyl)ether       9E11087       3300       170       14       ug/kg wet       2430       73       45-120         Bis(2-chloroisopropyl) ether       9E11087       3300       170       18       ug/kg wet       2460       74       44-120         9-Octadecenamide       9E11087       3300       170       54       ug/kg wet       3050       92       61-133         Bis(2-ethylhexyl) phthalate       9E11087       3300       170       54       ug/kg wet       3050       92       61-133         Butyl benzyl phthalate       9E11087       3300       170       54       ug/kg wet       3100       93       61-129         Caprolactam       9E11087       3300       170       73       ug/kg wet       3190       96       54-133         Carbazole       9E11087       3300       170       1.9       ug/kg wet       3150       95       59-129         Carbazole       9E11087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Benzvl alcohol                        | 9E11087  |        | 3300  | 330   | 8.0  | ug/kg wet | 2480   | 75  | 15-145 |           |           |
| Bis(2-chloroethoxy)methane       9E11087       3300       170       9.1       ug/kg wet       2090       63       61-133         Bis(2-chloroethyl)ether       9E11087       3300       170       14       ug/kg wet       2430       73       45-120         Bis(2-chloroisopropyl) ether       9E11087       3300       170       18       ug/kg wet       2460       74       44-120         9-Octadecenamide       9E11087       3300       170       54       ug/kg wet       3050       92       61-133         Bis(2-ethylhexyl) phthalate       9E11087       3300       170       54       ug/kg wet       3050       92       61-133         Butyl benzyl phthalate       9E11087       3300       170       54       ug/kg wet       3100       93       61-129         Caprolactam       9E11087       3300       170       73       ug/kg wet       3190       96       54-133         Carbazole       9E11087       3300       170       1.9       ug/kg wet       3150       95       59-129         Carbazole       9E11087       3300       170       1.9       ug/kg wet       3150       95       59-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                     | 9E11087  |        | 3300  | 170   | 10   | ug/kg wet | 2550   | 77  | 71-120 |           |           |
| Bis(2-chloroethyl)ether       9E11087       3300       170       14       ug/kg wet       2430       73       45-120         Bis(2-chloroisopropyl) ether       9E11087       3300       170       18       ug/kg wet       2460       74       44-120         O-Octadecenamide       9E11087       3300       170       18       ug/kg wet       ND       0-200         Bis(2-chloroisopropyl) ether       9E11087       3300       170       54       ug/kg wet       3050       92       61-133         Bis(2-chtyl hexyl) phthalate       9E11087       3300       170       45       ug/kg wet       3100       93       61-129         Caprolactam       9E11087       3300       170       73       ug/kg wet       3190       96       54-133         Carbazole       9E11087       3300       170       1.9       ug/kg wet       3150       95       59-129         Carbazole       9E11087       3300       170       1.9       ug/kg wet       3150       95       59-129         Carbazole       9E11087       3300       170       1.9       ug/kg wet       3150       95       59-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 9E11087  |        | 3300  | 170   | 9.1  | ug/kg wet | 2090   | 63  | 61-133 |           |           |
| Bis(2-chloroisopropyl) ether       9E11087       3300       170       18       ug/kg wet       2460       74       44-120         9-Octadecenamide       9E11087       3300       170       18       ug/kg wet       ND       0-200         9-Octadecenamide       9E11087       3300       170       54       ug/kg wet       3050       92       61-133         Bis(2-ethylhexyl) phthalate       9E11087       3300       170       45       ug/kg wet       3100       93       61-129         Butyl benzyl phthalate       9E11087       3300       170       73       ug/kg wet       3190       96       54-133         Caprolactam       9E11087       3300       170       1.9       ug/kg wet       3150       95       59-129         Carbazole       9E11087       3300       170       1.9       ug/kg wet       3150       95       59-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · · | 9E11087  |        | 3300  | 170   | 14   | ug/kg wet | 2430   | 73  | 45-120 |           |           |
| p-Octadecenamide         9E11087         3300         810         ug/kg wet         ND         0-200           Bis(2-ethylhexyl) phthalate         9E11087         3300         170         54         ug/kg wet         3050         92         61-133           Bis(2-ethylhexyl) phthalate         9E11087         3300         170         45         ug/kg wet         3100         93         61-129           Caprolactam         9E11087         3300         170         73         ug/kg wet         3190         96         54-133           Carbazole         9E11087         3300         170         1.9         ug/kg wet         3150         95         59-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                     | 9E11087  |        | 3300  | 170   | 18   | ug/kg wet | 2460   | 74  | 44-120 |           |           |
| Bis(2-ethylhexyl) phthalate         9E11087         3300         170         54         ug/kg wet         3050         92         61-133           Butyl benzyl phthalate         9E11087         3300         170         45         ug/kg wet         3100         93         61-129           Caprolactam         9E11087         3300         170         73         ug/kg wet         3190         96         54-133           Carbazole         9E11087         3300         170         1.9         ug/kg wet         3150         95         59-129           Carbazole         9E11087         230         170         1.9         ug/kg wet         ND         0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | 9E11087  |        |       | 3300  | 810  | ug/kg wet | ND     |     | 0-200  |           |           |
| Butyl benzyl phthalate         9E11087         3300         170         45         ug/kg wet         3100         93         61-129           Caprolactam         9E11087         3300         170         73         ug/kg wet         3190         96         54-133           Carbazole         9E11087         3300         170         1.9         ug/kg wet         3150         95         59-129           Carbazole         9E11087         320         17         ug/kg wet         ND         0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | 9E11087  |        | 3300  | 170   | 54   | ug/kg wet | 3050   | 92  | 61-133 |           |           |
| Caprolactam         9E11087         3300         170         73         ug/kg wet         3190         96         54-133           Carbazole         9E11087         3300         170         1.9         ug/kg wet         3150         95         59-129           Carbazole         9E11087         3300         170         1.9         ug/kg wet         3150         95         59-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 9E11087  |        | 3300  | 170   | 45   | ug/kg wet | 3100   | 93  | 61-129 |           |           |
| Carbazole 9E11087 3300 170 1.9 ug/kg wet 3150 95 59-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 9E11087  |        | 3300  | 170   | 73   | ug/kg wet | 3190   | 96  | 54-133 |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                     |          |        | 3300  | 170   | 1.9  | ug/kg wet | 3150   | 95  | 59-129 |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chlorobenzilate                       |          |        |       |       | 17   |           | ND     |     | 0-200  |           |           |
| Childrobenzilate 9E11087 3300 170 1.7 ug/kg wet 3240 98 64-131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |          |        | 3300  |       |      |           |        | 98  | 64-131 |           |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                 |          |        | LA    | BORAT |           | DATA      |        |     |        |           |          |
|---------------------------------|----------|--------|-------|-------|-----------|-----------|--------|-----|--------|-----------|----------|
|                                 | Seq/     | Source | Spike |       |           |           |        | %   | % REC  | % RPD     |          |
| Analyte                         | Batch    | Result | Level | MRL   | MDL       | Units     | Result | REC | Limits | RPD Limit | Qualifie |
| Semivolatile Organics by GC/M   | <u>s</u> |        |       |       |           |           |        |     |        |           |          |
| LCS Analyzed: 05/20/09 (9E110   | 87-BS1)  |        |       |       |           |           |        |     |        |           |          |
| Diallate                        | 9E11087  |        |       | 330   | 8.9       | ug/kg wet | ND     |     | 0-200  |           |          |
| Dibenz[a,h]anthracene           | 9E11087  |        | 3300  | 170   | 2.0       | ug/kg wet | 3530   | 107 | 54-148 |           |          |
| Anthraquinone                   | 9E11087  |        |       | 330   | 150       | ug/kg wet | ND     |     | 0-200  |           |          |
| Dibenzo[a,e]pyrene              | 9E11087  |        |       | 330   | 330       | ug/kg wet | ND     |     | 0-200  |           |          |
| Dibenzofuran                    | 9E11087  |        | 3300  | 170   | 1.7       | ug/kg wet | 3030   | 91  | 56-120 |           |          |
| Diethyl phthalate               | 9E11087  |        | 3300  | 170   | 5.1       | ug/kg wet | 3170   | 96  | 66-126 |           |          |
| Dimethoate                      | 9E11087  |        |       | 330   | 11        | ug/kg wet | ND     |     | 0-200  |           |          |
| Dimethyl phthalate              | 9E11087  |        | 3300  | 170   | 4.4       | ug/kg wet | 3120   | 94  | 65-124 |           |          |
| Di-n-butyl phthalate            | 9E11087  |        | 3300  | 170   | 58        | ug/kg wet | 3160   | 95  | 58-130 |           |          |
| Di-n-octyl phthalate            | 9E11087  |        | 3300  | 170   | 3.9       | ug/kg wet | 3030   | 91  | 62-133 |           |          |
| Dinoseb                         | 9E11087  |        |       | 330   | 330       | ug/kg wet | ND     |     | 0-200  |           |          |
| Diphenylamine                   | 9E11087  |        | 3300  | 330   | 330       | ug/kg wet | ND     |     | 0-200  |           |          |
| Disulfoton                      | 9E11087  |        |       | 330   | 12        | ug/kg wet | ND     |     | 0-200  |           |          |
|                                 | 9E11087  |        |       | 330   | 46        | ug/kg wet | ND     |     | 0-200  |           |          |
| Ethyl Methanesulfonate          | 9E11087  |        |       | 660   | 31        | ug/kg wet | ND     |     | 0-200  |           |          |
| Famphur                         | 9E11087  |        | 3300  | 170   | 2.4       | ug/kg wet | 3150   | 95  | 62-131 |           |          |
| Fluoranthene                    | 9E11087  |        | 3300  | 170   | 3.9       | ug/kg wet | 3200   | 97  | 63-126 |           |          |
| Fluorene                        | 9E11087  |        | 3300  | 170   | 8.3       | ug/kg wet | 3060   | 92  | 60-132 |           |          |
| Hexachlorobenzene               | 9E11087  |        | 3300  | 170   | 8.6       | ug/kg wet | 2520   | 76  | 45-120 |           |          |
| Hexachlorobutadiene             | 9E11087  |        | 3300  | 170   | 51        | ug/kg wet | 2740   | 83  | 31-120 |           |          |
| Hexachlorocyclopentadiene       | 9E11087  |        | 3300  | 170   | 13        | ug/kg wet | 2420   | 73  | 41-120 |           |          |
| Hexachloroethane                | 9E11087  |        | 3300  | 3300  | 3300      | ug/kg wet | ND     | 75  | 0-200  |           |          |
| Hexachlorophene                 | 9E11087  |        |       | 3300  | 19        | ug/kg wet | ND     |     | 0-200  |           |          |
| Hexachloropropene               | 9E11087  |        | 3300  | 170   | 4.6       | ug/kg wet | 3600   | 109 | 56-149 |           |          |
| Indeno[1,2,3-cd]pyrene          | 9E11087  |        | 3300  | 330   | 4.0<br>31 | ug/kg wet | ND     | 103 | 0-200  |           |          |
| Isodrin                         |          |        | 2200  |       |           |           |        | 79  | 56-120 |           |          |
| Isophorone                      | 9E11087  |        | 3300  | 170   | 8.4       | ug/kg wet | 2630   | /9  | 0-200  |           |          |
| Isosafrole                      | 9E11087  |        |       | 330   | 27        | ug/kg wet | ND     |     |        |           |          |
| Kepone                          | 9E11087  |        |       | 660   | 49        | ug/kg wet | ND     |     | 0-200  |           |          |
| Methapyrilene                   | 9E11087  |        |       | 1500  | 990       | ug/kg wet | ND     |     | 0-200  |           |          |
| Methyl Methanesulfonate         | 9E11087  |        |       | 330   | 100       | ug/kg wet | ND     |     | 0-200  |           |          |
| N,N-Dimethyl Formamide          | 9E11087  |        |       | 660   | 210       | ug/kg wet | ND     | ~~  | 0-200  |           |          |
| Naphthalene                     | 9E11087  |        | 3300  | 170   | 2.8       | ug/kg wet | 2730   | 82  | 46-120 |           |          |
| Nitrobenzene                    | 9E11087  |        | 3300  | 170   | 7.4       | ug/kg wet | 2610   | 79  | 49-120 |           |          |
| N-Nitro-o-toluidine             | 9E11087  |        |       | 330   | 22        | ug/kg wet | ND     |     | 0-200  |           |          |
| N-Nitrosodiethylamine           | 9E11087  |        |       | 330   | 32        | ug/kg wet | ND     |     | 0-200  |           |          |
| N-Nitrosodimethylamine          | 9E11087  |        | 3300  | 330   | 12        | ug/kg wet | 2320   | 70  | 0-200  |           |          |
| N-Nitrosodi-n-butylamine        | 9E11087  |        |       | 330   | 25        | ug/kg wet | ND     |     | 0-200  |           |          |
| N-Nitrosodi-n-propylamine       | 9E11087  |        | 3300  | 170   | 13        | ug/kg wet | 2790   | 84  | 46-120 |           |          |
| N-Nitrosodiphenylamine          | 9E11087  |        | 3300  | 170   | 9.2       | ug/kg wet | 3940   | 119 | 20-119 |           |          |
| N-Nitrosomethylethylamine       | 9E11087  |        |       | 330   | 32        | ug/kg wet | ND     |     | 0-200  |           |          |
| N-Nitrosomorpholine             | 9E11087  |        |       | 330   | 330       | ug/kg wet | ND     |     | 0-200  |           |          |
| N-Nitrosopiperidine             | 9E11087  |        |       | 330   | 45        | ug/kg wet | ND     |     | 0-200  |           |          |
| N-Nitrosopyrrolidine            | 9E11087  |        |       | 330   | 25        | ug/kg wet | ND     |     | 0-200  |           |          |
| 0,0,0-Triethyl phosphorothioate | 9E11087  |        |       | 330   | 11        | ug/kg wet | ND     |     | 0-200  |           |          |
| Parathion-ethyl                 | 9E11087  |        |       | 330   | 9.2       | ug/kg wet | ND     |     | 0-200  |           |          |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                 |                    |          | LA    | BORAT | ORY QC    | DATA      |              |                       |                  |                  |           |
|---------------------------------|--------------------|----------|-------|-------|-----------|-----------|--------------|-----------------------|------------------|------------------|-----------|
|                                 | Seq/               | Source   | Spike |       |           |           |              | %                     | % REC            | % RPD            |           |
| Analyte                         | Batch              | Result   | Level | MRL   | MDL       | Units     | Result       | REC                   | Limits           | <b>RPD</b> Limit | Qualifier |
| Semivolatile Organics by GC/N   | <u>15</u>          |          |       |       |           |           |              |                       |                  |                  |           |
| LCS Analyzed: 05/20/09 (9E110   | 087-BS1)           |          |       |       |           |           |              |                       |                  |                  |           |
| Parathion-methyl                | 9E11087            |          |       | 330   | 12        | ug/kg wet | ND           |                       | 0-200            |                  |           |
| p-Dimethylamino azobenzene      | 9E11087            |          |       | 330   | 33        | ug/kg wet | ND           |                       | 0-200            |                  |           |
| Pentachlorobenzene              | 9E11087            |          |       | 330   | 39        | ug/kg wet | ND           |                       | 0-200            |                  |           |
| Pentachloronitrobenzene         | 9E11087            |          |       | 330   | 34        | ug/kg wet | ND           |                       | 0-200            |                  |           |
| Pentachlorophenol               | 9E11087            |          | 3300  | 330   | 58        | ug/kg wet | 2990         | 90                    | 33-136           |                  |           |
| Phenacetin                      | 9E11087            |          |       | 330   | 27        | ug/kg wet | ND           |                       | 0-200            |                  |           |
| Phenanthrene                    | 9E11087            |          | 3300  | 170   | 3.5       | ug/kg wet | 3180         | 96                    | 60-130           |                  |           |
| Phenol                          | 9E11087            |          | 3300  | 170   | 18        | ug/kg wet | 2640         | 79                    | 36-120           |                  |           |
| Phorate                         | 9E11087            |          |       | 330   | 66        | ug/kg wet | ND           |                       | 0-200            |                  |           |
| Phthalic anhydride              | 9E11087            |          |       | 9900  | 770       | ug/kg wet | ND           |                       | 0-200            |                  |           |
| p-Phenylene diamine             | 9E11087            |          |       | 800   | 200       | ug/kg wet | ND           |                       | 0-200            |                  |           |
| Pronamide                       | 9E11087            |          |       | 330   | 7.7       | ug/kg wet | ND           |                       | 0-200            |                  |           |
| Pyrene                          | 9E11087            |          | 3300  | 170   | 1.1       | ug/kg wet | 3070         | 93                    | 51-133           |                  |           |
| Pyridine                        | 9E11087            |          | 3300  | 330   | 94        | ug/kg wet | 2160         | 65                    | 8-120            |                  |           |
| Quinoline                       | 9E11087            |          | 3300  | 330   | 53        | ug/kg wet | ND           |                       | 0-200            |                  |           |
| Safrole                         | 9E11087            |          |       | 330   | 18        | ug/kg wet | ND           |                       | 0-200            |                  |           |
| Sulfotepp                       | 9E11087            |          |       | 330   | 330       | ug/kg wet | ND           |                       | 0-200            |                  |           |
| Thionazin                       | 9E11087            |          |       | 330   | 10        | ug/kg wet | ND           |                       | 0-200            |                  |           |
| Surrogate: 2,4,6-Tribromophenol |                    |          |       |       |           | ug/kg wet |              | 93                    | 39-146           |                  |           |
| Surrogate: 2-Fluorobiphenyl     |                    |          |       |       |           | ug/kg wet |              | 85                    | 37-120           |                  |           |
| Surrogate: 2-Fluorophenol       |                    |          |       |       |           | ug/kg wet |              | 72                    | 18-120           |                  |           |
| Surrogate: Nitrobenzene-d5      |                    |          |       |       |           | ug/kg wet |              | 81                    | 34-132           |                  |           |
| Surrogate: Phenol-d5            |                    |          |       |       |           | ug/kg wet |              | 79                    | 11-120           |                  |           |
| Surrogate: p-Terphenyl-d14      |                    |          |       |       |           | ug/kg wet |              | 80                    | 58-147           |                  |           |
| LCS Dup Analyzed: 05/20/09 (9   | E11087-BSD1        | D        |       |       |           |           |              |                       |                  |                  |           |
|                                 | 9E11087            | <i>,</i> | 3300  | 170   | 15        | ug/kg wet | 2980         | 90                    | 0-200            | 1 200            | R2        |
| 1,2,4,5-Tetrachlorobenzene      | 9E11087            |          | 3300  | 330   | 4.8       | ug/kg wet | 2490         | 75                    | 39-120           | 3 30             |           |
| 1,2,4-Trichlorobenzene          | 9E11087            |          | 3300  | 330   | 3.2       | ug/kg wet | 2220         | 67                    | 18-120           | 7 29             |           |
| 1,2-Dichlorobenzene             | 9E11087            |          |       | 330   | 40        | ug/kg wet | 3320         |                       | 0-200            | 4 200            | R2        |
| 1,2-Diphenylhydrazine           | 9E11087            |          |       | 330   | 14        | ug/kg wet | ND           |                       | 0-200            | 200              |           |
| 1,3,5-Trinitrobenzene           | 9E11087            |          | 3300  | 330   | 3.0       | ug/kg wet | 2270         | 69                    | 14-120           | 6 37             |           |
| 1,3-Dichlorobenzene             | 9E11087            |          | 3300  | 330   | 11        | ug/kg wet | ND           |                       | 0-200            | 200              |           |
| 1,3-Dinitrobenzene              | 9E11087            |          | 3300  | 330   | 2.2       | ug/kg wet | 2290         | 69                    | 34-120           | 6 35             |           |
| 1,4-Dichlorobenzene             | 9E11087            |          | 3300  | 330   | 330       | ug/kg wet | ND           |                       | 0-200            | 200              |           |
| 1,4-Dinitrobenzene              | 9E11087            |          | 3300  | 330   | 37        | ug/kg wet | ND           |                       | 0-200            | 200              |           |
| 1,4-Dioxane                     | 9E11087            |          |       | 330   | 8.0       | ug/kg wet | ND           |                       | 0-200            | 200              |           |
| 1,4-Naphthoquinone              | 9E11087            |          |       | 330   | 200       | ug/kg wet | ND           |                       | 0-200            | 200              |           |
| 1-Naphthylamine                 | 9E11087            |          | 3300  | 170   | 170       | ug/kg wet | 3510         | 106                   | 0-200            | 7 200            | R2        |
| 2,3,4,6-Tetrachlorophenol       | 9E11087            |          |       | 650   | 110       | ug/kg wet | ND           |                       | 0-200            | 200              |           |
| 1,4-Dihydroxyanthraquinone      | 9E11087            |          | 3300  | 170   | 36        | ug/kg wet | 3290         | 100                   | 59-126           | 5 18             |           |
| 2,4,5-Trichlorophenol           | 9E11087            |          | 3300  | 170   | 11        | ug/kg wet | 3200         | 97                    | 59-123           | 10 19            |           |
| 2,4,6-Trichlorophenol           | 9E11087            |          | 3300  | 170   | 8.8       | ug/kg wet | 2830         | 86                    | 52-120           | 4 19             |           |
| 2,4-Dichlorophenol              | 9E11087<br>9E11087 |          | 3300  | 170   | 6.6<br>45 | ug/kg wet | 2650         | 81                    | 36-120           | 4 13<br>5 42     |           |
| 2,4-Dimethylphenol              |                    |          |       | 330   | 45<br>59  | ug/kg wet | 2790         | 84                    | 35-120           | 4 22             |           |
| 2,4-Dinitrophenol               | 9E11087            |          | 3300  |       | 59<br>26  |           | 2790<br>3580 | 0 <del>4</del><br>108 | 55-146<br>55-125 | 4 22<br>7 20     |           |
| 2,4-Dinitrotoluene              | 9E11087            |          | 3300  | 170   | 20        | ug/kg wet | 5500         | 100                   | 55-125           | , 20             |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                |            |        | LA    | BORAT |      | DATA      |        |     |                |     |       |           |
|--------------------------------|------------|--------|-------|-------|------|-----------|--------|-----|----------------|-----|-------|-----------|
|                                | Seq/       | Source | Spike |       |      |           |        | %   | % REC          | %   | RPD   |           |
| Analyte                        | Batch_     | Result | Level | MRL   | MDL  | Units     | Result | REC | Limits         | RPD | Limit | Qualifier |
| Semivolatile Organics by GC/M  | <u>S</u>   |        |       |       |      |           |        |     |                |     |       |           |
| LCS Dup Analyzed: 05/20/09 (9  | E11087-BSD | 1)     |       |       |      |           |        |     |                |     |       |           |
| 1-Hydroxyanthraquinone         | 9E11087    |        |       | 650   | 250  | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| 2,6-Dichlorophenol             | 9E11087    |        |       | 330   | 330  | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| 2,6-Dinitrotoluene             | 9E11087    |        | 3300  | 170   | 41   | ug/kg wet | 3370   | 102 | 66-128         | 6   | 15    |           |
| 2-Acetylaminofluorene          | 9E11087    |        |       | 330   | 19   | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| 2-Chloronaphthalene            | 9E11087    |        | 3300  | 170   | 11   | ug/kg wet | 2970   | 90  | 57-120         | 4   | 21    |           |
| 2-Chlorophenol                 | 9E11087    |        | 3300  | 170   | 8.5  | ug/kg wet | 2410   | 73  | 38-120         | 5   | 25    |           |
| 2-Methylnaphthalene            | 9E11087    |        | 3300  | 170   | 2.0  | ug/kg wet | 3000   | 91  | 47-120         | 2   | 21    |           |
| 2-Methylphenol                 | 9E11087    |        | 3300  | 170   | 5.1  | ug/kg wet | 2890   | 88  | 48-120         | 2   | 27    |           |
| 2-Naphthylamine                | 9E11087    |        |       | 330   | 22   | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| 2-Nitroaniline                 | 9E11087    |        | 3300  | 330   | 54   | ug/kg wet | 3360   | 102 | 61-130         | 5   | 15    |           |
| 2-Nitrophenol                  | 9E11087    |        | 3300  | 170   | 7.7  | ug/kg wet | 2710   | 82  | 50-120         | 1   | 18    |           |
| 2-Picoline                     | 9E11087    |        |       | 330   | 330  | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| 2-Toluidine                    | 9E11087    |        |       | 330   | 68   | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| 3 & 4 Methylphenol             | 9E11087    |        | 3300  | 330   | 9.3  | ug/kg wet | 2890   | 87  | 50-119         | 0   | 24    |           |
| 3,3'-Dichlorobenzidine         | 9E11087    |        | 3300  | 170   | 150  | ug/kg wet | 3020   | 91  | 48-126         | 17  | 25    |           |
| 3.3'-Dimethylbenzidine         | 9E11087    |        |       | 330   | 40   | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| 2-Chloroaniline                | 9E11087    |        |       | 330   | 29   | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| 3-Methylcholanthrene           | 9E11087    |        |       | 330   | 30   | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| 3-Nitroaniline                 | 9E11087    |        | 3300  | 330   | 38   | ug/kg wet | 3340   | 101 | 61-127         | 17  | 19    |           |
| 4,6-Dinitro-2-methylphenol     | 9E11087    |        | 3300  | 330   | 58   | ug/kg wet | 3540   | 107 | 49-155         | 4   | 15    |           |
| 4-Aminobiphenyl                | 9E11087    |        |       | 330   | 16   | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| 4-Bromophenyl phenyl ether     | 9E11087    |        | 3300  | 170   | 53   | ug/kg wet | 3330   | 101 | 58-131         | 6   | 15    |           |
| 4-Chloro-3-methylphenol        | 9E11087    |        | 3300  | 170   | 6.9  | ug/kg wet | 3250   | 98  | 49-125         | 5   | 27    |           |
| 4-Chloroaniline                | 9E11087    |        | 3300  | 170   | 49   | ug/kg wet | 3000   | 91  | 49-120         | 13  | 22    |           |
| 4-Chlorophenyl phenyl ether    | 9E11087    |        | 3300  | 170   | 3.6  | ug/kg wet | 3100   | 94  | 63-124         | 6   | 16    |           |
| 4-Nitroaniline                 | 9E11087    |        | 3300  | 330   | 19   | ug/kg wet | 3320   | 100 | 63-128         | 6   | 24    |           |
| 4-Nitrophenol                  | 9E11087    |        | 3300  | 330   | 41   | ug/kg wet | 3240   | 98  | <b>43</b> -137 | 0   | 25    |           |
| 4-Nitroquinoline-1-oxide       | 9E11087    |        |       | 650   | 650  | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| 7,12-Dimethylbenz[a]anthracene | 9E11087    |        |       | 330   | 17   | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| a,a-Dimethylphenethylamine     | 9E11087    |        |       | 330   | 330  | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| Acenaphthene                   | 9E11087    |        | 3300  | 170   | 2.0  | ug/kg wet | 3200   | 97  | 53-120         | 6   | 35    |           |
| Acenaphthylene                 | 9E11087    |        | 3300  | 170   | 1.4  | ug/kg wet | 3210   | 97  | 58-121         | 5   | 18    |           |
| Acetophenone                   | 9E11087    |        | 3300  | 170   | 8.6  | ug/kg wet | 2690   | 81  | 66-120         | 3   | 20    |           |
| Aniline                        | 9E11087    |        | 3300  | 330   | 92   | ug/kg wet | 2920   | 88  | 45-120         | 3   | 30    |           |
| Anthracene                     | 9E11087    |        | 3300  | 170   | 4.3  | ug/kg wet | 3350   | 101 | 62-129         | 7   | 15    |           |
| Aramite                        | 9E11087    |        |       | 330   | 330  | ug/kg wet | ND     |     | 0-200          |     | 200   |           |
| Atrazine                       | 9E11087    |        | 3300  | 170   | 7.4  | ug/kg wet | 3680   | 111 | 73-133         | 25  | 20    | R2        |
| Benzaldehyde                   | 9E11087    |        | 3300  | 170   | 18   | ug/kg wet | 2650   | 80  | 21-120         | 38  | 20    | R2        |
| Benzidine                      | 9E11087    |        | 3300  | 5000  | 2100 | ug/kg wet | 2300   | 70  | 20-120         |     | 15    | J         |
| Benzo[a]anthracene             | 9E11087    |        | 3300  | 170   | 2.9  | ug/kg wet | 3400   | 103 | 65-133         | 7   | 15    |           |
|                                | 9E11087    |        | 3300  | 170   | 4.0  | ug/kg wet | 3710   | 112 | 64-127         | 6   | 15    |           |
| Benzo[a]pyrene                 | 9E11087    |        | 3300  | 170   | 3.2  | ug/kg wet | 3520   | 107 | 64-135         | 6   | 15    |           |
| Benzo[b]fluoranthene           | 9E11087    |        | 3300  | 170   | 2.0  | ug/kg wet | 3690   | 112 | 50-152         | 4   | 15    |           |
| Benzo[g,h,i]perylene           | 9E11087    |        | 3300  | 170   | 1.8  | ug/kg wet | 3280   | 99  | 58-138         | 4   | 22    |           |
| Benzo[k]fluoranthene           | 9E11087    |        | 8300  | 4800  | 240  | ug/kg wet | 7180   | 87  | 62-120         | 8   | 50    |           |
| Benzoic acid                   | 3211007    |        | 0000  | 4000  | 270  | 49/19 HOL |        |     |                | -   |       |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| Analyde         Sume         Spike         Parket         MRL         MDL         Units         Read         % FeD         % FeD         % HED         % Cultifier           Analydeitto Granicis to GGM0         BET1087         5         3500         300         0.0         up/ngwet         2010         68         71-120         8         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |          |        | LA    | BORAT | ORY QC | DATA      |        |     |        |          |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------|--------|-------|-------|--------|-----------|--------|-----|--------|----------|-----------|
| Analyse         Bate         Result         Level         MRL         MDL         Units         Result         REC         Linits         RPD         Linit         Qualifier           Semirolatils Organizable OscOMS         USC Dip Analysed: 05/20/09 (0E+1087-RSD-1)         5         5         5         5         5         5         5         5         5         5         5         7         5         5         7         5         5         7         5         5         7         5         5         7         5         5         7         5         5         7         5         5         7         5         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         5         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Sea/     | Source | Spike |       |        |           |        | %   | % REC  | % RPE    | I         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analyte                         | •        | Result | Level | MRL   | MDL    | Units     | Result | REC | Limits | RPD Limi | Qualifier |
| Bency alcohol         9E11067         330         330         8.0         wyfw yret         2870         8.1         15-145         8         34           Binary I         9E11067         3300         170         8.1         wyfw yret         210         6         6         61-133         8         7           Bitg 2-chorostroymethane         9E11067         3300         170         14         wyfw yret         2360         72         45.12         5         2           9-Cataconembyothether         9E11067         3300         170         14         wyfw yret         300         100         16.133         8         1           9-Catacone         9E11067         3300         170         17         wyfw yret         3300         100         16.13         8         16           Catacone         9E11067         3300         170         17         wyfw yret         370         174         174         18         20           Catacone         9E11067         3300         170         170         wyfw yret         370         174         174         50         16           Catacone         9E11067         3300         170         170         uyfw                                                                                                                                                                                                                                                                                                                                                              |                                 |          |        |       |       |        |           |        |     |        |          |           |
| Bency alcohol         9E11067         330         330         8.0         wyfw yret         2870         8.1         15-145         8         34           Binary I         9E11067         3300         170         8.1         wyfw yret         210         6         6         61-133         8         7           Bitg 2-chorostroymethane         9E11067         3300         170         14         wyfw yret         2360         72         45.12         5         2           9-Cataconembyothether         9E11067         3300         170         14         wyfw yret         300         100         16.133         8         1           9-Catacone         9E11067         3300         170         17         wyfw yret         3300         100         16.13         8         16           Catacone         9E11067         3300         170         17         wyfw yret         370         174         174         18         20           Catacone         9E11067         3300         170         170         wyfw yret         370         174         174         50         16           Catacone         9E11067         3300         170         170         uyfw                                                                                                                                                                                                                                                                                                                                                              | LCS Dup Analyzed: 05/20/09 (9E1 | 1087-BSD | 1)     |       |       |        |           |        |     |        |          |           |
| BiphenpinBE11067300170910ug/k weit2710827.1-1206370Bit/2c-MioredinosynthyletharBE1106730017014ug/k weit21908661-133517171Bit/2c-MioredinosynthyletharSE1106730017014ug/k weit23007144-1205224Bit/2c-MioredinosynthyletharSE1106730017044ug/k weit30010061-1338115SockationeSE1106730017045ug/k weit30010261-1338115Diryl bentyl phrahateSE1106730017047ug/k weit30010261-1338116CarbaceSE1106730017017ug/k weit34010281-1338116CarbaceSE1106730017017ug/k weit34010281-1338116CarbaceSE1106730017017ug/k weit34010281-1338116ChickolanSE1106730017017ug/k weit34010081-1338115Disht/shanhaceSE1106730017017ug/k weit34017081-133811515Disht/shanhaceSE1106730017017ug/k weit3401701617018181816Disht/shanhace <td></td> <td></td> <td></td> <td>3300</td> <td>330</td> <td>8.0</td> <td>ug/kg wet</td> <td>2680</td> <td>81</td> <td>15-145</td> <td>8 34</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |          |        | 3300  | 330   | 8.0    | ug/kg wet | 2680   | 81  | 15-145 | 8 34     |           |
| Bisk2-chioroschoryhmethmeBE110873.0001709.1up/kg wet2.8007.66.76.76.76.79.7Bisk2-chioroschoryholtherBE110873.00170170up/kg wet2.807.04.714.7125.02.009-OctatecenamiceBE110873.001704.54up/kg wet3.001705.0up/kg wet3.001705.00.006.11336.0150Bis/2-ethylex/hylyhhalateBE110873.001701.9up/kg wet3.001706.10.006.11336.0150CaprolactimBE110873.001701.9up/kg wet3.001706.05.137.02.00CahazolaBE110873.001701.9up/kg wet3.001701.01.005.12.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                               | 9E11087  |        | 3300  | 170   | 10     | ug/kg wet | 2710   | 82  | 71-120 | 6 20     |           |
| Bit 2-chlorotehy)*         9E11007         3300         170         174         upkg wet         272         4         4         20         5           Bit 2-chloroteopry/1 shew         9E11007         3300         170         170         upkg wet         2300         170         44120         5         2           Bit 2-chloroteopry/1 shew         9E11007         3300         170         450         upkg wet         ND         -         0.200         -         200           Bit 2-chloroteopry/1 shew         9E11007         3300         170         474         upkg wet         380         100         61133         61         9           Bit 2-chloroteopry/1 shew         9E11007         3300         170         170         upkg wet         380         100         61133         61         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9                                                                                                                                                                                                                                                                                                                                                                     | ,                               | 9E11087  |        | 3300  | 170   | 9.1    | ug/kg wet | 2190   | 66  | 61-133 | 5 17     |           |
| Bit 2-chloroitopropy) ether         9E11067         3300         170         170         19k gwet         271         44-120         5         24           9-Otatecenamice         9E11067         3300         170         54         upkg wet         3300         100         61-133         8         15           Bitylepropy (phthatise         9E11067         3300         170         45         upkg wet         3100         64-133         8         15           Capacolactam         9E11067         3300         170         170         upkg wet         340         102         54-133         7         20           Charbazole         9E11067         3300         170         upkg wet         ND         -220         200           Charbazole         9E11067         300         170         upkg wet         ND         -220         200           Diabatis         9E11067         300         170         upkg wet         ND         -         200         200           Dibenzol upkg wet         1510         upkg wet         310         170         upkg wet         310         120         26-120         6         15           Dibenzol upkg wet         91007         30                                                                                                                                                                                                                                                                                                                                                   | , ,                             | 9E11087  |        | 3300  | 170   | 14     | ug/kg wet | 2360   | 72  | 45-120 | 3 21     |           |
| S-Octadesenantize         E11087         3300         810         up/kg wet         3300         100         E173           Bid2-ethylhexyl prihlalate         E11087         3300         170         45         ug/kg wet         3300         100         61-133         7         20           Capuzletam         E11087         3300         170         72         ug/kg wet         340         103         54-133         7         20           Chlorobenzlate         E11087         3300         170         17         ug/kg wet         ND         6-200         200           Chlorobenzlate         E11087         3300         170         17         ug/kg wet         340         104         64-131         5         15           Dibenz/ga [syprenc         E11087         3300         170         1.7         ug/kg wet         ND         -0.200         200           Dibenz/ga [syprenc         E11087         3300         170         1.7         ug/kg wet         ND         -0.200         200           Dibenz/ga [syprenc         E11087         3300         170         1.7         ug/kg wet         330         100         64-13         5         15           Dibenz/ga [syprenc                                                                                                                                                                                                                                                                                                                                          |                                 | 9E11087  |        | 3300  | 170   | 17     | ug/kg wet | 2340   | 71  | 44-120 | 5 24     |           |
| Bail         Bail <th< td=""><td></td><td>9E11087</td><td></td><td></td><td>3300</td><td>810</td><td>ug/kg wet</td><td>ND</td><td></td><td>0-200</td><td>200</td><td></td></th<>                                                                                                                                                                |                                 | 9E11087  |        |       | 3300  | 810    | ug/kg wet | ND     |     | 0-200  | 200      |           |
| Burky benayl phnalate         9E11087         3300         170         45         ug/kg wet         3400         102         61-129         8         6           Capracade         9E11087         3300         170         72         ug/kg wet         3400         103         54-129         4         20           Chorobenziale         9E11087         3300         170         ug/kg wet         340         0.40         64-108         5         5           Chorobenziale         9E11087         3300         170         2.0         ug/kg wet         340         1.0         6-200         200           Dibenz(a, b)anthracene         9E11087         3300         170         2.0         ug/kg wet         320         13         54-148         5         15           Dibenz(a, b)anthracene         9E11087         3300         170         1.7         ug/kg wet         3210         97         65-120         6         15           Dibenz(a, b)anthracene         9E11087         3300         170         4.4         ug/kg wet         3300         101         65-12         7         15           Dibenz(a, b)phthalate         9E11087         3300         170         4.4         ug/kg wet                                                                                                                                                                                                                                                                                                                                  | Bis(2-ethylhexyl) phthalate     | 9E11087  |        | 3300  | 170   | 54     | ug/kg wet | 3300   | 100 | 61-133 | 8 15     |           |
| Caprolactam         S11067         3300         170         72         ug/kg wet         310         103         64-133         7         20           Carbazole         S11067         3300         170         19         ug/kg wet         310         100         64-13         6         7           Chorober.2labe         S11067         3300         170         170         ug/kg wet         ND         0-200         200           Chorober.2labe         S11067         3300         170         170         ug/kg wet         ND         0-200         200           Diber.2d.ja.chyree         S11067         3300         170         1.7         ug/kg wet         ND         0-200         200           Diber.2d.ja.chyree         S11067         330         170         1.7         ug/kg wet         ND         0-200         200           Diber.2d.ja.chyree         S11067         3300         170         5.1         ug/kg wet         330         102         66-126         7         15           Diber.2d.ja.chyree         S11067         3300         170         5.4         ug/kg wet         330         101         ug/kg wet         330         101         65-13         5                                                                                                                                                                                                                                                                                                                                                |                                 | 9E11087  |        | 3300  | 170   | 45     | ug/kg wet | 3360   | 102 | 61-129 | 8 16     |           |
| Carbazole         DE11067         3300         170         19         upkk wet         270         97         59-129         4         20           Chloroberizitate         9E11067         3300         170         upkk wet         ND         0-200         200           Chaysene         9E11067         3300         170         2.0         upkk wet         ND         0-200         2         200           Dibenz(a, hjanthracene         9E11087         330         170         2.0         upkk wet         372         113         54.48         5         150           Dibenzolg elpyrene         9E11087         3300         170         1.7         upkk wet         320         97         56-128         6         15           Dibenzolg elpyrene         9E11087         3300         170         5.1         upkk wet         330         101         65-124         7         15           Dimethoate         9E11087         3300         170         54         upkk wet         330         101         65-124         7         15           Dimethoate         9E11087         3300         170         54         upkk wet         330         101         65-124         7 <td></td> <td>9E11087</td> <td></td> <td>3300</td> <td>170</td> <td>72</td> <td>ug/kg wet</td> <td>3410</td> <td>103</td> <td>54-133</td> <td>7 20</td> <td></td>                                                                                                                                                                                     |                                 | 9E11087  |        | 3300  | 170   | 72     | ug/kg wet | 3410   | 103 | 54-133 | 7 20     |           |
| Chrobenzialate         Definition         Definition         Definition         Set 1007         3300         17.0         upkg wet         3440         104         64-131         6         15           Diabate         9£11067         330         17.0         2.0         upkg wet         ND         -0.200         200           Dibenziga, hjanthracene         9£11067         330         150         upkg wet         ND         -0.200         200           Dibenziga, hjanthracene         9£11067         330         150         upkg wet         ND         -0.200         200           Dibenziga, ejpyrene         9£11067         3300         170         5.1         upkg wet         3300         102         66-126         7         15           Dimethyl phthalate         9£11067         3300         170         5.4         upkg wet         330         101         65-124         7         15           Dimethyl phthalate         9£11067         3300         170         5.8         upkg wet         330         100         62-124         7         15           Dimethyl phthalate         9£11067         3300         170         5.4         upkg wet         ND         -0.200         200<                                                                                                                                                                                                                                                                                                                         |                                 | 9E11087  |        | 3300  | 170   | 1.9    | ug/kg wet | 3270   | 99  | 59-129 | 4 20     |           |
| Chrysene         Diallate         Differed         Sol         R.R.         Up/Kg wet         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chlorobenzilate                 | 9E11087  |        |       | 330   | 17     | ug/kg wet | ND     |     | 0-200  | 200      |           |
| Diatate         9E 11067         330         8.8         ug/kg wet         ND         0.20         0.20           Dibenz[a, h]anthracene         9E11067         3300         170         2.0         ug/kg wet         3720         113         54.148         5         15           Dibenz[a, h]anthracene         9E11067         3300         170         ug/kg wet         ND         0.200         200           Dibenzofa, e]pyrene         9E11067         3300         170         ug/kg wet         320         120         66-128         7         15           Dibenzofa, e]pyrene         9E11067         3300         170         4.4         ug/kg wet         330         100         66-128         7         15           Dineholde         9E11067         3300         170         4.4         ug/kg wet         330         100         65-133         8         16           Din-brutyl phthalate         9E11067         3300         170         3.9         ug/kg wet         ND         0.200         200           Dipherylamine         9E11067         3300         170         2.4         ug/kg wet         ND         0.200         200           Disuldton         9E11067         33                                                                                                                                                                                                                                                                                                                                          | Chrysene                        | 9E11087  |        | 3300  | 170   | 1.7    | ug/kg wet | 3440   | 104 | 64-131 | 6 15     |           |
| Dibenzola, hjanthracene         Diff 1087         Base         Base         Base         Base         Base         Base         Base         Base           Dibenzola, elpyrene         9E11087         330         330         ug/kg wet         ND         0-200         220           Dibenzola, elpyrene         9E11087         3300         170         1.7         ug/kg wet         ND         0-200         200           Dibenzola, elpyrene         9E11087         3300         170         1.7         ug/kg wet         ND         0-200         200           Dimethoale         9E11087         3300         170         4.4         ug/kg wet         ND         0-200         200           Dimethoale         9E11087         3300         170         5.8         ug/kg wet         3310         100         56-124         7         15           Din-buly lphhalate         9E11087         3300         170         3.9         ug/kg wet         ND         0-200         200           Dipherylamine         9E11087         330         330         330         ug/kg wet         ND         0-200         200           Dipherylamine         9E11087         3300         170         3.9                                                                                                                                                                                                                                                                                                                                             | -                               | 9E11087  |        |       | 330   | 8.8    | ug/kg wet | ND     |     | 0-200  | 200      |           |
| AnhraquinoneBE11087330150ug/kg weitND6-200200DibencofuranBE11087330330ug/kg weitND6-200200DibencofuranBE1108733001705.1ug/kg weit32017066-120715Dimethyl phthalateBE1108733001705.1ug/kg weit33010066-120715Dimethyl phthalateBE1108733001705.8ug/kg weit33010068-130515Din-butyl phthalateBE1108733001705.8ug/kg weit33010068-130515Din-butyl phthalateBE1108733001703.9ug/kg weit32010068-130816Din-butyl phthalateBE1108733001703.9ug/kg weitND-0.200200DiphenylamineBE1108733001703.9ug/kg weitND-0.200200Ethyl thethanesuffonateBE1108733001702.4ug/kg weitND-0.200200FluoreneBE1108733001703.9ug/kg weit32010062-131515FluoreneBE1108733001703.9ug/kg weit32010062-131615FluoreneBE1108733001705.1ug/kg weit32010062-131515FluoreneBE11087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dibenz[a,h]anthracene           | 9E11087  |        | 3300  | 170   | 2.0    | ug/kg wet | 3720   | 113 | 54-148 | 5 15     |           |
| Dibenzo[a,e]pyrene         9E11087         330         330         ug/kg wet         ND         0.200         2200           Dibenzofuran         9E11087         3300         170         1.7         ug/kg wet         3210         97         56-120         6         15           Dibethyl phthalate         9E11087         3300         170         4.4         ug/kg wet         330         101         65-124         7         15           Din-budyl phthalate         9E11087         3300         170         4.4         ug/kg wet         330         101         65-124         7         15           Din-budyl phthalate         9E11087         3300         170         5.8         ug/kg wet         330         100         68-133         8         16           Din-budyl phthalate         9E11087         3300         330         ug/kg wet         ND         0-200         200           Disultoton         9E11087         3300         330         ug/kg wet         ND         0-200         200           Flugenthamesufonate         9E11087         3300         170         2.4         ug/kg wet         330         0.200         200           Flugenthamesufonate         9E11087                                                                                                                                                                                                                                                                                                                                        | • •                             | 9E11087  |        |       | 330   | 150    | ug/kg wet | ND     |     | 0-200  | 200      |           |
| Dibenzofuran         9E11087         3300         170         1.7         ug/kg wet         3210         97         56-120         6         15           Diethyl phthalate         9E11087         3300         170         5.1         ug/kg wet         3380         102         66-128         7         15           Dimethyl phthalate         9E11087         3300         170         5.8         ug/kg wet         3300         100         65-124         7         15           Di-n-bulyl phthalate         9E11087         3300         170         5.8         ug/kg wet         3300         100         62-130         5         15           Di-n-bulyl phthalate         9E11087         3300         170         3.9         ug/kg wet         320         100         62-130         5         15           Din-bulyl phthalate         9E11087         3300         170         3.9         ug/kg wet         ND         -0-200         200           Disulaton         9E11087         3300         170         3.9         ug/kg wet         ND         -0-200         200           Disulaton         9E11087         3300         170         8.3         ug/kg wet         3320         100                                                                                                                                                                                                                                                                                                                                             |                                 | 9E11087  |        |       | 330   | 330    | ug/kg wet | ND     |     | 0-200  | 200      |           |
| Diethyl phthalate         Diethyl phthalate     < |                                 | 9E11087  |        | 3300  | 170   | 1.7    | ug/kg wet | 3210   | 97  | 56-120 | 6 15     |           |
| Dimethoate         9E11087         330         11         ug/kg wet         ND         0.200         200           Dimethyl phthalate         9E11087         3300         170         4.4         ug/kg wet         3300         65.124         7         15           Din-butyl phthalate         9E11087         3300         170         5.8         ug/kg wet         3300         68-130         5         15           Din-butyl phthalate         9E11087         3300         170         5.9         ug/kg wet         310         62-133         8         16           Din-butyl phthalate         9E11087         3300         330         ug/kg wet         ND         -0.200         200           Diphenylamine         9E11087         3300         170         2.4         ug/kg wet         ND         -0.200         200           Fluoranthene         9E11087         3300         170         2.4         ug/kg wet         320         100         62-131         5         15           Fluoranthene         9E11087         3300         170         8.6         ug/kg wet         320         90         60-132         7         15           Hexachlorobutadiene         9E11087         33                                                                                                                                                                                                                                                                                                                                          | Diethyl phthalate               | 9E11087  |        | 3300  | 170   | 5.1    | ug/kg wet | 3380   | 102 | 66-126 | 7 15     |           |
| Dimethy infrainte         BET1087         300         170         58         ug/kg wet         3310         100         58-130         5         15           Di-n-buly infhalate         9E11087         3300         170         3.9         ug/kg wet         3290         100         62-133         8         16           Din-buly infhalate         9E11087         3300         170         3.9         ug/kg wet         ND         0-200         200           Diphenylamine         9E11087         3300         330         ug/kg wet         ND         0-200         200           Disulfoton         9E11087         3300         170         2.4         ug/kg wet         ND         0-200         200           Fluoranthene         9E11087         3300         170         2.4         ug/kg wet         330         100         62-131         5         15           Fluoranthene         9E11087         3300         170         2.4         ug/kg wet         320         100         62-131         5         15           Fluoranthene         9E11087         3300         170         8.6         ug/kg wet         320         100         62-131         5         15                                                                                                                                                                                                                                                                                                                                                             | • •                             | 9E11087  |        |       | 330   | 11     | ug/kg wet | ND     |     | 0-200  | 200      |           |
| Din-buly phthalate         9E11087         3300         170         58         ug/kg wet         3310         100         65-130         5         15           Din-octyl phthalate         9E11087         3300         170         3.9         ug/kg wet         3290         100         62-133         8         16           Dinoseb         9E11087         330         330         ug/kg wet         ND         -0-200         -200           Diphenylamine         9E11087         330         330         ug/kg wet         ND         -0-200         -200           Ethyl Methanesulfonate         9E11087         330         12         ug/kg wet         ND         -0-200         -200           Fluoranthene         9E11087         3300         170         2.4         ug/kg wet         330         63-131         5         15           Fluoranthene         9E11087         3300         170         3.9         ug/kg wet         3280         100         65-131         5         15           Hexachlorobenzone         9E11087         3300         170         8.3         ug/kg wet         3280         71         31-20         16         44           Hexachlorobenzone         9E11087                                                                                                                                                                                                                                                                                                                                          | Dimethyl phthalate              | 9E11087  |        | 3300  | 170   | 4.4    | ug/kg wet | 3350   | 101 | 65-124 | 7 15     |           |
| Din-octyl phthalate         9E11087         3300         170         3.9         ug/k g wet         3200         100         62-133         8         16           Dinoseb         9E11087         330         330         ug/k g wet         ND         0-200         200           Diphenylamine         9E11087         3300         330         330         ug/k g wet         ND         0-200         200           Disulfoton         9E11087         330         46         ug/k g wet         ND         0-200         200           Fluoranthene         9E11087         650         31         ug/k g wet         ND         0-200         200           Fluoranthene         9E11087         3300         170         2.4         ug/k g wet         3320         100         62-131         5         15           Fluoranthene         9E11087         3300         170         8.3         ug/k g wet         320         100         62-131         5         15           Hoxachlorobenzene         9E11087         3300         170         8.3         ug/k g wet         320         73         45-120         64         44           Hexachlorobthaciene         9E11087         3300                                                                                                                                                                                                                                                                                                                                                       | • •                             | 9E11087  |        | 3300  | 170   | 58     | ug/kg wet | 3310   | 100 | 58-130 | 5 15     |           |
| Dinoseb         9E11087         330         330         ug/kg wet         ND         0-200         200           Diphenylamine         9E11087         3300         330         ug/kg wet         ND         0-200         200           Disulfoton         9E11087         3300         330         ug/kg wet         ND         0-200         200           Ethly Methanesulfonate         9E11087         3300         170         ug/kg wet         ND         0-200         200           Famphur         9E11087         3300         170         2.4         ug/kg wet         330         100         62-131         5         15           Fluorathene         9E11087         3300         170         8.3         ug/kg wet         3300         103         63-126         6         15           Hexachlorobenzene         9E11087         3300         170         8.3         ug/kg wet         2320         99         60-132         7         15           Hexachlorobutadiene         9E11087         3300         170         8.6         ug/kg wet         240         71         31-120         16         44           Hexachloropchane         9E11087         3300         170 <td< td=""><td>• •</td><td>9E11087</td><td></td><td>3300</td><td>170</td><td>3.9</td><td>ug/kg wet</td><td>3290</td><td>100</td><td>62-133</td><td>8 16</td><td></td></td<>                                                                                                                                                                               | • •                             | 9E11087  |        | 3300  | 170   | 3.9    | ug/kg wet | 3290   | 100 | 62-133 | 8 16     |           |
| Diphenylamine         9E11087         3300         330         330         ug/kg wet         ND         -0-200         200           Disulfoton         9E11087         330         12         ug/kg wet         ND         -0-200         200           Ethyl Methanesulfonate         9E11087         330         46         ug/kg wet         ND         -0-200         200           Famphur         9E11087         3300         170         2.4         ug/kg wet         3320         63.12         6.13         5.15           Fluoranthene         9E11087         3300         170         2.4         ug/kg wet         3320         63.12E         6         15           Hexachlorobenzene         9E11087         3300         170         8.3         ug/kg wet         3280         99         60-132         7         15           Hexachlorobenzene         9E11087         3300         170         8.6         ug/kg wet         2840         71         31-120         16         49           Hexachloroptopentadiene         9E11087         3300         170         13         ug/kg wet         2840         71         31-120         16         49           Hexachlorophene         9E1108                                                                                                                                                                                                                                                                                                                                          | • •                             | 9E11087  |        |       | 330   | 330    | ug/kg wet | ND     |     | 0-200  | 200      |           |
| Disulforton         9E11087         330         12         ug/kg wet         ND         0-200         200           Ethyl Methanesulfonate         9E11087         330         46         ug/kg wet         ND         0-200         200           Famphur         9E11087         650         31         ug/kg wet         ND         0-200         200           Fluoranthene         9E11087         3300         170         2.4         ug/kg wet         320         100         62-131         5         15           Fluoranthene         9E11087         3300         170         8.3         ug/kg wet         320         100         62-131         5         15           Hexachlorobenzene         9E11087         3300         170         8.3         ug/kg wet         3280         99         60-132         7         15           Hexachlorobutadiene         9E11087         3300         170         8.6         ug/kg wet         2340         71         31-120         16         49           Hexachloropytopentadiene         9E11087         3300         170         13         ug/kg wet         ND         0-200         200           Indeno11.2.3 - cdJpyrene         9E11087         3                                                                                                                                                                                                                                                                                                                                          | Diphenylamine                   | 9E11087  |        | 3300  | 330   | 330    | ug/kg wet | ND     |     | 0-200  | 200      |           |
| Ethy Methanesultonate         9E11067         650         31         ug/kg wet         ND         0-200         200           Fluoranthene         9E11087         3300         170         2.4         ug/kg wet         3320         100         62-131         5         15           Fluoranthene         9E11087         3300         170         3.9         ug/kg wet         3390         103         63-126         6         15           Fluorene         9E11087         3300         170         8.3         ug/kg wet         3280         99         60-132         7         15           Hexachlorobenzene         9E11087         3300         170         8.6         ug/kg wet         2420         73         45-120         4         44           Hexachlorocyclopentadiene         9E11087         3300         170         13         ug/kg wet         2340         71         31-120         16         49           Hexachlorocyclopentadiene         9E11087         3300         170         13         ug/kg wet         2250         68         41-120         8         46           Hexachlorophene         9E11087         3300         170         4.6         ug/kg wet         ND                                                                                                                                                                                                                                                                                                                                           |                                 | 9E11087  |        |       | 330   | 12     | ug/kg wet | ND     |     | 0-200  | 200      |           |
| Famphur9E1108765031ug/kg wetND0-200200Fluoranthene9E1108733001702.4ug/kg wet332010062-131515Fluorene9E1108733001703.9ug/kg wet339010363-126615Hexachlorobenzene9E1108733001708.3ug/kg wet24207345-120444Hexachlorobutadiene9E1108733001708.6ug/kg wet24207131-1201649Hexachlorobutadiene9E11087330017051ug/kg wet22506841-120846Hexachlorophene9E11087330017013ug/kg wetND0-200200Hexachlorophene9E1108733001704.6ug/kg wetND0-200200Indeno[1,2,3-cd]pyrene9E1108733001704.6ug/kg wetND0-200200Isodrin9E1108733001708.4ug/kg wetND0-200200Isodrin9E1108733001708.4ug/kg wetND0-200200Isosafrole9E1108733001708.4ug/kg wetND0-200200Isosafrole9E1108733001708.4ug/kg wetND0-200200Isosafrole9E1108733001708.4ug/kg wetND0-200200 <td>Ethyl Methanesulfonate</td> <td>9E11087</td> <td></td> <td></td> <td>330</td> <td>46</td> <td>ug/kg wet</td> <td>ND</td> <td></td> <td>0-200</td> <td>200</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ethyl Methanesulfonate          | 9E11087  |        |       | 330   | 46     | ug/kg wet | ND     |     | 0-200  | 200      |           |
| FluorantheneDefitionDefitionDefitionDefitionDefitionDefitionDefitionFluorene9E1108733001703.9ug/kg wet339010363-126615Hexachlorobenzene9E1108733001708.3ug/kg wet24207345-120444Hexachlorobutadiene9E11087330017051ug/kg wet24207131-1201649Hexachlorocyclopentadiene9E11087330017051ug/kg wet22506841-120846Hexachlorophene9E11087330017013ug/kg wetND0-200200Hexachloroppene9E1108733001704.6ug/kg wetND0-200200Indeno[1,2,3-cd]pyrene9E1108733001704.6ug/kg wetND0-200200Indeno[1,2,3-cd]pyrene9E1108733001708.4ug/kg wetND0-200200Isophrone9E1108733001708.4ug/kg wetND0-200200Isophrone9E1108733001708.4ug/kg wetND0-200200Isophrone9E1108733001708.4ug/kg wetND0-200200Isophrone9E1108733001708.4ug/kg wetND0-200200Isophrone9E1108733001708.4ug/kg wetND <td< td=""><td></td><td>9E11087</td><td></td><td></td><td>650</td><td>31</td><td>ug/kg wet</td><td>ND</td><td></td><td>0-200</td><td>200</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | 9E11087  |        |       | 650   | 31     | ug/kg wet | ND     |     | 0-200  | 200      |           |
| FluoreneSci 11087Sci 0Sci 0TroBas<br>Bas<br>Bas<br>BasUg/kg withSci 0Sci 0Sci 0Hexachlorobutadiene9E1108733001708.6Ug/kg with24207345-120444Hexachlorobutadiene9E11087330017051Ug/kg with23407131-1201649Hexachlorocyclopentadiene9E11087330017013Ug/kg with22506841-120846Hexachlorophene9E11087330017013Ug/kg withND0-200200Hexachlorophene9E1108733001704.6Ug/kg withND0-200200Indeno[1,2,3-cd]pyrene9E1108733001704.6Ug/kg withND0-200200Indeno[1,2,3-cd]pyrene9E1108733001708.4Ug/kg withND0-200200Isophrone9E1108733001708.4Ug/kg withND0-200200Isophrone9E1108733001708.4Ug/kg withND0-200200Isophrone9E1108733001708.4Ug/kg withND0-200200Isophrone9E1108733001708.4Ug/kg withND0-200200Kepone9E1108750049Ug/kg withND0-200200Methapyrilene9E11087500990Ug/kg withND0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fluoranthene                    | 9E11087  |        | 3300  | 170   | 2.4    | ug/kg wet | 3320   | 100 | 62-131 | 5 15     |           |
| Hexachlorobenzene9E1108733001708.6ug/kg wet24207345-120444Hexachlorocyclopentadiene9E11087330017051ug/kg wet23407131-1201649Hexachlorocyclopentadiene9E11087330017013ug/kg wet22506841-120846Hexachlorophene9E11087330017013ug/kg wetND0-200200Hexachlorophene9E1108733001704.6ug/kg wetND0-200200Indeno[1,2,3-cd]pyrene9E1108733001704.6ug/kg wet375011456-149415Isodrin9E1108733001708.4ug/kg wet27908456-120617Isosafrole9E1108733001708.4ug/kg wetND0-200200Isosafrole9E1108733001708.4ug/kg wet27908456-120617Isosafrole9E1108733001708.4ug/kg wetND0-200200Kepone9E1108733001708.4ug/kg wetND0-200200Kepone9E110871500990ug/kg wetND0-200200Methapyrilene9E110871500990ug/kg wetND0-200200Methapyrilene9E11087330100ug/kg wetND0-200 </td <td>Fluorene</td> <td>9E11087</td> <td></td> <td>3300</td> <td>170</td> <td>3.9</td> <td>ug/kg wet</td> <td>3390</td> <td>103</td> <td>63-126</td> <td>6 15</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fluorene                        | 9E11087  |        | 3300  | 170   | 3.9    | ug/kg wet | 3390   | 103 | 63-126 | 6 15     |           |
| HexachlorobutadieneOE 11001OE 00011010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hexachlorobenzene               | 9E11087  |        | 3300  | 170   | 8.3    | ug/kg wet | 3280   | 99  | 60-132 | 7 15     |           |
| Hexachlorocyclopentadiene0 1110010 000011000 11000 11000 11000 11000 1100Hexachloropethane9E11087330017013ug/kg wetND0-200200Hexachlorophene9E11087330019ug/kg wetND0-200200Indeno[1,2,3-cd]pyrene9E1108733001704.6ug/kg wet375011456-149415Isodrin9E1108733001704.6ug/kg wet27908456-120617Isosafrole9E1108733001708.4ug/kg wetND0-200200Isosafrole9E1108733001708.4ug/kg wet27908456-120617Isosafrole9E1108733001708.4ug/kg wetND0-200200Kepone9E1108733001708.4ug/kg wetND0-200200Kepone9E11087330100ug/kg wetND0-200200Methapyrilene9E110871500990ug/kg wetND0-200200Methapyrilene9E11087330100ug/kg wetND0-200200Methapyrilene9E11087330100ug/kg wetND0-200200Methapyrilene9E11087330100ug/kg wetND0-200200Methapyrilene9E11087330100ug/kg wetND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hexachlorobutadiene             | 9E11087  |        | 3300  | 170   | 8.6    | ug/kg wet | 2420   | 73  | 45-120 | 4 44     |           |
| Hexachloroethane       SE 11001       Good       Ho       Land       Land <thland< th="">       Land       <thlan< td=""><td>Hexachlorocyclopentadiene</td><td>9E11087</td><td></td><td>3300</td><td>170</td><td>51</td><td>ug/kg wet</td><td>2340</td><td>71</td><td>31-120</td><td></td><td></td></thlan<></thland<>                                                                                                                                                                                        | Hexachlorocyclopentadiene       | 9E11087  |        | 3300  | 170   | 51     | ug/kg wet | 2340   | 71  | 31-120 |          |           |
| Hexachloropropene         9E11087         330         19         ug/kg wet         ND         0-200         200           Indeno[1,2,3-cd]pyrene         9E11087         3300         170         4.6         ug/kg wet         3750         114         56-149         4         15           Isodrin         9E11087         3300         170         4.6         ug/kg wet         ND         0-200         200           Isophorone         9E11087         3300         170         8.4         ug/kg wet         2790         84         56-120         6         17           Isosafrole         9E11087         3300         170         8.4         ug/kg wet         ND         0-200         200           Kepone         9E11087         3300         27         ug/kg wet         ND         0-200         200           Methapyrilene         9E11087         550         49         ug/kg wet         ND         0-200         200           Methapyrilene         9E11087         1500         990         ug/kg wet         ND         0-200         200           Methyl Methanesulfonate         9E11087         330         100         ug/kg wet         ND         0-200         200 <td>Hexachloroethane</td> <td>9E11087</td> <td></td> <td>3300</td> <td>170</td> <td>13</td> <td>ug/kg wet</td> <td>2250</td> <td>68</td> <td>41-120</td> <td>8 46</td> <td></td>                                                                                                                                                                       | Hexachloroethane                | 9E11087  |        | 3300  | 170   | 13     | ug/kg wet | 2250   | 68  | 41-120 | 8 46     |           |
| Hexachioropropene       9E11087       3300       170       4.6       ug/kg wet       3750       114       56-149       4       15         Isodrin       9E11087       3300       170       4.6       ug/kg wet       ND       0-200       200         Isophorone       9E11087       3300       170       8.4       ug/kg wet       2790       84       56-120       6       17         Isosafrole       9E11087       3300       27       ug/kg wet       ND       0-200       200         Kepone       9E11087       650       49       ug/kg wet       ND       0-200       200         Methapyrilene       9E11087       1500       990       ug/kg wet       ND       0-200       200         Methyl Methanesulfonate       9E11087       330       100       ug/kg wet       ND       0-200       200         Methyl Methanesulfonate       9E11087       550       240       ug/kg wet       ND       0-200       200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hexachlorophene                 | 9E11087  |        |       | 3300  | 3300   | ug/kg wet | ND     |     | 0-200  |          |           |
| Indehol 1, 2, 3-cd pyrene         9E11087         330         31         ug/kg wet         ND         0-200         200           Isophorone         9E11087         3300         170         8.4         ug/kg wet         2790         84         56-120         6         17           Isosafrole         9E11087         330         27         ug/kg wet         ND         0-200         200           Kepone         9E11087         650         49         ug/kg wet         ND         0-200         200           Methapyrilene         9E11087         1500         990         ug/kg wet         ND         0-200         200           Methyl Methanesulfonate         9E11087         330         100         ug/kg wet         ND         0-200         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hexachloropropene               | 9E11087  |        |       | 330   | 19     | ug/kg wet |        |     | 0-200  |          |           |
| Isodrin       9E11087       3300       170       8.4       ug/kg wet       2790       84       56-120       6       17         Isosafrole       9E11087       3300       170       8.4       ug/kg wet       ND       0-200       200         Kepone       9E11087       650       49       ug/kg wet       ND       0-200       200         Methapyrilene       9E11087       1500       990       ug/kg wet       ND       0-200       200         Methyl Methanesulfonate       9E11087       330       100       ug/kg wet       ND       0-200       200         Methyl Methanesulfonate       9E11087       550       240       ug/kg wet       ND       0-200       200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Indeno[1,2,3-cd]pyrene          | 9E11087  |        | 3300  | 170   | 4.6    | ug/kg wet | 3750   | 114 |        |          |           |
| Isosafrole         9E11087         330         27         ug/kg wet         ND         0-200         200           Kepone         9E11087         650         49         ug/kg wet         ND         0-200         200           Methapyrilene         9E11087         1500         990         ug/kg wet         ND         0-200         200           Methapyrilene         9E11087         1500         990         ug/kg wet         ND         0-200         200           Methyl Methanesulfonate         9E11087         330         100         ug/kg wet         ND         0-200         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Isodrin                         | 9E11087  |        |       | 330   | 31     | ug/kg wet | ND     |     |        |          |           |
| Isosarrole         9E11087         650         49         ug/kg wet         ND         0-200         200           Methapyrilene         9E11087         1500         990         ug/kg wet         ND         0-200         200           Methapyrilene         9E11087         1500         990         ug/kg wet         ND         0-200         200           Methyl Methanesulfonate         9E11087         330         100         ug/kg wet         ND         0-200         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Isophorone                      | 9E11087  |        | 3300  | 170   | 8.4    | ug/kg wet | 2790   | 84  |        |          |           |
| Kepone         9E11087         1500         990         ug/kg wet         ND         0-200         200           Methapyrilene         9E11087         330         100         ug/kg wet         ND         0-200         200           Methyl Methanesulfonate         9E11087         330         100         ug/kg wet         ND         0-200         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Isosafrole                      | 9E11087  |        |       | 330   | 27     | ug/kg wet |        |     |        |          |           |
| Methapyrilene         9E11087         1500         990         ug/kg wet         ND         0-200         200           Methapselfonate         9E11087         330         100         ug/kg wet         ND         0-200         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kepone                          | 9E11087  |        |       | 650   | 49     | ug/kg wet |        |     |        |          |           |
| Methyl Methanesulfonate         9E11087         330         100         ug/kg wet         ND         0-200         200           05111027         550         210         ug/kg wet         ND         0-200         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | 9E11087  |        |       | 1500  | 990    | ug/kg wet |        |     |        |          |           |
| N N Directive Security 9F11087 650 210 ug/kg wet ND 0-200 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | 9E11087  |        |       | 330   | 100    | ug/kg wet |        |     |        |          |           |
| N,N-Dimethyl Formamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N,N-Dimethyl Formamide          | 9E11087  |        |       | 650   | 210    | ug/kg wet | ND     |     |        |          |           |
| Naphthalene 9E11087 3300 170 2.8 ug/kg wet 2700 82 46-120 1 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Naphthalene                     | 9E11087  |        | 3300  | 170   | 2.8    | ug/kg wet |        |     |        |          |           |
| Nitrobenzene 9E11087 3300 170 7.4 ug/kg wet 2640 80 49-120 1 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nitrobenzene                    | 9E11087  |        | 3300  | 170   | 7.4    | ug/kg wet | 2640   | 80  | 49-120 | 1 24     |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

|                                 |          |        | LA    | BORAT | ORY QC | DATA      |        |     |        |     |       |          |
|---------------------------------|----------|--------|-------|-------|--------|-----------|--------|-----|--------|-----|-------|----------|
|                                 | Seq/     | Source | Spike |       |        |           |        | %   | % REC  | %   | RPD   |          |
| Analyte                         | Batch    | Result | Level | MRL   | MDL.   | Units     | Result | REC | Limits | RPD | Limit | Qualifie |
| Semivolatile Organics by GC/MS  |          |        |       |       |        |           |        |     |        |     |       |          |
| LCS Dup Analyzed: 05/20/09 (9E1 | 1087-BSD | 1)     |       |       |        |           |        |     |        |     |       |          |
| N-Nitro-o-toluidine             | 9E11087  |        |       | 330   | 22     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| N-Nitrosodiethylamine           | 9E11087  |        |       | 330   | 32     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| N-Nitrosodimethylamine          | 9E11087  |        | 3300  | 330   | 12     | ug/kg wet | 2180   | 66  | 0-200  | 6   | 200   | R2       |
| N-Nitrosodi-n-butylamine        | 9E11087  |        |       | 330   | 25     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| N-Nitrosodi-n-propylamine       | 9E11087  |        | 3300  | 170   | 13     | ug/kg wet | 2810   | 85  | 46-120 | 1   | 31    |          |
| N-Nitrosodiphenylamine          | 9E11087  |        | 3300  | 170   | 9.1    | ug/kg wet | 4190   | 127 | 20-119 | 6   | 15    | L1       |
| N-Nitrosomethylethylamine       | 9E11087  |        |       | 330   | 32     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| N-Nitrosomorpholine             | 9E11087  |        |       | 330   | 330    | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| N-Nitrosopiperidine             | 9E11087  |        |       | 330   | 45     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| N-Nitrosopyrrolidine            | 9E11087  |        |       | 330   | 25     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| 0,0,0-Triethyl phosphorothioate | 9E11087  |        |       | 330   | 11     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| Parathion-ethyl                 | 9E11087  |        |       | 330   | 9.1    | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| Parathion-methyl                | 9E11087  |        |       | 330   | 12     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| p-Dimethylamino azobenzene      | 9E11087  |        |       | 330   | 33     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| Pentachlorobenzene              | 9E11087  |        |       | 330   | 39     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| Pentachloronitrobenzene         | 9E11087  |        |       | 330   | 34     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| Pentachlorophenol               | 9E11087  |        | 3300  | 330   | 57     | ug/kg wet | 3090   | 93  | 33-136 | 3   | 35    |          |
| Phenacetin                      | 9E11087  |        |       | 330   | 27     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| Phenanthrene                    | 9E11087  |        | 3300  | 170   | 3.5    | ug/kg wet | 3410   | 103 | 60-130 | 7   | 15    |          |
| Phenol                          | 9E11087  |        | 3300  | 170   | 18     | ug/kg wet | 2570   | 78  | 36-120 | 2   | 35    |          |
| Phorate                         | 9E11087  |        |       | 330   | 66     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| Phthalic anhydride              | 9E11087  |        |       | 9900  | 770    | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| p-Phenylene diamine             | 9E11087  |        |       | 790   | 200    | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| Pronamide                       | 9E11087  |        |       | 330   | 7.6    | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| Pyrene                          | 9E11087  |        | 3300  | 170   | 1.1    | ug/kg wet | 3330   | 101 | 51-133 | 8   | 35    |          |
| Pyridine                        | 9E11087  |        | 3300  | 330   | 94     | ug/kg wet | 2110   | 64  | 8-120  | 2   | 49    |          |
| Quinoline                       | 9E11087  |        | 3300  | 330   | 53     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| Safrole                         | 9E11087  |        |       | 330   | 18     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| Sulfotepp                       | 9E11087  |        |       | 330   | 330    | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| Thionazin                       | 9E11087  |        |       | 330   | 10     | ug/kg wet | ND     |     | 0-200  |     | 200   |          |
| Surrogate: 2,4,6-Tribromophenol | · · · ·  |        |       |       |        | ug/kg wet |        | 102 | 39-146 |     |       |          |
| Surrogate: 2-Fluorobiphenyl     |          |        |       |       |        | ug/kg wet |        | 89  | 37-120 |     |       |          |
| Surrogate: 2-Fluorophenol       |          |        |       |       |        | ug/kg wet |        | 69  | 18-120 |     |       |          |
| Surrogate: Nitrobenzene-d5      |          |        |       |       |        | ug/kg wet |        | 82  | 34-132 |     |       |          |
| Surrogate: Phenol-d5            |          |        |       |       |        | ug/kg wet |        | 77  | 11-120 |     |       |          |
| Surrogate: p-Terphenyl-d14      |          |        |       |       |        | ug/kg wet |        | 87  | 58-147 |     |       |          |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                                                 |                    |                  | LA             | BORAT         | ORY QC   | DATA                   |          |          |                 |          |              |           |
|-----------------------------------------------------------------|--------------------|------------------|----------------|---------------|----------|------------------------|----------|----------|-----------------|----------|--------------|-----------|
| A                                                               | Seq/               | Source<br>Result | Spike<br>Level | MRL           | MDL      | Units                  | Result   | %<br>REC | % REC<br>Limits | %<br>RPD | RPD<br>Limit | Qualifier |
| Analyte<br>Total Metals by SW 846 Series M                      | Batch              | Result           | Level          |               |          | 01116                  |          |          |                 |          |              |           |
|                                                                 |                    |                  |                |               |          |                        |          |          |                 |          |              |           |
| Blank Analyzed: 05/13/09 (9E120                                 |                    |                  |                |               |          |                        | ND       |          |                 |          |              |           |
| Mercury                                                         | 9E12055            |                  |                | 0.0192        | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Matrix Spike Analyzed: 05/13/09<br>QC Source Sample: RSE0369-01 | (9E12055-N         | <b>/</b> IS1)    |                |               |          |                        |          |          |                 |          |              |           |
| Mercury                                                         | 9E12055            | 0.404            | 0.367          | 0.0441        | NR       | mg/kg dry              | 0.986    | 158      | 75-125          |          |              | D08,M1    |
| Matrix Spike Dup Analyzed: 05/1<br>QC Source Sample: RSE0369-01 | 3/09 (9E120        | 055-MSD1)        |                |               |          |                        |          |          |                 |          |              |           |
| Mercury                                                         | 9E12055            | 0.404            | 0.371          | 0.0446        | NR       | mg/kg dry              | 0.934    | 143      | 75-125          | 5        | 20           | D08,M1    |
| Reference Analyzed: 05/13/09 (9                                 | E12055-SR          | M1)              |                |               |          |                        |          |          |                 |          |              |           |
| Mercury                                                         | 9E12055            |                  | 1.77           | 0.106         | NR       | mg/kg wet              | 1.38     | 78       | 68.4-132.2      |          |              |           |
| ,,                                                              |                    |                  |                |               |          |                        |          |          |                 |          |              |           |
| Total Metals by SW 846 Series M                                 |                    |                  |                |               |          |                        |          |          |                 |          |              |           |
| Blank Analyzed: 05/13/09 (9E120                                 |                    |                  |                |               |          |                        |          |          |                 |          |              |           |
| Aluminum                                                        | 9E12064            |                  |                | 10.0          | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Antimony                                                        | 9E12064            |                  |                | 15.0          | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Arsenic                                                         | 9E12064            |                  |                | 2.0           | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Barium                                                          | 9E12064            |                  |                | 0.500         | NR       | mg/kg wet              |          |          |                 |          |              |           |
| Beryllium                                                       | 9E12064            |                  |                | 5.00          | NR       | mg/kg wet              | ND<br>ND |          |                 |          |              |           |
| Cadmium                                                         | 9E12064            |                  |                | 0.200         | NR<br>NR | mg/kg wet<br>mg/kg wet | ND       |          |                 |          |              |           |
| Calcium                                                         | 9E12064            |                  |                | 50.0          | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Chromium                                                        | 9E12064            |                  |                | 0.500<br>5.00 | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Cobalt                                                          | 9E12064            |                  |                | 5.0           | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Copper                                                          | 9E12064<br>9E12064 |                  |                | 10.0          | NR       | mg/kg wet              | ND       |          |                 |          |              | B3        |
| Iron                                                            | 9E12064            |                  |                | 1.0           | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Lead                                                            | 9E12064            |                  |                | 20.0          | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Magnesium                                                       | 9E12064            |                  |                | 5.0           | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Manganese                                                       | 9E12064            |                  |                | 5.00          | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Nickel                                                          | 9E12064            |                  |                | 30.0          | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Potassium                                                       | 9E12064            |                  |                | 5.0           | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Selenium                                                        | 9E12064            |                  |                | 5.00          | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Silver<br>Sodium                                                | 9E12064            |                  |                | 140           | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Thallium                                                        | 9E12064            |                  |                | 6.0           | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Vanadium                                                        | 9E12064            |                  |                | 5.00          | NR       | mg/kg wet              | ND       |          |                 |          |              |           |
| Zinc                                                            | 9E12064            |                  |                | 5.0           | NR       | mg/kg wet              | ND       |          |                 |          |              | В         |
| Matrix Spike Analyzed: 05/13/09                                 | (9E12064-N         | <b>IS</b> 1)     |                |               |          |                        |          |          |                 |          |              |           |
| QC Source Sample: RSE0369-01                                    | (                  | ,                |                |               |          |                        |          |          |                 |          |              |           |
| •                                                               | 9E12064            | 15800            | 2210           | 11.0          | NR       | mg/kg dry              | 14000    | -81      | 75-125          |          |              | MHA       |
| Aluminum<br>Antimony                                            | 9E12064            | 4.56             | 44.1           | 16.5          | NR       | mg/kg dry              | 31.3     | 61       | 75-125          |          |              | M1        |
| Anumony<br>Arsenic                                              | 9E12064            | 57.1             | 44.1           | 2.2           | NR       | mg/kg dry              | 89.4     | 73       | 75-125          |          |              | M1        |
| Barium                                                          | 9E12064            | 151              | 44.1           | 0.551         | NR       | mg/kg dry              | 154      | 8        | 75-125          |          |              | M1        |
| Banum<br>Beryllium                                              | 9E12064            | 2.06             | 44.1           | 5.00          | NR       | mg/kg dry              | 39.4     | 85       | 75-125          |          |              |           |
| Cadmium                                                         | 9E12064            | 0.158            | 44.1           | 0.221         | NR       | mg/kg dry              | 37.5     | 85       | 75-125          |          |              |           |
| Calcium                                                         | 9E12064            | 70700            | 2210           | 55.1          | NR       | mg/kg dry              | 55600    | -686     | 75-125          |          |              | MHA       |
| Chromium                                                        | 9E12064            | 26.0             | 44.1           | 0.551         | NR       | mg/kg dry              | 68.0     | 95       | 75-125          |          |              |           |
| ononiun                                                         |                    |                  |                |               |          |                        |          |          |                 |          |              |           |

### TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

### Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                              |                    |              | LA           | BORAT | ORY QC | DATA      |        |       |            |         |       |           |
|------------------------------|--------------------|--------------|--------------|-------|--------|-----------|--------|-------|------------|---------|-------|-----------|
|                              | Seq/               | Source       | Spike        |       |        |           |        | %     | % REC      | %       | RPD   | <b>.</b>  |
| Analyte                      | Batch              | Result       | Level        | MRL   | MDL    | Units     | Result | REC   | Limits     | RPD     | Limit | Qualifier |
| Total Metals by SW 846 Serie | es Methods         |              |              |       |        |           |        |       |            |         |       |           |
| Matrix Spike Analyzed: 05/13 | 3/09 (9E12064-N    | <b>I</b> S1) |              |       |        |           |        |       |            |         |       |           |
| QC Source Sample: RSE0369-   | 01                 |              |              |       |        |           |        |       |            |         |       |           |
| Cobalt                       | 9E12064            | 4.61         | 44.1         | 5.00  | NR     | mg/kg dry | 43.5   | 88    | 75-125     |         |       |           |
| Copper                       | 9E12064            | 75.8         | 44.1         | 5.0   | NR     | mg/kg dry | 101    | 57    | 75-125     |         |       | M1        |
| Iron                         | 9E12064            | 37700        | 2210         | 11.0  | NR     | mg/kg dry | 40300  | 115   | 75-125     |         |       |           |
| Lead                         | 9E12064            | 172          | 44.1         | 1.1   | NR     | mg/kg dry | 160    | -29   | 75-125     |         |       | M1        |
| Magnesium                    | 9E12064            | 3790         | 2210         | 22.1  | NR     | mg/kg dry | 5570   | 81    | 75-125     |         |       |           |
| Manganese                    | 9E12064            | 3730         | 44.1         | 5.0   | NR     | mg/kg dry | 4380   | 1460  | 75-125     |         |       | MHA,D08   |
| Nickel                       | 9E12064            | 14.0         | 44.1         | 5.00  | NR     | mg/kg dry | 50.7   | 83    | 75-125     |         |       |           |
| Potassium                    | 9E12064            | 1760         | 2210         | 33.1  | NR     | mg/kg dry | 3370   | 73    | 75-125     |         |       | M1        |
| Selenium                     | 9E12064            | 0.770        | 44.1         | 5.0   | NR     | mg/kg dry | 30.3   | 67    | 75-125     |         |       | M1        |
| Silver                       | 9E12064            | 0.127        | 11.0         | 5.00  | NR     | mg/kg dry | 10.4   | 93    | 75-125     |         |       |           |
| Sodium                       | 9E12064            | 511          | 2210         | 154   | NR     | mg/kg dry | 2290   | 81    | 75-125     |         |       |           |
| Thallium                     | 9E12064            | ND           | 44.1         | 6.6   | NR     | mg/kg dry | 35.6   | 81    | 75-125     |         |       |           |
| Vanadium                     | 9E12064            | 23.0         | 44.1         | 5.00  | NR     | mg/kg dry | 61.4   | 87    | 75-125     |         |       |           |
| Zinc                         | 9E12064            | 151          | 44.1         | 5.0   | NR     | mg/kg dry | 204    | 119   | 75-125     |         |       |           |
| Matrix Spike Dup Analyzed:   | 05/13/09 (9E120    | 64-MSD1)     |              |       |        |           |        |       |            |         |       |           |
| QC Source Sample: RSE0369-   |                    |              |              |       |        |           |        |       |            |         |       |           |
| -                            | 9E12064            | 15800        | 2160         | 10.8  | NR     | mg/kg dry | 9650   | -283  | 75-125     | 37      | 20    | MHA,R2    |
| Aluminum                     | 9E12064            | 4.56         | 43.2         | 16.2  | NR     | mg/kg dry | 32.7   | 65    | 75-125     | 4       | 20    | M1        |
| Antimony                     | 9E12064<br>9E12064 | 57.1         | 43.2         | 2.2   | NR     | mg/kg dry | 142    | 198   | 75-125     | 46      | 20    | M1,R2     |
| Arsenic                      | 9E12064<br>9E12064 | 151          | 43.2         | 0.540 | NR     | mg/kg dry | 157    | 15    | 75-125     | 2       | 20    | M1        |
| Barium                       | 9E12064<br>9E12064 | 2.06         | 43.2         | 5.00  | NR     | mg/kg dry | 40.1   | 88    | 75-125     | 2       | 20    |           |
| Beryllium                    | 9E12064<br>9E12064 | 0.158        | 43.2<br>43.2 | 0.216 | NR     | mg/kg dry | 38.7   | 89    | 75-125     | 3       | 20    |           |
| Cadmium                      | 9E12064<br>9E12064 |              | 43.2<br>2160 | 54.0  | NR     | mg/kg dry | 39100  | -1460 | 75-125     | 35      | 20    | MHA,R2    |
| Calcium                      |                    | 70700        |              |       |        |           | 80.7   | 127   | 75-125     | 17      | 20    | M1 17,172 |
| Chromium                     | 9E12064            | 26.0         | 43.2         | 0.540 | NR     | mg/kg dry |        | 94    | 75-125     | 4       | 20    | IVI I     |
| Cobalt                       | 9E12064            | 4.61         | 43.2         | 5.00  | NR     | mg/kg dry | 45.3   |       | 75-125     | 4<br>14 | 20    |           |
| Copper                       | 9E12064            | 75.8         | 43.2         | 5.0   | NR     | mg/kg dry | 116    | 94    |            |         |       |           |
| Iron                         | 9E12064            | 37700        | 2160         | 10.8  | NR     | mg/kg dry | 46100  | 389   | 75-125     | 14<br>5 | 20    | MHA<br>M1 |
| Lead                         | 9E12064            | 172          | 43.2         | 1.1   | NR     | mg/kg dry | 152    | -48   | 75-125     |         | 20    |           |
| Magnesium                    | 9E12064            | 3790         | 2160         | 21.6  | NR     | mg/kg dry | 4660   | 40    | 75-125     | 18      | 20    | M1        |
| Manganese                    | 9E12064            | 3730         | 43.2         | 5.0   | NR     | mg/kg dry | 2640   | -2540 | 75-125     | 50      | 20    | MHA,D08,R |
| Nickel                       | 9E12064            | 14.0         | 43.2         | 5.00  | NR     | mg/kg dry | 56.9   | 99    | 75-125     | 11      | 20    |           |
| Potassium                    | 9E12064            | 1760         | 2160         | 32.4  | NR     | mg/kg dry | 3040   | 59    | 75-125     | 10      | 20    | M1        |
| Selenium                     | 9E12064            | 0.770        | 43.2         | 5.0   | NR     | mg/kg dry | 32.2   | 73    | 75-125     | 6       | 20    | M1        |
| Silver                       | 9E12064            | 0.127        | 10.8         | 5.00  | NR     | mg/kg dry | 10.5   | 96    | 75-125     | 1       | 20    |           |
| Sodium                       | 9E12064            | 511          | 2160         | 151   | NR     | mg/kg dry | 2210   | 79    | 75-125     | 4       | 20    |           |
| Thallium                     | 9E12064            | ND           | 43.2         | 6.5   | NR     | mg/kg dry | 36.4   | 84    | 75-125     | 2       | 20    |           |
| Vanadium                     | 9E12064            | 23.0         | 43.2         | 5.00  | NR     | mg/kg dry | 63.1   | 93    | 75-125     | 3       | 20    |           |
| Zinc                         | 9E12064            | 151          | 43.2         | 5.0   | NR     | mg/kg dry | 184    | 75    | 75-125     | 10      | 20    |           |
| Reference Analyzed: 05/13/0  | 9 (9E12064-SRM     | <b>/</b> 1)  |              |       |        |           |        |       |            |         |       |           |
| Aluminum                     | 9E12064            |              | 10100        | 10.0  | NR     | mg/kg wet | 8500   | 84    | 52.1-147.5 |         |       |           |
| Antimony                     | 9E12064            |              | 138          | 15.0  | NR     | mg/kg wet | 86.4   | 63    | 0-233.3    |         |       |           |
| Arsenic                      | 9E12064            |              | 123          | 2.0   | NR     | mg/kg wet | 113    | 92    | 82.9-117.1 |         |       |           |
| Barium                       | 9E12064            |              | 256          | 0.500 | NR     | mg/kg wet | 236    | 92    | 80.5-119.5 |         |       |           |
| Beryllium                    | 9E12064            |              | 75.9         | 5.00  | NR     | mg/kg wet | 70.6   | 93    | 82.7-117.4 |         |       |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| Total Metais by SW 848 Sories Methods           Reference Analyzed: 05/13/06 (DE120054 NT)           Cadinum         05/12064         256         0.200         NR         monga wet         200         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th colspan="14"></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                   |             |       |             |     |           |        |     |            |           |           |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|-------------|-------|-------------|-----|-----------|--------|-----|------------|-----------|-----------|--|--|
| Total Metais by SW 848 Sories Methods           Reference Analyzed: 05/13/06 (DE120054 NT)           Cadinum         05/12064         256         0.200         NR         monga wet         200         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th></th> <th>Seq/</th> <th>Source</th> <th>Spike</th> <th></th> <th></th> <th></th> <th></th> <th>%</th> <th>% REC</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Seq/              | Source      | Spike |             |     |           |        | %   | % REC      |           |           |  |  |
| Reference Analyzed: 05/13/09 (0E12064-SRMT)         Zash         D.200         N.R.         mg/kg wet         230         89         8.7.116.7         Image and the set of the set                                                       | Analyte                    | Batch             | Result      | Level | MRL         | MDL | Units     | Result | REC | Limits     | RPD Limit | Qualifier |  |  |
| afficion           9fficion           9fficion <t< th=""><th>Total Metals by SW 846 Se</th><th>ries Methods</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Metals by SW 846 Se  | ries Methods      |             |       |             |     |           |        |     |            |           |           |  |  |
| Cadamin         Set2084         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reference Analyzed: 05/13  | /09 (9E12064-SR   | M1)         |       |             |     |           |        |     |            |           |           |  |  |
| Calcian6F120495.00NRmpk wet97.0097.097.1197.0097.21.1297.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.0097.00 <td>Cadmium</td> <td>9E12064</td> <td></td> <td>258</td> <td>0.200</td> <td>NR</td> <td>mg/kg wet</td> <td>230</td> <td>89</td> <td>83.7-116.7</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cadmium                    | 9E12064           |             | 258   | 0.200       | NR  | mg/kg wet | 230    | 89  | 83.7-116.7 |           |           |  |  |
| Chronium<br>Chronium<br>CobatGenz<br>FilzopeNR<br>FilzopeNR<br>FilzopeMink<br>mark writeMin<br>Mink<br>MinkMin<br>MinkMin<br>MinkMin<br>Mink<br>MinkMin<br>MinkMin<br>MinkMin<br>MinkMin<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>MinkMink<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | 9E12064           |             | 9830  | 50.0        | NR  | mg/kg wet | 9230   | 94  | 81.2-119   |           |           |  |  |
| Catality         Encode         Table         NR         mg/kg wet         111         91         83.6-115.6         Here           Torn         GE12064         120         10.0         NR         mg/kg wet         1450.0         52.06-143.9         Here         53.0           Magnesum         9E12064         136         10.0         NR         mg/kg wet         39.0         52.517.5         Here         54.0         44.0         52.517.5         Here         54.0         44.0         44.0         52.517.5         Here         54.0         44.0         44.0         54.0         44.0         54.0         54.0         44.0         54.0         44.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         54.0         56.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | 9E12064           |             | 138   | 0.500       | NR  | mg/kg wet | 131    | 95  | 81.9-118.1 |           |           |  |  |
| Corper         F1200         T7800         T0.0         NR         mg/kg wet         14500         8.2         50.5-143.4         50.5           Laad         9E12064         4210         NR         mg/kg wet         1310         9.3         80.5-110.9         1           Margeneum         9E12054         4210         20.0         NR         mg/kg wet         534         60.5-110.9         1         7.7-122.8         1         1           Nickel         9E12054         570         10.0         NR         mg/kg wet         138         94         72.122.7         1         1           Otasalum         9E12054         4480         30.0         NR         mg/kg wet         138         94         72.122.7         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th< td=""><td>Cobalt</td><td>9E12064</td><td></td><td>216</td><td>5.00</td><td>NR</td><td>mg/kg wet</td><td>196</td><td>91</td><td>83.8-116.7</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cobalt                     | 9E12064           |             | 216   | 5.00        | NR  | mg/kg wet | 196    | 91  | 83.8-116.7 |           |           |  |  |
| inform       best of the set of the | Copper                     | 9E12064           |             | 122   | 5.0         | NR  | mg/kg wet | 111    | 91  | 83.6-115.6 |           |           |  |  |
| Barbon         BE12064         4210         20.0         NR         mg/kg wet         330         37         72-122.8           Marganese         BE12064         570         10.0         NR         mg/kg wet         534         94         82.5 117.5         I           Polassium         BE12064         111         10.0         NR         mg/kg wet         102         83.8 117.1         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Iron                       | 9E12064           |             | 17600 | 10.0        | NR  |           | 14500  | 82  | 50.5-149.4 |           | B3        |  |  |
| Magnesium         Set         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lead                       | 9E12064           |             | 136   | 1.0         | NR  | mg/kg wet | 127    | 93  | 80.9-119.9 |           |           |  |  |
| Maring markes         Pickel         911         10.0         NR         mg/kg wet         102         92         83.8-117.1         ·         ·         ·           Polassium         9E12064         -         4480         30.0         NR         mg/kg wet         180         47         75.1127.7         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Magnesium                  | 9E12064           |             | 4210  | 20.0        | NR  | mg/kg wet | 3910   | 93  |            |           |           |  |  |
| ninke         912064         9100         NR         mg/kg wet         4070         91         72.1-127. $21.127.$ Steinum         912064         100         NR         mg/kg wet         818         94         79.9-119.6 $31.127.$ $31.127.$ $31.127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.1127.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31.117.$ $31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Manganese                  | 9E12064           |             | 570   | 10.0        | NR  | mg/kg wet | 534    | 94  |            |           |           |  |  |
| Produstation         9E120064         199         10.0         NR         mg/kg wet         188         94         79.9119.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nickel                     | 9E12064           |             | 111   | 10.0        | NR  | mg/kg wet | 102    |     | 83.8-117.1 |           |           |  |  |
| Sile         The sector         The sector </td <td>Potassium</td> <td>9E12064</td> <td></td> <td>4480</td> <td>30.0</td> <td>NR</td> <td>mg/kg wet</td> <td>4070</td> <td>91</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Potassium                  | 9E12064           |             | 4480  | 30.0        | NR  | mg/kg wet | 4070   | 91  |            |           |           |  |  |
| Sinter         Sinter         B89         140         NR         mg/kg wet         813         94         70.2-130           Thallium         9E12064         297         10.0         NR         mg/kg wet         284         95         81.1-118.9            Vanadium         9E12064         158         10.0         NR         mg/kg wet         144         91         79.7-120.3           Total Metals by SW 846 Series Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Selenium                   | 9E12064           |             | 199   | 10.0        | NR  | mg/kg wet | 188    | 94  | 79.9-119.6 |           |           |  |  |
| Subinit         9512084         297         10.0         NR         mg/kg wet         284         95         81.1-118.9           Vanadium         9E12064         158         10.0         NR         mg/kg wet         144         91         797.120.3           Zine         9E12064         158         10.0         NR         mg/kg wet         283         90         82.2-118.2           Total Metals by SW 846 Series MetHods           Blank Analyzed: 05/14/09 (9E12068-BLK1)           Arsenic         9E12068         2.0         NR         mg/kg wet         ND         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Silver                     | 9E12064           |             | 62.4  | 10.0        | NR  | mg/kg wet | 60.8   | 97  | 66.2-133.7 |           |           |  |  |
| Inalian       Bit 2004       158       10.0       NR       mg/kg wet       144       91       79.7-120.3         Zine       9E12064       314       10.0       NR       mg/kg wet       283       90       82.2-118.2         Total Metals by SW 846 Series Methods         Blank Analyzed: 05/14/09 (9E12068-BLK1)         Arsenic       9E12068       2.0       NR       mg/kg wet       ND       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sodium                     | 9E12064           |             | 869   | 140         | NR  | mg/kg wet | 813    | 94  |            |           |           |  |  |
| Variation         Definition         NR         mg/kg wet         283         90         82.2-118.2           Total Metals by SW 846 Series Methods           Blank Analyzed: 05/14/09 (9E12068→BLK1)           Arsenic         9E12068         2.0         NR         mg/kg wet         ND         Variation         Variation         Variation         9E12068         0.500         NR         mg/kg wet         ND         Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thallium                   | 9E12064           |             | 297   | 10.0        | NR  | mg/kg wet | 284    | 95  | 81.1-118.9 |           |           |  |  |
| Arise       Vertice V                        | Vanadium                   | 9E12064           |             | 158   | 10.0        | NR  | mg/kg wet | 144    | 91  | 79.7-120.3 |           |           |  |  |
| Blank Analyzed: 05/14/09 (9E12068-BLK1)           Arsenic         9E12068         0.500         NR         mg/kg wet         ND           Barium         9E12068         0.500         NR         mg/kg wet         ND           Cadmium         9E12068         0.200         NR         mg/kg wet         ND           Chromium         9E12068         0.200         NR         mg/kg wet         ND           Lead         9E12068         1.0         NR         mg/kg wet         ND          Barkink           Matrix Spike Analyzed: 05/14/09 (9E12068-MS1)         0.500         NR         mg/kg wet         ND          Barkink           Matrix Spike Analyzed: 05/14/09 (9E12068-MS1)         0.500         NR         mg/kg dry         157         153         75-125         M1           Barium         9E12068         9.0         45.9         0.30         NR         mg/kg dry         143         103         75-125         M1           Cadmium         9E12068         1.14         45.9         0.230         NR         mg/kg dry         96         95         75-125         M1           Cadmium         9E12068         1.14         45.9         0.230 <t< td=""><td>Zinc</td><td>9E12064</td><td></td><td>314</td><td>10.0</td><td>NR</td><td>mg/kg wet</td><td>283</td><td>90</td><td>82.2-118.2</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zinc                       | 9E12064           |             | 314   | 10.0        | NR  | mg/kg wet | 283    | 90  | 82.2-118.2 |           |           |  |  |
| Asenic       9E 12068       2.0       NR       mg/kg wet       ND         Barium       9E 12068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Metals by SW 846 Se  | ries Methods      |             |       |             |     |           |        |     |            |           |           |  |  |
| Arsenic       mg/kg wet       ND         Barium       9E12068       0.500       NR       mg/kg wet       ND         Chromium       9E12068       0.500       NR       mg/kg wet       ND         Lead       9E12068       1.0       NR       mg/kg wet       ND       B         Matrix Spike Analyzed: 05/14/09 (9E12068-NS1)       0.500       NR       mg/kg dwt       ND       ND       B         GC Source Sample: RSE0369-17       0.500       NR       mg/kg dwt       157       153       75-125       M1         Barium       9E12068       66.9       45.9       0.230       NR       mg/kg dry       143       103       75-125       M1         Barium       9E12068       1.14       45.9       0.230       NR       mg/kg dry       135       68       75-125       M1         Cadmium       9E12068       1.14       45.9       0.230       NR       mg/kg dry       135       68       75-125       M1         Matrix Spike Dup Analyzed: 05/14/09 (9E12068       1.14       45.9       0.230       NR       mg/kg dry       135       68       75-125       M1       M2         Coscure Sample: RSE0389-17       Start Mareir Mare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Blank Analyzed: 05/14/09 ( | (9E12068-BLK1)    |             |       |             |     |           |        |     |            |           |           |  |  |
| Bainum9E12068·0.500NRmg/kg wetNDCadmium9E12068··0.200NRmg/kg wetNDLead9E12068··ND·NDLead9E12068··NDND·NDMatrix Spike Analyzet: 05/14/09 (>E12058-VET·NDND·NDArsenic9E1206886.945.92.3NRmg/kg dv15715375-125·M1Barium9E120681.1445.90.20NRmg/kg dv14310375-125·M1Cadmium9E120681.1445.90.20NRmg/kg dv1356875-125·M1Chromium9E120681.1445.90.20NRmg/kg dv1356875-125·M1Chromium9E120681.1445.90.20NRmg/kg dv1356875-125·M1Lead9E120681.1445.90.20NRmg/kg dv1356875-125·M1Chromium9E120681.1445.90.21NRmg/kg dv1356875-125·M1Bainum9E120686.94.550.54NRmg/kg dv1356875-1251420Chromium9E120686.94.550.54NRmg/kg dv1369575-125720M1 <td>Arsenic</td> <td>9E12068</td> <td></td> <td></td> <td>2.0</td> <td>NR</td> <td>mg/kg wet</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arsenic                    | 9E12068           |             |       | 2.0         | NR  | mg/kg wet | ND     |     |            |           |           |  |  |
| Cadimuniti         9E12068         0.500         NR         mg/kg wet         ND         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M <td></td> <td>9E12068</td> <td></td> <td></td> <td>0.500</td> <td>NR</td> <td>mg/kg wet</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 9E12068           |             |       | 0.500       | NR  | mg/kg wet | ND     |     |            |           |           |  |  |
| Chromiuning         Lead       9E12068       I.0       NR       mg/kg wet       ND       B         Matrix Spike Analyzed: 05/14/09 (9E12068-MS!)       Second Set 100 (9E12068-MS!)       Second Set 100 (9E12068-MS!)       Second Set 100 (9E12068-MS!)       Matrix Spike Analyzed: 05/14/09 (9E12068-MS!)       Second Set 100 (9E12068       M1         Arsenic       9E12068       66.9       45.9       0.230       NR       mg/kg dry       113       T5-125       M1         Gadmium       9E12068       16.9       0.57.4       NR       mg/kg dry       16.8       9.6       75-125       M1         Matrix Spike Dup Analyzed: 05/14/09 (9E12068-WSD1)       N       mg/kg dry       16.8       8.6       9.6       9.6       75-125       M1         Matrix Spike Dup Analyzed: 05/14/09 (9E12068-WSD1)       N       mg/kg dry       131       8.6       8.7       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cadmium                    | 9E12068           |             |       | 0.200       | NR  | mg/kg wet | ND     |     |            |           |           |  |  |
| Lead       Defention       NR       model of NR         Matrix Spike Analyzed: 05/14/09 (9E12068-MS1)<br>QC Source Sample: RSE0369-17       9E12068       86.9       45.9       2.3       NR       mg/kg dry       157       153       75-125       M1         Barlum       9E12068       96.0       45.9       0.574       NR       mg/kg dry       143       103       75-125       M1         Cadmium       9E12068       1.14       45.9       0.230       NR       mg/kg dry       42.6       90       75-125       M1         Cadmium       9E12068       46.0       45.9       0.574       NR       mg/kg dry       135       68       75-125       M1         Lead       9E12068       46.0       45.9       0.574       NR       mg/kg dry       135       68       75-125       M1         Matrix Spike Dup Analyzed: 05/14/09 (9E12068-MSD1)       Matrix Spike Dup Analyzed: 05/14/09 (9E12068-MSD1)       M2       M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chromium                   | 9E12068           |             |       | 0.500       | NR  | mg/kg wet | ND     |     |            |           |           |  |  |
| QC Source Sample: RSE0369-17         Arsenic       9E12068       86.9       45.9       2.3       NR       mg/kg dry       157       153       75-125       M1         Barium       9E12068       96.0       45.9       0.574       NR       mg/kg dry       143       103       75-125       M1         Cadmium       9E12068       1.14       45.9       0.230       NR       mg/kg dry       80.6       95       75-125       M1         Chromium       9E12068       46.0       45.9       0.574       NR       mg/kg dry       80.6       95       75-125       M1         Lead       9E12068       46.0       45.9       0.574       NR       mg/kg dry       135       68       75-125       M1         Matrix Spike Dup Analyzed: 05/1/400 (9E12068-WSUT       MS       mg/kg dry       131       NR       mg/kg dry       141       124       75-125       11       20         Arsenic       9E12068       86.9       43.5       0.544       NR       mg/kg dry       131       14       20         Cadmium       9E12068       144       43.5       0.544       NR       mg/kg dry       135       22       7 <t< td=""><td>Lead</td><td>9E12068</td><td></td><td></td><td>1.0</td><td>NR</td><td>mg/kg wet</td><td>ND</td><td></td><td></td><td></td><td>В</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lead                       | 9E12068           |             |       | 1.0         | NR  | mg/kg wet | ND     |     |            |           | В         |  |  |
| Arsenic       9E12068       86.9       45.9       2.3       NR       mg/kg dry       157       153       75-125       M1         Barlum       9E12068       96.0       45.9       0.574       NR       mg/kg dry       143       103       75-125       Velocity       Velocity       163       75-125       Velocity       Velocity       163       75-125       Velocity       Velocity       Velocity       163       75-125       Velocity       Velocity       Velocity       Velocity       Velocity       175       11       NR       mg/kg dry       89.6       95       75-125       Velocity       M1       Velocity       Velocit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix Spike Analyzed: 05/ | 14/09 (9E12068-M  | IS1)        |       |             |     |           |        |     |            |           |           |  |  |
| Arsenic       Serie Loce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QC Source Sample: RSE0369  | 9-17              |             |       |             |     |           |        |     |            |           |           |  |  |
| Baium       9E12068       96.0       45.9       0.574       NR       mg/kg dry       143       103       75-125         Cadmium       9E12068       1.14       45.9       0.230       NR       mg/kg dry       42.6       90       75-125         Chromium       9E12068       46.0       45.9       0.574       NR       mg/kg dry       89.6       95       75-125         Lead       9E12068       103       45.9       1.1       NR       mg/kg dry       135       68       75-125       M1         Matrix Spike Dup Analyzed: 05/14// 9(9E12068       MSDST       MS       mg/kg dry       141       124       75-125       11       20         Arsenic       9E12068       86.9       43.5       2.2       NR       mg/kg dry       141       124       75-125       11       20         Cadmium       9E12068       96.0       43.5       0.544       NR       mg/kg dry       137       95       75-125       1       20         Cadmium       9E12068       1.14       43.5       0.218       NR       mg/kg dry       137       95       75-125       7       20       M1.72         Cadmium       9E12068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arsenic                    | 9E12068           | 86.9        | 45.9  | 2.3         | NR  | mg/kg đry | 157    | 153 | 75-125     |           | M1        |  |  |
| Cadmium       9E12068       1.14       45.9       0.230       NR       mg/kg dry       42.6       90       75-125         Chromium       9E12068       46.0       45.9       0.574       NR       mg/kg dry       89.6       95       75-125         Lead       9E12068       103       45.9       1.1       NR       mg/kg dry       135       68       75-125       M1         Matrix Spike Dup Analyzed: 05/14//07 (9E12068///       VEI2068//       S5.9       1.1       NR       mg/kg dry       141       124       75-125       11       20         Arsenic       9E12068       86.9       43.5       2.2       NR       mg/kg dry       141       124       75-125       11       20         Cadmium       9E12068       86.9       43.5       0.544       NR       mg/kg dry       137       95       75-125       4       20         Chromium       9E12068       1.14       43.5       0.218       NR       mg/kg dry       137       95       75-125       7       20       M1.82         Chromium       9E12068       1.04       43.5       0.218       NR       mg/kg dry       161       264       75-125       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 9E12068           | 96.0        | 45.9  | 0.574       | NR  | mg/kg dry | 143    | 103 | 75-125     |           |           |  |  |
| Chromium       9E12068       46.0       45.9       0.574       NR       mg/kg dry       89.6       95       75-125         Lead       9E12068       103       45.9       1.1       NR       mg/kg dry       135       68       75-125       M1         Matrix Spike Dup Analyzed:       05/14//0 (9E12068-MSD1)       USE       USE       USE       USE       M1         Arsenic       9E12068       86.9       43.5       2.2       NR       mg/kg dry       141       124       75-125       11       20         Gadmium       9E12068       86.9       43.5       0.544       NR       mg/kg dry       137       95       75-125       4       20         Chromium       9E12068       1.14       43.5       0.218       NR       mg/kg dry       137       95       75-125       7       20         Chromium       9E12068       1.14       43.5       0.218       NR       mg/kg dry       136       264       75-125       7       20       M1.R2         Lead       9E12068       1.03       43.5       0.544       NR       mg/kg dry       161       264       75-125       7       20       M1.R2       M1.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 9E12068           | 1.14        | 45.9  | 0.230       | NR  | mg/kg dry | 42.6   | 90  | 75-125     |           |           |  |  |
| Lead       9E12068       103       45.9       1.1       NR       mg/kg dry       135       68       75-125       M1         Matrix Spike Dup Analyzet: 05/14/09       9E12068-MSD1       V       V       V       V       V       M1         QC Source Sample: RSE0369-17       Arsenic       9E12068       86.9       43.5       2.2       NR       mg/kg dry       141       124       75-125       11       20         Barium       9E12068       96.0       43.5       0.248       NR       mg/kg dry       137       95       75-125       4       20         Cadmium       9E12068       1.1       43.5       0.248       NR       mg/kg dry       137       95       75-125       4       20         Chromium       9E12068       46.0       43.5       0.248       NR       mg/kg dry       161       264       75-125       7       20       M1,R2         Lead       9E12068       46.0       43.5       0.544       NR       mg/kg dry       135       72       75-125       0       20       M1,R2         Lead       9E12068       103       43.5       1.1       NR       mg/kg wet       161       94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | 9E12068           | 46.0        | 45.9  | 0.574       | NR  | mg/kg dry | 89.6   | 95  | 75-125     |           |           |  |  |
| Matrix Spike Dup Analyzed: 05/14/09 (9E12068-MSD1)         QC Source Sample: RSE0369-17       Arsenic       9E12068       86.9       43.5       2.2       NR       mg/kg dry       141       124       75-125       11       20         Barium       9E12068       96.0       43.5       0.544       NR       mg/kg dry       137       95       75-125       4       20         Cadmium       9E12068       1.14       43.5       0.218       NR       mg/kg dry       39.8       89       75-125       7       20         Chromium       9E12068       46.0       43.5       0.544       NR       mg/kg dry       161       264       75-125       7       20       M1,R2         Lead       9E12068       103       43.5       0.544       NR       mg/kg dry       161       264       75-125       0       20       M1,R2         Lead       9E12068       103       43.5       1.1       NR       mg/kg dry       135       72       75-125       0       20       M1         Reference Analyzed: 05/14/09 (9E12068-SRM1)       112       NR       mg/kg wet       116       94       82.9-117.1       1       12       12       12 <td></td> <td>9E12068</td> <td>103</td> <td>45.9</td> <td>1.1</td> <td>NR</td> <td>mg/kg dry</td> <td>135</td> <td>68</td> <td>75-125</td> <td></td> <td>M1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 9E12068           | 103         | 45.9  | 1.1         | NR  | mg/kg dry | 135    | 68  | 75-125     |           | M1        |  |  |
| QC Source Sample: RSE0369-17         Arsenic       9E 12068       86.9       43.5       2.2       NR       mg/kg dry       141       124       75-125       11       20         Barium       9E 12068       96.0       43.5       0.544       NR       mg/kg dry       137       95       75-125       4       20         Cadmium       9E 12068       1.14       43.5       0.218       NR       mg/kg dry       39.8       89       75-125       7       20         Chromium       9E 12068       46.0       43.5       0.544       NR       mg/kg dry       161       264       75-125       7       20       M1.R2         Lead       9E 12068       103       43.5       0.544       NR       mg/kg dry       161       264       75-125       0       20       M1.R2         Lead       9E 12068       103       43.5       1.1       NR       mg/kg dry       135       72       75-125       0       20       M1         Reference Analyzed: 05/14/09 (9E12068-SRMI):        123       2.0       NR       mg/kg wet       116       94       82.9-117.1       5       5       6       150       NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | : 05/14/09 (9E120 | 68-MSD1)    |       |             |     |           |        |     |            |           |           |  |  |
| Arsenic       9E12068       96.0       43.5       0.544       NR       mg/kg dry       137       95       75-125       4       20         Cadmium       9E12068       1.14       43.5       0.218       NR       mg/kg dry       39.8       89       75-125       7       20         Chromium       9E12068       1.14       43.5       0.218       NR       mg/kg dry       161       264       75-125       7       20         Chromium       9E12068       103       43.5       0.544       NR       mg/kg dry       161       264       75-125       57       20       M1,R2         Lead       9E12068       103       43.5       1.1       NR       mg/kg dry       135       72       75-125       0       20       M1         Reference Analyzed:       05/14/09       (9E12068-SRM1)                 M1         Arsenic       9E12068       123       2.0       NR       mg/kg wet       116       94       82.9-117.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                   |             |       |             |     |           |        |     |            |           |           |  |  |
| Barium       9E12068       96.0       43.5       0.544       NR       mg/kg dry       137       95       75-125       4       20         Cadmium       9E12068       1.14       43.5       0.218       NR       mg/kg dry       39.8       89       75-125       7       20         Chromium       9E12068       46.0       43.5       0.544       NR       mg/kg dry       161       264       75-125       57       20       M1,R2         Lead       9E12068       103       43.5       1.1       NR       mg/kg dry       135       72       75-125       0       20       M1         Reference Analyzed:       05/14/09       (9E12068-SRM1)        NR       mg/kg wet       116       94       82.9-117.1             Arsenic       9E12068       123       2.0       NR       mg/kg wet       116       94       82.9-117.1                                82.9-117.1        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arsenic                    | 9E12068           | 86.9        | 43.5  | 2.2         | NR  | mg/kg dry | 141    | 124 | 75-125     | 11 20     |           |  |  |
| Cadmium       9E12068       1.14       43.5       0.218       NR       mg/kg dry       39.8       89       75-125       7       20         Chromium       9E12068       46.0       43.5       0.544       NR       mg/kg dry       161       264       75-125       57       20       M1,R2         Lead       9E12068       103       43.5       1.1       NR       mg/kg dry       135       72       75-125       0       20       M1         Reference Analyzed:       05/14/09       (9E12068-SRM1)             82.9-117.1 </td <td></td> <td>9E12068</td> <td>96.0</td> <td>43.5</td> <td>0.544</td> <td>NR</td> <td>mg/kg dry</td> <td>137</td> <td>95</td> <td>75-125</td> <td>4 20</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 9E12068           | 96.0        | 43.5  | 0.544       | NR  | mg/kg dry | 137    | 95  | 75-125     | 4 20      |           |  |  |
| Chromium       9E12068       46.0       43.5       0.544       NR       mg/kg dry       161       264       75-125       57       20       M1,R2         Lead       9E12068       103       43.5       1.1       NR       mg/kg dry       135       72       75-125       0       20       M1         Reference Analyzed: 05/14/09       (9E12068-SRM1)       123       2.0       NR       mg/kg wet       116       94       82.9-117.1       400       95         Arsenic       9E12068       123       2.0       NR       mg/kg wet       240       94       80.5-119.5       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       400       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 9E12068           | 1.14        | 43.5  | 0.218       | NR  | mg/kg dry | 39.8   | 89  | 75-125     | 7 20      |           |  |  |
| Lead       9E12068       103       43.5       1.1       NR       mg/kg dry       135       72       75-125       0       20       M1         Reference Analyzed: 05/14/09 (9E12068-SRM1)         Arsenic       9E12068       123       2.0       NR       mg/kg wet       116       94       82.9-117.1         Barium       9E12068       256       0.501       NR       mg/kg wet       240       94       80.5-119.5         Cadmium       9E12068       258       0.200       NR       mg/kg wet       234       91       83.7-116.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | 9E12068           | 46.0        | 43.5  | 0.544       | NR  | mg/kg dry | 161    | 264 | 75-125     | 57 20     | M1,R2     |  |  |
| Reference Analyzed: 05/14/09 (9E12068-SRM1)           Arsenic         9E12068         123         2.0         NR         mg/kg wet         116         94         82.9-117.1           Barium         9E12068         256         0.501         NR         mg/kg wet         240         94         80.5-119.5           Cadmium         9E12068         258         0.200         NR         mg/kg wet         234         91         83.7-116.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 9E12068           | 103         | 43.5  | 1. <b>1</b> | NR  | mg/kg dry | 135    | 72  | 75-125     | 0 20      | M1        |  |  |
| Arsenic         9E12068         123         2.0         NR         mg/kg wet         116         94         82.9-117.1           Barium         9E12068         256         0.501         NR         mg/kg wet         240         94         80.5-119.5           Cadmium         9E12068         258         0.200         NR         mg/kg wet         234         91         83.7-116.7           DE12050         138         0.501         NB         mg/kg wet         132         96         81.9-118.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | /09 (9E12068-SRM  | <b>1</b> 1) |       |             |     |           |        |     |            |           |           |  |  |
| Barium         9E12068         256         0.501         NR         mg/kg wet         240         94         80.5-119.5           Cadmium         9E12068         258         0.200         NR         mg/kg wet         234         91         83.7-116.7           Octamium         9E72000         138         0.501         NB         mg/kg wet         132         96         81.9-118.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                          |                   |             | 123   | 2.0         | NR  | mg/kg wet | 116    | 94  | 82.9-117.1 |           |           |  |  |
| Cadmium 9E12068 258 0.200 NR mg/kg wet 234 91 83.7-116.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | 9E12068           |             | 256   | 0.501       | NR  | mg/kg wet | 240    | 94  | 80.5-119.5 |           |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 9E12068           |             | 258   | 0.200       | NR  | mg/kg wet | 234    | 91  | 83.7-116.7 |           |           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chromium                   | 9E12068           |             | 138   | 0.501       | NR  | mg/kg wet | 132    | 96  | 81.9-118.1 |           |           |  |  |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

| Turnkey/Benchmark<br>726 Exchange Street, Suite 624 |           | Work Orc                | ler: RSE036        | <b>59</b> |           |      |     | Received:<br>Reported: | 05/11/09<br>05/28/09 17:38 |
|-----------------------------------------------------|-----------|-------------------------|--------------------|-----------|-----------|------|-----|------------------------|----------------------------|
| Buffalo, NY 14210                                   |           | Project: T<br>Project N | URNKEY -<br>umber: | SITE      |           |      |     |                        |                            |
| Total Metals by SW 846 Series Metho                 | ods       |                         |                    |           |           |      |     |                        |                            |
| Reference Analyzed: 05/14/09 (9E12)                 | 068-SRM1) |                         |                    |           |           |      |     |                        |                            |
| Lead 9                                              | E12068    | 136                     | 1.0                | NR        | mg/kg wet | 129  | 95  | 80.9-119.9             |                            |
| Total Metals by SW 846 Series Metho                 | ods       |                         |                    |           |           |      |     |                        |                            |
| Blank Analyzed: 05/28/09 (9E28026-6                 | BLK1)     |                         |                    |           |           |      |     |                        |                            |
| Mercury 9                                           | E28026    |                         | 0.0196             | NR        | mg/kg wet | ND   |     |                        |                            |
| Reference Analyzed: 05/28/09 (9E28                  | 026-SRM1) |                         |                    |           |           |      |     |                        |                            |
| Mercury 91                                          | E28026    | 1.77                    | 0.106              | NR        | mg/kg wet | 1.78 | 101 | 68.4-132.2             |                            |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| LABORATORY QC DATA<br>Seq/ Source Spike % % REC % RPD<br>Analyte Batch Result Level MRL MDL Units Result REC Limits RPD Limit Qualifier |                    |        |       |            |      |           |        |     |        |           |           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|-------|------------|------|-----------|--------|-----|--------|-----------|-----------|--|--|
|                                                                                                                                         | Seq/               | Source | Spike |            |      |           |        | %   | % REC  |           |           |  |  |
| Analyte                                                                                                                                 | -                  | Result | Level | MRL        | MDL  | Units     | Result | REC | Limits | RPD Limit | Qualifier |  |  |
| Volatile Organic Compounds b                                                                                                            | oy EPA 8260B       |        |       |            |      |           |        |     |        |           |           |  |  |
| Blank Analyzed: 05/13/09 (9E1                                                                                                           | 3076-BLK1)         |        |       |            |      |           |        |     |        |           |           |  |  |
| 1,1,1,2-Tetrachloroethane                                                                                                               | 9E13076            |        |       | 5.0        | 0.31 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,1,1-Trichloroethane                                                                                                                   | 9E13076            |        |       | 5.0        | 0.36 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,1,2,2-Tetrachloroethane                                                                                                               | 9E13076            |        |       | 5.0        | 0.81 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,1,2-Trichloroethane                                                                                                                   | 9E13076            |        |       | 5.0        | 0.25 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,1,2-Trichlorotrifluoroethane                                                                                                          | 9E13076            |        |       | 5.0        | 0.53 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,1-Dichloroethane                                                                                                                      | 9E13076            |        |       | 5.0        | 0.25 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,1-Dichloroethene                                                                                                                      | 9E13076            |        |       | 5.0        | 0.61 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,1-Dichloropropene                                                                                                                     | 9E13076            |        |       | 5.0        | 0.29 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,1-Dimethoxyethane                                                                                                                     | 9E13076            |        |       | 25         | 2.0  | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,2,3-Trichlorobenzene                                                                                                                  | 9E13076            |        |       | 5.0        | 0.53 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,2,3-Trichloropropane                                                                                                                  | 9E13076            |        |       | 5.0        | 0.51 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,2,3-Trimethylbenzene                                                                                                                  | 9E13076            |        |       | 5.0        | 0.27 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,2,4-Trichlorobenzene                                                                                                                  | 9E13076            |        |       | 5.0        | 0.30 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,2,4-Trimethylbenzene                                                                                                                  | 9E13076            |        |       | 5.0        | 0.36 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,2-Dibromo-3-chloropropane                                                                                                             | 9E13076            |        |       | 5.0        | 1.0  | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,2-Dibromoethane (EDB)                                                                                                                 | 9E13076            |        |       | 5.0        | 0.19 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1.2-Dichlorobenzene                                                                                                                     | 9E13076            |        |       | 5.0        | 0.75 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,2-Dichloroethane                                                                                                                      | 9E13076            |        |       | 5.0        | 0.25 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,2-Dichloroethene, Total                                                                                                               | 9E13076            |        |       | 10         | 2.6  | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,2-Dichloropropane                                                                                                                     | 9E13076            |        |       | 5.0        | 0.26 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,3,5-Trimethylbenzene                                                                                                                  | 9E13076            |        |       | 5.0        | 0.32 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,3-Dichlorobenzene                                                                                                                     | 9E13076            |        |       | 5.0        | 0.71 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,3-Dichloropropane                                                                                                                     | 9E13076            |        |       | 5.0        | 0.30 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,4-Dichlorobenzene                                                                                                                     | 9E13076            |        |       | 5.0        | 0.70 | ug/kg wet | ND     |     |        |           |           |  |  |
| 1,4-Dioxane                                                                                                                             | 9E13076            |        |       | 200        | 53   | ug/kg wet | ND     |     |        |           |           |  |  |
| 2,2-Dichloropropane                                                                                                                     | 9E13076            |        |       | 5.0        | 0.34 | ug/kg wet | ND     |     |        |           |           |  |  |
| 2-Butanone (MEK)                                                                                                                        | 9E13076            |        |       | 25         | 6.8  | ug/kg wet | ND     |     |        |           |           |  |  |
| 2-Chloroethyl vinyl ether                                                                                                               | 9E13076            |        |       | 25         | 1.6  | ug/kg wet | ND     |     |        |           |           |  |  |
| 2-Chlorotoluene                                                                                                                         | 9E13076            |        |       | 5.0        | 0.78 | ug/kg wet | ND     |     |        |           |           |  |  |
| 2-Hexanone                                                                                                                              | 9E13076            |        |       | 25         | 1.7  | ug/kg wet | ND     |     |        |           |           |  |  |
| 3-Chlorotoluene                                                                                                                         | 9E13076            |        |       | 5.0        | 0.29 | ug/kg wet | ND     |     |        |           |           |  |  |
| 4-Chlorotoluene                                                                                                                         | 9E13076            |        |       | 5.0        | 0.75 | ug/kg wet | ND     |     |        |           |           |  |  |
|                                                                                                                                         | 9E13076            |        |       | 5.0        | 0.40 | ug/kg wet | ND     |     |        |           |           |  |  |
| 4-Isopropyltoluene                                                                                                                      | 9E13076            |        |       | 25         | 1.6  | ug/kg wet | ND     |     |        |           |           |  |  |
| 4-Methyl-2-pentanone (MIBK)                                                                                                             | 9E13076            |        |       | 25         | 1.1  | ug/kg wet | ND     |     |        |           |           |  |  |
| Acetone                                                                                                                                 | 9E13076            |        |       | 200        | 12   | ug/kg wet | ND     |     |        |           |           |  |  |
| Acetonitrile                                                                                                                            | 9E13076            |        |       | 100        | 5.9  | ug/kg wet | ND     |     |        |           |           |  |  |
| Acrolein                                                                                                                                | 9E13076            |        |       | 100        | 2.1  | ug/kg wet | ND     |     |        |           |           |  |  |
| Acrylonitrile                                                                                                                           | 9E13076            |        |       | 5.0        | 0.42 | ug/kg wet | ND     |     |        |           |           |  |  |
| Allyl chloride                                                                                                                          | 9E13076            |        |       | 5.0        | 0.24 | ug/kg wet | ND     |     |        |           |           |  |  |
| Benzene                                                                                                                                 | 9E13076            |        |       | 5.0        | 0.78 | ug/kg wet | ND     |     |        |           |           |  |  |
| Bromobenzene                                                                                                                            | 9E13076            |        |       | 5.0        | 0.36 | ug/kg wet | ND     |     |        |           |           |  |  |
| Bromochloromethane                                                                                                                      | 9E13076            |        |       | 5.0        | 0.26 | ug/kg wet | ND     |     |        |           |           |  |  |
| Bromodichloromethane                                                                                                                    | 9E13076            |        |       | 5.0        | 0.46 | ug/kg wet | ND     |     |        |           |           |  |  |
| Bromoform                                                                                                                               | 9E13076<br>9E13076 |        |       | 5.0<br>5.0 | 0.46 | ug/kg wet | ND     |     |        |           |           |  |  |
| Bromomethane                                                                                                                            | JE 13070           |        |       | 0.0        | 0.40 | aging net |        |     |        |           |           |  |  |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991



THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| LABORATORY QC DATA<br>Seq/ Source Spike % % REC % RPD<br>Analyte Batch Result Level MRL MDL Units Result REC Limits RPD Limit Qualifier |           |        |       |     |      |           |        |     |        |           |           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|-------|-----|------|-----------|--------|-----|--------|-----------|-----------|--|--|
|                                                                                                                                         | Seq/      | Source | Spike |     |      |           |        | %   | % REC  | % RPD     |           |  |  |
| Analyte                                                                                                                                 | -         | Result | Level | MRL | MDL  | Units     | Result | REC | Limits | RPD Limit | Qualifier |  |  |
| Volatile Organic Compounds by                                                                                                           | EPA 8260B |        |       |     |      |           |        |     |        |           |           |  |  |
| Blank Analyzed: 05/13/09 (9E130                                                                                                         | )76-BLK1) |        |       |     |      |           |        |     |        |           |           |  |  |
| Carbon disulfide                                                                                                                        | 9E13076   |        |       | 5.0 | 0.43 | ug/kg wet | ND     |     |        |           |           |  |  |
| Carbon Tetrachloride                                                                                                                    | 9E13076   |        |       | 5.0 | 0.18 | ug/kg wet | ND     |     |        |           |           |  |  |
| Chlorobenzene                                                                                                                           | 9E13076   |        |       | 5.0 | 0.22 | ug/kg wet | ND     |     |        |           |           |  |  |
| Chlorodibromomethane                                                                                                                    | 9E13076   |        |       | 5.0 | 0.28 | ug/kg wet | ND     |     |        |           |           |  |  |
| Chloroethane                                                                                                                            | 9E13076   |        |       | 5.0 | 0.81 | ug/kg wet | ND     |     |        |           |           |  |  |
| Chloroform                                                                                                                              | 9E13076   |        |       | 5.0 | 0.31 | ug/kg wet | ND     |     |        |           |           |  |  |
| Chloromethane                                                                                                                           | 9E13076   |        |       | 5.0 | 0.30 | ug/kg wet | ND     |     |        |           |           |  |  |
| Chloroprene                                                                                                                             | 9E13076   |        |       | 5.0 | 0.33 | ug/kg wet | ND     |     |        |           |           |  |  |
| cis-1,2-Dichloroethene                                                                                                                  | 9E13076   |        |       | 5.0 | 0.25 | ug/kg wet | ND     |     |        |           |           |  |  |
| cis-1,3-Dichloropropene                                                                                                                 | 9E13076   |        |       | 5.0 | 0.29 | ug/kg wet | ND     |     |        |           |           |  |  |
| Cyclohexane                                                                                                                             | 9E13076   |        |       | 5.0 | 0.23 | ug/kg wet | ND     |     |        |           |           |  |  |
| Cyclohexanone                                                                                                                           | 9E13076   |        |       | 50  | 3.8  | ug/kg wet | ND     |     |        |           |           |  |  |
| Dibromomethane                                                                                                                          | 9E13076   |        |       | 5.0 | 0.52 | ug/kg wet | ND     |     |        |           |           |  |  |
| Dichlorodifluoromethane                                                                                                                 | 9E13076   |        |       | 5.0 | 0.41 | ug/kg wet | ND     |     |        |           |           |  |  |
| Dicyclopentadiene                                                                                                                       | 9E13076   |        |       | 5.0 | 0.26 | ug/kg wet | ND     |     |        |           |           |  |  |
| Diethyl ether                                                                                                                           | 9E13076   |        |       | 25  | 0.55 | ug/kg wet | ND     |     |        |           |           |  |  |
| Epichlorohydrin                                                                                                                         | 9E13076   |        |       | 100 | 1.8  | ug/kg wet | ND     |     |        |           |           |  |  |
| Ethyl Acetate                                                                                                                           | 9E13076   |        |       | 5.0 | 1.9  | ug/kg wet | ND     |     |        |           |           |  |  |
| Ethyl Methacrylate                                                                                                                      | 9E13076   |        |       | 5.0 | 0.27 | ug/kg wet | ND     |     |        |           |           |  |  |
| Ethyl tert-Butyl Ether                                                                                                                  | 9E13076   |        |       | 5.0 | 0.20 | ug/kg wet | ND     |     |        |           |           |  |  |
| Ethylbenzene                                                                                                                            | 9E13076   |        |       | 5.0 | 0.35 | ug/kg wet | ND     |     |        |           |           |  |  |
| Heptane                                                                                                                                 | 9E13076   |        |       | 100 | 0.60 | ug/kg wet | ND     |     |        |           |           |  |  |
| Hexachlorobutadiene                                                                                                                     | 9E13076   |        |       | 5.0 | 0.59 | ug/kg wet | ND     |     |        |           |           |  |  |
| Hexane                                                                                                                                  | 9E13076   |        |       | 50  | 0.50 | ug/kg wet | ND     |     |        |           |           |  |  |
| lodomethane                                                                                                                             | 9E13076   |        |       | 5.0 | 0.24 | ug/kg wet | ND     |     |        |           |           |  |  |
| Isobutanol                                                                                                                              | 9E13076   |        |       | 200 | 8.8  | ug/kg wet | ND     |     |        |           |           |  |  |
| Isopropyl ether                                                                                                                         | 9E13076   |        |       | 5.0 | 0.28 | ug/kg wet | ND     |     |        |           |           |  |  |
| Isopropylbenzene                                                                                                                        | 9E13076   |        |       | 5.0 | 0.33 | ug/kg wet | ND     |     |        |           |           |  |  |
| Methacrylonitrile                                                                                                                       | 9E13076   |        |       | 25  | 0.30 | ug/kg wet | ND     |     |        |           |           |  |  |
| Methyl Acetate                                                                                                                          | 9E13076   |        |       | 5.0 | 0.27 | ug/kg wet | ND     |     |        |           |           |  |  |
| Methyl Methacrylate                                                                                                                     | 9E13076   |        |       | 5.0 | 0.54 | ug/kg wet | ND     |     |        |           |           |  |  |
| Methyl tert-Butyl Ether                                                                                                                 | 9E13076   |        |       | 5.0 | 0.49 | ug/kg wet | ND     |     |        |           |           |  |  |
| Methylcyclohexane                                                                                                                       | 9E13076   |        |       | 5.0 | 0.32 | ug/kg wet | ND     |     |        |           |           |  |  |
| Methylene Chloride                                                                                                                      | 9E13076   |        |       | 5.0 | 0.35 | ug/kg wet | ND     |     |        |           |           |  |  |
| m-Xylene & p-Xylene                                                                                                                     | 9E13076   |        |       | 10  | 0.84 | ug/kg wet | ND     |     |        |           |           |  |  |
| Naphthalene                                                                                                                             | 9Ë13076   |        |       | 5.0 | 0.68 | ug/kg wet | ND     |     |        |           |           |  |  |
| n-Butanol                                                                                                                               | 9E13076   |        |       | 200 | 12   | ug/kg wet | ND     |     |        |           |           |  |  |
| n-Butylbenzene                                                                                                                          | 9E13076   |        |       | 5.0 | 0.43 | ug/kg wet | ND     |     |        |           |           |  |  |
| n-Propylbenzene                                                                                                                         | 9E13076   |        |       | 5.0 | 0.38 | ug/kg wet | ND     |     |        |           |           |  |  |
| o-Xylene                                                                                                                                | 9E13076   |        |       | 5.0 | 0.25 | ug/kg wet | ND     |     |        |           |           |  |  |
| Propionitrile                                                                                                                           | 9E13076   |        |       | 50  | 2.6  | ug/kg wet | ND     |     |        |           |           |  |  |
| Propylene Oxide                                                                                                                         | 9E13076   |        |       | 25  | 1.7  | ug/kg wet | ND     |     |        |           |           |  |  |
| sec-Butylbenzene                                                                                                                        | 9E13076   |        |       | 5.0 | 0.43 | ug/kg wet | ND     |     |        |           |           |  |  |
| Styrene                                                                                                                                 | 9E13076   |        |       | 5.0 | 0.25 | ug/kg wet | ND     |     |        |           |           |  |  |
| t-Butanol                                                                                                                               | 9E13076   |        |       | 100 | 13   | ug/kg wet | ND     |     |        |           |           |  |  |
| (-BaidHO                                                                                                                                |           |        |       |     |      |           |        |     |        |           |           |  |  |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

Work Order: RSE0369

Received: 05/11/09 Reported: 05/28/09 17:38

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                                    |           |        | LA    | BORAT | ORY QC | DATA      |        |     |        |           |           |
|----------------------------------------------------|-----------|--------|-------|-------|--------|-----------|--------|-----|--------|-----------|-----------|
|                                                    | Seq/      | Source | Spike |       |        |           |        | %   | % REC  | % RPD     |           |
| Analyte                                            | Batch     | Result | Level | MRL   | MDL    | Units     | Result | REC | Limits | RPD Limit | Qualifier |
| Volatile Organic Compounds by                      | EPA 8260B |        |       |       |        |           |        |     |        |           |           |
| Blank Analyzed: 05/13/09 (9E13                     | 076-BLK1) |        |       |       |        |           |        |     |        |           |           |
| Tert-Amyl Methyl Ether                             | 9E13076   |        |       | 5.0   | 0.15   | ug/kg wet | ND     |     |        |           |           |
| tert-Butylbenzene                                  | 9E13076   |        |       | 5.0   | 0.52   | ug/kg wet | ND     |     |        |           |           |
| Tetrachloroethene                                  | 9E13076   |        |       | 5.0   | 0.67   | ug/kg wet | ND     |     |        |           |           |
| Tetrahydrofuran                                    | 9E13076   |        |       | 25    | 1.5    | ug/kg wet | ND     |     |        |           |           |
| Toluene                                            | 9E13076   |        |       | 5.0   | 0.85   | ug/kg wet | 1.5    |     |        |           | B,J       |
| trans-1,2-Dichloroethene                           | 9E13076   |        |       | 5.0   | 0.52   | ug/kg wet | ND     |     |        |           |           |
| trans-1,3-Dichloropropene                          | 9E13076   |        |       | 5.0   | 0.24   | ug/kg wet | ND     |     |        |           |           |
| trans-1,4-Dichloro-2-butene                        | 9E13076   |        |       | 25    | 1.4    | ug/kg wet | ND     |     |        |           |           |
| Trichloroethene                                    | 9E13076   |        |       | 5.0   | 0.35   | ug/kg wet | ND     |     |        |           |           |
| Trichlorofluoromethane                             | 9E13076   |        |       | 5.0   | 1.6    | ug/kg wet | ND     |     |        |           |           |
| Vinyl acetate                                      | 9E13076   |        |       | 25    | 1.0    | ug/kg wet | ND     |     |        |           |           |
| Vinyl chloride                                     | 9E13076   |        |       | 10    | 0.20   | ug/kg wet | ND     |     |        |           |           |
| Xylenes, total                                     | 9E13076   |        |       | 10    | 0.84   | ug/kg wet | ND     |     |        |           |           |
| 2-Nitropropane                                     | 9E13076   |        |       | 25    | 2.7    | ug/kg wet | ND     |     |        |           |           |
| Surrogate: 1,2-Dichloroethane-d4                   |           |        |       |       |        | ug/kg wet |        | 100 | 64-126 |           |           |
| Surrogate: 4-Bromofluorobenzene                    |           |        |       |       |        | ug/kg wet |        | 110 | 72-126 |           |           |
| Surrogate: Toluene-d8                              |           |        |       |       |        | ug/kg wet |        | 104 | 71-125 |           |           |
| LCS Analyzed: 05/13/09 (9E1307                     | 76-BS1)   |        |       |       |        |           |        |     |        |           |           |
| 1,1,1,2-Tetrachloroethane                          | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 52.7   | 105 | 74-127 |           |           |
| 1,1,1-Trichloroethane                              | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 55.6   | 111 | 77-121 |           |           |
|                                                    | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 52.0   | 104 | 80-120 |           |           |
| 1,1,2,2-Tetrachloroethane<br>1,1,2-Trichloroethane | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 52.3   | 105 | 78-122 |           |           |
| 1,1,2-Trichlorotrifluoroethane                     | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 51.8   | 104 | 60-140 |           |           |
| 1,1-Dichloroethane                                 | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 54.7   | 109 | 79-126 |           |           |
| 1,1-Dichloroethene                                 | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 60.5   | 121 | 65-153 |           |           |
| 1,1-Dichloropropene                                | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 57.3   | 115 | 72-128 |           |           |
| 1,2,3-Trichlorobenzene                             | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 48.7   | 97  | 60-120 |           |           |
| 1,2,3-Trichloropropane                             | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 47.8   | 96  | 73-128 |           |           |
| 1,2,4-Trichlorobenzene                             | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 50.4   | 101 | 64-120 |           |           |
| 1,2,4-Trimethylbenzene                             | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 53.6   | 107 | 74-120 |           |           |
| 1,2-Dibromo-3-chloropropane                        | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 47.6   | 95  | 63-124 |           |           |
| 1,2-Dibromoethane (EDB)                            | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 52.6   | 105 | 78-120 |           |           |
| 1,2-Dichlorobenzene                                | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 52.1   | 104 | 75-120 |           |           |
| 1,2-Dichloroethane                                 | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 54.7   | 109 | 77-122 |           |           |
| 1,2-Dichloroethene, Total                          | 9E13076   |        | 100   | N/A   | NR     | ug/kg wet | 111    | 111 | 82-120 |           |           |
| 1,2-Dichloropropane                                | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 53.0   | 106 | 75-124 |           |           |
| 1,3,5-Trimethylbenzene                             | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 53.8   | 108 | 74-120 |           |           |
| 1,3-Dichlorobenzene                                | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 52.9   | 106 | 74-120 |           |           |
| 1,3-Dichloropropane                                | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 51.2   | 102 | 72-127 |           |           |
| 1,4-Dichlorobenzene                                | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 52.6   | 105 | 73-120 |           |           |
| 2-Butanone (MEK)                                   | 9E13076   |        | 250   | N/A   | NR     | ug/kg wet | 253    | 101 | 70-134 |           |           |
| 2-Hexanone                                         | 9E13076   |        | 250   | N/A   | NR     | ug/kg wet | 239    | 96  | 59-130 |           |           |
| 4-lsopropyitoluene                                 | 9E13076   |        | 50    | N/A   | NR     | ug/kg wet | 51.8   | 104 | 74-120 |           |           |
| 4-Methyl-2-pentanone (MIBK)                        | 9E13076   |        | 250   | N/A   | NR     | ug/kg wet | 244    | 97  | 65-133 |           |           |
| Acetone                                            | 9E13076   |        | 250   | N/A   | NR     | ug/kg wet | 282    | 113 | 61-137 |           |           |
|                                                    |           |        |       |       |        |           |        |     |        |           |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

Work Order: RSE0369

05/11/09 Received: 05/28/09 17:38 Reported:

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| LABORATORY QC DATA<br>Seq/ Source Spike % % REC % RPD<br>Analyte Batch Result Level MRL MDL Units Result REC Limits RPD Limit Qualifier |                    |        |           |            |      |           |             |           |        |           |           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|-----------|------------|------|-----------|-------------|-----------|--------|-----------|-----------|--|--|
|                                                                                                                                         | Seq/               | Source | Spike     |            |      |           |             | %         | % REC  |           |           |  |  |
| Analyte                                                                                                                                 | •                  | Result | Level     | MRL        | MDL  | Units     | Result      | REC       | Limits | RPD Limit | Qualifier |  |  |
| Volatile Organic Compounds by                                                                                                           | EPA 8260B          |        |           |            |      |           |             |           |        |           |           |  |  |
| LCS Analyzed: 05/13/09 (9E1307                                                                                                          | 6-BS1)             |        |           |            |      |           |             |           |        |           |           |  |  |
| Acrylonitrile                                                                                                                           | 9E13076            |        | 250       | N/A        | NR   | ug/kg wet | 227         | 91        | 65-134 |           |           |  |  |
| Benzene                                                                                                                                 | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 54.3        | 109       | 79-127 |           |           |  |  |
| Bromochloromethane                                                                                                                      | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 54.3        | 109       | 75-134 |           |           |  |  |
| Bromodichloromethane                                                                                                                    | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 52.0        | 104       | 80-122 |           |           |  |  |
| Bromoform                                                                                                                               | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 53.8        | 108       | 68-126 |           |           |  |  |
| Bromomethane                                                                                                                            | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 50.3        | 101       | 37-149 |           |           |  |  |
| Carbon disulfide                                                                                                                        | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 49.9        | 100       | 64-131 |           |           |  |  |
| Carbon Tetrachloride                                                                                                                    | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 56.9        | 114       | 75-135 |           |           |  |  |
| Chlorobenzene                                                                                                                           | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 52.8        | 106       | 76-124 |           |           |  |  |
| Chlorodibromomethane                                                                                                                    | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 53.5        | 107       | 76-125 |           |           |  |  |
| Chloroethane                                                                                                                            | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 49.1        | 98        | 69-135 |           |           |  |  |
| Chloroform                                                                                                                              | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 54.6        | 109       | 80-118 |           |           |  |  |
| Chloromethane                                                                                                                           | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 39.4        | 79        | 63-127 |           |           |  |  |
| cis-1,2-Dichloroethene                                                                                                                  | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 55.2        | 110       | 81-117 |           |           |  |  |
| cis-1,3-Dichloropropene                                                                                                                 | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 53.1        | 106       | 82-120 |           |           |  |  |
| Cyclohexane                                                                                                                             | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 50.4        | 101       | 70-130 |           |           |  |  |
| Dibromomethane                                                                                                                          | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 53.8        | 108       | 73-130 |           |           |  |  |
| Dichlorodifluoromethane                                                                                                                 | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 34.5        | 69        | 57-142 |           |           |  |  |
|                                                                                                                                         | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 53.8        | 108       | 80-120 |           |           |  |  |
| Ethylbenzene                                                                                                                            | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 45.3        | 91        | 59-149 |           |           |  |  |
| lodomethane                                                                                                                             | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 54.7        | 109       | 72-120 |           |           |  |  |
| Isopropylbenzene                                                                                                                        | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 46.1        | 92        | 60-140 |           |           |  |  |
| Methyl Acetate                                                                                                                          | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 51.7        | 103       | 63-125 |           |           |  |  |
| Methyl tert-Butyl Ether                                                                                                                 | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 49.2        | 98        | 60-140 |           |           |  |  |
| Methylcyclohexane                                                                                                                       | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 53.0        | 106       | 61-127 |           |           |  |  |
| Methylene Chloride                                                                                                                      | 9E13076            |        | 100       | N/A        | NR   | ug/kg wet | 106         | 106       | 70-130 |           |           |  |  |
| m-Xylene & p-Xylene                                                                                                                     | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 49.0        | 98        | 38-137 |           |           |  |  |
| Naphthalene                                                                                                                             | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 52.9        | 106       | 70-120 |           |           |  |  |
| n-Butylbenzene                                                                                                                          | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 53.0        | 106       | 70-130 |           |           |  |  |
| n-Propylbenzene                                                                                                                         | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 52.1        | 104       | 70-130 |           |           |  |  |
| o-Xylene                                                                                                                                | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 57.6        | 115       | 74-120 |           |           |  |  |
| sec-Butylbenzene                                                                                                                        | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 56.7        | 113       | 80-120 |           |           |  |  |
| Styrene                                                                                                                                 | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 53.1        | 106       | 73-120 |           |           |  |  |
| tert-Butylbenzene                                                                                                                       | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 54.8        | 110       | 74-122 |           |           |  |  |
|                                                                                                                                         | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 53.1        | 106       | 74-128 |           | В         |  |  |
| Toluene                                                                                                                                 | 9E13076            |        | 50        | N/A        | NR   | ug/kg wet | 56.0        | 112       | 78-126 |           | U         |  |  |
| trans-1,2-Dichloroethene                                                                                                                | 9E13076            |        | 50<br>50  | N/A        | NR   | ug/kg wet | 50.8        | 102       | 73-123 |           |           |  |  |
| trans-1,3-Dichloropropene                                                                                                               | 9E13076            |        | 250       | N/A        | NR   | ug/kg wet | 163         | 65        | 38-155 |           |           |  |  |
| trans-1,4-Dichloro-2-butene                                                                                                             | 9E13076<br>9E13076 |        | 230<br>50 | N/A<br>N/A | NR   | ug/kg wet | 54.9        | 110       | 77-129 |           |           |  |  |
| Trichloroethene                                                                                                                         | 9E13076<br>9E13076 |        | 50<br>50  | N/A        | NR   | ug/kg wet | 48.2        | 96        | 65-146 |           |           |  |  |
| Trichlorofluoromethane                                                                                                                  | 9E13076<br>9E13076 |        | 250       | N/A<br>N/A | NR   | ug/kg wet | 40.2<br>246 | 98        | 53-140 |           |           |  |  |
| Vinyl acetate                                                                                                                           | 9E13076<br>9E13076 |        | 250<br>50 | N/A<br>N/A | NR   | ug/kg wet | 44.8        | 90<br>90  | 61-133 |           |           |  |  |
| Vinyl chloride                                                                                                                          | 9E13076<br>9E13076 |        | 50<br>150 | N/A<br>N/A | NR   | ug/kg wet | 158         | 90<br>106 | 80-120 |           |           |  |  |
| Xylenes, total                                                                                                                          | 9E130/0            |        | 100       | 19075      | 1415 | uying wei | 100         | 100       | 00-120 |           |           |  |  |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                        |                    |        |           |            |      | ug/kg wet |             | 101       | 64-126 |           |           |  |  |
| Surrogate: 4-Bromofluorobenzene                                                                                                         |                    |        |           |            |      | ug/kg wet |             | 110       | 72-126 |           |           |  |  |

**TestAmerica Buffalo** 

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991



Volatile Organic Compounds by EPA 8260B

| THE LEADER IN ENVIRONMENTAL TESTIM<br>Turnkey/Benchmark<br>726 Exchange Street, Suite 624 |               |                  | Work Ord                | er: RSE0 | 369                   |       |         | Received:<br>Reported: |                 | 05/11/09<br>05/28/09 17:38 |                     |           |
|-------------------------------------------------------------------------------------------|---------------|------------------|-------------------------|----------|-----------------------|-------|---------|------------------------|-----------------|----------------------------|---------------------|-----------|
| Buffalo, NY 14210                                                                         |               |                  | Project: T<br>Project N |          | - TECUMSE<br>TURN-000 |       | LOPMENT | SITE                   | Поро            |                            |                     |           |
|                                                                                           |               |                  | LA                      | BORA     | FORY QC               | DATA  |         |                        |                 |                            |                     |           |
| Analyte                                                                                   | Seq/<br>Batch | Source<br>Result | Spike<br>Level          | MRL      | MDL                   | Units | Result  | %<br>REC               | % REC<br>Limits | %<br>RP[                   | RPD<br><u>Limit</u> | Qualifier |

| LCS Analyzed: 05/13/09 (9E13076-BS1) |           |     |        |
|--------------------------------------|-----------|-----|--------|
| Surrogate: Toluene-d8                | ug/kg wet | 105 | 71-125 |

| Matter free         No         The LEADER IN REAL           Connect france         Project (Astingore         No         The LEADER IN REAL           Connect france         Project (Astingore         No         No         No           Connect france         Project (Astingore         No         No         No         No           Connect france         Project (Astingore         No         No         No         No         No           Connect france         Display         Display         Display         Display         Display         Display         No         No | THE LEADER IN ENVIRONMENTAL TESTING     THE LEADER IN ENVIRONMENTAL TESTING       THE LEADER IN ENVIRONMENTAL TESTING     Table       55-8-9     Table       55-8     Special Instructions/       5600     Special Instructions/       5800     Special Instructions/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Manager     Project Manager       Till - 225 - 3314     Table Contact       Nu / 14210     Ste Contact       Stein / 14210     Ste Contact       Ste Contact     Ste Contact       Nu / 14210     Ste Contact       Ste Contact     Ste Contact       Prove     Fisher       Ste Contact     Ste Contact       Prove     Ste Contact       Part     Antrix       Prove     Ste Contact       Prove     Ste Contac                                                                                                                                                             | Date<br>Date<br>Statistic<br>Statistic<br>Date<br>Date<br>Date<br>Date<br>Date<br>Date<br>Date<br>Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| III         Telephone Number (Area Cote)         Turber           State         7         7         11         225         231         1           State         11         225         233         14         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                      | Lab Number<br>Analysis (Attach list if<br>more space for<br>TCL SUPCS<br>TRL Mehmler<br>TRL Mehmler<br>TRL Mehmler<br>TRL Mehmler<br>TRL Mehmler<br>Page<br>Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NUM     Zip Coole     Site Contact     Leab Contact       -PR     Carten/Waybit Number     Direct     Earler       -PR     Carten/Waybit Number     Direct     Earler       Containers &     Matrix     Containers &       Containers &     Containers &     Matrix       Containers &     Containers &     Matri                                                  | Analysis (Amarkum)<br>more space fist in<br>more space fist in<br>Analysis (Amarkum)<br>Amarkum<br>Space fist in<br>TAL Medul<br>TAL Medul<br>TAL Medul<br>Space<br>SDS<br>Space<br>SDS<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Space<br>Sp |
| RR         Carrier/Waybit Number          RR         Matrix         Containers & Preservatives           film         Time         2         Preservatives           film         Time         2         Preservatives           film         Film         Film         Film           fil                                                                                                                    | XXXXXXXXX<br>XXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Matrix         Containers &<br>Preservatives           Containers &<br>ed on one line)         Date         Time         Amatrix         Containers &<br>Preservatives           ed on one line)         Date         Time         All         All         Preservatives         State           i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i                                            | XXXXXXXXX<br>XXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sample (L). No. and Description     Date     Time     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R <t< td=""><td>XXXXXXXX<br/>XXXXXXX<br/>XXXXXXX<br/>XXXXXX<br/>XXXXXXX</td></t<>                                                                                                                                                                                                                                                     | XXXXXXXX<br>XXXXXXX<br>XXXXXXX<br>XXXXXX<br>XXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RR-TP.36     L     1045     1     N       RR-TP.36     L     1045     1     N       RR-TP.36     L     1315     1     N       RR-TP.30     S-9-09     1430     1     N       RR-TP.30     S-9-09     1035     1     N       RR-TP.30     S-9-09     1035     1     N       RR-TP.20     S-7-09     1035     1     N       RR-TP.20     S-17-09     1     N     N       RR-TP.20     S-17-09     1     1                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \\ \times \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| R.RTP.36     L     1115     1     N       R.RTP.36     L     1115     1     N       R.RTP.30     L     1315     1     N       R.RTP.32     SV-01     1430     1     N       R.RTP.32     SV-03     1435     2     N       R.RTP.32     S-P-03     1035     2     N       R.RTP.32     S-P-03     1035     2     N       R.RTP.30     S-P-03     1035     1     N       R.RTP.20     S-P-03     1015     1     N       R.RTP.20     S-P-03     1015     1     1       R.RTP.20     S-P-03     1015     1     1       R.RTP.20     S-P-03     1015     1     1       R.RTP.20     S-P-03     1     1     1       R.RTP.52     N     1     1       R.RTP.52     7                                                                                                                                                                                                                                                                                         | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| R.RTP-36       6       IIIS       1       IS       1         R.RTP-34       L       13/S       1       1       1       1       1         R.RTP-34       L       13/S       1       13/S       1       1       1       1       1         R.RTP-32       5-Y-03       14/30       1       1       1       1       1       1       1         R.RTP-32       5-Y-03       16/5       16/5       2       1       1       1       1       1         R.RTP-30       5-Y-03       16/5       16/5       1       1       1       1       1       1         R.RTP-20       5-Y-03       16/5       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                        | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| R.R-TP-34.       L       13/5       1       N         R.R-TP-32       5-5-6-01       1430       1       2       N         R.R-TP-32       5-7-03       1430       1       2       N         R.R-TP-32       5-7-03       1430       1       N       N         R.R-TP-32       5-7-03       1630       1       N       N         R.R-TP-20       5-7-03       1630       1       N       N         R.R-TP-20       5-17-03       1015       1       N       N         R.R-TP-20       5-17-03       1015       1       N       N         R.R-TP-20       8-17-03       1       1       N       N         R.R-TP-20       8-17-03       1       1       N       N         R.R-TP-20       8-17-03       1       1       1       N         R.R-TP-26       7       1       1       1       1       N         R.R-TP-26       7       1       1       1       1       N       N         R.R-TP-26       7       1       1       1       1       N       N         R.R-TP-52       7       1                                                                                                                                                                                                           | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RR-TP-32       S-V-01       H30       I       I       X         RR-TP-32       S-T-03       H30       I       Z       X         RR-TP-30       S-T-03       H30       I       X       X         RR-TP-20       S-T-03       H30       I       X       X         RR-TP-20       S-T-03       H30       I       X       X         RR-TP-20       S-T-03       H10       I       X       X         RR-TP-20       S-T-03       H15       H16       X       X         RR-TP-20       S-T-03       H16       I       Y       X         RR-TP-20       S-T-03       I       H16       I       X         RR-TP-26       T       T       H16       I       X         RR-TP-26       T       T       H16       X       X         RR-TP-26       T       T       H15       H16       X         RR-TP-52       T       Non-H234       I       K       X         Result       I       Non-H234       I       I       K       X         Result       I       Non-H234       I       I       I       I                                                                                                                                                                                                          | XXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RR-TP-30       S-7-09       1015       2       N         BPA 2-TP-34       5-7-09       1630       1       N         RP-TP-28       5-7-09       1615       1       N         RP-TP-20       5-7-09       1615       1       N         RP-TP-20       5-7-09       1015       1       N         RP-TP-20       5-7-09       1015       1       N         RP-TP-20       5-17-01       1015       1       N         RP-TP-20       7       1       1       N         RP-TP-20       7       1       1       N         RP-TP-20       8       1       1       1       N         RR-TP-52       7       1       1       1       N       N         Possible Hazard Identification       1       1       1 </td <td></td>                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BPA 2-TP-34       5-4-03       16.30       1       1       N         RP-TP-28       5-7-05       61.5       1       4       N         RP-TP-26       5-7-07       101.5       4       N         RP-TP-26       7       11.40       1       N         RP-TP-26       7       11.40       1       N         RP-TP-26       7       14.6       1       N         RR-TP-26       7       14.15       1       N         RR-TP-52       7       14.15       1       N         Possible Hazard identification       1       1       1       N         Possible Hazard I Contification       1       1       1       1       N         Im dound Time Boniad       1       1       1       1       1       1       1         Im dound Time Boniad       1       1       1       1       1       1                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Re-TP-29       5-3-05       915       1       1       N         Re-TP-20       5-17-09       1015       1       1       N         Re-TP-26       7       1140       1       N       N         Re-TP-26       7       140       1       N       N         Re-TP-26       7       140       1       N       N         Re-TP-26       7       140       1       N       N         Re-TP-26       7       1415       1       N       N         Possible Hazard Identification       1       150       N       N       N         Possible Hazard Identification       1       150       1       N       N       N         Im dound Time Boniad       1       1       1       1       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N </td <td></td>                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BPA 2'-TP-30       S-17-09       10'15       4       1         RR-TP - 26       7       1140       1       X         RR-TP - 26       7       1140       1       X         RR-TP - 26       7       140       1       X         RR-TP - 26       7       140       1       X         RR-TP - 26       7       1415       1       X         Reside Hazard Identification       8       1415       1       X         Possible Hazard I Contification       8       1       15       1       X         Tim Association       1       1       1       1       1       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XAX:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RR-TP-26     7     11.40     1.     N       RPM2 TP-26     7     1.40     1.     N       RR-TP-52     7     1.415     1.800     N       Possible Hazard Identification     7     1.415     Identum To Client     M Disposal       Image: Instruct Time Bonized     1     1     1     N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RR-TP-2/     7     1300       RR - TP-52     7     1415       Possible Hazard Identification     1     1       In Acnual Time Bonised     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XKA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RR・TP-52 アゼーラン オルト                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Possible Hazard Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Beniticad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (A fee may be assessed if samples are retained<br>Months fonger than 1 month)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| rs 🗆 7 Dans 🔪 14 Davs 🗔 21 Dave 🔲 Ottiter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ad By Date   Date   -09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3. Relinquished By Date Time 3. Received By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Comments in the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

.

|                            | یے<br>ایک اور<br>ایک ایک اور<br>ایک ایک ایک ایک ایک ایک ایک ایک ایک ایک | Chain of Custody Number<br>111053 | Page 2 of 2                                      |                                                   | Sharial Instructions/             | Conditions of Receipt             |                                                         |            | No metals - BG |             |             | - No Somole Bb | 1                                      | <b>*</b> .  |          |           |      | (A fee may be assessed if samples are retained<br>longer than 1 month) |                                | Date Time         | Date               | Data                                                                                                                  |                                                                                             |                                                                               |
|----------------------------|-------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------|---------------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------------------------|------------|----------------|-------------|-------------|----------------|----------------------------------------|-------------|----------|-----------|------|------------------------------------------------------------------------|--------------------------------|-------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| estAmerica                 | THE LEADER IN ENVIRONMENTAL TESTING                                     | Date 5-8-05                       | Lab Number                                       | Analysis (Attach list if<br>more space is needed) | 238 S<br>S<br>S<br>M<br>M<br>M    | 245<br>24S                        | SVE<br>Text<br>Cade<br>Cade                             | XXX XXX    | XXXXXXXXX      | X X X X X X | X X X X X N | XXXXXXX        | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | XXXXXXX     | XXXXXXXX | XXXXXX    |      | Archive For Months longer than 1 m                                     |                                | In/ c             |                    |                                                                                                                       | $\pi$ $\tau$ $\eta e V_i / \tau_{\pm}$                                                      |                                                                               |
|                            | Yes No ' THE LE                                                         | Jann                              |                                                  | Leb Contact<br>Drion Fusher                       | 1                                 | Containers &<br>Preservatives     | HOEN<br>/24VZ<br>HOBN<br>IDH<br>EONH<br>FOSZH           |            | 7              |             |             |                | а<br>                                  |             | 5        |           |      | Disposal By Lab                                                        | CC Requirements (Specify)      | 60 1. Received By | - 2. Received of   | 3. Received By                                                                                                        | A LEW AND A LEW A                                                                           | Capy                                                                          |
| Temperature on Receipt     | Drinking Water? Ye                                                      | Project Manager                   | Teleptrone Mumber (Area Cod<br>(71 le 1 225 - 3) | Site Contact<br>Kry Korew                         | Carrier/Waybill Number            | Matrix                            | IIOS<br>IPOS<br>Incentry<br>IIV                         | 9 1515 X   |                | 29 915 1 X  | ills -      |                | 09 1340 X                              | 9 1350 X    |          | 05 1340 X | <br> | B X Unknown   Beturn To Client                                         | , 🗌 21 Days 🔲 Other            | Date Time 200     | Date               | Date Time                                                                                                             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Stays with the Sample: PINK - Field Copy                                      |
|                            |                                                                         |                                   | to                                               | NV N210                                           | 2A2-RR                            |                                   | tescription Date (Date                                  | 50-K-5     | 5-7-09         | 5-809       | 5.8.0       | 28.00          | 5-8-09                                 | 5-7-09      | 5-7-09   | 5-8-05    | •    | <br>Intification                                                       | □ 7 Days <b>)</b> 014 Days □ 2 |                   |                    | یمر<br>۲۰۰۰ - ۲۰۰۰<br>۱۹۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ |                                                                                             | d to Client with Report; CANARY - S                                           |
| Chain of<br>Custody Record | TAL-4124 (1007)                                                         | Clipson March                     | Address<br>726 Exceptione                        | Bullelo                                           | Project Name and Location (State) | Contract/Purchase Order/Quote No. | Containers for each sample may be combined on one line) | - RR-TP-50 | RR-TP-49       | RR-7P-10    | ZR - TD-8   | - 78-79-7      | RR.TP. 6                               | 774 2-70-24 | Blind 1  | RR-TP-12  |      | <br>Possible Hazard Identitication                                     | Turn Around Time Required      | Reinduished By    | 2. Heinquistynd By | 3. Relinquished By                                                                                                    | Comments - {                                                                                | DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the |



Analytical Report

Work Order: RSE0535

Project Description TURNKEY - TECUMSEH REDEVELOPMENT SITE

For:

Bryan Hann

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

S.

Brian Fischer

Project Manager Brian.Fischer@testamericainc.com

Monday, June 1, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.



Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

### TestAmerica Buffalo Current Certifications

### As of 1/27/2009

| STATE          | Program                          | Cert # / Lab ID  |
|----------------|----------------------------------|------------------|
| Arkansas       | CWA, RCRA, SOIL                  | 88-0686          |
| California*    | NELAP CWA, RCRA                  | 01169CA          |
| Connecticut    | SDWA, CWA, RCRA, SOIL            | PH-0568          |
| Florida*       | NELAP CWA, RCRA                  | E87672           |
| Georgia*       | SDWA, NELAP CWA, RCRA            | 956              |
| Illinois*      | NELAP SDWA, CWA, RCRA            | 200003           |
| lowa           | SW/CS                            | 374              |
| Kansas*        | NELAP SDWA, CWA, RCRA            | E-10187          |
| Kentucky       | SDWA                             | 90029            |
| Kentucky UST   | UST                              | 30               |
| Louisiana *    | NELAP CWA, RCRA                  | 2031             |
| Maine          | SDWA, CWA                        | N Y0044          |
| Maryland       | SDWA                             | 294              |
| Massachusetts  | SDWA, CWA                        | M-NY044          |
| Michigan       | SDWA                             | 9937             |
| Minnesota      | SDWA,CWA, RCRA                   | 036-999-337      |
| New Hampshire* | NELAP SDWA, CWA                  | 233701           |
| New Jersey*    | NELAP, SDWA, CWA, RCRA,          | NY455            |
| New York*      | NELAP, AIR, SDWA, CWA, RCRA, CLP | 10026            |
| Oklahoma       | CWA, RCRA                        | 9421             |
| Pennsylvania*  | NELAP CWA,RCRA                   | 68-00281         |
| Tennessee      | SDWA                             | 02970            |
| Texas *        | NELAP CWA, RCRA                  | T104704412-08-TX |
| USDA           | FOREIGN SOIL PERMIT              | S-41579          |
| USDOE          | Department of Energy             | DOECAP-STB       |
| Virginia       | SDWA                             | 278              |
| Washington*    | NELAP CWA,RCRA                   | C1677            |
| Wisconsin      | CWA, RCRA                        | 998310390        |
| West Virginia  | CWA,RCRA                         | 252              |

\*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.



Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

#### **Case Narrative**

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.



| Turnkey/Benchmark              | Work Order: RSE0535                            | Received: | 1 |
|--------------------------------|------------------------------------------------|-----------|---|
| 726 Exchange Street, Suite 624 |                                                | Reported: |   |
| Buffalo, NY 14210              | Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE |           |   |
|                                | Project Number: TURN-0009                      |           |   |

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to the lab MDL. It must be noted that results reported below lab standard quantitation limits (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

| SpecificMethod | Analyte        | <u>Units</u> | Client RL | Lab PQL |
|----------------|----------------|--------------|-----------|---------|
| 8270C          | 4-Methylphenol | ug/kg dry    | 170       | 6700    |

05/14/09

06/01/09 16:58

THE LEADER IN ENVIRONMENTAL TESTING

 Turnkey/Benchmark
 Work Order: RSE0535
 Received:
 05/14/09

 726 Exchange Street, Suite 624
 Reported:
 06/01/09 16:58

 Buffalo, NY 14210
 Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE
 06/01/09 16:58

 Project Number:
 TURN-0009
 TURN-0009

#### DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

D02 Dilution required due to sample matrix effects

**D08** Dilution required due to high concentration of target analyte(s)

- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- L1 Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits.
- M1 The MS and/or MSD were outside the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
- QSU Sulfur (EPA 3660) clean-up performed on extract.
- R2 The RPD exceeded the acceptance limit.

#### **ADDITIONAL COMMENTS**

Results are reported on a wet weight basis unless otherwise noted.

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                                                  |          | Executi    | ve Summ      | ary - I | Detectior              | ıs         |                |          |                                              |                |
|------------------------------------------------------------------|----------|------------|--------------|---------|------------------------|------------|----------------|----------|----------------------------------------------|----------------|
|                                                                  | Sample   | Data       |              |         |                        | Dilution   | Date           |          | Seq/                                         |                |
| Analyte                                                          | Result   | Qualifiers | Rpt Limit    | MDL     | Units                  | Factor     | Analyzed       | Analyst  | Batch                                        | Method         |
| Sample ID: RSE0535-01 (RR-TP-4 -<br>General Chemistry Parameters | Solid)   |            |              |         | Sampled                | : 05/11/09 | 08:30          | Recvd: 0 | 5/14/09 1                                    | 4:00           |
| Percent Solids                                                   | 89       |            | 0.010        | NR      | %                      | 1.00       | 05/15/09 20:31 | EKD      | 9E15086                                      | Dry Weight     |
| Total Metals by SW 846 Series Methods                            | L        |            |              |         |                        |            |                |          |                                              |                |
| Arsenic                                                          | 143      |            | 10.0         | NR      | mg/kg dry              | 1.00       | 05/19/09 02:18 |          | 9E15068                                      | 6010B          |
| Barium                                                           | 86.6     |            | 1.00         | NR      | mg/kg dry              | 1.00       | 05/19/09 02:18 |          | 9E15068                                      | 6010B          |
| Cadmium                                                          | 0.649    |            | 0.500        | NR      | mg/kg dry              | 1.00       | 05/19/09 02:18 |          | 9E15068                                      | 6010B          |
| Chromium                                                         | 106      |            | 2.00         | NR      | mg/kg dry              | 1.00       | 05/19/09 02:18 |          | 9E15068                                      | 6010B          |
| Lead                                                             | 154      |            | 5.0          | NR      | mg/kg dry              | 1.00       | 05/19/09 02:18 |          | 9E15068                                      | 6010B          |
| Mercury                                                          | 0.110    |            | 0.0230       | NR      | mg/kg dry              | 1.00       | 05/22/09 15:36 | MM       | 9E22034                                      | 7471A          |
| Sample ID: RSE0535-02 (RR-TP-2 -                                 | Solid)   |            |              |         | Sampled                | : 05/11/09 | 10:45          | Recvd: 0 | 5/14/09 1                                    | 4:00           |
| General Chemistry Parameters                                     |          |            |              |         | 0/                     | 4.00       | 05/45/00 00/22 |          | 0545096                                      |                |
| Percent Solids<br>Total Metals by SW 846 Series Methods          | 93       |            | 0.010        | NR      | %                      | 1.00       | 05/15/09 20:33 | EKD      | 9E15086                                      | Dry Weight     |
| Arsenic                                                          | 75.0     |            | 10.0         | NR      | mg/kg dry              | 1.00       | 05/19/09 02:36 | LMH      | 9E15068                                      | 6010B          |
| Barium                                                           | 158      |            | 1.00         | NR      | mg/kg dry              | 1.00       | 05/19/09 02:36 | LMH      | 9E15068                                      | 6010B          |
| Cadmium                                                          | 3.05     |            | 0.500        | NR      | mg/kg dry              | 1.00       | 05/19/09 02:36 | LMH      | 9E15068                                      | 6010B          |
| Chromium                                                         | 140      |            | 2.00         | NR      | mg/kg dry              | 1.00       | 05/19/09 02:36 | LMH      | 9E15068                                      | 6010B          |
| Lead                                                             | 321      |            | 5.0          | NR      | mg/kg dry              | 1.00       | 05/19/09 02:36 | LMH      | 9E15068                                      | 6010B          |
| Mercury                                                          | 0.399    |            | 0.0230       | NR      | mg/kg dry              | 1.00       | 05/22/09 15:37 | MM       | 9E22034                                      | 7471A          |
| Sample ID: RSE0535-05 (RR-TP-16                                  | - Solid) |            |              |         | Sampled                | : 05/11/09 | 15:15          | Recvd: 0 | 5/14/09 1                                    | 4:00           |
| General Chemistry Parameters                                     |          |            | / -          |         |                        |            | 05/45/00 00.05 |          | 0545000                                      | Dev ) & (sisht |
| Percent Solids<br>Total Metals by SW 846 Series Methods          | 89       |            | 0.010        | NR      | %                      | 1.00       | 05/15/09 20:35 | EKD      | 9E15086                                      | Dry Weight     |
| Arsenic                                                          | 13.5     |            | 10.0         | NR      | mg/kg dry              | 1.00       | 05/19/09 03:01 | LMH      | 9E15068                                      | 6010B          |
| Barium                                                           | 49.7     |            | 1.00         | NR      | mg/kg dry              | 1.00       | 05/19/09 03:01 | LMH      | 9E15068                                      | 6010B          |
| Chromium                                                         | 45.4     |            | 2.00         | NR      | mg/kg dry              | 1.00       | 05/19/09 03:01 | LMH      | 9E15068                                      | 6010B          |
| Lead                                                             | 119      |            | 5.0          | NR      | mg/kg dry              | 1.00       | 05/19/09 03:01 | LMH      | 9E15068                                      | 6010B          |
| Mercury                                                          | 0.0679   |            | 0.0221       | NR      | mg/kg dry              | 1.00       | 05/22/09 15:44 | MM       | 9E22034                                      | 7471A          |
| Sample ID: RSE0535-06 (RR-TP-18                                  | - Solid) |            |              |         | Sampled                | : 05/12/09 | 10:15          | Recvd: 0 | 5/14/09 1                                    | 4:00           |
| General Chemistry Parameters                                     |          |            | 0.040        |         | 0/                     | 1.00       | 05/45/00 00:37 |          | 0515096                                      |                |
| Percent Solids                                                   | 93       |            | 0.010        | NR      | %                      | 1.00       | 05/15/09 20:37 | EKD      | 9E15086                                      | Dry Weight     |
| Total Metals by SW 846 Series Methods                            | 125      |            | 1.00         | NR      | ma/ka dar              | 1.00       | 05/19/09 03:06 | LMH      | 9E15068                                      | 6010B          |
| Barium                                                           | 27.2     |            | 1.00<br>2.00 | NR      | mg/kg dry<br>mg/kg dry | 1.00       | 05/19/09 03:06 |          | 9E15068                                      | 6010B          |
| Chromium                                                         | 31.6     |            | 5.0          | NR      | mg/kg dry              | 1.00       | 05/19/09 03:06 |          | 9E15068                                      | 6010B          |
| Lead<br>Mercury                                                  | 0.0662   |            | 0.0220       | NR      | mg/kg dry              | 1.00       | 05/22/09 15:46 |          | 9E22034                                      | 7471A          |
| Sample ID: RSE0535-07 (RR-TP-20 ·                                | Solid)   |            |              |         | Sampled                | : 05/12/09 | 10-45          | Recvd: 0 | 5/14/00 1                                    | 4-00           |
| General Chemistry Parameters                                     | oonay    |            |              |         | Sampled                | . 05/12/03 | 10.45          | Necvu. v | <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 4.00           |
| Percent Solids                                                   | 88       |            | 0.010        | NR      | %                      | 1.00       | 05/15/09 20:39 | EKD      | 9E15086                                      | Dry Weight     |
| Total Metals by SW 846 Series Methods                            |          |            |              |         |                        |            |                |          |                                              |                |
| Arsenic                                                          | 66.6     |            | 10.0         | NR      | mg/kg dry              | 1.00       | 05/19/09 03:11 | LMH      | 9E15068                                      | 6010B          |
| Barium                                                           | 84.5     |            | 1.00         | NR      | mg/kg dry              | 1.00       | 05/19/09 03:11 | LMH      | 9E15068                                      | 6010B          |
| Cadmium                                                          | 0.531    |            | 0.500        | NR      | mg/kg dry              | 1.00       | 05/19/09 03:11 | LMH      | 9E15068                                      | 6010B          |
| Chromium                                                         | 76.2     |            | 2.00         | NR      | mg/kg dry              | 1.00       | 05/19/09 03:11 |          | 9E15068                                      | 6010B          |
| Lead                                                             | 99.2     |            | 5.0          | NR      | mg/kg dry              | 1.00       | 05/19/09 03:11 |          | 9E15068                                      | 6010B          |
| Mercury                                                          | 0.153    |            | 0.0212       | NR      | mg/kg dry              | 1.00       | 05/22/09 15:47 | MM       | 9E22034                                      | 7471A          |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| Executive Summary - Detection | S |
|-------------------------------|---|
|-------------------------------|---|

| Anabida                                                 | Sample<br>Result | Data<br>Qualifiers | Rpt Limit    | MDI      |                        | ilution<br>Factor | Date<br>Analyzed | Analyst  | Seq/<br>Batch | Method         |
|---------------------------------------------------------|------------------|--------------------|--------------|----------|------------------------|-------------------|------------------|----------|---------------|----------------|
| Analyte                                                 |                  | Quanners           |              | mbe      |                        |                   |                  |          |               |                |
| Sample ID: RSE0535-08 (RR-TP-22                         | - Solid)         |                    |              |          | Sampled:               | 05/12/09          | 11:15            | Recvd: 0 | 5/14/09 1     | 4:00           |
| General Chemistry Parameters                            |                  |                    |              |          |                        | 4.00              | 05/45/00 20:44   |          | 0545096       |                |
| Percent Solids                                          | 87               |                    | 0.010        | NR       | %                      | 1.00              | 05/15/09 20:41   | EKD      | 9E15086       | Dry Weight     |
| Total Metals by SW 846 Series Methods                   |                  |                    | 40.0         | ND       | ma/ka dar              | 1 00              | 05/19/09 03:16   | 5 LMH    | 9E15068       | 6010B          |
| Arsenic                                                 | 13.8<br>93.2     |                    | 10.0<br>1.00 | NR<br>NR | mg/kg dry<br>mg/kg dry | 1.00<br>1.00      | 05/19/09 03:16   |          | 9E15068       | 6010B          |
| Barium                                                  | 93.2<br>0.646    |                    | 0.500        | NR       | mg/kg dry<br>mg/kg dry | 1.00              | 05/19/09 03:16   |          | 9E15068       | 6010B          |
| Cadmium                                                 | 96.4             |                    | 2.00         | NR       | mg/kg dry              | 1.00              | 05/19/09 03:16   |          | 9E15068       | 6010B          |
| Chromium                                                | 189              |                    | 5.0          | NR       | mg/kg dry              | 1.00              | 05/19/09 03:16   |          | 9E15068       | 6010B          |
| Lead                                                    | 0.155            |                    | 0.0219       | NR       | mg/kg dry              | 1.00              | 05/22/09 15:48   |          | 9E22034       | 7471A          |
| Mercury                                                 | 0.100            |                    | 0.0215       |          | ing/itg ury            | 1.00              |                  |          |               |                |
| Sample ID: RSE0535-11 (RR-TP-46                         | · Solid)         |                    |              |          | Sampled:               | 05/13/09          | 10:15            | Recvd: 0 | 5/14/09 1     | 4:00           |
| General Chemistry Parameters                            |                  |                    |              |          |                        |                   |                  |          |               |                |
| Percent Solids                                          | 91               |                    | 0.010        | NR       | %                      | 1.00              | 05/15/09 20:43   | EKD      | 9E15086       | Dry Weight     |
| Total Metals by SW 846 Series Methods                   |                  |                    |              |          |                        |                   |                  |          |               |                |
| Arsenic                                                 | 16.8             |                    | 10.0         | NR       | mg/kg dry              | 1.00              | 05/19/09 03:44   |          | 9E15068       | 6010B          |
| Barium                                                  | 116              |                    | 1.00         | NR       | mg/kg dry              | 1.00              | 05/19/09 03:44   |          | 9E15068       | 6010B          |
| Cadmium                                                 | 1.66             |                    | 0.500        | NR       | mg/kg dry              | 1.00              | 05/19/09 03:44   |          | 9E15068       | 6010B          |
| Chromium                                                | 325              |                    | 2.00         | NR       | mg/kg dry              | 1.00              | 05/19/09 03:44   |          | 9E15068       | 6010B          |
| Lead                                                    | 280              |                    | 5.0          | NR       | mg/kg dry              | 1.00              | 05/19/09 03:44   |          | 9E15068       | 6010B          |
| Mercury                                                 | 0.209            |                    | 0.0227       | NR       | mg/kg dry              | 1.00              | 05/22/09 15:58   | MM       | 9E22034       | 7471A          |
| Sample ID: RSE0535-12 (RR-TP-42 -                       | Solid)           |                    |              |          | Sampled:               | 05/13/09          | 15:00            | Recvd: 0 | 5/14/09 1     | 4:00           |
| General Chemistry Parameters                            |                  |                    |              |          |                        |                   |                  |          |               |                |
| Percent Solids<br>Total Metals by SW 846 Series Methods | 92               |                    | 0.010        | NR       | %                      | 1.00              | 05/15/09 20:45   | EKD      | 9E15086       | Dry Weight     |
| Arsenic                                                 | 149              |                    | 10.0         | NR       | mg/kg dry              | 1.00              | 05/19/09 03:49   | LMH      | 9E15068       | 6010B          |
| Barium                                                  | 142              |                    | 1.00         | NR       | mg/kg dry              | 1.00              | 05/19/09 03:49   | LMH      | 9E15068       | 6010B          |
| Cadmium                                                 | 1.31             |                    | 0.500        | NR       | mg/kg dry              | 1.00              | 05/19/09 03:49   | LMH      | 9E15068       | 6010B          |
| Chromium                                                | 74.6             |                    | 2.00         | NR       | mg/kg dry              | 1.00              | 05/19/09 03:49   | LMH      | 9E15068       | 6010B          |
| Lead                                                    | 207              |                    | 5.0          | NR       | mg/kg dry              | 1.00              | 05/19/09 03:49   | LMH      | 9E15068       | 6010B          |
| Mercury                                                 | 2.38             | D08                | 0.102        | NR       | mg/kg dry              | 5.00              | 05/22/09 17:17   | MM       | 9E22034       | 7471A          |
| Sample ID: RSE0535-13 (BLIND 2 - S                      | Solid)           |                    |              |          | Sampled:               | 05/12/09          | 08:00            | Recvd: 0 | 5/14/09 1     | 4:00           |
| General Chemistry Parameters                            | ,                |                    |              |          |                        |                   |                  |          |               |                |
| Percent Solids                                          | 87               |                    | 0.010        | NR       | %                      | 1.00              | 05/15/09 20:47   | EKD      | 9E15086       | Dry Weight     |
| Total Metals by SW 846 Series Methods                   |                  |                    |              |          |                        |                   |                  |          |               |                |
| Arsenic                                                 | 137              |                    | 10.0         | NR       | mg/kg dry              | 1.00              | 05/19/09 03:54   | LMH      | 9E15068       | 6010B          |
| Barium                                                  | 82.8             |                    | 1.00         | NR       | mg/kg dry              | 1.00              | 05/19/09 03:54   | LMH      | 9E15068       | 6010B          |
| Cadmium                                                 | 1.55             |                    | 0.500        | NR       | mg/kg dry              | 1.00              | 05/19/09 03:54   | LMH      | 9E15068       | 6010B          |
| Chromium                                                | 141              |                    | 2.00         | NR       | mg/kg dry              | 1.00              | 05/19/09 03:54   | LMH      | 9E15068       | 6010B          |
| Lead                                                    | 273              |                    | 5.0          | NR       | mg/kg dry              | 1.00              | 05/19/09 03:54   | LMH      | 9E15068       | 6010B          |
| Mercury                                                 | 2.84             | D08                | 0.110        | NR       | mg/kg dry              | 5.00              | 05/22/09 17:19   | MM       | 9E22034       | 7 <b>4</b> 71A |
| Sample ID: RSE0535-14 (RR-TP-44 -                       | Solid)           |                    |              |          | Sampled:               | 05/13/09          | 12:00            | Recvd: 0 | 5/14/09 1     | 4:00           |
| General Chemistry Parameters                            |                  |                    |              |          | •                      |                   |                  |          |               |                |
| Percent Solids                                          | 93               |                    | 0.010        | NR       | %                      | 1.00              | 05/15/09 20:49   | EKD      | 9E15086       | Dry Weight     |
| Total Metals by SW 846 Series Methods                   |                  |                    |              |          |                        |                   |                  |          |               |                |
| Arsenic                                                 | 65.3             |                    | 10.0         | NR       | mg/kg dry              | 1.00              | 05/19/09 03:59   |          | 9E15068       | 6010B          |
| Barium                                                  | 91.3             |                    | 1.00         | NR       | mg/kg dry              | 1.00              | 05/19/09 03:59   |          | 9E15068       | 6010B          |
| Cadmium                                                 | 7.01             |                    | 0.500        | NR       | mg/kg dry              | 1.00              | 05/19/09 03:59   |          | 9E15068       | 6010B          |
| Chromium                                                | 227              |                    | 2.00         | NR       | mg/kg dry              | 1.00              | 05/19/09 03:59   | LMH      | 9E15068       | 6010B          |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                                                |                  | Executiv           | ve Summ   | ary - I | Detection | S                 |                  |            |               |            |
|----------------------------------------------------------------|------------------|--------------------|-----------|---------|-----------|-------------------|------------------|------------|---------------|------------|
| Analyte                                                        | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL     | _         | ilution<br>Factor | Date<br>Analyzed | Analyst    | Seq/<br>Batch | Method     |
| Sample ID: RSE0535-14 (RR-TP-4                                 |                  |                    |           |         | Sampled   |                   |                  | Recvd: 0   |               | 4.00       |
| Total Metals by SW 846 Series Metho                            | •                | 11.                |           |         | Sampleu.  | 03/13/0           | 5 12.00          |            | J/14/03 1     | 4.00       |
|                                                                | 1030             |                    | 5.0       | NR      | mg/kg dry | 1.00              | 05/19/09 03:59   | LMH        | 9E15068       | 6010B      |
| Lead                                                           | 0.475            |                    | 0.0203    | NR      | mg/kg dry | 1.00              | 05/22/09 16:03   | ММ         | 9E22034       | 7471A      |
| Mercury                                                        |                  |                    |           |         |           |                   |                  |            |               |            |
| Sample ID: RSE0535-15 (BPA 2-T<br>General Chemistry Parameters | P-92 - Solid)    |                    |           |         | Sampled:  | 05/13/0           | 9 14:15          | Recvd: 0   |               |            |
| Percent Solids                                                 | 92               |                    | 0.010     | NR      | %         | 1.00              | 05/15/09 20:51   | EKD        | 9E15086       | Dry Weight |
| Semivolatile Organics by GC/MS                                 |                  |                    |           |         |           |                   |                  |            |               |            |
| Acenaphthylene                                                 | 150              | D02,J              | 3700      | 30      | ug/kg dry | 20.0              | 05/26/09 13:36   | JLG        | 9E20089       | 8270C      |
| Benzo(a)anthracene                                             | 700              | D02,J, B           | 3700      | 63      | ug/kg dry | 20.0              | 05/26/09 13:36   | JLG        | 9E20089       | 8270C      |
| Benzo(a)pyrene                                                 | 830              | D02,L1, J          | 3700      | 88      | ug/kg dry | 20.0              | 05/26/09 13:36   | JLG        | 9E20089       | 8270C      |
| Benzo(b)fluoranthene                                           | 920              | D02,J, B           | 3700      | 71      | ug/kg dry | 20.0              | 05/26/09 13:36   | JLG        | 9E20089       | 8270C      |
| Benzo(ghi)perylene                                             | 690              | D02,J              | 3700      | 44      | ug/kg dry | 20.0              | 05/26/09 13:36   | JLG        | 9E20089       | 8270C      |
| Benzo(k)fluoranthene                                           | 880              | D02,J              | 3700      | 40      | ug/kg dry | 20.0              | 05/26/09 13:36   | JLG        | 9E20089       | 8270C      |
| Chrysene                                                       | 1000             | D02, J, B          | 3700      | 36      | ug/kg dry | 20.0              | 05/26/09 13:36   | JLG        | 9E20089       | 8270C      |
| Dibenzo(a,h)anthracene                                         | 270              | D02,J              | 3700      | 43      | ug/kg dry | 20.0              | 05/26/09 13:36   | JLG        | 9E20089       | 8270C      |
| Fluoranthene                                                   | 910              | D02,J, B           | 3700      | 53      | ug/kg dry | 20.0              | 05/26/09 13:36   | JLG        | 9E20089       | 8270C      |
| Indeno(1,2,3-cd)pyrene                                         | 480              | D02,J              | 3700      | 100     | ug/kg dry | 20.0              | 05/26/09 13:36   | JLG        | 9E20089       | 8270C      |
| Phenanthrene                                                   | 350              | D02,J, B           | 3700      | 77      | ug/kg dry | 20.0              | 05/26/09 13:36   | JLG        | 9E20089       | 8270C      |
| Pyrene                                                         | 930              | D02,J              | 3700      | 24      | ug/kg dry | 20.0              | 05/26/09 13:36   | JLG        | 9E20089       | 8270C      |
| Total Metals by SW 846 Series Metho                            | ds               |                    |           |         |           |                   |                  |            |               |            |
| Arsenic                                                        | 26.7             |                    | 10.0      | NR      | mg/kg dry | 1.00              | 05/19/09 04:04   | LMH        | 9E15068       | 6010B      |
| Barium                                                         | 10.4             |                    | 1.00      | NR      | mg/kg dry | 1.00              | 05/19/09 04:04   | LMH        | 9E15068       | 6010B      |
| Cadmium                                                        | 0.914            |                    | 0.500     | NR      | mg/kg dry | 1.00              | 05/19/09 04:04   | LMH        | 9E15068       | 6010B      |
| Chromium                                                       | 26.3             |                    | 2.00      | NR      | mg/kg dry | 1.00              | 05/19/09 04:04   | LMH        | 9E15068       | 6010B      |
| Lead                                                           | 543              |                    | 5.0       | NR      | mg/kg dry | 1.00              | 05/19/09 04:04   | LMH        | 9E15068       | 6010B      |
| Mercury                                                        | 0.0350           |                    | 0.0224    | NR      | mg/kg dry | 1.00              | 05/22/09 16:04   | MM         | 9E22034       | 7471A      |
| ·                                                              |                  |                    |           |         | <b>O</b>  | 05420             | 0 44.00          | Deaudi O   | E/4 4/00 4    | 4.00       |
| Sample ID: RSE0535-16 (BPA 2-T                                 | P-74 - Solia)    |                    |           |         | Sampled   | : 05/13/0         | 9 11:00          | Recvd: 0   | 5/14/09 1     | 4:00       |
| General Chemistry Parameters                                   | 99               |                    | 0.010     | NR      | %         | 1.00              | 05/15/09 20:53   | EKD        | 9E15086       | Dry Weight |
| Percent Solids                                                 | 33               |                    | 0.010     | INIX    | 70        | 1.00              | 00/10/00 20:00   |            | 0210000       | Di j 110.g |
| Semivolatile Organics by GC/MS                                 | 4000             | D02 1              | 2400      | 20      |           | 20.0              | 05/26/09 13:59   |            | 9E20089       | 8270C      |
| Acenaphthylene                                                 | 1200             | D02,J              | 3400      | 28      | ug/kg dry | 20.0              | 05/26/09 13:59   | JLG<br>JLG | 9E20089       | 8270C      |
| Anthracene                                                     | 810              | D02,J              | 3400      | 87      | ug/kg dry | 20.0              | 05/26/09 13:59   |            | 9E20089       | 8270C      |
| Benzo(a)anthracene                                             | 5000             | D02,B              | 3400      | 59      | ug/kg dry | 20.0              | 05/26/09 13:59   | JLG        | 9E20089       | 8270C      |
| Benzo(a)pyrene                                                 | 4600             | D02,L1             | 3400      | 82      | ug/kg dry | 20.0              |                  | JLG        | 9E20089       | 8270C      |
| Benzo(b)fluoranthene                                           | 6000             | D02,B              | 3400      | 66      | ug/kg dry | 20.0              | 05/26/09 13:59   | JLG        | 9E20089       | 8270C      |
| Benzo(ghi)perylene                                             | 3400             | D02,J              | 3400      | 41      | ug/kg dry | 20.0              | 05/26/09 13:59   | JLG        | 9E20089       | 8270C      |
| Benzo(k)fluoranthene                                           | 2800             | D02,J              | 3400      | 38      | ug/kg dry | 20.0              | 05/26/09 13:59   | JLG        |               | 8270C      |
| Chrysene                                                       | 4600             | D02,B              | 3400      | 34      | ug/kg dry | 20.0              | 05/26/09 13:59   | JLG        | 9E20089       |            |
| Dibenzo(a,h)anthracene                                         | 860              | D02,J              | 3400      | 40      | ug/kg dry | 20.0              | 05/26/09 13:59   | JLG        | 9E20089       | 8270C      |
| Fluoranthene                                                   | 8600             | D02,B              | 3400      | 50      | ug/kg dry | 20.0              | 05/26/09 13:59   | JLG        | 9E20089       | 8270C      |
| Indeno(1,2,3-cd)pyrene                                         | 2800             | D02,J              | 3400      | 95      | ug/kg dry | 20.0              | 05/26/09 13:59   | JLG        | 9E20089       | 8270C      |
| Phenanthrene                                                   | 2800             | D02,J, B           | 3400      | 72      | ug/kg dry | 20.0              | 05/26/09 13:59   | JLG        | 9E20089       | 8270C      |
| Pyrene                                                         | 7400             | D02                | 3400      | 22      | ug/kg dry | 20.0              | 05/26/09 13:59   | JLG        | 9E20089       | 8270C      |
| Total Metals by SW 846 Series Metho                            |                  |                    |           |         |           |                   |                  |            |               |            |
| Aluminum                                                       | 7760             |                    | 10.0      | NR      | mg/kg dry | 1.00              | 05/19/09 04:09   |            | 9E15068       | 6010B      |
| Arsenic                                                        | 47.4             |                    | 2.0       | NR      | mg/kg dry | 1.00              | 05/19/09 04:09   |            | 9E15068       | 6010B      |
| Barium                                                         | 88.8             |                    | 0.500     | NR      | mg/kg dry | 1.00              | 05/19/09 04:09   |            | 9E15068       | 6010B      |
|                                                                | 0.970            |                    | 0.200     | NR      | mg/kg dry | 1.00              | 05/19/09 04:09   | LMH        | 9E15068       | 6010B      |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

|                                                                                                                                                     |                                                                                                             | Executiv           | ve Summ                                                                                               | ary - I                                                       | Detectio                                                                                                                                                 | ns                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Analyte                                                                                                                                             | Sample<br>Result                                                                                            | Data<br>Qualifiers | Rpt Limit                                                                                             | MDL                                                           | Units                                                                                                                                                    | Dilution<br>Factor                                           | Date<br>Analyzed                                                                                                                                                                                   | Analyst                                                                                                                                                                                                                                                                                                                               | Seq/<br>Batch                                                                                                                    | Method                                                                                                            |
| Sample ID: RSE0535-16 (BP.<br>Total Metals by SW 846 Series f                                                                                       |                                                                                                             | cont.              |                                                                                                       |                                                               | Sample                                                                                                                                                   | d: 05/13/09                                                  | ) 11:00                                                                                                                                                                                            | Recvd: 0                                                                                                                                                                                                                                                                                                                              | 5/14/09 14                                                                                                                       | 4:00                                                                                                              |
| Cadmium<br>Calcium<br>Chromium<br>Cobalt<br>Copper<br>Iron<br>Lead<br>Magnesium<br>Manganese<br>Nickel<br>Potassium<br>Silver<br>Sodium<br>Vanadium | 1.87<br>52900<br>91.4<br>4.51<br>120<br>45100<br>290<br>9020<br>3770<br>20.0<br>900<br>0.508<br>234<br>39.7 | D08                | 0.200<br>50.0<br>0.500<br>1.0<br>10.0<br>1.0<br>20.0<br>1.0<br>0.500<br>30.0<br>0.500<br>140<br>0.500 | NR<br>NR R<br>NR NR<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR | mg/kg dry<br>mg/kg dry | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 05/19/09 04:09<br>05/19/09 04:09 | EMH           EMH | 9E15068<br>9E15068<br>9E15068<br>9E15068<br>9E15068<br>9E15068<br>9E15068<br>9E15068<br>9E15068<br>9E15068<br>9E15068<br>9E15068 | 6010B<br>6010B<br>6010B<br>6010B<br>6010B<br>6010B<br>6010B<br>6010B<br>6010B<br>6010B<br>6010B<br>6010B<br>6010B |
| Zinc<br>Mercury                                                                                                                                     | 380<br>0.116                                                                                                |                    | 2.0<br>0.0217                                                                                         | NR<br>NR                                                      | mg/kg dry<br>mg/kg dry                                                                                                                                   | 1.00<br>1.00                                                 | 05/19/09 04:09<br>05/22/09 16:06                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                       | 9E15068<br>9E22034                                                                                                               | 6010B<br>7471A                                                                                                    |



### Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

#### **Sample Summary**

| SAMPLE IDENTIFICATION | LAB NUMBER | Client Matrix | Date/Time<br>Sampled | Date/Time<br>Received |
|-----------------------|------------|---------------|----------------------|-----------------------|
| RR-TP-4               | RSE0535-01 | Solid         | 05/11/09 08:30       | 05/14/09 14:00        |
| RR-TP-2               | RSE0535-02 | Solid         | 05/11/09 10:45       | 05/14/09 14:00        |
| RR-TP-16              | RSE0535-05 | Solid         | 05/11/09 15:15       | 05/14/09 14:00        |
| RR-TP-18              | RSE0535-06 | Solid         | 05/12/09 10:15       | 05/14/09 14:00        |
| RR-TP-20              | RSE0535-07 | Solid         | 05/12/09 10:45       | 05/14/09 14:00        |
| RR-TP-22              | RSE0535-08 | Solid         | 05/12/09 11:15       | 05/14/09 14:00        |
| RR-TP-46              | RSE0535-11 | Solid         | 05/13/09 10:15       | 05/14/09 14:00        |
| RR-TP-42              | RSE0535-12 | Solid         | 05/13/09 15:00       | 05/14/09 14:00        |
| BLIND 2               | RSE0535-13 | Solid         | 05/12/09 08:00       | 05/14/09 14:00        |
| RR-TP-44              | RSE0535-14 | Solid         | 05/13/09 12:00       | 05/14/09 14:00        |
| BPA 2-TP-92           | RSE0535-15 | Solid         | 05/13/09 14:15       | 05/14/09 14:00        |
| BPA 2-TP-74           | RSE0535-16 | Solid         | 05/13/09 11:00       | 05/14/09 14:00        |

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

|                                    |                  |                             | Analytic  | cal Re | port      |                    |                  |         |               |            |
|------------------------------------|------------------|-----------------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|------------|
| Analyte                            | Sample<br>Result | Data<br>Qualifie <i>r</i> s | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0535-01 (RR-TP-      | 4 - Solid)       |                             |           |        | Samp      | led: 05/11         | /09 08:30        | Recvd:  | 05/14/09      | 14:00      |
| General Chemistry Parameters       |                  |                             |           |        |           |                    |                  |         |               |            |
| Percent Solids                     | 89               |                             | 0.010     | NR     | %         | 1.00               | 05/15/09 20:31   | EKD     | 9E15086       | Dry Weight |
| Total Metals by SW 846 Series Meth | <u>ods</u>       |                             |           |        |           |                    |                  |         |               |            |
| Arsenic                            | 143              |                             | 10.0      | NR     | mg/kg dry | 1.00               | 05/19/09 02:18   | LMH     | 9E15068       | 6010B      |
| Barium                             | 86.6             |                             | 1.00      | NR     | mg/kg dry | 1.00               | 05/19/09 02:18   | LMH     | 9E15068       | 6010B      |
| Cadmium                            | 0.649            |                             | 0.500     | NR     | mg/kg dry | 1.00               | 05/19/09 02:18   | LMH     | 9E15068       | 6010B      |
| Chromium                           | 106              |                             | 2.00      | NR     | mg/kg dry | 1.00               | 05/19/09 02:18   | LMH     | 9E15068       | 6010B      |
| Lead                               | 154              |                             | 5.0       | NR     | mg/kg dry | 1.00               | 05/19/09 02:18   | LMH     | 9E15068       | 6010B      |
| Mercury                            | 0.110            |                             | 0.0230    | NR     | mg/kg dry | 1.00               | 05/22/09 15:36   | MM      | 9E22034       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

|                                                |                  |                    | Analytic  | cal Re | port      |                    |                  |                       |               |            |
|------------------------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|-----------------------|---------------|------------|
| Analyte                                        | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst               | Seq/<br>Batch | Method     |
| Sample ID: RSE0535-02 (RR-TP-                  | 2 - Solid)       |                    |           |        | Samp      | led: 05/11/        | /09 10:45        | Recvd: 05/14/09 14:00 |               |            |
| General Chemistry Parameters<br>Percent Solids | 93               |                    | 0.010     | NR     | %         | 1.00               | 05/15/09 20:33   | EKD                   | 9E15086       | Dry Weight |
| Total Metals by SW 846 Series Meth<br>Arsenic  | 75.0             |                    | 10.0      | NR     | mg/kg dry | 1.00               | 05/19/09 02:36   | LMH                   | 9E15068       | 6010B      |
| Barium                                         | 158              |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/19/09 02:36   | LMH                   | 9E15068       | 6010B      |
| Cadmium                                        | 3.05             |                    | 0.500     | NR     | mg/kg dry | 1.00               | 05/19/09 02:36   | LMH                   | 9E15068       | 6010B      |
| Chromium                                       | 140              |                    | 2.00      | NR     | mg/kg dry | 1.00               | 05/19/09 02:36   | LMH                   | 9E15068       | 6010B      |
| Lead                                           | 321              |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/19/09 02:36   | LMH                   | 9E15068       | 6010B      |
| Mercury                                        | 0.399            |                    | 0.0230    | NR     | mg/kg dry | 1.00               | 05/22/09 15:37   | ММ                    | 9E22034       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

 Received:
 05/14/09

 Reported:
 06/01/09 16:58

|                                    |                  |                    | Analytic  | cal Re | port      |                    |                  |         |               |            |
|------------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|------------|
| Analyte                            | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0535-05 (RR-TP-      | 16 - Solid)      |                    |           |        | Sampl     | led: 05/11         | /09 15:15        | Recvd:  | 05/14/09      | 14:00      |
| General Chemistry Parameters       |                  |                    |           |        |           |                    |                  |         |               |            |
| Percent Solids                     | 89               |                    | 0.010     | NR     | %         | 1.00               | 05/15/09 20:35   | EKD     | 9E15086       | Dry Weight |
| Total Metals by SW 846 Series Meth | ods              |                    |           |        |           |                    |                  |         |               |            |
| Arsenic                            | 13.5             |                    | 10.0      | NR     | mg/kg dry | 1.00               | 05/19/09 03:01   | LMH     | 9E15068       | 6010B      |
| Barium                             | 49.7             |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/19/09 03:01   | LMH     | 9E15068       | 6010B      |
| Cadmium                            | ND               |                    | 0.500     | NR     | mg/kg dry | 1.00               | 05/19/09 03:01   | LMH     | 9E15068       | 6010B      |
| Chromium                           | 45.4             |                    | 2.00      | NR     | mg/kg dry | 1.00               | 05/19/09 03:01   | LMH     | 9E15068       | 6010B      |
| Lead                               | 119              |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/19/09 03:01   | LMH     | 9E15068       | 6010B      |
| Mercury                            | 0.0679           |                    | 0.0221    | NR     | mg/kg dry | 1.00               | 05/22/09 15:44   | MM      | 9E22034       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

 Received:
 05/14/09

 Reported:
 06/01/09 16:58

|                                                |                  |                    | Analytic  | al Re | port      |                    |                  |          |               |            |
|------------------------------------------------|------------------|--------------------|-----------|-------|-----------|--------------------|------------------|----------|---------------|------------|
| Analyte                                        | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL   | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst  | Seq/<br>Batch | Method     |
| Sample ID: RSE0535-06 (RR-TP-1                 | 8 - Solid)       |                    |           |       | Samp      | led: 05/12/        | /09 10:15        | Recvd: ( | 05/14/09      | 14:00      |
| General Chemistry Parameters<br>Percent Solids | 93               |                    | 0.010     | NR    | %         | 1.00               | 05/15/09 20:37   | EKD      | 9E15086       | Dry Weight |
| Total Metals by SW 846 Series Metho            | ods              |                    |           |       |           |                    |                  |          |               |            |
| Arsenic                                        | ND               |                    | 10.0      | NR    | mg/kg dry | 1.00               | 05/19/09 03:06   | LMH      | 9E15068       | 6010B      |
| Barium                                         | 125              |                    | 1.00      | NR    | mg/kg dry | 1.00               | 05/19/09 03:06   | LMH      | 9E15068       | 6010B      |
| Cadmium                                        | ND               |                    | 0.500     | NR    | mg/kg dry | 1.00               | 05/19/09 03:06   | LMH      | 9E15068       | 6010B      |
| Chromium                                       | 27.2             |                    | 2.00      | NR    | mg/kg dry | 1.00               | 05/19/09 03:06   | LMH      | 9E15068       | 6010B      |
| Lead                                           | 31.6             |                    | 5.0       | NR    | mg/kg dry | 1.00               | 05/19/09 03:06   | LMH      | 9E15068       | 6010B      |
| Mercury                                        | 0.0662           |                    | 0.0220    | NR    | mg/kg dry | 1.00               | 05/22/09 15:46   | MM       | 9E22034       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

|                                                |                     |                    | Analytic  | al Re | port      |                    |                        |         |               |            |
|------------------------------------------------|---------------------|--------------------|-----------|-------|-----------|--------------------|------------------------|---------|---------------|------------|
| Analyte                                        | Sample<br>Result    | Data<br>Qualifiers | Rpt Limit | MDL   | Units     | Dilution<br>Factor | Date<br>Analyzed       | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0535-07 (RR-TP-                  | 20 - Solid)         |                    |           |       | Samp      | led: 05/12         | /09 10:45              | Recvd:  | 05/14/09      | 14:00      |
| General Chemistry Parameters<br>Percent Solids | 88                  |                    | 0.010     | NR    | %         | 1.00               | 05/15/09 20:39         | EKD     | 9E15086       | Dry Weight |
| Total Metals by SW 846 Series Meth<br>Arsenic  | <u>1005</u><br>66.6 |                    | 10.0      | NR    | mg/kg dry | 1.00               | 05/19/09 03:11         | LMH     | 9E15068       | 6010B      |
| Barium                                         | 84.5                |                    | 1.00      | NR    | mg/kg dry | 1.00               | 05/19/09 03:11         | LMH     | 9E15068       | 6010B      |
| Cadmium                                        | 0.531               |                    | 0.500     | NR    | mg/kg dry | 1.00               | 05/19/09 03:1 <b>1</b> | LMH     | 9E15068       | 6010B      |
| Chromium                                       | 76.2                |                    | 2.00      | NR    | mg/kg dry | 1.00               | 05/19/09 03:11         | LMH     | 9E15068       | 6010B      |
| Lead                                           | 99.2                |                    | 5.0       | NR    | mg/kg dry | 1.00               | 05/19/09 03:11         | LMH     | 9E15068       | 6010B      |
| Mercury                                        | 0.153               |                    | 0.0212    | NR    | mg/kg dry | 1.00               | 05/22/09 15:47         | MM      | 9E22034       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

|                                    |                  |                    | Analytic  | cal Re | port      |                    |                  |         |               |            |
|------------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|------------|
| Analyte                            | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0535-08 (RR-TP-      | 22 - Solid)      |                    |           |        | Samp      | led: 05/12         | /09 11:15        | Recvd:  | 05/14/09      | 14:00      |
| General Chemistry Parameters       |                  |                    |           |        |           |                    |                  |         |               |            |
| Percent Solids                     | 87               |                    | 0.010     | NR     | %         | 1.00               | 05/15/09 20:41   | EKD     | 9E15086       | Dry Weight |
| Total Metals by SW 846 Series Meth | ods              |                    |           |        |           |                    |                  |         |               |            |
| Arsenic                            | 13.8             |                    | 10.0      | NR     | mg/kg dry | 1.00               | 05/19/09 03:16   | LMH     | 9E15068       | 6010B      |
| Barium                             | 93.2             |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/19/09 03:16   | LMH     | 9E15068       | 6010B      |
| Cadmium                            | 0.646            |                    | 0.500     | NR     | mg/kg dry | 1.00               | 05/19/09 03:16   | LMH     | 9E15068       | 6010B      |
| Chromium                           | 96.4             |                    | 2.00      | NR     | mg/kg dry | 1.00               | 05/19/09 03:16   | LMH     | 9E15068       | 6010B      |
| Lead                               | 189              |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/19/09 03:16   | LMH     | 9E15068       | 6010B      |
| Mercury                            | 0.155            |                    | 0.0219    | NR     | mg/kg dry | 1.00               | 05/22/09 15:48   | MM      | 9E22034       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

|                                                |                  |                    | Analytic  | al Re | port      |                    |                  |         |               |            |
|------------------------------------------------|------------------|--------------------|-----------|-------|-----------|--------------------|------------------|---------|---------------|------------|
| Analyte                                        | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL   | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0535-11 (RR-TP-                  | 46 - Solid)      |                    |           |       | Samp      | led: 05/13         | /09 10:15        | Recvd:  | 05/14/09      | 14:00      |
| General Chemistry Parameters<br>Percent Solids | 91<br>odo        |                    | 0.010     | NR    | %         | 1.00               | 05/15/09 20:43   | EKD     | 9E15086       | Dry Weight |
| Total Metals by SW 846 Series Meth<br>Arsenic  | 16.8             |                    | 10.0      | NR    | mg/kg dry | 1.00               | 05/19/09 03:44   | LMH     | 9E15068       | 6010B      |
| Barium                                         | 116              |                    | 1.00      | NR    | mg/kg dry | 1.00               | 05/19/09 03:44   | LMH     | 9E15068       | 6010B      |
| Cadmium                                        | 1.66             |                    | 0.500     | NR    | mg/kg dry | 1.00               | 05/19/09 03:44   | LMH     | 9E15068       | 6010B      |
| Chromium                                       | 325              |                    | 2.00      | NR    | mg/kg dry | 1.00               | 05/19/09 03:44   | LMH     | 9E15068       | 6010B      |
| Lead                                           | 280              |                    | 5.0       | NR    | mg/kg dry | 1.00               | 05/19/09 03:44   | LMH     | 9E15068       | 6010B      |
| Mercury                                        | 0.209            |                    | 0.0227    | NR    | mg/kg dry | 1.00               | 05/22/09 15:58   | ММ      | 9E22034       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

|                                     |                  |                    | Analytic  | cal Re | port      |                    |                  |         |               |                |
|-------------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|----------------|
| Analyte                             | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method         |
| Sample ID: RSE0535-12 (RR-TP-4      | 2 - Solid)       |                    |           |        | Samp      | led: 05/13/        | /09 15:00        | Recvd:  | 05/14/09      | 14:00          |
| General Chemistry Parameters        |                  |                    |           |        |           |                    |                  |         |               |                |
| Percent Solids                      | 92               |                    | 0.010     | NR     | %         | 1.00               | 05/15/09 20:45   | EKD     | 9E15086       | Dry Weight     |
| Total Metals by SW 846 Series Metho | ods              |                    |           |        |           |                    |                  |         |               |                |
| Arsenic                             | 149              |                    | 10.0      | NR     | mg/kg dry | 1.00               | 05/19/09 03:49   | LMH     | 9E15068       | 6010B          |
| Barium                              | 142              |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/19/09 03:49   | LMH     | 9E15068       | 6010B          |
| Cadmium                             | 1.31             |                    | 0.500     | NR     | mg/kg dry | 1.00               | 05/19/09 03:49   | LMH     | 9E15068       | 6010B          |
| Chromium                            | 74.6             |                    | 2.00      | NR     | mg/kg dry | 1,00               | 05/19/09 03:49   | LMH     | 9E15068       | 6010B          |
| Lead                                | 207              |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/19/09 03:49   | LMH     | 9E15068       | 6010B          |
| Mercury                             | 2.38             | D08                | 0.102     | NR     | mg/kg dry | 5.00               | 05/22/09 17:17   | ММ      | 9E22034       | 7 <b>4</b> 71A |

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

|                                     |                  |                    | Analytic  | cal Re | port      |                    |                  |         |               |            |
|-------------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|------------|
| Analyte                             | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0535-13 (BLIND 2      | 2 - Solid)       |                    |           |        | Samp      | led: 05/12         | /09 08:00        | Recvd:  | 05/14/09      | 14:00      |
| General Chemistry Parameters        |                  |                    |           |        |           |                    |                  |         |               |            |
| Percent Solids                      | 87               |                    | 0.010     | NR     | %         | 1.00               | 05/15/09 20:47   | EKD     | 9E15086       | Dry Weight |
| Total Metals by SW 846 Series Metho | ods              |                    |           |        |           |                    |                  |         |               |            |
| Arsenic                             | 137              |                    | 10,0      | NR     | mg/kg dry | 1.00               | 05/19/09 03:54   | LMH     | 9E15068       | 6010B      |
| Barium                              | 82.8             |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/19/09 03:54   | LMH     | 9E15068       | 6010B      |
| Cadmium                             | 1.55             |                    | 0.500     | NR     | mg/kg dry | 1.00               | 05/19/09 03:54   | LMH     | 9E15068       | 6010B      |
| Chromium                            | 141              |                    | 2.00      | NR     | mg/kg dry | 1.00               | 05/19/09 03:54   | LMH     | 9E15068       | 6010B      |
| Lead                                | 273              |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/19/09 03:54   | LMH     | 9E15068       | 6010B      |
| Mercury                             | 2.84             | D08                | 0.110     | NR     | mg/kg dry | 5.00               | 05/22/09 17:19   | ММ      | 9E22034       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

|                                   |                  |                    | Analytic  | cal Re | oort      |                    |                  |         |               |            |
|-----------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|------------|
| Analyte                           | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method     |
| Sample ID: RSE0535-14 (RR-TP      | -44 - Solid)     |                    |           |        | Samp      | led: 05/13         | /09 12:00        | Recvd:  | 05/14/09      | 14:00      |
| General Chemistry Parameters      |                  |                    |           |        |           |                    |                  |         |               |            |
| Percent Solids                    | 93               |                    | 0.010     | NR     | %         | 1.00               | 05/15/09 20:49   | EKD     | 9E15086       | Dry Weight |
| Total Metals by SW 846 Series Met | hods             |                    |           |        |           |                    |                  |         |               |            |
| Arsenic                           | 65.3             |                    | 10.0      | NR     | mg/kg dry | 1.00               | 05/19/09 03:59   | LMH     | 9E15068       | 6010B      |
| Barium                            | 91.3             |                    | 1.00      | NR     | mg/kg dry | 1.00               | 05/19/09 03:59   | LMH     | 9E15068       | 6010B      |
| Cadmium                           | 7.01             |                    | 0.500     | NR     | mg/kg dry | 1.00               | 05/19/09 03:59   | LMH     | 9E15068       | 6010B      |
| Chromium                          | 227              |                    | 2.00      | NR     | mg/kg dry | 1.00               | 05/19/09 03:59   | LMH     | 9E15068       | 6010B      |
| Lead                              | 1030             |                    | 5.0       | NR     | mg/kg dry | 1.00               | 05/19/09 03:59   | LMH     | 9E15068       | 6010B      |
| Mercury                           | 0.475            |                    | 0.0203    | NR     | mg/kg dry | 1.00               | 05/22/09 16:03   | ММ      | 9E22034       | 7471A      |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                      |                  |                    | Analytic     | cal Rep   | oort                   |                    |                  |        |                    |                |
|--------------------------------------|------------------|--------------------|--------------|-----------|------------------------|--------------------|------------------|--------|--------------------|----------------|
| Analyte                              | Sample<br>Result | Data<br>Qualifiers | Rpt Limit    | MDL       | Units                  | Dilution<br>Factor | Date<br>Analyzed | Analys | Seq/<br>st Batch   | Method         |
| Sample ID: RSE0535-15 (BPA 2-        | TP-92 - Solid    | )                  |              |           | Sampl                  | led: 05/13         | /09 14:15        | Recvd  | : 05/14/09         | 14:00          |
| General Chemistry Parameters         |                  |                    |              |           |                        |                    |                  |        |                    |                |
| Percent Solids                       | 92               |                    | 0.010        | NR        | %                      | 1.00               | 05/15/09 20:51   | EKD    | 9E15086            | Dry Weight     |
| Polychlorinated Biphenyls by EPA I   | Method 8082      |                    |              |           |                        |                    |                  |        |                    |                |
| Aroclor 1016                         | ND               |                    | 18           | 3.5       | ug/kg dry              | 1.00               | 05/21/09 09:56   | JM     | 9E19130            | 8082           |
| Aroclor 1221                         | ND               |                    | 18           | 3.5       | ug/kg dry              | 1.00               | 05/21/09 09:56   | JM     | 9E19130            | 8082           |
| Arodor 1221<br>Arodor 1232           | ND               |                    | 18           | 3.5       | ug/kg dry              | 1.00               | 05/21/09 09:56   | JM     | 9E19130            | 8082           |
|                                      | ND               |                    | 18           | 3.9       | ug/kg dry              | 1.00               | 05/21/09 09:56   | JM     | 9E19130            | 8082           |
| Aroclor 1242                         | ND               |                    | 18           | 3.6       | ug/kg dry              | 1.00               | 05/21/09 09:56   | JM     | 9E19130            | 8082           |
| Aroclor 1248                         | ND               |                    | 18           | 3.8       | ug/kg dry              | 1.00               | 05/21/09 09:56   | JM     | 9E19130            | 8082           |
| Aroclor 1254<br>Aroclor 1260         | ND               |                    | 18           | 3.8       | ug/kg dry              | 1.00               | 05/21/09 09:56   | JM     | 9E19130            | 8082           |
| <u> </u>                             | 120 %            |                    |              |           |                        |                    | 05/21/09 09:56   | JM     | 9E19130            | 8082           |
| Surr: Decachlorobiphenyl (34-148%)   |                  |                    |              |           |                        |                    | 05/21/09 09:56   | JM     | 9E19130            | 8082           |
| Surr: Tetrachloro-m-xylene (35-134%) | 103 %            |                    |              |           |                        |                    | 03/21/00 00:00   | 5141   | 0210100            |                |
| Semivolatile Organics by GC/MS       |                  |                    |              |           |                        |                    | 05/00/00 43/30   |        | 0520080            | 8270C          |
| 2,4,5-Trichlorophenol                | ND               | D02                | 3700         | 800       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089<br>9E20089 | 8270C<br>8270C |
| 2,4,6-Trichlorophenol                | ND               | D02                | 3700         | 240       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    |                    |                |
| 2,4-Dichlorophenol                   | ND               | D02                | 3700         | 190       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 2,4-Dimethylphenol                   | ND               | D02                | 3700         | 990       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 2,4-Dinitrophenol                    | ND               | D02                | 7100         | 1300      | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 2,4-Dinitrotoluene                   | ND               | D02                | 3700         | 570       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 2,6-Dinitrotoluene                   | ND               | D02                | 3700         | 890       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 2-Chloronaphthalene                  | ND               | D02                | 3700         | 240       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 2-Chlorophenol                       | ND               | D02                | 3700         | 190       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 2-Methylnaphthalene                  | ND               | D02                | 3700         | 44        | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 2-Methylphenol                       | ND               | D02                | 3700         | 110       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 2-Nitroaniline                       | ND               | D02                | 7100         | 1200      | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 2-Nitrophenol                        | ND               | D02                | 3700         | 170       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 3,3'-Dichlorobenzidine               | ND               | D02                | 3700         | 3200      | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 3-Nitroaniline                       | ND               | D02                | 7100         | 840       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 4,6-Dinitro-2-methylphenol           | ND               | D02                | 7100         | 1300      | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 4-Bromophenyl phenyl ether           | ND               | D02                | 3700         | 1200      | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
|                                      | ND               | D02                | 3700         | 150       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 4-Chloro-3-methylphenol              | ND               | D02                | 3700         | 1100      | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 4-Chloroaniline                      | ND               | D02                | 3700         | 78        | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 4-Chlorophenyl phenyl ether          | ND               | D02                | 3700         | 200       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| 4-Methylphenol                       | ND               | D02                | 7100         | 410       | ug/kg dry              | 20.0               | 05/26/09 13:36   |        | 9E20089            | 8270C          |
| 4-Nitroaniline                       | ND               | D02                | 7100         | 880       | ug/kg dry              | 20.0               | 05/26/09 13:36   |        | 9E20089            | 8270C          |
| 4-Nitrophenol                        | ND               | D02                | 3700         | 43        | ug/kg dry              | 20.0               | 05/26/09 13:36   |        | 9E20089            | 8270C          |
| Acenaphthene                         | 150              | D02,J              | 3700         | 30        | ug/kg dry<br>ug/kg dry | 20.0               | 05/26/09 13:36   |        | 9E20089            | 8270C          |
| Acenaphthylene                       | ND               | D02,5<br>D02       | 3700         | 190       | ug/kg dry<br>ug/kg dry | 20.0               | 05/26/09 13:36   |        | 9E20089            | 8270C          |
| Acetophenone                         | ND               | D02<br>D02         | 3700         | 93        | ug/kg dry<br>ug/kg dry | 20.0               | 05/26/09 13:36   |        | 9E20089            | 8270C          |
| Anthracene                           |                  |                    |              | 93<br>160 | • • •                  | 20.0               | 05/26/09 13:36   |        | 9E20089            | 8270C          |
| Atrazine TIC                         | ND               | D02                | 3700<br>3700 |           | ug/kg dry              | 20.0               | 05/26/09 13:36   |        | 9E20089            | 8270C          |
| Benzaldehyde                         | ND               | D02                | 3700         | 400       | ug/kg dry              |                    | 05/26/09 13:36   |        | 9E20089            | 8270C          |
| Benzo(a)anthracene                   | 700              | D02,J, B           | 3700         | 63        | ug/kg dry              | 20.0               |                  |        | 9E20089<br>9E20089 | 8270C          |
| Benzo(a)pyrene                       | 830              | D02,L1, J          | 3700         | 88        | ug/kg dry              | 20.0               | 05/26/09 13:36   |        |                    |                |
| 3enzo(b)fluoranthene                 | 920              | D02,J, B           | 3700         | 71        | ug/kg dry              | 20.0               | 05/26/09 13:36   |        | 9E20089            | 8270C          |
| Benzo(ghi)perylene                   | 690              | D02,J              | 3700         | 44        | ug/kg dry              | 20.0               | 05/26/09 13:36   |        | 9E20089            | 8270C          |
| Benzo(k)fluoranthene                 | 880              | D02,J              | 3700         | 40        | ug/kg dry              | 20.0               | 05/26/09 13:36   |        | 9E20089            | 8270C          |
| Biphenyl                             | ND               | D02                | 3700         | 230       | ug/kg dry              | 20.0               | 05/26/09 13:36   | -      | 9E20089            | 8270C          |
| Bis(2-chloroethoxy)methane           | ND               | D02                | 3700         | 200       | ug/kg dry              | 20.0               | 05/26/09 13:36   | JLG    | 9E20089            | 8270C          |
| TostAmorica Buffalo                  |                  |                    |              |           |                        |                    |                  |        |                    |                |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                       |               |              | Analytic     | cal Rej      | oort                   |              |                                  |            |                    |                |
|---------------------------------------|---------------|--------------|--------------|--------------|------------------------|--------------|----------------------------------|------------|--------------------|----------------|
|                                       | Sample        | Data         |              |              |                        | Dilution     | Date                             |            | Seq/               |                |
| Analyte                               | Result        | Qualifiers   | Rpt Limit    | MDL          | Units                  | Factor       | Analyzed                         | Analys     | t Batch            | Method         |
| Sample ID: RSE0535-15 (BPA 2-1        | FP-92 - Solid | ) - cont.    |              |              | Sampl                  | ed: 05/13    | /09 14:15                        | Recvd:     | 05/14/09           | 14:00          |
| Semivolatile Organics by GC/MS - c    | ont.          |              |              |              |                        |              |                                  |            |                    |                |
| Bis(2-chloroethyl)ether               | ND            | D02          | 3700         | 320          | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| 2,2'-Oxybis(1-Chloropropane)          | ND            | D02          | 3700         | 380          | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Bis(2-ethylhexyl) phthalate           | ND            | D02          | 3700         | 1200         | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Butyi benzyl phthalate                | ND            | D02          | 3700         | 980          | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Caprolactam                           | ND            | D02          | 3700         | 1600         | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Carbazole                             | ND            | D02          | 3700         | 42           | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Chrysene                              | 1000          | D02,J, B     | 3700         | 36           | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Dibenzo(a,h)anthracene                | 270           | D02,J        | 3700         | 43           | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Dibenzofuran                          | ND            | D02          | 3700         | 38           | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Diethyl phthalate                     | ND            | D02          | 3700         | 110          | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Dimethyl phthalate                    | ND            | D02          | 3700         | 95           | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Di-n-butyl phthalate                  | ND            | D02          | 3700         | 1300         | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Di-n-octyl phthalate                  | ND            | D02          | 3700         | 85           | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Fluoranthene                          | 910           | D02,J, B     | 3700         | 53           | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C<br>8270C |
| Fluorene                              | ND            | D02          | 3700         | 84           | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089<br>9E20089 | 8270C<br>8270C |
| Hexachlorobenzene                     | ND            | D02          | 3700         | 180          | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C<br>8270C |
| Hexachlorobutadiene                   | ND            | D02          | 3700         | 190          | ug/kg dry              | 20.0<br>20.0 | 05/26/09 13:36<br>05/26/09 13:36 | JLG        | 9E20089            | 8270C          |
| Hexachlorocyclopentadiene             | ND<br>ND      | D02<br>D02   | 3700<br>3700 | 1100<br>280  | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG<br>JLG | 9E20089            | 8270C          |
| Hexachloroethane                      |               |              |              |              | ug/kg dry              |              | 05/26/09 13:36                   |            | 9E20089<br>9E20089 | 8270C          |
| Indeno(1,2,3-cd)pyrene                | 480           | D02,J<br>D02 | 3700<br>3700 | 100          | ug/kg dry              | 20.0<br>20.0 | 05/26/09 13:36                   | JLG<br>JLG | 9E20089            | 8270C          |
| Isophorone                            | ND<br>ND      | D02<br>D02   | 3700         | 180<br>61    | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Naphthalene                           | ND            | D02          | 3700         | 160          | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Nitrobenzene                          | ND            | D02          | 3700         | 290          | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| N-Nitrosodi-n-propylamine             | ND            | D02,L        | 3700         | 200          | ug/kg dry<br>ug/kg dry | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| N-Nitrosodiphenylamine                | ND            | D02,L        | 7100         | 1300         | ug/kg dry<br>ug/kg dry | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Pentachlorophenol                     | 350           | D02, J, B    | 3700         | 77           | ug/kg dry<br>ug/kg dry | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Phenanthrene                          | ND            | D02          | 3700         | 380          | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Phenol<br>Pyrene                      | 930           | D02,J        | 3700         | 24           | ug/kg dry              | 20.0         | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| -                                     | 82 %          | D02          |              |              |                        |              | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Surr: 2,4,6-Tribromophenol (39-146%)  |               | D02          |              |              |                        |              | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Surr: 2-Fluorobiphenyl (37-120%)      | 99 %          |              |              |              |                        |              |                                  |            |                    | 8270C          |
| Surr: 2-Fluorophenol (18-120%)        | 63 %          | D02          |              |              |                        |              | 05/26/09 13:36                   | JLG        | 9E20089            |                |
| Surr: Phenol-d5 (11-120%)             | 64 %          | D02          |              |              |                        |              | 05/26/09 13:36                   | JLG        | 9E20089            | 8270C          |
| Total Metals by SW 846 Series Metho   | ods           |              |              |              |                        |              |                                  |            |                    |                |
| Arsenic                               | 26.7          |              | 10.0         | NR           | mg/kg dry              | 1.00         | 05/19/09 04:04                   | LMH        | 9E15068            | 6010B          |
| Barium                                | 10.4          |              | 1.00         | NR           | mg/kg dry              | 1.00         | 05/19/09 04:04                   | LMH        | 9E15068            | 6010B          |
| Cadmium                               | 0.914         |              | 0.500        | NR           | mg/kg dry              | 1.00         | 05/19/09 04:04                   | LMH        | 9E15068            | 6010B          |
| Chromium                              | 26.3          |              | 2.00         | NR           | mg/kg dry              | 1.00         | 05/19/09 04:04                   | LMH        | 9E15068            | 6010B          |
| Lead                                  | 543           |              | 5.0          | NR           | mg/kg dry              | 1.00         | 05/19/09 04:04                   | LMH        | 9E15068            | 6010B          |
| Mercury                               | 0.0350        |              | 0.0224       | NR           | mg/kg dry              | 1.00         | 05/22/09 16:04                   | ММ         | 9E22034            | 7471A          |
| Volatile Organic Compounds by EPA     | 8260B         |              |              |              |                        |              |                                  |            |                    |                |
|                                       | ND            |              | 5.3          | 0.38         | ug/kg dry              | 1.00         | 05/19/09 19:29                   | PQ         | 9E19088            | 8260B          |
| 1,1,1-Trichloroethane                 | ND            |              | 5.3          | 0.86         | ug/kg dry              | 1.00         | 05/19/09 19:29                   | PQ         | 9E19088            | 8260B          |
| 1,1,2,2-Tetrachloroethane             |               |              |              |              |                        | 1.00         | 05/19/09 19:29                   | PQ         | 9E19088            | 8260B          |
| 1,1,2-Trichloroethane                 | ND            |              |              |              |                        |              |                                  |            |                    |                |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND<br>ND      |              | 5.3<br>5.3   | 0.27<br>0.56 | ug/kg dry<br>ug/kg dry | 1.00         | 05/19/09 19:29                   | PQ         | 9E19088            | 8260B          |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                  |                |            | Analytic  | cal Rep | port      |             |                |        |                       |        |
|----------------------------------|----------------|------------|-----------|---------|-----------|-------------|----------------|--------|-----------------------|--------|
|                                  | Sample         | Data       |           |         |           | Dilution    | Date           |        | Seq/                  |        |
| Analyte                          | Result         | Qualifiers | Rpt Limit | MDL     | Units     | Factor      | Analyzed       | Analys | t Batch               | Method |
| Sample ID: RSE0535-15 (BPA 2-    | TP-92 - Solid) | - cont     |           |         | Sampl     | led: 05/13/ | /09 14:15      | Recvd: | 05/14/09 <sup>-</sup> | 14:00  |
| Volatile Organic Compounds by EP | A 8260B - cont | <u>-</u>   |           |         |           |             |                |        |                       |        |
| 1.1-Dichloroethene               | ND             |            | 5.3       | 0.65    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| 1,2,4-Trichlorobenzene           | ND             |            | 5.3       | 0.32    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| 1,2,4-Trimethylbenzene           | ND             |            | 5.3       | 0.38    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| 1,2-Dibromo-3-chloropropane      | ND             |            | 5.3       | 1.1     | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| 1.2-Dibromoethane                | ND             |            | 5.3       | 0.20    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| 1,2-Dichlorobenzene              | ND             |            | 5.3       | 0.79    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| 1,2-Dichloroethane               | ND             |            | 5.3       | 0.27    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| 1,2-Dichloropropane              | ND             |            | 5.3       | 0.27    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| 1,3,5-Trimethylbenzene           | ND             |            | 5.3       | 0.34    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| 1,3-Dichlorobenzene              | ND             |            | 5.3       | 0.75    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| 1,4-Dichlorobenzene              | ND             |            | 5.3       | 0.74    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| 2-Butanone                       | ND             |            | 26        | 7.2     | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| 2-Hexanone                       | ND             |            | 26        | 1.8     | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| p-Cymene                         | ND             |            | 5.3       | 0.42    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| 4-Methyl-2-pentanone             | ND             |            | 26        | 1.7     | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Acetone                          | ND             |            | 26        | 1.2     | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Benzene                          | ND             |            | 5.3       | 0.26    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Bromodichloromethane             | ND             |            | 5.3       | 0.27    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Bromoform                        | ND             |            | 5.3       | 0.49    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Bromomethane                     | ND             |            | 5.3       | 0.48    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Carbon disulfide                 | ND             |            | 5.3       | 0.45    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Carbon Tetrachloride             | ND             |            | 5.3       | 0.19    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Chlorobenzene                    | ND             |            | 5.3       | 0.23    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Dibromochloromethane             | ND             |            | 5.3       | 0.29    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Chloroethane                     | ND             |            | 5.3       | 0.85    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Chloroform                       | ND             |            | 5.3       | 0.33    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Chloromethane                    | ND             |            | 5.3       | 0.32    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| cis-1,2-Dichloroethene           | ND             |            | 5.3       | 0.26    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| cis-1,3-Dichloropropene          | NĎ             |            | 5.3       | 0.30    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Cyclohexane                      | ND             |            | 5.3       | 0.24    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Dichlorodifluoromethane          | ND             |            | 5.3       | 0.44    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Ethylbenzene                     | ND             |            | 5.3       | 0.36    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Isopropylbenzene                 | ND             |            | 5.3       | 0.35    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Methyl Acetate                   | ND             |            | 5.3       | 0.29    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Methyl-t-Butyl Ether (MTBE)      | ND             |            | 5.3       | 0.52    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Methylcyclohexane                | ND             |            | 5.3       | 0.34    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Methylene Chloride               | ND             |            | 5.3       | 0.37    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| m-Xylene & p-Xylene              | ND             |            | 11        | 0.89    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| n-Butylbenzene                   | ND             |            | 5.3       | 0.46    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| n-Propylbenzene                  | ND             |            | 5.3       | 0.40    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| o-Xylene                         | ND             |            | 5.3       | 0.26    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| sec-Butylbenzene                 | ND             |            | 5.3       | 0.46    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Styrene                          | ND             |            | 5.3       | 0.26    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| tert-Butylbenzene                | ND             |            | 5.3       | 0.55    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Tetrachloroethene                | ND             |            | 5.3       | 0.71    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Toluene                          | ND             |            | 5.3       | 0.90    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| trans-1,2-Dichloroethene         | ND             |            | 5.3       | 0.54    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| trans-1,3-Dichloropropene        | ND             |            | 5.3       | 0.26    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Trichloroethene                  | ND             |            | 5.3       | 0.36    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Trichlorofluoromethane           | ND             |            | 5.3       | 1.7     | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
| Vinyl chloride                   | ND             |            | 11        | 0.22    | ug/kg dry | 1.00        | 05/19/09 19:29 | PQ     | 9E19088               | 8260B  |
|                                  |                |            |           |         | J J J     |             |                |        |                       |        |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

#### Work Order: RSE0535 05/14/09 Received: Turnkey/Benchmark 726 Exchange Street, Suite 624 Reported:

Buffalo, NY 14210

06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE TURN-0009 Project Number:

|                                       |                  |                    | Analytic  | cal Rej | port      |                    |                  |        |               |        |
|---------------------------------------|------------------|--------------------|-----------|---------|-----------|--------------------|------------------|--------|---------------|--------|
| Analyte                               | Sample<br>Result | Data<br>Qualifiers | Rpt Limit | MDL     | Units     | Dilution<br>Factor | Date<br>Analyzed | Analys | Seq/<br>Batch | Method |
| Sample ID: RSE0535-15 (BPA 2-T        | P-92 - Solid     | ) - cont.          |           |         | Samp      | led: 05/13         | /09 14:15        | Recvd: | 05/14/09      | 14:00  |
| Volatile Organic Compounds by EPA     | 8260B - con      | <u>t.</u>          |           |         |           |                    |                  |        |               |        |
| Xylenes, total                        | ND               |                    | 11        | 0.89    | ug/kg dry | 1.00               | 05/19/09 19:29   | PQ     | 9E19088       | 8260B  |
| Surr: 1,2-Dichloroethane-d4 (64-126%) | 101 %            |                    | <u>_</u>  |         |           |                    | 05/19/09 19:29   | PQ     | 9E19088       | 8260B  |
| Surr: 4-Bromofluorobenzene (72-126%)  | 114 %            |                    |           |         |           |                    | 05/19/09 19:29   | PQ     | 9E19088       | 8260B  |
| Surr: Toluene-d8 (71-125%)            | 108 %            |                    |           |         |           |                    | 05/19/09 19:29   | PQ     | 9E19088       | 8260B  |

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                      |                  |                    | Analytic   | cal Re | port      |                    |                                  |        |                    |                |
|--------------------------------------|------------------|--------------------|------------|--------|-----------|--------------------|----------------------------------|--------|--------------------|----------------|
| Analuta                              | Sample<br>Result | Data<br>Qualifiers | Rpt Limit  | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed                 | Analys | Seq/<br>st Batch   | Mathad         |
| Analyte                              | _                |                    | TYPE CHIME |        |           |                    |                                  |        |                    | Method         |
| Sample ID: RSE0535-16 (BPA 2-        | TP-74 - Solid)   |                    |            |        | Sampl     | ed: 05/13          | /09 11:00                        | Recvd  | : 05/14/09         | 14:00          |
| General Chemistry Parameters         |                  |                    |            |        |           |                    |                                  |        |                    |                |
| Percent Solids                       | 99               |                    | 0.010      | NR     | %         | 1.00               | 05/15/09 20:53                   | EKD    | 9E15086            | Dry Weight     |
| Total Cyanide                        | ND               |                    | 1.0        | 0.9    | mg/kg dry | 1.00               | 05/22/09 09:07                   | jmm    | 9E21006            | 9012A          |
| Polychlorinated Biphenyls by EPA     | Method 8082      |                    |            |        |           |                    |                                  |        |                    |                |
| Aroclor 1016                         | ND               |                    | 17         | 3.3    | ug/kg dry | 1.00               | 05/21/09 10:11                   | JM     | 9E19130            | 8082           |
| Aroclor 1221                         | ND               |                    | 17         | 3.3    | ug/kg dry | 1.00               | 05/21/09 10:11                   | JM     | 9E19130            | 8082           |
| Aroclor 1232                         | ND               |                    | 17         | 3.3    | ug/kg dry | 1.00               | 05/21/09 10:11                   | JM     | 9E19130            | 8082           |
| Aroclor 1242                         | ND               |                    | 17         | 3.6    | ug/kg dry | 1.00               | 05/21/09 10:11                   | JM     | 9E19130            | 8082           |
| Aroclor 1248                         | ND               |                    | 17         | 3.3    | ug/kg dry | 1.00               | 05/21/09 10:11                   | JM     | 9E19130            | 8082           |
| Aroclor 1254                         | ND               |                    | 17         | 3.5    | ug/kg dry | 1.00               | 05/21/09 10:11                   | JM     | 9E19130            | 8082           |
| Aroclor 1254<br>Aroclor 1260         | ND               |                    | 17         | 3.5    | ug/kg dry | 1.00               | 05/21/09 10:11                   | JM     | 9E19130            | 8082           |
| Surr: Decachlorobiphenyl (34-148%)   | 130 %            |                    |            |        |           |                    | 05/21/09 10:11                   | JM     | 9E19130            | 8082           |
| Surr: Tetrachloro-m-xylene (35-134%) | 94 %             |                    |            |        |           |                    | 05/21/09 10:11                   | JM     | 9E19130            | 8082           |
|                                      |                  |                    |            |        |           |                    |                                  |        |                    |                |
| Semivolatile Organics by GC/MS       | ND               | Daa                | 0.400      | 760    |           |                    | 05/00/00 40.50                   |        | 0500000            | 8270C          |
| 2,4,5-Trichlorophenol                | ND               | D02                | 3400       | 750    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            |                |
| 2,4,6-Trichlorophenol                | ND               | D02                | 3400       | 230    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 2,4-Dichlorophenol                   | ND               | D02                | 3400       | 180    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 2,4-Dimethylphenol                   | ND               | D02                | 3400       | 920    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 2,4-Dinitrophenol                    | ND               | D02                | 6700       | 1200   | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 2,4-Dinitrotoluene                   | ND               | D02                | 3400       | 530    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 2,6-Dinitrotoluene                   | ND               | D02                | 3400       | 840    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 2-Chloronaphthalene                  | ND               | D02                | 3400       | 230    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 2-Chlorophenol                       | NÐ               | D02                | 3400       | 170    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 2-Methylnaphthalene                  | ND               | D02                | 3400       | 41     | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 2-Methylphenol                       | ND               | D02                | 3400       | 110    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 2-Nitroaniline                       | ND               | D02                | 6700       | 1100   | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
|                                      | ND               | D02                | 3400       | 160    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 2-Nitrophenol                        | ND               | D02                | 3400       | 3000   | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 3,3'-Dichlorobenzidine               | ND               | D02                | 6700       | 790    |           | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 3-Nitroaniline                       | ND               | D02                | 6700       | 1200   | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 4,6-Dinitro-2-methylphenol           | ND               | D02                | 3400       |        | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 4-Bromophenyl phenyl ether           |                  |                    |            | 1100   | ug/kg dry |                    |                                  |        |                    | 8270C          |
| 1-Chloro-3-methylphenol              | ND               | D02                | 3400       | 140    | ug/kg dry | 20.0               | 05/26/09 13:59<br>05/26/09 13:59 | JLG    | 9E20089<br>9E20089 | 8270C<br>8270C |
| 4-Chloroaniline                      | ND               | D02                | 3400       | 1000   | ug/kg dry | 20.0               |                                  | JLG    |                    | 8270C<br>8270C |
| 1-Chlorophenyl phenyl ether          | ND               | D02                | 3400       | 73     | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089<br>9E20089 |                |
| 1-Methylphenol                       | ND               | D02                | 3400       | 190    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    |                    | 8270C          |
| l-Nitroaniline                       | ND               | D02                | 6700       | 380    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| I-Nitrophenol                        | ND               | D02                | 6700       | 830    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| Acenaphthene                         | ND               | D02                | 3400       | 40     | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| Acenaphthylene                       | 1200             | D02,J              | 3400       | 28     | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| Acetophenone                         | ND               | D02                | 3400       | 180    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| Anthracene                           | 810              | D02,J              | 3400       | 87     | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| Atrazine TIC                         | ND               | D02                | 3400       | 150    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| Benzaldehyde                         | ND               | D02                | 3400       | 370    | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| Benzo(a)anthracene                   | 5000             | D02,B              | 3400       | 59     | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| Benzo(a)pyrene                       | 4600             | D02,L1             | 3400       | 82     | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| Benzo(b)fluoranthene                 | 6000             | D02,B              | 3400       | 66     | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| Senzo(ghi)perylene                   | 3400             | D02,J              | 3400       | 41     | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
|                                      | 2800             | D02,J              | 3400       | 38     | ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| Benzo(k)fluoranthene                 | ND               | D02,0              | 3400       | 210    |           | 20.0               | 05/26/09 13:59                   | JLG    | 9E20089            | 8270C          |
| 3iphenyl<br>TostAmorica Buffala      |                  | 272                | 0-00       | 210    | ug/kg dry | 20.0               | 20120100 10:00                   | 310    |                    | -2.00          |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                        |                  |                    | Analytic     | al Re       | port                   |                    |                                  |            |                    |                |
|----------------------------------------|------------------|--------------------|--------------|-------------|------------------------|--------------------|----------------------------------|------------|--------------------|----------------|
| Analyte                                | Sample<br>Result | Data<br>Qualifiers | Rpt Limit    | MDL         | Units                  | Dilution<br>Factor | Date<br>Analyzed                 | Analyst    | Seq/<br>Batch      | Method         |
| Sample ID: RSE0535-16 (BPA 2-          |                  |                    |              |             |                        |                    |                                  |            | 05/14/09           |                |
| •                                      |                  | ) - conc           |              |             | Sampi                  | ed: 05/13          | /09 11:00                        | Recva:     | 03/14/09           | 14.00          |
| Semivolatile Organics by GC/MS - c     |                  |                    |              |             |                        |                    |                                  |            |                    |                |
| Bis(2-chloroethoxy)methane             | ND               | D02                | 3400         | 190         | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Bis(2-chloroethyl)ether                | ND               | D02                | 3400         | 300         | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C<br>8270C |
| 2,2'-Oxybis(1-Chloropropane)           | ND               | D02                | 3400         | 360         | ug/kg dry              | 20.0               | 05/26/09 13:59<br>05/26/09 13:59 | JLG        | 9E20089<br>9E20089 | 8270C<br>8270C |
| Bis(2-ethylhexyl) phthalate            | ND<br>ND         | D02<br>D02         | 3400<br>3400 | 1100<br>920 | ug/kg dry              | 20.0<br>20.0       | 05/26/09 13:59                   | JLG<br>JLG | 9E20089            | 8270C          |
| Butyl benzyl phthalate                 | ND               | D02<br>D02         | 3400         | 320<br>1500 | ug/kg dry<br>ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Caprolactam                            | ND               | D02                | 3400         | 40          | ug/kg dry<br>ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Carbazole                              | 4600             | D02,B              | 3400         | 34          | ug/kg dry<br>ug/kg dry | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Chrysene                               | 860              | D02,J              | 3400         | 40          | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Dibenzo(a,h)anthracene<br>Dibenzofuran | ND               | D02,0              | 3400         | 36          | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Diethyl phthalate                      | ND               | D02                | 3400         | 100         | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Dimethyl phthalate                     | ND               | D02                | 3400         | 89          | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Di-n-butyl phthalate                   | ND               | D02                | 3400         | 1200        | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Di-n-octyl phthalate                   | ND               | D02                | 3400         | 80          | ug/kg dry              | 20.0               | 05/26/09 13:59                   |            | 9E20089            | 8270C          |
| Fluoranthene                           | 8600             | D02,B              | 3400         | 50          | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Fluorene                               | ND               | D02                | 3400         | 79          | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Hexachlorobenzene                      | ND               | D02                | 3400         | 170         | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Hexachlorobutadiene                    | ND               | D02                | 3400         | 170         | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Hexachlorocyclopentadiene              | ND               | D02                | 3400         | 1000        | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Hexachloroethane                       | ND               | D02                | 3400         | 260         | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Indeno(1,2,3-cd)pyrene                 | 2800             | D02,J              | 3400         | 95          | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Isophorone                             | ND               | D02                | 3400         | 170         | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Naphthalene                            | ND               | D02                | 3400         | 57          | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Nitrobenzene                           | ND               | D02                | 3400         | 150         | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| N-Nitrosodi-n-propylamine              | ND               | D02                | 3400         | 270         | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| N-Nitrosodiphenylamine                 | ND               | D02,L              | 3400         | 190         | ug/kg dry              | 20.0               | 05/26/09 13:59                   |            | 9E20089            | 8270C          |
| Pentachlorophenol                      | ND               | D02                | 6700         | 1200        | ug/kg dry              | 20.0               | 05/26/09 13:59                   |            | 9E20089            | 8270C          |
| Phenanthrene                           | 2800             | D02,J, B           | 3400         | 72          | ug/kg dry              | 20.0               | 05/26/09 13:59                   |            | 9E20089            | 8270C          |
| Phenol                                 | ND               | D02                | 3400         | 360         | ug/kg dry              | 20.0               | 05/26/09 13:59                   |            | 9E20089            | 8270C          |
| Pyrene                                 | 7400             | D02                | 3400         | 22          | ug/kg dry              | 20.0               | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Surr: 2,4,6-Tribromophenol (39-146%)   | 80 %             | D02                |              |             |                        |                    | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Surr: 2-Fluorobiphenyl (37-120%)       | 86 %             | D02                |              |             |                        |                    | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Surr: 2-Fluorophenol (18-120%)         | 48 %             | D02                |              |             |                        |                    | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Surr: Phenol-d5 (11-120%)              | 63 %             | D02                |              |             |                        |                    | 05/26/09 13:59                   | JLG        | 9E20089            | 8270C          |
| Total Metals by SW 846 Series Meth     | ode              |                    |              |             |                        |                    |                                  |            |                    |                |
|                                        | 7760             |                    | 10.0         | NR          | mg/kg dry              | 1.00               | 05/19/09 04:09                   | LMH        | 9E15068            | 6010B          |
| Aluminum                               | ND               |                    | 15.0         | NR          | mg/kg dry              | 1.00               | 05/19/09 04:09                   |            | 9E15068            | 6010B          |
| Antimony                               |                  |                    |              |             |                        |                    |                                  |            |                    |                |
| Arsenic                                | 47.4             |                    | 2.0          | NR          | mg/kg dry              | 1.00               | 05/19/09 04:09                   |            | 9E15068            | 6010B          |
| Barium                                 | 88.8             |                    | 0.500        | NR          | mg/kg dry              | 1.00               | 05/19/09 04:09                   |            | 9E15068            | 6010B          |
| Beryllium                              | 0.970            |                    | 0.200        | NR          | mg/kg dry              | 1.00               | 05/19/09 04:09                   |            | 9E15068            | 6010B          |
| Cadmium                                | 1.87             |                    | 0.200        | NR          | mg/kg dry              | 1.00               | 05/19/09 04:09                   | LMH        | 9E15068            | 6010B          |
| Calcium                                | 52900            |                    | 50.0         | NR          | mg/kg dry              | 1.00               | 05/19/09 04:09                   | LMH        | 9E15068            | 6010B          |
| Chromium                               | 91.4             |                    | 0.500        | NR          | mg/kg dry              | 1.00               | 05/19/09 04:09                   | LMH        | 9E15068            | 6010B          |
| Cobalt                                 | 4.51             |                    | 0.500        | NR          | mg/kg dry              | 1.00               | 05/19/09 04:09                   | LMH        | 9E15068            | 6010B          |
| Copper                                 | 120              |                    | 1.0          | NR          | mg/kg dry              | 1.00               | 05/19/09 04:09                   |            | 9E15068            | 6010B          |
|                                        | 45100            |                    | 10.0         | NR          | mg/kg dry              | 1.00               | 05/19/09 17:13                   |            | 9E15068            | 6010B          |
| Iron                                   |                  |                    |              |             |                        |                    |                                  |            |                    |                |
| Lead                                   | 290              |                    | 1.0          | NR          | mg/kg dry              | 1.00               | 05/19/09 04:09                   | LMH        | 9E15068            | 6010B          |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                                  |      | Rpt Limit  | MDL          | Units                  | Dilution     | Date                          |          | Seq/                  |                |
|--------------------------------------------------|------|------------|--------------|------------------------|--------------|-------------------------------|----------|-----------------------|----------------|
| Sample ID: RSE0535-16 (BPA 2-TP-74 - Solid) - co |      | Kpt Liniit | MUL          |                        |              | Analyzed                      | Analye   | t Batch               | Mathad         |
| •                                                | ont. |            |              |                        | Factor       |                               |          |                       | Method         |
| Total Motals by SW 946 Sarias Mathada - cont     |      |            |              | Sample                 | ed: 05/13    | /09 11:00                     | Recvd:   | 05/14/09 <sup>·</sup> | 14:00          |
| TOTAL MIELAIS DY OW 040 Series MIELHOUS - CONL.  |      |            |              |                        |              |                               |          |                       |                |
| Magnesium 9020                                   |      | 20.0       | NR           | mg/kg dry              | 1.00         | 05/19/09 04:09                | LMH      | 9E15068               | 6010B          |
| Manganese 3770                                   | D08  | 1.0        | NR           | mg/kg dry              | 5.00         | 05/19/09 17:09                | LMH      | 9E15068               | 6010B          |
| Nickel 20.0                                      |      | 0.500      | NR           | mg/kg dry              | 1.00         | 05/19/09 04:09                | LMH      | 9E15068               | 6010B          |
| Potassium 900                                    |      | 30.0       | NR           | mg/kg dry              | 1.00         | 05/19/09 04:09                | LMH      | 9E15068               | 6010B          |
| Selenium ND                                      |      | 4.0        | NR           | mg/kg dry              | 1.00         | 05/19/09 04:09                | LMH      | 9E15068               | 6010B          |
| Silver 0.508                                     |      | 0.500      | NR           | mg/kg dry              | 1.00         | 05/19/09 04:09                | LMH      | 9E15068               | 6010B          |
|                                                  |      | 140        | NR           | mg/kg dry              | 1.00         | 05/19/09 04:09                | LMH      | 9E15068               | 6010B          |
| Sociality ND                                     |      | 6.0        | NR           | mg/kg dry              | 1.00         | 05/19/09 04:09                | LMH      | 9E15068               | 6010B          |
|                                                  |      |            | NR           | mg/kg dry              | 1.00         | 05/19/09 04:09                | LMH      | 9E15068               | 6010B          |
| Vanadium 39.7                                    |      | 0.500      |              | • • •                  |              | 05/19/09 04:09                | LMH      | 9E15068               | 6010B          |
| Zinc 380                                         |      | 2.0        | NR           | mg/kg dry              | 1.00         |                               |          |                       | 7471A          |
| Mercury 0.116                                    |      | 0.0217     | NR           | mg/kg dry              | 1.00         | 05/22/09 16:06                | MM       | 9E22034               | 747 IA         |
| Volatile Organic Compounds by EPA 8260B          |      |            |              |                        |              |                               |          |                       |                |
| 1.1.1-Trichloroethane ND                         |      | 4.7        | 0.34         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| 1,1,2,2-Tetrachloroethane ND                     |      | 4.7        | 0.77         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| 1,1,2-Trichloroethane ND                         |      | 4.7        | 0.24         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| 1,1,2-Trichloro-1,2,2-trifluoroethane ND         |      | 4.7        | 0.50         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| 1,1-Dichloroethane ND                            |      | 4.7        | 0.23         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| 1,1-Dichloroethene ND                            |      | 4.7        | 0.58         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| 1,2,4-Trichlorobenzene ND                        |      | 4.7        | 0.29         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| 1,2,4-Trimethylbenzene ND                        |      | 4.7        | 0.34         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| 1,2-Dibromo-3-chloropropane ND                   |      | 4.7        | 0.94         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B<br>8260B |
| 1,2-Dibromoethane ND                             |      | 4.7        | 0.18         | ug/kg dry              | 1.00         | 05/19/09 19:54 05/19/09 19:54 | PQ       | 9E19088<br>9E19088    | 8260B          |
| 1,2-Dichlorobenzene ND                           |      | 4.7        | 0.71         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ<br>PQ | 9E19088               | 8260B          |
| 1,2-Dichloroethane ND                            |      | 4.7        | 0.24         | ug/kg dry              | 1.00<br>1.00 | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| 1,2-Dichloropropane ND                           |      | 4.7<br>4.7 | 0.24<br>0.30 | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| 1,3,5-Trimethylbenzene ND                        |      | 4.7        | 0.50         | ug/kg dry              | 1.00         | 05/19/09 19:54                | · PQ     | 9E19088               | 8260B          |
|                                                  |      | 4.7        | 0.66         | ug/kg dry<br>ug/kg dry | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
|                                                  |      | 24         | 6.4          | ug/kg dry<br>ug/kg dry | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
|                                                  |      | 24         | 1.6          | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| Zenexanone                                       |      | 4.7        | 0.38         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| p-Cyllicite                                      |      | 24         | 1.5          | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| 4-Methyl-2-pentanone ND<br>Acetone ND            |      | 24         | 1.0          | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| Benzene ND                                       |      | 4.7        | 0.23         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| Bromodichloromethane ND                          |      | 4.7        | 0.24         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| Bromoform ND                                     |      | 4.7        | 0.44         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| Bromomethane ND                                  |      | 4.7        | 0.43         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| Carbon disulfide ND                              |      | 4.7        | 0.40         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| Carbon Tetrachloride ND                          |      | 4.7        | 0.17         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| Chlorobenzene ND                                 |      | 4.7        | 0.21         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| Dibromochloromethane ND                          |      | 4.7        | 0.26         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| Chloroethane ND                                  |      | 4.7        | 0.76         | ug/kg dry              | 1.00         | 05/19/09 19:54                |          | 9E19088               | 8260B          |
| Chloroform ND                                    |      | 4.7        | 0.29         | ug/kg dry              | 1.00         | 05/19/09 19:54                |          | 9E19088               | 8260B          |
| Chloromethane ND                                 |      | 4.7        | 0.29         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B          |
| cis-1,2-Dichloroethene ND                        |      | 4.7        | 0.23         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B<br>8260B |
| cis-1,3-Dichloropropene ND                       |      | 4.7        | 0.27         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088               | 8260B<br>8260B |
| Cyclohexane ND                                   |      | 4.7        | 0.22         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E19088<br>9E19088    | 8260B          |
| Dichlorodifluoromethane ND                       |      | 4.7        | 0.39         | ug/kg dry              | 1.00         | 05/19/09 19:54                | PQ       | 9E 19000              | 02000          |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

|                                       |                  |                    | Analytic  | cal Re | port      |                    |                  |         |               |        |
|---------------------------------------|------------------|--------------------|-----------|--------|-----------|--------------------|------------------|---------|---------------|--------|
| Analyte                               | Sample<br>Result | Data<br>Qualifiers | Røt Limit | MDL    | Units     | Dilution<br>Factor | Date<br>Analyzed | Analyst | Seq/<br>Batch | Method |
| Sample ID: RSE0535-16 (BPA 2-T        |                  |                    |           |        |           | ed: 05/13          |                  |         | 05/14/09      |        |
| Volatile Organic Compounds by EPA     | 8260B - con      | <u>t.</u>          |           |        | -         |                    |                  |         |               |        |
| Ethylbenzene                          | ND               |                    | 4.7       | 0.33   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Isopropylbenzene                      | ND               |                    | 4.7       | 0.31   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Methyl Acetate                        | ND               |                    | 4.7       | 0.26   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Methyl-t-Butyl Ether (MTBE)           | ND               |                    | 4.7       | 0.46   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Methylcyclohexane                     | ND               |                    | 4.7       | 0.31   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Methylene Chloride                    | ND               |                    | 4.7       | 0.33   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| m-Xylene & p-Xylene                   | ND               |                    | 9.4       | 0.79   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| n-Butylbenzene                        | ND               |                    | 4.7       | 0.41   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| n-Propylbenzene                       | ND               |                    | 4.7       | 0.36   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| o-Xylene                              | ND               |                    | 4.7       | 0.24   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| sec-Butvibenzene                      | ND               |                    | 4.7       | 0.41   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Styrene                               | ND               |                    | 4.7       | 0.24   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| tert-Butylbenzene                     | ND               |                    | 4.7       | 0.49   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Tetrachloroethene                     | ND               |                    | 4.7       | 0.63   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Toluene                               | ND               |                    | 4.7       | 0.80   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| trans-1.2-Dichloroethene              | ND               |                    | 4.7       | 0.49   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| trans-1,3-Dichloropropene             | ND               |                    | 4.7       | 0.23   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Trichloroethene                       | ND               |                    | 4.7       | 0.33   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Trichlorofluoromethane                | ND               |                    | 4.7       | 1.5    | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Vinyl chloride                        | ND               |                    | 9.4       | 0.19   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Xylenes, total                        | ND               |                    | 9.4       | 0.79   | ug/kg dry | 1.00               | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Surr: 1,2-Dichloroethane-d4 (64-126%) | 103 %            |                    |           |        |           |                    | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Surr: 4-Bromofluorobenzene (72-126%)  | 113 %            |                    |           |        |           |                    | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |
| Surr: Toluene-d8 (71-125%)            | 109 %            |                    |           |        |           |                    | 05/19/09 19:54   | PQ      | 9E19088       | 8260B  |

### TestAmeri

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE TURN-0009 Project Number:

### SAMPLE EXTRACTION DATA

| Parameter                    | Batch      | Lab Number | Wt/Vol<br>Extracted | Units | Extract<br>Volume | Units | Date           | Analyst | Extraction Method |
|------------------------------|------------|------------|---------------------|-------|-------------------|-------|----------------|---------|-------------------|
| General Chemistry Parameter  |            |            |                     | 00    |                   |       |                |         |                   |
| 9012A                        | 9E21006    | RSE0535-16 | 0.50                | g     | 50.00             | mL    | 05/20/09 17:20 | JME     | Cn Digestion      |
| Dry Weight                   | 9E15086    | RSE0535-01 | 10.00               | g     | 10.00             | g     | 05/15/09 13:27 | EKD     | Dry Weight        |
| Dry Weight                   | 9E15086    | RSE0535-02 | 10.00               | g     | 10.00             | g     | 05/15/09 13:27 | EKD     | Dry Weight        |
| Dry Weight                   | 9E15086    | RSE0535-05 | 10.00               | g     | 10.00             | g     | 05/15/09 13:27 | EKD     | Dry Weight        |
| Dry Weight                   | 9E15086    | RSE0535-06 | 10.00               | g     | 10.00             | 9     | 05/15/09 13:27 | EKD     | Dry Weight        |
| Dry Weight                   | 9E15086    | RSE0535-07 | 10.00               | g     | 10.00             | g     | 05/15/09 13:27 | EKD     | Dry Weight        |
| Dry Weight                   | 9E15086    | RSE0535-08 | 10.00               | g     | 10.00             | g     | 05/15/09 13:27 | EKD     | Dry Weight        |
| Dry Weight                   | 9E15086    | RSE0535-11 | 10.00               | g     | 10.00             | g     | 05/15/09 13:27 | EKD     | Dry Weight        |
| Dry Weight                   | 9E15086    | RSE0535-12 | 10.00               | g     | 10.00             | g     | 05/15/09 13:27 | EKD     | Dry Weight        |
| Dry Weight                   | 9E15086    | RSE0535-13 | 10.00               | g     | 10.00             | g     | 05/15/09 13:27 | EKD     | Dry Weight        |
| Dry Weight                   | 9E15086    | RSE0535-14 | 10.00               | g     | 10.00             | g     | 05/15/09 13:27 | EKD     | Dry Weight        |
| Dry Weight                   | 9E15086    | RSE0535-15 | 10.00               | g     | 10.00             | g     | 05/15/09 13:27 | EKD     | Dry Weight        |
| Dry Weight                   | 9E15086    | RSE0535-16 | 10.00               | g     | 10.00             | g     | 05/15/09 13:27 | EKD     | Dry Weight        |
| Polychlorinated Biphenyls by | EPA Metho  | d 8082     |                     |       |                   |       |                |         |                   |
| 8082                         | 9E19130    | RSE0535-15 | 30.11               | g     | 10.00             | mL    | 05/20/09 07:00 | JB      | 3550B GC          |
| 8082                         | 9E19130    | RSE0535-16 | 30.45               | g     | 10.00             | mL    | 05/20/09 07:00 | JB      | 3550B GC          |
| Semivolatile Organics by GC  | /MS        |            |                     |       |                   |       |                |         |                   |
| 8270C                        | 9E20089    | RSE0535-16 | 30.07               | g     | 1.00              | mL    | 05/21/09 08:00 | BL      | 3550B MB          |
| 8270C                        | 9E20089    | RSE0535-15 | 30.29               | g     | 1.00              | mL    | 05/21/09 08:00 | BL      | 3550B MB          |
| Total Metals by SW 846 Seri  | es Methods |            |                     |       |                   |       |                |         |                   |
| 6010B                        | 9E15068    | RSE0535-11 | 0.48                | g     | 50.00             | mL    | 05/18/09 12:15 | DAN     | 3050B             |
| 6010B                        | 9E15068    | RSE0535-01 | 0.49                | g     | 50.00             | mL    | 05/18/09 12:15 | DAN     | 3050B             |
| 6010B                        | 9E15068    | RSE0535-15 | 0.50                | g     | 50.00             | mL    | 05/18/09 12:15 | DAN     | 3050B             |
| 6010B                        | 9E15068    | RSE0535-14 | 0.50                | g     | 50.00             | mL    | 05/18/09 12:15 | DAN     | 3050B             |
| 6010B                        | 9E15068    | RSE0535-16 | 0.51                | g     | 50.00             | mL    | 05/18/09 12:15 | DAN     | 3050B             |
| 6010B                        | 9E15068    | RSE0535-07 | 0.51                | g     | 50.00             | mL    | 05/18/09 12:15 | DAN     | 3050B             |
| 6010B                        | 9E15068    | RSE0535-08 | 0.51                | g     | 50.00             | mL    | 05/18/09 12:15 | DAN     | 3050B             |
| 6010B                        | 9E15068    | RSE0535-13 | 0.51                | g     | 50.00             | mL    | 05/18/09 12:15 | DAN     | 3050B             |
| 6010B                        | 9E15068    | RSE0535-05 | 0.51                | g     | 50.00             | mL    | 05/18/09 12:15 | DAN     | 3050B             |
| 6010B                        | 9E15068    | RSE0535-06 | 0.54                | g     | 50.00             | mL    | 05/18/09 12:15 | DAN     | 3050B             |
| 6010B                        | 9E15068    | RSE0535-02 | 0.54                | g     | 50.00             | mL    | 05/18/09 12:15 | DAN     | 3050B             |
| 6010B                        | 9E15068    | RSE0535-12 | 0.55                | g     | 50.00             | mL    | 05/18/09 12:15 | DAN     | 3050B             |
| 7 <b>4</b> 71A               | 9E22034    | RSE0535-16 | 0.56                | g     | 50.00             | mL    | 05/22/09 14:00 | MM      | 7471A_            |
| 7471A                        | 9E22034    | RSE0535-02 | 0.56                | g     | 50.00             | mL    | 05/22/09 14:00 | MM      | 7 <b>4</b> 71A_   |
| 7471A                        | 9E22034    | RSE0535-11 | 0.58                | g     | 50.00             | mL    | 05/22/09 14:00 | мм      | 7 <b>4</b> 71A_   |
| 7471A                        | 9E22034    | RSE0535-15 | 0.58                | g     | 50.00             | mL    | 05/22/09 14:00 | ММ      | 7471A_            |
| 7471A                        | 9E22034    | RSE0535-06 | 0.59                | g     | 50.00             | mL    | 05/22/09 14:00 | ММ      | 7 <b>4</b> 71A_   |
| 7 <b>4</b> 71A               | 9E22034    | RSE0535-01 | 0.59                | g     | 50.00             | mL    | 05/22/09 14:00 | MM      | 7471A_            |
| 7471A                        | 9E22034    | RSE0535-05 | 0.61                | g     | 50.00             | mL    | 05/22/09 14:00 | ММ      | 7471A_            |
| <b>— —</b> <i>m</i> .        |            |            |                     |       |                   |       |                |         |                   |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

05/14/09

Received: 06/01/09 16:58 Reported:



Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

#### SAMPLE EXTRACTION DATA

| Parameter                  | Batch      | Lab Number | Wt/Vol<br>Extracted | Units | Extract<br>Volume | Units | Date           | Analyst | Extraction Method |
|----------------------------|------------|------------|---------------------|-------|-------------------|-------|----------------|---------|-------------------|
| 7471A                      | 9E22034    | RSE0535-08 | 0.63                | g     | 50.00             | mL    | 05/22/09 14:00 | мм      | 7471A             |
| 7471A                      | 9E22034    | RSE0535-13 | 0.63                | g     | 50.00             | mL    | 05/22/09 14:00 | мм      | 7471A_            |
| 7471A                      | 9E22034    | RSE0535-14 | 0.64                | 9     | 50.00             | mL    | 05/22/09 14:00 | ММ      | 7471A_            |
| 7471A                      | 9E22034    | RSE0535-12 | 0.64                | g     | 50.00             | mL    | 05/22/09 14:00 | ММ      | 7471A_            |
| 7471A                      | 9E22034    | RSE0535-07 | 0.64                | g     | 50.00             | mL    | 05/22/09 14:00 | ММ      | 7471A_            |
| Volatile Organic Compounds | by EPA 826 | 60B        |                     |       |                   |       |                |         |                   |
| 8260B                      | 9E19088    | RSE0535-15 | 5.17                | g     | 5.00              | mL    | 05/19/09 13:19 | PJQ     | 5030B MS          |
| 8260B                      | 9E19088    | RSE0535-16 | 5.37                | g     | 5.00              | mL    | 05/19/09 13:19 | PJQ     | 5030B MS          |



#### Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

### LABORATORY QC DATA

| Analyte                       | Seq/<br>Batch | Source<br>Result | Spike<br>Level | MRL | MDL | Units     | Result | %<br>REC | % REC<br>Limits | % RPD<br>RPD Limit | Qualifier |
|-------------------------------|---------------|------------------|----------------|-----|-----|-----------|--------|----------|-----------------|--------------------|-----------|
| General Chemistry Parameters  | <u></u>       |                  |                |     |     |           |        |          |                 |                    |           |
| Blank Analyzed: 05/22/09 (9E2 | 21006-BLK1)   |                  |                |     |     |           |        |          |                 |                    |           |
| Cyanide                       | 9E21006       |                  |                | 1.0 | 0.9 | mg/kg wet | ND     |          |                 |                    |           |
| LCS Analyzed: 05/22/09 (9E21  | 006-BS1)      |                  |                |     |     |           |        |          |                 |                    |           |
| Cyanide                       | 9E21006       |                  | 34.4           | 0.9 | 0.8 | mg/kg wet | 22.5   | 66       | 40-160          |                    |           |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

| Seq.         Source<br>Result         Spike<br>Result         MRL         MDL         Units         Result         REC         Limits         RPD         Limits         Qualifier           Palvchlorinated Biphenyts by EPA Method 8032         8         9         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td0< th=""><th></th><th></th><th></th><th>LA</th><th>BORAT</th><th>ORY QC</th><th>DATA</th><th></th><th></th><th></th><th></th><th></th><th></th></td0<>                                                                                                                   |                                 |             |        | LA    | BORAT | ORY QC | DATA      |        |     |        |     |       |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|--------|-------|-------|--------|-----------|--------|-----|--------|-----|-------|-----------|
| Polychlorinated Eiphenvis by EPA Method 8082           Blank Analyzed: 05/21/09 (9E19130-BLK1)           Aredor 1016         9E19130         16         3.2         ug/kg wet         ND         CSU           Aredor 1016         9E19130         16         3.2         ug/kg wet         ND         CSU           Aredor 1232         9E19130         16         3.2         ug/kg wet         ND         CSU           Aredor 1242         9E19130         16         3.5         ug/kg wet         ND         CSU           Aredor 1246         9E19130         16         3.5         ug/kg wet         ND         CSU           Surrogate: Decathlorohytig/         9E19130         16         3.2         ug/kg wet         ND         CSU           Surrogate: Decathlorohytig/         9E19130         16         3.2         ug/kg wet         ND         0         0         Q20         CSU           CST analyzet: 05/21/09 (9E1913/-SET         U         Ug/kg wet         ND         0         0         Q20         CSU           Aredor 1016         9E19130         16         3.2         ug/kg we                                                                                                                                                                                                                                                                                                     |                                 | Seq/        | Source | Spike |       |        |           |        | %   | % REC  |     |       |           |
| Blank Analyzed: 05/21/09 (9E19130-BLK1)           Aroclor 1016         9E19130         16         3.2         ug/kg wet         ND         QSU           Aroclor 1211         9E19130         16         3.2         ug/kg wet         ND         QSU           Aroclor 1232         9E19130         16         3.2         ug/kg wet         ND         QSU           Aroclor 1242         9E19130         16         3.5         ug/kg wet         ND         QSU           Aroclor 1244         9E19130         16         3.5         ug/kg wet         ND         QSU           Aroclor 1254         9E19130         16         3.5         ug/kg wet         ND         QSU           Surrogate: Tetrachloro-m-xylene         ug/kg wet         ND         95         36-134         QSU           LCS Analyzet: 05/21/09 (9E19130-BS1)         160         16         3.2         ug/kg wet         ND         0-200         QSU           Aroclor 1221         9E19130         160         16         3.2         ug/kg wet         ND         0-200         QSU           Aroclor 1224         9E19130         16         3.5         ug/kg wet         ND         0-200         QSU <t< th=""><th>Analyte</th><th>Batch</th><th>Result</th><th>Level</th><th>MRL.</th><th>MDL</th><th>Units</th><th>Result</th><th>REC</th><th>Limits</th><th>RPD</th><th>Limit</th><th>Qualifier</th></t<>                       | Analyte                         | Batch       | Result | Level | MRL.  | MDL    | Units     | Result | REC | Limits | RPD | Limit | Qualifier |
| Arodor 1016       9E 19130       16       3.2       ug/kg wet       ND       SU       SU         Arodor 1221       9E 19130       16       3.2       ug/kg wet       ND       SU       SU         Arodor 1232       9E 19130       16       3.2       ug/kg wet       ND       SU       SU         Arodor 1242       9E 19130       16       3.2       ug/kg wet       ND       SU       SU         Arodor 1246       9E 19130       16       3.5       ug/kg wet       ND       SU       SU         Surrogate: Decachiorobiphenyl       16       3.5       ug/kg wet       ND       SU       SU         Surrogate: Tetrachioro-m-xylene       ug/kg wet       ND       0       SU       SU       SU         Arodor 1232       9E 19130       160       16       3.2       ug/kg wet       95       35-134       SU       SU         Surrogate: Tetrachioro-m-xylene       ug/kg wet       ND       0       0       QSU       ASU         Arodor 1232       9E 19130       160       16       3.2       ug/kg wet       ND       0       0       QSU         Arodor 124       9E 19130       16       3.5       ug/kg w                                                                                                                                                                                                                                                                                                     | Polychlorinated Biphenyls by E  | PA Method 8 | 082    |       |       |        |           |        |     |        |     |       |           |
| Accider 1221         9E 19130         16         3.2         ug/kg wet         ND         Accider 1232         9E 19130         16         3.2         ug/kg wet         ND         Accider 1232         9E 19130         16         3.2         ug/kg wet         ND         Accider 1232         9E 19130         16         3.2         ug/kg wet         ND         Accider 1232         9E 19130         16         3.2         ug/kg wet         ND         Accider 1234         9E 19130         16         3.5         ug/kg wet         ND         Accider 1234         9E 19130         16         3.5         ug/kg wet         ND         Accider 1234         9E 19130         16         3.5         ug/kg wet         ND         Accider 1234         Accider 1234         9E 19130         16         3.2         ug/kg wet         ND         Accider 1234         Accider 1234         9E 19130         16         3.2         ug/kg wet         ND         0.200         CSU         QSU           Surragate: Decachicrobiphenyl          9E 19130         16         3.2         ug/kg wet         ND         0.200         CSU         QSU           Arcolor 1234         9E 19130         16         3.2         ug/kg wet         ND         0.200         CSU                                                                                                                                       | Blank Analyzed: 05/21/09 (9E19  | 130-BLK1)   |        |       |       |        |           |        |     |        |     |       |           |
| Aroder 1232         9E 19130         16         3.2         ug/kg wet         ND         ND         SUS           Aroder 1242         9E 19130         16         3.6         ug/kg wet         ND         SUS         SUS           Aroder 1242         9E 19130         16         3.5         ug/kg wet         ND         SUS         SUS           Aroder 1248         9E 19130         16         3.5         ug/kg wet         ND         SUS         SUS           Surrogate: Decechlorobiphenyl         16         3.5         ug/kg wet         ND         SUS         SUS           Surrogate: Tetrachloro-m-xylene         ug/kg wet         16         3.2         ug/kg wet         97         34-148         SUS         SUS           Surrogate: Tetrachloro-m-xylene         ug/kg wet         16         3.2         ug/kg wet         ND         0         0.200         SUS           Arodor 1221         9E 19130         16         3.2         ug/kg wet         ND         0         0.200         SUS           Arodor 1242         9E 19130         16         3.5         ug/kg wet         ND         0         0.200         SUS           Arodor 1244         9E 19130         16                                                                                                                                                                                                             | Aroclor 1016                    | 9E19130     |        |       | 16    | 3.2    | ug/kg wet | ND     |     |        |     |       | QSU       |
| Arodor 1242       9E19130       16       3.6       ug/kg wet       ND       ND       SU         Arodor 1248       9E19130       16       3.5       ug/kg wet       ND       SU       SU         Arodor 1248       9E19130       16       3.5       ug/kg wet       ND       SU       SU         Arodor 1254       9E19130       16       3.5       ug/kg wet       ND       SU       SU         Surrogate: Decachlorobiphenyl       St       34-148       ST       S-134       SU       SU         Surrogate: Tetrachloro-m-xylene       ug/kg wet       16       3.2       ug/kg wet       ND       0-200       SU       SU         Arodor 1242       9E19130       16       3.2       ug/kg wet       ND       0-200       SU       SU         Arodor 1242       9E19130       16       3.5       ug/kg wet       ND       0-200       SU       SU         Arodor 1242       9E19130       16       3.5       ug/kg wet       ND       0-200       SU       SU         Arodor 1242       9E19130       16       3.5       ug/kg wet       ND       0-200       SU       SU         Arodor 1246       9E19130                                                                                                                                                                                                                                                                                                              | Aroclor 1221                    | 9E19130     |        |       | 16    | 3.2    | ug/kg wet | ND     |     |        |     |       | QSU       |
| Arodor 1242       9E19130       16       3.2       ug/kg wet       ND       ND       QSU         Arodor 1254       9E19130       16       3.5       ug/kg wet       ND       QSU         Surrogate: Decachforobiphenyl       16       3.5       ug/kg wet       ND       QSU         Surrogate: Tetrachforo-m-xylene       16       3.5       ug/kg wet       97       34-149       QSU         LCS Analyzed: 05/21/09 (9E19130-BS1)       16       3.2       ug/kg wet       97       35-134       QSU         Arodor 1221       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Arodor 1221       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Arodor 1242       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Arodor 1242       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Arodor 1244       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Arodor 1244       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU                                                                                                                                                                                                                                                                                             | Aroclor 1232                    | 9E19130     |        |       | 16    | 3.2    | ug/kg wet | ND     |     |        |     |       | QSU       |
| Anden 1243         BE 19130         16         3.5         ug/kg wet         ND         Accession           Arockor 1280         9E19130         16         3.5         ug/kg wet         ND         SU         QSU           Surrogate: Decachlorobiphenyl         ug/kg wet         97         34-148         QSU           Surrogate: Tetrachloro-m-xylene         ug/kg wet         97         34-148         QSU           LCS Analyzed: 05/21/09 (9E19130-BS1)         ug/kg wet         142         87         \$59-154         QSU           Arockor 1232         9E19130         16         3.2         ug/kg wet         ND         0-200         QSU           Arockor 1242         9E19130         16         3.2         ug/kg wet         ND         0-200         QSU           Arockor 1242         9E19130         16         3.5         ug/kg wet         ND         0-200         QSU           Arockor 1242         9E19130         16         3.5         ug/kg wet         ND         0-200         QSU           Arockor 1244         9E19130         16         3.5         ug/kg wet         ND         0-200         QSU           Arockor 1240         9E19130         160         16                                                                                                                                                                                                           | Aroclor 1242                    | 9E19130     |        |       | 16    | 3.6    | ug/kg wet | ND     |     |        |     |       | QSU       |
| Arockin 1294<br>Arockin 1290         9E19130         16         3.5         ug/kg wet         ND         OSU           Surrogate: Decachlorobiphenyl<br>Surrogate: Tetrachloro-m-xylene         ug/kg wet         97         34-148         OSU           LCS Analyzed: 05/21/09 (9E19130-BS1)         ug/kg wet         95         35-134         OSU           Arockor 1211         9E19130         160         16         3.2         ug/kg wet         142         87         59-154         QSU           Arockor 1221         9E19130         160         16         3.2         ug/kg wet         ND         0-200         QSU           Arockor 1222         9E19130         16         3.2         ug/kg wet         ND         0-200         QSU           Arockor 1248         9E19130         16         3.2         ug/kg wet         ND         0-200         QSU           Arockor 1248         9E19130         16         3.5         ug/kg wet         ND         0-200         QSU           Arockor 1260         9E19130         16         3.5         ug/kg wet         ND         0-200         QSU           Arockor 1260         9E19130         16         3.5         ug/kg wet         ND         0-200         QSU </td <td>Aroclor 1248</td> <td>9E19130</td> <td></td> <td></td> <td>16</td> <td>3.2</td> <td>ug/kg wet</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td>QSU</td> | Aroclor 1248                    | 9E19130     |        |       | 16    | 3.2    | ug/kg wet | ND     |     |        |     |       | QSU       |
| Sumogate: Decachiorobipheny/       Ug/kg wet       97       34-148       QSU         Sumogate: Tetrachioro-m-xylene       Ug/kg wet       95       35-134       QSU         LCS Analyzed: 05/21/09 (9E19130-BS1)       LCS Analyzed: 05/21/09 (9E19130-BS1)       Ug/kg wet       142       87       59-154       QSU         Aroclor 1021       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1222       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1242       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1248       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1240       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1240       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1240       9E19130       160       16       3.5       ug/kg wet       ND       0-200       QSU         Sumogate: Decachiorobipheny/       ug/kg wet       ND       0-200       200       QSU <td>Aroclor 1254</td> <td>9E19130</td> <td></td> <td></td> <td>16</td> <td>3.5</td> <td>ug/kg wet</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td>QSU</td>                                                                                    | Aroclor 1254                    | 9E19130     |        |       | 16    | 3.5    | ug/kg wet | ND     |     |        |     |       | QSU       |
| Surrogate:         Tetrachloro-m-xylene         ug/kg wet         95         35-134         QSU           LCS Analyzed:         05/21/09         9E19130         160         16         3.2         ug/kg wet         142         87         59-154         QSU           Aroclor 1016         9E19130         160         16         3.2         ug/kg wet         ND         0-200         QSU           Aroclor 1221         9E19130         16         3.2         ug/kg wet         ND         0-200         QSU           Aroclor 1232         9E19130         16         3.2         ug/kg wet         ND         0-200         QSU           Aroclor 1242         9E19130         16         3.5         ug/kg wet         ND         0-200         QSU           Aroclor 1246         9E19130         16         3.5         ug/kg wet         ND         0-200         QSU           Aroclor 1260         9E19130         16         3.5         ug/kg wet         ND         0-200         QSU           Surrogate: Decachlorobiphenyl         gE19130         16         3.5         ug/kg wet         165         101         51-179         QSU           Surrogate: Decachlorobiphenyl         ug/kg wet                                                                                                                                                                                                     | Aroclor 1260                    | 9E19130     |        |       | 16    | 3.5    | ug/kg wet | ND     |     |        |     |       | QSU       |
| LCS Analyzed: 05/21/09 (9E19130 BS1)       160       16       3.2       ug/kg wet       142       87       59-154       QSU         Aroclor 1016       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1221       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1232       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1248       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1254       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1260       9E19130       160       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1260       9E19130       160       16       3.5       ug/kg wet       165       101       51-179       QSU         Surrogate: Decachlorobiphenyl        ug/kg wet       165       101       51-179       QSU         Surrogate: Tetrachloro-m-xylene        ug/kg wet       165       101       51-179       QSU         Aroclor 1216 <t< td=""><td>Surrogate: Decachlorobiphenyl</td><td></td><td></td><td></td><td></td><td></td><td>ug/kg wet</td><td></td><td>97</td><td>34-148</td><td></td><td></td><td>QSU</td></t<>                                                                                                             | Surrogate: Decachlorobiphenyl   |             |        |       |       |        | ug/kg wet |        | 97  | 34-148 |     |       | QSU       |
| Aroclor 1016       9E 19130       160       16       3.2       ug/kg wet       142       87       59-154       QSU         Aroclor 1221       9E 19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1232       9E 19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1242       9E 19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1248       9E 19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1260       9E 19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1260       9E 19130       160       16       3.5       ug/kg wet       ND       0-200       QSU         Surrogate: Decachlorobiphenyl       gE 19130       160       16       3.5       ug/kg wet       165       101       51-179       QSU         Surrogate: Decachlorobiphenyl       gE 19130       170       17       3.3       ug/kg wet       96       34-148       QSU         Aroclor 1232       9E 19130       177       13.3       ug/kg wet       ND       0-200                                                                                                                                                                                                                                                                               | Surrogate: Tetrachloro-m-xylene |             |        |       |       |        | ug/kg wet |        | 95  | 35-134 |     |       | QSU       |
| Aroclor 1221       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1232       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1232       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1242       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1244       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1254       9E19130       160       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1260       9E19130       160       16       3.5       ug/kg wet       165       101       51-179       QSU         Surrogate: Decachlorobiphenyl       ug/kg wet       96       34-148       QSU       QSU         Surrogate: Decachlorobiphenyl       ug/kg wet       96       51.4       5       50       QSU         Surrogate: Decachlorobiphenyl       ug/kg wet       150       90       59-154       5       50       QSU         Aroclor 1216       9E19130       177       3.3 <td>LCS Analyzed: 05/21/09 (9E191:</td> <td>30-BS1)</td> <td></td>                                                                                                              | LCS Analyzed: 05/21/09 (9E191:  | 30-BS1)     |        |       |       |        |           |        |     |        |     |       |           |
| Aroclor 1221       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1242       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1248       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1254       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1260       9E19130       160       16       3.5       ug/kg wet       165       101       51-179       QSU         Surrogate: Decachlorobiphenyl       yE19130       160       16       3.5       ug/kg wet       165       101       51-179       QSU         Surrogate: Decachlorobiphenyl       ug/kg wet       165       101       51-179       QSU       QSU         Surrogate: Tetrachloro-m-xylene       ug/kg wet       160       35       ug/kg wet       96       34-148       QSU         Aroclor 1216       9E19130-BSD11       177       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1221       9E19130       17       3.3       ug/kg wet       ND       0-200       200                                                                                                                                                                                                                                                                         | Aroclor 1016                    | 9E19130     |        | 160   | 16    | 3.2    | ug/kg wet | 142    | 87  | 59-154 |     |       | QSU       |
| Aroclor 1242       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1248       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Aroclor 1254       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1260       9E19130       16       3.5       ug/kg wet       165       101       51-179       QSU         Surrogate: Decachlorobipheny/       9E19130       160       16       3.5       ug/kg wet       96       34-148       QSU         Surrogate: Tetrachloro-m-xylene       ug/kg wet       165       101       51-179       QSU         LCS Dup Analyzed: 05/21/09 (9E19130-BSD1)       170       17       3.3       ug/kg wet       150       90       59-154       5       50       QSU         Aroclor 1221       9E19130       170       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1232       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1248       9E19130       17       3.6       ug/kg wet       ND <td< td=""><td>Aroclor 1221</td><td>9E19130</td><td></td><td></td><td>16</td><td>3.2</td><td>ug/kg wet</td><td>ND</td><td></td><td>0-200</td><td></td><td></td><td>QSU</td></td<>                                                                                              | Aroclor 1221                    | 9E19130     |        |       | 16    | 3.2    | ug/kg wet | ND     |     | 0-200  |     |       | QSU       |
| Arocior 1248       9E19130       16       3.2       ug/kg wet       ND       0-200       QSU         Arocior 1254       9E19130       16       3.5       ug/kg wet       ND       0-200       QSU         Arocior 1260       9E19130       160       16       3.5       ug/kg wet       165       101       51-179       QSU         Surrogate: Decachlorobipheny/       9E19130       160       16       3.5       ug/kg wet       165       101       51-179       QSU         Surrogate: Decachlorobipheny/       9E19130-BSD1)       ug/kg wet       96       34-148       QSU         LCS Dup Analyzed: 05/21/09 (9E19130-BSD1)       170       17       3.3       ug/kg wet       150       90       59-154       5       50       QSU         Arocior 1212       9E19130       170       17       3.3       ug/kg wet       ND       0-200       200       QSU         Arocior 1222       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Arocior 1242       9E19130       17       3.6       ug/kg wet       ND       0-200       200       QSU         Arocior 1248       9E19130       17                                                                                                                                                                                                                                                                             | Aroclor 1232                    | 9E19130     |        |       | 16    | 3.2    | ug/kg wet | ND     |     | 0-200  |     |       | QSU       |
| Aroclor 1254       9E 19130       16       3.5       ug/kg wet       ND       0-200       QSU         Aroclor 1260       9E 19130       160       16       3.5       ug/kg wet       165       101       51-179       QSU         Surrogate: Decachlorobiphenyl       ug/kg wet       165       101       51-179       QSU         Surrogate: Tetrachloro-m-xylene       ug/kg wet       96       34-148       QSU         LCS Dup Analyzed: 05/21/09 (9E19130-BSD1)       ug/kg wet       92       35-134       QSU         Aroclor 1221       9E 19130       170       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1232       9E 19130       177       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1242       9E 19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1242       9E 19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1244       9E 19130       17       3.6       ug/kg wet       ND       0-200       200       QSU         Aroclor 1260       9E 19130                                                                                                                                                                                                                                                                         | Aroclor 1242                    | 9E19130     |        |       | 16    | 3.5    | ug/kg wet | ND     |     | 0-200  |     |       | QSU       |
| Arocior 1260       9E19130       160       16       3.5       ug/kg wet       165       101       51-179       QSU         Surrogate: Decachlorobiphenyl       ug/kg wet       96       34-148       QSU         Surrogate: Tetrachloro-m-xylene       ug/kg wet       96       34-148       QSU         LCS Dup Analyzed: 05/21/09 (9E19130-BSD1)       170       17       3.3       ug/kg wet       90       59-154       5       50       QSU         Arocior 1016       9E19130       170       17       3.3       ug/kg wet       ND       0-200       200       QSU         Arocior 1221       9E19130       177       3.3       ug/kg wet       ND       0-200       200       QSU         Arocior 1232       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Arocior 1242       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Arocior 1248       9E19130       17       3.5       ug/kg wet       ND       0-200       200       QSU         Arocior 1260       9E19130       17       3.5       ug/kg wet       ND       0-200       200                                                                                                                                                                                                                                                                                 | Aroclor 1248                    | 9E19130     |        |       | 16    | 3.2    | ug/kg wet | ND     |     | 0-200  |     |       | QSU       |
| Surrogate:       Decachlorobiphenyl       ug/kg wet       96       34-148       QSU         Surrogate:       Tetrachloro-m-xylene       ug/kg wet       92       35-134       QSU         LCS Dup Analyzed:       05/21/09       (9E19130-BSD1)       170       17       3.3       ug/kg wet       150       90       59-154       5       50       QSU         Aroclor 1016       9E19130       170       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1221       9E19130       177       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1232       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1242       9E19130       17       3.6       ug/kg wet       ND       0-200       200       QSU         Aroclor 1248       9E19130       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1254       9E19130       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1260       9E19130       170       17       3.5       ug/kg                                                                                                                                                                                                                                                                                    | Aroclor 1254                    | 9E19130     |        |       | 16    | 3.5    | ug/kg wet | ND     |     | 0-200  |     |       | QSU       |
| Surrogate: Tetrachloro-m-xylene       ug/kg wet       92       35-134       QSU         LCS Dup Analyzed: 05/21/09 (9E19130-BSD1)         Aroclor 1016       9E19130       170       17       3.3       ug/kg wet       150       90       59-154       5       50       QSU         Aroclor 1221       9E19130       170       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1232       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1242       9E19130       17       3.6       ug/kg wet       ND       0-200       200       QSU         Aroclor 1248       9E19130       17       3.6       ug/kg wet       ND       0-200       200       QSU         Aroclor 1254       9E19130       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1254       9E19130       170       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1260       9E19130       170       17       3.5       ug/kg wet       ND       0-200                                                                                                                                                                                                                                                                                                                             | Aroclor 1260                    | 9E19130     |        | 160   | 16    | 3.5    | ug/kg wet | 165    | 101 | 51-179 |     |       | QSU       |
| LCS Dup Analyzed: 05/21/09 (9E19130-BSD1)         Aroclor 1016       9E19130       170       17       3.3       ug/kg wet       150       90       59-154       5       50       QSU         Aroclor 1221       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1232       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1242       9E19130       17       3.6       ug/kg wet       ND       0-200       200       QSU         Aroclor 1242       9E19130       17       3.6       ug/kg wet       ND       0-200       200       QSU         Aroclor 1248       9E19130       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1254       9E19130       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1260       9E19130       170       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1260       9E19130       170       17       3.5       ug/kg wet       168       101       51-179       2                                                                                                                                                                                                                                                                                            | Surrogate: Decachlorobiphenyl   |             |        |       |       |        | ug/kg wet |        | 96  | 34-148 |     |       | QSU       |
| Aroclor 1016       9E19130       170       17       3.3       ug/kg wet       150       90       59-154       5       50       QSU         Aroclor 1221       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1232       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1242       9E19130       17       3.6       ug/kg wet       ND       0-200       200       QSU         Aroclor 1242       9E19130       17       3.6       ug/kg wet       ND       0-200       200       QSU         Aroclor 1248       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1254       9E19130       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1260       9E19130       170       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1260       9E19130       170       17       3.5       ug/kg wet       ND       0-200       200       QSU         Surrogate: Decachlorobiphenyl                                                                                                                                                                                                                                                                                                        | Surrogate: Tetrachloro-m-xylene |             |        |       |       |        | ug/kg wet |        | 92  | 35-134 |     |       | QSU       |
| Aroclor 1018       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1232       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1232       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1242       9E19130       17       3.6       ug/kg wet       ND       0-200       200       QSU         Aroclor 1248       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1254       9E19130       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1260       9E19130       170       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1260       9E19130       170       17       3.5       ug/kg wet       168       101       51-179       2       50       QSU         Surrogate: Decachlorobiphenyl       ug/kg wet       97       34-148       QSU                                                                                                                                                                                                                                                                                                                                                                                | LCS Dup Analyzed: 05/21/09 (98  | E19130-BSD1 | I)     |       |       |        |           |        |     |        |     |       |           |
| Aroclor 1221       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1232       9E19130       17       3.6       ug/kg wet       ND       0-200       200       QSU         Aroclor 1242       9E19130       17       3.6       ug/kg wet       ND       0-200       200       QSU         Aroclor 1248       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1254       9E19130       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1260       9E19130       170       17       3.5       ug/kg wet       168       101       51-179       2       50       QSU         Surrogate: Decachlorobiphenyl       ug/kg wet       97       34-148       QSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aroclor 1016                    | 9E19130     |        | 170   | 17    | 3.3    | ug/kg wet | 150    | 90  | 59-154 | 5   | 50    | QSU       |
| Aroclor 1232       9E19130       17       3.6       ug/kg wet       ND       0-200       200       QSU         Aroclor 1248       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1254       9E19130       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1260       9E19130       17       3.5       ug/kg wet       ND       0-200       200       QSU         Surrogate: Decachlorobiphenyl       ug/kg wet       97       34-148       QSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aroclor 1221                    | 9E19130     |        |       | 17    | 3.3    | ug/kg wet | ND     |     | 0-200  |     | 200   | QSU       |
| Aroclor 1242       9E19130       17       3.3       ug/kg wet       ND       0-200       200       QSU         Aroclor 1254       9E19130       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1260       9E19130       170       17       3.5       ug/kg wet       168       101       51-179       2       50       QSU         Surrogate: Decachlorobiphenyl       ug/kg wet       97       34-148       QSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aroclor 1232                    | 9E19130     |        |       | 17    | 3.3    | ug/kg wet | ND     |     | 0-200  |     | 200   | QSU       |
| Aroclor 1243       9E 19130       17       3.5       ug/kg wet       ND       0-200       200       QSU         Aroclor 1254       9E 19130       170       17       3.5       ug/kg wet       168       101       51-179       2       50       QSU         Surrogate: Decachlorobiphenyl       ug/kg wet       97       34-148       QSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aroclor 1242                    | 9E19130     |        |       | 17    | 3.6    | ug/kg wet | ND     |     | 0-200  |     | 200   | QSU       |
| Aroclor 1260         9E19130         170         17         3.5         ug/kg wet         168         101         51-179         2         50         QSU           Surrogate: Decachlorobiphenyl         ug/kg wet         97         34-148         QSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aroclor 1248                    | 9E19130     |        |       | 17    | 3.3    | ug/kg wet | ND     |     | 0-200  |     | 200   | QSU       |
| Surrogate: Decachlorobiphenyl     ug/kg wet     97     34-148     QSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aroclor 1254                    | 9E19130     |        |       | 17    | 3.5    | ug/kg wet | ND     |     | 0-200  |     | 200   | QSU       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aroclor 1260                    | 9E19130     |        | 170   | 17    | 3.5    | ug/kg wet | 168    | 101 | 51-179 | 2   | 50    | QSU       |
| Surrogate: Tetrachloro-m-xylene ug/kg wet 100 35-134 QSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Surrogate: Decachlorobiphenyl   |             |        |       |       |        | ug/kg wet |        | 97  | 34-148 |     |       | QSU       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Surrogate: Tetrachloro-m-xylene |             |        |       |       |        | ug/kg wet |        | 100 | 35-134 |     |       | QSU       |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                  |         |        | LA    | BORAT |      | DATA      |        |     |        |           |           |
|----------------------------------|---------|--------|-------|-------|------|-----------|--------|-----|--------|-----------|-----------|
|                                  | Seq/    | Source | Spike |       |      |           |        | %   | % REC  | % RPD     |           |
| Analyte                          | Batch   | Result | Level | MRL   | MDL  | Units     | Result | REC | Limits | RPD Limit | Qualifier |
| Semivolatile Organics by GC/MS   |         |        |       |       |      |           |        |     |        |           |           |
| Blank Analyzed: 05/26/09 (9E2008 | 9-BLK1) |        |       |       |      |           |        |     |        |           |           |
| 2,4,5-Trichlorophenol            | 9E20089 |        |       | 170   | 36   | ug/kg wet | ND     |     |        |           |           |
| 2,4,6-Trichlorophenol            | 9E20089 |        |       | 170   | 11   | ug/kg wet | ND     |     |        |           |           |
| 2,4-Dichlorophenol               | 9E20089 |        |       | 170   | 8.7  | ug/kg wet | ND     |     |        |           |           |
| 2,4-Dimethylphenol               | 9E20089 |        |       | 170   | 45   | ug/kg wet | ND     |     |        |           |           |
| 2,4-Dinitrophenol                | 9E20089 |        |       | 320   | 58   | ug/kg wet | ND     |     |        |           |           |
| 2,4-Dinitrotoluene               | 9E20089 |        |       | 170   | 26   | ug/kg wet | ND     |     |        |           |           |
| 2,6-Dinitrotoluene               | 9E20089 |        |       | 170   | 41   | ug/kg wet | ND     |     |        |           |           |
| 2-Chloronaphthalene              | 9E20089 |        |       | 170   | 11   | ug/kg wet | ND     |     |        |           |           |
| 2-Chlorophenol                   | 9E20089 |        |       | 170   | 8.5  | ug/kg wet | ND     |     |        |           |           |
| 2-Methylnaphthalene              | 9E20089 |        |       | 170   | 2.0  | ug/kg wet | ND     |     |        |           |           |
| 2-Methylphenol                   | 9E20089 |        |       | 170   | 5.1  | ug/kg wet | ND     |     |        |           |           |
| 2-Nitroaniline                   | 9E20089 |        |       | 320   | 53   | ug/kg wet | ND     |     |        |           |           |
| 2-Nitrophenol                    | 9E20089 |        |       | 170   | 7.6  | ug/kg wet | ND     |     |        |           |           |
| 3.3'-Dichlorobenzidine           | 9E20089 |        |       | 170   | 150  | ug/kg wet | ND     |     |        |           |           |
| 3-Nitroaniline                   | 9E20089 |        |       | 320   | 38   | ug/kg wet | ND     |     |        |           |           |
| 4,6-Dinitro-2-methylphenol       | 9E20089 |        |       | 320   | 57   | ug/kg wet | ND     |     |        |           |           |
| 4-Bromophenyl phenyl ether       | 9E20089 |        |       | 170   | 53   | ug/kg wet | ND     |     |        |           |           |
| 4-Chioro-3-methylphenol          | 9E20089 |        |       | 170   | 6.8  | ug/kg wet | ND     |     |        |           |           |
| 4-Chloroaniline                  | 9E20089 |        |       | 170   | 49   | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 170   | 3.5  | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 320   | 9.3  | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 320   | 19   | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 320   | 40   | ug/kg wet | ND     |     |        |           |           |
| •                                | 9E20089 |        |       | 170   | 2.0  | ug/kg wet | ND     |     |        |           |           |
| •                                | 9E20089 |        |       | 170   | 1.4  | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 170   | 8.5  | ug/kg wet | ND     |     |        |           |           |
| -                                | 9E20089 |        |       | 170   | 4.3  | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 170   | 7.4  | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 170   | 18   | ug/kg wet | ND     |     |        |           |           |
| -                                | 9E20089 |        |       | 4900  | 2100 | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 170   | 2.9  | ug/kg wet | 14     |     |        |           | J         |
|                                  | 9E20089 |        |       | 170   | 4.0  | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 170   | 3.2  | ug/kg wet | 7.2    |     |        |           | ſ         |
|                                  | 9E20089 |        |       | 170   | 2.0  | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 170   | 1.8  | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 170   | 10   | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 170   | 9.0  | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 170   | 14   | ug/kg wet | ND     |     |        |           |           |
|                                  | 9E20089 |        |       | 170   | 17   | ug/kg wet | ND     |     |        |           |           |
| Bio(2 officiolopiop3) offici     | 9E20089 |        |       | 170   | 54   | ug/kg wet | ND     |     |        |           |           |
| Did(2 outjiniox)) pranalato      | 9E20089 |        |       | 170   | 45   | ug/kg wet | ND     |     |        |           |           |
| Bugi bonzyi pininalato           | 9E20089 |        |       | 170   | 72   | ug/kg wet | ND     |     |        |           |           |
| ouproladiam                      | 9E20089 |        |       | 170   | 1.9  | ug/kg wet | ND     |     |        |           |           |
| Galbazolo                        | 9E20089 |        |       | 170   | 1.7  | ug/kg wet | 15     |     |        |           | J         |
| omjoono                          | 9E20089 |        |       | 170   | 2.0  | ug/kg wet | ND     |     |        |           |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                           |         | ·      | LA           | BORAT      | ORY QC   | DATA        |        |          |                  |                    |           |
|-------------------------------------------|---------|--------|--------------|------------|----------|-------------|--------|----------|------------------|--------------------|-----------|
| Auchda                                    | Seq/    | Source | Spike        | MRL        | MDL      | 11-140      | Decult | %<br>850 | % REC            | % RPD<br>RPD Limit | Qualifier |
| Analyte<br>Semivolatile Organics by GC/MS | Batch   | Result | Level        |            |          | Units       | Result | REC      | Limits           |                    | Quaimer   |
| · · · · · · · · · · · · · · · · · · ·     |         |        |              |            |          |             |        |          |                  |                    |           |
| Blank Analyzed: 05/26/09 (9E200           |         |        |              | 170        | 47       | us firs wat | ND     |          |                  |                    |           |
| Dibenzofuran                              | 9E20089 |        |              | 170        | 1.7      | ug/kg wet   | ND     |          |                  |                    |           |
| Diethyl phthalate                         | 9E20089 |        |              | 170        | 5.0      | ug/kg wet   | ND     |          |                  |                    |           |
| Dimethyl phthalate                        | 9E20089 |        |              | 170        | 4.3      | ug/kg wet   | ND     |          |                  |                    |           |
| Di-n-butyl phthalate                      | 9E20089 |        |              | 170        | 57       | ug/kg wet   | ND     |          |                  |                    |           |
| Di-n-octyl phthalate                      | 9E20089 |        |              | 170        | 3.9      | ug/kg wet   | ND     |          |                  |                    |           |
| Fluoranthene                              | 9E20089 |        |              | 170        | 2.4      | ug/kg wet   | 11     |          |                  |                    | J         |
| Fluorene                                  | 9E20089 |        |              | 170        | 3.8      | ug/kg wet   | ND     |          |                  |                    |           |
| Hexachlorobenzene                         | 9E20089 |        |              | 170        | 8.3      | ug/kg wet   | ND     |          |                  |                    |           |
| Hexachlorobutadiene                       | 9E20089 |        |              | 170        | 8.5      | ug/kg wet   | ND     |          |                  |                    |           |
| Hexachlorocyclopentadiene                 | 9E20089 |        |              | 170        | 50       | ug/kg wet   | ND     |          |                  |                    |           |
| Hexachloroethane                          | 9E20089 |        |              | 170        | 13       | ug/kg wet   | ND     |          |                  |                    |           |
| Indeno[1,2,3-cd]pyrene                    | 9E20089 |        |              | 170        | 4.6      | ug/kg wet   | ND     |          |                  |                    |           |
| Isophorone                                | 9E20089 |        |              | 170        | 8.3      | ug/kg wet   | ND     |          |                  |                    |           |
| Naphthalene                               | 9E20089 |        |              | 170        | 2.8      | ug/kg wet   | ND     |          |                  |                    |           |
| Nitrobenzene                              | 9E20089 |        |              | 170        | 7.4      | ug/kg wet   | ND     |          |                  |                    |           |
| N-Nitrosodi-n-propylamine                 | 9E20089 |        |              | 170        | 13       | ug/kg wet   | ND     |          |                  |                    |           |
| N-Nitrosodiphenylamine                    | 9E20089 |        |              | 170        | 9.1      | ug/kg wet   | ND     |          |                  |                    |           |
| Pentachlorophenol                         | 9E20089 |        |              | 320        | 57       | ug/kg wet   | ND     |          |                  |                    |           |
| Phenanthrene                              | 9E20089 |        |              | 170        | 3.5      | ug/kg wet   | 11     |          |                  |                    | J         |
| Phenol                                    | 9E20089 |        |              | 170        | 17       | ug/kg wet   | ND     |          |                  |                    |           |
| Pyrene                                    | 9E20089 |        |              | 170        | 1.1      | ug/kg wet   | ND     |          |                  |                    |           |
| Surrogate: 2,4,6-Tribromophenol           |         |        |              |            |          | ug/kg wet   |        | 80       | 39-146           |                    |           |
| Surrogate: 2-Fluorobiphenyl               |         |        |              |            |          | ug/kg wet   |        | 85       | 37-120           |                    |           |
| Surrogate: 2-Fluorophenol                 |         |        |              |            |          | ug/kg wet   |        | 68       | 18-120           |                    |           |
| Surrogate: Nitrobenzene-d5                |         |        |              |            |          | ug/kg wet   |        | 85       | 34-132           |                    |           |
| Surrogate: Phenol-d5                      |         |        |              |            |          | ug/kg wet   |        | 72       | 11-120           |                    |           |
| Surrogate: p-Terphenyl-d14                |         |        |              |            |          | ug/kg wet   |        | 92       | 58-147           |                    |           |
| LCS Analyzed: 05/26/09 (9E20089           | -BS1)   |        |              |            |          |             |        |          |                  |                    |           |
| 2,4,5-Trichlorophenol                     | 9E20089 |        | 3300         | 170        | 37       | ug/kg wet   | 3410   | 103      | 59-126           |                    |           |
| 2,4,6-Trichlorophenol                     | 9E20089 |        | 3300         | 170        | 11       | ug/kg wet   | 3380   | 102      | 59-123           |                    |           |
| 2,4-Dichlorophenol                        | 9E20089 |        | 3300         | 170        | 8.8      | ug/kg wet   | 3030   | 91       | 52-120           |                    |           |
| 2,4-Dimethylphenol                        | 9E20089 |        | 3300         | 170        | 45       | ug/kg wet   | 3200   | 96       | 36-120           |                    |           |
| 2,4-Dinitrophenol                         | 9E20089 |        | 3300         | 330        | 59       | ug/kg wet   | 2840   | 85       | 35-146           |                    |           |
| 2,4-Dinitrotoluene                        | 9E20089 |        | 3300         | 170        | 26       | ug/kg wet   | 3690   | 111      | 55-125           |                    |           |
| 2,4-Dinitrotoluene                        | 9E20089 |        | 3300         | 170        | 41       | ug/kg wet   | 3310   | 100      | 66-128           |                    |           |
|                                           | 9E20089 |        | 3300         | 170        | 11       | ug/kg wet   | 3170   | 96       | 57-120           |                    |           |
| 2-Chloronaphthalene                       | 9E20089 |        | 3300         | 170        | 8.6      | ug/kg wet   | 2570   | 77       | 38-120           |                    |           |
| 2-Chlorophenol                            | 9E20089 |        | 3300         | 170        | 2.0      | ug/kg wet   | 3200   | 96       | 47-120           |                    |           |
| 2-Methylnaphthalene                       | 9E20089 |        | 3300         | 170        | 5.2      | ug/kg wet   | 2940   | 89       | 48-120           |                    |           |
| 2-Methylphenol                            | 9E20089 |        | 3300         | 330        | 54       | ug/kg wet   | 3630   | 109      | 61-130           |                    |           |
| 2-Nitroaniline                            | 9E20089 |        | 3300         | 170        | 7.7      | ug/kg wet   | 2900   | 87       | 50-120           |                    |           |
| 2-Nitrophenol                             | 9E20089 |        | 3300         | 170        | 150      | ug/kg wet   | 2900   | 67       | 48-126           |                    |           |
| 3,3'-Dichlorobenzidine                    |         |        | 3300         | 330        | 39       | ug/kg wet   | 2210   | 78       | 40-120<br>61-127 |                    |           |
| 3-Nitroaniline                            | 9E20089 |        |              |            |          |             | 3810   | 115      | 49-155           |                    |           |
| 4,6-Dinitro-2-methylphenol                | 9E20089 |        | 3300<br>3300 | 330<br>170 | 58<br>53 | ug/kg wet   | 3490   | 105      | 49-155<br>58-131 |                    |           |
| 4-Bromophenyl phenyl ether                | 9E20089 |        | 3300         | 170        | 55       | ug/kg wet   | 5450   | 105      | 50-151           |                    |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624 Buffalo, NY 14210

#### Work Order: RSE0535

05/14/09 Received: 06/01/09 16:58 Reported:

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                |         |        | LA    | BORAT |      | DATA      |        |     |                     |           |           |
|--------------------------------|---------|--------|-------|-------|------|-----------|--------|-----|---------------------|-----------|-----------|
|                                | Seq/    | Source | Spike |       |      |           |        | %   | % REC               | % RPD     |           |
| Analyte                        | Batch   | Result | Level | MRL   | MDL  | Units     | Result | REC | Limits              | RPD Limit | Qualifier |
| Semivolatile Organics by GC/MS |         |        |       |       |      |           |        |     |                     |           |           |
| LCS Analyzed: 05/26/09 (9E2008 | ∋-BS1)  |        |       |       |      |           |        |     |                     |           |           |
| 4-Chloro-3-methylphenol        | 9E20089 |        | 3300  | 170   | 6.9  | ug/kg wet | 3410   | 103 | 49-125              |           |           |
| 4-Chloroaniline                | 9E20089 |        | 3300  | 170   | 49   | ug/kg wet | 2440   | 74  | 49-120              |           |           |
| 4-Chlorophenyl phenyl ether    | 9E20089 |        | 3300  | 170   | 3.6  | ug/kg wet | 3280   | 99  | 63-124              |           |           |
| 4-Methylphenol                 | 9E20089 |        | 3300  | 330   | 9.4  | ug/kg wet | 2930   | 88  | 50-119              |           |           |
| 4-Nitroaniline                 | 9E20089 |        | 3300  | 330   | 19   | ug/kg wet | 3220   | 97  | 63-128              |           |           |
| 4-Nitrophenol                  | 9E20089 |        | 3300  | 330   | 41   | ug/kg wet | 4020   | 121 | 43-137              |           |           |
| Acenaphthene                   | 9E20089 |        | 3300  | 170   | 2.0  | ug/kg wet | 3350   | 101 | 53-120              |           |           |
| Acenaphthylene                 | 9E20089 |        | 3300  | 170   | 1.4  | ug/kg wet | 3450   | 104 | 58-121              |           |           |
| Acetophenone                   | 9E20089 |        | 3300  | 170   | 8.6  | ug/kg wet | 2700   | 81  | 66-120              |           |           |
| Anthracene                     | 9E20089 |        | 3300  | 170   | 4.3  | ug/kg wet | 3480   | 105 | 62-129              |           |           |
| Atrazine TIC                   | 9E20089 |        | 3300  | 170   | 7.5  | ug/kg wet | 3180   | 96  | 73-133              |           |           |
| Benzaldehyde                   | 9E20089 |        | 3300  | 170   | 18   | ug/kg wet | 2740   | 82  | 21-120              |           |           |
| Benzidine                      | 9E20089 |        | 3300  | 5000  | 2100 | ug/kg wet | ND     |     | 20-120              |           |           |
| Benzo[a]anthracene             | 9E20089 |        | 3300  | 170   | 2.9  | ug/kg wet | 3760   | 113 | 65-133              |           | В         |
| Benzojajpyrene                 | 9E20089 |        | 3300  | 170   | 4.1  | ug/kg wet | 3910   | 118 | 64-127              |           |           |
| Benzo[b]fluoranthene           | 9E20089 |        | 3300  | 170   | 3.3  | ug/kg wet | 3780   | 114 | 64-135              |           | В         |
| Benzo[g,h,i]perylene           | 9E20089 |        | 3300  | 170   | 2.0  | ug/kg wet | 3370   | 101 | 50-152              |           |           |
| Benzo[k]fluoranthene           | 9E20089 |        | 3300  | 170   | 1.9  | ug/kg wet | 3830   | 115 | 58-138              |           |           |
| Biphenyl                       | 9E20089 |        | 3300  | 170   | 10   | ug/kg wet | 2810   | 85  | 71-120              |           |           |
| Bis(2-chloroethoxy)methane     | 9E20089 |        | 3300  | 170   | 9.1  | ug/kg wet | 2200   | 66  | 61-133              |           |           |
| Bis(2-chloroethyl)ether        | 9E20089 |        | 3300  | 170   | 15   | ug/kg wet | 2440   | 74  | 45-120              |           |           |
| Bis(2-chloroisopropyl) ether   | 9E20089 |        | 3300  | 170   | 18   | ug/kg wet | 2550   | 77  | 44-120              |           |           |
| Bis(2-ethylhexyl) phthalate    | 9E20089 |        | 3300  | 170   | 54   | ug/kg wet | 3480   | 105 | 61-133              |           |           |
| Butyl benzyl phthalate         | 9E20089 |        | 3300  | 170   | 45   | ug/kg wet | 3390   | 102 | 61-129              |           |           |
| Caprolactam                    | 9E20089 |        | 3300  | 170   | 73   | ug/kg wet | 3150   | 95  | 54-133              |           |           |
| Carbazole                      | 9E20089 |        | 3300  | 170   | 1.9  | ug/kg wet | 3410   | 103 | 5 <del>9</del> -129 |           |           |
| Chrysene                       | 9E20089 |        | 3300  | 170   | 1.7  | ug/kg wet | 3630   | 109 | 64-131              |           | В         |
| Dibenz[a,h]anthracene          | 9E20089 |        | 3300  | 170   | 2.0  | ug/kg wet | 3590   | 108 | 54-148              |           |           |
| Dibenzofuran                   | 9E20089 |        | 3300  | 170   | 1.7  | ug/kg wet | 3490   | 105 | 56-120              |           |           |
| Diethyl phthalate              | 9E20089 |        | 3300  | 170   | 5.1  | ug/kg wet | 3560   | 107 | 66-126              |           |           |
| Dimethyl phthalate             | 9E20089 |        | 3300  | 170   | 4.4  | ug/kg wet | 3430   | 103 | 65-124              |           |           |
| Di-n-butyl phthalate           | 9E20089 |        | 3300  | 170   | 58   | ug/kg wet | 3590   | 108 | 58-130              |           |           |
| Di-n-octyl phthalate           | 9E20089 |        | 3300  | 170   | 3.9  | ug/kg wet | 3540   | 107 | 62-133              |           |           |
| Fluoranthene                   | 9E20089 |        | 3300  | 170   | 2.4  | ug/kg wet | 3760   | 113 | 62-131              |           | в         |
| Fluorene                       | 9E20089 |        | 3300  | 170   | 3.9  | ug/kg wet | 3600   | 109 | 63-126              |           |           |
| Hexachlorobenzene              | 9E20089 |        | 3300  | 170   | 8.3  | ug/kg wet | 3290   | 99  | 60-132              |           |           |
| Hexachlorobutadiene            | 9E20089 |        | 3300  | 170   | 8.6  | ug/kg wet | 3110   | 94  | 45-120              |           |           |
| Hexachlorocyclopentadiene      | 9E20089 |        | 3300  | 170   | 51   | ug/kg wet | 3330   | 100 | 31-120              |           |           |
| Hexachloroethane               | 9E20089 |        | 3300  | 170   | 13   | ug/kg wet | 2760   | 83  | 41-120              |           |           |
| Indeno[1,2,3-cd]pyrene         | 9E20089 |        | 3300  | 170   | 4.6  | ug/kg wet | 3620   | 109 | 56-149              |           |           |
| Isophorone                     | 9E20089 |        | 3300  | 170   | 8.4  | ug/kg wet | 2830   | 85  | 56-120              |           |           |
| Naphthalene                    | 9E20089 |        | 3300  | 170   | 2.8  | ug/kg wet | 3050   | 92  | 46-120              |           |           |
| Nitrobenzene                   | 9E20089 |        | 3300  | 170   | 7.5  | ug/kg wet | 3130   | 94  | 49-120              |           |           |
| N-Nitrosodi-n-propylamine      | 9E20089 |        | 3300  | 170   | 13   | ug/kg wet | 2870   | 86  | 46-120              |           |           |
| N-Nitrosodiphenylamine         | 9E20089 |        | 3300  | 170   | 9.2  | ug/kg wet | 4110   | 124 | 20-119              |           | L1        |
| n-millosouphenyiallille        |         |        | -     | -     | -    | 5 5       |        |     |                     |           |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                 |             |        | LA    | BORAT | ORY QC          | ; DATA    |        |          |        |          |       |           |
|---------------------------------|-------------|--------|-------|-------|-----------------|-----------|--------|----------|--------|----------|-------|-----------|
| • • • •                         | Seq/        | Source | Spike |       |                 | 11.14     | n "    | %<br>DEC | % REC  | %<br>880 | RPD   | 0         |
| Analyte                         | Batch       | Result | Level | MRL   | MDL             | Units     | Result | REC      | Limits | RPU      | Limit | Qualifier |
| Semivolatile Organics by GC/N   | 15          |        |       |       |                 |           |        |          |        |          |       |           |
| LCS Analyzed: 05/26/09 (9E20    | 089-BS1)    |        |       |       |                 |           |        |          |        |          |       |           |
| Pentachlorophenol               | 9E20089     |        | 3300  | 330   | 58              | ug/kg wet | 3030   | 91       | 33-136 |          |       |           |
| Phenanthrene                    | 9E20089     |        | 3300  | 170   | 3.5             | ug/kg wet | 3550   | 107      | 60-130 |          |       | В         |
| Phenol                          | 9E20089     |        | 3300  | 170   | 18              | ug/kg wet | 2710   | 82       | 36-120 |          |       |           |
| Pyrene                          | 9E20089     |        | 3300  | 170   | 1.1             | ug/kg wet | 3530   | 106      | 51-133 |          |       |           |
| Surrogate: 2,4,6-Tribromophenol | <u>.</u>    |        |       |       |                 | ug/kg wet |        | 97       | 39-146 |          |       |           |
| Surrogate: 2-Fluorobiphenyl     |             |        |       |       |                 | ug/kg wet |        | 95       | 37-120 |          |       |           |
| Surrogate: 2-Fluorophenol       |             |        |       |       |                 | ug/kg wet |        | 74       | 18-120 |          |       |           |
| Surrogate: Nitrobenzene-d5      |             |        |       |       |                 | ug/kg wet |        | 96       | 34-132 |          |       |           |
| Surrogate: Phenol-d5            |             |        |       |       |                 | ug/kg wet |        | 81       | 11-120 |          |       |           |
| Surrogate: p-Terphenyl-d14      |             |        |       |       |                 | ug/kg wet |        | 87       | 58-147 |          |       |           |
| LCS Dup Analyzed: 05/26/09 (9   | 9E20089-BSD | 1)     |       |       |                 | -         |        |          |        |          |       |           |
| 2,4,5-Trichlorophenol           | 9E20089     | •      | 3300  | 170   | 36              | ug/kg wet | 3570   | 109      | 59-126 | 5        | 18    |           |
| 2,4,6-Trichlorophenol           | 9E20089     |        | 3300  | 170   | 11              | ug/kg wet | 3480   | 107      | 59-123 | 3        | 19    |           |
| 2,4-Dichlorophenol              | 9E20089     |        | 3300  | 170   | 8.7             | ug/kg wet | 3140   | 96       | 52-120 | 4        | 19    |           |
| 2,4-Dimethylphenol              | 9E20089     |        | 3300  | 170   | 45              | ug/kg wet | 3330   | 102      | 36-120 | 4        | 42    |           |
| 2,4-Dinitrophenol               | 9E20089     |        | 3300  | 320   | 58              | ug/kg wet | 3100   | 95       | 35-146 | 9        | 22    |           |
| 2,4-Dinitrotoluene              | 9E20089     |        | 3300  | 170   | 26              | ug/kg wet | 3850   | 118      | 55-125 | 4        | 20    |           |
| 2,6-Dinitrotoluene              | 9E20089     |        | 3300  | 170   | 40              | ug/kg wet | 3460   | 106      | 66-128 | 4        | 15    |           |
| 2-Chloronaphthalene             | 9E20089     |        | 3300  | 170   | 11              | ug/kg wet | 3290   | 101      | 57-120 | 4        | 21    |           |
| 2-Chlorophenol                  | 9E20089     |        | 3300  | 170   | 8.4             | ug/kg wet | 2710   | 83       | 38-120 | 6        | 25    |           |
| 2-Methylnaphthalene             | 9E20089     |        | 3300  | 170   | 2.0             | ug/kg wet | 3290   | 101      | 47-120 | 3        | 21    |           |
| 2-Methylphenol                  | 9E20089     |        | 3300  | 170   | 5.1             | ug/kg wet | 3010   | 92       | 48-120 | 2        | 27    |           |
| 2-Nitroaniline                  | 9E20089     |        | 3300  | 320   | 53              | ug/kg wet | 3830   | 117      | 61-130 | 5        | 15    |           |
| 2-Nitrophenol                   | 9E20089     |        | 3300  | 170   | 7.6             | ug/kg wet | 3100   | 95       | 50-120 | 7        | 18    |           |
| 3,3'-Dichlorobenzidine          | 9E20089     |        | 3300  | 170   | 150             | ug/kg wet | 2790   | 86       | 48-126 | 23       | 25    |           |
| 3-Nitroaniline                  | 9E20089     |        | 3300  | 320   | 38              | ug/kg wet | 3240   | 99       | 61-127 | 22       | 19    | R2        |
| 4,6-Dinitro-2-methylphenol      | 9E20089     |        | 3300  | 320   | 57              | ug/kg wet | 3830   | 117      | 49-155 | 1        | 15    |           |
| 4-Bromophenyl phenyl ether      | 9E20089     |        | 3300  | 170   | 53              | ug/kg wet | 3540   | 109      | 58-131 | 2        | 15    |           |
| 4-Chloro-3-methylphenol         | 9E20089     |        | 3300  | 170   | 6.8             | ug/kg wet | 3410   | 104      | 49-125 | 0        | 27    |           |
| 4-Chloroaniline                 | 9E20089     |        | 3300  | 170   | 49              | ug/kg wet | 3050   | 94       | 49-120 | 22       | 22    | R2        |
| 4-Chlorophenyl phenyl ether     | 9E20089     |        | 3300  | 170   | 3.5             | ug/kg wet | 3380   | 103      | 63-124 | 3        | 16    |           |
| 4-Methylphenol                  | 9E20089     |        | 3300  | 320   | 9.2             | ug/kg wet | 2870   | 88       | 50-119 | 2        | 24    |           |
| 4-Nitroaniline                  | 9E20089     |        | 3300  | 320   | 18              | ug/kg wet | 3250   | 100      | 63-128 | 1        | 24    |           |
| 4-Nitrophenol                   | 9E20089     |        | 3300  | 320   | 40              | ug/kg wet | 3910   | 120      | 43-137 | 3        | 25    |           |
| Acenaphthene                    | 9E20089     |        | 3300  | 170   | 1. <del>9</del> | ug/kg wet | 3440   | 105      | 53-120 | 3        | 35    |           |
| Acenaphthylene                  | 9E20089     |        | 3300  | 170   | 1. <b>4</b>     | ug/kg wet | 3530   | 108      | 58-121 | 2        | 18    |           |
| Acetophenone                    | 9E20089     |        | 3300  | 170   | 8.5             | ug/kg wet | 2770   | 85       | 66-120 | 3        | 20    |           |
| Anthracene                      | 9E20089     |        | 3300  | 170   | 4.2             | ug/kg wet | 3590   | 110      | 62-129 | 3        | 15    |           |
| Atrazine TIC                    | 9E20089     |        | 3300  | 170   | 7.4             | ug/kg wet | 3730   | 114      | 73-133 | 16       | 20    |           |
| Benzaldehyde                    | 9E20089     |        | 3300  | 170   | 18              | ug/kg wet | 3000   | 92       | 21-120 | 9        | 20    |           |
| Benzidine                       | 9E20089     |        | 3300  | 4900  | 2100            | ug/kg wet | 2370   | 72       | 20-120 |          | 15    | J         |
| Benzo[a]anthracene              | 9E20089     |        | 3300  | 170   | 2.9             | ug/kg wet | 3910   | 120      | 65-133 | 4        | 15    | в         |
| Benzo[a]pyrene                  | 9E20089     |        | 3300  | 170   | 4.0             | ug/kg wet | 4240   | 130      | 64-127 | 8        | 15    | L1        |
| Benzo[b]fluoranthene            | 9E20089     |        | 3300  | 170   | 3.2             | ug/kg wet | 4050   | 124      | 64-135 | 7        | 15    | в         |
| Benzo[g,h,i]perylene            | 9E20089     |        | 3300  | 170   | 2.0             | ug/kg wet | 3740   | 114      | 50-152 | 10       | 15    |           |
|                                 |             |        |       |       |                 |           |        |          |        |          |       |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

### TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

#### Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                 |               |                  | LA             | BORAT |            | DATA      |        |          |                 |          |              |          |
|---------------------------------|---------------|------------------|----------------|-------|------------|-----------|--------|----------|-----------------|----------|--------------|----------|
| Analyte                         | Seq/<br>Batch | Source<br>Result | Spike<br>Level | MRL   | MDL        | Units     | Result | %<br>REC | % REC<br>Limits | %<br>RPD | RPD<br>Limit | Qualifie |
| Semivolatile Organics by GC/MS  |               |                  |                |       |            |           |        |          |                 |          |              |          |
| LCS Dup Analyzed: 05/26/09 (9E2 | 0089-BSD      | 1)               |                |       |            |           |        |          |                 |          |              |          |
| Benzo[k]fluoranthene            | 9E20089       | ,                | 3300           | 170   | 1.8        | ug/kg wet | 4030   | 123      | 58-138          | 5        | 22           |          |
| Biphenyl                        | 9E20089       |                  | 3300           | 170   | 10         | ug/kg wet | 2960   | 91       | 71-120          | 5        | 20           |          |
| Bis(2-chloroethoxy)methane      | 9E20089       |                  | 3300           | 170   | 9.0        | ug/kg wet | 2290   | 70       | 61-133          | 4        | 17           |          |
| Bis(2-chloroethyl)ether         | 9E20089       |                  | 3300           | 170   | 14         | ug/kg wet | 2550   | 78       | 45-120          | 4        | 21           |          |
| Bis(2-chloroisopropyl) ether    | 9E20089       |                  | 3300           | 170   | 17         | ug/kg wet | 2610   | 80       | 44-120          | 2        | 24           |          |
| Bis(2-ethylhexyl) phthalate     | 9E20089       |                  | 3300           | 170   | 53         | ug/kg wet | 3620   | 111      | 61-133          | 4        | 15           |          |
| Butyl benzyl phthalate          | 9E20089       |                  | 3300           | 170   | 44         | ug/kg wet | 3510   | 107      | 61-129          | 4        | 16           |          |
| Caprolactam                     | 9E20089       |                  | 3300           | 170   | 72         | ug/kg wet | 3140   | 96       | 54-133          | 0        | 20           |          |
| Carbazole                       | 9E20089       |                  | 3300           | 170   | 1.9        | ug/kg wet | 3480   | 107      | 59-129          | 2        | 20           |          |
|                                 | 9E20089       |                  | 3300           | 170   | 1.7        | ug/kg wet | 3850   | 118      | 64-131          | 6        | 15           | в        |
| Chrysene                        | 9E20089       |                  | 3300           | 170   | 1.9        | ug/kg wet | 3870   | 119      | 54-148          | 7        | 15           | -        |
| Dibenz[a,h]anthracene           | 9E20089       |                  | 3300           | 170   | 1.7        | ug/kg wet | 3520   | 108      | 56-120          | 1        | 15           |          |
| Dibenzofuran                    | 9E20089       |                  | 3300           | 170   | 5.0        | ug/kg wet | 3650   | 112      | 66-126          | 3        | 15           |          |
| Diethyl phthalate               | 9E20089       |                  | 3300           | 170   | 4.3        | ug/kg wet | 3600   | 110      | 65-124          | 5        | 15           |          |
| Dimethyl phthalate              | 9E20089       |                  | 3300           | 170   | 57         | ug/kg wet | 3650   | 112      | 58-130          | 2        | 15           |          |
| Di-n-butyl phthalate            | 9E20089       |                  | 3300           | 170   | 3.9        | ug/kg wet | 3720   | 114      | 62-133          | 5        | 16           |          |
| Di-n-octyl phthalate            | 9E20089       |                  | 3300           | 170   | 2.4        | ug/kg wet | 3750   | 115      | 62-131          | o        | 15           | В        |
| Fluoranthene                    | 9E20089       |                  | 3300           | 170   | 2.4<br>3.8 |           | 3730   | 113      | 63-126          | 3        | 15           | U        |
| Fluorene                        |               |                  | 3300           | 170   | 3.0<br>8.2 | ug/kg wet | 3510   | 108      | 60-132          | 7        | 15           |          |
| Hexachlorobenzene               | 9E20089       |                  |                |       |            | ug/kg wet |        |          | 45-120          | 7        | 44           |          |
| Hexachlorobutadiene             | 9E20089       |                  | 3300           | 170   | 8.5        | ug/kg wet | 3330   | 102      |                 | 7        |              |          |
| Hexachlorocyclopentadiene       | 9E20089       |                  | 3300           | 170   | 50         | ug/kg wet | 3560   | 109      | 31-120          |          | 49<br>46     |          |
| Hexachloroethane                | 9E20089       |                  | 3300           | 170   | 13         | ug/kg wet | 2840   | 87       | 41-120          | 3        |              |          |
| Indeno[1,2,3-cd]pyrene          | 9E20089       |                  | 3300           | 170   | 4.6        | ug/kg wet | 3970   | 122      | 56-149          | 9        | 15           |          |
| isophorone                      | 9E20089       |                  | 3300           | 170   | 8.3        | ug/kg wet | 2960   | 91       | 56-120          | 5        | 17           |          |
| Naphthalene                     | 9E20089       |                  | 3300           | 170   | 2.8        | ug/kg wet | 3140   | 96       | 46-120          | 3        | 29           |          |
| Nitrobenzene                    | 9E20089       |                  | 3300           | 170   | 7.3        | ug/kg wet | 3280   | 100      | 49-120          | 5        | 24           |          |
| N-Nitrosodi-n-propylamine       | 9E20089       |                  | 3300           | 170   | 13         | ug/kg wet | 2840   | 87       | 46-120          | 1        | 31           |          |
| N-Nitrosodiphenylamine          | 9E20089       |                  | 3300           | 170   | 9.0        | ug/kg wet | 4360   | 134      | 20-119          | 6        | 15           | L1       |
| Pentachlorophenol               | 9E20089       |                  | 3300           | 320   | 57         | ug/kg wet | 2980   | 91       | 33-136          | 2        | 35           |          |
| Phenanthrene                    | 9E20089       |                  | 3300           | 170   | 3.5        | ug/kg wet | 3730   | 114      | 60-130          | 5        | 15           | В        |
| Phenol                          | 9E20089       |                  | 3300           | 170   | 17         | ug/kg wet | 2670   | 82       | 36-120          | 1        | 35           |          |
| Pyrene                          | 9E20089       |                  | 3300           | 170   | 1.1        | ug/kg wet | 3680   | 113      | 51-133          | 4        | 35           |          |
| Surrogate: 2,4,6-Tribromophenol |               |                  |                |       |            | ug/kg wet |        | 105      | 39-146          |          |              |          |
| Surrogate: 2-Fluorobiphenyl     |               |                  |                |       |            | ug/kg wet |        | 102      | 37-120          |          |              |          |
| Surrogate: 2-Fluorophenol       |               |                  |                |       |            | ug/kg wet |        | 82       | 18-120          |          |              |          |
| Surrogate: Nitrobenzene-d5      |               |                  |                |       |            | ug/kg wet |        | 103      | 34-132          |          |              |          |
| Surrogate: Phenol-d5            |               |                  |                |       |            | ug/kg wet |        | 84       | 11-120          |          |              |          |
| Surrogate: p-Terphenyl-d14      |               |                  |                |       |            | ug/kg wet |        | 94       | 58-147          |          |              |          |



Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| 4                        |                       |        | LA    | BORAT | ORY QC | DATA      |        |      |        |           |           |
|--------------------------|-----------------------|--------|-------|-------|--------|-----------|--------|------|--------|-----------|-----------|
|                          | Seq/                  | Source | Spike |       |        |           |        | %    | % REC  | % RPD     |           |
| Analyte                  | Batch                 | Result | Level | MRL   | MDL    | Units     | Result | REC  | Limits | RPD Limit | Qualifier |
| Total Metals by SW 846 S | <u>Series Methods</u> |        |       |       |        |           |        |      |        |           |           |
| Blank Analyzed: 05/19/09 | 9 (9E15068-BLK1)      |        |       |       |        |           |        |      |        |           |           |
| Aluminum                 | 9E15068               |        |       | 10.0  | NR     | mg/kg wet | ND     |      |        |           | B         |
| Antimony                 | 9E15068               |        |       | 15.0  | NR     | mg/kg wet | ND     |      |        |           |           |
| Arsenic                  | 9E15068               |        |       | 2.0   | NR     | mg/kg wet | ND     |      |        |           |           |
| Barium                   | 9E15068               |        |       | 0.500 | NR     | mg/kg wet | ND     |      |        |           |           |
| Beryllium                | 9E15068               |        |       | 5.00  | NR     | mg/kg wet | ND     |      |        |           | B         |
| Cadmium                  | 9E15068               |        |       | 0.200 | NR     | mg/kg wet | ND     |      |        |           |           |
| Calcium                  | 9E15068               |        |       | 50.0  | NR     | mg/kg wet | ND     |      |        |           |           |
| Chromium                 | 9E15068               |        |       | 0.500 | NR     | mg/kg wet | ND     |      |        |           |           |
| Cobalt                   | 9E15068               |        |       | 5.00  | NR     | mg/kg wet | ND     |      |        |           |           |
| Copper                   | 9E15068               |        |       | 5.0   | NR     | mg/kg wet | ND     |      |        |           | В         |
| Iron                     | 9E15068               |        |       | 10.0  | NR     | mg/kg wet | ND     |      |        |           | В         |
| Lead                     | 9E15068               |        |       | 1.0   | NR     | mg/kg wet | ND     |      |        |           |           |
| Magnesium                | 9E15068               |        |       | 20.0  | NR     | mg/kg wet | ND     |      |        |           |           |
| Manganese                | 9E15068               |        |       | 5.0   | NR     | mg/kg wet | ND     |      |        |           | В         |
| Nickel                   | 9E15068               |        |       | 5.00  | NR     | mg/kg wet | ND     |      |        |           |           |
| Potassium                | 9E15068               |        |       | 30.0  | NR     | mg/kg wet | ND     |      |        |           | В         |
| Selenium                 | 9E15068               |        |       | 5.0   | NR     | mg/kg wet | ND     |      |        |           |           |
| Silver                   | 9E15068               |        |       | 5.00  | NR     | mg/kg wet | ND     |      |        |           |           |
| Sodium                   | 9E15068               |        |       | 140   | NR     | mg/kg wet | ND     |      |        |           | В         |
| Thallium                 | 9E15068               |        |       | 6.0   | NR     | mg/kg wet | ND     |      |        |           |           |
| Vanadium                 | 9E15068               |        |       | 5.00  | NR     | mg/kg wet | ND     |      |        |           | В         |
| Zinc                     | 9E15068               |        |       | 5.0   | NR     | mg/kg wet | ND     |      |        |           |           |
| Matrix Spike Analyzed: 0 | 5/19/09 (9E15068-N    | IS1)   |       |       |        |           |        |      |        |           |           |
| QC Source Sample: RSE0   |                       | ,      |       |       |        |           |        |      |        |           |           |
| Aluminum                 | 9E15068               | 5070   | 2220  | 11.1  | NR     | mg/kg dry | 6400   | 60   | 75-125 |           | M1        |
|                          | 9E15068               | 4.62   | 44.3  | 16.6  | NR     | mg/kg dry | 34.3   | 67   | 75-125 |           | M1        |
| Antimony                 | 9E15068               | 75.0   | 44.3  | 2.2   | NR     | mg/kg dry | 96.8   | 49   | 75-125 |           | M1        |
| Arsenic                  | 9E15068               | 158    | 44.3  | 0.554 | NR     | mg/kg dry | 117    | -94  | 75-125 |           | M1        |
| Barium                   | 9E15068               | 0.527  | 44.3  | 5.00  | NR     | mg/kg dry | 40.3   | 90   | 75-125 |           |           |
| Beryllium<br>Cadmium     | 9E15068               | 3.05   | 44.3  | 0.222 | NR     | mg/kg dry | 40.3   | 84   | 75-125 |           |           |
|                          | 9E15068               | 23300  | 2220  | 55.4  | NR     | mg/kg dry | 32600  | 420  | 75-125 |           | MHA       |
| Calcium                  | 9E15068               | 140    | 44.3  | 0.554 | NR     | mg/kg dry | 242    | 230  | 75-125 |           | M1        |
| Chromium<br>Cobalt       | 9E15068               | 8.91   | 44.3  | 5.00  | NR     | mg/kg dry | 48.3   | 89   | 75-125 |           |           |
| oobalt                   | 9E15068               | 317    | 44.3  | 5.0   | NR     | mg/kg dry | 262    | -125 | 75-125 |           | MHA       |
| Copper                   | 9E15068               | 99800  | 2220  | 111   | NR     | mg/kg dry | 127000 | 1210 | 75-125 |           | D08,MHA   |
| Iron                     | 9E15068               | 321    | 44.3  | 1.1   | NR     | mg/kg dry | 179    | -321 | 75-125 |           | мна       |
| Lead                     | 9E15068               | 3750   | 2220  | 22.2  | NR     | mg/kg dry | 8250   | 203  | 75-125 |           | M1        |
| Magnesium                | 9E15068               | 4170   | 44.3  | 5.0   | NR     | mg/kg dry | 8500   | 9770 | 75-125 |           | D08,MHA   |
| Manganese                | 9E15068               | 101    | 44.3  | 5.00  | NR     | mg/kg dry | 67.8   | -74  | 75-125 |           | M1        |
| Nickel                   | 9E15068               | 657    | 2220  | 33.2  | NR     | mg/kg dry | 2930   | 102  | 75-125 |           |           |
| Potassium                | 9E15068               | 0.946  | 44.3  | 5.0   | NR     | mg/kg dry | 31.1   | 68   | 75-125 |           | M1        |
| Selenium                 | 9E15068               | 0.340  | 11.1  | 5.00  | NR     | mg/kg dry | 9.79   | 85   | 75-125 |           |           |
| Silver                   | 9E15068               | 189    | 2220  | 155   | NR     | mg/kg dry | 2190   | 90   | 75-125 |           |           |
| Sodium                   | 9E15068               | ND     | 44.3  | 6.6   | NR     | mg/kg dry | 37.6   | 85   | 75-125 |           |           |
| Thallium                 | 9E15068               | 45.8   | 44.3  | 5.00  | NR     | mg/kg dry | 118    | 163  | 75-125 |           | M1        |
| Vanadium                 | 3E 13000              | -0.0   |       | 0.00  |        |           |        |      |        |           |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

| Turnkey/Benchmark                                               |             |         | Work Ord                | ler: RSE05 | 535                 |                   |           |      | Receiv |      | 05/14/   | 09<br>'09 16:58  |
|-----------------------------------------------------------------|-------------|---------|-------------------------|------------|---------------------|-------------------|-----------|------|--------|------|----------|------------------|
| 726 Exchange Street, Suite 624<br>Buffalo, NY 14210             |             |         | Project: 1<br>Project N |            | - TECUMS<br>TURN-00 | EH REDEVEL<br>109 | OPMENT \$ | SITE | Repor  | leu. | 00/01/   | 03 10.00         |
| Total Metals by SW 846 Series N                                 | lethods     |         | · · ·                   |            |                     |                   |           |      |        |      |          | <u></u>          |
| Matrix Spike Analyzed: 05/19/09<br>QC Source Sample: RSE0535-02 | (9E15068-M  | IS1)    |                         |            |                     |                   |           |      |        |      |          |                  |
| Zinc                                                            | 9E15068     | 458     | 44.3                    | 5.0        | NR                  | mg/kg dry         | 259       | -450 | 75-125 |      |          | MHA              |
| Matrix Spike Analyzed: 05/19/09<br>QC Source Sample: RSE0535-08 | (9E15068-M  | S2)     |                         |            |                     |                   |           |      |        |      |          |                  |
|                                                                 | 9E15068     | 9400    | 2270                    | 11.4       | NR                  | mg/kg dry         | 18700     | 408  | 75-125 |      |          | МНА              |
| Aluminum                                                        | 9E15068     | 1.59    | 45.4                    | 17.0       | NR                  | mg/kg dry         | 23.2      | 48   | 75-125 |      |          | M1               |
| Antimony<br>Arsenic                                             | 9E15068     | 13.8    | 45.4                    | 2.3        | NR                  | mg/kg dry         | 87.4      | 162  | 75-125 |      |          | M1               |
| Barium                                                          | 9E15068     | 93.2    | 45.4                    | 0.568      | NR                  | mg/kg dry         | 190       | 214  | 75-125 |      |          | M1               |
| Beryllium                                                       | 9E15068     | 1.85    | 45.4                    | 5.00       | NR                  | mg/kg dry         | 41.5      | 87   | 75-125 |      |          |                  |
| Cadmium                                                         | 9E15068     | 0.646   | 45.4                    | 0.227      | NR                  | mg/kg dry         | 37.3      | 81   | 75-125 |      |          |                  |
| Calcium                                                         | 9E15068     | 75600   | 2270                    | 284        | NR                  | mg/kg dry         | 129000    | 2350 | 75-125 |      |          | D08, <b>M</b> HA |
| Chromium                                                        | 9E15068     | 96.4    | 45.4                    | 0.568      | NR                  | mg/kg dry         | 138       | 91   | 75-125 |      |          |                  |
| Cobalt                                                          | 9E15068     | 6.10    | 45.4                    | 5.00       | NR                  | mg/kg dry         | 44.9      | 85   | 75-125 |      |          |                  |
| Copper                                                          | 9E15068     | 132     | 45.4                    | 5.0        | NR                  | mg/kg dry         | 149       | 37   | 75-125 |      |          | M1               |
| Iron                                                            | 9E15068     | 103000  | 2270                    | 56.8       | NR                  | mg/kg dry         | 90700     | -558 | 75-125 |      |          | D08,MHA          |
| Lead                                                            | 9E15068     | 189     | 45.4                    | 1.1        | NR                  | mg/kg dry         | 265       | 169  | 75-125 |      |          | MHA              |
| Magnesium                                                       | 9E15068     | 11200   | 2270                    | 22.7       | NR                  | mg/kg dry         | 20100     | 392  | 75-125 |      |          | MHA              |
| Manganese                                                       | 9E15068     | 4290    | 45.4                    | 5.0        | NR                  | mg/kg dry         | 5430      | 2490 | 75-125 |      |          | D08,MHA          |
| Nickel                                                          | 9E15068     | 46.0    | 45.4                    | 5.00       | NR                  | mg/kg dry         | 67.4      | 47   | 75-125 |      |          | M1               |
| Potassium                                                       | 9E15068     | 711     | 2270                    | 34.1       | NR                  | mg/kg dry         | 3550      | 125  | 75-125 |      |          |                  |
| Selenium                                                        | 9E15068     | ND      | 45.4                    | 5.0        | NR                  | mg/kg dry         | 29.0      | 64   | 75-125 |      |          | M1               |
| Silver                                                          | 9E15068     | 0.167   | <b>1</b> 1. <b>4</b>    | 5.00       | NR                  | mg/kg dry         | 9.45      | 82   | 75-125 |      |          |                  |
| Sodium                                                          | 9E15068     | 377     | 2270                    | 159        | NR                  | mg/kg dry         | 2670      | 101  | 75-125 |      |          |                  |
| Thallium                                                        | 9E15068     | ND      | 45.4                    | 6.8        | NR                  | mg/kg dry         | 34.6      | 76   | 75-125 |      |          |                  |
| Vanadium                                                        | 9E15068     | 52.3    | 45.4                    | 5.00       | NR                  | mg/kg dry         | 83.7      | 69   | 75-125 |      |          | M1               |
| Zinc                                                            | 9E15068     | 335     | 45.4                    | 5.0        | NR                  | mg/kg dry         | 444       | 240  | 75-125 |      |          | MHA              |
| Matrix Spike Dup Analyzed: 05/1                                 | 9/09 (9E150 | 68-MSD1 | )                       |            |                     |                   |           |      |        |      |          |                  |
| QC Source Sample: RSE0535-02                                    |             |         |                         |            |                     |                   |           |      |        |      |          |                  |
| Aluminum                                                        | 9E15068     | 5070    | 1980                    | 9.9        | NR                  | mg/kg dry         | 5540      | 24   | 75-125 | 14   | 20       | M1               |
| Antimony                                                        | 9E15068     | 4.62    | 39.7                    | 14.9       | NR                  | mg/kg dry         | 32.6      | 71   | 75-125 | 5    | 20       | M1               |
| Arsenic                                                         | 9E15068     | 75.0    | 39.7                    | 2.0        | NR                  | mg/kg dry         | 97.1      | 56   | 75-125 | 0    | 20       | M1               |
| Barium                                                          | 9E15068     | 158     | 39.7                    | 0.496      | NR                  | mg/kg dry         | 153       | -14  | 75-125 | 27   | 20       | M1,R2            |
| Beryllium                                                       | 9E15068     | 0.527   | 39.7                    | 5.00       | NR                  | mg/kg dry         | 36.9      | 92   | 75-125 | 9    | 20       |                  |
| Cadmium                                                         | 9E15068     | 3.05    | 39.7                    | 0.198      | NR                  | mg/kg dry         | 49.4      | 117  | 75-125 | 20   | 20       |                  |
| Calcium                                                         | 9E15068     | 23300   | 1980                    | 49.6       | NR                  | mg/kg dry         | 22000     | -65  | 75-125 | 39   | 20       | MHA,R2           |
| Chromium                                                        | 9E15068     | 140     | 39.7                    | 0.496      | NR                  | mg/kg dry         | 141       | 3    | 75-125 | 53   | 20       | M1,R2            |
| Cobalt                                                          | 9E15068     | 8.91    | 39.7                    | 5.00       | NR                  | mg/kg dry         | 44.1      | 89   | 75-125 | 9    | 20       |                  |
| Copper                                                          | 9E15068     | 317     | 39.7                    | 5.0        | NR                  | mg/kg dry         | 212       | -264 | 75-125 | 21   | 20       | MHA,R2           |
| ron                                                             | 9E15068     | 99800   | 1980                    | 99.2       | NR                  | mg/kg dry         | 87200     | -634 | 75-125 | 37   | 20       | D08,MHA,F        |
| _ead                                                            | 9E15068     | 321     | 39.7                    | 1.0        | NR                  | mg/kg dry         | 270       | -127 | 75-125 | 41   | 20       | MHA,R2           |
| Magnesium                                                       | 9E15068     | 3750    | 1980                    | 19.8       | NR                  | mg/kg dry         | 5910      | 109  | 75-125 | 33   | 20<br>20 |                  |
| Manganese                                                       | 9E15068     | 4170    | 39.7                    | 5.0        | NR                  | mg/kg dry         | 3890      | -717 | 75-125 | 74   | 20       | D08,MHA,F        |
| Nickel                                                          | 9E15068     | 101     | 39.7                    | 5.00       | NR                  | mg/kg dry         | 77.8      | -58  | 75-125 | 14   | 20       | M1               |
| Potassium                                                       | 9E15068     | 657     | 1980                    | 29.8       | NR                  | mg/kg dry         | 2300      | 83   | 75-125 | 24   | 20       | R2               |
| Selenium                                                        | 9E15068     | 0.946   | 39.7                    | 5.0        | NR                  | mg/kg dry         | 29.6      | 72   | 75-125 | 5    | 20       | <b>M</b> 1       |
| Silver                                                          | 9E15068     | 0.340   | 9.92                    | 5.00       | NR                  | mg/kg dry         | 8.89      | 86   | 75-125 | 10   | 20       |                  |
| Sodium                                                          | 9E15068     | 189     | 1980                    | 139        | NR                  | mg/kg dry         | 2170      | 100  | 75-125 | 1    | 20       |                  |
| Thallium                                                        | 9E15068     | ND      | 39.7                    | 6.0        | NR                  | mg/kg dry         | 34.8      | 88   | 75-125 | 8    | 20       | <b>-</b> -       |
| Vanadium                                                        | 9E15068     | 45.8    | 39.7                    | 5.00       | NR                  | mg/kg dry         | 93.2      | 119  | 75-125 | 23   | 20       | R2               |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

TestAmerica

| Turnkey/Benchmark<br>726 Exchange Street, Suite 624              |             |         | Work Ord                | ler: RSE05 | 35                   |                  |             |          | Receiv<br>Report       |     | 05/14/<br>06/01/ | 09<br>/09 16:58 |
|------------------------------------------------------------------|-------------|---------|-------------------------|------------|----------------------|------------------|-------------|----------|------------------------|-----|------------------|-----------------|
| Buffalo, NY 14210                                                |             |         | Project: T<br>Project N |            | - TECUMSI<br>TURN-00 | EH REDEVEL<br>09 | OPMENT \$   | SITE     | •                      |     |                  |                 |
| Total Metals by SW 846 Series M                                  | ethods      |         |                         |            |                      |                  |             |          |                        |     |                  |                 |
| Matrix Spike Dup Analyzed: 05/19<br>QC Source Sample: RSE0535-02 | 9/09 (9E150 | 68-MSD1 | )                       |            |                      |                  |             |          |                        |     |                  |                 |
| Zinc                                                             | 9E15068     | 458     | 39.7                    | 19.8       | NR                   | mg/kg dry        | 4360        | 9840     | 75-125                 | 178 | 20               | D08,MHA,R2      |
| Matrix Spike Dup Analyzed: 05/19<br>QC Source Sample: RSE0535-08 | 9/09 (9E150 | 68-MSD2 | 2)                      |            |                      |                  |             |          |                        |     |                  |                 |
| Aluminum                                                         | 9E15068     | 9400    | 2310                    | 11.6       | NR                   | mg/kg dry        | 16200       | 293      | 75-125                 | 14  | 20               | MHA             |
| Antimony                                                         | 9E15068     | 1.59    | 46.2                    | 17.3       | NR                   | mg/kg dry        | 25.6        | 52       | 75-125                 | 10  | 20               | M1              |
| Arsenic                                                          | 9E15068     | 13.8    | 46.2                    | 2.3        | NR                   | mg/kg dry        | 85.6        | 155      | 75-125                 | 2   | 20               | M1              |
| Barium                                                           | 9E15068     | 93.2    | 46.2                    | 0.578      | NR                   | mg/kg dry        | 174         | 175      | 75-125                 | 9   | 20               | M1              |
| Beryllium                                                        | 9E15068     | 1.85    | 46.2                    | 5.00       | NR                   | mg/kg dry        | 42.2        | 87       | 75-125                 | 2   | 20               |                 |
| Cadmium                                                          | 9E15068     | 0.646   | 46.2                    | 0.231      | NR                   | mg/kg dry        | 39.0        | 83       | 75-125                 | 4   | 20               |                 |
| Calcium                                                          | 9E15068     | 75600   | 2310                    | 289        | NR                   | mg/kg dry        | 104000      | 1220     | 75-125                 | 22  | 20               | D08,MHA,R2      |
| Chromium                                                         | 9E15068     | 96.4    | 46.2                    | 0.578      | NR                   | mg/kg dry        | 127         | 67       | 75-125                 | 8   | 20               | M1              |
| Cobalt                                                           | 9E15068     | 6.10    | 46.2                    | 5.00       | NR                   | mg/kg dry        | 45.9        | 86       | 75-125                 | 2   | 20               |                 |
| Copper                                                           | 9E15068     | 132     | 46.2                    | 5.0        | NR                   | mg/kg dry        | 129         | -8       | 75-125                 | 15  | 20               | M1              |
| Iron                                                             | 9E15068     | 103000  | 2310                    | 57.8       | NR                   | mg/kg dry        | 72900       | -1320    | 75-125                 | 22  | 20               | D08,MHA,R       |
| Lead                                                             | 9E15068     | 189     | 46.2                    | 1.2        | NR                   | mg/kg dry        | 202         | 28       | 75-125                 | 27  | 20               | MHA,R2          |
| Magnesium                                                        | 9E15068     | 11200   | 2310                    | 23.1       | NR                   | mg/kg dry        | 15300       | 180      | 75-125                 | 27  | 20               | MHA,R2          |
| Manganese                                                        | 9E15068     | 4290    | 46.2                    | 5.0        | NR                   | mg/kg dry        | 5340        | 2270     | 75-125                 | 2   | 20               | D08,MHA         |
| Nickel                                                           | 9E15068     | 46.0    | 46.2                    | 5.00       | NR                   | mg/kg dry        | 87.0        | 89       | 75-125                 | 25  | 20               | R2              |
| Potassium                                                        | 9E15068     | 711     | 2310                    | 34.7       | NR                   | mg/kg dry        | 3090        | 103      | 75-125                 | 14  | 20               |                 |
| Selenium                                                         | 9E15068     | ND      | 46.2                    | 5.0        | NR                   | mg/kg dry        | 33.5        | 72       | 75-125                 | 14  | 20               | M1              |
| Silver                                                           | 9E15068     | 0.167   | 11.6                    | 5.00       | NR                   | mg/kg dry        | 9.79        | 83       | 75-125                 | 4   | 20               |                 |
| Sodium                                                           | 9E15068     | 377     | 2310                    | 162        | NR                   | mg/kg dry        | 2600        | 96       | 75-125                 | 3   | 20               |                 |
| Thallium                                                         | 9E15068     | ND      | 46.2                    | 6.9        | NR                   | mg/kg dry        | 37.4        | 81       | 75-125                 | 8   | 20               |                 |
| Vanadium                                                         | 9E15068     | 52.3    | 46.2                    | 5.00       | NR                   | mg/kg dry        | 82.9        | 66       | 75-125                 | 1   | 20               | M1              |
| Zinc                                                             | 9E15068     | 335     | 46.2                    | 5.0        | NR                   | mg/kg dry        | 385         | 107      | 75-125                 | 14  | 20               |                 |
| Reference Analyzed: 05/19/09 (9)                                 | E15068-SRN  | 11)     |                         |            |                      |                  |             |          |                        |     |                  |                 |
| Aluminum                                                         | 9E15068     |         | 10100                   | 10.0       | NR                   | mg/kg wet        | 8070        | 80       | 52.1-147.5             |     |                  |                 |
| Antimony                                                         | 9E15068     |         | 138                     | 15.0       | NR                   | mg/kg wet        | 80.7        | 58       | 0-233.3                |     |                  |                 |
| Arsenic                                                          | 9E15068     |         | 123                     | 2.0        | NR                   | mg/kg wet        | 111         | 90       | 82.9-117.1             |     |                  |                 |
| Barium                                                           | 9E15068     |         | 256                     | 0.500      | NR                   | mg/kg wet        | 233         | 91       | 80.5-119.5             |     |                  |                 |
| Beryllium                                                        | 9E15068     |         | 75. <del>9</del>        | 5.00       | NR                   | mg/kg wet        | 69.9        | 92       | 82.7-117.4             |     |                  |                 |
| Cadmium                                                          | 9E15068     |         | 258                     | 0.200      | NR                   | mg/kg wet        | 230         | 89       | 83.7-116.7             |     |                  |                 |
| Calcium                                                          | 9E15068     |         | 9830                    | 50.0       | NR                   | mg/kg wet        | 9140        | 93       | 81.2-119               |     |                  |                 |
| Chromium                                                         | 9E15068     |         | 138                     | 0.500      | NR                   | mg/kg wet        | 131         | 95       | 81.9-118.1             |     |                  |                 |
| Cobalt                                                           | 9E15068     |         | 216                     | 5.00       | NR                   | mg/kg wet        | 195         | 90       | 83.8-116.7             |     |                  |                 |
| Copper                                                           | 9E15068     |         | 122                     | 5.0        | NR                   | mg/kg wet        | 110         | 90       | 83.6-115.6             |     |                  |                 |
| Iron                                                             | 9E15068     |         | 17600                   | 10.0       | NR                   | mg/kg wet        | 14100       | 80       | 50.5-149.4             |     |                  |                 |
| Lead                                                             | 9E15068     |         | 136                     | 1.0        | NR                   | mg/kg wet        | 156         | 115      | 80.9-119.9             |     |                  |                 |
| Magnesium                                                        | 9E15068     |         | 4210                    | 20.0       | NR                   | mg/kg wet        | 3920        | 93       | 77.2-122.8             |     |                  |                 |
| Manganese                                                        | 9E15068     |         | 570                     | 10.0       | NR                   | mg/kg wet        | 519         | 91       | 82.5-117.5             |     |                  |                 |
| Nickel                                                           | 9E15068     |         | 111                     | 10.0       | NR                   | mg/kg wet        | 102<br>4170 | 92       | 83.8-117.1             |     |                  |                 |
| Potassium                                                        | 9E15068     |         | 4480                    | 30.0       | NR                   | mg/kg wet        | 4170        | 93       | 72.1-127.7             |     |                  |                 |
| Selenium                                                         | 9E15068     |         | 199                     | 10.0       | NR                   | mg/kg wet        | 183         | 92       | 79.9-119.6             |     |                  |                 |
| Silver                                                           | 9E15068     |         | 62.4                    | 10.0       | NR                   | mg/kg wet        | 61.2<br>841 | 98<br>07 | 66.2-133.7<br>70 2 130 |     |                  |                 |
| Sodium                                                           | 9E15068     |         | 869                     | 140        | NR                   | mg/kg wet        | 841         | 97       | 70.2-130               |     |                  |                 |
| Thallium                                                         | 9E15068     |         | 297                     | 10.0       | NR                   | mg/kg wet        | 281         | 94       | 81.1-118.9             |     |                  |                 |
| Vanadium                                                         | 9E15068     |         | 158                     | 10.0       | NR                   | mg/kg wet        | 141         | 89       | 79.7-120.3             |     |                  |                 |
| Zinc                                                             | 9E15068     |         | 314                     | 10.0       | NR                   | mg/kg wet        | 284         | 91       | 82.2-118.2             |     |                  |                 |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

| Turnkey/Benchmark<br>726 Exchange Street, Suite 624 |             |                 | Work Orc                | ler: RSE05 | 535                 |             |        |      | Receive<br>Reporte |    | 05/14/09<br>06/01/09 |    |
|-----------------------------------------------------|-------------|-----------------|-------------------------|------------|---------------------|-------------|--------|------|--------------------|----|----------------------|----|
| Buffalo, NY 14210                                   | _           | <u>-</u>        | Project: T<br>Project N |            | - TECUMS<br>TURN-00 | EH REDEVELO | OPMENT | SITE |                    |    |                      |    |
| Total Metals by SW 846 Series Me                    | ethods      |                 |                         |            |                     |             |        |      |                    |    |                      |    |
| Blank Analyzed: 05/22/09 (9E220                     | 34-BLK1)    |                 |                         |            |                     |             |        |      |                    |    |                      |    |
| Mercury                                             | 9E22034     |                 |                         | 0.0204     | NR                  | mg/kg wet   | ND     |      |                    |    |                      |    |
| Matrix Spike Analyzed: 05/22/09                     | (9E.22034-M | S1)             |                         |            |                     |             |        |      |                    |    |                      |    |
| QC Source Sample: RSE0535-02                        |             |                 |                         |            |                     |             |        |      |                    |    |                      |    |
| Mercury                                             | 9E22034     | 0.399           | 0.362                   | 0.0217     | NR                  | mg/kg dry   | 0.743  | 95   | 75-125             |    |                      |    |
| Matrix Spike Analyzed: 05/22/09                     | (9E22034-M  | S2)             |                         |            |                     |             |        |      |                    |    |                      |    |
| QC Source Sample: RSE0535-08                        |             |                 |                         |            |                     |             |        |      |                    |    |                      |    |
| Mercury                                             | 9E22034     | 0.155           | 0.384                   | 0.0230     | NR                  | mg/kg dry   | 0.542  | 101  | 75-125             |    |                      |    |
| Matrix Spike Dup Analyzed: 05/22                    | 2/09 (9E220 | 34-MSD          | 1)                      |            |                     |             |        |      |                    |    |                      |    |
| QC Source Sample: RSE0535-02                        |             |                 |                         |            |                     |             |        |      |                    |    |                      |    |
| Mercury                                             | 9E22034     | 0.399           | 0.360                   | 0.0216     | NR                  | mg/kg dry   | 0.851  | 126  | 75-125             | 14 | 20                   | M1 |
| Matrix Spike Dup Analyzed: 05/22                    | 2/09 (9E220 | 34- <b>MS</b> D | 2)                      |            |                     |             |        |      |                    |    |                      |    |
| QC Source Sample: RSE0535-08                        |             |                 |                         |            |                     |             |        |      |                    | _  |                      |    |
| Mercury                                             | 9E22034     | 0.155           | 0.377                   | 0.0226     | NR                  | mg/kg dry   | 0.528  | 99   | 75-125             | 3  | 20                   |    |
| Reference Analyzed: 05/22/09 (9)                    | E22034-SRN  | 11)             |                         |            |                     |             |        |      |                    |    |                      |    |
| Mercury                                             | 9E22034     |                 | 1.77                    | 0.106      | NR                  | mg/kg wet   | 1.77   | 100  | 68.4-132.2         |    |                      |    |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0535

Received: 05/14/09

Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                |             |        | LA    | BORAT |      | DATA      |        |     |        |           |           |
|--------------------------------|-------------|--------|-------|-------|------|-----------|--------|-----|--------|-----------|-----------|
|                                | Seq/        | Source | Spike |       |      |           |        | %   | % REC  | % RPD     |           |
| Analyte                        | Batch       | Result | Level | MRL   | MDL  | Units     | Result | REC | Limits | RPD Limit | Qualifier |
| Volatile Organic Compounds b   | Y EPA 8260B |        |       |       |      |           |        |     |        |           |           |
| Blank Analyzed: 05/19/09 (9E1  | 9088-BLK1)  |        |       |       |      |           |        |     |        |           |           |
| 1,1,1,2-Tetrachioroethane      | 9E19088     |        |       | 5.0   | 0.31 | ug/kg wet | ND     |     |        |           |           |
| 1,1,1-Trichloroethane          | 9E19088     |        |       | 5.0   | 0.36 | ug/kg wet | ND     |     |        |           |           |
| 1,1,2,2-Tetrachloroethane      | 9E19088     |        |       | 5.0   | 0.81 | ug/kg wet | ND     |     |        |           |           |
| 1,1,2-Trichloroethane          | 9E19088     |        |       | 5.0   | 0.25 | ug/kg wet | ND     |     |        |           |           |
| 1,1,2-Trichlorotrifluoroethane | 9E19088     |        |       | 5.0   | 0.53 | ug/kg wet | ND     |     |        |           |           |
| 1,1-Dichloroethane             | 9E19088     |        |       | 5.0   | 0.25 | ug/kg wet | ND     |     |        |           |           |
| 1,1-Dichloroethene             | 9E19088     |        |       | 5.0   | 0.61 | ug/kg wet | ND     |     |        |           |           |
| 1,1-Dichloropropene            | 9E19088     |        |       | 5.0   | 0.29 | ug/kg wet | ND     |     |        |           |           |
| 1,1-Dimethoxyethane            | 9E19088     |        |       | 25    | 2.0  | ug/kg wet | ND     |     |        |           |           |
| 1,2,3-Trichlorobenzene         | 9E19088     |        |       | 5.0   | 0.53 | ug/kg wet | ND     |     |        |           |           |
| 1.2.3-Trichloropropane         | 9E19088     |        |       | 5.0   | 0.51 | ug/kg wet | ND     |     |        |           |           |
| 1,2,3-Trimethylbenzene         | 9E19088     |        |       | 5.0   | 0.27 | ug/kg wet | ND     |     |        |           |           |
| 1,2,4-Trichlorobenzene         | 9E19088     |        |       | 5.0   | 0.30 | ug/kg wet | ND     |     |        |           |           |
| 1,2,4-Trimethylbenzene         | 9E19088     |        |       | 5.0   | 0.36 | ug/kg wet | ND     |     |        |           |           |
| 1,2-Dibromo-3-chloropropane    | 9E19088     |        |       | 5.0   | 1.0  | ug/kg wet | ND     |     |        |           |           |
| 1.2-Dibromoethane (EDB)        | 9E19088     |        |       | 5.0   | 0.19 | ug/kg wet | ND     |     |        |           |           |
| 1,2-Dichlorobenzene            | 9E19088     |        |       | 5.0   | 0.75 | ug/kg wet | ND     |     |        |           |           |
| 1,2-Dichloroethane             | 9E19088     |        |       | 5.0   | 0.25 | ug/kg wet | ND     |     |        |           |           |
| 1,2-Dichloroethene, Total      | 9E19088     |        |       | 10    | 2.6  | ug/kg wet | ND     |     |        |           |           |
| 1,2-Dichloropropane            | 9E19088     |        |       | 5.0   | 0.26 | ug/kg wet | ND     |     |        |           |           |
| 1,3,5-Trimethylbenzene         | 9E19088     |        |       | 5.0   | 0.32 | ug/kg wet | ND     |     |        |           |           |
| 1,3-Dichlorobenzene            | 9E19088     |        |       | 5.0   | 0.71 | ug/kg wet | ND     |     |        |           |           |
| 1,3-Dichloropropane            | 9E19088     |        |       | 5.0   | 0.30 | ug/kg wet | ND     |     |        |           |           |
| 1,4-Dichlorobenzene            | 9E19088     |        |       | 5.0   | 0.70 | ug/kg wet | ND     |     |        |           |           |
| 1,4-Dioxane                    | 9E19088     |        |       | 200   | 53   | ug/kg wet | ND     |     |        |           |           |
| 2,2-Dichloropropane            | 9E19088     |        |       | 5.0   | 0.34 | ug/kg wet | ND     |     |        |           |           |
| 2-Butanone (MEK)               | 9E19088     |        |       | 25    | 6.8  | ug/kg wet | ND     |     |        |           |           |
| 2-Chloroethyl vinyl ether      | 9E19088     |        |       | 25    | 1.6  | ug/kg wet | ND     |     |        |           |           |
| 2-Chlorotoluene                | 9E19088     |        |       | 5.0   | 0.78 | ug/kg wet | ND     |     |        |           |           |
| 2-Hexanone                     | 9E19088     |        |       | 25    | 1.7  | ug/kg wet | ND     |     |        |           |           |
| 3-Chlorotoluene                | 9E19088     |        |       | 5.0   | 0.29 | ug/kg wet | ND     |     |        |           |           |
| 4-Chlorotoluene                | 9E19088     |        |       | 5.0   | 0.75 | ug/kg wet | ND     |     |        |           |           |
| 4-Isopropyltoluene             | 9E19088     |        |       | 5.0   | 0.40 | ug/kg wet | ND     |     |        |           |           |
| 4-Methyl-2-pentanone (MIBK)    | 9E19088     |        |       | 25    | 1.6  | ug/kg wet | ND     |     |        |           |           |
| Acetone                        | 9E19088     |        |       | 25    | 1.1  | ug/kg wet | ND     |     |        |           |           |
| Acetonitrile                   | 9E19088     |        |       | 200   | 12   | ug/kg wet | ND     |     |        |           |           |
| Acrolein                       | 9E19088     |        |       | 100   | 5.9  | ug/kg wet | ND     |     |        |           |           |
| Acrylonitrile                  | 9E19088     |        |       | 100   | 2.1  | ug/kg wet | ND     |     |        |           |           |
| Allyl chloride                 | 9E19088     |        |       | 5.0   | 0.42 | ug/kg wet | ND     |     |        |           |           |
| Benzene                        | 9E19088     |        |       | 5.0   | 0.24 | ug/kg wet | ND     |     |        |           |           |
| Bromobenzene                   | 9E19088     |        |       | 5.0   | 0,78 | ug/kg wet | ND     |     |        |           |           |
| Bromochloromethane             | 9E19088     |        |       | 5.0   | 0.36 | ug/kg wet | ND     |     |        |           |           |
| Bromodichloromethane           | 9E19088     |        |       | 5.0   | 0.26 | ug/kg wet | ND     |     |        |           |           |
| Bromoform                      | 9E19088     |        |       | 5.0   | 0.46 | ug/kg wet | ND     |     |        |           |           |
| Bromomethane                   | 9E19088     |        |       | 5.0   | 0.46 | ug/kg wet | ND     |     |        |           |           |
| Diomomentario                  |             |        |       |       |      |           |        |     |        |           |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com



Turnkey/Benchmark

726 Exchange Street, Suite 624 Buffalo, NY 14210 Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                 | <u> </u>  |        | LA    | BORAT | ORY QC | DATA      |        |     |        |                  |           |
|---------------------------------|-----------|--------|-------|-------|--------|-----------|--------|-----|--------|------------------|-----------|
|                                 | Seq/      | Source | Spike |       |        |           |        | %   | % REC  | % RPD            |           |
| Analyte                         | Batch     | Result | Level | MRL   | MDL    | Units     | Result | REC | Limits | <b>RPD Limit</b> | Qualifier |
| Volatile Organic Compounds by   | EPA 8260B |        |       |       |        |           |        |     |        |                  |           |
| Blank Analyzed: 05/19/09 (9E190 | )88-BLK1) |        |       |       |        |           |        |     |        |                  |           |
| Carbon disulfide                | 9E19088   |        |       | 5.0   | 0.43   | ug/kg wet | ND     |     |        |                  |           |
| Carbon Tetrachloride            | 9E19088   |        |       | 5.0   | 0.18   | ug/kg wet | ND     |     |        |                  |           |
| Chlorobenzene                   | 9E19088   |        |       | 5.0   | 0.22   | ug/kg wet | ND     |     |        |                  |           |
| Chlorodibromomethane            | 9E19088   |        |       | 5.0   | 0.28   | ug/kg wet | ND     |     |        |                  |           |
| Chloroethane                    | 9E19088   |        |       | 5.0   | 0.81   | ug/kg wet | ND     |     |        |                  |           |
| Chloroform                      | 9E19088   |        |       | 5.0   | 0.31   | ug/kg wet | ND     |     |        |                  |           |
| Chloromethane                   | 9E19088   |        |       | 5.0   | 0.30   | ug/kg wet | ND     |     |        |                  |           |
| Chloroprene                     | 9E19088   |        |       | 5.0   | 0.33   | ug/kg wet | ND     |     |        |                  |           |
| cis-1,2-Dichloroethene          | 9E19088   |        |       | 5.0   | 0.25   | ug/kg wet | ND     |     |        |                  |           |
| cis-1,3-Dichloropropene         | 9E19088   |        |       | 5.0   | 0.29   | ug/kg wet | ND     |     |        |                  |           |
| Cyclohexane                     | 9E19088   |        |       | 5.0   | 0.23   | ug/kg wet | ND     |     |        |                  |           |
| Cyclohexanone                   | 9E19088   |        |       | 50    | 3.8    | ug/kg wet | ND     |     |        |                  |           |
| Dibromomethane                  | 9E19088   |        |       | 5.0   | 0.52   | ug/kg wet | ND     |     |        |                  |           |
| Dichlorodifluoromethane         | 9E19088   |        |       | 5.0   | 0.41   | ug/kg wet | ND     |     |        |                  |           |
| Dicyclopentadiene               | 9E19088   |        |       | 5.0   | 0.26   | ug/kg wet | ND     |     |        |                  |           |
| Diethyl ether                   | 9E19088   |        |       | 25    | 0.55   | ug/kg wet | ND     |     |        |                  |           |
| Epichlorohydrin                 | 9E19088   |        |       | 100   | 1.8    | ug/kg wet | ND     |     |        |                  |           |
| Ethyl Acetate                   | 9E19088   |        |       | 5.0   | 1.9    | ug/kg wet | ND     |     |        |                  |           |
| Ethyl Methacrylate              | 9E19088   |        |       | 5.0   | 0.27   | ug/kg wet | ND     |     |        |                  |           |
| Ethyl tert-Butyl Ether          | 9E19088   |        |       | 5.0   | 0.20   | ug/kg wet | ND     |     |        |                  |           |
| Ethylbenzene                    | 9E19088   |        |       | 5.0   | 0.35   | ug/kg wet | ND     |     |        |                  |           |
| Heptane                         | 9E19088   |        |       | 100   | 0.60   | ug/kg wet | ND     |     |        |                  |           |
| Hexachlorobutadiene             | 9E19088   |        |       | 5.0   | 0.59   | ug/kg wet | ND     |     |        |                  |           |
| Hexane                          | 9E19088   |        |       | 50    | 0.50   | ug/kg wet | ND     |     |        |                  |           |
| lodomethane                     | 9E19088   |        |       | 5.0   | 0.24   | ug/kg wet | ND     |     |        |                  |           |
| Isobutanol                      | 9E19088   |        |       | 200   | 8.8    | ug/kg wet | ND     |     |        |                  |           |
| Isopropyl ether                 | 9E19088   |        |       | 5.0   | 0.28   | ug/kg wet | ND     |     |        |                  |           |
| Isopropylbenzene                | 9E19088   |        |       | 5.0   | 0.33   | ug/kg wet | ND     |     |        |                  |           |
| Methacrylonitrile               | 9E19088   |        |       | 25    | 0.30   | ug/kg wet | ND     |     |        |                  |           |
| Methyl Acetate                  | 9E19088   |        |       | 5.0   | 0,27   | ug/kg wet | ND     |     |        |                  |           |
| Methyl Methacrylate             | 9E19088   |        |       | 5.0   | 0.54   | ug/kg wet | ND     |     |        |                  |           |
| Methyl tert-Butyl Ether         | 9E19088   |        |       | 5.0   | 0.49   | ug/kg wet | ND     |     |        |                  |           |
| Methylcyclohexane               | 9E19088   |        |       | 5.0   | 0.32   | ug/kg wet | ND     |     |        |                  |           |
| Methylene Chloride              | 9E19088   |        |       | 5.0   | 0.35   | ug/kg wet | ND     |     |        |                  |           |
| m-Xylene & p-Xylene             | 9E19088   |        |       | 10    | 0.84   | ug/kg wet | ND     |     |        |                  |           |
| Naphthalene                     | 9E19088   |        |       | 5.0   | 0.68   | ug/kg wet | ND     |     |        |                  |           |
| n-Butanol                       | 9E19088   |        |       | 200   | 12     | ug/kg wet | ND     |     |        |                  |           |
| n-Butylbenzene                  | 9E19088   |        |       | 5.0   | 0.43   | ug/kg wet | ND     |     |        |                  |           |
| n-Propylbenzene                 | 9E19088   |        |       | 5.0   | 0.38   | ug/kg wet | ND     |     |        |                  |           |
| o-Xylene                        | 9E19088   |        |       | 5.0   | 0.25   | ug/kg wet | ND     |     |        |                  |           |
| Propionitrile                   | 9E19088   |        |       | 50    | 2.6    | ug/kg wet | ND     |     |        |                  |           |
| Propylene Oxide                 | 9E19088   |        |       | 25    | 1.7    | ug/kg wet | ND     |     |        |                  |           |
| sec-Butylbenzene                | 9E19088   |        |       | 5.0   | 0.43   | ug/kg wet | ND     |     |        |                  |           |
| Styrene                         | 9E19088   |        |       | 5.0   | 0.25   | ug/kg wet | ND     |     |        |                  |           |
| t-Butanol                       | 9E19088   |        |       | 100   | 13     | ug/kg wet | ND     |     |        |                  |           |
| -Duditor                        |           |        |       |       |        | -         |        |     |        |                  |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58

Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

| Seg         Source<br>Batch         Source<br>Network         Source<br>MRL         MRL         MRL         MRL         Units         Result         REC         MRD         RPD         Linit         Qualities           Dialite Orsanic Compoundue LPC AS 2008          50         0.55         uping wet         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |          |        | LA    | BORAT | ORY QC | DATA      |        |     |                |           |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------|--------|-------|-------|--------|-----------|--------|-----|----------------|-----------|-----------|
| Analyse         Batin         Result         MPL         MDL         Units         Result         RPD         Limits         Qualifier           Yolnills Organic Company Legoss-LL(1)         Ter.Amplexit: 691909         65:0         0.15         up/kg wet         ND         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                  |                                  | Sea/     | Source | Spike |       |        |           |        | %   | % REC          |           |           |
| Yolatile Organic Compounds by EPA 82889           Blank Analyzei: 001900 (0E1908-8LK1)           Terk Anyl Meyl Eller         0E1908         5.0         0.52         upfie wit         ND           Terk Anyl Meyl Eller         0E1908         5.0         0.52         upfie wit         ND           Tertanzionalmene         0E1908         5.0         0.52         upfie wit         ND           Tertanzionalmene         0E1908         5.0         0.52         upfie wit         ND           Tertanzionalmene         0E1908         5.0         0.52         upfie wit         ND           Table.         0.052         upfie wit         ND         Tertanzionalmene         0E1908         5.0         0.42         upfie wit         ND           Trichtorofucorbatine         0E1908         5.0         1.6         upfie wit         ND         Trichtorofucorbatine         0E1908         2.0         Trichtorofucorbatine         0E1908         2.0         Trichtorofucorbatine         0                                                                                                                                                                                                                                   | Analyte                          | -        |        | Level | MRL   | MDL    | Units     | Result | REC | Limits         | RPD Limit | Qualifier |
| Tert Amy Methy Ether         9E10088         5.0         0.15         up/k wet         ND           tert Aug/Jenzenn         9E10088         5.0         0.57         up/k wet         ND           Tettarkultorethen         9E10088         5.0         0.57         up/k wet         ND           Tettarkultorethen         9E10088         5.0         0.52         up/k wet         ND           Tettarkultorethen         9E10088         5.0         0.52         up/k wet         ND           Train-1.5-Dickhorothene         9E10088         5.0         0.52         up/k wet         ND           Train-1.5-Dickhorothene         9E10088         5.0         1.5         up/k wet         ND           Train-1.5-Dickhorothene         9E10088         5.0         1.5         up/k wet         ND           Ving daniate         9E10088         2.0         0.24         up/k wet         ND            Ving daniate         9E10088         5.0         0.24         up/k wet         ND            Ving daniate         9E10088         5.0         0.24         up/k wet         ND         7.1-25           Sumparise Tokene df         Unit Ving daniate         9E10088         5.0                                                                                                                                                                                                                                                                                                            | Volatile Organic Compounds by I  | PA 8260B |        |       |       |        |           |        |     |                |           |           |
| Link-Aurylander Land         Stronge         Stronge <td>Blank Analyzed: 05/19/09 (9E190</td> <td>88-BLK1)</td> <td></td> | Blank Analyzed: 05/19/09 (9E190  | 88-BLK1) |        |       |       |        |           |        |     |                |           |           |
| bit         Bit         Bit         Bit         Bit         Bit         Bit           Terlandhorochan         9E10888         25         1.5         upfay wet         ND         Iterlandhorochan         Bit           Tarlandhorochan         9E10888         5.0         0.52         upfay wet         ND         Iterlandhorochan         Set         Set <td>Tert-Amyl Methyl Ether</td> <td>9E19088</td> <td></td> <td></td> <td>5.0</td> <td>0.15</td> <td>ug/kg wet</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                              | Tert-Amyl Methyl Ether           | 9E19088  |        |       | 5.0   | 0.15   | ug/kg wet | ND     |     |                |           |           |
| International biology         Spin of Spin Spin Spin Spin Spin Spin Spin Spin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tert-Butylbenzene                | 9E19088  |        |       | 5.0   | 0.52   | ug/kg wet | ND     |     |                |           |           |
| Left any activities       5:0       0.65       up/n werk       1.1       B.J         trans-1.3-Dickhorophane       9:51988       5:0       0.52       up/n werk       ND         trans-1.3-Dickhorophane       9:51988       5:0       0.52       up/n werk       ND         trichhorophane       9:51988       5:0       0.52       up/n werk       ND         Trichhorophane       9:51988       5:0       0.52       up/n werk       ND         Vingl clained       9:51988       5:0       1.6       up/n werk       ND         Vingl clained       9:51988       2:5       1.0       up/n werk       ND         Surraguéz:       1:50088       1:0       0.20       up/n werk       ND         Surraguéz:       1:27.125       1:0       0.44       up/n werk       ND         Surraguéz:       1:00       64-128       up/n werk       ND       77-125         LCS Analyzed:       0:51908       0:031       up/n werk       ND       77-125         LCS Analyzed:       0:519088       5:0       0.231       up/n werk       ND       77-121         1.1.27-trickonochane       9:19088       5:0       0.33       up/n werk       ND                                                                                                                                                                                                                                                                                                                                                                        | Tetrachloroethene                | 9E19088  |        |       | 5.0   | 0.67   | ug/kg wet |        |     |                |           |           |
| Tolene         Discos         Discos           Trans-12-Dicklorophone         B13088         5.0         0.22         uplay wet         ND           Trans-14-Dicklorophone         B13088         5.0         0.32         uplay wet         ND           Trans-14-Dicklorophone         B13088         5.0         0.35         uplay wet         ND           Trachacontuconshane         B15088         5.0         1.6         uplay wet         ND           Viryl costal         B15088         25         1.0         uplay wet         ND           Viryl costal         B15088         25         2.7         uplay wet         ND           2-Mitrophone         B15088         2.5         2.7         uplay wet         ND           2-Mitrophone         B15088         2.5         2.7         uplay wet         ND           2-Mitrophone         B15088         5.0         0.31         uplay wet         ND         74-127           2-Mitrophone         B15088         5.0         0.31         uplay wet         ND         77-125           1.1.2 -Testachonochane         B159088         5.0         0.53         uplay wet         ND         77-121           1.1.2 -Testachonochane <td>Tetrahydrofuran</td> <td>9E19088</td> <td></td> <td></td> <td>25</td> <td>1.5</td> <td>ug/kg wet</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                       | Tetrahydrofuran                  | 9E19088  |        |       | 25    | 1.5    | ug/kg wet | ND     |     |                |           |           |
| Trans 1-3-biolitoconspreame         9E 1908         5.0         0.24         up/kg wet         ND           trans 1-3-biolitors-2-buttere         9E 19088         25         1.4         up/kg wet         ND           Trichlorochnace         9E 19088         5.0         0.5         up/kg wet         ND           Trichlorochnace         9E 19088         5.0         0.6         up/kg wet         ND           Vingt alcohd         9E 19088         10         0.20         up/kg wet         ND           Zwingster:         1.20 knowte         ND         Vingt alcohd         ND           Zwingster:         1.20 knowte         ND         Vingt alcohd         Vingt alcohd           Sumgate:         1.20 knowte         ND         Vingt alcohd         Vingt alcohd           Sumgate:         1.20 knowte         117         72:126           Sumgate:         1.20 knowte         110         77:123           Sumgate:         1.20 knowte         ND         74:127           1.1,1.27 knowte         9E 19088         5.0         0.31         ug/kg wet         ND         74:127           1.1,2.2 knowte         9E 19088         5.0         0.25         ug/kg wet         ND         74:127                                                                                                                                                                                                                                                                                       | Toluene                          | 9E19088  |        |       | 5.0   | 0.85   | ug/kg wet | 1.1    |     |                |           | B,J       |
| Trans-14Dicklosophopene         9E 1908         25         1.4         up/kg wet         ND           Trichlosophopene         9E 1908         5.0         0.5         up/kg wet         ND           Trichlosophopene         9E 19088         25         1.0         up/kg wet         ND           Vingl actate         9E 19088         10         0.20         up/kg wet         ND           Zyhene, Ktal         9E 19088         25         2.7         Up/kg wet         ND           Zwingde:         2.0         Up/kg wet         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trans-1,2-Dichloroethene         | 9E19088  |        |       | 5.0   | 0.52   | ug/kg wet |        |     |                |           |           |
| Trahl-Aublino-2-Duble         Still         ug/kg wet         ND           Trichtorodhuoromethane         9E19088         5.0         1.6         ug/kg wet         ND           Vinyl accidate         9E19088         10         0.20         ug/kg wet         ND           Vinyl chinde         9E19088         10         0.24         ug/kg wet         ND           Zytense, total         9E19088         10         0.24         ug/kg wet         ND           Surrogate:         1.17         72-126         ug/kg wet         ND         7-126           Surrogate:         1.17         72-126         ug/kg wet         110         7-7-127           LCS Analyzed:         05/19/09 (9E1908-851)         110         7-7-121         1.12-2-Tetrachoroethane         9E19088         5.0         0.31         ug/kg wet         ND         7-7-121           1.1.2-Tetrachoroethane         9E19088         5.0         0.31         ug/kg wet         ND         7-7-121           1.1.2-Tetrachoroethane         9E19088         5.0         0.53         ug/kg wet         ND         7-7-121           1.1.2-Tetrachoroethane         9E19088         5.0         0.25         ug/kg wet         ND         6-140                                                                                                                                                                                                                                                                                | trans-1,3-Dichloropropene        | 9E19088  |        |       | 5.0   | 0.24   | ug/kg wet | ND     |     |                |           |           |
| Inchronomethane         9E 19026         5.0         1.6         ug/kg wet         ND           Vinjt chloride         9E 19026         25         1.0         ug/kg wet         ND           Vinjt chloride         9E 19026         10         0.20         ug/kg wet         ND           Vinjt chloride         9E 19026         27         ug/kg wet         ND           2-Nitopopane         9E 19026         25         2.7         ug/kg wet         ND           Surrogate:         1.00         64-126         ug/kg wet         117         72-126           Surrogate:         1.00         9E 19026         5.0         0.31         ug/kg wet         ND         74-127           1.1.1.2-Tretrachionethane         9E 19026         5.0         0.31         ug/kg wet         ND         74-127           1.1.2-Tretrachionethane         9E 19026         5.0         0.31         ug/kg wet         ND         74-127           1.1.2-Tretrachionethane         9E 19026         5.0         0.31         ug/kg wet         ND         74-127           1.1.2-Tretrachionethane         9E 19026         5.0         0.25         ug/kg wet         ND         78-122           1.2-Tretrachionethane         9E                                                                                                                                                                                                                                                                                 | trans-1,4-Dichloro-2-butene      | 9E19088  |        |       | 25    | 1.4    | ug/kg wet |        |     |                |           |           |
| Inclinational optimetation       9E 1008       25       1.0       ug/kg wet       ND         Vinyl actata       9E 19088       10       0.24       ug/kg wet       ND         Xytanes, total       9E 19088       25       2.7       ug/kg wet       ND         Surrogate: 1.2-Dichloracithane-d4       ug/kg wet       100       64-126         Surrogate: 1.2-Dichloracithane-d4       ug/kg wet       110       77-125         LCS Analyzed: 05/19/09 (9E19088-BS1)       ug/kg wet       ND       74-127         1.1,1-Trichkoroethane       9E 19088       5.0       0.31       ug/kg wet       ND       74-127         1.1,2.2-Tetrachoroethane       9E 19088       5.0       0.36       ug/kg wet       ND       77-121         1.1,2.2-Trichkoroethane       9E 19088       5.0       0.25       ug/kg wet       ND       78-122         1.1,2.2-Trichkoroethane       9E 19088       5.0       0.25       ug/kg wet       ND       78-128         1.1,2.2-Trichkoroethane       9E 19088       5.0       0.25       ug/kg wet       ND       77-128         1.2.3-Trichkoroethane       9E 19088       5.0       0.25       ug/kg wet       ND       78-128         1.3.2-Trichkoroethane                                                                                                                                                                                                                                                                                                                 | Trichloroethene                  | 9E19088  |        |       | 5.0   | 0.35   | ug/kg wet | ND     |     |                |           |           |
| Why because         Sections         10         0.20         ug/kg wet         ND           Xylores, total         9E19088         25         2.7         Ug/kg wet         ND           2.Nitropropane         9E19088         2.5         2.7         Ug/kg wet         ND           Surrogste:         1.2.Dic/horcethane-d4         ug/kg wet         100         64-125           Surrogste:         1.2.Dic/horcethane-d8         ug/kg wet         110         7.1-125           CLCS Analyzed:         Cold 1000 (9E19088-BS1)         110         7.1-125           1.1.2.Tetrachtoroethane         9E19088         5.0         0.31         ug/kg wet         ND         74-127           1.1.2.Tetrachtoroethane         9E19088         5.0         0.31         ug/kg wet         ND         78-122           1.1.2.Tetrachtoroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-122           1.1.2.Tetrachtoroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-122           1.2.Tachtoroethane         9E19088         5.0         0.53         ug/kg wet         ND         66-140           1.2.Tachtoroethane         9E19088         5.0         0.30                                                                                                                                                                                                                                                              | Trichlorofluoromethane           | 9E19088  |        |       | 5.0   | 1.6    | ug/kg wet |        |     |                |           |           |
| Viny Include         Spinola         D1         0.84         ug/kg wet         ND           2.Nitropropane         9E19088         25         2.7         ug/kg wet         ND           Surrogat:         1.2.Dichloroethane-d4         ug/kg wet         ND         64-126           Surrogat:         7.2.Dichloroethane-d4         ug/kg wet         110         64-126           Surrogat:         Tolken-d8         ug/kg wet         110         71-125           LCS Analyzet:         05/1908         5.0         0.31         ug/kg wet         ND         74-127           1,1.1.2.7-Tetrachloroethane         9E19088         5.0         0.38         ug/kg wet         ND         74-127           1,1.2.7-Tichloroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-122           1,1.2.7-Tichloroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-122           1,1.2.7-Tichloroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-122           1,1.2.7-Tichloroethane         9E19088         5.0         0.53         ug/kg wet         ND         73-128           1,2.3-Tichloroeppane         9E19088                                                                                                                                                                                                                                                                       | Vinyl acetate                    | 9E19088  |        |       | 25    | 1.0    | ug/kg wet | ND     |     |                |           |           |
| Ayleres, total         DE1908         25         2.7         ug/kg wet         ND           Surrogate: 1,2:Dichloroethane-04         ug/kg wet         100         64-125           Surrogate: 1,2:Dichloroethane-04         ug/kg wet         117         72-125           Surrogate: 7:Divene-08         ug/kg wet         117         72-126           LCS Analyzet: 505/19/09 (9E19088-BS1)         1         1         1.1:2-Tetrachloroethane         9E19088         5.0         0.38         ug/kg wet         ND         74-127           1,1:1:2-Tetrachloroethane         9E19088         5.0         0.38         ug/kg wet         ND         74-127           1,1:2-Tetrachloroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-122           1,1:2-Tetrachloroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-122           1,2:Trichloroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-122           1,2:Trichloroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-122           1,2:Trichloroethane         9E19088         5.0         0.53         ug/kg wet         ND         78-128                                                                                                                                                                                                                                            | Vinyl chloride                   | 9E19088  |        |       | 10    | 0.20   | ug/kg wet |        |     |                |           |           |
| 2-https://paper         United         United           Surroget:         1.2-Dichloroethane-c/4         ug/kg wet         100         64-126           Surroget:         Toluene-c/8         ug/kg wet         117         72-128           Surroget:         Toluene-c/8         ug/kg wet         110         77-125           LCS Analyzed:         05/19/09         9E19088         5.0         0.31         ug/kg wet         ND         77-125           1.1.1.1-Trichkhoroethane         9E19088         5.0         0.36         ug/kg wet         ND         77-121           1.1.2-Trichkhoroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-122           1.1.2-Trichkhoroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-122           1.2-Trichkhoroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-128           1.2-Trichkhoroethane         9E19088         5.0         0.53         ug/kg wet         ND         78-128           1.2-Trichkhoroethane         9E19088         5.0         0.53         ug/kg wet         ND         78-128           1.2-Trichkhoroethane         9E19088         5.0                                                                                                                                                                                                                                                                    | •                                | 9E19088  |        |       | 10    | 0.84   | ug/kg wet | ND     |     |                |           |           |
| Surrogie: 1, 2007, 1000         172-126           Surrogie: 7, 1000, 1000         171-125           Surrogie: 7, 1000, 1000         11, 12, 21 Farachiorobethane         9E 19088         5.0         0.31         ug/kg wet         ND         77-121           1,1,1,2,21 Farachiorobethane         9E 19088         5.0         0.36         ug/kg wet         ND         77-121           1,1,2,2-Tetrachiorobethane         9E 19088         5.0         0.51         ug/kg wet         ND         60-140           1,1,2-Trichiorobethane         9E 19088         5.0         0.25         ug/kg wet         ND         78-122           1,1-Dichiorobethane         9E 19088         5.0         0.25         ug/kg wet         ND         79-126           1,1-Dichiorobethane         9E 19088         5.0         0.25         ug/kg wet         ND         79-126           1,1-Dichiorobethane         9E 19088         5.0         0.29         ug/kg wet         ND         72-128           1,2-Trichiorobethane         9E 19088         5.0         0.53         ug/kg wet         ND         74-120           1,2-Strichiorobenzene         9E 19088         5.0         0.51         ug/kg wet         ND         74-120           1,2-Strichioropop                                                                                                                                                                                                                                            | 2-Nitropropane                   | 9E19088  |        |       | 25    | 2.7    | ug/kg wet | ND     |     |                |           |           |
| Surroge:         Function         Ug/kg wet         1/0         7/1-25           LCS Analyzed:         05/19/09 (9E19088-BS1)         ug/kg wet         ND         7/4-127           1,1,1-Trickloroethane         9E19088         5.0         0.31         ug/kg wet         ND         7/4-127           1,1,2-Tetrachloroethane         9E19088         5.0         0.81         ug/kg wet         ND         7/4-127           1,1,2-Tetrachloroethane         9E19088         5.0         0.25         ug/kg wet         ND         60-140           1,1,2-Tetrachloroethane         9E19088         5.0         0.25         ug/kg wet         ND         79-128           1,1-Dichloroethane         9E19088         5.0         0.25         ug/kg wet         ND         79-128           1,1-Dichloroptopene         9E19088         5.0         0.25         ug/kg wet         ND         73-128           1,1-Dichloroptopene         9E19088         5.0         0.25         ug/kg wet         ND         60-140           1,2-Tetrach/vettane         9E19088         5.0         0.51         ug/kg wet         ND         63-153           1,2-Dichloroptopane         9E19088         5.0         0.50         ug/kg wet         ND                                                                                                                                                                                                                                                               | Surrogate: 1,2-Dichloroethane-d4 |          |        |       |       |        |           |        | 100 |                |           |           |
| Submet         Submet           LCS Analyzed: 10/49/09 (9E19088-DS1)         1,1,2-Tertachkoroethane         9E19088         5.0         0.31         ug/kg wet         ND         74-127           1,1,1-Trichloroethane         9E19088         5.0         0.36         ug/kg wet         ND         74-127           1,1,2-Tertachkoroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-122           1,1,2-Trichloroethane         9E19088         5.0         0.25         ug/kg wet         ND         78-122           1,1-Dichloroethane         9E19088         5.0         0.25         ug/kg wet         ND         79-126           1,1-Dichloroethane         9E19088         5.0         0.29         ug/kg wet         ND         72-128           1,1-Dichloropropene         9E19088         5.0         0.53         ug/kg wet         ND         73-128           1,2-Trichlorobenzene         9E19088         5.0         0.30         ug/kg wet         ND         74-120           1,2-Ar-Triknobenzene         9E19088         5.0         0.30         ug/kg wet         ND         74-120           1,2-Ar-Triknobenzene         9E19088         5.0         0.30         ug/kg wet         ND                                                                                                                                                                                                                                                      | Surrogate: 4-Bromofluorobenzene  |          |        |       |       |        | ug/kg wet |        | 117 |                |           |           |
| 1.1.1.2 Tetrachloroethane       9E19088       5.0       0.31       ug/kg wet       ND       74-127         1.1.1 Trichloroethane       9E19088       5.0       0.36       ug/kg wet       ND       80-120         1.1.2 Trichloroethane       9E19088       5.0       0.53       ug/kg wet       ND       60-140         1.1.2 Trichloroethane       9E19088       5.0       0.53       ug/kg wet       ND       60-140         1.1.2 Trichloroethane       9E19088       5.0       0.53       ug/kg wet       ND       60-140         1.1.2 Trichloroethane       9E19088       5.0       0.25       ug/kg wet       ND       79-128         1.1.2 Trichloroethane       9E19088       5.0       0.25       ug/kg wet       ND       72-128         1.1.Dichloroethane       9E19088       5.0       0.53       ug/kg wet       ND       73-128         1.2.3 Trichloropenen       9E19088       5.0       0.53       ug/kg wet       ND       74-120         1.2.3 Trichlorobenzene       9E19088       5.0       0.53       ug/kg wet       ND       74-120         1.2.4 Trimetrylbenzene       9E19088       5.0       0.53       ug/kg wet       ND       74-120                                                                                                                                                                                                                                                                                                                                              | Surrogate: Toluene-d8            |          |        |       |       |        | ug/kg wet |        | 110 | 71-125         |           |           |
| 1.1.1.2Tertachloroethane       9E 19088       5.0       0.36       ug/kg wet       ND       77-121         1.1.2Tertachloroethane       9E 19088       5.0       0.36       ug/kg wet       ND       80-120         1.1.2Tertachloroethane       9E 19088       5.0       0.25       ug/kg wet       ND       60-140         1.1.2Tertachloroethane       9E 19088       5.0       0.25       ug/kg wet       ND       60-140         1.1.2Tertachloroethane       9E 19088       5.0       0.25       ug/kg wet       ND       78-122         1.1.0.Choroethane       9E 19088       5.0       0.25       ug/kg wet       ND       78-126         1.1.2Tertachloroethane       9E 19088       5.0       0.25       ug/kg wet       ND       78-126         1.1.Dichloropropene       9E 19088       5.0       0.51       ug/kg wet       ND       66-120         1.2.3-Trichlorobenzene       9E 19088       5.0       0.51       ug/kg wet       ND       64-120         1.2.4-Trichlorobenzene       9E 19088       5.0       0.36       ug/kg wet       ND       73-128         1.2-Dichloropropane       9E 19088       5.0       0.19       ug/kg wet       ND       74-120 </td <td>LCS Analyzed: 05/19/09 (9E1908</td> <td>8-BS1)</td> <td></td>                                                                                                                                                                  | LCS Analyzed: 05/19/09 (9E1908   | 8-BS1)   |        |       |       |        |           |        |     |                |           |           |
| 1,1,1-Trichloroethane       9E 19080       5.0       0.81       ug/kg wet       ND       80-120         1,1,2-Trichloroethane       9E 19088       5.0       0.25       ug/kg wet       ND       78-122         1,1,2-Trichloroethane       9E 19088       5.0       0.25       ug/kg wet       ND       78-122         1,1,2-Trichloroethane       9E 19088       5.0       0.25       ug/kg wet       ND       78-126         1,1-Dichloroethane       9E 19088       5.0       0.25       ug/kg wet       ND       78-126         1,1-Dichloroethane       9E 19088       5.0       0.29       ug/kg wet       ND       72-128         1,1-Dichloroethane       9E 19088       5.0       0.53       ug/kg wet       ND       73-128         1,2-A-Trichlorobenzene       9E 19088       5.0       0.36       ug/kg wet       ND       64-120         1,2-A-Trinethylbenzene       9E 19088       5.0       0.36       ug/kg wet       ND       74-120         1,2-Dichloroethane       9E 19088       5.0       0.30       ug/kg wet       ND       74-120         1,2-Dichloroethane       9E 19088       5.0       0.10       ug/kg wet       ND       75-120         1,2-                                                                                                                                                                                                                                                                                                                                     | 1,1,1,2-Tetrachloroethane        | 9E19088  |        |       |       |        |           |        |     |                |           |           |
| 1,1,2,2-Trichloroethane       9E 19088       5.0       0.25       ug/kg wet       ND       78-122         1,1,2-Trichloroethane       9E 19088       5.0       0.25       ug/kg wet       ND       60-140         1,1,2-Trichloroethane       9E 19088       5.0       0.25       ug/kg wet       ND       79-126         1,1-Dichloroethane       9E 19088       5.0       0.25       ug/kg wet       ND       72-128         1,1-Dichloroethane       9E 19088       5.0       0.29       ug/kg wet       ND       72-128         1,2,3-Trichloroethane       9E 19088       5.0       0.25       ug/kg wet       ND       60-120         1,2,3-Trichloroethane       9E 19088       5.0       0.30       ug/kg wet       ND       64-120         1,2,4-Trichloroethane       9E 19088       5.0       0.30       ug/kg wet       ND       63-124         1,2-Dichloroethane       9E 19088       5.0       0.36       ug/kg wet       ND       63-124         1,2-Dichloroethane       9E 19088       5.0       0.19       ug/kg wet       ND       78-120         1,2-Dichloroethane       9E 19088       5.0       0.75       ug/kg wet       ND       75-120         1,2-                                                                                                                                                                                                                                                                                                                                     | 1,1,1-Trichloroethane            | 9E19088  |        |       |       |        |           |        |     |                |           |           |
| 1.1.2-Trichlorothillucroethane       9E19088       5.0       0.53       ug/kg wet       ND       60-140         1.1.2-Trichlorothillucroethane       9E19088       5.0       0.25       ug/kg wet       ND       79-126         1.1-Dichloroethane       9E19088       50       N/A       NR       ug/kg wet       ND       79-126         1.1-Dichloroptropene       9E19088       50       N/A       NR       ug/kg wet       ND       60-120         1.2.3-Trichloroptropane       9E19088       5.0       0.51       ug/kg wet       ND       73-128         1.2.4-Trichloroptropane       9E19088       5.0       0.30       ug/kg wet       ND       64-120         1.2.4-Trichloroptropane       9E19088       5.0       0.30       ug/kg wet       ND       74-128         1.2.0-Dichoropropane       9E19088       5.0       0.30       ug/kg wet       ND       74-120         1.2.4-Trimethylbenzene       9E19088       5.0       0.10       ug/kg wet       ND       75-120         1.2-Dichloropropane       9E19088       5.0       0.75       ug/kg wet       ND       75-120         1.2-Dichlorophane       9E19088       5.0       0.26       ug/kg wet       ND       <                                                                                                                                                                                                                                                                                                                         | 1,1,2,2-Tetrachloroethane        | 9E19088  |        |       |       |        |           |        |     |                |           |           |
| 1.1.2-Trichloroterhane       9E19088       50       0.25       ug/kg wet       ND       79-126         1.1-Dichloroterhane       9E19088       50       N/A       NR       ug/kg wet       ND       72-128         1.1-Dichloroterhane       9E19088       50       0.29       ug/kg wet       ND       66-120         1.2.3-Trichlorobenzene       9E19088       50       0.53       ug/kg wet       ND       60-120         1.2.3-Trichlorobenzene       9E19088       50       0.51       ug/kg wet       ND       64-120         1.2.4-Trichlorobenzene       9E19088       5.0       0.30       ug/kg wet       ND       64-120         1.2.4-Trichlorobenzene       9E19088       5.0       0.36       ug/kg wet       ND       74-120         1.2-Dicromos-S-chloropropane       9E19088       5.0       0.19       ug/kg wet       ND       78-120         1.2-Dicromos-S-chloropropane       9E19088       5.0       0.75       ug/kg wet       ND       75-120         1.2-Dicromosthane       9E19088       5.0       0.25       ug/kg wet       ND       75-120         1.2-Dichlorobenzene       9E19088       5.0       0.26       ug/kg wet       ND       74-120                                                                                                                                                                                                                                                                                                                                    | 1,1,2-Trichloroethane            | 9E19088  |        |       |       |        |           |        |     |                |           |           |
| 1.1-Dichloroethane       9E 1908       50       NA       NR       ug/kg wet       66.6       133       65-153         1.1-Dichloropopene       9E 19088       50       0.29       ug/kg wet       ND       72-128         1.2.3-Trichloropopane       9E 19088       5.0       0.53       ug/kg wet       ND       64.120         1.2.4-Trichloropopane       9E 19088       5.0       0.51       ug/kg wet       ND       73-128         1.2.4-Trichloropopane       9E 19088       5.0       0.30       ug/kg wet       ND       74-120         1.2.4-Trichloropopane       9E 19088       5.0       0.36       ug/kg wet       ND       74-120         1.2Dibromo-schloropopane       9E 19088       5.0       0.19       ug/kg wet       ND       75-120         1.2-Dibromo-schlaropopane       9E 19088       5.0       0.75       ug/kg wet       ND       75-120         1.2-Dibromo-schlaropopane       9E 19088       5.0       0.26       ug/kg wet       ND       75-122         1.2-Dibromo-schlaropopane       9E 19088       5.0       0.26       ug/kg wet       ND       75-124         1.2-Dichloropopane       9E 19088       5.0       0.32       ug/kg wet       ND                                                                                                                                                                                                                                                                                                                            | 1,1,2-Trichlorotrifluoroethane   | 9E19088  |        |       |       |        |           |        |     |                |           |           |
| 1.1-Dichloroethene       9E.19088       5.0       0.29       ug/kg wet       ND       72-128         1.2.3-Trichloroptopane       9E19088       5.0       0.53       ug/kg wet       ND       60-120         1.2.3-Trichloroptopane       9E19088       5.0       0.51       ug/kg wet       ND       64-120         1.2.4-Trichloroptopane       9E19088       5.0       0.30       ug/kg wet       ND       64-120         1.2.4-Trichloroptopane       9E19088       5.0       0.36       ug/kg wet       ND       64-120         1.2.4-Trimethylbenzene       9E19088       5.0       0.36       ug/kg wet       ND       78-120         1.2-Dibromo-3-chloropropane       9E19088       5.0       0.19       ug/kg wet       ND       78-120         1.2-Dichlorobenzene       9E19088       5.0       0.75       ug/kg wet       ND       75-120         1.2-Dichlorobenzene       9E19088       5.0       0.26       ug/kg wet       ND       75-120         1.2-Dichloroethene, Total       9E19088       5.0       0.26       ug/kg wet       ND       75-124         1.3-Dichloroptenzene       9E19088       5.0       0.32       ug/kg wet       ND       74-120                                                                                                                                                                                                                                                                                                                                        | 1,1-Dichloroethane               | 9E19088  |        |       |       |        |           |        |     |                |           |           |
| 1.1-Dichloropropene       9E19088       5.0       0.53       ug/kg wet       ND       60-120         1.2,3-Trichloropropane       9E19088       5.0       0.51       ug/kg wet       ND       64-120         1.2,4-Trichloropropane       9E19088       5.0       0.30       ug/kg wet       ND       64-120         1.2,4-Trichloropropane       9E19088       5.0       0.36       ug/kg wet       ND       64-120         1.2-Litrimethylbenzene       9E19088       5.0       0.36       ug/kg wet       ND       63-124         1.2-Dibromo-3-chloropropane       9E19088       5.0       0.19       ug/kg wet       ND       78-120         1.2-Dibromo-s-chloropropane       9E19088       5.0       0.75       ug/kg wet       ND       78-120         1.2-Dichlorobenzene       9E19088       5.0       0.25       ug/kg wet       ND       75-120         1.2-Dichlorophane       9E19088       5.0       0.26       ug/kg wet       ND       75-124         1.2-Dichlorophenzene       9E19088       5.0       0.32       ug/kg wet       ND       75-124         1.3-Dichlorophenzene       9E19088       5.0       0.32       ug/kg wet       ND       74-120                                                                                                                                                                                                                                                                                                                                          | 1,1-Dichloroethene               | 9E19088  |        | 50    |       |        |           |        | 133 |                |           |           |
| 1.2.3-Trichlorobenzene       9E19088       5.0       0.51       ug/kg wet       ND       73-128         1.2.3-Trichloropropane       9E19088       5.0       0.30       ug/kg wet       ND       64-120         1.2.4-Trichloropropane       9E19088       5.0       0.36       ug/kg wet       ND       74-120         1.2.4-Trimehylbenzene       9E19088       5.0       1.0       ug/kg wet       ND       63-124         1.2-Dibromo-3-chloropropane       9E19088       5.0       0.19       ug/kg wet       ND       78-120         1.2-Dibromo-3-chloropropane       9E19088       5.0       0.75       ug/kg wet       ND       75-120         1.2-Dichlorobenzene       9E19088       5.0       0.25       ug/kg wet       ND       75-120         1.2-Dichloropthene, Total       9E19088       5.0       0.26       ug/kg wet       ND       75-124         1.3-Dichloroptenzene       9E19088       5.0       0.32       ug/kg wet       ND       74-120         1.3-Dichloroptenzene       9E19088       5.0       0.32       ug/kg wet       ND       74-120         1.3-Dichloroptenzene       9E19088       5.0       0.30       ug/kg wet       ND       74-120                                                                                                                                                                                                                                                                                                                                   | 1,1-Dichloropropene              | 9E19088  |        |       |       |        |           |        |     |                |           |           |
| 1.2.3-Trichloropropane       9E 19086       5.0       0.30       ug/kg wet       ND       64-120         1.2.4-Trichlorobenzene       9E 19088       5.0       0.36       ug/kg wet       ND       63-124         1.2.4-Trinethylbenzene       9E 19088       5.0       0.10       ug/kg wet       ND       63-124         1.2-Dibromo-3-chloropropane       9E 19088       5.0       0.19       ug/kg wet       ND       78-120         1.2-Dichlorobenzene       9E 19088       5.0       0.75       ug/kg wet       ND       75-120         1.2-Dichlorobenzene       9E 19088       5.0       0.25       ug/kg wet       ND       77-122         1.2-Dichloropthane       9E 19088       5.0       0.26       ug/kg wet       ND       75-120         1.2-Dichloroptopane       9E 19088       5.0       0.26       ug/kg wet       ND       75-124         1.3-Dichloroptopane       9E 19088       5.0       0.32       ug/kg wet       ND       74-120         1.3-Dichloroptopane       9E 19088       5.0       0.30       ug/kg wet       ND       74-120         1.3-Dichloroptopane       9E 19088       5.0       0.71       ug/kg wet       ND       73-120         <                                                                                                                                                                                                                                                                                                                                 | 1,2,3-Trichlorobenzene           | 9E19088  |        |       |       |        |           |        |     |                |           |           |
| 1.2.4-Trichlorobenzene       9E 19088       5.0       0.36       ug/kg wet       ND       74-120         1.2.4-Trimethylbenzene       9E 19088       5.0       0.10       ug/kg wet       ND       63-124         1.2-Dibromo-3-chloropropane       9E 19088       5.0       0.19       ug/kg wet       ND       78-120         1.2-Dibromoethane (EDB)       9E 19088       5.0       0.75       ug/kg wet       ND       75-120         1.2-Dichlorobenzene       9E 19088       5.0       0.25       ug/kg wet       ND       77-122         1.2-Dichloroethane       9E 19088       5.0       0.26       ug/kg wet       ND       75-120         1.2-Dichloroethane, Total       9E 19088       5.0       0.26       ug/kg wet       ND       75-124         1.2-Dichloropropane       9E 19088       5.0       0.32       ug/kg wet       ND       75-124         1.3-Dichloropropane       9E 19088       5.0       0.32       ug/kg wet       ND       74-120         1.3-Dichloropropane       9E 19088       5.0       0.71       ug/kg wet       ND       74-120         1.3-Dichloropropane       9E 19088       5.0       0.70       ug/kg wet       ND       73-120                                                                                                                                                                                                                                                                                                                                    | 1,2,3-Trichloropropane           | 9E19088  |        |       |       |        |           |        |     |                |           |           |
| 1,2,4-Trimetrylbenzene       9E10080       5.0       1.0       ug/kg wet       ND       63-124         1,2-Dibromo-3-chloropropane       9E19088       5.0       0.19       ug/kg wet       ND       78-120         1,2-Dibromoethane (EDB)       9E19088       5.0       0.75       ug/kg wet       ND       75-120         1,2-Dichlorobenzene       9E19088       5.0       0.25       ug/kg wet       ND       77-122         1,2-Dichloroethane       9E19088       5.0       0.26       ug/kg wet       ND       72-120         1,2-Dichloroethane       9E19088       10       2.6       ug/kg wet       ND       72-122         1,2-Dichloroethane       9E19088       5.0       0.26       ug/kg wet       ND       72-124         1,3-Dichloropropane       9E19088       5.0       0.32       ug/kg wet       ND       74-120         1,3-Dichloropropane       9E19088       5.0       0.71       ug/kg wet       ND       72-127         1,4-Dichloropropane       9E19088       5.0       0.70       ug/kg wet       ND       73-120         2-Butanone (MEK)       9E19088       25       6.8       ug/kg wet       ND       70-134         2-Hexanone                                                                                                                                                                                                                                                                                                                                               | 1,2,4-Trichlorobenzene           |          |        |       |       |        |           |        |     |                |           |           |
| 1.2-Dibromo-3-chioropropane       9E19088       5.0       0.19       ug/kg wet       ND       78-120         1.2-Dibromoethane (EDB)       9E19088       5.0       0.75       ug/kg wet       ND       75-120         1.2-Dichlorobenzene       9E19088       5.0       0.25       ug/kg wet       ND       77-122         1.2-Dichloroethane       9E19088       10       2.6       ug/kg wet       ND       82-120         1.2-Dichloroethene, Total       9E19088       5.0       0.26       ug/kg wet       ND       75-124         1.2-Dichloropropane       9E19088       5.0       0.26       ug/kg wet       ND       74-120         1.3-Dichloropropane       9E19088       5.0       0.32       ug/kg wet       ND       74-120         1.3-Dichloropropane       9E19088       5.0       0.71       ug/kg wet       ND       74-120         1.3-Dichloropropane       9E19088       5.0       0.70       ug/kg wet       ND       73-120         1.4-Dichlorobenzene       9E19088       5.0       0.70       ug/kg wet       ND       73-120         2-Butanone (MEK)       9E19088       25       6.8       ug/kg wet       ND       74-120         2-Hexanone <td>1,2,4-Trimethylbenzene</td> <td>9E19088</td> <td></td>                                                                                                                                                                                    | 1,2,4-Trimethylbenzene           | 9E19088  |        |       |       |        |           |        |     |                |           |           |
| 1,2-Dibromoethane (EDB)       9E19080       5.0       0.75       ug/kg wet       ND       75-120         1,2-Dichlorobenzene       9E19088       5.0       0.25       ug/kg wet       ND       77-122         1,2-Dichloroethane       9E19088       10       2.6       ug/kg wet       ND       82-120         1,2-Dichloroethene, Total       9E19088       10       2.6       ug/kg wet       ND       75-124         1,2-Dichloropropane       9E19088       5.0       0.26       ug/kg wet       ND       74-120         1,3-5-Trimethylbenzene       9E19088       5.0       0.32       ug/kg wet       ND       74-120         1,3-Dichlorobenzene       9E19088       5.0       0.71       ug/kg wet       ND       72-127         1,3-Dichloropropane       9E19088       5.0       0.70       ug/kg wet       ND       73-120         1,3-Dichloropropane       9E19088       5.0       0.70       ug/kg wet       ND       73-120         1,4-Dichlorobenzene       9E19088       25       6.8       ug/kg wet       ND       70-134         2-Hexanone       9E19088       25       1.7       ug/kg wet       ND       59-130         4-Isopropyltoluene                                                                                                                                                                                                                                                                                                                                                | 1,2-Dibromo-3-chloropropane      |          |        |       |       |        |           |        |     |                |           |           |
| 1,2-Dichlorobenzene       9E19080       5.0       0.25       ug/kg wet       ND       77-122         1,2-Dichlorobethane       9E19088       10       2.6       ug/kg wet       ND       82-120         1,2-Dichlorobethene, Total       9E19088       5.0       0.26       ug/kg wet       ND       75-124         1,2-Dichloropropane       9E19088       5.0       0.26       ug/kg wet       ND       74-120         1,3-Dichlorobenzene       9E19088       5.0       0.32       ug/kg wet       ND       74-120         1,3-Dichlorobenzene       9E19088       5.0       0.71       ug/kg wet       ND       74-120         1,3-Dichlorobenzene       9E19088       5.0       0.30       ug/kg wet       ND       72-127         1,4-Dichlorobenzene       9E19088       5.0       0.70       ug/kg wet       ND       73-120         2-Butanone (MEK)       9E19088       25       6.8       ug/kg wet       ND       70-134         2-Hexanone       9E19088       25       1.7       ug/kg wet       ND       59-130         4-Isopropyltoluene       9E19088       5.0       0.40       ug/kg wet       ND       74-120         4-Methyl-2-pentanone (MIBK)                                                                                                                                                                                                                                                                                                                                              | 1,2-Dibromoethane (EDB)          |          |        |       |       |        |           |        |     |                |           |           |
| 1,2-Dichloroethane       9E19088       10       2.6       ug/kg wet       ND       82-120         1,2-Dichloropropane       9E19088       5.0       0.26       ug/kg wet       ND       75-124         1,3-Dichloropropane       9E19088       5.0       0.32       ug/kg wet       ND       74-120         1,3-Dichlorobenzene       9E19088       5.0       0.71       ug/kg wet       ND       74-120         1,3-Dichlorobenzene       9E19088       5.0       0.71       ug/kg wet       ND       74-120         1,3-Dichlorobenzene       9E19088       5.0       0.71       ug/kg wet       ND       74-120         1,4-Dichlorobenzene       9E19088       5.0       0.70       ug/kg wet       ND       73-120         2-Butanone (MEK)       9E19088       25       6.8       ug/kg wet       ND       70-134         2-Hexanone       9E19088       25       1.7       ug/kg wet       ND       59-130         4-Isopropyltoluene       9E19088       5.0       0.40       ug/kg wet       ND       74-120         4-Methyl-2-pentanone (MIBK)       9E19088       25       1.6       ug/kg wet       ND       65-133         9E10088       25       <                                                                                                                                                                                                                                                                                                                                                   | 1,2-Dichlorobenzene              |          |        |       |       |        |           |        |     |                |           |           |
| 1,2-Dichloroethene, Total       9E19080       5.0       0.26       ug/kg wet       ND       75-124         1,3-Dichloropropane       9E19088       5.0       0.32       ug/kg wet       ND       74-120         1,3-Dichlorobenzene       9E19088       5.0       0.71       ug/kg wet       ND       74-120         1,3-Dichlorobenzene       9E19088       5.0       0.71       ug/kg wet       ND       74-120         1,3-Dichlorobenzene       9E19088       5.0       0.70       ug/kg wet       ND       72-127         1,4-Dichlorobenzene       9E19088       5.0       0.70       ug/kg wet       ND       73-120         2-Butanone (MEK)       9E19088       25       6.8       ug/kg wet       ND       70-134         2-Hexanone       9E19088       25       1.7       ug/kg wet       ND       59-130         4-Isopropyltoluene       9E19088       5.0       0.40       ug/kg wet       ND       74-120         4-Methyl-2-pentanone (MIBK)       9E19088       25       1.6       ug/kg wet       ND       65-133         9E19088       25       1.1       ug/kg wet       ND       61-137                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-Dichloroethane               |          |        |       |       |        |           |        |     |                |           |           |
| 1,2-Dichloropropane       9E19088       5.0       0.32       ug/kg wet       ND       74-120         1,3-Dichlorobenzene       9E19088       5.0       0.71       ug/kg wet       ND       74-120         1,3-Dichloropropane       9E19088       5.0       0.71       ug/kg wet       ND       74-120         1,3-Dichloropropane       9E19088       5.0       0.30       ug/kg wet       ND       72-127         1,4-Dichlorobenzene       9E19088       5.0       0.70       ug/kg wet       ND       73-120         2-Butanone (MEK)       9E19088       25       6.8       ug/kg wet       ND       70-134         2-Hexanone       9E19088       25       1.7       ug/kg wet       ND       59-130         4-Isopropyltoluene       9E19088       5.0       0.40       ug/kg wet       ND       74-120         4-Methyl-2-pentanone (MIBK)       9E19088       25       1.6       ug/kg wet       ND       65-133         9E19088       25       1.1       ug/kg wet       ND       61-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2-Dichloroethene, Total        |          |        |       |       |        |           |        |     |                |           |           |
| 1,3.5-Trimethylbenzene       9E19088       5.0       0.71       ug/kg wet       ND       74-120         1,3-Dichlorobenzene       9E19088       5.0       0.30       ug/kg wet       ND       72-127         1,4-Dichlorobenzene       9E19088       5.0       0.70       ug/kg wet       ND       73-120         2-Butanone (MEK)       9E19088       25       6.8       ug/kg wet       ND       70-134         2-Hexanone       9E19088       25       1.7       ug/kg wet       ND       59-130         4-Isopropyltoluene       9E19088       5.0       0.40       ug/kg wet       ND       74-120         4-Methyl-2-pentanone (MIBK)       9E19088       25       1.6       ug/kg wet       ND       65-133         9E19088       25       1.1       ug/kg wet       ND       61-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2-Dichloropropane              |          |        |       |       |        |           |        |     |                |           |           |
| 1,3-Dichlorobenzene       9E19088       5.0       0.30       ug/kg wet       ND       72-127         1,3-Dichlorobenzene       9E19088       5.0       0.70       ug/kg wet       ND       73-120         2-Butanone (MEK)       9E19088       25       6.8       ug/kg wet       ND       70-134         2-Hexanone       9E19088       25       1.7       ug/kg wet       ND       59-130         4-Isopropyltoluene       9E19088       5.0       0.40       ug/kg wet       ND       74-120         4-Methyl-2-pentanone (MIBK)       9E19088       25       1.6       ug/kg wet       ND       65-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3,5-Trimethylbenzene           | 9E19088  |        |       |       |        |           |        |     |                |           |           |
| 1,3-Dichloropropane     9E19088     5.0     0.70     ug/kg wet     ND     73-120       1,4-Dichlorobenzene     9E19088     25     6.8     ug/kg wet     ND     70-134       2-Butanone (MEK)     9E19088     25     1.7     ug/kg wet     ND     59-130       2-Hexanone     9E19088     5.0     0.40     ug/kg wet     ND     74-120       4-Isopropyltoluene     9E19088     25     1.6     ug/kg wet     ND     65-133       4-Methyl-2-pentanone (MIBK)     9E19088     25     1.1     ug/kg wet     ND     61-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,3-Dichlorobenzene              |          |        |       |       |        |           |        |     |                |           |           |
| 1,4-Dichlorobenzene     9E19088     25     6.8     ug/kg wet     ND     70-134       2-Butanone (MEK)     9E19088     25     1.7     ug/kg wet     ND     59-130       4-Isopropyltoluene     9E19088     5.0     0.40     ug/kg wet     ND     74-120       4-Methyl-2-pentanone (MIBK)     9E19088     25     1.6     ug/kg wet     ND     65-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,3-Dichloropropane              |          |        |       |       |        |           |        |     |                |           |           |
| 2-Butanone (MEK)     9E19088     25     1.7     ug/kg wet     ND     59-130       2-Hexanone     9E19088     5.0     0.40     ug/kg wet     ND     74-120       4-Isopropyltoluene     9E19088     25     1.6     ug/kg wet     ND     65-133       4-Methyl-2-pentanone (MIBK)     9E19088     25     1.1     ug/kg wet     ND     61-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-Dichlorobenzene              |          |        |       |       |        |           |        |     |                |           |           |
| 2-Hexanone         9E19088         5.0         0.40         ug/kg wet         ND         74-120           4-Isopropyltoluene         9E19088         25         1.6         ug/kg wet         ND         65-133           4-Methyl-2-pentanone (MIBK)         9E19088         25         1.1         ug/kg wet         ND         61-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Butanone (MEK)                 |          |        |       |       |        |           |        |     |                |           |           |
| 4-Isopropyltoluene 0510000 000 000 000 000 000 000 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-Hexanone                       |          |        |       |       |        |           |        |     |                |           |           |
| 4-Methyl-2-pentanone (MIBK) 0-10008 25 1 1 ug/kg wet ND 61-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Isopropyltoluene               |          |        |       |       |        | • •       |        |     |                |           |           |
| Acetone 9E19088 25 1.1 ug/kg wet ND 61-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-Methyl-2-pentanone (MIBK)      | 9E19088  |        |       |       |        |           |        |     |                |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acetone                          | 9E19088  |        |       | 25    | 1.1    | ug/kg wet | ND     |     | ю1-13 <i>1</i> |           |           |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

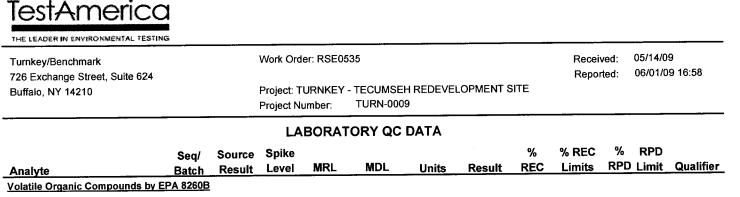
THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 726 Exchange Street, Suite 624

Buffalo, NY 14210

Work Order: RSE0535

Received: 05/14/09 Reported: 06/01/09 16:58


Project: TURNKEY - TECUMSEH REDEVELOPMENT SITE Project Number: TURN-0009

|                                  |           |        | LA    | BORAT      | ORY QC     | DATA      |            |          |                  |                    |          |
|----------------------------------|-----------|--------|-------|------------|------------|-----------|------------|----------|------------------|--------------------|----------|
|                                  | Seq/      | Source | Spike | MRL        | MDL        | 110-14-   | Decult     | %<br>REC | % REC<br>Limits  | % RPD<br>RPD Limit | Qualifie |
| Analyte                          | Batch     | Result | Level | MIL        |            | Units     | Result     |          |                  |                    | waanne   |
| Volatile Organic Compounds by    | EPA 82000 |        |       |            |            |           |            |          |                  |                    |          |
| LCS Analyzed: 05/19/09 (9E1908   | 18-BS1)   |        |       |            |            |           |            |          |                  |                    |          |
| Acrylonitrile                    | 9E19088   |        |       | 100        | 2.1        | ug/kg wet | ND         |          | 65-134           |                    |          |
| Benzene                          | 9E19088   |        | 50    | N/A        | NR         | ug/kg wet | 51.4       | 103      | 79-127           |                    |          |
| Bromochloromethane               | 9E19088   |        |       | 5.0        | 0.36       | ug/kg wet | ND         |          | 75-134           |                    |          |
| Bromodichloromethane             | 9E19088   |        |       | 5.0        | 0.26       | ug/kg wet | NÐ         |          | 80-122           |                    |          |
| Bromoform                        | 9E19088   |        |       | 5.0        | 0.46       | ug/kg wet | ND         |          | 68-126           |                    |          |
| Bromomethane                     | 9E19088   |        |       | 5.0        | 0.46       | ug/kg wet | ND         |          | 37-149           |                    |          |
| Carbon disulfide                 | 9E19088   |        |       | 5.0        | 0.43       | ug/kg wet | ND         |          | 64-131           |                    |          |
| Carbon Tetrachloride             | 9E19088   |        |       | 5.0        | 0.18       | ug/kg wet | ND         |          | 75-135           |                    |          |
| Chlorobenzene                    | 9E19088   |        | 50    | N/A        | NR         | ug/kg wet | 47.4       | 95       | 76-124           |                    |          |
| Chlorodibromomethane             | 9E19088   |        |       | 5.0        | 0.28       | ug/kg wet | ND         |          | 76-125           |                    |          |
| Chloroethane                     | 9E19088   |        |       | 5.0        | 0.81       | ug/kg wet | ND         |          | 69-135           |                    |          |
| Chloroform                       | 9E19088   |        |       | 5.0        | 0.31       | ug/kg wet | ND         |          | 80-118           |                    |          |
| Chloromethane                    | 9E19088   |        |       | 5.0        | 0.30       | ug/kg wet | ND         |          | 63-127           |                    |          |
| cis-1,2-Dichloroethene           | 9E19088   |        |       | 5.0        | 0.25       | ug/kg wet | ND         |          | 81-117           |                    |          |
| cis-1,3-Dichloropropene          | 9E19088   |        |       | 5.0        | 0.29       | ug/kg wet | ND         |          | 82-120           |                    |          |
|                                  | 9E19088   |        |       | 5.0        | 0.23       | ug/kg wet | ND         |          | 70-130           |                    |          |
| Dibromomethane                   | 9E19088   |        |       | 5.0        | 0.52       | ug/kg wet | ND         |          | 73-130           |                    |          |
| Dichlorodifluoromethane          | 9E19088   |        |       | 5.0        | 0.41       | ug/kg wet | ND         |          | 57-142           |                    |          |
|                                  | 9E19088   |        |       | 5.0        | 0.35       | ug/kg wet | ND         |          | 80-120           |                    |          |
| Ethylbenzene<br>odomethane       | 9E19088   |        |       | 5.0        | 0.24       | ug/kg wet | ND         |          | 59-149           |                    |          |
|                                  | 9E19088   |        |       | 5.0        | 0.33       | ug/kg wet | ND         |          | 72-120           |                    |          |
| sopropylbenzene                  | 9E19088   |        |       | 5.0        | 0.27       | ug/kg wet | ND         |          | 60-140           |                    |          |
| Methyl Acetate                   | 9E19088   |        |       | 5.0        | 0.49       | ug/kg wet | ND         |          | 63-125           |                    |          |
| Methyl tert-Butyl Ether          | 9E19088   |        |       | 5.0        | 0.32       | ug/kg wet | ND         |          | 60-140           |                    |          |
| Methylcyclohexane                | 9E19088   |        |       | 5.0        | 0.35       | ug/kg wet | ND         |          | 61-127           |                    |          |
| Methylene Chloride               | 9E19088   |        |       | 10         | 0.84       | ug/kg wet | ND         |          | 70-130           |                    |          |
| n-Xylene & p-Xylene              | 9E19088   |        |       | 5.0        | 0.68       | ug/kg wet | ND         |          | 38-137           |                    |          |
| Naphthalene                      | 9E19088   |        |       | 5.0        | 0.43       | ug/kg wet | ND         |          | 70-120           |                    |          |
| n-Butylbenzene                   | 9E19088   |        |       | 5.0        | 0.38       | ug/kg wet | ND         |          | 70-130           |                    |          |
| n-Propylbenzene                  | 9E19088   |        |       | 5.0        | 0.25       | ug/kg wet | ND         |          | 70-130           |                    |          |
| p-Xylene                         | 9E19088   |        |       | 5.0        | 0.43       | ug/kg wet | ND         |          | 74-120           |                    |          |
| sec-Butylbenzene                 | 9E19088   |        |       | 5.0        | 0.25       | ug/kg wet | ND         |          | 80-120           |                    |          |
| Styrene                          | 9E19088   |        |       | 5.0        | 0.52       | ug/kg wet | ND         |          | 73-120           |                    |          |
| ert-Butylbenzene                 |           |        |       | 5.0        | 0.67       | ug/kg wet | ND         |          | 74-122           |                    |          |
| Tetrachloroethene                | 9E19088   |        | 50    | 5.0<br>N/A | 0.87<br>NR | ug/kg wet | 46.6       | 93       | 74-122           |                    | в        |
| Toluene                          | 9E19088   |        | 50    | 5.0        | 0.52       | ug/kg wet | 40.0<br>ND |          | 78-126           |                    | -        |
| rans-1,2-Dichloroethene          | 9E19088   |        |       |            |            | ug/kg wet | ND         |          | 73-123           |                    |          |
| rans-1,3-Dichloropropene         | 9E19088   |        |       | 5.0        | 0.24       |           | ND         |          | 38-155           |                    |          |
| rans-1,4-Dichloro-2-butene       | 9E19088   |        | 50    | 25<br>N/A  | 1.4<br>NP  | ug/kg wet |            | 100      | 77-129           |                    |          |
| Trichloroethene                  | 9E19088   |        | 50    | N/A        | NR<br>16   | ug/kg wet | 50.0       | 100      | 65-146           |                    |          |
| Trichlorofluoromethane           | 9E19088   |        |       | 5.0        | 1.6        | ug/kg wet |            |          |                  |                    |          |
| /inyl acetate                    | 9E19088   |        |       | 25         | 1.0        | ug/kg wet |            |          | 53-134<br>61-133 |                    |          |
| √inyl chloride                   | 9E19088   |        |       | 10         | 0.20       | ug/kg wet | ND         |          | 61-133<br>80 120 |                    |          |
| Xylenes, total                   | 9E19088   |        |       | 10         | 0.84       | ug/kg wet | ND         |          | 80-120           |                    |          |
| Surrogate: 1,2-Dichloroethane-d4 |           |        |       |            |            | ug/kg wet |            | 97       | 64-126           |                    |          |
| Surrogate: 4-Bromofluorobenzene  |           |        |       |            |            | ug/kg wet |            | 106      | 72-126           |                    |          |

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com



ug/kg wet

101

71-125

LCS Analyzed: 05/19/09 (9E19088-BS1)

Surrogate: Toluene-d8

| Chain of                                                                                             | Төтрег                       | Tamperature on Receipt . |                                                                                  | <b>EestAr</b>                                          | <u>TestAmericc</u>                               | D                                                       |                                                |       |
|------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|------------------------------------------------|-------|
| cusiony necord                                                                                       | Drinking                     | Drinking Water? Yes 🗆    | No.                                                                              | 'HE LEADER IN ENV                                      | THE LEADER IN ENVIRONMENTAL TESTING              | 5NG                                                     |                                                |       |
| Clear (1007)                                                                                         | Project Manage               | Pruever Haunn            | !<br> <br>  s                                                                    |                                                        | 5-14-09                                          | L Che                                                   | Chain of Custody Number                        | 1     |
| ঠ                                                                                                    |                              | 25-33                    | LFax Number                                                                      |                                                        | Let Number                                       |                                                         | Page / of /                                    |       |
| NY                                                                                                   |                              |                          | Lab Contact<br>Rian Cisher                                                       |                                                        | Analysis (Attach list if<br>more spare (speeded) |                                                         |                                                |       |
| <b>1</b><br>                                                                                         |                              | out Number               |                                                                                  |                                                        |                                                  |                                                         |                                                |       |
| - V.C.C.MMR.C.N.<br>Contract/Purchese Ordon/Quote No.                                                |                              | Xintation                | Containers &<br>Preservatives                                                    | - <u>min</u><br>1911 - <u>Mir</u><br>1911 - <u>Mir</u> | ALZS                                             | -34                                                     | Special Instructions/<br>Conditions of Receipt | 25    |
| Semple I.D. No. and Description<br>(Cantainers for each sample may be combined on one line)          | Date : Time                  | HOS<br>Peg<br>Lucardy    | HOW<br>HOW<br>HCI<br>HCI<br>HCI<br>HCI<br>HCI<br>HCI<br>HCI<br>HCI<br>HCI<br>HCI | Codr<br>Burse                                          | 192                                              | 1040<br>105                                             |                                                |       |
| 1.22 -10-4                                                                                           | 5-11-09 830                  | X                        |                                                                                  | XXXX                                                   | X X X                                            |                                                         |                                                |       |
| ZZ-TP-2 (ms+msp)                                                                                     | Stro1 60-11-5                | X                        | 3                                                                                | XXXX                                                   |                                                  |                                                         |                                                | 1     |
|                                                                                                      |                              | X                        |                                                                                  |                                                        | 1 1 1 1 1 1 1                                    |                                                         |                                                |       |
| <b>ፒደ- ተ</b> የ~ነቆ                                                                                    | 5-12-01 1015                 | X                        |                                                                                  | XXXX                                                   |                                                  |                                                         |                                                |       |
| 0                                                                                                    |                              | X                        |                                                                                  | I N N NY                                               | X                                                | -                                                       |                                                |       |
| RR-TP-22 (MS+MSD)                                                                                    | 5-12-01 115                  | X                        | 3                                                                                |                                                        | < x X                                            |                                                         |                                                |       |
| RR-TP-46                                                                                             | 5-13-09 1015                 |                          |                                                                                  | スメメメー                                                  | X X X                                            |                                                         |                                                |       |
| BPA 2-TP-74                                                                                          | 5-13-09 HILD                 | , Y                      |                                                                                  |                                                        | I X X X I                                        | XXX                                                     |                                                |       |
| 39h 2 - TP. 92                                                                                       | 5-13-of HIS                  | X                        | -                                                                                | XXXXX                                                  | (XXXXX)                                          | ×                                                       |                                                |       |
| RE-70-42                                                                                             |                              | X                        |                                                                                  |                                                        |                                                  |                                                         |                                                | 1     |
| Blind z                                                                                              | 2-12.09 200                  | ×                        |                                                                                  | XXX                                                    | (XX)                                             | • • • • • • • • • • • • • • • • • • •                   |                                                |       |
| Re-TP.44                                                                                             | 5-13-09 1200                 | X                        |                                                                                  |                                                        |                                                  |                                                         |                                                |       |
| Possible Hazard Identification<br>🔲 Acn-Hazard 💭 Flammable [] Skin Imfant                            | תאוכרוזארט 🕅 🛛 תהפוובד       | Sample Disposer          | Disposai By Lab                                                                  | b 🗋 A <del>nthia</del> For                             | A fee me<br>Months Longer fix                    | (A fee may de <del>acteur</del><br>torger fhan 1 moAfh) | zasdut eerpMatare retained<br>N                |       |
| 12                                                                                                   | lays 🗆 21 Days 🗖 Other       |                          | ac Requirements                                                                  | Beerly                                                 |                                                  |                                                         |                                                |       |
| ABY/IN-                                                                                              |                              |                          | The manual of the                                                                | m.                                                     |                                                  |                                                         | Date Time                                      | 0     |
| 2. Ruthquetrag By                                                                                    |                              |                          | 2. Receipton                                                                     |                                                        |                                                  | ~]<br>  <br>  <br>                                      |                                                | ıl 🔤  |
| 3. Retrictuition by                                                                                  | Date                         | Tinhe                    | 3. Received By 2                                                                 |                                                        |                                                  | <br> <br>                                               | Date 1, 14748                                  | ł     |
| Contrainte                                                                                           |                              |                          | .                                                                                | 100                                                    |                                                  | -4                                                      |                                                |       |
|                                                                                                      |                              |                          |                                                                                  | 0                                                      |                                                  | ţ                                                       |                                                | 1     |
| DISTRIBUTION. WHITE Returned to Client with Report, CANARY - Slays with the Sample: PAN - Field Copy | CANARY - Staya with the Samo | (a; PINN Faid Copy       |                                                                                  |                                                        |                                                  |                                                         |                                                | ;<br> |

•

MBUTION: WHITE - RELITED TO CORT WITH PROOF. CANARY - STOPE WITH THE SUTTOR: MARY - THOU COON

г .

·

#### ANALYTICAL REPORT

#### Job#: A08-A460

Project#: <u>NY3A9073</u> SDG#: <u>A460</u> Site Name: <u>TURNKEY - TECUMSEH REDEVELOPMENT SITE</u> Task: Phase III Business Park

Mr. Tom Forbes Turnkey/Benchmark 726 Exchange St., Suite 624 Buffalo, NY 14210

TestAmerica Laboratories Inc. Fischer Brian J. Fischer Project Manager Brian J

09/23/2008

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Client No.

#### TURNKEY ENVIRONMENTAL RESTORATION, LLC TURNKEY - TECUMSEH REDEVELOPMENT SITE METHOD 8260 - TCL VOLATILE ORGANICS+STARS ANALYSIS DATA SHEET

|                                                       |                     | TP-54 (0-2)           |
|-------------------------------------------------------|---------------------|-----------------------|
| Lab Name: TestAmerica Laboratories Inc. Contract:     |                     |                       |
| Lab Code: <u>REONY</u> Case No.: SAS No.:             | SDG No.: <u>A</u>   | 460                   |
| Matrix: (soil/water) <u>SOIL</u>                      | Lab Sample ID:      | <u>A8A46001</u>       |
| Sample wt/vol:5.19 (g/mL) G                           | Lab File ID:        | F4173.RR              |
| Level: (low/med) <u>LOW</u>                           | Date Samp/Recv:     | 08/26/2008 08/27/2008 |
| % Moisture: not dec. <u>14</u> Heated Purge: <u>Y</u> | Date Analyzed:      | 08/28/2008            |
| GC Column: <u>ZB-624</u> ID: <u>0.20</u> (mm)         | Dilution Factor:    | 1.00                  |
| Soil Extract Volume: (uL)                             | Soil Aliquot Vol    | ume: (uL)             |
|                                                       | CONCENTRATION UNITS | 1                     |

#### CAS NO. COMPOUND

### (ug/Lorug/Kg) <u>UG/KG</u>

### Q

| 67-64-1Acetone                      |                                       | 8        | BJ |
|-------------------------------------|---------------------------------------|----------|----|
| 71-43-2Benzene                      |                                       | 6        | U  |
| 75-27-4Bromodichloromethane         |                                       | 6        | U  |
| 75-25-2Bromoform                    |                                       | 6        | U  |
| 74-83-9Bromomethane                 |                                       | 6        | υ  |
| 78-93-32-Butanone                   |                                       | 28       | ប  |
| 75-15-0Carbon Disulfide             |                                       | . 2      | J  |
| 56-23-5Carbon Tetrachloride         |                                       | 6        | U  |
| 108-90-7Chlorobenzene               |                                       | 6        | טן |
| 75-00-3Chloroethane                 |                                       | 6        | υ  |
| 67-66-3Chloroform                   |                                       | 6        | U  |
| 74-87-3Chloromethane                |                                       | 6        | U  |
| 110-82-7Cyclohexane                 |                                       | 6        | ប  |
| 106-93-41,2-Dibromoethane           |                                       | 6        | ប  |
| 124-48-1Dibromochloromethane        |                                       | 6        | ប  |
| 96-12-81,2-Dibromo-3-chloropropane  |                                       | 6        | U  |
| 95-50-11,2-Dichlorobenzene          |                                       | 6        | υ  |
| 541-73-11,3-Dichlorobenzene         |                                       | 6        | υ  |
| 106-46-71,4-Dichlorobenzene         |                                       | 6        | U  |
| 75-71-8Dichlorodifluoromethane      |                                       | 6        | U  |
| 75-34-31,1-Dichloroethane           | · · · · · · · · · · · · · · · · · · · | 6        | U  |
| 107-06-21,2-Dichloroethane          |                                       | 6        | ប  |
| 75-35-41,1-Dichloroethene           |                                       | 6        | U  |
| 156-59-2cis-1,2-Dichloroethene      |                                       | 6        | U  |
| 156-60-5trans-1,2-Dichloroethene    |                                       | 6        | U  |
| 78-87-51,2-Dichloropropane          |                                       | б        | U  |
| 10061-01-5cis-1,3-Dichloropropene   |                                       | 6        | U  |
| 10061-02-6trans-1,3-Dichloropropene |                                       | 6        | U  |
| 100-41-4Ethylbenzene                |                                       | 6        | U  |
| 591-78-62-Hexanone                  |                                       | 28       | ប  |
| 98-82-8Isopropylbenzene             |                                       | 6        | U  |
| 79-20-9Methyl acetate               |                                       | 6        | U  |
| 108-87-2Methylcyclohexane           |                                       | 6        | U  |
| 75-09-2Methylene chloride           |                                       | 15       | В  |
|                                     |                                       | <u> </u> |    |

FORM I - GC/MS VOA

#### TURNKEY ENVIRONMENTAL RESTORATION, LLC TURNKEY - TECUMSEH REDEVELOPMENT SITE METHOD 8260 - TCL VOLATILE ORGANICS+STARS ANALYSIS DATA SHEET

Client No.

| I ab Name, Magthmanica I abamtanica The Continent        |                                    | TP-54 (0-        |                     |
|----------------------------------------------------------|------------------------------------|------------------|---------------------|
| Lab Name: <u>TestAmerica Laboratories Inc.</u> Contract: |                                    |                  |                     |
| Lab Code: <u>RECNY</u> Case No.: SAS No.:                | SDG No.: <u>A</u>                  | 460              |                     |
| Matrix: (soil/water) <u>SOIL</u>                         | Lab Sample ID:                     | A8A46001         | -                   |
| Sample wt/vol: $5.19$ (g/mL) G                           | Lab File ID:                       | <u>F4173.RR</u>  |                     |
| Level: (low/med) <u>LOW</u>                              | Date Samp/Recv:                    | 08/26/200        | <u>8 08/27/2008</u> |
| % Moisture: not dec. <u>14</u> Heated Purge: <u>Y</u>    | Date Analyzed:                     | <u>08/28/200</u> | <u>18</u>           |
| GC Column: <u>ZB-624</u> ID: <u>0.20</u> (mm)            | Dilution Factor:                   | 1.00             |                     |
| Soil Extract Volume: (uL)                                | Soil Aliquot Vol                   | ume:             | (uL)                |
|                                                          | CENIRATION UNITS:<br>g/L or ug/Kg) | UG/KG            | Q                   |
| 108-10-14-Methyl-2-pentanone                             |                                    | 28               | υ                   |
| 1634-04-4Methyl-t-Butyl Ether (MIBE)                     |                                    |                  | Ŭ                   |
| 100-42-5Styrene                                          |                                    | -                | υ                   |
| 79-34-51,1,2,2-Tetrachloroethane                         |                                    |                  | υ                   |
| 127-18-4Tetrachloroethene                                |                                    |                  | Ū                   |
| 108-88-3Toluene                                          | ·····                              | 1                | Ū                   |
| 120-82-11,2,4-Trichlorobenzene                           |                                    | -                | U                   |
| 71-55-61,1,1-Trichloroethane                             |                                    |                  | U                   |
| 79-00-51,1,2-Trichloroethane                             |                                    |                  | Ū                   |
| 76-13-11,1,2-Trichloro-1,2,2-trifluoroe                  | thane                              |                  | υ                   |
| 75-69-4Trichlorofluoromethane                            |                                    |                  | υ                   |
| 79-01-6Trichloroethene                                   | ······                             |                  | U                   |
| 75-01-4Vinyl chloride                                    |                                    |                  | ប                   |
| 1330-20-7Total Xylenes                                   |                                    |                  | υ                   |
| 95-47-6o-Xylene                                          |                                    |                  | υ                   |
| m/p-Xylenes                                              |                                    | 11               | <b>υ</b>            |
| 103-65-1n-Propylbenzene                                  |                                    | 6                | <b>υ</b>            |
| 99-87-6p-Cymene                                          |                                    |                  | υ                   |
| 95-63-61,2,4-Trimethylbenzene                            |                                    | 6                | υ                   |
| 108-67-81,3,5-Trimethylbenzene                           |                                    |                  | <b>υ</b>            |
| 104-51-8n-Butylbenzene                                   |                                    | 6                | υ                   |
| 135-98-8sec-Butylbenzene                                 |                                    | 6                | υ                   |
| 98-06-6tert-Butylbenzene                                 |                                    | 6                | ט ו                 |

98-06-6----tert-Butylbenzene

#### ANALYTICAL REPORT

Job#: A08-A304, A08-A305, A08-A399

Project#: <u>NY3A9073</u> SDG#: <u>A304</u> Site Name: <u>TURNKEY - TECUMSEH REDEVELOPMENT SITE</u> Task: Phase III Business Park

Mr. Tom Forbes Turnkey/Benchmark 726 Exchange St., Suite 624 Buffalo, NY 14210

TestAmerica Laboratories Inc. Fischer Brian J. Project(Manager

09/23/2008

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

 $\sim$ 

#### TURNKEY ENVIRONMENTAL RESTORATION, LLC TURNKEY - TECUMSEH REDEVELOPMENT SITE METHOD 8270 - TCL BASE NEUTRAL COMPOUNDS ANALYSIS DATA SHEET

Client No.

|                                                       |                     | TP-81 (0-2)           |
|-------------------------------------------------------|---------------------|-----------------------|
| Lab Name: <u>TestAmerica Laboratories Inc.</u>        | Contract:           |                       |
| Lab Code: <u>RECNY</u> Case No.:                      | SAS No.: SDG No.: A | 304                   |
| Matrix: (soil/water) SOIL                             | Lab Sample ID:      | <u>A8A30404</u>       |
| Sample wt/vol: _ <u>30.21</u> (g/mL) <u>G</u>         | Lab File ID:        | W26097.RR             |
| Level: (low/med) <u>LOW</u>                           | Date Samp/Recv:     | 08/22/2008 08/22/2008 |
| % Moisture: <u>12</u> decanted: (Y/N) $\underline{N}$ | Date Extracted:     | 08/28/2008            |
| Concentrated Extract Volume: 1000(uL)                 | Date Analyzed:      | 09/03/2008            |
| Injection Volume: <u>1.00</u> (uL)                    | Dilution Factor:    | 5.00                  |
| GPC Cleanup: (Y/N) <u>N</u> pH:                       |                     |                       |

#### CAS NO. COMPOUND

#### CONCENTRATION UNITS: (ug/L or ug/Kg) Ug/KG

| CAS NO.  | COMPOUND                   | (ug/L or ug/Kg)                       | <u>UG/KG</u> | Q |
|----------|----------------------------|---------------------------------------|--------------|---|
| 117-84-0 | Di-n-octyl phthalate       |                                       | 960          | U |
|          | Fluoranthene               |                                       | 7200         |   |
| 86-73-7  | Fluorene                   |                                       | 190          | J |
| 118-74-1 | Hexachlorobenzene          |                                       | 960          | U |
| 87-68-3  | Hexachlorobutadiene        |                                       | 960          | U |
| 77-47-4  | Hexachlorocyclopentadiene  |                                       | 960          | U |
| 67-72-1  | Hexachloroethane           |                                       | 960          | U |
| 193-39-5 | Indeno(1,2,3-cd)pyrene     |                                       | 2300         |   |
| 78-59-1  | Isophorone                 |                                       | 960          | U |
| 91-57-6  | 2-Methylnaphthalene        |                                       | 76           | J |
| 91-20-3  | Naphthalene                |                                       | 92           | J |
| 88-74-4  | 2-Nitroaniline             |                                       | 1900         | U |
| 99-09-2  | 3-Nitroaniline             |                                       | 1900         | U |
| 100-01-6 | 4-Nitroaniline             |                                       | 1900         | U |
|          | Nitrobenzene               |                                       | 960          | U |
| 86-30-6  | N-nitrosodiphenylamine     | · · · ·                               | 960          | U |
| 621-64-7 | N-Nitroso-Di-n-propylamine | 3                                     | 960          | U |
|          | Phenanthrene               |                                       | 2600         |   |
| 129-00-0 | Pyrene                     | · · · · · · · · · · · · · · · · · · · | 5400         |   |

#### TURNKEY ENVIRONMENTAL RESTORATION, LLC TURNKEY - TECUMSEH REDEVELOPMENT SITE METHOD 8270 - TCL BASE NEUTRAL COMPOUNDS ANALYSIS DATA SHEET

Client No.

| Lab Name: <u>TestAmerica Laboratories Inc.</u> | Contract:                  | TP-81 (0-2)           |
|------------------------------------------------|----------------------------|-----------------------|
| Lab Code: <u>RECNY</u> Case No.:               | SAS No.: SDG No.: <u>A</u> | 304                   |
| Matrix: (soil/water) <u>SOIL</u>               | Lab Sample ID:             | <u>A8A30404</u>       |
| Sample wt/vol:30.21 (g/mL) G                   | Lab File ID:               | W26097.RR             |
| Level: (low/med) <u>LOW</u>                    | Date Samp/Recv:            | 08/22/2008 08/22/2008 |
| % Moisture: <u>12</u> decanted: (Y/N) <u>N</u> | Date Extracted:            | 08/28/2008            |
| Concentrated Extract Volume: 1000(uL)          | Date Analyzed:             | 09/03/2008            |
| Injection Volume: <u>1.00</u> (uL)             | Dilution Factor:           | 5.00                  |
| GPC Cleanup: (Y/N) <u>N</u> pH:                |                            |                       |

| CAS NO | COMPOUND |
|--------|----------|

#### CONCENTRATION UNITS: (ug/Lorug/Kg) <u>U</u>G/KG

| CAS NO.   | COMPOUND                     | (ug/L or ug/Kg)                       | <u>UG/KG</u> | (<br> |
|-----------|------------------------------|---------------------------------------|--------------|-------|
|           | Acenaphthene                 |                                       | 92           | J     |
|           | Acenaphthylene               |                                       | 980          |       |
| 98-86-2   | Acetophenone                 |                                       | 960          | U     |
| 120-12-7  | Anthracene                   |                                       | 610          | J     |
| 1912-24-9 | Atrazine                     |                                       | 960          | U     |
| 100-52-7  | Benzaldehyde                 |                                       | 960          | U     |
| 56-55-3   | Benzo (a) anthracene         |                                       | 3900         |       |
|           | Benzo(b)fluoranthene         |                                       | 5600         |       |
| 207-08-9  | Benzo(k) fluoranthene        |                                       | 1600         |       |
|           | Benzo(qhi)perylene           |                                       | 2200         |       |
| 50-32-8   | Benzo (a) pyrene             |                                       | 4100         |       |
| 100-51-6  | Benzyl alcohol               |                                       | 1900         | U     |
| 92-52-4   | Biphenyl                     |                                       | 960          | ש     |
| 111-91-1  | Bis(2-chloroethoxy) methane  |                                       | 960          | טן    |
| 111-44-4  | Bis(2-chloroethyl) ether     |                                       | 960          | U     |
| 108-60-1  | 2,2'-Oxybis(1-Chloropropane) |                                       | 960          | U     |
| 117-81-7  | Bis(2-ethylhexyl) phthalate  |                                       | 960          | U     |
| 101-55-3  | 4-Bromophenyl phenyl ether   | ·····                                 | 960          | U     |
| 85-68-7   | Butyl benzyl phthalate       |                                       | 960          | ប     |
| 105-60-2  | Caprolactam                  |                                       | 960          | U     |
| 106-47-8  | 4-Chloroaniline              | · · ·                                 | 960          | U     |
| 91-58-7   | 2-Chloronaphthalene          |                                       | 960          | U     |
|           | 4-Chlorophenyl phenyl ether  |                                       | 960          | U     |
|           | Chrysene                     |                                       | 3800         | в     |
| 53-70-3   | Dibenzo (a, h) anthracene    |                                       | 680          | J     |
| L32-64-9  | Dibenzofuran                 |                                       | 100          | J     |
| 34-74-2   | Di-n-butyl phthalate         |                                       | 960          | U     |
|           | 3,3'-Dichlorobenzidine       |                                       | 960          | U     |
| 84-66-2   | Diethyl phthalate            | · · · · · · · · · · · · · · · · · · · | 960          | U     |
|           | Dimethyl phthalate           |                                       | 960          | υ     |
| 21-14-2   | 2,4-Dinitrotoluene           |                                       | 960          | U     |
|           | 2,6-Dinitrotoluene           |                                       | 960          | U     |

# **APPENDIX C**

### 2010 SUPPLEMENTAL INVESTIGATION ANALYTICAL DATA PACKAGES





Analytical Report

Work Order: RTH1168

Project Description Tecumseh - Railroad Corridor Tecumseh - Railroad Corridor

For:

Tom Forbes

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

S.

Brian Fischer Project Manager Brian.Fischer@testamericainc.com Thursday, September 2, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

### TestAmerica Buffalo Current Certifications

#### As of 08/16/2010

| STATE          | Program                     | Cert # / Lab ID  |
|----------------|-----------------------------|------------------|
| Arkansas       | CWA, RCRA, SOIL             | 88-0686          |
| California*    | NELAP CWA, RCRA             | 01169CA          |
| Connecticut    | SDWA, CWA, RCRA, SOIL       | PH-0568          |
| Florida*       | NELAP CWA, RCRA             | E87672           |
| Georgia*       | SDWA,NELAP CWA, RCRA        | 956              |
| Illinois*      | NELAP SDWA, CWA, RCRA       | 200003           |
| Iowa           | SW/CS                       | 374              |
| Kansas*        | NELAP SDWA, CWA, RCRA       | E-10187          |
| Kentucky       | SDWA                        | 90029            |
| Kentucky UST   | UST                         | 30               |
| Louisiana*     | NELAP CWA, RCRA             | 2031             |
| Maine          | SDWA, CWA                   | N Y0044          |
| Maryland       | SDWA                        | 294              |
| Massachusetts  | SDWA, CWA                   | M-N Y044         |
| Michigan       | SDWA                        | 9937             |
| Minnesota      | SDWA, CWA, RCRA             | 036-999-337      |
| New Hampshire* | NELAP SDWA, CWA             | 233701           |
| New Jersey*    | NELAP,SDWA, CWA, RCRA,      | N Y455           |
| New York*      | NELAP, AIR, SDWA, CWA, RCRA | 10026            |
| North Dakota   | CWA, RCRA                   | R-176            |
| Oklahoma       | CWA, RCRA                   | 9421             |
| Oregon*        | CWA, RCRA                   | N Y200003        |
| Pennsylvania*  | NELAP CWA,RCRA              | 68-00281         |
| Tennessee      | SDWA                        | 02970            |
| Texas*         | NELAP CWA, RCRA             | T104704412-08-TX |
| USDA           | FOREIGN SOIL PERMIT         | S-41579          |
| Virginia       | SDWA                        | 278              |
| Washington*    | NELAP CWA,RCRA              | C1677            |
| Wisconsin      | CWA, RCRA                   | 998310390        |
| West Virginia  | CWA, RCRA                   | 252              |

\*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parame ters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTH1168

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

#### CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

There are pertinent documents appended to this report, 2 pages, are included and are an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

Received: 08/20/10 Reported: 09/02/10 11:10 lestAmericc

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTH1168

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060 Received: 08/20/10 Reported: 09/02/10 11:10

#### DATA QUALIFIERS AND DEFINITIONS

- B Analyte was detected in the associated Method Blank.
- B1 Analyte was detected in the associated method / calibration blank. Analyte concentration in the sample is greater than 10x the concentration found in the method blank.
- **B9** The analyte was detected in the Method / Calibration Blank at a level above the reporting limit. The sample was non-detect for this analyte, therefore, no corrective action was necessary.
- BT Analyte detected in the TCLP Extractor Blank. Analyte at least five times less than the TCLP Regulatory limit.
- **D08** Dilution required due to high concentration of target analyte(s)
- M1 The MS and/or MSD were outside the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
   QSU Sulfur (EPA 3660) clean-up performed on extract.
- **Z5** Due to sample matrix effects, the surrogate recovery was outside acceptance limits. Secondary surrogate recovery was within the acceptance limits.
- NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

#### **ADDITIONAL COMMENTS**

Results are reported on a wet weight basis unless otherwise noted.

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTH1168

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

|                                  |              |              | Executive | Summa | ry - Detecti            | ons      |                |                       |                       |            |  |
|----------------------------------|--------------|--------------|-----------|-------|-------------------------|----------|----------------|-----------------------|-----------------------|------------|--|
|                                  | Sample       | Data         |           |       |                         | Dil      | Date           | Lab                   | _                     |            |  |
| Analyte                          | Result       | Qualifiers   | RL        | MDL   | Units                   | Fac      | Analyzed       | Tech                  | Batch                 | Method     |  |
| Sample ID: RTH1168-01 (R         | R-TP42-N -   | Solid)       |           |       | Samp                    | led: 08  | /19/10 10:00   | Recy                  | vd: 08/20/1           | 0 12:40    |  |
| Total Metals by SW 846 Se        | eries Metho  | ods          |           |       |                         |          |                |                       |                       |            |  |
| Arsenic                          | 114          |              | 2.0       | NR    | mg/kg dry               | 1.00     | 08/28/10 19:38 | DAN                   | 10H1731               | 6010B      |  |
| General Chemistry Param          | <u>eters</u> |              |           |       |                         |          |                |                       |                       |            |  |
| Percent Solids                   | 97           |              | 0.010     | NR    | %                       | 1.00     | 08/23/10 12:50 | JRR                   | 10H1541               | Dry Weight |  |
| Sample ID: RTH1168-02 (R         | R-TP42-S -   | Solid)       |           |       | Samp                    | led: 08/ | 19/10 10:00    | Recy                  | vd: 08/20/1           | 0 12:40    |  |
| Total Metals by SW 846 Se        | ries Metho   | ods          |           |       |                         |          |                |                       |                       |            |  |
| Arsenic                          | 136          |              | 2.0       | NR    | mg/kg dry               | 1.00     | 08/28/10 19:43 | DAN                   | 10H1731               | 6010B      |  |
| General Chemistry Param          | eters        |              |           |       |                         |          |                |                       |                       |            |  |
| Percent Solids                   | 97           |              | 0.010     | NR    | %                       | 1.00     | 08/23/10 12:52 | JRR                   | 10H1541               | Dry Weight |  |
| Sample ID: RTH1168-03 (R         | R-TP42-E -   | Solid)       |           |       | Samp                    | led: 08/ | 19/10 10:00    | Recy                  | vd: 08/20/1           | 0 12:40    |  |
| Total Metals by SW 846 Se        | ries Metho   | ods          |           |       |                         |          |                |                       |                       |            |  |
| Arsenic                          | 147          |              | 2.1       | NR    | mg/kg dry               | 1.00     | 08/28/10 19:48 | DAN                   | 10H1731               | 6010B      |  |
| General Chemistry Param          | eters        |              |           |       |                         |          |                |                       |                       |            |  |
| Percent Solids                   | 92           |              | 0.010     | NR    | %                       | 1.00     | 08/23/10 12:54 | JRR                   | 10H1541               | Dry Weight |  |
| Sample ID: RTH1168-04 (R         | R-TP42-W     | - Solid)     |           |       | Sampled: 08/19/10 10:00 |          |                | Recvd: 08/20/10 12:40 |                       |            |  |
| Total Metals by SW 846 Se        | ries Metho   | ods          |           |       |                         |          |                |                       |                       |            |  |
| Arsenic                          | 35.6         |              | 2.2       | NR    | mg/kg dry               | 1.00     | 08/28/10 20:02 | DAN                   | 10H1731               | 6010B      |  |
| General Chemistry Parame         | eters        |              |           |       |                         |          |                |                       |                       |            |  |
| Percent Solids                   | 94           |              | 0.010     | NR    | %                       | 1.00     | 08/23/10 12:56 | JRR                   | 10H1541               | Dry Weight |  |
| Sample ID: RTH1168-05 (R         | R-TP42-BO    | ттом сомр    | - Solid)  |       | Samp                    | led: 08/ | 19/10 10:00    | Recv                  | /d: 08/20/1           | 0 12:40    |  |
| <u>Total Metals by SW 846 Se</u> | ries Metho   | ods          |           |       |                         |          |                |                       |                       |            |  |
| Arsenic                          | 37.1         |              | 2.3       | NR    | mg/kg dry               | 1.00     | 08/28/10 20:07 | DAN                   | 10H1731               | 6010B      |  |
| General Chemistry Parame         | eters        |              |           |       |                         |          |                |                       |                       |            |  |
| Percent Solids                   | 88           |              | 0.010     | NR    | %                       | 1.00     | 08/23/10 12:58 | JRR                   | 10H1541               | Dry Weight |  |
| Sample ID: RTH1168-06 (RI        | R-TP42-TC    | LP COMP - Se | olid)     |       | Samp                    | led: 08/ | 19/10 10:00    | Recv                  | Recvd: 08/20/10 12:40 |            |  |
| TCLP Metals                      |              |              |           |       |                         |          |                |                       |                       |            |  |
| Arsenic                          | 0.0168       |              | 0.0100    | NR    | mg/L                    | 1.00     | 09/01/10 00:13 |                       | 10H1873               | 6010B TCLP |  |
| Barium                           | 0.487        | B1, B        | 0.0020    | NR    | mg/L                    | 1.00     | 09/01/10 00:13 | 27.0.1                | 10H1873               | 6010B TCLP |  |
| Cadmium                          | 0.0069       |              | 0.0010    | NR    | mg/L                    | 1.00     | 09/01/10 00:13 |                       | 10H1873               | 6010B TCLP |  |
| Lead                             | 0.0749       |              | 0.0050    | NR    | mg/L                    | 1.00     | 09/01/10 00:13 | DAN                   | 10H1873               | 6010B TCLP |  |
| General Chemistry Parame         | eters        |              |           |       |                         |          |                |                       |                       |            |  |
| Percent Solids                   | 97           |              | 0.010     | NR    | %                       | 1.00     | 08/23/10 13:00 | JRR                   | 10H1541               | Dry Weight |  |
| Sample ID: RTH1168-07 (Ri        | R-TP30-N -   | Solid)       |           |       | Samp                    | led: 08/ | 19/10 11:30    | Recv                  | /d: 08/20/1           | 0 12:40    |  |

#### Polychlorinated Biphenyls by EPA Method 8082

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

|                                 |                                                  | i                  | Executive    | Jumma | y - Delecti |            |                  |             |             |           |
|---------------------------------|--------------------------------------------------|--------------------|--------------|-------|-------------|------------|------------------|-------------|-------------|-----------|
| Analyte                         | Sample<br>Result                                 | Data<br>Qualifiers | RL           | MDL   | Units       | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method    |
| Sampie ID: RTH1168-07 (F        | ample ID: RTH1168-07 (RR-TP30-N - Solid) - cont. |                    |              |       | Samp        | led: 08/   | /19/10 11:30     | Rec         | vd: 08/20/1 | 10 12:40  |
| Polychlorinated Biphenyl        | s by EPA N                                       | lethod 8082 -      | <u>cont.</u> |       |             |            |                  |             |             |           |
| Aroclor 1254                    | 46                                               | QSU                | 18           | 3.8   | ug/kg dry   | 1.00       | 08/30/10 09:22   | JxM         | 10H1973     | 8082      |
| Arocior 1260                    | 110                                              | QSU                | 18           | 8.5   | ug/kg dry   | 1.00       | 08/30/10 09:22   | JxM         | 10H1973     | 8082      |
| General Chemistry Param         | neters                                           |                    |              |       |             |            |                  |             |             |           |
| Percent Solids                  | 90                                               |                    | 0.010        | NR    | %           | 1.00       | 08/23/10 13:02   | JRR         | 10H1541     | Dry Weigh |
| Sample ID: RTH1168-08 (F        | RR-TP30-S                                        | Solid)             |              |       | Samp        | led: 08/   | /19/10 11:30     | Rec         | vd: 08/20/1 | 0 12:40   |
| Polychlorinated Biphenyl        | s by EPA N                                       | lethod 8082        |              |       |             |            |                  |             |             |           |
| Aroclor 1260                    | 120                                              | QSU                | 18           | 8.2   | ug/kg dry   | 1.00       | 08/30/10 09:40   | JxM         | 10H1973     | 8082      |
| General Chemistry Param         | neters                                           |                    |              |       |             |            |                  |             |             |           |
| Percent Solids                  | 93                                               |                    | 0.010        | NR    | %           | 1.00       | 08/23/10 13:04   | JRR         | 10H1541     | Dry Weigh |
| Sample ID: RTH1168-09 (F        | R-TP30-E -                                       | Solid)             |              |       | Samp        | led: 08/   | /19/10 11:30     | Rec         | vd: 08/20/1 | 0 12:40   |
| Polychlorinated Biphenyl        | s by EPA N                                       | lethod 8082        |              |       |             |            |                  |             |             |           |
| Aroclor 1260                    | 47                                               | QSU                | 18           | 8.3   | ug/kg dry   | 1.00       | 08/30/10 09:59   | JxM         | 10H1973     | 8082      |
| General Chemistry Param         | neters                                           |                    |              |       |             |            |                  |             |             |           |
| Percent Solids                  | 93                                               |                    | 0.010        | NR    | %           | 1.00       | 08/23/10 13:06   | JRR         | 10H1541     | Dry Weigl |
| Sample ID: RTH1168-10 (F        | R-TP30-W                                         | - Solid)           |              |       | Samp        | led: 08/   | 19/10 11:30      | Rec         | vd: 08/20/1 | 0 12:40   |
| Polychlorinated Biphenyl        | s by EPA N                                       | ethod 8082         |              |       |             |            |                  |             |             |           |
| Aroclor 1254                    | 510                                              | D08, QSU           | 89           | 19    | ug/kg dry   | 5.00       | 08/30/10 10:17   | JxM         | 10H1973     | 8082      |
| General Chemistry Param         | <u>eters</u>                                     |                    |              |       |             |            |                  |             |             |           |
| Percent Solids                  | 94                                               |                    | 0.010        | NR    | %           | 1.00       | 08/23/10 13:08   | JRR         | 10H1541     | Dry Weigh |
| Sample ID: RTH1168-11 (F        | R-TP30-BC                                        | TTOM COMP          | - Solid)     |       | Samp        | led: 08/   | 19/10 11:30      | Rec         | vd: 08/20/1 | 0 12:40   |
| Polychlorinated Biphenyl        | s by EPA M                                       | ethod 8082         |              |       |             |            |                  |             |             |           |
| Aroclor 1260                    | 260                                              | D08, QSU           | 90           | 42    | ug/kg dry   | 5.00       | 08/30/10 10:35   | JxM         | 10H1973     | 8082      |
| General Chemistry Param         | eters                                            |                    |              |       |             |            |                  |             |             |           |
| Percent Solids                  | 92                                               |                    | 0.010        | NR    | %           | 1.00       | 08/23/10 13:10   | JRR         | 10H1541     | Dry Weigh |
| Sample ID: RTH1168-12 (R        | R-TP30-TC                                        | LP COMP - Se       | olid)        |       | Samp        | led: 08/   | 19/10 11:30      | Rec         | vd: 08/20/1 | 0 12:40   |
| TCLP Metals                     |                                                  |                    |              |       |             |            |                  |             |             |           |
| Barium                          | 0.537                                            | B, B1              | 0.0020       | NR    | mg/L        | 1.00       | 09/01/10 00:18   | DAN         | 10H1873     | 6010B TCL |
| Cadmium                         | 0.0023                                           |                    | 0.0010       | NR    | mg/L        | 1.00       | 09/01/10 00:18   | DAN         | 10H1873     | 6010B TCL |
| Lead                            | 0.0229                                           |                    | 0.0050       | NR    | mg/L        | 1.00       | 09/01/10 00:18   | DAN         | 10H1873     | 6010B TCL |
| General Chemistry Param         | eters                                            |                    |              |       |             |            |                  |             |             |           |
| Percent Solids                  | 100                                              |                    | 0.010        | NR    | %           | 1.00       | 08/23/10 13:12   | JRR         | 10H1541     | Dry Weigh |
| Sample ID: RTH1169-01 (R        | R-TP04-N -                                       | Solid)             |              |       | Samp        | led: 08/   | 19/10 14:00      | Recy        | vd: 08/20/1 | 0 12:40   |
|                                 | anian Matha                                      | de                 |              |       |             |            |                  |             |             |           |
| <u>Total Metals by SW 846 S</u> | eries Mieuro                                     | <u>us</u>          |              |       |             |            |                  |             |             |           |

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTH1168

 Received:
 08/20/10

 Reported:
 09/02/10 11:10

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

|                            |                  |                | Executive  | Summa | ry - Detect             | ions     |                |                       |                  |            |  |
|----------------------------|------------------|----------------|------------|-------|-------------------------|----------|----------------|-----------------------|------------------|------------|--|
|                            | Sample           | Data           |            |       |                         | Dil      | Date           | Lab                   | <b>.</b>         |            |  |
| Analyte                    | Result           | Qualifiers     | RL         | MDL   | Units                   | Fac      | Analyzed       | Tech                  | Batch            | Method     |  |
| Sample ID: RTH1169-01 (RF  | R-TP04-N         | - Solid) - con | t.         |       | Samp                    | led: 08  | 19/10 14:00    | Rec                   | vd: 08/20/1      | 10 12:40   |  |
| General Chemistry Parame   |                  |                |            |       | •                       | 4        | 00/00/20 20 23 |                       | 40114544         | D          |  |
| Percent Solids             | 89               |                | 0.010      | NR    | %                       | 1.00     | 08/23/10 13:14 | JRR                   | 10H1541          | Dry Weight |  |
| Sample ID: RTH1169-02 (RF  | R-TP04-S -       | Solid)         |            |       | Samp                    | led: 08  | 19/10 14:00    | Rec                   | vd: 08/20/1      | 10 12:40   |  |
| Total Metals by SW 846 Ser | ries Metho       | ods            |            |       |                         |          |                |                       |                  |            |  |
| Arsenic                    | 43.9             |                | 2.2        | NR    | mg/kg dry               | 1.00     | 08/28/10 20:36 | DAN                   | 10H1731          | 6010B      |  |
| General Chemistry Parame   | ters             |                |            |       |                         |          |                |                       |                  |            |  |
| Percent Solids             | 92               |                | 0.010      | NR    | %                       | 1.00     | 08/23/10 13:16 | JRR                   | 10H1541          | Dry Weight |  |
| Sample ID: RTH1169-03 (RF  | R-TP04-E -       | Solid)         |            |       | Samp                    | led: 08  | 19/10 14:00    | Rec                   | vd: 08/20/1      | 10 12:40   |  |
| Total Metals by SW 846 Ser | ries Metho       | <u>ods</u>     |            |       |                         |          |                |                       |                  |            |  |
| Arsenic                    | 48.3             |                | 2.1        | NR    | mg/kg dry               | 1.00     | 08/28/10 20:41 | DAN                   | 10H1731          | 6010B      |  |
| General Chemistry Parame   | <u>ters</u>      |                |            |       |                         |          |                |                       |                  |            |  |
| Percent Solids             | 92               |                | 0.010      | NR    | %                       | 1.00     | 08/23/10 13:18 | JRR                   | 10H1541          | Dry Weight |  |
| Sample ID: RTH1169-04 (RR  | R-TP04-W         | - Solid)       |            |       | Sampled: 08/19/10 14:00 |          |                | Recvd: 08/20/10 12:40 |                  |            |  |
| Total Metals by SW 846 Ser | ries Metho       | ods            |            |       |                         |          |                |                       |                  |            |  |
| Arsenic                    | 112              |                | 2.1        | NR    | mg/kg dry               | 1.00     | 08/28/10 20:46 | DAN                   | 10H1731          | 6010B      |  |
| General Chemistry Parame   | <u>ters</u>      |                |            |       |                         |          |                |                       |                  |            |  |
| Percent Solids             | 90               |                | 0.010      | NR    | %                       | 1.00     | 08/23/10 13:20 | JRR                   | 10H1541          | Dry Weight |  |
| Sample ID: RTH1169-05 (RR  | R-TP04-BC        | ттом сом       | P - Solid) |       | Samp                    | led: 08/ | 19/10 14:00    | Recy                  | vd: 08/20/1      | 0 12:40    |  |
| Total Metals by SW 846 Ser | ries Metho       | <u>ods</u>     |            |       |                         |          |                |                       |                  |            |  |
| Arsenic                    | 40.2             |                | 2.3        | NR    | mg/kg dry               | 1.00     | 08/28/10 21:00 | DAN                   | 10H1731          | 6010B      |  |
| General Chemistry Parame   | <u>ters</u>      |                |            |       |                         |          |                |                       |                  |            |  |
| Percent Solids             | 91               |                | 0.010      | NR    | %                       | 1.00     | 08/23/10 13:22 | JRR                   | 10H1541          | Dry Weight |  |
| Sample ID: RTH1169-06 (RR  | R-TP04-TC        | LP COMP - S    | Solid)     |       | Samp                    | led: 08/ | 19/10 14:00    | Recvd: 08/20/10 12:40 |                  |            |  |
| TCLP Metals                |                  |                |            |       |                         |          |                |                       |                  |            |  |
| Arsenic                    | 0.0131           |                | 0.0100     | NR    | mg/L                    | 1.00     | 08/27/10 14:04 |                       | 10H1723          | 6010B TCLP |  |
| Barium                     | 0.397            | B, BT          | 0.0020     | NR    | mg/L                    | 1.00     | 08/27/10 14:04 | DAN                   | 10H1723          | 6010B TCLP |  |
| Cadmium                    | 0.0039           |                | 0.0010     | NR    | mg/L                    | 1.00     | 08/27/10 14:04 | DAN                   | 10H1723          | 6010B TCLP |  |
| Chromium                   | 0.0086           | B, BT          | 0.0040     | NR    | mg/L                    | 1.00     | 08/27/10 14:04 | DAN                   |                  | 6010B TCLP |  |
| Lead                       | 0.0431           |                | 0.0050     | NR    | mg/L                    | 1.00     | 08/27/10 14:04 | DAN                   | 10H1723          | 6010B TCLP |  |
| General Chemistry Parame   | <u>ters</u>      |                |            |       |                         |          |                |                       |                  |            |  |
| Percent Solids             | 77               |                | 0.010      | NR    | %                       | 1.00     | 08/25/10 13:40 | JRR                   | 10H17 <b>4</b> 0 | Dry Weight |  |
| Sample ID: RTH1169-07 (RR  | -TP12-N -        | Solid)         |            |       | Samp                    | led: 08/ | 19/10 15:15    | Recy                  | /d: 08/20/1      | 0 12:40    |  |
| Total Metals by SW 846 Ser | <u>ies Metho</u> | ds             |            |       |                         |          |                |                       |                  |            |  |
| Arsenic                    | 126              |                | 2.0        | NR    | mg/kg dry               | 1.00     | 08/28/10 21:05 | DAN                   | 10H1731          | 6010B      |  |

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

| Turnkey/Benchmark                |
|----------------------------------|
| 2558 Hamburg Turnpike, Suite 300 |
| Lackawanna, NY 14218             |

Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

|                               |                |                | Executive             | Summa  | ry - Detecti | one     | ······         |      |             |            |
|-------------------------------|----------------|----------------|-----------------------|--------|--------------|---------|----------------|------|-------------|------------|
|                               | Sample         | Data           | EXECUTIVE             | Juimia | iy - Delecti | Dil     | Date           | Lab  |             |            |
| Analyte                       | Result         | Qualifiers     | RL                    | MDL    | Units        | Fac     | Analyzed       | Tech | Batch       | Method     |
| Sample ID: RTH1169-07         | (RR-TP12-N -   | - Solid) - con | t.                    |        | Samp         | led: 08 | /19/10 15:15   | Rec  | vd: 08/20/1 | 0 12:40    |
| General Chemistry Para        | ameters        |                |                       |        |              |         |                |      |             |            |
| Percent Solids                | 93             |                | 0.010                 | NR     | %            | 1.00    | 08/23/10 13:24 | JRR  | 10H1541     | Dry Weight |
| Sample ID: RTH1169-08         | (RR-TP12-S -   | Solid)         |                       |        | Samp         | led: 08 | /19/10 15:15   | Rec  | vd: 08/20/1 | 0 12:40    |
| Total Metals by SW 846        | Series Metho   | <u>ods</u>     |                       |        |              |         |                |      |             |            |
| Arsenic                       | 83.0           |                | 2.2                   | NR     | mg/kg dry    | 1.00    | 08/28/10 21:10 | DAN  | 10H1731     | 6010B      |
| General Chemistry Para        | ameters        |                |                       |        |              |         |                |      |             |            |
| Percent Solids                | 91             |                | 0.010                 | NR     | %            | 1.00    | 08/23/10 13:26 | JRR  | 10H1541     | Dry Weight |
| Sample ID: RTH1169-09         | (RR-TP12-E -   | Solid)         |                       |        | Samp         | led: 08 | /19/10 15:15   | Rec  | vd: 08/20/1 | 10 12:40   |
| Total Metals by SW 846        | Series Metho   | ods            |                       |        |              |         |                |      |             |            |
| Arsenic                       | 49.1           |                | 2.0                   | NR     | mg/kg dry    | 1.00    | 08/28/10 21:15 | DAN  | 10H1731     | 6010B      |
| General Chemistry Para        | <u>imeters</u> |                |                       |        |              |         |                |      |             |            |
| Percent Solids                | 91             |                | 0.010                 | NR     | %            | 1.00    | 08/23/10 13:28 | JRR  | 10H1541     | Dry Weight |
| Sample ID: RTH1169-10         | (RR-TP12-W     | - Solid)       |                       |        | Samp         | led: 08 | /19/10 15:15   | Rec  | vd: 08/20/1 | 10 12:40   |
| Total Metals by SW 846        | Series Metho   | ods            |                       |        |              |         |                |      |             |            |
| Arsenic                       | 157            |                | 2.2                   | NR     | mg/kg dry    | 1.00    | 08/28/10 21:19 | DAN  | 10H1731     | 6010B      |
| General Chemistry Para        | <u>imeters</u> |                |                       |        |              |         |                |      |             | 5 W        |
| Percent Solids                | 91             |                | 0.010                 | NR     | %            | 1.00    | 08/23/10 13:30 | JRR  | 10H1541     | Dry Weight |
| Sample ID: RTH1169-11         | (RR-TP12-BC    |                | <sup>o</sup> - Solid) |        | Samp         | led: 08 | /19/10 15:15   | Rec  | vd: 08/20/1 | 10 12:40   |
| <u>Total Metals by SW 846</u> | Series Metho   | ods            |                       |        |              |         |                |      |             |            |
| Arsenic                       | 39.4           |                | 2.2                   | NR     | mg/kg dry    | 1.00    | 08/28/10 21:24 | DAN  | 10H1731     | 6010B      |
| General Chemistry Para        |                |                |                       |        |              |         |                |      | 10111514    | Durinkt    |
| Percent Solids                | 91             |                | 0.010                 | NR     | %            | 1.00    | 08/23/10 13:32 | JRR  | 10H1541     | Dry Weight |
| Sample ID: RTH1169-12         | (RR-TP12-TC    | LP COMP - S    | iolid)                |        | Samp         | led: 08 | /19/10 15:15   | Rec  | vd: 08/20/1 | 10 12:40   |
| TCLP Metals                   |                |                |                       |        |              |         |                |      |             |            |
| Arsenic                       | 0.0104         |                | 0.0100                | NR     | mg/L         | 1.00    | 08/27/10 14:09 |      | 10H1723     | 6010B TCLP |
| Barium                        | 0.306          | B, BT          | 0.0020                | NR     | mg/L         | 1.00    | 08/27/10 14:09 |      | 10H1723     | 6010B TCLP |
| Cadmium                       | 0.0158         |                | 0.0010                | NR     | mg/L         | 1.00    | 08/27/10 14:09 |      | 10H1723     | 6010B TCLP |
| Lead                          | 0.0200         |                | 0.0050                | NR     | mg/L         | 1.00    | 08/27/10 14:09 | DAN  | 10H1723     | 6010B TCLP |
| General Chemistry Para        |                |                |                       |        | 24           | 4.00    | 00/05/40 40 40 |      | 4014740     |            |
| Percent Solids                | 77             |                | 0.010                 | NR     | %            | 1.00    | 08/25/10 13:42 | JRR  | 10H1740     | Dry Weight |

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Project: Tecumseh - Railroad Corridor TURN-0060 Project Number:

Received: Reported:

08/20/10 09/02/10 11:10

#### Sample Summary

| Sample Identification                                                                                                                                        | Lab Number                                                                                                                               | Client Matrix                                                                 | Date/Time<br>Sampled                                                                                                                                    | Date/Time<br>Received                                                                                                                                                 | Sample<br>Qualifiers |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| RR-TP42-N                                                                                                                                                    | RTH1168-01                                                                                                                               | Solid                                                                         | 08/19/10 10:00                                                                                                                                          | 08/20/10 12:40                                                                                                                                                        | -                    |
| RR-TP42-S                                                                                                                                                    | RTH1168-02                                                                                                                               | Solid                                                                         | 08/19/10 10:00                                                                                                                                          | 08/20/10 12:40                                                                                                                                                        |                      |
| RR-TP42-E                                                                                                                                                    | RTH1168-03                                                                                                                               | Solid                                                                         | 08/19/10 10:00                                                                                                                                          | 08/20/10 12:40                                                                                                                                                        |                      |
| RR-TP42-W                                                                                                                                                    | RTH1168-04                                                                                                                               | Solid                                                                         | 08/19/10 10:00                                                                                                                                          | 08/20/10 12:40                                                                                                                                                        |                      |
| RR-TP42-BOTTOM COMP                                                                                                                                          | RTH1168-05                                                                                                                               | Solid                                                                         | 08/19/10 10:00                                                                                                                                          | 08/20/10 12:40                                                                                                                                                        |                      |
| RR-TP42-TCLP COMP                                                                                                                                            | RTH1168-06                                                                                                                               | Solid                                                                         | 08/19/10 10:00                                                                                                                                          | 08/20/10 12:40                                                                                                                                                        |                      |
| RR-TP30-N                                                                                                                                                    | RTH1168-07                                                                                                                               | Solid                                                                         | 08/19/10 11:30                                                                                                                                          | 08/20/10 12:40                                                                                                                                                        |                      |
| RR-TP30-S                                                                                                                                                    | RTH1168-08                                                                                                                               | Solid                                                                         | 08/19/10 11:30                                                                                                                                          | 08/20/10 12:40                                                                                                                                                        |                      |
| RR-TP30-E                                                                                                                                                    | RTH1168-09                                                                                                                               | Solid                                                                         | 08/19/10 11:30                                                                                                                                          | 08/20/10 12:40                                                                                                                                                        |                      |
| RR-TP30-W                                                                                                                                                    | RTH1168-10                                                                                                                               | Solid                                                                         | 08/19/10 11:30                                                                                                                                          | 08/20/10 12:40                                                                                                                                                        |                      |
| RR-TP30-BOTTOM COMP                                                                                                                                          | RTH1168-11                                                                                                                               | Solid                                                                         | 08/19/10 11:30                                                                                                                                          | 08/20/10 12:40                                                                                                                                                        |                      |
| RR-TP30-TCLP COMP                                                                                                                                            | RTH1168-12                                                                                                                               | Solid                                                                         | 08/19/10 11:30                                                                                                                                          | 08/20/10 12:40                                                                                                                                                        |                      |
|                                                                                                                                                              | 111110012                                                                                                                                |                                                                               |                                                                                                                                                         |                                                                                                                                                                       |                      |
|                                                                                                                                                              |                                                                                                                                          |                                                                               | Date/Time                                                                                                                                               | Date/Time                                                                                                                                                             | Sample               |
|                                                                                                                                                              | Lab Number                                                                                                                               | Client Matrix                                                                 | Date/Time<br>Sampled                                                                                                                                    |                                                                                                                                                                       | Sample<br>Qualifiers |
| Sample Identification                                                                                                                                        |                                                                                                                                          | Client Matrix<br>Solid                                                        |                                                                                                                                                         | Date/Time                                                                                                                                                             | •                    |
| Sample Identification<br>RR-TP04-N                                                                                                                           | Lab Number                                                                                                                               |                                                                               | Sampled                                                                                                                                                 | Date/Time<br>Received                                                                                                                                                 | •                    |
| Sample Identification<br>RR-TP04-N<br>RR-TP04-S                                                                                                              | Lab Number<br>RTH1169-01                                                                                                                 | Solid                                                                         | Sampled<br>08/19/10 14:00                                                                                                                               | Date/Time<br>Received<br>08/20/10 12:40                                                                                                                               | •                    |
| Sample Identification<br>RR-TP04-N<br>RR-TP04-S<br>RR-TP04-E                                                                                                 | Lab Number<br>RTH1169-01<br>RTH1169-02                                                                                                   | Solid<br>Solid                                                                | Sampled<br>08/19/10 14:00<br>08/19/10 14:00                                                                                                             | Date/Time<br>Received<br>08/20/10 12:40<br>08/20/10 12:40                                                                                                             | •                    |
| Sample Identification<br>RR-TP04-N<br>RR-TP04-S<br>RR-TP04-E<br>RR-TP04-W                                                                                    | Lab Number<br>RTH1169-01<br>RTH1169-02<br>RTH1169-03                                                                                     | Solid<br>Solid<br>Solid                                                       | Sampled<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00                                                                                           | Date/Time<br>Received<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40                                                                                           | •                    |
| Sample Identification<br>RR-TP04-N<br>RR-TP04-S<br>RR-TP04-E<br>RR-TP04-W<br>RR-TP04-BOTTOM COMP                                                             | Lab Number<br>RTH1169-01<br>RTH1169-02<br>RTH1169-03<br>RTH1169-04                                                                       | Solid<br>Solid<br>Solid<br>Solid                                              | Sampled<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00                                                                         | Date/Time<br>Received<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40                                                                         | •                    |
| Sample Identification<br>RR-TP04-N<br>RR-TP04-S<br>RR-TP04-E<br>RR-TP04-W<br>RR-TP04-BOTTOM COMP<br>RR-TP04-TCLP COMP<br>RR-TP12-N                           | Lab Number<br>RTH1169-01<br>RTH1169-02<br>RTH1169-03<br>RTH1169-04<br>RTH1169-05                                                         | Solid<br>Solid<br>Solid<br>Solid<br>Solid                                     | Sampled<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00                                                       | Date/Time<br>Received<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40                                                       | •                    |
| Sample Identification<br>RR-TP04-N<br>RR-TP04-S<br>RR-TP04-E<br>RR-TP04-W<br>RR-TP04-BOTTOM COMP<br>RR-TP04-TCLP COMP                                        | Lab Number<br>RTH1169-01<br>RTH1169-02<br>RTH1169-03<br>RTH1169-04<br>RTH1169-05<br>RTH1169-06                                           | Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid                            | Sampled<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00                                     | Date/Time<br>Received<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40                                                       | •                    |
| Sample Identification<br>RR-TP04-N<br>RR-TP04-S<br>RR-TP04-E<br>RR-TP04-W<br>RR-TP04-BOTTOM COMP<br>RR-TP04-TCLP COMP<br>RR-TP12-N<br>RR-TP12-S              | Lab Number<br>RTH1169-01<br>RTH1169-02<br>RTH1169-03<br>RTH1169-04<br>RTH1169-05<br>RTH1169-06<br>RTH1169-07                             | Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid                   | Sampled<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 15:15                   | Date/Time<br>Received<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40                                     | •                    |
| Sample Identification<br>RR-TP04-N<br>RR-TP04-S<br>RR-TP04-E<br>RR-TP04-W<br>RR-TP04-BOTTOM COMP<br>RR-TP04-TCLP COMP<br>RR-TP04-TCLP COMP                   | Lab Number<br>RTH1169-01<br>RTH1169-02<br>RTH1169-03<br>RTH1169-04<br>RTH1169-05<br>RTH1169-06<br>RTH1169-07<br>RTH1169-08               | Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid          | Sampled<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 15:15<br>08/19/10 15:15 | Date/Time<br>Received<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40                   | •                    |
| Sample Identification<br>RR-TP04-N<br>RR-TP04-S<br>RR-TP04-E<br>RR-TP04-W<br>RR-TP04-BOTTOM COMP<br>RR-TP04-TCLP COMP<br>RR-TP12-N<br>RR-TP12-S<br>RR-TP12-E | Lab Number<br>RTH1169-01<br>RTH1169-02<br>RTH1169-03<br>RTH1169-04<br>RTH1169-05<br>RTH1169-06<br>RTH1169-07<br>RTH1169-08<br>RTH1169-09 | Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid | Sampled<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 14:00<br>08/19/10 15:15<br>08/19/10 15:15 | Date/Time<br>Received<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40<br>08/20/10 12:40 | -                    |



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

|                    |                   |                    | A     | nalytical | Report    |            |                  |             |             |           |
|--------------------|-------------------|--------------------|-------|-----------|-----------|------------|------------------|-------------|-------------|-----------|
| Analyte            | Sample<br>Result  | Data<br>Qualifiers | RL    | MDL       | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method    |
| Sample ID: RTH1168 | 3-01 (RR-TP42-N - | Solid)             |       |           | Samp      | led: 08/   | 19/10 10:00      | Recv        | /d: 08/20/1 | 0 12:40   |
| Total Metals by SW | 846 Series Metho  | ods                |       |           |           |            |                  |             |             |           |
| Arsenic            | 114               |                    | 2.0   | NR        | mg/kg dry | 1.00       | 08/28/10 19:38   | DAN         | 10H1731     | 6010B     |
| General Chemistry  | Parameters        |                    |       |           |           |            |                  |             |             |           |
| Percent Solids     | 97                |                    | 0.010 | NR        | %         | 1.00       | 08/23/10 12:50   | JRR         | 10H1541     | Dry Weigh |

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

|                    |                  |                    | А     | nalytical | Report    |            |                  |             |             |            |
|--------------------|------------------|--------------------|-------|-----------|-----------|------------|------------------|-------------|-------------|------------|
| Analyte            | Sample<br>Result | Data<br>Qualifiers | RL    | MDL       | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1168 | -02 (RR-TP42-S   | - Solid)           |       |           | Samp      | led: 08    | 19/10 10:00      | Recv        | /d: 08/20/1 | 0 12:40    |
| Total Metals by SW | 846 Series Metho | ods                |       |           |           |            |                  |             |             |            |
| Arsenic            | 136              |                    | 2.0   | NR        | mg/kg dry | 1.00       | 08/28/10 19:43   | DAN         | 10H1731     | 6010B      |
| General Chemistry  | Parameters       |                    |       |           |           |            |                  |             |             |            |
| Percent Solids     | 97               |                    | 0.010 | NR        | %         | 1.00       | 08/23/10 12:52   | JRR         | 10H1541     | Dry Weight |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

|                     |                  |                    | A     | nalytical | Report    |            |                  |             |             |            |
|---------------------|------------------|--------------------|-------|-----------|-----------|------------|------------------|-------------|-------------|------------|
| Analyte             | Sample<br>Result | Data<br>Qualifiers | RL    | MDL       | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1168  | -03 (RR-TP42-E - | Solid)             |       |           | Samp      | led: 08    | /19/10 10:00     | Recy        | /d: 08/20/1 | 0 12:40    |
| Total Metals by SW  | 846 Series Metho | ods                |       |           |           |            |                  |             |             |            |
| Arsenic             | 147              |                    | 2.1   | NR        | mg/kg dry | 1.00       | 08/28/10 19:48   | DAN         | 10H1731     | 6010B      |
| General Chemistry I | Parameters       |                    |       |           |           |            |                  |             |             |            |
| Percent Solids      | 92               |                    | 0.010 | NR        | %         | 1.00       | 08/23/10 12:54   | JRR         | 10H1541     | Dry Weight |

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

|                     |                  |                    | A     | nalytical | Report    |            |                  |             |             |            |
|---------------------|------------------|--------------------|-------|-----------|-----------|------------|------------------|-------------|-------------|------------|
| Analyte             | Sample<br>Result | Data<br>Qualifiers | RL    | MDL       | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1168  | -04 (RR-TP42-W   | - Solid)           |       |           | Samp      | led: 08    | /19/10 10:00     | Recv        | /d: 08/20/1 | 0 12:40    |
| Total Metals by SW  | 846 Series Metho | ods                |       |           |           |            |                  |             |             |            |
| Arsenic             | 35.6             |                    | 2.2   | NR        | mg/kg dry | 1.00       | 08/28/10 20:02   | DAN         | 10H1731     | 6010B      |
| General Chemistry I | Parameters       |                    |       |           |           |            |                  |             |             |            |
| Percent Solids      | 94               |                    | 0.010 | NR        | %         | 1.00       | 08/23/10 12:56   | JRR         | 10H1541     | Dry Weight |

THE LEADER IN ENVIRONMENTAL TESTING

| Turnkey/Benchmark<br>2558 Hamburg Turnp | oike. Suite 300  | v                                                                  | Work Order: RTH1168 |           |           |            |                  |             |             | 3/20/10<br>9/02/10 11:10 |  |
|-----------------------------------------|------------------|--------------------------------------------------------------------|---------------------|-----------|-----------|------------|------------------|-------------|-------------|--------------------------|--|
| Lackawanna, NY 142                      |                  | Project: Tecumseh - Railroad Corridor<br>Project Number: TURN-0060 |                     |           |           |            |                  |             |             |                          |  |
|                                         |                  |                                                                    | A:                  | nalytical | Report    |            |                  |             |             |                          |  |
| Analyte                                 | Sample<br>Result | Data<br>Qualifiers                                                 | RL                  | MDL       | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method                   |  |
| ample ID: RTH116                        | 8-05 (RR-TP42-BC | TTOM COMP                                                          | - Solid)            |           | Samp      | led: 08    | /19/10 10:00     | Recv        | /d: 08/20/1 | 0 12:40                  |  |
| otal Metals by SW                       | 846 Series Metho | ods.                                                               |                     |           |           |            |                  |             |             |                          |  |
| Arsenic                                 | 37.1             |                                                                    | 2.3                 | NR        | mg/kg dry | 1.00       | 08/28/10 20:07   | DAN         | 10H1731     | 6010B                    |  |
| General Chemistry                       | Parameters       |                                                                    |                     |           |           |            |                  |             |             |                          |  |
| Percent Solids                          | 88               |                                                                    | 0.010               | NR        | %         | 1.00       | 08/23/10 12:58   | JRR         | 10H1541     | Dry Weigh                |  |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

|                     |                  |                    | ıA     | nalytical F | Report |            |                  |             |             |            |
|---------------------|------------------|--------------------|--------|-------------|--------|------------|------------------|-------------|-------------|------------|
| Analyte             | Sample<br>Result | Data<br>Qualifiers | RL     | MDL         | Units  | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1168  | -06 (RR-TP42-TC  | LP COMP - S        | olid)  |             | Sam    | pled: 08/  | /19/10 10:00     | Recy        | vd: 08/20/1 | 0 12:40    |
| TCLP Metals         |                  |                    |        |             |        |            |                  |             |             |            |
| Arsenic             | 0.0168           |                    | 0.0100 | NR          | mg/L   | 1.00       | 09/01/10 00:13   | DAN         | 10H1873     | 6010B TCLP |
| Barium              | 0.487            | B1, B              | 0.0020 | NR          | mg/L   | 1.00       | 09/01/10 00:13   | DAN         | 10H1873     | 6010B TCLP |
| Cadmium             | 0.0069           |                    | 0.0010 | NR          | mg/L   | 1.00       | 09/01/10 00:13   | DAN         | 10H1873     | 6010B TCLP |
| Chromium            | ND               | B9                 | 0.0040 | NR          | mg/L   | 1.00       | 09/01/10 00:13   | DAN         | 10H1873     | 6010B TCLP |
| Lead                | 0.0749           |                    | 0.0050 | NR          | mg/L   | 1.00       | 09/01/10 00:13   | DAN         | 10H1873     | 6010B TCLP |
| Selenium            | ND               |                    | 0.0150 | NR          | mg/L   | 1.00       | 09/01/10 00:13   | DAN         | 10H1873     | 6010B TCLP |
| Silver              | ND               |                    | 0.0030 | NR          | mg/L   | 1.00       | 09/01/10 00:13   | DAN         | 10H1873     | 6010B TCLP |
| Mercury             | ND               |                    | 0.0002 | NR          | mg/L   | 1.00       | 08/27/10 15:28   | MxM         | 10H1920     | 7470A TCLP |
| General Chemistry P | arameters        |                    |        |             |        |            |                  |             |             |            |
| Percent Solids      | 97               |                    | 0.010  | NR          | %      | 1.00       | 08/23/10 13:00   | JRR         | 10H1541     | Dry Weight |



#### Turnkey/Benchmark

2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

|                       |                  |                    | A            | Analytical | Report    |            |                  |             |             |           |
|-----------------------|------------------|--------------------|--------------|------------|-----------|------------|------------------|-------------|-------------|-----------|
| Analyte               | Sample<br>Result | Data<br>Qualifiers | RL           | MDL        | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method    |
| Sample ID: RTH1168-07 | 7 (RR-TP30-N -   | Solid)             |              |            | Samp      | led: 08    | /19/10 11:30     | Recy        | /d: 08/20/1 | 0 12:40   |
| Polychlorinated Biphe | nyls by EPA N    | lethod 8082        |              |            |           |            |                  |             |             |           |
| Aroclor 1016          | ND               | QSU                | 18           | 3.6        | ug/kg dry | 1.00       | 08/30/10 09:22   | JxM         | 10H1973     | 8082      |
| Aroclor 1221          | ND               | QSU                | 18           | 3.6        | ug/kg dry | 1.00       | 08/30/10 09:22   | JxM         | 10H1973     | 8082      |
| Aroclor 1232          | ND               | QSU                | 18           | 3.6        | ug/kg dry | 1.00       | 08/30/10 09:22   | JxM         | 10H1973     | 8082      |
| Aroclor 1242          | ND               | QSU                | 18           | 4.0        | ug/kg dry | 1.00       | 08/30/10 09:22   | JxM         | 10H1973     | 8082      |
| Aroclor 1248          | ND               | QSU                | 18           | 3.6        | ug/kg dry | 1.00       | 08/30/10 09:22   | JxM         | 10H1973     | 8082      |
| Aroclor 1254          | 46               | QSU                | 18           | 3.8        | ug/kg dry | 1.00       | 08/30/10 09:22   | JxM         | 10H1973     | 8082      |
| Aroclor 1260          | 110              | QSU                | 18           | 8.5        | ug/kg dry | 1.00       | 08/30/10 09:22   | JxM         | 10H1973     | 8082      |
| Decachlorobiphenyl    | 108 %            | QSU                | Surr Limits: | (34-148%)  |           |            | 08/30/10 09:22   | JxM         | 10H1973     | 8082      |
| Tetrachloro-m-xylene  | 80 %             | QSU                | Surr Limits: | (35-134%)  |           |            | 08/30/10 09:22   | JxM         | 10H1973     | 8082      |
| General Chemistry Par | ameters          |                    |              |            |           |            |                  |             |             |           |
| Percent Solids        | 90               |                    | 0.010        | NR         | %         | 1.00       | 08/23/10 13:02   | JRR         | 10H1541     | Dry Weigh |

THE LEADER IN ENVIRONMENTAL TESTING

#### Turnkey/Benchmark

2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

|                        |                      |                    | Α            | nalytical | Report    |            |                  |             |             |           |
|------------------------|----------------------|--------------------|--------------|-----------|-----------|------------|------------------|-------------|-------------|-----------|
| Analyte                | Sample<br>Result     | Data<br>Qualifiers | RL           | MDL       | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method    |
| Sample ID: RTH1168-08  | (RR-TP30-S -         | Solid)             |              |           | Samp      | led: 08    | /19/10 11:30     | Recv        | /d: 08/20/1 | 0 12:40   |
| Polychlorinated Bipher | <u>iyls by EPA M</u> | lethod 8082        |              |           |           |            |                  |             |             |           |
| Aroclor 1016           | ND                   | QSU                | 18           | 3.4       | ug/kg dry | 1.00       | 08/30/10 09:40   | JxM         | 10H1973     | 8082      |
| Aroclor 1221           | ND                   | QSU                | 18           | 3.4       | ug/kg dry | 1.00       | 08/30/10 09:40   | JxM         | 10H1973     | 8082      |
| Aroclor 1232           | ND                   | QSU                | 18           | 3.4       | ug/kg dry | 1.00       | 08/30/10 09:40   | JxM         | 10H1973     | 8082      |
| Aroclor 1242           | ND                   | QSU                | 18           | 3.8       | ug/kg dry | 1.00       | 08/30/10 09:40   | JxM         | 10H1973     | 8082      |
| Aroclor 1248           | ND                   | QSU                | 18           | 3.5       | ug/kg dry | 1.00       | 08/30/10 09:40   | JxM         | 10H1973     | 8082      |
| Aroclor 1254           | ND                   | QSU                | 18           | 3.7       | ug/kg dry | 1.00       | 08/30/10 09:40   | JxM         | 10H1973     | 8082      |
| Aroclor 1260           | 120                  | QSU                | 18           | 8.2       | ug/kg dry | 1.00       | 08/30/10 09:40   | JxM         | 10H1973     | 8082      |
| Decachlorobiphenyl     | 180 %                | QSU,Z5             | Surr Limits: | (34-148%) |           |            | 08/30/10 09:40   | JxM         | 10H1973     | 8082      |
| Tetrachloro-m-xylene   | 78 %                 | QSU                | Surr Limits: | (35-134%) |           |            | 08/30/10 09:40   | JxM         | 10H1973     | 8082      |
| General Chemistry Para | ameters              |                    |              |           |           |            |                  |             |             |           |
| Percent Solids         | 93                   |                    | 0.010        | NR        | %         | 1.00       | 08/23/10 13:04   | JRR         | 10H1541     | Dry Weigh |



| Turnkey/Benchmark                                | 0.11-000            |                    | Work Order:                 | RTH1168                   |                        |            |                  | Rece        |              | 20/10       |
|--------------------------------------------------|---------------------|--------------------|-----------------------------|---------------------------|------------------------|------------|------------------|-------------|--------------|-------------|
| 2558 Hamburg Turnpike, S<br>Lackawanna, NY 14218 | Suite 300           |                    | Project: Tec<br>Project Num | umseh - Railn<br>ber: TUR | oad Corridor<br>N-0060 |            |                  | Repo        | orted: 09/0  | 02/10 11:10 |
|                                                  |                     |                    |                             | Analytical                | Report                 |            | · · · · ·        |             |              |             |
| Analyte                                          | Sample<br>Result    | Data<br>Qualifiers | RL                          | MDL                       | Units                  | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch        | Method      |
| Sample ID: RTH1168-09                            | (RR-TP30-E -        |                    |                             |                           | Samp                   | led: 08    | 19/10 11:30      |             | rd: 08/20/10 | 0 12:40     |
| Polychlorinated Biphen                           | <u>yis by EPA M</u> | ethod 8082         |                             |                           |                        |            |                  |             |              |             |
| Aroclor 1016                                     | ND                  | QSU                | 18                          | 3.5                       | ug/kg dry              | 1.00       | 08/30/10 09:59   | JxM         | 10H1973      | 8082        |
| Aroclor 1221                                     | ND                  | QSU                | 18                          | 3.5                       | ug/kg dry              | 1.00       | 08/30/10 09:59   | JxM         | 10H1973      | 8082        |
| Arocior 1232                                     | ND                  | QSU                | 18                          | 3.5                       | ug/kg dry              | 1.00       | 08/30/10 09:59   | JxM         | 10H1973      | 8082        |
| Aroclor 1242                                     | ND                  | QSU                | 18                          | 3.8                       | ug/kg dry              | 1.00       | 08/30/10 09:59   | JxM         | 10H1973      | 8082        |
| Aroclor 1248                                     | ND                  | QSU                | 18                          | 3.5                       | ug/kg dry              | 1.00       | 08/30/10 09:59   | JxM         | 10H1973      | 8082        |
| Aroclor 1254                                     | ND                  | QSU                | 18                          | 3.7                       | ug/kg dry              | 1.00       | 08/30/10 09:59   | JxM         | 10H1973      | 8082        |
| Aroclor 1260                                     | 47                  | QSU                | 18                          | 8.3                       | ug/kg dry              | 1.00       | 08/30/10 09:59   | JxM         | 10H1973      | 8082        |
| Decachlorobiphenyl                               | 99 %                | QSU                | Surr Limits:                | (34-148%)                 |                        |            | 08/30/10 09:59   | JxM         | 10H1973      | 8082        |
| Tetrachloro-m-xylene                             | 80 %                | QSU                | Surr Limits:                | (35-134%)                 |                        |            | 08/30/10 09:59   | JxM         | 10H1973      | 8082        |
| General Chemistry Para                           | meters              |                    |                             |                           |                        |            |                  |             |              |             |
| Percent Solids                                   | 93                  |                    | 0.010                       | NR                        | %                      | 1.00       | 08/23/10 13:06   | JRR         | 10H1541      | Dry Weigh   |



## Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

|                        |                  |                    | A            | Analytical | Report    |            |                  |             |             |           |
|------------------------|------------------|--------------------|--------------|------------|-----------|------------|------------------|-------------|-------------|-----------|
| Analyte                | Sample<br>Result | Data<br>Qualifiers | RL           | MDL        | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method    |
| Sample ID: RTH1168-10  | (RR-TP30-W       | - Solid)           |              |            | Samp      | led: 08    | /19/10 11:30     | Recv        | /d: 08/20/1 | 0 12:40   |
| Polychlorinated Bipher | nyls by EPA N    | lethod 8082        |              |            |           |            |                  |             |             |           |
| Aroclor 1016           | ND               | D08, QSU           | 89           | 17         | ug/kg dry | 5.00       | 08/30/10 10:17   | JxM         | 10H1973     | 8082      |
| Aroclor 1221           | ND               | D08, QSU           | 89           | 17         | ug/kg dry | 5.00       | 08/30/10 10:17   | JxM         | 10H1973     | 8082      |
| Aroclor 1232           | ND               | D08, QSU           | 89           | 17         | ug/kg dry | 5.00       | 08/30/10 10:17   | JxM         | 10H1973     | 8082      |
| Aroclor 1242           | ND               | D08, QSU           | 89           | 19         | ug/kg dry | 5.00       | 08/30/10 10:17   | JxM         | 10H1973     | 8082      |
| Arocior 1248           | ND               | D08, QSU           | 89           | 17         | ug/kg dry | 5.00       | 08/30/10 10:17   | JxM         | 10H1973     | 8082      |
| Aroclor 1254           | 510              | D08, QSU           | 89           | 19         | ug/kg dry | 5.00       | 08/30/10 10:17   | JxM         | 10H1973     | 8082      |
| Aroclor 1260           | ND               | D08, QSU           | 89           | 41         | ug/kg dry | 5.00       | 08/30/10 10:17   | JxM         | 10H1973     | 8082      |
| Decachlorobiphenyl     | 118 %            | D08, QSU           | Surr Limits: | (34-148%)  |           |            | 08/30/10 10:17   | JxM         | 10H1973     | 8082      |
| Tetrachloro-m-xylene   | 83 %             | D08, QSU           | Surr Limits: | (35-134%)  |           |            | 08/30/10 10:17   | JxM         | 10H1973     | 8082      |
| General Chemistry Par  | <u>ameters</u>   |                    |              |            |           |            |                  |             |             |           |
| Percent Solids         | 94               |                    | 0.010        | NR         | %         | 1.00       | 08/23/10 13:08   | JRR         | 10H1541     | Dry Weigh |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

|                        |                  |                    | A            | nalytical | Report    |            |                  |             |             |            |
|------------------------|------------------|--------------------|--------------|-----------|-----------|------------|------------------|-------------|-------------|------------|
| Analyte                | Sample<br>Result | Data<br>Qualifiers | RL           | MDL       | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1168-11  | (RR-TP30-BC      | оттом сом          | P - Solid)   |           | Samp      | led: 08/   | /19/10 11:30     | Recv        | /d: 08/20/1 | 0 12:40    |
| Polychlorinated Bipher | nyls by EPA N    | lethod 8082        |              |           |           |            |                  |             |             |            |
| Aroclor 1016           | ND               | D08, QSU           | 90           | 18        | ug/kg dry | 5.00       | 08/30/10 10:35   | JxM         | 10H1973     | 8082       |
| Aroclor 1221           | ND               | D08, QSU           | 90           | 18        | ug/kg dry | 5.00       | 08/30/10 10:35   | JxM         | 10H1973     | 8082       |
| Aroclor 1232           | ND               | D08, QSU           | 90           | 18        | ug/kg dry | 5.00       | 08/30/10 10:35   | JxM         | 10H1973     | 8082       |
| Aroclor 1242           | ND               | D08, QSU           | 90           | 19        | ug/kg dry | 5.00       | 08/30/10 10:35   | JxM         | 10H1973     | 8082       |
| Aroclor 1248           | ND               | D08, QSU           | 90           | 18        | ug/kg dry | 5.00       | 08/30/10 10:35   | JxM         | 10H1973     | 8082       |
| Aroclor 1254           | ND               | D08, QSU           | 90           | 19        | ug/kg dry | 5.00       | 08/30/10 10:35   | JxM         | 10H1973     | 8082       |
| Aroclor 1260           | 260              | D08, QSU           | 90           | 42        | ug/kg dry | 5.00       | 08/30/10 10:35   | JxM         | 10H1973     | 8082       |
| Decachlorobiphenyl     | 113 %            | D08, QSU           | Surr Limits: | (34-148%) |           |            | 08/30/10 10:35   | JxM         | 10H1973     | 8082       |
| Tetrachloro-m-xylene   | 88 %             | D08, QSU           | Surr Limits: | (35-134%) |           |            | 08/30/10 10:35   | JxM         | 10H1973     | 8082       |
| General Chemistry Para | ameters          |                    |              |           |           |            |                  |             |             |            |
| Percent Solids         | 92               |                    | 0.010        | NR        | %         | 1.00       | 08/23/10 13:10   | JRR         | 10H1541     | Dry Weight |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

|                      |                  |                    | Ar     | nalytical F | Report |            |                  |             |             |            |
|----------------------|------------------|--------------------|--------|-------------|--------|------------|------------------|-------------|-------------|------------|
| Analyte              | Sample<br>Result | Data<br>Qualifiers | RL     | MDL         | Units  | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1168-  | 12 (RR-TP30-TC   | LP COMP - S        | olid)  |             | Sam    | pled: 08/  | 19/10 11:30      | Recy        | vd: 08/20/1 | 0 12:40    |
| TCLP Metals          |                  |                    |        |             |        |            |                  |             |             |            |
| Arsenic              | ND               |                    | 0.0100 | NR          | mg/L   | 1.00       | 09/01/10 00:18   | DAN         | 10H1873     | 6010B TCLP |
| Barium               | 0.537            | B, B1              | 0.0020 | NR          | mg/L   | 1.00       | 09/01/10 00:18   | DAN         | 10H1873     | 6010B TCLP |
| Cadmium              | 0.0023           |                    | 0.0010 | NR          | mg/L   | 1.00       | 09/01/10 00:18   | DAN         | 10H1873     | 6010B TCLP |
| Chromium             | ND               | B9                 | 0.0040 | NR          | mg/L   | 1.00       | 09/01/10 00:18   | DAN         | 10H1873     | 6010B TCLP |
| Lead                 | 0.0229           |                    | 0.0050 | NR          | mg/L   | 1.00       | 09/01/10 00:18   | DAN         | 10H1873     | 6010B TCLP |
| Selenium             | ND               |                    | 0.0150 | NR          | mg/L   | 1.00       | 09/01/10 00:18   | DAN         | 10H1873     | 6010B TCLP |
| Silver               | ND               |                    | 0.0030 | NR          | mg/L   | 1.00       | 09/01/10 00:18   | DAN         | 10H1873     | 6010B TCLP |
| Mercury              | ND               |                    | 0.0002 | NR          | mg/L   | 1.00       | 08/27/10 15:30   | MxM         | 10H1920     | 7470A TCLP |
| General Chemistry Pa | arameters        |                    |        |             |        |            |                  |             |             |            |
| Percent Solids       | 100              |                    | 0.010  | NR          | %      | 1.00       | 08/23/10 13:12   | JRR         | 10H1541     | Dry Weight |



|                                                | Sample    | Data                |                                 |             |                       | Dil | Date | Lab      |                            |               |
|------------------------------------------------|-----------|---------------------|---------------------------------|-------------|-----------------------|-----|------|----------|----------------------------|---------------|
|                                                |           |                     | A                               | nalytical F | Report                |     |      | <u> </u> |                            |               |
| 2558 Hamburg Turnpike,<br>Lackawanna, NY 14218 | Sulle SUU |                     | Project: Tecur<br>Project Numbe |             | ad Corridor<br>N-0060 |     |      | Керо     | neu.                       | 00,02,10,1110 |
| Turnkey/Benchmark                              |           | Work Order: RTH1168 |                                 |             |                       |     |      | . oui    | 08/20/10<br>09/02/10 11:10 |               |

| <u>Total Metals by SW 8</u><br>Arsenic | 46 Series Methods<br>47.0 | 2.3   | NR | mg/kg dry | 1.00 | 08/28/10 20:12 DAN | 10H1731 | 6010B      |
|----------------------------------------|---------------------------|-------|----|-----------|------|--------------------|---------|------------|
| General Chemistry Pa<br>Percent Solids | a <u>rameters</u><br>89   | 0.010 | NR | %         | 1.00 | 08/23/10 13:14 JRR | 10H1541 | Dry Weight |



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

|                     |                   |                    | A     | nalytical | Report    |            |                  |             |             |            |
|---------------------|-------------------|--------------------|-------|-----------|-----------|------------|------------------|-------------|-------------|------------|
| Analyte             | Sample<br>Result  | Data<br>Qualifiers | RL    | MDL       | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1169  | 0-02 (RR-TP04-S - | - Solid)           |       |           | Samp      | led: 08    | /19/10 14:00     | Recy        | /d: 08/20/1 | 0 12:40    |
| Total Metals by SW  | 846 Series Metho  | ods                |       |           |           |            |                  |             |             |            |
| Arsenic             | 43.9              |                    | 2.2   | NR        | mg/kg dry | 1.00       | 08/28/10 20:36   | DAN         | 10H1731     | 6010B      |
| General Chemistry I | Parameters        |                    |       |           |           |            |                  |             |             |            |
| Percent Solids      | 92                |                    | 0.010 | NR        | %         | 1.00       | 08/23/10 13:16   | JRR         | 10H1541     | Dry Weight |



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

|                      |                  |                    | А     | nalytical | Report    |            |                  |             |             |            |
|----------------------|------------------|--------------------|-------|-----------|-----------|------------|------------------|-------------|-------------|------------|
| Analyte              | Sample<br>Result | Data<br>Qualifiers | RL    | MDL       | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1169-  | 03 (RR-TP04-E -  | Solid)             |       |           | Samp      | led: 08/   | /19/10 14:00     | Recv        | /d: 08/20/1 | 0 12:40    |
| Total Metals by SW 8 | 46 Series Metho  | ods                |       |           |           |            |                  |             |             |            |
| Arsenic              | 48.3             |                    | 2.1   | NR        | mg/kg dry | 1.00       | 08/28/10 20:41   | DAN         | 10H1731     | 6010B      |
| General Chemistry P  | arameters        |                    |       |           |           |            |                  |             |             |            |
| Percent Solids       | 92               |                    | 0.010 | NR        | %         | 1.00       | 08/23/10 13:18   | JRR         | 10H1541     | Dry Weight |

## **TestAmerica**

| Turnkey/Benchmark<br>2558 Hamburg Turng | `urnkey/Benchmark<br>558 Hamburg Turnpike, Suite 300 |                                                                    |       | RTH1168   |           |         |                | Rece<br>Repo |             | /20/10<br>/02/10 11:10 |
|-----------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|-------|-----------|-----------|---------|----------------|--------------|-------------|------------------------|
| Lackawanna, NY 142                      | 218                                                  | Project: Tecumseh - Railroad Corridor<br>Project Number: TURN-0060 |       |           |           |         |                |              |             |                        |
|                                         |                                                      |                                                                    | A     | nalytical | Report    |         |                |              |             |                        |
|                                         | Sample                                               | Data                                                               |       |           |           | Dil     | Date           | Lab          |             |                        |
| Analyte                                 | Result                                               | Qualifiers                                                         | RL    | MDL       | Units     | Fac     | Analyzed       | Tech         | Batch       | Method                 |
| ample ID: RTH116                        | 9-04 (RR-TP04-W                                      | - Solid)                                                           |       |           | Samp      | led: 08 | 19/10 14:00    | Recv         | rd: 08/20/1 | 0 12:40                |
| Fotal Metals by SW                      | 846 Series Metho                                     | ods                                                                |       |           |           |         |                |              |             |                        |
| Arsenic                                 | 112                                                  |                                                                    | 2.1   | NR        | mg/kg dry | 1.00    | 08/28/10 20:46 | DAN          | 10H1731     | 6010B                  |
| General Chemistry                       | Parameters                                           |                                                                    |       |           |           |         |                |              |             |                        |
| Percent Solids                          | 90                                                   |                                                                    | 0.010 | NR        | %         | 1.00    | 08/23/10 13:20 | JRR          | 10H1541     | Dry Weigh              |



| Analyte<br>Sample ID: RTH1169            | Sample<br>Result | Data<br>Qualifiers | RL            | MDL                                   | Units       | Dil<br>Fac | Date<br>Analyzed<br>19/10 14:00 | Lab<br>Tech | Batcl                      | h <u>Method</u> |
|------------------------------------------|------------------|--------------------|---------------|---------------------------------------|-------------|------------|---------------------------------|-------------|----------------------------|-----------------|
| Lackawanna, NY 1421                      | 18               |                    | roject Numb   | mseh - Railro<br>per: TURN<br><b></b> | N-0060      |            | <u></u>                         |             |                            | . <u></u>       |
| Turnkey/Benchmark<br>2558 Hamburg Turnpi |                  |                    | /ork Order: I |                                       | ad Carridan |            | Recei<br>Repo                   | iii ou.     | 08/20/10<br>09/02/10 11:10 |                 |

| <u>Total Metals by SW 84</u><br>Arsenic | l <u>6 Series Methods</u><br>40.2 | 2.3   | NR | mg/kg dry | 1.00 | 08/28/10 21:00 DAN | 10H1731 | 6010B      |
|-----------------------------------------|-----------------------------------|-------|----|-----------|------|--------------------|---------|------------|
| General Chemistry Pa<br>Percent Solids  | r <u>ameters</u><br>91            | 0.010 | NR | %         | 1.00 | 08/23/10 13:22 JRR | 10H1541 | Dry Weight |



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

|                       |                  |                    | Ar     | nalytical F | Report |            |                  |             |             |            |
|-----------------------|------------------|--------------------|--------|-------------|--------|------------|------------------|-------------|-------------|------------|
| Analyte               | Sample<br>Result | Data<br>Qualifiers | RL     | MDL         | Units  | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1169-06 | 6 (RR-TP04-TC    | LP COMP - S        | olid)  |             | Sam    | pled: 08/  | /19/10 14:00     | Recy        | vd: 08/20/1 | 10 12:40   |
| TCLP Metals           |                  |                    |        |             |        |            |                  |             |             |            |
| Arsenic               | 0.0131           |                    | 0.0100 | NR          | mg/L   | 1.00       | 08/27/10 14:04   | DAN         | 10H1723     | 6010B TCLP |
| Barium                | 0.397            | B, BT              | 0.0020 | NR          | mg/L   | 1.00       | 08/27/10 14:04   | DAN         | 10H1723     | 6010B TCLP |
| Cadmium               | 0.0039           |                    | 0.0010 | NR          | mg/L   | 1.00       | 08/27/10 14:04   | DAN         | 10H1723     | 6010B TCLP |
| Chromium              | 0.0086           | B, BT              | 0.0040 | NR          | mg/L   | 1.00       | 08/27/10 14:04   | DAN         | 10H1723     | 6010B TCLP |
| Lead                  | 0.0431           |                    | 0.0050 | NR          | mg/L   | 1.00       | 08/27/10 14:04   | DAN         | 10H1723     | 6010B TCLP |
| Selenium              | ND               |                    | 0.0150 | NR          | mg/L   | 1.00       | 08/27/10 14:04   | DAN         | 10H1723     | 6010B TCLP |
| Silver                | ND               |                    | 0.0030 | NR          | mg/L   | 1.00       | 08/27/10 14:04   | DAN         | 10H1723     | 6010B TCLP |
| Mercury               | ND               |                    | 0.0002 | NR          | mg/L   | 1.00       | 08/25/10 18:57   | МхМ         | 10H1818     | 7470A TCLP |
| General Chemistry Par | ameters          |                    |        |             |        |            |                  |             |             |            |
| Percent Solids        | 77               |                    | 0.010  | NR          | %      | 1.00       | 08/25/10 13:40   | JRR         | 10H1740     | Dry Weight |

THE LEADER IN ENVIRONMENTAL TESTING

| Turnkey/Benchmark                |
|----------------------------------|
| 2558 Hamburg Turnpike, Suite 300 |
| Lackawanna, NY 14218             |

## Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

|                                              |                         |                    | А     | nalytical | Report    |            |                  |             |             |            |
|----------------------------------------------|-------------------------|--------------------|-------|-----------|-----------|------------|------------------|-------------|-------------|------------|
| Analyte                                      | Sample<br>Result        | Data<br>Qualifiers | RL    | MDL       | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1169                           | -07 (RR-TP12-N          | - Solid)           |       |           | Samp      | led: 08/   | 19/10 15:15      | Recv        | /d: 08/20/1 | 0 12:40    |
| <u>Total Metals by SW</u><br>Arsenic         | 846 Series Metho<br>126 | ods                | 2.0   | NR        | mg/kg dry | 1.00       | 08/28/10 21:05   | DAN         | 10H1731     | 6010B      |
| <u>General Chemistry I</u><br>Percent Solids | Parameters<br>93        |                    | 0.010 | NR        | %         | 1.00       | 08/23/10 13:24   | JRR         | 10H1541     | Dry Weight |

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

|                    |                  |                    | А     | nalytical | Report    |            |                  |             |             |            |
|--------------------|------------------|--------------------|-------|-----------|-----------|------------|------------------|-------------|-------------|------------|
| Analyte            | Sample<br>Result | Data<br>Qualifiers | RL    | MDL       | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1169 | -08 (RR-TP12-S - | Solid)             |       |           | Samp      | led: 08    | /19/10 15:15     | Rec         | /d: 08/20/1 | 0 12:40    |
| Total Metals by SW | 846 Series Metho | <u>ods</u>         |       |           |           |            |                  |             |             |            |
| Arsenic            | 83.0             |                    | 2.2   | NR        | mg/kg dry | 1.00       | 08/28/10 21:10   | DAN         | 10H1731     | 6010B      |
| General Chemistry  | Parameters       |                    |       |           |           |            |                  |             |             |            |
| Percent Solids     | 91               |                    | 0.010 | NR        | %         | 1.00       | 08/23/10 13:26   | JRR         | 10H1541     | Dry Weight |



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

|                     |                  |                    | А     | nalytical | Report    |             |                  |             |             |            |
|---------------------|------------------|--------------------|-------|-----------|-----------|-------------|------------------|-------------|-------------|------------|
| Analyte             | Sample<br>Result | Data<br>Qualifiers | RL    | MDL       | Units     | Dil<br>Fac_ | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1169  | -09 (RR-TP12-E - | Solid)             |       |           | Samp      | led: 08     | 19/10 15:15      | Recv        | /d: 08/20/1 | 0 12:40    |
| Total Metals by SW  | 846 Series Metho | <u>ods</u>         |       |           |           |             |                  |             |             |            |
| Arsenic             | 49.1             |                    | 2.0   | NR        | mg/kg dry | 1.00        | 08/28/10 21:15   | DAN         | 10H1731     | 6010B      |
| General Chemistry F | Parameters       |                    |       |           |           |             |                  |             |             |            |
| Percent Solids      | 91               |                    | 0.010 | NR        | %         | 1.00        | 08/23/10 13:28   | JRR         | 10H1541     | Dry Weight |



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

## Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

|                       |                  |                    | Αι    | nalytical | Report    |            |                  |             |             |            |
|-----------------------|------------------|--------------------|-------|-----------|-----------|------------|------------------|-------------|-------------|------------|
| Analyte               | Sample<br>Result | Data<br>Qualifiers | RL    | MDL       | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1169-1  | 0 (RR-TP12-W     | - Solid)           |       |           | Samp      | led: 08/   | 19/10 15:15      | Recy        | /d: 08/20/1 | 0 12:40    |
| Total Metals by SW 84 | 6 Series Metho   | ods                |       |           |           |            |                  |             |             |            |
| Arsenic               | 157              |                    | 2.2   | NR        | mg/kg dry | 1.00       | 08/28/10 21:19   | DAN         | 10H1731     | 6010B      |
| General Chemistry Pa  | rameters         |                    |       |           |           |            |                  |             |             |            |
| Percent Solids        | 91               |                    | 0.010 | NR        | %         | 1.00       | 08/23/10 13:30   | JRR         | 10H1541     | Dry Weight |

| Turnkey/Benchmark<br>2558 Hamburg Turnpike, S | uite 300         | ١                  | Work Order: RTH1168           |                            |                                    |            |                  |             |       | 08/20/10<br>09/02/10 11:10 |  |
|-----------------------------------------------|------------------|--------------------|-------------------------------|----------------------------|------------------------------------|------------|------------------|-------------|-------|----------------------------|--|
| Lackawanna, NY 14218                          |                  |                    | Project: Tecu<br>Project Numb | mseh - Railro<br>ber: TURN | ad Corridor<br>N-00 <del>6</del> 0 |            |                  | Repo        |       |                            |  |
|                                               |                  |                    | Α                             | nalytical F                | Report                             |            |                  |             |       |                            |  |
| Analyte                                       | Sample<br>Result | Data<br>Qualifiers | RL                            | MDL                        | Units                              | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch | Method_                    |  |

| Sample ID: RTH1169-1         | 11 (RR-TP12-BOTTON | I COMP - Solid) |    | Samp      | led: 08 | /19/10 15:15   | Rec | vd: 08/20/1 | 0 12:40    |  |
|------------------------------|--------------------|-----------------|----|-----------|---------|----------------|-----|-------------|------------|--|
| <u>Total Metals by SW 84</u> |                    |                 |    |           |         |                | ~   |             |            |  |
| Arsenic                      | 39.4               | 2.2             | NR | mg/kg dry | 1.00    | 08/28/10 21:24 | DAN | 10H1731     | 6010B      |  |
| <u>General Chemistry Pa</u>  | arameters          |                 |    |           |         |                |     |             |            |  |
| Percent Solids               | 91                 | 0.010           | NR | %         | 1.00    | 08/23/10 13:32 | JRR | 10H1541     | Dry Weight |  |



#### Turnkey/Benchmark

2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

## Work Order: RTH1168

Received: 08/20/10 Reported: 09/02/10 11:10

|                     |                  |                    | Ar     | nalytical F | Report |            |                  |             |             |            |
|---------------------|------------------|--------------------|--------|-------------|--------|------------|------------------|-------------|-------------|------------|
| Analyte             | Sample<br>Result | Data<br>Qualifiers | RL     | MDL         | Units  | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTH1169- | 12 (RR-TP12-TC   | LP COMP - S        | olid)  |             | Sam    | pled: 08/  | 19/10 15:15      | Recv        | /d: 08/20/1 | 10 12:40   |
| TCLP Metals         |                  |                    |        |             |        |            |                  |             |             |            |
| Arsenic             | 0.0104           |                    | 0.0100 | NR          | mg/L   | 1.00       | 08/27/10 14:09   | DAN         | 10H1723     | 6010B TCLP |
| Barium              | 0.306            | B, BT              | 0.0020 | NR          | mg/L   | 1.00       | 08/27/10 14:09   | DAN         | 10H1723     | 6010B TCLP |
| Cadmium             | 0.0158           |                    | 0.0010 | NR          | mg/L   | 1.00       | 08/27/10 14:09   | DAN         | 10H1723     | 6010B TCLP |
| Chromium            | ND               | BT                 | 0.0040 | NR          | mg/L   | 1.00       | 08/27/10 14:09   | DAN         | 10H1723     | 6010B TCLP |
| Lead                | 0.0200           |                    | 0.0050 | NR          | mg/L   | 1.00       | 08/27/10 14:09   | DAN         | 10H1723     | 6010B TCLP |
| Selenium            | ND               |                    | 0.0150 | NR          | mg/L   | 1.00       | 08/27/10 14:09   | DAN         | 10H1723     | 6010B TCLP |
| Silver              | ND               |                    | 0.0030 | NR          | mg/L   | 1.00       | 08/27/10 14:09   | DAN         | 10H1723     | 6010B TCLP |
| Mercury             | ND               |                    | 0.0002 | NR          | mg/L   | 1.00       | 08/25/10 18:59   | MxM         | 10H1818     | 7470A TCLP |
| General Chemistry P | arameters        |                    |        |             |        |            |                  |             |             |            |
| Percent Solids      | 77               |                    | 0.010  | NR          | %      | 1.00       | 08/25/10 13:42   | JRR         | 10H1740     | Dry Weight |



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTH1168

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060 Received: 08/20/10 Reported: 09/02/10 11:10

|                                 |             |            | SAMPLE             | EXTR  |                   | DATA  |                |             |                   |
|---------------------------------|-------------|------------|--------------------|-------|-------------------|-------|----------------|-------------|-------------------|
| Parameter                       | Batch       | Lab Number | Wt/Vol<br>Extracte | Units | Extract<br>Volume | Units | Date Prepared  | Lab<br>Tech | Extraction Method |
| General Chemistry Parameters    |             |            |                    |       |                   |       |                |             |                   |
| Dry Weight                      | 10H1541     | RTH1168-01 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541     | RTH1168-02 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541     | RTH1168-03 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541     | RTH1168-04 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541     | RTH1168-05 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541     | RTH1168-06 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541     | RTH1168-07 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541     | RTH1168-08 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541     | RTH1168-09 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541     | RTH1168-10 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541     | RTH1168-11 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541     | RTH1168-12 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Polychlorinated Biphenyls by EP | A Method 80 | 82         |                    |       |                   |       |                |             |                   |
| 8082                            | 10H1973     | RTH1168-10 | 30.03              | g     | 10.00             | mL    | 08/27/10 17:14 | LTT         | 3550B GC          |
| 8082                            | 10H1973     | RTH1168-11 | 30.35              | g     | 10.00             | mL    | 08/27/10 17:14 | LTT         | 3550B GC          |
| 8082                            | 10H1973     | RTH1168-08 | 30.36              | g     | 10.00             | mL    | 08/27/10 17:14 | LTT         | 3550B GC          |
| 8082                            | 10H1973     | RTH1168-09 | 30.52              | g     | 10.00             | mL    | 08/27/10 17:14 | LTT         | 3550B GC          |
| 8082                            | 10H1973     | RTH1168-07 | 30.61              | g     | 10.00             | mL    | 08/27/10 17:14 | LTT         | 3550B GC          |
| TCLP Metals                     |             |            |                    |       |                   |       |                |             |                   |
| 6010B TCLP                      | 10H1873     | RTH1168-06 | 50.00              | mL    | 50.00             | mL    | 08/26/10 13:35 | JRK         | 3010A             |
| 6010B TCLP                      | 10H1873     | RTH1168-12 | 50.00              | mL    | 50.00             | mL    | 08/26/10 13:35 | JRK         | 3010A             |
| 7470A TCLP                      | 10H1920     | RTH1168-06 | 30.00              | mL    | 50.00             | mL    | 08/27/10 13:00 | МХМ         | 7470A             |
| 7470A TCLP                      | 10H1920     | RTH1168-12 | 30.00              | mL    | 50.00             | mL    | 08/27/10 13:00 | MXM         | 7470A             |
| Total Metals by SW 846 Series M | lethods     |            |                    |       |                   |       |                |             |                   |
| 6010B                           | 10H1731     | RTH1168-04 | 0.49               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
| 6010B                           | 10H1731     | RTH1168-05 | 0.50               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
| 6010B                           | 10H1731     | RTH1168-02 | 0.51               | g .   | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
| 6010B                           | 10H1731     | RTH1168-03 | 0.51               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
| 6010B                           | 10H1731     | RTH1168-01 | 0.52               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |

## SAMPLE EXTRACTION DATA

| Parameter                    | Batch   | Lab Number | Wt/Vol<br>Extracte | Units | Extract<br>Volume | Units | Date Prepared  | Lab<br>Tech | Extraction Method |
|------------------------------|---------|------------|--------------------|-------|-------------------|-------|----------------|-------------|-------------------|
| General Chemistry Parameters |         |            |                    |       |                   |       |                |             |                   |
| Dry Weight                   | 10H1541 | RTH1169-01 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                   | 10H1541 | RTH1169-02 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                   | 10H1541 | RTH1169-03 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

## Work Order: RTH1168

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060 Received: 08/20/10 Reported: 09/02/10 11:10

|                                 |                |            | SAMPLE             | EEXTR | ACTION            | DATA  |                |             |                   |
|---------------------------------|----------------|------------|--------------------|-------|-------------------|-------|----------------|-------------|-------------------|
| Parameter                       | Batch          | Lab Number | Wt/Vol<br>Extracte | Units | Extract<br>Volume | Units | Date Prepared  | Lab<br>Tech | Extraction Method |
| Dry Weight                      | 10H1541        | RTH1169-04 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541        | RTH1169-05 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541        | RTH1169-07 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541        | RTH1169-08 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541        | RTH1169-09 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541        | RTH1169-10 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1541        | RTH1169-11 | 10.00              | g     | 10.00             | g     | 08/23/10 08:02 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1740        | RTH1169-06 | 10.00              | g     | 10.00             | g     | 08/25/10 10:09 | JRR         | Dry Weight        |
| Dry Weight                      | 10H1740        | RTH1169-12 | 10.00              | g     | 10.00             | g     | 08/25/10 10:09 | JRR         | Dry Weight        |
| TCLP Metals                     |                |            |                    |       |                   |       |                |             |                   |
| 6010B TCLP                      | 10H1723        | RTH1169-06 | 50.00              | mL    | 50.00             | mL    | 08/25/10 07:20 | JRK         | 3010A             |
| 6010B TCLP                      | 10H1723        | RTH1169-12 | 50.00              | mL    | 50.00             | mL    | 08/25/10 07:20 | JRK         | 3010A             |
| 7470A TCLP                      | 10H1818        | RTH1169-06 | 30.00              | mL    | 50.00             | mL    | 08/25/10 17:00 | MXM         | 7470A             |
| 7470A TCLP                      | 10H1818        | RTH1169-12 | 30.00              | mL    | 50.00             | mL    | 08/25/10 17:00 | MXM         | 7470A             |
| Total Metals by SW 846 Series N | <b>Nethods</b> |            |                    |       |                   |       |                |             |                   |
| 6010B                           | 10H1731        | RTH1169-02 | 0.48               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
| 6010B                           | 10H1731        | RTH1169-05 | 0.48               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
| 6010B                           | 10H1731        | RTH1169-08 | 0.49               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
| 6010B                           | 10H1731        | RTH1169-01 | 0.49               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
| 6010B                           | 10H1731        | RTH1169-10 | 0.50               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
| 6010B                           | 10H1731        | RTH1169-11 | 0.50               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
| 6010B                           | 10H1731        | RTH1169-03 | 0.51               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
| 6010B                           | 10H1731        | RTH1169-04 | 0.52               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
| 6010B                           | 10H1731        | RTH1169-09 | 0.54               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
| 6010B                           | 10H1731        | RTH1169-07 | 0.54               | g     | 50.00             | mL    | 08/25/10 14:00 | JRK         | 3050B             |
|                                 |                |            |                    |       |                   |       |                |             |                   |

THE LEADER IN ENVIRONMENTAL TESTING

| Turnkey/Benchmark<br>2558 Hamburg Turnpike, S                 | uite 300         |                | Work Ord                | ier: RTH1168                    |                         |             |          | Rece<br>Repo    |          | 08/20/<br>09/02/ | 10<br>10 11:10    |
|---------------------------------------------------------------|------------------|----------------|-------------------------|---------------------------------|-------------------------|-------------|----------|-----------------|----------|------------------|-------------------|
| Lackawanna, NY 14218                                          |                  |                | Project: 1<br>Project N | Fecumseh - Railr<br>lumber: TUF | oad Corridor<br>RN-0060 |             |          |                 |          |                  |                   |
| <u> </u>                                                      |                  |                | LA                      | BORATOR                         | Y QC DATA               |             |          |                 |          |                  |                   |
| Analyte                                                       | Source<br>Result | Spike<br>Level | RL                      | MDL                             | Units                   | Result      | %<br>REC | % REC<br>Limits | %<br>RPD | RPD<br>Limit     | Data<br>Qualifier |
| Polychlorinated Bipheny                                       | is by EPA I      | Method 80      | <u>82</u>               |                                 |                         |             |          |                 |          |                  |                   |
| Blank Analyzed: 08/30/1                                       | 0 (Lab Num       | nber:10H19     | 973-BLK1.               | Batch: 10H197                   | 3)                      |             |          |                 |          |                  |                   |
| Aroclor 1016                                                  | • (              |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1016 [2C]                                             |                  |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1221                                                  |                  |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1221 [2C]                                             |                  |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1232                                                  |                  |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1232 [2C]                                             |                  |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1242                                                  |                  |                | 16                      | 3.5                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1242 [2C]                                             |                  |                | 16                      | 3.5                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1248                                                  |                  |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1248 [2C]                                             |                  |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1254                                                  |                  |                | 16                      | 3.4                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1254 [2C]                                             |                  |                | 16                      | 3.4                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1260                                                  |                  |                | 16                      | 7.6                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1260 [2C]                                             |                  |                | 16                      | 7.6                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Surrogate:                                                    |                  |                |                         |                                 | ug/kg wet               |             | 111      | 34-148          |          |                  | QSU               |
| Decachlorobiphenyl<br>Surrogate:                              |                  |                |                         |                                 | ug/kg wet               |             | 102      | 34-148          |          |                  | QSU               |
| Decachlorobiphenyl [2C]<br>Surrogate:<br>Tetrachloro-m-xylene |                  |                |                         |                                 | ug/kg wet               |             | 89       | 35-134          |          |                  | QSU               |
| Surrogate:<br>Tetrachloro-m-xylene                            |                  |                |                         |                                 | ug/kg wet               |             | 94       | 35-134          |          |                  | QSU               |
| LCS Analyzed: 08/30/10                                        | (Lab Numb        | er:10H197      | 3-BS1, Bat              | ch: 10H1973)                    |                         |             |          |                 |          |                  |                   |
| Aroclor 1016                                                  |                  | 163            | 16                      | 3.2                             | ug/kg wet               | 163         | 100      | 59-154          |          |                  | QSU               |
| Arocior 1016 [2C]                                             |                  | 163            | 16                      | 3.2                             | ug/kg wet               | 145         | 89       | 59-154          |          |                  | QSU               |
| Aroclor 1221                                                  |                  |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1221 [2C]                                             |                  |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1232                                                  |                  |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1232 [2C]                                             |                  |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1242                                                  |                  |                | 16                      | 3.5                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1242 [2C]                                             |                  |                | 16                      | 3.5                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1248                                                  |                  |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1248 [2C]                                             |                  |                | 16                      | 3.2                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Arocior 1254                                                  |                  |                | 16                      | 3.4                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1254 [2C]                                             |                  |                | 16                      | 3.4                             | ug/kg wet               | ND          |          |                 |          |                  | QSU               |
| Aroclor 1260                                                  |                  | 163            | 16                      | 7.6                             | ug/kg wet               | 1 <b>64</b> | 100      | 51-179          |          |                  | QSU               |
| Aroclor 1260 [2C]                                             |                  | 163            | 16                      | 7.6                             | ug/kg wet               | 146         | 90       | 51-179          |          |                  | QSU               |
| Surrogate:                                                    |                  |                |                         |                                 | ug/kg wet               |             | 114      | 34-148          |          |                  | QSU               |

Surrogate: Decachlorobiphenyl



Surrogate: Tetrachloro-m-xylene

| Turnkey/Benchmark                                        | ka Suita 200     |                | Work Ord                                                           | Work Order: RTH1168 |            |        |          |                 | Received:<br>Reported: |              | 10<br>10 11:10     |  |
|----------------------------------------------------------|------------------|----------------|--------------------------------------------------------------------|---------------------|------------|--------|----------|-----------------|------------------------|--------------|--------------------|--|
| 2558 Hamburg Turnpike, Suite 300<br>Lackawanna, NY 14218 |                  |                | Project: Tecumseh - Railroad Corridor<br>Project Number: TURN-0060 |                     |            |        |          | Керо            | sponed. o              |              | 00/02/10 11:10     |  |
|                                                          |                  |                | LA                                                                 | BORATORY            | QC DATA    |        |          |                 |                        |              |                    |  |
| Analvte                                                  | Source<br>Result | Spike<br>Level | RL                                                                 | MDL                 | Units      | Result | %<br>REC | % REC<br>Limits | %<br>RPD               | RPD<br>Limit | Data<br>Qualifiers |  |
| olychlorinated Bip                                       | henyls by EPA    | Method 80      | <u>82</u>                                                          |                     |            |        |          |                 |                        |              |                    |  |
| CS Analyzed: 08/3                                        | 0/10 (Lab Numb   | per:10H197     | '3-BS1, Bat                                                        | ch: 10H1973)        |            |        |          |                 |                        |              |                    |  |
| Surrogate:                                               |                  |                |                                                                    |                     | ug/kg wet  |        | 104      | 34-148          |                        |              | QSU                |  |
| ecachlorobiphenyl [2<br>urrogate:                        | C]               |                |                                                                    |                     | ug/kg wet  |        | 92       | 35-134          |                        |              | QSU                |  |
| Fetrachloro-m-xylene                                     |                  |                |                                                                    |                     | ua lia wat |        | 02       | 25 121          |                        |              | 0911               |  |

ug/kg wet

92

35-134

QSU

|       |      | ÷   |             |
|-------|------|-----|-------------|
| Test/ | 1m   | Ori | $\sim \sim$ |
| 10317 | 7111 |     | $\sim \sim$ |
|       |      |     |             |

| Turnkey/Benchmark<br>2558 Hamburg Turnpike,                                                                                                              | Suite 300                                                          |                         | Work Ord                                                           | Work Order: RTH1168                              |                                                                 |           |          |                  |          | 08/20/10<br>09/02/10 11:10 |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|-----------|----------|------------------|----------|----------------------------|--------------------|
| Lackawanna, NY 14218                                                                                                                                     |                                                                    |                         | Project: Tecumseh - Railroad Corridor<br>Project Number: TURN-0060 |                                                  |                                                                 |           |          | Repo             |          | 09/02/10 11:10             |                    |
|                                                                                                                                                          |                                                                    |                         | LA                                                                 | BORATOR                                          | Y QC DATA                                                       |           |          |                  |          |                            |                    |
| Analyte                                                                                                                                                  | Source<br>Result                                                   | Spike<br>Level          | RL                                                                 | MDL                                              | Units                                                           | Result    | %<br>REC | % REC<br>Limits  | %<br>RPD | RPD<br>Limit               | Data<br>Qualifiers |
| Total Metals by SW 84                                                                                                                                    | 6 Series Meth                                                      | ods                     |                                                                    |                                                  |                                                                 |           |          |                  |          |                            |                    |
|                                                                                                                                                          |                                                                    |                         |                                                                    |                                                  |                                                                 |           |          |                  |          |                            |                    |
| Riank Analyzod (18/28)                                                                                                                                   | (10) (Lah Num                                                      | hor 10H1                | 731_RIK1                                                           | Ratch: 10H173                                    | 1)                                                              |           |          |                  |          |                            |                    |
| -                                                                                                                                                        | /10 (Lab Num                                                       | iber:10H17              | 7 <b>31-BLK1,</b> 1<br>1.8                                         | Batch: 10H173<br>NR                              | ng/kg wet                                                       | ND        |          |                  |          |                            |                    |
| Arsenic<br>Matrix Spike Analyzed:                                                                                                                        | : 08/28/10 (La                                                     |                         | 1.8                                                                | NR                                               | mg/kg wet                                                       | ND        |          |                  |          |                            |                    |
| Arsenic<br><b>Matrix Spike Analyzed</b> :<br>QC Source Sample: RTH116                                                                                    | : 08/28/10 (La                                                     |                         | 1.8                                                                | NR                                               | mg/kg wet                                                       | ND<br>115 | 158      | 75-125           |          |                            | M1                 |
| Blank Analyzed: 08/28/<br>Arsenic<br>Matrix Spike Analyzed:<br>QC Source Sample: RTH116<br>Arsenic<br>Matrix Spike Dup Analy<br>QC Source Sample: RTH116 | : 08/28/10 (La<br>69-01<br>47.0<br>yzed: 08/28/10                  | 43.2                    | 1.8<br><b>r:10H1731-</b><br>2.2                                    | NR<br><b>MS1, Batch: 1(</b><br>NR                | mg/kg wet<br>DH1731)<br>mg/kg dry                               |           | 158      | 75-125           |          |                            | М1                 |
| Arsenic<br>Matrix Spike Analyzed<br>QC Source Sample: RTH116<br>Arsenic<br>Matrix Spike Dup Analy<br>QC Source Sample: RTH116                            | : 08/28/10 (La<br>69-01<br>47.0<br>yzed: 08/28/10                  | 43.2                    | 1.8<br><b>r:10H1731-</b><br>2.2                                    | NR<br><b>MS1, Batch: 1(</b><br>NR                | mg/kg wet<br>DH1731)<br>mg/kg dry                               |           | 158      | 75-125<br>75-125 | 0.6      | 20                         | M1<br>M1           |
| Arsenic<br>Matrix Spike Analyzed<br>QC Source Sample: RTH116<br>Arsenic<br>Matrix Spike Dup Analy                                                        | : 08/28/10 (La<br>59-01<br>47.0<br>yzed: 08/28/10<br>59-01<br>47.0 | 43.2<br>(Lab Nu<br>46.0 | 1.8<br>r:10H1731-<br>2.2<br>mber:10H1<br>2.3                       | NR<br>MS1, Batch: 10<br>NR<br>731-MSD1, Ba<br>NR | mg/kg wet<br>DH1731)<br>mg/kg dry<br>tch: 10H1731)<br>mg/kg dry | 115       |          |                  | 0.6      | 20                         |                    |



| Turnkey/Benchmark<br>2558 Hamburg Turnpike, Suite 300 |                  |                | Work Order: RTH1168      |                                |                       |            |          | Received<br>Reported |          |              |                  |  |
|-------------------------------------------------------|------------------|----------------|--------------------------|--------------------------------|-----------------------|------------|----------|----------------------|----------|--------------|------------------|--|
| Lackawanna, NY 14218                                  |                  |                | Project: T<br>Project Ni | ecumseh - Railro<br>umber: TUR | ad Corridor<br>N-0060 |            |          |                      |          |              |                  |  |
|                                                       | <u> </u>         |                | LA                       | BORATORY                       | QC DATA               |            |          |                      |          |              |                  |  |
| Analyte                                               | Source<br>Result | Spike<br>Level | RL                       | MDL                            | Units                 | Result     | %<br>REC | % REC<br>Limits      | %<br>RPD | RPD<br>Limit | Data<br>Qualifie |  |
| TCLP Metals                                           |                  |                |                          |                                |                       |            |          |                      |          |              |                  |  |
| Blank Analyzed: 08/27/10                              | (Lab Num         | nber:10H1)     | 723-BLK1, E              | Batch: 10H1723                 | 3)                    |            |          |                      |          |              |                  |  |
| Arsenic                                               | •                |                | 0.0100                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| Barium                                                |                  |                | 0.0020                   | NR                             | mg/L                  | 0.0204     |          |                      |          |              | В                |  |
| Cadmium                                               |                  |                | 0.0010                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| Chromium                                              |                  |                | 0.0040                   | NR                             | mg/L                  | 0.0060     |          |                      |          |              | В                |  |
| _ead                                                  |                  |                | 0.0050                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| Selenium                                              |                  |                | 0.0150                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| Silver                                                |                  |                | 0.0030                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| Blank Analyzed: 08/27/10                              | (Lab Num         | ber:10H1       | 723-BLK2, B              | Batch: 10H1723                 | 3)                    |            |          |                      |          |              |                  |  |
| Arsenic                                               |                  |                | 0.0100                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| Barium                                                |                  |                | 0.0020                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| Cadmium                                               |                  |                | 0.0010                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| Chromium                                              |                  |                | 0.0040                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| .ead                                                  |                  |                | 0.0050                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| Selenium                                              |                  |                | 0.0150                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| Silver                                                |                  |                | 0.0030                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| .CS Analyzed: 08/27/10 (                              | Lab Numb         | er:10H172      | 3-BS1, Bato              | :h: 10H1723)                   |                       |            |          |                      |          |              |                  |  |
| Arsenic                                               |                  | 1.00           | 5.00                     | NR                             | mg/L                  | 1.07       | 107      | 80-120               |          |              |                  |  |
| Barium                                                |                  | 1.00           | 100                      | NR                             | mg/L                  | 1.03       | 103      | 80-120               |          |              | В                |  |
| Cadmium                                               |                  | 1.00           | 1.00                     | NR                             | mg/L                  | 1.06       | 106      | 80-120               |          |              |                  |  |
| Chromium                                              |                  | 1.00           | 5.00                     | NR                             | mg/L                  | 1.03       | 103      | 80-120               |          |              | В                |  |
| _ead                                                  |                  | 1.00           | 5.00                     | NR                             | mg/L                  | 1.05       | 105      | 80-120               |          |              |                  |  |
| Selenium                                              |                  | 1.00           | 1.00                     | NR                             | mg/L                  | 1.09       | 109      | 80-120               |          |              |                  |  |
| Silver                                                |                  | 1.00           | 5.00                     | NR                             | mg/L                  | 1.04       | 104      | 80-120               |          |              |                  |  |
| <b>FCLP Metals</b>                                    |                  |                |                          |                                |                       |            |          |                      |          |              |                  |  |
| Blank Analyzed: 08/25/10                              | (Lab Num         | ber:10H18      | 318-BLK1, B              | atch: 10H1818                  | 3)                    |            |          |                      |          |              |                  |  |
| Mercury                                               |                  |                | 0.0002                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| Blank Analyzed: 08/25/10                              | (Lab Num         | ber:10H18      | 318-BLK2, B              | atch: 10H1818                  | i)                    |            |          |                      |          |              |                  |  |
| Mercury                                               |                  |                | 0.0002                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| .CS Analyzed: 08/25/10 (I                             | Lab Numb         | er:10H181      | 8-BS1, Batc              | :h: 10H1818)                   |                       |            |          |                      |          |              |                  |  |
| Aercury                                               |                  | 0.00670        | 0.200                    | NR                             | mg/L                  | 0.00635    | 95       | 80-120               |          |              |                  |  |
| CLP Metals                                            |                  |                |                          |                                |                       |            |          |                      |          |              |                  |  |
| Blank Analyzed: 08/31/10                              | (I ah Num        | ber:10H19      | 373-BIK1 B               | atch: 10H1873                  | )                     |            |          |                      |          |              |                  |  |
| Arsenic                                               | עבמט וזעווו      | ~~             | 0.0100                   | NR                             | mg/L                  | ND         |          |                      |          |              |                  |  |
| TestAmerica Buffalo - 10<br>www.testamericainc.com    | Hazelwood        | I Drive An     | nherst, NY 1             | 14228 tel 716-6                | 691-2600 fax 7        | 16-691-799 | 1        |                      |          |              |                  |  |



| Turnkey/Benchmark<br>2558 Hamburg Turnpike | e, Suite 300     |                | Work Ord                | Work Order: RTH1168            |                        |         |          |                 |          | 08/20/10<br>09/02/10 11:10 |                   |
|--------------------------------------------|------------------|----------------|-------------------------|--------------------------------|------------------------|---------|----------|-----------------|----------|----------------------------|-------------------|
| Lackawanna, NY 14218                       |                  |                | Project: T<br>Project N | ecumseh - Railro<br>umber: TUR | oad Corridor<br>N-0060 |         |          |                 |          |                            |                   |
|                                            |                  |                | LA                      | BORATORY                       | QC DATA                |         |          |                 |          |                            |                   |
| Analyte                                    | Source<br>Result | Spike<br>Level | RL                      | MDL                            | Units                  | Result  | %<br>REC | % REC<br>Limits | %<br>RPD | RPD<br>Limit               | Data<br>Qualifier |
| TCLP Metals                                |                  |                |                         |                                |                        |         |          |                 |          |                            |                   |
| Blank Analyzed: 08/3                       | 1/10 (Lab Nun    | nber:10H1      | 873-BLK1, E             | Batch: 10H1873                 | 3)                     |         |          |                 |          |                            |                   |
| Barium                                     | •                |                | 0.0020                  | NR                             | mg/L                   | 0.0089  |          |                 |          |                            | В                 |
| Cadmium                                    |                  |                | 0.0010                  | NR                             | mg/L                   | ND      |          |                 |          |                            |                   |
| Chromium                                   |                  |                | 0.0040                  | NR                             | mg/L                   | 0.0065  |          |                 |          |                            | В                 |
| Lead                                       |                  |                | 0.0050                  | NR                             | mg/L                   | ND      |          |                 |          |                            |                   |
| Selenium                                   |                  |                | 0.0150                  | NR                             | mg/L                   | ND      |          |                 |          |                            |                   |
| Silver                                     |                  |                | 0.0030                  | NR                             | mg/L                   | ND      |          |                 |          |                            |                   |
| Blank Analyzed: 08/3                       | 1/10 (Lab Num    | nber:10H1      | 873-BLK2, E             | Batch: 10H1873                 | 3)                     |         |          |                 |          |                            |                   |
| Arsenic                                    |                  |                | 0.0100                  | NR                             | mg/L                   | ND      |          |                 |          |                            |                   |
| Barium                                     |                  |                | 0.0020                  | NR                             | mg/L                   | ND      |          |                 |          |                            |                   |
| Cadmium                                    |                  |                | 0.0010                  | NR                             | mg/L                   | ND      |          |                 |          |                            |                   |
| Chromium                                   |                  |                | 0.0040                  | NR                             | mg/L                   | ND      |          |                 |          |                            |                   |
| Lead                                       |                  |                | 0.0050                  | NR                             | mg/L                   | ND      |          |                 |          |                            |                   |
| Selenium                                   |                  |                | 0.0150                  | NR                             | mg/L                   | ND      |          |                 |          |                            |                   |
| Silver                                     |                  |                | 0.0030                  | NR                             | mg/L                   | ND      |          |                 |          |                            |                   |
| LCS Analyzed: 08/31/                       | /10 (Lab Numb    | er:10H187      | 73-BS1, Bat             | ch: 10H1873)                   |                        |         |          |                 |          |                            |                   |
| Arsenic                                    | -                | 1.00           | 0.0100                  | NR                             | mg/L                   | 1.08    | 108      | 80-120          |          |                            |                   |
| Barium                                     |                  | 1.00           | 0.0020                  | NR                             | mg/L                   | 1.00    | 100      | 80-120          |          |                            | В                 |
| Cadmium                                    |                  | 1.00           | 0.0010                  | NR                             | mg/L                   | 1.05    | 105      | 80-120          |          |                            |                   |
| Chromium                                   |                  | 1.00           | 0.0040                  | NR                             | mg/L                   | 1.01    | 101      | 80-120          |          |                            | В                 |
| Lead                                       |                  | 1.00           | 0.0050                  | NR                             | mg/L                   | 1.04    | 104      | 80-120          |          |                            |                   |
| Selenium                                   |                  | 1.00           | 0.0150                  | NR                             | mg/L                   | 1.07    | 107      | 80-120          |          |                            |                   |
| Silver                                     |                  | 1.00           | 0.0030                  | NR                             | mg/L                   | 1.03    | 103      | 80-120          |          |                            |                   |
| TCLP Metals                                |                  |                |                         |                                |                        |         |          |                 |          |                            |                   |
| Blank Analyzed: 08/2                       | 7/10 (Lab Num    | ber:10H1       | 920-BLK1, E             | Batch: 10H1920                 | ))                     |         |          |                 |          |                            |                   |
| Mercury                                    |                  |                | 0.0002                  | NR                             | mg/L                   | ND      |          |                 |          |                            |                   |
| Blank Analyzed: 08/2                       | 7/10 (Lab Num    | ber:10H1       | 920-BLK2, E             | latch: 10H1920                 | )                      |         |          |                 |          |                            |                   |
| Mercury                                    |                  |                | 0.0002                  | NR                             | mg/L                   | ND      |          |                 |          |                            |                   |
| LCS Analyzed: 08/27/                       | '10 (Lab Numb    | er:10H192      | 20-BS1, Bate            | :h: 10H1920)                   |                        |         |          |                 |          |                            |                   |
| Mercury                                    |                  | 0.00670        | 0.0002                  | NR                             | mg/L                   | 0.00730 | 109      | 80-120          |          |                            |                   |
| -                                          |                  |                |                         |                                | -                      |         |          |                 |          |                            |                   |

| Chain of<br>Custody Record                                                                          | Temperatura on Roceipr<br>Drinkino Water? Yes 🗆 No 🗹                                                            | <b>THE LEADER IN ENVIRONMENTAL TESTING</b>            |                          |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------|
|                                                                                                     | 12                                                                                                              | Date (2/2 - 1/2)                                      | Cheer of Crestory Number |
| S                                                                                                   | Area Cochestra                                                                                                  | Lat Runder                                            |                          |
|                                                                                                     |                                                                                                                 | Analysis (Attach list ii)<br>there are is near in the |                          |
| Parties Name and Location (State)                                                                   | Carrier Wayow Number                                                                                            |                                                       | -                        |
| TRUMA - MAIRON CUTNIDU.                                                                             | •                                                                                                               |                                                       | Special Instructional    |
| , r                                                                                                 | Mainter & Containers & Preservatives                                                                            |                                                       | Conditions of Receipt    |
| Sample I.D. No. and Description<br>(Compiners for each sample may be compined on one line)          | HORN<br>13H<br>EONAH<br>#05274<br>#05274<br>#05274<br>#05274<br>#05<br>7995                                     | 101<br>101<br>101                                     |                          |
| 0115118 N- 21701 - 07                                                                               | 1 1000 1 X                                                                                                      |                                                       |                          |
|                                                                                                     |                                                                                                                 |                                                       |                          |
| RA 1942 - E                                                                                         |                                                                                                                 |                                                       |                          |
| Ra - 7042 - W                                                                                       |                                                                                                                 |                                                       |                          |
| - 7P 412 -                                                                                          | 10001                                                                                                           |                                                       |                          |
|                                                                                                     |                                                                                                                 |                                                       |                          |
| Ra-10-32 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                       | 1130                                                                                                            | 2                                                     | -                        |
| RR-10 34 - 5                                                                                        | 1130                                                                                                            |                                                       |                          |
| Z TO                                                            |                                                                                                                 |                                                       |                          |
| R. R. Ju. y                                                                                         |                                                                                                                 |                                                       |                          |
| RP 10-30 BUTIN CURP .                                                                               |                                                                                                                 |                                                       |                          |
| R.a. 70-30 NLP CUMP IN                                                                              | 1130 1 1V 1V                                                                                                    |                                                       |                          |
| 🗍 Mar-Hezero 🗌 Ferrmedde 📋 Stah Imleru 🛄 Polscon B                                                  | Z LENTERONA BRANT TO CHANN Z CHANNER BY LAD                                                                     | [] Acomie For                                         | A the mark that function |
| Turn Actural Time Required<br>28 Hours  24 Hours  27 Days  21 Days                                  | The second se |                                                       |                          |
| Cont of the                                                                                         | X/20110 0700 1. Reprind By                                                                                      | Wyn/                                                  | 08-30-10 10:15           |
| 2. Roymussical at 1 12 - 1 - 1                                                                      | 10-10 11:40                                                                                                     | al marke                                              | Structure In 1010        |
| - 3. Hoursenfully                                                                                   |                                                                                                                 | 11 - 100                                              | 1981 Tané 1              |
| Conflicence                                                                                         |                                                                                                                 | 7                                                     |                          |
| DIGTHIBUTION: WAYTE - ROMINGET ID CHAIN AND REPORT CAMARY - STAYS WHIT DIE SANTOR. PINK - Flad CODY | life and the Sampak. Pilwit - Fait Copy                                                                         |                                                       |                          |

-

. . .



Analytical Report

Work Order: RTJ0521

Project Description Tecumseh - Railroad Corridor

For:

Tom Forbes

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

S.

Brian Fischer

Project Manager Brian.Fischer@testamericainc.com Wednesday, October 6, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTJ0521

Received: 10/01/10 Reported: 10/06/10 11:08

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

## TestAmerica Buffalo Current Certifications

## As of 08/16/20 10

| STATE          | Program                     | Cert # / Lab ID  |
|----------------|-----------------------------|------------------|
| Arkansas       | CWA, RCRA, SOIL             | 88-0686          |
| California*    | NELAP CWA, RCRA             | 01169CA          |
| Connecticut    | SDWA, CWA, RCRA, SOIL       | PH-0568          |
| Florida*       | NELAP CWA, RCRA             | E87672           |
| Georgia*       | SDWA,NELAP CWA, RCRA        | 956              |
| Illinois*      | NELAP SDWA, CWA, RCRA       | 200003           |
| lowa           | SW/CS                       | 374              |
| Kansas*        | NELAP SDWA, CWA, RCRA       | E-10187          |
| Kentucky       | SDWA                        | 90029            |
| Kentucky UST   | UST                         | 30               |
| Louisiana*     | NELAP CWA, RCRA             | 2031             |
| Maine          | SDWA, CWA                   | N Y0044          |
| Maryland       | SDWA                        | 294              |
| Massachusetts  | SDWA, CWA                   | M-N Y044         |
| Michigan       | SDWA                        | 9937             |
| Minnesota      | SDWA, CWA, RCRA             | 036-999-337      |
| New Hampshire* | NELAP SDWA, CWA             | 233701           |
| New Jersey*    | NELAP,SDWA, CWA, RCRA,      | N Y455           |
| New York*      | NELAP, AIR, SDWA, CWA, RCRA | 10026            |
| North Dakota   | CWA, RCRA                   | R-176            |
| Oklahoma       | CWA, RCRA                   | 9421             |
| Oregon*        | CWA, RCRA                   | N Y200003        |
| Pennsylvania*  | NELAP CWA,RCRA              | 68-00281         |
| Tennessee      | SDWA                        | 02970            |
| Texas*         | NELAP CWA, RCRA             | T104704412-08-TX |
| USDA           | FOREIGN SOIL PERMIT         | S-41579          |
| Virginia       | SDWA                        | 278              |
| Washington*    | NELAP CWA,RCRA              | C1677            |
| Wisconsin      | CWA, RCRA                   | 998310390        |
| West Virginia  | CWA, RCRA                   | 252              |

\*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parame ters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTJ0521

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

### CASE NARRATIVE

Received:

Reported:

10/01/10

10/06/10 11:08

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTJ0521

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

### DATA QUALIFIERS AND DEFINITIONS

MHA Due to high levels of analyte in the sample, the MS and /or MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).

NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

#### **ADDITIONAL COMMENTS**

Results are reported on a wet weight basis unless otherwise noted.

Received: 10/01/10 Reported: 10/06/10 11:08

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTJ0521

Received: 10/01/10 Reported: 10/06/10 11:08

|                       |                       | E               | Executive Su | ummary - Detecti | ions     |                |      |             |            |
|-----------------------|-----------------------|-----------------|--------------|------------------|----------|----------------|------|-------------|------------|
|                       | Sample                | Data            |              |                  | Dil      | Date           | Lab  |             |            |
| Analyte               | Result                | Qualifiers      | RL           | Units            | Fac      | Analyzed       | Tech | Batch       | Method     |
| Sample ID: RTJ0521-07 | 1 (RR TP-12 NC        | ORTH 35' - Soli | id)          | Samp             | led: 09  | /30/10 10:00   | Recv | /d: 10/01/1 | 0 12:30    |
| Total Metals by SW 84 | 6 Series Metho        | ods             |              |                  |          |                |      |             |            |
| Arsenic               | 246                   |                 | 2.7          | mg/kg dry        | 1.00     | 10/05/10 15:24 | DAN  | 10J0216     | 6010B      |
| General Chemistry Pa  | <u>rameters</u>       |                 |              |                  |          |                |      |             |            |
| Percent Solids        | 72                    |                 | 0.010        | %                | 1.00     | 10/04/10 14:36 | RNH  | 10J0170     | Dry Weight |
| Sample ID: RTJ0521-02 | 2 (RR TP-42 NC        | RTH 35' - Soli  | id)          | Samp             | led: 09/ | /30/10 11:45   | Recv | /d: 10/01/1 | 0 12:30    |
| Total Metals by SW 84 | <u>6 Series Metho</u> | ods             |              |                  |          |                |      |             |            |
| Arsenic               | 84.6                  |                 | 2.5          | mg/kg dry        | 1.00     | 10/05/10 15:52 | DAN  | 10J0216     | 6010B      |
| General Chemistry Pa  | <u>rameters</u>       |                 |              |                  |          |                |      |             |            |
| Percent Solids        | 80                    |                 | 0.010        | %                | 1.00     | 10/04/10 14:38 | RNH  | 10J0170     | Dry Weight |
| Sample ID: RTJ0521-03 | 3 (RR TP-42 SO        | UTH 35' - Soli  | d)           | Samp             | led: 09/ | 30/10 12:00    | Recv | /d: 10/01/1 | 0 12:30    |
| Total Metals by SW 84 | <u>6 Series Metho</u> | ds              |              |                  |          |                |      |             |            |
| Arsenic               | 372                   |                 | 3.1          | mg/kg dry        | 1.00     | 10/05/10 15:58 | DAN  | 10J0216     | 6010B      |
| General Chemistry Pa  | rameters              |                 |              |                  |          |                |      |             |            |
| Percent Solids        | 64                    |                 | 0.010        | %                | 1.00     | 10/04/10 14:40 | RNH  | 10J0170     | Dry Weight |



### Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

## Work Order: RTJ0521

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

## **Sample Summary**

| Sample Identification | Lab Number | Client Matrix | Date/Time<br>Sampled | Date/Time<br>Received | Sample<br>Qualifiers |
|-----------------------|------------|---------------|----------------------|-----------------------|----------------------|
| RR TP-12 NORTH 35'    | RTJ0521-01 | Solid         | 09/30/10 10:00       | 10/01/10 12:30        |                      |
| RR TP-42 NORTH 35'    | RTJ0521-02 | Solid         | 09/30/10 11:45       | 10/01/10 12:30        |                      |
| RR TP-42 SOUTH 35'    | RTJ0521-03 | Solid         | 09/30/10 12:00       | 10/01/10 12:30        |                      |

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Received: 10/01/10

10/06/10 11:08 Reported:

|                                               | Sample    | Data | Ana<br>RL                          | lytical Report<br>Units             | Dil | Date<br>Analvzed | Lab              |         |                            |
|-----------------------------------------------|-----------|------|------------------------------------|-------------------------------------|-----|------------------|------------------|---------|----------------------------|
| Lackawanna, NY 14218                          |           |      | Project: Tecums<br>Project Number: | eh - Railroad Corridor<br>TURN-0060 |     |                  |                  | <u></u> |                            |
| Turnkey/Benchmark<br>2558 Hamburg Turnpike, 3 | Suite 300 | ١    | Nork Order: RT                     | 10521                               |     |                  | Receiv<br>Report |         | 10/01/10<br>10/06/10 11:08 |

| Sample ID: RTJ0521-01 (RR TP-12 NORTH 35' - Solid) |                   |       | Samp      | Sampled: 09/30/10 10:00 |                |     |         | 0 12:30    |
|----------------------------------------------------|-------------------|-------|-----------|-------------------------|----------------|-----|---------|------------|
| Total Metals by SW 8                               | 46 Series Methods |       |           |                         |                |     |         |            |
| Arsenic                                            | 246               | 2.7   | mg/kg dry | 1.00                    | 10/05/10 15:24 | DAN | 10J0216 | 6010B      |
| General Chemistry P                                | arameters         |       |           |                         |                |     |         |            |
| Percent Solids                                     | 72                | 0.010 | %         | 1.00                    | 10/04/10 14:36 | RNH | 10J0170 | Dry Weight |



| Turnkey/Benchmark                |  |
|----------------------------------|--|
| 2558 Hamburg Turnpike, Suite 300 |  |
| Lackawanna, NY 14218             |  |

## Work Order: RTJ0521

Received: 10/01/10 Reported: 10/06/10 11:08

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

|                     |                  |                    | Α     | nalytical Report |            |                  |             |             |            |
|---------------------|------------------|--------------------|-------|------------------|------------|------------------|-------------|-------------|------------|
| Analyte             | Sample<br>Result | Data<br>Qualifiers | RL    | Units            | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTJ0521  | -02 (RR TP-42 NC | RTH 35' - Solid)   |       | Sam              | oled: 09/  | 30/10 11:45      | Recv        | rd: 10/01/1 | 0 12:30    |
| Total Metals by SW  | 846 Series Metho | ods                |       |                  |            |                  |             |             |            |
| Arsenic             | 84.6             |                    | 2.5   | mg/kg dry        | 1.00       | 10/05/10 15:52   | DAN         | 10J0216     | 6010B      |
| General Chemistry F | Parameters       |                    |       |                  |            |                  |             |             |            |
| Percent Solids      | 80               | (                  | 0.010 | %                | 1.00       | 10/04/10 14:38   | RNH         | 10J0170     | Dry Weight |



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

#### Work Order: RTJ0521

Received: 10/01/10 Reported: 10/06/10 11:08

| Analytical Report                                  |                  |                    |       |           |                                               |                  |             |         |            |  |
|----------------------------------------------------|------------------|--------------------|-------|-----------|-----------------------------------------------|------------------|-------------|---------|------------|--|
| Analyte                                            | Sample<br>Result | Data<br>Qualifiers | RL    | Units     | Dil<br>Fac                                    | Date<br>Analyzed | Lab<br>Tech | Batch   | Method     |  |
| Sample ID: RTJ0521-03 (RR TP-42 SOUTH 35' - Solid) |                  |                    |       | Sam       | Sampled: 09/30/10 12:00 Recvd: 10/01/10 12:30 |                  |             |         |            |  |
| Total Metals by SW 84                              | 6 Series Meth    | ods                |       |           |                                               |                  |             |         |            |  |
| Arsenic                                            | 372              |                    | 3.1   | mg/kg dry | 1.00                                          | 10/05/10 15:58   | DAN         | 10J0216 | 6010B      |  |
| General Chemistry Pa                               | rameters         |                    |       |           |                                               |                  |             |         |            |  |
| Percent Solids                                     | 64               |                    | 0.010 | %         | 1.00                                          | 10/04/10 14:40   | RNH         | 10J0170 | Dry Weight |  |



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

## Work Order: RTJ0521

Received:

10/01/10 10/06/10 11:08 Reported:

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

## SAMPLE EXTRACTION DATA

| Batch   | Lab Number                                                     | Wt/Vol<br>Extracte                                                                                                    | Units                                                                                                                                                                                                                                                                                                                                                                     | Extract<br>Volume                                                                                                                                                                                                                                                                                                                                                                                                                                   | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lab<br>Tech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Extraction Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10J0170 | RTJ0521-01                                                     | 10.00                                                                                                                 | g                                                                                                                                                                                                                                                                                                                                                                         | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                               | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/10 09:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dry Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10J0170 | RTJ0521-02                                                     | 10.00                                                                                                                 | g                                                                                                                                                                                                                                                                                                                                                                         | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                               | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/10 09:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dry Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10J0170 | RTJ0521-03                                                     | 10.00                                                                                                                 | g                                                                                                                                                                                                                                                                                                                                                                         | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                               | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/10 09:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dry Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Methods |                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10J0216 | RTJ0521-02                                                     | 0.50                                                                                                                  | g                                                                                                                                                                                                                                                                                                                                                                         | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                               | mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/04/10 16:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3050B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10J0216 | RTJ0521-03                                                     | 0.51                                                                                                                  | g                                                                                                                                                                                                                                                                                                                                                                         | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                               | mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/04/10 16:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3050B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10J0216 | RTJ0521-01                                                     | 0.52                                                                                                                  | g                                                                                                                                                                                                                                                                                                                                                                         | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                               | mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/04/10 16:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3050B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | 10J0170<br>10J0170<br>10J0170<br>Methods<br>10J0216<br>10J0216 | 10J0170 RTJ0521-01<br>10J0170 RTJ0521-02<br>10J0170 RTJ0521-03<br>Methods<br>10J0216 RTJ0521-02<br>10J0216 RTJ0521-03 | Batch         Lab Number         Extracte           10J0170         RTJ0521-01         10.00           10J0170         RTJ0521-02         10.00           10J0170         RTJ0521-03         10.00           10J0170         RTJ0521-03         10.00           Methods         0.00216         RTJ0521-02         0.50           10J0216         RTJ0521-03         0.51 | Batch         Lab Number         Extracte         Units           10J0170         RTJ0521-01         10.00         g           10J0170         RTJ0521-02         10.00         g           10J0170         RTJ0521-03         10.00         g           10J0170         RTJ0521-03         10.00         g           Methods         10J0216         RTJ0521-02         0.50         g           10J0216         RTJ0521-03         0.51         g | Batch         Lab Number         Extracte         Units         Volume           10J0170         RTJ0521-01         10.00         g         10.00           10J0170         RTJ0521-02         10.00         g         10.00           10J0170         RTJ0521-02         10.00         g         10.00           10J0170         RTJ0521-03         10.00         g         10.00           Methods         10J0216         RTJ0521-02         0.50         g         50.00           10J0216         RTJ0521-03         0.51         g         50.00 | Batch         Lab Number         Extracte         Units         Volume         Units           10J0170         RTJ0521-01         10.00         g         10.00         g           10J0170         RTJ0521-02         10.00         g         10.00         g           10J0170         RTJ0521-02         10.00         g         10.00         g           10J0170         RTJ0521-03         10.00         g         10.00         g           Methods         10J0216         RTJ0521-02         0.50         g         50.00         mL           10J0216         RTJ0521-03         0.51         g         50.00         mL | Batch         Lab Number         Extracte         Units         Volume         Units         Date Prepared           10J0170         RTJ0521-01         10.00         g         10.00         g         10/04/10         09:25           10J0170         RTJ0521-02         10.00         g         10.00         g         10/04/10         09:25           10J0170         RTJ0521-03         10.00         g         10.00         g         10/04/10         09:25           10J0170         RTJ0521-03         10.00         g         10.00         g         10/04/10         09:25           Methods              10/04/10         16:35           10J0216         RTJ0521-03         0.51         g         50.00         mL         10/04/10         16:35 | Batch         Lab Number         Extracte         Units         Volume         Units         Date Prepared         Tech           10J0170         RTJ0521-01         10.00         g         10.00         g         10/04/10         09:25         JRR           10J0170         RTJ0521-02         10.00         g         10.00         g         10/04/10         09:25         JRR           10J0170         RTJ0521-03         10.00         g         10.00         g         10/04/10         09:25         JRR           10J0170         RTJ0521-03         10.00         g         10.00         g         10/04/10         09:25         JRR           Methods         I         I         I         I         III         IIII         IIIIIIII         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

| Turnkey/Benchmark<br>2558 Hamburg Turnpike, S       | Suite 300        |                | Work Order: RTJ0                     | 521                 |        |          | Rece<br>Repo    |          | 10/01/<br>10/06/ | 10<br>10 11:08     |
|-----------------------------------------------------|------------------|----------------|--------------------------------------|---------------------|--------|----------|-----------------|----------|------------------|--------------------|
| Lackawanna, NY 14218                                |                  |                | Project: Tecumsel<br>Project Number: |                     | •      |          |                 |          |                  |                    |
|                                                     |                  |                | LABORA                               | TORY QC DATA        |        |          |                 |          |                  |                    |
| Analyte                                             | Source<br>Result | Spike<br>Level | RL                                   | Units               | Result | %<br>REC | % REC<br>Limits | %<br>RPD | RPD<br>Limit     | Data<br>Qualifiers |
| Total Metals by SW 846                              | Series Meth      | ods            |                                      |                     |        |          |                 |          |                  |                    |
| Blank Analyzed: 10/05/1                             | 10 (Lab Num      | nber:10J02     | 216-BLK1, Batch: 1                   | 0J0216)             |        |          |                 |          |                  |                    |
| Arsenic                                             |                  |                | 1.9                                  | mg/kg wet           | ND     |          |                 |          |                  |                    |
| Matrix Spike Analyzed:<br>QC Source Sample: RTJ0521 |                  | ab Numbe       | r:10J0216-MS1, Bat                   | ch: 10J0216)        |        |          |                 |          |                  |                    |
| Arsenic                                             | 246              | 54.5           | 2.7                                  | mg/kg dry           | 275    | 52       | 75-125          |          |                  | MHA                |
| Matrix Spike Dup Analy<br>QC Source Sample: RTJ0521 |                  | 0 (Lab Nu      | mber:10J0216-MSI                     | 01, Batch: 10J0216) |        |          |                 |          |                  |                    |
| Arsenic                                             | 246              | 54.1           | 2.7                                  | mg/kg dry           | 282    | 66       | 75-125          | 3        | 20               | MHA                |
| Reference Analyzed: 10                              | /05/10 (Lab      | Number:1       | 0J0216-SRM1, Bate                    | ch: 10J0216)        |        |          |                 |          |                  |                    |
| Arsenic                                             |                  | 138            | 2.0                                  | mg/kg wet           | 126    | 91       | 70.4-129.<br>7  |          |                  |                    |

| <del>ر</del>                                                                                                 | L               |                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,<br>,   | ر<br>د                                                  | Ĺ |  | , U | 745                                                           | <b>ر</b>           | •         | J          |                    | ,                                         |                                     | J                     | 1                                                                                                              | /<br>71867            | J                                                  |                                     | ر                      |
|--------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------|---|--|-----|---------------------------------------------------------------|--------------------|-----------|------------|--------------------|-------------------------------------------|-------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------|-------------------------------------|------------------------|
| DigtralBUTNON: MANTE - Sekonad to Client with Report, CANANY - Shiya with Net Securitie; Pitter - Peet Cityy | e until Further | A taken outstand of y Davis Time 3 Received By | 08: [1 at- 10- 0]   | 1. Remanistrat By Sun William William William State 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. 1000 1. | mer_30Ay | mable Skin Indiant Acison B Uthunown B Rakam To Chiever |   |  |     | ~ <u>na 10-41 men 20 1 1 120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u> | RO 7P42 Sugar 25 / | 2111 50 1 | 2 1/11/131 | 10-12 AURIH SD - 1 | RR 7P-12 NURTH 35, GISURO 1000 1 Y Y IIII | Marix Containers &<br>Preservatives | COTTING COTTING       | 1/2/2 12/2/2 12/2/2 12/2/2 12/2/2 12/2/2 12/2/2 12/2/2 12/2/2 12/2/2 12/2/2 12/2/2 12/2/2 12/2/2 12/2/2 12/2/2 | ~Ave                  | Citizent JUNN KY FAV RESTON hundulter JUN FUNDer 1 | ly Record                           | Temperature on Receipt |
| 4.200                                                                                                        | notice          | Think                                          | 08:2 10/1/10/ 12.30 | 10-01-10 11:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | or Adonths longer man i month)                          |   |  |     | Hald Small                                                    | TAT                | the state |            | Hans Statt         | JAT YOAY JAT                              | Conditions of Receipt               | Special Instructions/ |                                                                                                                | Annual Market Page of | Case 9/3 J/2 Chan a Cused Munder                   | THE LEADER IN ENVIRONMENTAL TESTING | <u>estAmerica</u>      |

.

·



Analytical Report

Work Order: RTJ0840

Project Description Tecumseh - Railroad Corridor

For:

Tom Forbes

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

S.

Brian Fischer Project Manager Brian.Fischer@testamericainc.com

Monday, October 11, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTJ0840

Received: 10/06/10 Reported: 10/11/10 12:25

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

## TestAmerica Buffalo Current Certifications

## As of 08/16/2010

| STATE          | Program                     | Cert # / Lab ID  |
|----------------|-----------------------------|------------------|
| Arkansas       | CWA, RCRA, SOIL             | 88-0686          |
| California*    | NELAP CWA, RCRA             | 01169CA          |
| Connecticut    | SDWA, CWA, RCRA, SOIL       | PH-0568          |
| Florida*       | NELAP CWA, RCRA             | E87672           |
| Georgia*       | SDWA,NELAP CWA, RCRA        | 956              |
| Illinois*      | NELAP SDWA, CWA, RCRA       | 200003           |
| lowa           | SW/CS                       | 374              |
| Kansas*        | NELAP SDWA, CWA, RCRA       | E-10187          |
| Kentucky       | SDWA                        | 90029            |
| Kentucky UST   | UST                         | 30               |
| Louisiana*     | NELAP CWA, RCRA             | 2031             |
| Maine          | SDWA, CWA                   | N Y0044          |
| Maryland       | SDWA                        | 294              |
| Massachusetts  | SDWA, CWA                   | M-N Y044         |
| Michigan       | SDWA                        | 9937             |
| Minnesota      | SDWA, CWA, RCRA             | 036-999-337      |
| New Hampshire* | NELAP SDWA, CWA             | 233701           |
| New Jersey*    | NELAP,SDWA, CWA, RCRA,      | N Y455           |
| New York*      | NELAP, AIR, SDWA, CWA, RCRA | 10026            |
| North Dakota   | CWA, RCRA                   | R-176            |
| Oklahoma       | CWA, RCRA                   | 9421             |
| Oregon*        | CWA, RCRA                   | N Y200003        |
| Pennsylvania*  | NELAP CWA,RCRA              | 68-00281         |
| Tennessee      | SDWA                        | 02970            |
| Texas*         | NELAP CWA, RCRA             | T104704412-08-TX |
| USDA           | FOREIGN SOIL PERMIT         | S-41579          |
| Virginia       | SDWA                        | 278              |
| Washington*    | NELAP CWA,RCRA              | C1677            |
| Wisconsin      | CWA, RCRA                   | 998310390        |
| West Virginia  | CWA, RCRA                   | 252              |

\*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parame ters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTJ0840

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

## **CASE NARRATIVE**

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

10/06/10

10/11/10 12:25

Received:

Reported:



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTJ0840

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

## DATA QUALIFIERS AND DEFINITIONS

NR

Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

## ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

Received: 10/06/10 Reported: 10/11/10 12:25

# <u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

## Work Order: RTJ0840

Received: 10/06/10 Reported: 10/11/10 12:25

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

|                       |                  | E                  | xecutive Su | mmary - Detecti | ons        |                  |             |             |            |
|-----------------------|------------------|--------------------|-------------|-----------------|------------|------------------|-------------|-------------|------------|
| Analyte               | Sample<br>Result | Data<br>Qualifiers | RL          | Units           | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTJ0840-0  | 1 (RR-TP-12 NC   | RTH 50' - Soli     | d)          | Samp            | led: 09/   | 30/10 10:30      | Recv        | rd: 10/06/1 | 0 17:42    |
| Total Metals by SW 8  | 46 Series Metho  | ds                 |             |                 |            |                  |             |             |            |
| Arsenic               | 162              |                    | 2.1         | mg/kg dry       | 1.00       | 10/11/10 10:43   | DAN         | 10J0559     | 6010B      |
| General Chemistry Pa  | arameters        |                    |             |                 |            |                  |             |             |            |
| Percent Solids        | 92               |                    | 0.010       | %               | 1.00       | 10/08/10 09:16   | RNH         | 10J0524     | Dry Weight |
| Sample ID: RTJ0840-0  | 3 (RR-TP-42 SO   | UTH 50' - Soli     | d)          | Samp            | led: 09/   | 30/10 12:30      | Recv        | rd: 10/06/1 | 0 17:42    |
| Total Metals by SW 84 | 46 Series Metho  | <u>ds</u>          |             |                 |            |                  |             |             |            |
| Arsenic               | 127              |                    | 2.2         | mg/kg dry       | 1.00       | 10/11/10 10:49   | DAN         | 10J0559     | 6010B      |
| General Chemistry Pa  | arameters        |                    |             |                 |            |                  |             |             |            |
| Percent Solids        | 88               |                    | 0.010       | %               | 1.00       | 10/08/10 09:18   | RNH         | 10J0524     | Dry Weight |



 THE LEADER IN ENVIRONMENTAL TESTING

 Turnkey/Benchmark
 Work Order: RTJ0840
 Received: 10/06/10

 2558 Hamburg Turnpike, Suite 300
 Reported: 10/11/10 12:25

 Lackawanna, NY 14218
 Project: Tecumseh - Railroad Corridor

 Project Number:
 TURN-0060

| Sample Identification | Lab Number | Client Matrix | Date/Time<br>Sampled | Date/Time<br>Received | Sample<br>Qualifiers |
|-----------------------|------------|---------------|----------------------|-----------------------|----------------------|
| RR-TP-12 NORTH 50'    | RTJ0840-01 | Solid         | 09/30/10 10:30       | 10/06/10 17:42        |                      |
| RR-TP-42 SOUTH 50'    | RTJ0840-03 | Solid         | 09/30/10 12:30       | 10/06/10 17:42        |                      |



**General Chemistry Parameters** 

Arsenic

Percent Solids

162

92

| Sample ID: RTJ0840                       | -01 (RR-TP-12 NC | ORTH 50' - Sol                        | id)                    | Samp      | oled: 09/3 | 30/10 10:30      | Recv        | d: 10/00 | 6/10 17:42                 |  |
|------------------------------------------|------------------|---------------------------------------|------------------------|-----------|------------|------------------|-------------|----------|----------------------------|--|
| Analyte                                  | Sample<br>Result | Data<br>Qualifiers                    | RL                     | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch    | Metho                      |  |
|                                          |                  | ۲                                     | roject Number:<br>Anal | turn-0060 |            |                  | <u></u>     |          |                            |  |
| Lackawanna, NY 142                       | -                | Project: Tecumseh - Railroad Corridor |                        |           |            |                  |             | icu.     |                            |  |
| Turnkey/Benchmark<br>2558 Hamburg Turnpi | ike Suite 300    | Work Order: RTJ0840                   |                        |           |            |                  |             |          | 10/06/10<br>10/11/10 12:25 |  |

mg/kg dry

%

1.00

1.00

2.1

0.010

10/11/10 10:43 DAN 10J0559

10/08/10 09:16 RNH 10J0524

6010B

Dry Weight

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com



| Analyte            | Result         | Qualifiers | RL             | Units                   | Fac | Analyzed | Tech | Batch | Method         |
|--------------------|----------------|------------|----------------|-------------------------|-----|----------|------|-------|----------------|
|                    | Sample         | Data       |                |                         | Dil | Date     | Lab  |       |                |
|                    |                |            | An             | alytical Report         |     |          |      |       |                |
|                    | 1 10 10 10 10  | F          | Project Numbe  | : TURN-0060             |     | -        |      |       |                |
| Lackawanna, NY 142 | 18             | F          | Project: Tecum | seh - Railroad Corridor |     |          |      |       |                |
| 2558 Hamburg Turnp | ike, Suite 300 |            |                |                         |     |          |      |       | 10/11/10 12:25 |
| Turnkey/Benchmark  |                | v          | Vork Order: R  | J0840                   |     |          | Rece | ived: | 10/06/10       |

| Total Metals by SW 8 | 846 Series Methods |       |           |      |                    |         |            |
|----------------------|--------------------|-------|-----------|------|--------------------|---------|------------|
| Arsenic              | 127                | 2.2   | mg/kg dry | 1.00 | 10/11/10 10:49 DAN | 10J0559 | 6010B      |
| General Chemistry P  | arameters          |       |           |      |                    |         |            |
| Percent Solids       | 88                 | 0.010 | %         | 1.00 | 10/08/10 09:18 RNH | 10J0524 | Dry Weight |

# TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

## Work Order: RTJ0840

Project: Tecumseh - Railroad Corridor TURN-0060 Project Number:

Received: 10/06/10 Reported:

10/11/10 12:25

| SAMPLE EXTRACTION DATA          |         |            |                    |       |                   |       |                |             |                   |  |
|---------------------------------|---------|------------|--------------------|-------|-------------------|-------|----------------|-------------|-------------------|--|
| Parameter                       | Batch   | Lab Number | Wt∕Vol<br>Extracte | Units | Extract<br>Volume | Units | Date Prepared  | Lab<br>Tech | Extraction Method |  |
| General Chemistry Parameters    |         |            |                    |       |                   |       |                |             |                   |  |
| Dry Weight                      | 10J0524 | RTJ0840-01 | 10.00              | g     | 10.00             | g     | 10/07/10 13:12 | CXM         | Dry Weight        |  |
| Dry Weight                      | 10J0524 | RTJ0840-03 | 10.00              | g     | 10.00             | g     | 10/07/10 13:12 | CXM         | Dry Weight        |  |
| Total Metals by SW 846 Series N | lethods |            |                    |       |                   |       |                |             |                   |  |
| 6010B                           | 10J0559 | RTJ0840-03 | 0.51               | g     | 50.00             | mL    | 10/08/10 12:30 | MDM         | 3050B             |  |
| 6010B                           | 10J0559 | RTJ0840-01 | 0.51               | g     | 50.00             | mL    | 10/08/10 12:30 | MDM         | 3050B             |  |



| Turnkey/Benchmarl<br>2558 Hamburg Turr |                   |             | Work Order: RTJ                     | 10840                               |        |     | Recei<br>Repo |     | 10/06/ <sup>-</sup><br>10/11/ | 10<br>10 12:25 |
|----------------------------------------|-------------------|-------------|-------------------------------------|-------------------------------------|--------|-----|---------------|-----|-------------------------------|----------------|
| Lackawanna, NY 14                      | •                 |             | Project: Tecumse<br>Project Number: | eh - Railroad Corridor<br>TURN-0060 |        |     |               |     |                               |                |
|                                        |                   |             | LABOR                               | ATORY QC DATA                       |        | ·   |               |     |                               |                |
|                                        | Source            | Spike       |                                     |                                     |        | %   | % REC         | %   | RPD                           | Data           |
| Analyte                                | Result            | Level       | RL                                  | Units                               | Result | REC | Limits        | RPD | Limit                         | Qualifiers     |
| Total Metals by S                      | W 846 Series Meth | <u>iods</u> |                                     |                                     |        |     |               |     |                               |                |
| Blank Analyzed: *                      | 10/11/10 (Lab Num | nber:10J05  | 59-BLK1, Batch:                     | 10J0559)                            |        |     |               |     |                               |                |
| Arsenic                                |                   |             | 2.0                                 | mg/kg wet                           | ND     |     |               |     |                               |                |
| Arsenic                                |                   |             |                                     |                                     |        |     |               |     |                               |                |
|                                        | ed: 10/11/10 (Lab | Number:1    | 0J0559-SRM1, Ba                     | tch: 10J0559)                       |        |     |               |     |                               |                |

|                                                           | ບ <b>ບ</b><br>                             |                               | ل ب<br>ارس ه | i u u<br>Heri | JJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
|-----------------------------------------------------------|--------------------------------------------|-------------------------------|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| CONNERSE AND THE REWARD OF CANADA CHARPES - DO NOR MARLYZ | A D TON D HONE D ELAN                      | Paradole Azzard Alexalization |              |               | 35 4/540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Myerium anticesion (Small) (14) 14/2/8<br>Myerium anticesion (Small)<br>Connections anticesion (Small)<br>Connections and Connection (Small)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y Env                            |
| e white Turniz while 4:200                                | C. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) |                               | HILL STAR    |               | Twitters are not the second se | The comment of the second structure of the second stru | Tanparalum on Parmix IESTAMERICO |



Analytical Report

Work Order: RTJ1379

Project Description Tecumseh - Railroad Corridor

For:

Tom Forbes

Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

S.

Brian Fischer

Project Manager Brian.Fischer@testamericainc.com Monday, October 18, 2010

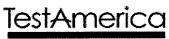
The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTJ1379

Received: 10/14/10 Reported: 10/18/10 16:41

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060


## TestAmerica Buffalo Current Certifications

## As of 08/16/2010

| STATE          | Program                     | Cert # / Lab ID  |
|----------------|-----------------------------|------------------|
| Arkansas       | CWA, RCRA, SOIL             | 88-0686          |
| California*    | NELAP CWA, RCRA             | 01169CA          |
| Connecticut    | SDWA, CWA, RCRA, SOIL       | PH-0568          |
| Florida*       | NELAP CWA, RCRA             | E87672           |
| Georgia*       | SDWA,NELAP CWA, RCRA        | 956              |
| Illinois*      | NELAP SDWA, CWA, RCRA       | 200003           |
| lowa           | SW/CS                       | 374              |
| Kansas*        | NELAP SDWA, CWA, RCRA       | E-10187          |
| Kentucky       | SDWA                        | 90029            |
| Kentucky UST   | UST                         | 30               |
| Louisiana*     | NELAP CWA, RCRA             | 2031             |
| Maine          | SDWA, CWA                   | N Y0044          |
| Maryland       | SDWA                        | 294              |
| Massachusetts  | SDWA, CWA                   | M-N Y044         |
| Michigan       | SDWA                        | 9937             |
| Minnesota      | SDWA, CWA, RCRA             | 036-999-337      |
| New Hampshire* | NELAP SDWA, CWA             | 233701           |
| New Jersey*    | NELAP,SDWA, CWA, RCRA,      | NY455            |
| New York*      | NELAP, AIR, SDWA, CWA, RCRA | 10026            |
| North Dakota   | CWA, RCRA                   | R-176            |
| Oklahoma       | CWA, RCRA                   | 9421             |
| Oregon*        | CWA, RCRA                   | N Y200003        |
| Pennsylvania*  | NELAP CWA,RCRA              | 68-00281         |
| Tennessee      | SDWA                        | 02970            |
| Texas*         | NELAP CWA, RCRA             | T104704412-08-TX |
| USDA           | FOREIGN SOIL PERMIT         | S-41579          |
| Virginia       | SDWA                        | 278              |
| Washington*    | NELAP CWA,RCRA              | C1677            |
| Wisconsin      | CWA, RCRA                   | 998310390        |
| West Virginia  | CWA, RCRA                   | 252              |

\*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parame ters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTJ1379

Received: 10/14/10 Reported: 10/18/10 16:41

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

## CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTJ1379

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060 Received: 10/14/10 Reported: 10/18/10 16:41

## DATA QUALIFIERS AND DEFINITIONS

NR

Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

## ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

# <u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

| Turnkey/Benchmark                |
|----------------------------------|
| 2558 Hamburg Turnpike, Suite 300 |
| Lackawanna, NY 14218             |

Work Order: RTJ1379

Received: 10/14/10 Reported: 10/18/10 16:41

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

| esult Qu<br>-12 75' NO<br><u>Methods</u> | Executive Su<br>Data<br>alifiers RL<br>RTH - Solid) | mmary - Detecti<br>Units<br>Samp                                       | Dil<br>Fac                                                                                                                                                                                                                                         | Date<br>Analyzed<br>13/10 10:25                                                                                                                                                                                 | Lab<br>Tech<br>Recy                                                                                                                                                                                                                                                                                                     | Batch<br>/d: 10/14/1                                                                                                                                                                                                                                                                                                                                | Method                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| esult Qu<br>-12 75' NO<br><u>Methods</u> | alifiers RL                                         |                                                                        | Fac                                                                                                                                                                                                                                                | Analyzed                                                                                                                                                                                                        | Tech                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| -12 75' NO<br>Methods                    |                                                     |                                                                        |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Methods                                  | RTH - Solid)                                        | Samp                                                                   | led: 10/                                                                                                                                                                                                                                           | 13/10 10:25                                                                                                                                                                                                     | Recy                                                                                                                                                                                                                                                                                                                    | d- 10/14/1                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                          |                                                     |                                                                        | olid) Sampled: 10/13/10 10:25 Rec                                                                                                                                                                                                                  |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                          |                                                     |                                                                        |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 7.9                                      | 2.4                                                 | mg/kg dry                                                              | 1.00                                                                                                                                                                                                                                               | 10/18/10 11:55                                                                                                                                                                                                  | DAN                                                                                                                                                                                                                                                                                                                     | 10J1289                                                                                                                                                                                                                                                                                                                                             | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| <u>i</u>                                 |                                                     |                                                                        |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 80                                       | 0.010                                               | %                                                                      | 1.00                                                                                                                                                                                                                                               | 10/16/10 03:06                                                                                                                                                                                                  | K.V                                                                                                                                                                                                                                                                                                                     | 10J1285                                                                                                                                                                                                                                                                                                                                             | Dry Weight                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| -42 75' SO                               | UTH - Solid)                                        | Samp                                                                   | led: 10/                                                                                                                                                                                                                                           | 13/10 09:45                                                                                                                                                                                                     | Recv                                                                                                                                                                                                                                                                                                                    | /d: 10/14/1                                                                                                                                                                                                                                                                                                                                         | 0 13:05                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Methods                                  |                                                     |                                                                        |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1.8                                      | 2.3                                                 | mg/kg dry                                                              | 1.00                                                                                                                                                                                                                                               | 10/18/10 12:00                                                                                                                                                                                                  | DAN                                                                                                                                                                                                                                                                                                                     | 10J1289                                                                                                                                                                                                                                                                                                                                             | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 5                                        |                                                     |                                                                        |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 87                                       | 0.010                                               | %                                                                      | 1.00                                                                                                                                                                                                                                               | 10/16/10 03:08                                                                                                                                                                                                  | K.V                                                                                                                                                                                                                                                                                                                     | 10J1285                                                                                                                                                                                                                                                                                                                                             | Dry Weight                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                          | 87.9<br><u>5</u><br>80                              | 5 0.010<br><b>2-42 75' SOUTH - Solid)</b><br>5 Methods<br>1.8 2.3<br>5 | 2.4     mg/kg dry       \$     80     0.010     %       \$     9     2.4     Mg/kg dry       \$     80     0.010     %       \$     9     42 75' SOUTH - Solid)     Samp       \$     Methods     1.8     2.3       \$     9     2.3     mg/kg dry | 2.4     mg/kg dry     1.00       \$     80     0.010     %     1.00       \$     9     42 75' SOUTH - Solid)     Sampled:     10/       \$     Methods     1.00       \$     1.8     2.3     mg/kg dry     1.00 | S7.9     2.4     mg/kg dry     1.00     10/18/10     11:55       S     S     S     S       80     0.010     %     1.00     10/16/10     03:06       P-42     75' SOUTH - Solid)     Sampled:     10/13/10     09:45       Methods     2.3     mg/kg dry     1.00     10/18/10     12:00       S     S     S     S     S | S7.9     2.4     mg/kg dry     1.00     10/18/10     11:55     DAN       S     B0     0.010     %     1.00     10/16/10     03:06     K.V       P-42     75' SOUTH - Solid)     Sampled:     10/13/10     09:45     Record       6     Methods     1.00     10/18/10     12:00     DAN       5     Sampled:     1.00     10/18/10     12:00     DAN | S7.9     2.4     mg/kg dry     1.00     10/18/10     11:55     DAN     10J1289       S     80     0.010     %     1.00     10/16/10     03:06     K.V     10J1285       P-42     75' SOUTH - Solid)     Sampled:     10/13/10     09:45     Recvd:     10/14/10       S     Methods     1.00     10/18/10     12:00     DAN     10J1289       S     2.3     mg/kg dry     1.00     10/18/10     12:00     DAN     10J1289 |  |



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

## Work Order: RTJ1379

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

## **Sample Summary**

| Sample Identification | Lab Number | Client Matrix | Date/Time<br>Sampled | Date/Time<br>Received | Sample<br>Qualifiers |
|-----------------------|------------|---------------|----------------------|-----------------------|----------------------|
| RR-TP-12 75' NORTH    | RTJ1379-01 | Solid         | 10/13/10 10:25       | 10/14/10 13:05        |                      |
| RR-TP-42 75' SOUTH    | RTJ1379-02 | Solid         | 10/13/10 09:45       | 10/14/10 13:05        |                      |

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

10/14/10 Received:

Reported:

10/18/10 16:41



| Turnkey/Benchmark                |
|----------------------------------|
| 2558 Hamburg Turnpike, Suite 300 |
| Lackawanna, NY 14218             |

## Work Order: RTJ1379

Received: 10/14/10 Reported: 10/18/10 16:41

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

|                    |                  |                    | Analy | tical Report |            |                  |             |             |            |
|--------------------|------------------|--------------------|-------|--------------|------------|------------------|-------------|-------------|------------|
| Analyte            | Sample<br>Result | Data<br>Qualifiers | RL    | Units        | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |
| Sample ID: RTJ1379 | -01 (RR-TP-12 75 | ' NORTH - Solid    | )     | Samp         | led: 10/   | 13/10 10:25      | Recv        | /d: 10/14/1 | 0 13:05    |
| Total Metals by SW | 846 Series Metho | ods                |       |              |            |                  |             |             |            |
| Arsenic            | 87.9             |                    | 2.4   | mg/kg dry    | 1.00       | 10/18/10 11:55   | DAN         | 10J1289     | 6010B      |
| General Chemistry  | Parameters       |                    |       |              |            |                  |             |             |            |
| Percent Solids     | 80               |                    | 0.010 | %            | 1.00       | 10/16/10 03:06   | K.V         | 10J1285     | Dry Weight |

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com



## Work Order: RTJ1379 Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Received: 10/14/10 10/18/10 16:41 Reported:

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

| Analytical Report     |                  |                    |       |           |            |                  |             |             |            |  |  |  |
|-----------------------|------------------|--------------------|-------|-----------|------------|------------------|-------------|-------------|------------|--|--|--|
| Analyte               | Sample<br>Result | Data<br>Qualifiers | RL    | Units     | Dil<br>Fac | Date<br>Analyzed | Lab<br>Tech | Batch       | Method     |  |  |  |
| Sample ID: RTJ1379-0  | 2 (RR-TP-42 75   | ' SOUTH - Sol      | id)   | Samp      | oled: 10/  | 13/10 09:45      | Recv        | vd: 10/14/' | 10 13:05   |  |  |  |
| Total Metals by SW 84 | 46 Series Metho  | ods                |       |           |            |                  |             |             |            |  |  |  |
| Arsenic               | 71.8             |                    | 2.3   | mg/kg dry | 1.00       | 10/18/10 12:00   | DAN         | 10J1289     | 6010B      |  |  |  |
| General Chemistry Pa  | arameters        |                    |       |           |            |                  |             |             | <b>5</b>   |  |  |  |
| Percent Solids        | 87               |                    | 0.010 | %         | 1.00       | 10/16/10 03:08   | K.V         | 10J1285     | Dry Weight |  |  |  |



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

## Work Order: RTJ1379

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060

### Received: 10/14/10 Reported:

10/18/10 16:41

### SAMPLE EXTRACTION DATA Wt/Vol Extract Lab Volume Tech Extraction Method Parameter Extracte Units Units Date Prepared Batch Lab Number **General Chemistry Parameters** Dry Weight 10/15/10 10:12 CXM 10J1285 RTJ1379-01 10.00 10.00 g Dry Weight g Dry Weight RTJ1379-02 10.00 10.00 g 10/15/10 10:12 CXM Dry Weight 10J1285 g Total Metals by SW 846 Series Methods 10/15/10 11:40 MDM 3050B 6010B 10J1289 RTJ1379-02 0.50 g 50.00 mL 3050B 10/15/10 11:40 MDM 10J1289 50.00 mL 6010B RTJ1379-01 0.51 g



Turnkey/Benchmark 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTJ1379

Project: Tecumseh - Railroad Corridor Project Number: TURN-0060 Received: 10/14/10 Reported: 10/18/10 16:41

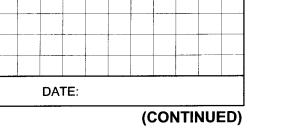
LABORATORY QC DATA Source Spike % % REC % RPD Data RL Result Level Units Result REC Limits RPD Limit Qualifiers Analyte Total Metals by SW 846 Series Methods Blank Analyzed: 10/18/10 (Lab Number:10J1289-BLK1, Batch: 10J1289) ND 2.0 mg/kg wet Arsenic Reference Analyzed: 10/18/10 (Lab Number:10J1289-SRM1, Batch: 10J1289)

Arsenic 138 2.0 mg/kg wet 127 92 70.4-129. 7

| Chain of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Temperarure on Receipt                      | TestAmerica                                        |                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|------------------------------------------------|
| Custody Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drinking Water? Yes 🗆 No 🗹                  | THE LEADER IN ENVIRONMENTAL TESTING                |                                                |
| Committee Free Restores Ices 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             | 12418 / 01-13-10 Chai                              | 178240                                         |
| LSTR HAmbur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Taleptone Number (Area Coce) Far Number     | ' 0 <u>5 8</u> 3                                   | ge of <u></u>                                  |
| City 12 FTAIL State 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | La DUDA 2 120 Contact                       | Ariatysis (Attach list li<br>more space is needed) |                                                |
| ଧ୍                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carmier Wayther Number                      | A( Xwic                                            | Special Instructions/<br>Conditions of Receipt |
| Sample I.D. No. and Description<br>Containers for each sample may be combined on one line) Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2010 200 200 200 200 200 200 200 200 200    | у мови<br>ул ули<br>удур<br>удур                   |                                                |
| · 12 25 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |                                                    |                                                |
| $\frac{1}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{1}{1000}$                            |                                                    | - And Wall                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                                                    |                                                |
| K. T.D-41. 12 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /with 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                    | * Han) Can old                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                                                    |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                                                    |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                                                    | !                                              |
| -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                                    |                                                |
| Possobe Hazard Konnication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cample Disposed                             |                                                    | L L -L                                         |
| Required<br>48 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dame 48 hp.                                 | 1/ //                                              |                                                |
| 1. Abilingulations By and a second seco | (0-1 2-10 1200 1, Received of               | W m cl                                             | 10-14-10 12:30                                 |
| 2. Promoniantes of 11 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | les three is a                                     | 2                                              |
| contract How Ander To Mr. Matthew Multiple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | antipe many e will fulmer                   | r note                                             |                                                |
| DISTRIBUTION: NHATE - Relumed to Clear with Hepory. Californ - Slops with the Sample, Plant, Held Utor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oga alith the Sample. Picki : read City     | $(1^{0})$                                          | •<br>!<br>[                                    |

# APPENDIX D

# **PROJECT DOCUMENTATION FORMS**






| ဗ     | DATE  |    |  |
|-------|-------|----|--|
| ורא ר | NO.   |    |  |
| DAILY | SHEET | OF |  |

# FIELD ACTIVITY DAILY LOG

| PRC                          | JECT  | NAME:   |       |  |        |     | -    |                            |     | PR       | OJE  | СТІ  | NO. |     |    |     |     |          |    | 5   |       |     |   |          |
|------------------------------|-------|---------|-------|--|--------|-----|------|----------------------------|-----|----------|------|------|-----|-----|----|-----|-----|----------|----|-----|-------|-----|---|----------|
| <u> </u>                     |       | LOCAT   |       |  |        |     |      |                            |     | <u> </u> |      |      | CLI | ENT | :  |     |     |          |    |     |       |     |   |          |
| FIEL                         |       | TIVITY: |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
| DES                          | SCRIP |         | DAIL  |  | VITIES | AND | EVEN | NTS:                       |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              | TIM   | IE      |       |  |        |     |      |                            |     | C        | DESC | CRIF | ртю | N   |    |     |     |          |    |     | ,     |     |   | ,        |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              | :     |         |       |  |        |     |      |                            | -   |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          | 1    |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      | -                          |     |          |      |      | 1   |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              | -     |         | -     |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       | ++      |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    | -   |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     | 1        |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            | -   |          |      | _    |     |     |    |     |     | 1        |    |     |       |     |   |          |
|                              |       | -       |       |  |        |     |      | -                          |     |          |      |      |     |     |    |     |     | 1        |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     | <u> </u> |    |     |       |     |   | 1        |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     | 1   |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     | 1        |    |     |       |     |   |          |
| VISI                         | TORS  | ON SIT  | E:    |  |        | 1   |      |                            | ANG |          |      |      |     |     |    |     |     |          |    |     |       |     |   | <u> </u> |
|                              |       |         |       |  |        |     |      | _от                        | HER | SP       | ECIA | AL C | ORD | ERS | AN | DIN | 1PO | RTA      | NT | DEC | CISIC | ONS | • |          |
|                              |       |         |       |  |        |     |      | _                          |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
| WEATHER CONDITIONS:<br>A.M.: |       |         |       |  |        |     |      | IMPORTANT TELEPHONE CALLS: |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
| P.M.:                        |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
|                              |       |         |       |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
| PER                          | SONN  | EL ON   | SITE: |  |        |     |      |                            |     |          |      |      |     |     |    |     |     |          |    |     |       |     |   |          |
| SIG                          | NATUF | RE      |       |  |        |     |      |                            |     |          |      |      |     |     |    | DA  | TE: |          |    |     |       |     |   |          |



|     |     |      |     |     |     |    |     |          |     |    |     |     |     |   |          |    |            | FII          | EL    | D | AC  | TI       | VI | ٢Y | DA | ١L | Y | LO | G |
|-----|-----|------|-----|-----|-----|----|-----|----------|-----|----|-----|-----|-----|---|----------|----|------------|--------------|-------|---|-----|----------|----|----|----|----|---|----|---|
| PR  | OJE | СТ   | NAN | /E: |     |    |     |          |     |    |     |     |     |   |          |    |            | 1            | OJE   |   |     |          |    |    |    |    |   |    |   |
| DE  | SCF | RIPT | ION | OF  | DAI | LY | АСТ | IVIT     | IES | AN | DE\ | /EN | TS: |   |          |    |            | , <b>I</b> , |       |   |     | <u> </u> |    |    |    |    |   |    |   |
|     |     | тім  |     |     | Γ   |    |     |          |     |    |     |     |     |   | C        | ES | CRIF       | PTIO         | N     |   |     |          | ċ  |    |    |    |   |    |   |
|     |     |      |     |     | 1   |    | Τ   |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     | 1   |      |     |     | 1   | 1  | -   |          |     | 1  |     |     |     |   |          |    | -          |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     | 1  |     |          | 1   |    |     | 1   | -   |   |          |    | $\uparrow$ | -            |       | - |     | +        |    |    |    |    |   |    |   |
|     |     |      |     |     |     | 1  |     |          |     | -  |     | 1   | +   | - |          |    | -          |              |       |   |     |          |    | 1  |    |    |   |    |   |
|     | -   | 1    |     | -   |     |    |     |          |     |    |     | +   |     |   |          |    |            |              |       |   |     | [        |    |    |    |    |   |    |   |
|     | +   | +    | +   |     |     |    |     |          |     |    |     | +   |     | + |          |    | -          |              |       |   |     | <u> </u> |    |    |    |    |   |    |   |
|     | -   |      | +   |     |     |    | +   |          |     |    |     | +   |     |   |          |    |            | -            |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      | +   |     |     | -  |     |          |     |    |     | _   |     | + |          |    | <u> </u>   |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     | -    |     |     |     | +  |     |          |     |    |     |     |     |   | -        |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     | -   |      |     | -   |     |    |     |          |     |    |     | +   |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          | +   |    |     |     |     |   |          | -  |            | ļ            |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     | +  |     |          |     |    |     |     |     | - | <u> </u> |    | +          | -            | :<br> |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     | -   |   |          | -  |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     | -  |     |          |     |    |     |     | -   |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      | -   |     |     |    |     |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     | -   |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    | +   |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     | -   |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     |     |   |          |    | -          |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     | -   |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     | <u> </u> |     |    |     | ļ   |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     | L   |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     | ļ        |     |    |     |     | ļ   |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    | L |
|     |     |      |     |     |     |    | ļ   |          | ļ   |    |     |     |     |   | ļ        |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     | L        |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
|     |     |      |     |     |     |    |     |          |     |    |     |     |     |   |          |    |            |              |       |   |     |          |    |    |    |    |   |    |   |
| SIG |     | TUR  | E   |     |     |    |     |          |     |    |     |     |     |   |          |    |            |              |       |   | DAT | re:      |    |    |    |    |   |    |   |



| 00  | DATE         |    |
|-----|--------------|----|
| ΓΛΓ | NO.<br>SHEET |    |
| DA  | SHEET        | OF |



| Ō       | DATE  |    |  |
|---------|-------|----|--|
| DAILY L | NO.   |    |  |
| DA      | SHEET | OF |  |

# FIELD ACTIVITY DAILY LOG

| PROJECT NAME:                                   |                                               |          |          |              |                                      |                                 |                                  |                              |     | PROJECT NO. |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|-------------------------------------------------|-----------------------------------------------|----------|----------|--------------|--------------------------------------|---------------------------------|----------------------------------|------------------------------|-----|-------------|----------|----------------------------------------------------------------|------------------------------------|------|-------------------------------|-----------------------------|--------|----------|-----------------------------------------------------|----------|----|-------|-----|-------|-------|---|---|-----------------------------------------------|
| DE                                              | SCF                                           | RIPT     | ION      | OF           | DAI                                  | LY                              | ACT                              | IVIT                         | IES | ANI         | D EV     | /EN                                                            | TS:                                |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               | ТІМІ     | E        |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      | 0                             | DES                         | CRIF   | PTIC     | N                                                   |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 | -                                |                              |     |             |          |                                                                |                                    |      | -                             |                             |        |          |                                                     |          | 1  |       |     | 1     | -     |   |   |                                               |
|                                                 |                                               |          | <u> </u> |              |                                      | -                               |                                  |                              | -   |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     | -        |    | +     | +   |       |       |   |   |                                               |
|                                                 |                                               | ļ        |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               | -                           |        | <u> </u> |                                                     |          | -  |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          | Γ  |       |     |       |       |   |   |                                               |
|                                                 | +                                             |          |          |              |                                      | 1                               | +                                |                              | +   |             |          |                                                                |                                    | +    |                               |                             |        |          |                                                     |          | -  | -     |     | +     |       | 1 |   |                                               |
|                                                 | -                                             |          |          |              |                                      |                                 |                                  |                              | +   |             |          |                                                                |                                    |      | +                             |                             |        |          |                                                     |          |    |       |     |       | +     |   |   |                                               |
|                                                 |                                               | ļ        |          |              |                                      |                                 | <u> </u>                         |                              |     | ļ           |          |                                                                |                                    |      |                               |                             |        | <u> </u> |                                                     |          | ļ  | ļ     |     |       |       | ļ |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          | -            |                                      | -                               |                                  | +                            |     |             |          |                                                                | +                                  |      |                               |                             |        | · · ·    |                                                     | +        |    |       | 1   |       |       | + | + |                                               |
|                                                 |                                               | -        |          |              |                                      |                                 |                                  |                              |     |             |          | +                                                              | +                                  |      |                               |                             | -      |          |                                                     |          |    |       |     | -     |       | + |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               | ļ                           |        | ļ        | ļ                                                   |          |    | -     |     |       |       |   |   | <u>                                      </u> |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          |              |                                      | +                               | +                                |                              |     |             | +        | -                                                              |                                    |      |                               | <u> </u>                    | 1      | -        |                                                     |          |    |       |     |       |       | + |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              | -   | <u> </u>    |          |                                                                |                                    |      |                               |                             | -      |          |                                                     |          |    |       | -   |       |       |   |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       | L   | -     |       | ļ |   |                                               |
|                                                 |                                               |          |          |              |                                      | Ţ                               |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          | +            |                                      |                                 |                                  |                              |     |             |          | -                                                              |                                    | +    |                               |                             |        | 1        |                                                     | 1        |    |       |     |       |       |   |   |                                               |
|                                                 | <u> </u>                                      |          |          | +            | <u> </u>                             |                                 |                                  | -                            |     |             | -        |                                                                |                                    |      |                               | +                           |        |          |                                                     |          |    |       | -   |       | +     | + |   | +                                             |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             | -        |                                                                | -                                  |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 | +                                |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               | <u> </u> |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                | -                                  |      |                               |                             |        |          |                                                     | -        |    | +     | -   |       |       | - |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 | i                                |                              |     | L           |          | <u> </u>                                                       | ļ                                  |      |                               | ļ                           |        |          | -                                                   |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
| RE                                              | FER                                           | ENC      | CED      | PR           | OJE                                  | СТІ                             | FIEL                             | D F                          | ORM | IS:         |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               |          |          |              |                                      |                                 |                                  |                              |     |             |          | Imp                                                            | acted                              | Soil | Exca                          | vatio                       | n Log  |          |                                                     |          |    | Soil  | Gas | Surv  | ey Lo | g |   |                                               |
|                                                 | Aquifer Test Data Sheet Chain-of-Custody Form |          |          |              |                                      |                                 | Impacted Soil Transportation Log |                              |     |             |          |                                                                |                                    |      | Step-Drawdown Test Data Sheet |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 | Construction Sample Summary Log               |          |          |              |                                      | Monitoring Well Inspection Form |                                  |                              |     |             |          |                                                                |                                    |      | Surv                          | /ey E                       | levat  | ion L    | og                                                  |          |    |       |     |       |       |   |   |                                               |
|                                                 | Corrective Measures Report                    |          |          |              |                                      | Nuclear Densitometer Field Log  |                                  |                              |     |             |          |                                                                |                                    | Tail | gate                          | Safet                       | у Ме   | eting    | Form                                                | <u>ا</u> |    |       |     |       |       |   |   |                                               |
|                                                 | Daily Drilling Report                         |          |          |              |                                      | Photographic Log                |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             | ation/ |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 | Drilling Safety Checklist                     |          |          |              |                                      | Pipe Leakage Testing Log        |                                  |                              |     |             |          |                                                                | Ц                                  | Und  | ergro                         | ound/                       | Over   | head     | Utility                                             | y Check  |    |       |     |       |       |   |   |                                               |
| Equipment Calibration Log                       |                                               |          |          |              | Post-Closure Field Inspection Report |                                 |                                  |                              |     |             |          | 닏                                                              |                                    |      | Log                           |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
|                                                 | Field Borehole Log                            |          |          |              |                                      |                                 | 닏                                | Pressure Packer Testing Log  |     |             |          |                                                                |                                    |      | Water Level Monitoring Record |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
| Field Borehole/Monitoring Well Installation Log |                                               |          |          |              |                                      | Problem Identification Report   |                                  |                              |     |             |          |                                                                | Water Quality Field Collection Log |      |                               |                             |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
| 片                                               | Field Investigation Report                    |          |          |              |                                      |                                 | H                                | Real-Time Air Monitoring Log |     |             |          |                                                                |                                    |      |                               | Water Sample Collection Log |        |          |                                                     |          |    |       |     |       |       |   |   |                                               |
| 片                                               |                                               |          |          | t Log        |                                      |                                 |                                  |                              |     |             | ╠╬       | Record of Telecom Meeting                                      |                                    |      |                               |                             |        |          | Well Abandonment/Decomm. Log Well Completion Detail |          |    |       |     |       |       |   |   |                                               |
| <u> </u>                                        |                                               |          | _        |              | tion L                               |                                 |                                  | 1.07                         |     |             | ╠╬       | Sample Summary Collection Log                                  |                                    |      |                               |                             |        |          | H                                                   | vvel     |    | pieti |     | stall |       |   |   |                                               |
| H                                               |                                               |          |          |              | ient a                               | ina P                           | urge                             | Log                          |     |             | H        | Sediment Sample Collection Log                                 |                                    |      |                               |                             |        |          |                                                     | ┟┤┤      |    |       |     |       |       |   |   |                                               |
| ⊢                                               |                                               | Work     |          | nit<br>r Log |                                      | _                               |                                  |                              |     |             | H        | Seep Sample Collection Log Seepage Meter Sample Collection Log |                                    |      |                               |                             |        |          | H                                                   |          |    |       |     |       |       |   |   |                                               |
|                                                 |                                               | 001      | anic     | LUY          |                                      | _                               |                                  |                              |     |             | <u> </u> | 000                                                            | 90                                 |      |                               |                             |        | 2.011    | 9                                                   |          |    |       |     |       |       |   |   |                                               |
| SIG                                             | <b>NA</b>                                     | TUR      | Е        |              |                                      |                                 |                                  |                              |     |             |          |                                                                |                                    |      |                               |                             |        |          |                                                     |          | DA | TE:   |     |       |       |   |   |                                               |



| g  | DATE       |    |  |
|----|------------|----|--|
|    | REPORT NO. |    |  |
| DA | PAGE       | OF |  |

| Date:                                                    | PROBLEM IDENTIFICATION REPORT |
|----------------------------------------------------------|-------------------------------|
| Project:                                                 |                               |
| Job No:                                                  | WEATHER CONDITIONS:           |
| Location:                                                | Ambient Air Temp A.M.:        |
| CQA Monitor(s):                                          | Ambient Air Temp P.M.:        |
| Client:                                                  | Wind Direction:               |
| Contractor:                                              | Wind Speed:                   |
| Contractor's Supervisor:                                 | Precipitation:                |
|                                                          |                               |
| Problem Description:                                     |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
| Problem Location (reference test location, sketch on bac | k of form as appropriate):    |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
| Problem Causes:                                          |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
| Suggested Corrective Measures or Variances:              |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          |                               |
|                                                          | or Variance Log No.           |
| Approvals (initial):                                     |                               |
|                                                          |                               |
| CQA Engineer:                                            |                               |
| Project Manager:                                         |                               |
|                                                          |                               |
|                                                          |                               |

Signed:

## TURNKEY ENVIRONMENTAL RESTORATION, LLC

| ő     | DATE     |    |
|-------|----------|----|
| LY L  | REPORT N | D. |
| DAILY | PAGE     | OF |

| CORRECTIVE MEASURES REPORT |  |  |  |  |  |
|----------------------------|--|--|--|--|--|
|                            |  |  |  |  |  |
| WEATHER CONDITIONS:        |  |  |  |  |  |
| Ambient Air Temp A.M.:     |  |  |  |  |  |
| Ambient Air Temp P.M.:     |  |  |  |  |  |
| Wind Direction:            |  |  |  |  |  |
| Wind Speed:                |  |  |  |  |  |
| Precipitation:             |  |  |  |  |  |
|                            |  |  |  |  |  |

Corrective Measures Undertaken (reference Problem Identification Report No.) **Retesing Location:** Suggested Method of Minimizing Re-Occurrence: Approvals (initial): CQA Engineer: Project Manager:

Signed:

# APPENDIX E

## SITE HEALTH AND SAFETY PLAN AND Community Air Monitoring Plan



# Site-Wide Health and Safety Plan (HASP)

Tecumseh Redevelopment Site Lackawanna, New York

April 2010

0071-007-350

Prepared For:

Tecumseh Redevelopment Inc. Richfield, Ohio

Prepared By:





2558 Hamburg Tumpike, Suite 300, Buffalo, New York | phone: (716) 856-0599 | fax: (716) 856-0583

# SITE HEALTH AND SAFETY PLAN for BROWNFIELD CLEANUP PROGRAM

TECUMSEH REDEVELOPMENT SITE LACKAWANNA, NEW YORK

April 2010

0071-007-350

## TECUMSEH REDEVELOPMENT SITE SITE-WIDE HEALTH AND SAFETY PLAN

## ACKNOWLEDGEMENT

\_\_\_\_\_

## Plan Reviewed by (initial):

Corporate Health and Safety Director:

Project Manager:

Designated Site Safety and Health Officer:

## Acknowledgement:

I acknowledge that I have reviewed the information contained in this site-specific Health and Safety Plan, and understand the hazards associated with performance of the field activities described herein. I agree to comply with the requirements of this plan.

| NAME (PRINT)                               | SIGNATURE        | DATE                                            |
|--------------------------------------------|------------------|-------------------------------------------------|
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
| and an |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  |                                                 |
|                                            |                  | BENCHMARK                                       |
|                                            | i STURNKEY       | Environmental<br>Engineering &<br>Science, PLLC |
|                                            | TESTORATION LLC. | SCIENCE, PLLC                                   |

F:\TurnKey\Clients\Tecumseh Redevelopment\Brownfield Cleanup Program (BCP)\Site-Wide HASP\Tecumseh Redevelopment Site-Wide HASP.doc

# TECUMSEH REDEVELOPMENT SITE SITE-WIDE HEALTH AND SAFETY PLAN

# TABLE OF CONTENTS

| 1.0 INTRODUCTION                                     | 1     |
|------------------------------------------------------|-------|
| 1.1 General                                          | 1     |
| 1.2 Background                                       | 1     |
| 1.3 Known and Suspected Environmental Conditions     | 3     |
| 1.4 Parameters of Interest                           | 4     |
| 1.5 Overview of BCP Activities                       | 4     |
| 2.0 ORGANIZATIONAL STRUCTURE                         | 6     |
| 2.1 Roles and Responsibilities                       | 6     |
| 2.1.1 Corporate Health and Safety Director           | 6     |
| 2.1.2 Project Manager                                | 6     |
| 2.1.3 Site Safety and Health Officer                 | 7     |
| 2.1.4 Site Workers                                   | 8     |
| 2.1.5 Other Site Personnel                           | 8     |
| 3.0 HAZARD EVALUATION                                | 9     |
| 3.1 Chemical Hazards                                 | 9     |
|                                                      |       |
| 4.0 TRAINING                                         |       |
|                                                      |       |
|                                                      |       |
|                                                      |       |
|                                                      |       |
|                                                      |       |
|                                                      |       |
|                                                      | 10    |
| 5.0 MEDICAL MONITORING                               | 10    |
| 6.0 SAFE WORK PRACTICES                              | 20    |
| 7.0 PERSONAL PROTECTIVE EQUIPMENT                    | round |
| 7.1 Equipment Selection                              | 22    |
|                                                      |       |
| 7.2.1 Level A/B Protection Ensemble                  |       |
| 7.2.2 Level C Protection Ensemble                    |       |
| 7.2.3 Level D Protection Ensemble                    | 24    |
| 7.2.4 Recommended Level of Protection for Site Tasks | 25    |
|                                                      |       |



# TECUMSEH REDEVELOPMENT SITE SITE-WIDE HEALTH AND SAFETY PLAN

# TABLE OF CONTENTS

| 8.0 1  | EXPOSURE MONITORING                             | 26 |
|--------|-------------------------------------------------|----|
| 8.1    | General                                         |    |
| 8.1    | .1 On-Site Work Zone Monitoring                 |    |
| 8.1    | .2 Off-Site Community Air Monitoring            | 26 |
| 8.2    | Monitoring Action Levels                        |    |
| 8.2    | .1 On-Site Work Zone Action Levels              | 27 |
| 8.2    | .2 Community Air Monitoring Action Levels       | 29 |
| 9.0 \$ | SPILL RELEASE/RESPONSE                          |    |
| 9.1    | Potential Spills and Available Controls         |    |
| 9.2    | Initial Spill Notification and Evaluation       |    |
| 9.3    | Spill Response                                  |    |
| 9.4    | Post-Spill Evaluation                           |    |
| 10.0 1 | HEAT/COLD STRESS MONITORING                     |    |
| 10.1   |                                                 |    |
| 10.2   |                                                 |    |
| 11.0   | WORK ZONES AND SITE CONTROL                     | 42 |
| 12.0 1 | DECONTAMINATION                                 | 44 |
|        | Decontamination for TurnKey-Benchmark Employees |    |
| 12.2   |                                                 |    |
| 12.3   | Decontamination of Field Equipment              | 45 |
| 13.0   | CONFINED SPACE ENTRY                            | 46 |
| 14.0 1 | FIRE PREVENTION AND PROTECTION                  | 47 |
| 14.1   | General Approach                                |    |
| 14.2   | Equipment and Requirements                      |    |
| 14.3   | Flammable and Combustible Substances            |    |
| 14.4   | Hot Work                                        | 47 |
| 15.0 I | EMERGENCY INFORMATION                           | 48 |
| 16.0 1 | REFERENCES                                      | 49 |
|        |                                                 |    |



F:\TumKey\Clients\Tecumseh Redevelopment\Brownfield Cleanup Program (BCP)\Site-Wide HASP\Tecumseh Redevelopment Site-Wide HASP.doc

iii

# TECUMSEH REDEVELOPMENT SITE SITE-WIDE HEALTH AND SAFETY PLAN

# TABLE OF CONTENTS

## LIST OF TABLES

| Table 1 | Constituents of Potential Concern                                           |
|---------|-----------------------------------------------------------------------------|
| Table 2 | Toxicity Data for Constituents of Potential Concern                         |
| Table 3 | Potential Routes of Exposure to Constituents of Potential Concern           |
| Table 4 | Required Levels of Protection for BCP Investigation and Remedial Activities |

# LIST OF FIGURES

- Figure 1 Site Vicinity and Location Map
- Figure 2 Site Map
- Figure 3 Conceptual Redevelopment Master Plan

## **APPENDICES**

| Appendix A | Emergency Response Plan                      |
|------------|----------------------------------------------|
| Appendix B | Hot Work Permit Form                         |
| Appendix C | NYSDOH Generic Community Air Monitoring Plan |



F:\TurnKey\Clients\Tecumseh Redevelopment\Brownfield Cleanup Program (BCP)\Site-Wide HASP\Tecumseh Redevelopment Site-Wide HASP.doc

iv

# 1.0 INTRODUCTION

### 1.1 General

In accordance with OSHA requirements contained in 29 CFR 1910.120, this Health and Safety Plan (HASP) describes the specific health and safety practices and procedures to be employed by TurnKey Environmental Restoration, LLC and Benchmark Environmental Engineering & Science, PLLC employees (referred to jointly hereafter as "TurnKey-Benchmark") during Brownfield Cleanup Program (BCP) activities on the Tecumseh Redevelopment Site (former Bethlehem Steel Lackawanna Works), located in the City of Lackawanna, New York. This HASP presents procedures for TurnKey-Benchmark employees who will be involved with investigation and remedial field activities; it does not cover the activities of other contractors, subcontractors, or other individuals on the Site. These firms will be required to develop and enforce their own HASPs as discussed in Section 2.0. TurnKey-Benchmark accepts no responsibility for the health and safety of contractor, subcontractor, or other personnel.

This HASP presents information on known Site health and safety hazards using available historical information, and identifies the equipment, materials and procedures that will be used to eliminate or control these hazards. Environmental monitoring will be performed during the course of field activities to provide real-time data for on-going assessment of potential hazards.

### 1.2 Background

Tecumseh Redevelopment Inc. (Tecumseh) owns approximately 1,100 acres of land at 1951 Hamburg Turnpike, approximately 2 miles south of the City of Buffalo (see Figure 1). The majority of Tecumseh's property is located in the City of Lackawanna (the City), with portions of the property extending into the Town of Hamburg. Tecumseh's property is bordered by: NY State Route 5 (Hamburg Turnpike) on the east; Lake Erie to the west and northwest; and other industrial properties to the south and the northeast. Figure 2 provides an overview of the Tecumseh Property, including major leased or licensed parcels, and adjacent parcels owned by others.

The Tecumseh property is located on a portion of the Site of the former Bethlehem Steel Corporation (BSC) Lackawanna Works in a primarily industrial area. The property was



formerly used for the production of steel, coke and related products by Bethlehem Steel Corporation (BSC). According to the Real Estate Records, in 1937, Bethlehem Steel Company owned the subject Site. In 1964, Bethlehem Steel Company merged into Bethlehem Steel Corporation. Steel production on the property was discontinued in 1983 and the coke ovens ceased activity in 2000. Tecumseh acquired the property, along with other BSC assets, out of bankruptcy in 2003.

A Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of the entire former Bethlehem Steel Lackawanna Works was initiated by BSC under an Administrative Order issued by the United States Environmental Protection Agency (USEPA) in 1990. Tecumseh completed the RFI in January 2005. In August 2006, USEPA approved the RFI and terminated Bethlehem Steel's (and in turn Tecumseh's) obligation under the 1990 Administrative Order. Tecumseh is presently negotiating an Order on Consent with the New York State Department of Environmental Conservation (NYSDEC) to undertake corrective measures at certain solid waste management units (SWMUs) primarily on the western slag fill and coke manufacturing portion of the property.

In April 2005, Tecumseh signed a Memorandum of Understanding (MOU) with Erie County and the City of Lackawanna to promote redevelopment of the former BSC Lackawanna property following cleanup. Tecumseh has entered into Brownfield Cleanup Agreements (BCAs) with the NYSDEC to investigate, remediate, and redevelop the Phase I, II and III Business Parks. The BCP application for the Phase IA Business Park was submitted to NYSDEC and deemed complete in August 2007; the BCA is pending.

In August 2006, USEPA approved the RFI and terminated Bethlehem Steel's (and in turn Tecumseh's) obligation under the 1990 Administrative Order. Tecumseh is presently negotiating an Order on Consent with the NYSDEC to undertake corrective measures at certain SWMUs primarily on the western slag fill and coke manufacturing portion of the property. The Phase I Business Park Area encompasses approximately 102 acres, and is presently in the final stages of a Remedial Investigation and Alternatives Analysis Report (RI/AAR). The Phase IA Business Park encompasses approximately 12.9 acres to the west of the Phase I Business Park. The RI/AAR Work Plan and associated documents for the Phase IA Business Park were submitted to the NYSDEC in January 2008. Separate RI/AAR Work Plans are currently being prepared for the Phase II Business Park Area (approximately 173 acres) and the Phase III Business Park Area (approximately 93.4 acres).



BQ Energy, LLC has entered into a long-term lease agreement with Tecumseh to construct and operate wind turbines and supporting power generation equipment and infrastructure on approximately 29 acres of the Tecumseh property, referred to as the "Steel Winds Site." This 29-acre parcel, located along the Lake Erie shoreline, was investigated and has undergone final remedial measures under the NY State Brownfield Cleanup Program. Eight wind turbines and supporting power generation equipment and infrastructure are presently operating on this parcel.

Consistent with the Redevelopment Master Plan (see Figure 3), BQ Energy, LLC has submitted applications to the NYSDEC for participation in the Brownfield Cleanup Program for construction of wind turbines on two additional parcels. BQ Energy is proposing construction of two additional wind turbines to the north of the existing eight turbines on an approximate 9.33-acre parcel, referred to as Steel Winds IA. The Steel Winds IA Site is part of an existing lease agreement between Tecumseh Redevelopment Inc. and BQ Energy, LLC. The project has been subjected to SEQRA review and has been issued a negative declaration by the City of Lackawanna, the lead agency for the project. In addition, BQ Energy intends to construct eight turbines along the western boundary of the Phase III Business Park Area of the Tecumseh property. These additional turbines will occupy an approximate 55.47-acre parcel deemed "Steel Winds II." The Steel Winds II BCP Site will extend along the full length of the western boundary of Phase III Business Park. As the Phase III Business Park is already in the BCP, the Steel Winds II BCP application "carved out" or reassigned this portion of the Phase III Business Park to BQ Energy, LLC for the express purpose of expediting the RI/AAR and expanding the wind farm on this portion of the site under the BCP. A Brownfield Cleanup Agreement (BCA) was signed for the Steel Winds II Site on March 27, 2008.

## 1.3 Known and Suspected Environmental Conditions

The Phase I, IA, II, and III Business Park Areas were formerly used to house portions of BSC's steel making operations. The slag and other industrial fill materials contain highly variable and sometimes elevated concentrations of metals, as well as semivolatile and volatile organic compounds (SVOCs and VOCs). In addition, groundwater in contact with the soil/fill materials described above may exhibit elevated concentrations of corresponding soluble COPCs (e.g., BTEX) in groundwater.



## 1.4 Parameters of Interest

Constituents of potential concern (COPCs) at the Site include:

- Volatile Organic Compounds (VOCs) VOCs present at elevated concentration may include benzene, toluene, ethylbenzene, and xylene (i.e., BTEX). These VOCs are typically associated with storage and handling of petroleum products such as gasoline.
- Semi-Volatile Organic Compounds (SVOCs) SVOCs present at elevated concentrations may include base-neutral semi-volatile organic compounds (SVOCs) from oils, greases, and fuels associated with the operation of locomotive engines, steel mills, petroleum bulk storage, and other historic steel manufacturing operations. Specifically, polycyclic aromatic hydrocarbons (PAHs), which are byproducts of incomplete combustion and impurities in petroleum products. Although PAHs are commonly found in urban soil environments, they may be present at the Site at concentrations that are elevated compared to typical "background" levels. Naphthalene is a natural component of fossil fuels such as petroleum and coal; it is also formed when natural products such as wood or tobacco are burned.
- Polychlorinated Biphenyls (PCBs) The potential impact of surface and subsurface soils by PCBs in discrete areas associated with former substations, rail yards, and hydraulic pump houses.
- Inorganic Compounds Inorganic COPCs potentially present at elevated concentrations due to steel making activities may include arsenic, cadmium, chromium, lead, and mercury. Several of these parameters are components of coke and slag which are prevalent in the planned work area.

In addition, groundwater in contact with the soil/fill materials described above may exhibit elevated concentrations of corresponding soluble COPCs (e.g., BTEX).

# 1.5 Overview of BCP Activities

TurnKey-Benchmark personnel will be on-site to observe BCP investigation and remedial activities. General field activities to be completed are described below. Detailed BCP activities are more fully described in the individual work plans for each property.



- **1.** Soil/Fill Excavation: TurnKey-Benchmark will monitor all soil/fill excavations (e.g., wind turbine foundation excavation, test pit investigations) and related activities to visually inspect soil/fill for evidence of contamination.
- 2. Soil/Fill Documentation Sampling: TurnKey-Benchmark will collect surface and subsurface soil/fill documentation samples following excavation.
- **3.** Surface Water Management: During excavation, surface water and/or perched groundwater infiltration may occur. TurnKey-Benchmark will direct the contractor to collect and characterize the surface water for proper disposal.
- 4. Subgrade Work: Significant grading of the Site may be required before implementation of remedial measures (e.g., cover system placement).
- 5. Cover Soil Placement: A soil cover system will be placed over select portions of the Site to reduce potential contact with impacted soil/fill. TurnKey-Benchmark will oversee installation of the cover system.
- 6. Groundwater Monitoring Well Installation and Sampling: TurnKey-Benchmark will install groundwater monitoring wells and collect samples for the long-term groundwater monitoring program.
- 7. Groundwater Remediation: TurnKey-Benchmark personnel will oversee the potential groundwater remediation at the Site, which may include installation of treatment (ORC/HRC) filter socks in groundwater monitoring wells.



# 2.0 ORGANIZATIONAL STRUCTURE

This chapter of the HASP describes the lines of authority, responsibility, and communication as they pertain to health and safety functions at the Site. The purpose of this chapter is to identify the personnel who impact the development and implementation of the HASP and to describe their roles and responsibilities. This chapter also identifies other contractors and subcontractors involved in work operations and establishes the lines of communications among them for health and safety matters. The organizational structure described in this chapter is consistent with the requirements of 29 CFR 1910.120(b)(2). This section will be reviewed by the Project Manager and updated as necessary to reflect the current organizational structure at this Site.

### 2.1 Roles and Responsibilities

All Turnkey-Benchmark personnel on the Site must comply with the minimum requirements of this HASP. The specific responsibilities and authority of management, safety and health, and other personnel on this site are detailed in the following paragraphs.

### 2.1.1 Corporate Health and Safety Director

The TurnKey-Benchmark Corporate Health and Safety Director is *Mr. Thomas H. Forbes, P.E.* The Corporate Health and Safety Director responsible for developing and implementing the Health and Safety program and policies for Benchmark Environmental Engineering & Science, PLLC and TurnKey Environmental Restoration, LLC, and consulting with corporate management to ensure adequate resources are available to properly implement these programs and policies. The Corporate Health and Safety Director coordinates TurnKey-Benchmark's Health and Safety training and medical monitoring programs and assists project management and field staff in developing site-specific health and safety plans.

### 2.1.2 Project Manager

The Project Manager for this site is *Thomas H. Forbes, P.E.* The Project Manager has the responsibility and authority to direct all TurnKey-Benchmark work operations at the site. The Project Manager coordinates safety and health functions with the Site Safety and



Health Officer, and bears ultimate responsibility for proper implementation of this HASP. He may delegate authority to expedite and facilitate any application of the program, including modifications to the overall project approach as necessary to circumvent unsafe work conditions. Specific duties of the Project Manager include:

- Preparing and coordinating the site work plan.
- Providing TurnKey-Benchmark workers with work assignments and overseeing their performance.
- Coordinating health and safety efforts with the Site Safety and Health Officer (SSHO).
- Reviewing the emergency response coordination plan to assure its effectiveness.
- Serving as the primary liaison with site contractors and the property owner.

# 2.1.3 Site Safety and Health Officer

The Site Safety and Health Officer (SSHO) for this site is *Mr. Richard L. Dubisz*. The qualified alternate SSHO is *Mr. Thomas Behrendt*. The SSHO reports to the Project Manager. The SSHO is on-site or readily accessible to the site during all work operations and has the authority to halt site work if unsafe conditions are detected. The specific responsibilities of the SSHO are:

- Managing the safety and health functions for TurnKey-Benchmark personnel on the site.
- Serving as the point of contact for safety and health matters.
- Ensuring that TurnKey-Benchmark field personnel working on the site have received proper training (per 29 CFR Part 1910.120(e)), that they have obtained medical clearance to wear respiratory protection (per 29 CFR Part 1910.134), and that they are properly trained in the selection, use and maintenance of personal protective equipment, including qualitative respirator fit testing.
- Performing or overseeing site monitoring as required by the HASP.



- Assisting in the preparation and review of the HASP
- Maintaining site-specific safety and health records as described in this HASP
- Coordinating with the Project Manager, Site Workers and Contractor's SSHO as necessary for safety and health efforts.

#### 2.1.4 Site Workers

Site workers are responsible for: complying with this HASP or a more stringent HASP, if appropriate (i.e., Contractor and Subcontractor's HASP); using proper PPE; reporting unsafe acts and conditions to the SSHO; and following the safety and health instructions of the Project Manager and SSHO.

#### 2.1.5 Other Site Personnel

Other site personnel who will have health and safety responsibilities will include the Remedial Contractor, who will be responsible for developing, implementing and enforcing a Health and Safety Plan equally stringent or more stringent than TurnKey-Benchmark's HASP. TurnKey-Benchmark assumes no responsibility for the health and safety of anyone outside its direct employ. Each Contractor's HASP shall cover all non-TurnKey/Benchmark site personnel. Each Contractor shall assign a SSHO who will coordinate with TurnKey-Benchmark's SSHO as necessary to ensure effective lines of communication and consistency between contingency plans.

In addition to TurnKey-Benchmark and Contractor personnel, other individuals who may have responsibilities in the work zone include subcontractors and governmental agencies performing site inspection work (i.e., the New York State Department of Environmental Conservation). The Contractor shall be responsible for ensuring that these individuals have received OSHA-required training (29 CFR 1910.120(e)), including initial, refresher and site-specific training, and shall be responsible for the safety and health of these individuals while they are on-site.



# 3.0 HAZARD EVALUATION

Due to the presence of certain contaminants at the Site, the possibility exists that workers will be exposed to hazardous substances during field activities. The principal points of exposure would be through direct contact with and incidental ingestion of soil/fill, and through the inhalation of contaminated particles or vapors, during test pit completion, monitoring well installation, and soil/fill excavation. In addition, the use of heavy construction equipment (e.g., dozer) will also present conditions for potential physical injury to workers. Further, since work will be performed outdoors, the potential exists for heat/cold stress to impact workers, especially those wearing protective equipment and clothing. Adherence to the medical evaluations, worker training relative to chemical hazards, safe work practices, proper personal protection, environmental monitoring, establishment work zones and site control, appropriate decontamination procedures and contingency planning outlined herein will reduce the potential for chemical exposures and physical injuries.

# 3.1 Chemical Hazards

As discussed in Section 1.3, historic activities related to the former steelmanufacturing operations and facilities have resulted in elevated concentrations of VOCs, SVOCs, PCBs, and inorganic compounds in Site soils and groundwater. Table 1 identifies maximum concentrations of COPCs detected throughout the Tecumseh property. Table 2 lists exposure limits for airborne concentrations of the COPCs identified in Section 1.4 of this HASP. Brief descriptions of the toxicology of the prevalent constituents of potential concern and related health and safety guidance and criteria are provided below.

Arsenic (CAS #7440-38-2) is a naturally occurring element and is usually found combined with one or more elements, such as oxygen or sulfur. Inhalation is a more important exposure route than ingestion. First phase exposure symptoms include nausea, vomiting, diarrhea and pain in the stomach. Prolonged contact is corrosive to the skin and mucus membranes. Arsenic is considered a Group A human carcinogen by the USEPA. Exposure via inhalation is associated with an increased risk of lung cancer. Exposure via the oral route is associated with an increased risk of skin cancer.



- Benzene (CAS #71-43-2) poisoning occurs most commonly through inhalation of the vapor; however, benzene can also penetrate the skin and poison in that way. Locally, benzene has a comparatively strong irritating effect, producing erythema and burning and, in more severe cases, edema and blistering. Exposure to high concentrations of the vapor (i.e., 3,000 ppm or higher) may result in acute poisoning characterized by the narcotic action of benzene on the central nervous system. In acute poisoning, symptoms include confusion, dizziness, tightening of the leg muscles, and pressure over the forehead. Chronic exposure to benzene (i.e., long-term exposure to concentrations of 100 ppm or less) may lead to damage of the blood-forming system. Benzene is very flammable when exposed to heat or flame and can react vigorously with oxidizing materials.
- **Cadmium** is a natural element and is usually combined with one or more elements, such as oxygen, chloride or sulfur. Breathing high levels of cadmium severely damages the lungs and can cause death. Ingestion of high levels of cadmium severely irritates the stomach, leading to vomiting and diarrhea. Long term exposure to lower levels of cadmium leads to a buildup of this substance in the kidneys and possible kidney disease. Other potential long term effects are lung damage and fragile bones. Cadmium is suspected to be a human carcinogen.
- Chromium (CAS #7440-47-3) is used in the production of stainless steel, chrome plated metals, and batteries. Two forms of chromium, hexavalent (CR+6) and trivalent (CR+3) are toxic. Hexavalent chromium is an irritant and corrosive to the skin and mucus membranes. Chromium is a potential occupational carcinogen. Acute exposures to dust may cause coughing, wheezing, headaches, pain and fever.
- Ethylbenzene (CAS #100-41-4) is a component of automobile gasoline. Overexposure may cause kidney, skin liver and/or respiratory disease. Signs of exposure may include dermatitis, irritation of the eyes and mucus membranes, headache. Narcosis and coma may result in more severe cases.
- Lead (CAS #7439-92-1) can affect almost every organ and system in our bodies. The most sensitive is the central nervous system, particularly in children. Lead also damages kidneys and the immune system. The effects are the same whether it is breathed or swallowed. Lead may decrease reaction time, cause weakness in fingers, wrists or ankles and possibly affect memory. Lead may cause anemia.
- Mercury (CAS #7439-97-6) is used in industrial applications for the production of caustic and chlorine, and in electrical control equipment and apparatus. Over-exposure to mercury may cause coughing, chest pains, bronchitis, pneumonia, indecision, headaches, fatigue and salivation. Mercury is a skin and eye irritant.



- Naphthalene (CAS #91-20-3) is a white solid with a strong smell; is also called mothballs, moth flakes, white tar, and tar camphor. Naphthalene is a natural component of fossil fuels such as petroleum and coal; it is also formed when natural products such as wood or tobacco are burned. Acute exposure to naphthalene can cause systemic reactions, including nausea, headache, diaphoresis, hematuria, fever, anemia, liver damage, vomiting, convulsions, and coma. Acute exposure can also cause eye irritation, confusion, excitement, malaise, abdominal pain, irritation to the bladder, profuse sweating, jaundice, hematopoietic, hemoglobinuria, renal shutdown, and dermatitis. Exposure to a large amount of naphthalene can cause red blood cells to be damaged or destroyed, a condition called hemolytic anemia, which leads to fatigue, lack of appetite, restlessness, and a pale appearance. Poisoning may occur by ingestion of large doses, skin and/or eye contact, inhalation, or skin absorption.
- Polycyclic Aromatic Hydrocarbons (PAHs) are formed as a result of the pyrolysis and incomplete combustion of organic matter such as fossil fuel. PAH aerosols formed during the combustion process disperse throughout the atmosphere, resulting in the deposition of PAH condensate in soil, water and on vegetation. In addition, several products formed from petroleum processing operations (e.g., roofing materials and asphalt) also contain elevated levels of PAHs. Hence, these compounds are widely dispersed in the environment. PAHs are characterized by a molecular structure containing three or more fused, unsaturated carbon rings. Seven of the PAHs are classified by USEPA as probable human carcinogens (USEPA Class B2). These are: benzo(a)pyrene; benzo(a)anthracene; benzo(b)fluoranthene; benzo(k)fluoranthene; chrysene; dibenzo(a,h)anthracene; and indeno(1,2,3-cd)pyrene. The primary route of exposure to PAHs is through incidental ingestion and inhalation of contaminated particulates. PAH's are characterized by an organic odor, and exist as oily liquids in pure form. Acute exposure symptoms may include acne-type blemishes in areas of the skin exposed to sunlight.
- Polynuclear Chlorinate Biphenyls (PCBs) are associated with former substations, rail yards, and hydraulic pump houses on the Site. PCBs can be absorbed into the body by inhalation of its aerosol, through the skin, and by ingestion. Repeated or prolonged contact with skin may cause dermatitis. PCBs may have effects on the liver. Animal tests show that PCBs possibly cause toxic effects in human reproduction. In the food chain, bioaccumulation takes place, specifically in aquatic organisms. A harmful contamination of the air will be reached rather slowly on evaporation of this substance at 20°C.



- Toluene (CAS #108-88-3) is a common component of paint thinners and automobile fuel. Acute exposure predominantly results in central nervous system depression. Symptoms include headache, dizziness, fatigue, muscular weakness, drowsiness, and coordination loss. Repeated exposures may cause removal of lipids from the skin, resulting in dry, fissured dermatitis.
- Xylenes (o, m, and p) (CAS #95-47-6, 108-38-3, and 106-42-3) are colorless, flammable liquids present in paint thinners and fuels. Acute exposure may cause central nervous system depression, resulting in headache, dizziness, fatigue, muscular weakness, drowsiness, and coordination loss. Repeated exposures may also cause removal of lipids from the skin, producing dry, fissured dermatitis. Exposure of high concentrations of vapor may cause eye irritation and damage, as well as irritation of the mucus membranes.

With respect to the anticipated BCP activities discussed in Section 1.5, possible routes of exposure to the above-mentioned contaminants are presented in Table 3. The use of proper respiratory equipment, as outlined in Section 7.0 of this HASP, will minimize the potential for exposure to airborne contamination. Exposure to contaminants through dermal and other routes will also be minimized through the use of protective clothing (Section 7.0), safe work practices (Section 6.0), and proper decontamination procedures (Section 12.0).

# 3.2 Physical Hazards

BCP investigation and remedial activities at the Tecumseh site may present the following physical hazards:

- The potential for physical injury during heavy construction equipment use, such as grading equipment, excavators, and tandem trucks.
- The potential for heat/cold stress to employees during the summer/winter months (see Section 10.0).
- The potential for slip and fall injuries due to rough, uneven terrain and/or open excavations.

These hazards represent only some of the possible means of injury that may be present during investigation and remedial activities at the Site. Since it is impossible to list all



potential sources of injury, it shall be the responsibility of each individual to exercise proper care and caution during all phases of the work.



# 4.0 TRAINING

### 4.1 Site Workers

All personnel performing investigation and remedial activities at the Site (such as, but not limited to, equipment operators, general laborers, and supervisors) and who may be exposed to hazardous substances, health hazards, or safety hazards and their supervisors/managers responsible for the Site shall receive training in accordance with 29 CFR 1910.120(e) before they are permitted to engage in operations in the exclusion zone or contaminant reduction zone. This training includes an initial 40-hour Hazardous Waste Site Worker Protection Course, an 8-hour Annual Refresher Course subsequent to the initial 40hour training, and 3 days of actual field experience under the direct supervision of a trained, experienced supervisor. Additional site-specific training shall also be provided by the SSHO prior to the start of field activities. A description of topics to be covered by this training is provided below.

## 4.1.1 Initial and Refresher Training

Initial and refresher training is conducted by a qualified instructor as specified under OSHA 29 CFR 1910.120(e)(5), and is specifically designed to meet the requirements of OSHA 29 CFR 1910.120(e)(3) and 1910.120(e)(8). The training covers, as a minimum, the following topics:

- OSHA HAZWOPER regulations.
- Site safety and hazard recognition, including chemical and physical hazards.
- Medical monitoring requirements.
- Air monitoring, permissible exposure limits, and respiratory protection level classifications.
- Appropriate use of personal protective equipment (PPE), including chemical compatibility and respiratory equipment selection and use.
- Work practices to minimize risk.
- Work zones and site control.
- Safe use of engineering controls and equipment.
- Decontamination procedures.
- Emergency response and escape.



- Confined space entry procedures.
- Heat and cold stress monitoring.
- Elements of a Health and Safety Plan.
- Spill containment.

Initial training also incorporates workshops for PPE and respiratory equipment use (Levels A, B and C), and respirator fit testing. Records and certification received from the course instructor documenting each employee's successful completion of the training identified above are maintained on file at TurnKey-Benchmark's Buffalo, NY office. Contractors and Subcontractors are required to provide similar documentation of training for all their personnel who will be involved in on-site work activities.

Any employee who has not been certified as having received health and safety training in conformance with 29 CFR 1910.120(e) is prohibited from working in the exclusion and contamination reduction zones, or to engage in any on-site work activities that may involve exposure to hazardous substances or wastes.

## 4.1.2 Site Training

Site workers are given a copy of the HASP and provided a site-specific briefing prior to the commencement of work to ensure that employees are familiar with the HASP and the information and requirements it contains. The site briefing shall be provided by the SSHO prior to initiating field activities and shall include:

- Names of personnel and alternates responsible for site safety and health.
- Safety, health and other hazards present on the Site.
- The Site lay-out including work zones and places of refuge.
- The emergency communications system and emergency evacuation procedures.
- Use of PPE.
- Work practices by which the employee can minimize risks from hazards.
- Safe use of engineering controls and equipment on the site.
- Medical surveillance, including recognition of symptoms and signs of overexposure as described in Chapter 5 of this HASP.
- Decontamination procedures as detailed in Chapter 12 of this HASP.
- The emergency response plan as detailed in Chapter 15 of this HASP.



- Confined space entry procedures, if required, as detailed in Chapter 13 of this HASP.
- The spill containment program as detailed in Chapter 9 of this HASP.
- Site control as detailed in Chapter 11 of this HASP.

Supplemental health and safety briefings will also be conducted by the SSHO on an as-needed basis during the course of the work. Supplemental briefings are provided as necessary to notify employees of any changes to this HASP as a result of information gathered during ongoing site characterization and analysis. Conditions for which the SSHO may schedule additional briefings include, but are not limited to: a change in Site conditions (i.e., based on monitoring results); changes in the work schedule/plan; newly discovered hazards; and safety incidents occurring during Site work.

# 4.2 Supervisor Training

On-site safety and health personnel who are directly responsible for or who supervise the safety and health of workers engaged in hazardous waste operations (i.e., SSHO) shall receive, in addition to the appropriate level of worker training described in Section 4.1, above, 8 additional hours of specialized supervisory training, in compliance with 29 CFR 1910.120(e)(4).

# 4.3 Emergency Response Training

Emergency response training is addressed in Appendix A of this HASP, Emergency Response Plan.

# 4.4 Site Visitors

Each Contractor's SSHO will provide a site-specific briefing to all site visitors and other non-TurnKey/Benchmark personnel who enter the Site beyond the site entry point. The site-specific briefing will provide information about site hazards, the site layout including work zones and places of refuge, the emergency communications system and emergency evacuation procedures, and other pertinent safety and health requirements as appropriate.



Site visitors will not be permitted to enter the exclusion zone or contaminant reduction zones unless they have received the level of training required for site workers as described in Section 4.1.



# 5.0 MEDICAL MONITORING

Medical monitoring examinations are provided to TurnKey-Benchmark employees as stipulated under 29 CFR Part 1910.120(f). These exams include initial employment, annual and employment termination physicals for all TurnKey-Benchmark employees involved in hazardous waste site field operations. Post-exposure examinations are also provided for employees who may have been injured, received a health impairment, or developed signs or symptoms of over-exposure to hazardous substances or were accidentally exposed to substances at concentrations above the permissible exposure limits without necessary personal protective equipment. Such exams are performed as soon as possible following development of symptoms or the known exposure event.

Medical evaluations are performed by ADP Screening & Selection Services, an occupational health care provider under contract with TurnKey-Benchmark. ADP's local facility is Health Works WNY, Seneca Square Plaza, 1900 Ridge Road, West Seneca, New York 14224. The facility can be reached at (716) 823-5050 to schedule routine appointments or post-exposure examinations.

Medical evaluations are conducted according to the TurnKey-Benchmark Medical Monitoring Program and include an evaluation of the workers' ability to use respiratory protective equipment. The purpose of the medical evaluation is to determine an employee's fitness for duty on hazardous waste sites; and to establish baseline medical data. The examinations include:

- Occupational/medical history review.
- Physical exam, including vital sign measurement.
- Spirometry testing.
- Eyesight testing.
- Audio testing (minimum baseline and exit, annual for employees routinely exposed to greater than 85db).
- EKG (for employees >40 yrs age or as medical conditions dictate).
- Chest X-ray (baseline and exit, and every 5 years).
- Blood biochemistry (including blood count, white cell differential count, serum multiplastic screening).
- Medical certification of physical requirements (i.e., sight, musculoskeletal, cardiovascular) for safe job performance and to wear respiratory protection equipment.



In conformance with OSHA regulations, TurnKey-Benchmark will maintain and preserve medical records for a period of 30 years following termination of employment. Employees are provided a copy of the physician's post-exam report, and have access to their medical records and analyses.



# 6.0 SAFE WORK PRACTICES

All TurnKey-Benchmark employees shall conform to the following safe work practices during all on-site work activities conducted within the exclusion and contamination reduction zones:

- Eating, drinking, chewing gum or tobacco, smoking, or any practice that increases the probability of hand-to-mouth contact is strictly prohibited.
- The hands and face must be thoroughly washed upon leaving the work area and prior to engaging in any activity indicated above.
- Respiratory protective equipment and clothing must be worn by all personnel entering the site as required by the HASP or as modified by the site safety officer. Excessive facial hair (i.e., beards, long mustaches or sideburns) that interferes with the satisfactory respirator-to-face seal is prohibited.
- Contact with surfaces/materials either suspected or known to be contaminated will be avoided to minimize the potential for transfer to personnel, cross contamination and need for decontamination.
- Medicine and alcohol can synergize the effects of exposure to toxic chemicals. Due to possible contraindications, use of prescribed drugs should be reviewed with the TurnKey-Benchmark occupational physician. Alcoholic beverage and illegal drug intake are strictly forbidden during the workday.
- All personnel shall be familiar with standard operating safety procedures and additional instructions contained in this Health and Safety Plan.
- On-site personnel shall use the "buddy" system. No one may work alone (i.e., out of earshot or visual contact with other workers) in the exclusion zone.
- Personnel and equipment in the contaminated area shall be minimized, consistent with effective site operations.
- All employees have the obligation to immediately report and if possible, correct unsafe work conditions.
- Use of contact lenses on-site will not be permitted. Spectacle kits for insertion into full-face respirators will be provided for TurnKey-Benchmark employees, as requested and required.



The recommended specific safety practices for working around the contractor's equipment (e.g., backhoes, bulldozers, excavators, etc.) are as follows:

- Although the Contractor and subcontractors are responsible for their equipment and safe operation of the site, TurnKey-Benchmark personnel are also responsible for their own safety.
- Subsurface work will not be initiated without first clearing underground utility services.
- Heavy equipment should not be operated within 20 feet of overhead wires. This distance may be increased if windy conditions are anticipated or if lines carry high voltage. The site should also be sufficiently clear to ensure the project staff can move around the heavy machinery safely.
- Care should be taken to avoid overhead wires when moving heavy-equipment from location to location.
- Hard hats, safety boots and safety glasses should be worn at all times in the vicinity of heavy equipment. Hearing protection is also recommended.
- The work site should be kept neat. This will prevent personnel from tripping and will allow for fast emergency exit from the site.
- Proper lighting must be provided when working at night.
- Construction activities should be discontinued during an electrical storm or severe weather conditions.
- The presence of combustible gases should be checked before igniting any open flame.
- Personnel shall stand upwind of any construction operation when not immediately involved in sampling/logging/observing activities.
- Personnel will not approach the edge of an unsecured trench/excavation closer than 2 feet.



# 7.0 PERSONAL PROTECTIVE EQUIPMENT

# 7.1 Equipment Selection

Personal protective equipment (PPE) will be donned when work activities may result in exposure to physical or chemical hazards beyond acceptable limits, and when such exposure can be mitigated through appropriate PPE. The selection of PPE will be based on an evaluation of the performance characteristics of the PPE relative to the requirements and limitations of the Site, the task-specific conditions and duration, and the hazards and potential hazards identified at the site.

Equipment designed to protect the body against contact with known or suspect chemical hazards are grouped into four categories according to the degree of protection afforded. These categories designated A through D consistent with USEPA Level of Protection designation, are:

- Level A: Should be selected when the highest level of respiratory, skin and eye protection is needed.
- Level B: Should be selected when the highest level of respiratory protection is needed, but a lesser level of skin protection is required. Level B protection is the minimum level recommended on initial site entries until the hazards have been further defined by on-site studies. Level B (or Level A) is also necessary for oxygen-deficient atmospheres.
- Level C: Should be selected when the types of airborne substances are known, the concentrations have been measured and the criteria for using air-purifying respirators are met. In atmospheres where no airborne contaminants are present, Level C provides dermal protection only.
- Level D: Should not be worn on any site with elevated respiratory or skin hazards. This is generally a work uniform providing minimal protection.

OSHA requires the use of certain PPE under conditions where an immediate danger to life and health (IDLH) may be present. Specifically, OSHA 29 CFR 1910.120(g)(3)(iii) requires use of a positive pressure self-contained breathing apparatus, or positive pressure air-line respirator equipped with an escape air supply when chemical exposure levels present a substantial possibility of immediate serious injury, illness or death, or impair the ability to



escape. Similarly, OSHA 29 CFR 1910.120(g)(3)(iv) requires donning totally encapsulating chemical protective suits (with a protection level equivalent to Level A protection) in conditions where skin absorption of a hazardous substance may result in a substantial possibility of immediate serious illness, injury or death, or impair the ability to escape.

In situations where the types of chemicals, concentrations, and possibilities of contact are unknown, the appropriate level of protection must be selected based on professional experience and judgment until the hazards can be further characterized. The individual components of clothing and equipment must be assembled into a full protective ensemble to protect the worker from site-specific hazards, while at the same time minimizing hazards and drawbacks of the personal protective gear itself. Ensemble components are detailed below for levels A/B, C, and D protection.

## 7.2 Protection Ensembles

### 7.2.1 Level A/B Protection Ensemble

Level A/B ensembles include similar respiratory protection, however Level A provides a higher degree of dermal protection than Level B. Use of Level A over Level B is determined by: comparing the concentrations of identified substances in the air with skin toxicity data, and assessing the effect of the substance (by its measured air concentrations or splash potential) on the small area of the head and neck unprotected by Level B clothing.

The recommended PPE for level A/B is:

- Pressure-demand, full-face piece self-contained breathing apparatus (MSHA/-NIOSH approved) or pressure-demand supplied-air respirator with escape selfcontained breathing apparatus (SCBA).
- Chemical-resistant clothing. For Level A, clothing consists of totallyencapsulating chemical resistant suit. Level B incorporates hooded one-or twopiece chemical splash suit.
- Inner and outer chemical resistant gloves.
- Chemical-resistant safety boots/shoes.
- Hardhat.



### 7.2.2 Level C Protection Ensemble

Level C protection is distinguished from Level B by the equipment used to protect the respiratory system, assuming the same type of chemical-resistant clothing is used. The main selection criterion for Level C is that conditions permit wearing an air-purifying device. The device (when required) must be an air-purifying respirator (MSHA/NIOSH approved) equipped with filter cartridges. Cartridges must be able to remove the substances encountered. Respiratory protection will be used only with proper fitting, training and the approval of a qualified individual. In addition, an air-purifying respirator can be used only if: oxygen content of the atmosphere is at least 19.5% in volume; substances are identified and concentrations measured; substances have adequate warning properties; the individual passes a qualitative fit-test for the mask; and an appropriate cartridge/canister is used, and its service limit concentration is not exceeded.

Recommended PPE for Level C conditions includes:

- Full-face piece, air-purifying respirator equipped with MSHA and NIOSH approved organic vapor/acid gas/dust/mist combination cartridges or as designated by the SSHO.
- Chemical-resistant clothing (hooded, one or two-piece chemical splash suit or disposable chemical-resistant one-piece suit).
- Inner and outer chemical-resistant gloves.
- Chemical-resistant safety boots/shoes.
- Hardhat.

An air-monitoring program is part of all response operations when atmospheric contamination is known or suspected. It is particularly important that the air be monitored thoroughly when personnel are wearing air-purifying respirators. Continual surveillance using direct-reading instruments is needed to detect any changes in air quality necessitating a higher level of respiratory protection.

### 7.2.3 Level D Protection Ensemble

As indicated above, Level D protection is primarily a work uniform. It can be worn in areas where only boots can be contaminated, where there are no inhalable toxic substances and where the atmospheric contains at least 19.5% oxygen.



Recommended PPE for Level D includes:

- Coveralls.
- Safety boots/shoes.
- Safety glasses or chemical splash goggles.
- Hardhat.
- Optional gloves; escape mask; face shield.

## 7.2.4 Recommended Level of Protection for Site Tasks

Based on current information regarding both the contaminants suspected to be present at the Site and the various tasks that are included in the investigation and remedial activities, the minimum required Levels of Protection for these tasks shall be as identified in Table 4.



# 8.0 EXPOSURE MONITORING

#### 8.1 General

Based on the results of historic sample analysis and the nature of the proposed work activities at the Site, the possibility exists that organic vapors and/or particulates may be released to the air during intrusive construction activities. Ambient breathing zone concentrations may at times, exceed the permissible exposure limits (PELs) established by OSHA for the individual compounds (see Table 2), in which case respiratory protection will be required. Respiratory and dermal protection may be modified (upgraded or downgraded) by the SSHO based upon real-time field monitoring data.

#### 8.1.1 On-Site Work Zone Monitoring

TurnKey-Benchmark personnel will conduct routine, real-time air monitoring during all intrusive construction phases such as excavation, backfilling, drilling, etc. The work area will be monitored at regular intervals using a photo-ionization detector (PID), combustible gas meter and a particulate meter. Observed values will be recorded and maintained as part of the permanent field record.

Additional air monitoring measurements may be made by TurnKey-Benchmark personnel to verify field conditions during subcontractor oversight activities. Monitoring instruments will be protected from surface contamination during use. Additional monitoring instruments may be added if the situations or conditions change. Monitoring instruments will be calibrated in accordance with manufacturer's instructions before use.

#### 8.1.2 Off-Site Community Air Monitoring

In addition to on-site monitoring within the work zone(s), monitoring at the downwind portion of the Site perimeter will be conducted. This will provide a real-time method for determination of substantial vapor and/or particulate releases to the surrounding community as a result of ground intrusive investigation work.

Ground intrusive activities are defined by NYSDOH Appendix 1A Generic Community Air Monitoring Plan (Reference 4) and attached as Appendix C. Ground intrusive activities include soil/waste excavation and handling, test pitting or trenching, and



the installation of soil borings or monitoring wells. Non-intrusive activities include the collection of soil and sediment samples or the collection of groundwater samples from existing wells. Continuous monitoring is required for ground intrusive activities and periodic monitoring is required for non-intrusive activities. Periodic monitoring consists of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring while bailing a well, and taking a reading prior to leaving a sampling location. This may be upgraded to continuous if the sampling location is in close proximity to individuals not involved in the site activity (i.e., on a curb of a busy street). The action levels below will be used during periodic monitoring. This will provide a real-time method for determination of substantial vapor and/or particulate releases to the surrounding community because of site investigation work.

## 8.2 Monitoring Action Levels

### 8.2.1 On-Site Work Zone Action Levels

The PID, explosimeter, or other appropriate instrument(s), will be used by TurnKey-Benchmark personnel to monitor organic vapor concentrations as specified in this HASP. In addition, fugitive dust/particulate concentrations will be monitored during major soil intrusion using a real-time particulate monitor as specified in this plan. In the absence of such monitoring, appropriate respiratory protection for particulates shall be donned. Sustained readings obtained in the breathing zone may be interpreted (with regard to other site conditions) as follows for TurnKey-Benchmark personnel:

- Total atmospheric concentrations of unidentified vapors or gases ranging from 0 to 1 ppm above background on the PID) - Continue operations under Level D (see Appendix A).
- Total atmospheric concentrations of unidentified vapors or gases yielding sustained readings from >1 ppm to 5 ppm above background on the PID (vapors not suspected of containing high levels of chemicals toxic to the skin) - Continue operations under Level C (see Appendix A).
- Total atmospheric concentrations of unidentified vapors or gases yielding sustained readings of >5 ppm to 50 ppm above background on the PID -



Continue operations under Level B (see Attachment 1), re-evaluate and alter (if possible) construction methods to achieve lower vapor concentrations.

 Total atmospheric concentrations of unidentified vapors or gases above 50 ppm on the PID - Discontinue operations and exit the work zone immediately.

The explosimeter will be used to monitor levels of both combustible gases and oxygen during RD activities involving deep excavation, if required. Action levels based on the instrument readings shall be as follows:

- Less than 10% LEL Continue engineering operations with caution.
- 10-25% LEL Continuous monitoring with extreme caution, determine source/cause of elevated reading.
- Greater than 25% LEL Explosion hazard, evaluate source and leave the Work Zone.
- 19.5-21% oxygen Proceed with extreme caution; attempt to determine potential source of oxygen displacement.
- Less than 19.5% oxygen Leave work zone immediately.
- 21-25% oxygen Continue engineering operations with caution.
- Greater than 25% oxygen Fire hazard potential, leave Work Zone immediately.

The particulate monitor will be used to monitor respirable dust concentrations during all intrusive activities and during handling of site soil/fill. Action levels based on the instrument readings shall be as follows:

- Less than 50  $\mu$ g/m<sup>3</sup> Continue field operations.
- 50-150 μg/m<sup>3</sup> Don dust/particulate mask or equivalent
- Greater than 150 µg/m<sup>3</sup> Don dust/particulate mask or equivalent. Initiate engineering controls to reduce respirable dust concentration (i.e., wetting of excavated soils or tools at discretion of SSHO).



Readings with the organic vapor analyzer, combustible gas meter, and particulate monitor will be recorded and documented on the appropriate Project Field Forms. All instruments will be calibrated before use on a daily basis and the procedure will be documented on the appropriate Project Field Forms.

### 8.2.2 Community Air Monitoring Action Levels

In addition to the action levels prescribed in Section 8.2.1 for Benchmark personnel on-site, the following criteria shall also be adhered to for the protection of downwind receptors consistent with NYSDOH requirements (Appendix C):

### O ORGANIC VAPOR PERIMETER MONITORING:

- If the <u>sustained</u> ambient air concentration of organic vapors at the downwind perimeter of the exclusion zone <u>exceeds 5 ppm</u> above background, work activities will be halted and monitoring continued. If the <u>sustained</u> organic vapor decreases below 5 ppm over background, work activities can resume but more frequent intervals of monitoring, as directed by the SSHO, must be conducted.
- If the <u>sustained</u> ambient air concentration of organic vapors at the downwind perimeter of the exclusion zone are <u>greater than 5 ppm</u> over background <u>but</u> <u>less than 25 ppm</u>, activities can resume provided that: the organic vapor level 200 feet downwind of the working site or half the distance to the nearest off-site residential or commercial structure, whichever is less, is below 5 ppm over background; and more frequent intervals of monitoring, as directed by the SSHO, are conducted.
- If the <u>sustained</u> organic vapor level is <u>above 25 ppm</u> at the perimeter of the exclusion zone, the SSHO must be notified and work activities shut down. The SSHO will determine when re-entry of the exclusion zone is possible and will implement downwind air monitoring to ensure vapor emissions do not impact the nearest off-site residential or commercial structure at levels exceeding those specified in the *Organic Vapor Contingency Monitoring Plan* below. All readings will be recorded and will be available for New York State Department of Environmental Conservation (NYSDEC) and Department of Health (NYSDOH) personnel to review.



## 0 ORGANIC VAPOR CONTINGENCY MONITORING PLAN:

- If the <u>sustained</u> organic vapor level is <u>greater than 5 ppm</u> over background 200 feet downwind from the work area or half the distance to the nearest offsite residential or commercial property, whichever is less, all work activities must be halted.
- If, following the cessation of the work activities or as the result of an emergency, <u>sustained</u> organic levels <u>persist above 5 ppm</u> above background 200 feet downwind or half the distance to the nearest off-site residential or commercial property from the work area, then the air quality must be monitored within 20 feet of the perimeter of the nearest off-site residential or commercial structure (20-foot zone).
- If efforts to abate the emission source are unsuccessful and if <u>sustained</u> organic vapor levels approach or exceed 5 ppm above background within the 20-foot zone for more than 30 minutes, or are sustained at levels greater than 10 ppm above background for longer than one minute, then the *Major Vapor Emission Response Plan* (see below) will automatically be placed into effect.

# o Major Vapor Emission Response Plan:

Upon activation, the following activities will be undertaken:

- 1. All Emergency Response Contacts as listed in this Health and Safety Plan and the Emergency Response Plan (Appendix A) will be advised.
- 2. The local police authorities will immediately be contacted by the SSHO and advised of the situation.
- 3. Frequent air monitoring will be conducted at 30-minute intervals within the 20-foot zone. If two <u>sustained</u> successive readings below action levels are measured, air monitoring may be halted or modified by the SSHO.

The following personnel are to be notified in the listed sequence in the event that a Major Vapor Emission Plan is activated:

| Responsible Person | Contact                          | Phone Number   |
|--------------------|----------------------------------|----------------|
| SSHO               | Police                           | 911            |
| SSHO               | State Emergency Response Hotline | (800) 457-7362 |



Additional emergency numbers are listed in the Emergency Response Plan included as Appendix A.

## • EXPLOSIVE VAPORS:

- <u>Sustained</u> atmospheric concentrations of greater than 10% LEL in the work area Initiate combustible gas monitoring at the downwind portion of the Site perimeter.
- <u>Sustained</u> atmospheric concentrations of greater than 10% LEL at the downwind Site perimeter – Halt work and contact local Fire Department.

## o Airborne Particulate Community Air Monitoring

Respirable (PM-10) particulate monitoring will be performed on a continuous basis at the upwind and downwind perimeter of the exclusion zone. The monitoring will be performed using real-time monitoring equipment capable of measuring PM-10 and integrating over a period of 15-minutes for comparison to the airborne particulate action levels. The equipment will be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration will be visually assessed during all work activities. All readings will be recorded and will be available for NYSDEC and NYSDOH review. Readings will be interpreted as follows:

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter  $(\mu g/m^3)$  greater than the background (upwind perimeter) reading for the 15minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression provided that the downwind PM-10 particulate levels do not exceed 150  $\mu g/m^3$  above the upwind level and that visible dust is not migrating from the work area.
- If, after implementation of dust suppression techniques downwind PM-10 levels are greater than 150 µg/m<sup>3</sup> above the upwind level, work activities must be stopped and dust suppression controls re-evaluated. Work can resume provided that supplemental dust suppression measures and/or other controls



are successful in reducing the downwind PM-10 particulate concentration to within 150  $\mu$ g/m<sup>3</sup> of the upwind level and in preventing visible dust migration.

Pertinent emergency response information including the telephone number of the Fire Department is included in the Emergency Response Plan (Appendix A).



# 9.0 SPILL RELEASE/RESPONSE

This chapter of the HASP describes the potential for and procedures related to spills or releases of known or suspected petroleum and/or hazardous substances on the Site. The purpose of this Section of the HASP is to plan appropriate response, control, countermeasures and reporting, consistent with OSHA requirements in 29 CFR 1910.120(b)(4)(ii)(J) and (j)(1)(viii). The spill containment program addresses the following elements:

- Potential hazardous material spills and available controls.
- Initial notification and evaluation.
- Spill response.
- Post-spill evaluation.

# 9.1 Potential Spills and Available Controls

An evaluation was conducted to determine the potential for hazardous material and oil/petroleum spills at this site. For the purpose of this evaluation, hazardous materials posing a significant spill potential are considered to be:

- CERCLA Hazardous Substances as identified in 40 CFR Part 302, where such materials pose the potential for release in excess of their corresponding Reportable Quantity (RQ).
- Extremely Hazardous Substances as identified in 40 CFR Part 355, Appendix A, where such materials pose the potential for release in excess of their corresponding RQ.
- Hazardous Chemicals as defined under Section 311(e) of the Emergency Planning and Community Right-To-Know Act of 1986, where such chemicals are present or will be stored in excess of 10,000 lbs.
- Toxic Chemicals as defined in 40 CFR Part 372, where such chemicals are present or will be stored in excess of 10,000 lbs.
- Chemicals regulated under 6NYCRR Part 597, where such materials pose the potential for release in excess of their corresponding RQ.



Oil/petroleum products are considered to pose a significant spill potential whenever the following situations occur:

- The potential for a "harmful quantity" of oil (including petroleum and nonpetroleum-based fuels and lubricants) to reach navigable waters of the U.S. exists (40 CFR Part 112.4). Harmful quantities are considered by USEPA to be volumes that could form a visible sheen on the water or violate applicable water quality standards.
- The potential for any amount of petroleum to reach any waters of NY State, including groundwater, exists. Petroleum, as defined by NY State in 6NYCRR Part 612, is a petroleum-based heat source, energy source, or engine lubricant/maintenance fluid.
- The potential for any release, to soil or water, of petroleum from a bulk storage facility regulated under 6NYCRR Part 612. A regulated petroleum storage facility is defined by NY State as a site having stationary tank(s) and intra-facility piping, fixtures and related equipment with an aggregate storage volume of 1,100 gallons or greater.

The evaluation indicates that, based on site history and decommissioning records, a hazardous material spill and/or a petroleum product spill is not likely to occur during Remedial efforts.

# 9.2 Initial Spill Notification and Evaluation

Any worker who discovers a hazardous substance or oil/petroleum spill will immediately notify the Project Manager and SSHO. The worker will, to the best of his/her ability, report the material involved, the location of the spill, the estimated quantity of material spilled, the direction/flow of the spill material, related fire/explosion incidents, if any, and any associated injuries. The Emergency Response Plan presented as Appendix A of this HASP will immediately be implemented if an emergency release has occurred.

Following initial report of a spill, the Project Manager will make an evaluation as to whether the release exceeds RQ levels. If an RQ level is exceeded, the Project Manager will notify the site owner and NYSDEC at 1-800-457-7362 within 2 hours of spill discovery. The Project Manager will also determine what additional agencies (e.g., USEPA) are to be



contacted regarding the release, and will follow-up with written reports as required by the applicable regulations.

# 9.3 Spill Response

For all spill situations, the following general response guidelines will apply:

- Only those personnel involved in overseeing or performing containment operations will be allowed within the spill area. If necessary, the area will be roped, ribboned, or otherwise blocked off to prevent unauthorized access.
- Appropriate PPE, as specified by the SSHO, will be donned before entering the spill area.
- Ignition points will be extinguished/removed if fire or explosion hazards exist.
- Surrounding reactive materials will be removed.
- Drains or drainage in the spill area will be blocked to prevent inflow of spilled materials or applied materials.

For minor spills, the Contractor will maintain a Spill Control and Containment Kit in the Field Office or other readily accessible storage location. The kit will consist of, at a minimum, a 50 lb. bag of "speedy dry" granular absorbent material, absorbent pads, shovels, empty 5-gallon pails and an empty open-top 55-gallon drum. Spilled materials will be absorbed, and shoveled into a 55-gallon drum for proper disposal (NYSDEC approval will be secured for on-site treatment of the impacted soils/absorbent materials, if applicable). Impacted soils will be hand-excavated to the point that no visible signs of contamination remains, and will be drummed with the absorbent.

In the event of a major release or a release that threatens surface water, a spill response contractor will be called to the site. The response contractor may use heavy equipment (i.e., excavator, backhoe, etc.) to berm the soils surrounding the spill site or create diversion trenching to mitigate overland migration or release to navigable waters. Where feasible, pumps will be used to transfer free liquid to storage containers. Spill control/cleanup contractors in the Western New York area that may be contacted for assistance include:



- The Environmental Service Group of NY, Inc.: (716) 695-6720
- Op-Tech: (716) 873-7680
- AAA Environmental (585) 750-2811

# 9.4 Post-Spill Evaluation

If a reportable quantity of hazardous material or oil/petroleum is spilled as determined by the Project Manager, a written report will be prepared as indicated in Section 9.2. The report will identify the root cause of the spill, type and amount of material released, date/time of release, response actions, agencies notified and/or involved in cleanup, and procedures to be implemented to avoid repeat incidents. In addition, all re-useable spill cleanup and containment materials will be decontaminated, and spill kit supplies/disposable items will be replenished.



# **10.0 HEAT/COLD STRESS MONITORING**

Since some of the work activities at the Site will be scheduled for both the summer and winter months, measures will be taken to minimize heat/cold stress to TurnKey-Benchmark employees. The SSHO and/or his or her designee will be responsible for monitoring TurnKey-Benchmark field personnel for symptoms of heat/cold stress.

# 10.1 Heat Stress Monitoring

Personal protective equipment may place an employee at risk of developing heat stress, a common and potentially serious illnesses often encountered at construction, landfill, waste disposal, industrial or other unsheltered sites. The potential for heat stress is dependent on a number of factors, including environmental conditions, clothing, workload, physical conditioning and age. Personal protective equipment may severely reduce the body's normal ability to maintain temperature equilibrium (via evaporation and convection), and require increased energy expenditure due to its bulk and weight.

Proper training and preventive measures will mitigate the potential for serious illness. Heat stress prevention is particularly important because once a person suffers from heat stroke or heat exhaustion, that person may be predisposed to additional heat related illness. To avoid heat stress, the following steps should be taken:

- Adjust work schedules.
- Modify work/rest schedules according to monitoring requirements.
- Mandate work slowdowns as needed.
- Perform work during cooler hours of the day if possible or at night if adequate lighting can be provided.
- Provide shelter (air-conditioned, if possible) or shaded areas to protect personnel during rest periods.
- Maintain worker's body fluids at normal levels. This is necessary to ensure that the cardiovascular system functions adequately. Daily fluid intake must approximately equal the amount of water lost in sweat (i.e., eight fluid ounces must be ingested for approximately every 1 lb of weight lost). The normal thirst mechanism is not sensitive enough to ensure that enough water will be consumed to replace lost perspiration. When heavy sweating occurs, workers should be encouraged to drink more.



Train workers to recognize the symptoms of heat related illness.

# Heat-Related Illness - Symptoms:

- Heat rash may result from continuous exposure to heat or humid air.
- Heat cramps are caused by heavy sweating with inadequate electrolyte replacement. Signs and symptoms include: muscle spasms; pain in the hands, feet and abdomen.
- Heat exhaustion occurs from increased stress on various body organs including inadequate blood circulation due to cardiovascular insufficiency or dehydration. Signs and symptoms include: pale, cool, moist skin; heavy sweating; dizziness; nausea; fainting.
- Heat stroke is the most serious form of heat stress. Temperature regulation fails and the body temperature rises to critical levels. Immediate action must be taken to cool the body before serious injury and death occur. Competent medical help must be obtained. Signs and symptoms are: red, hot, usually dry skin; lack of or reduced perspiration; nausea; dizziness and confusion; strong, rapid pulse; coma.

The monitoring of personnel wearing protective clothing should commence when the ambient temperature is 70 degrees Fahrenheit or above. For monitoring the body's recuperative ability to excess heat, one or more of the following techniques should be used as a screening mechanism.

- Heart rate may be measured by the radial pulse for 30 seconds as early as possible in the resting period. The rate at the beginning of the rest period should not exceed 100 beats per minute. If the rate is higher, the next work period should be shortened by 10 minutes (or 33%), while the length of the rest periods stay the same. If the pulse rate is 100 beats per minute at the beginning of the nest rest period, the following work cycle should be further shortened by 33%.
- Body temperature may be measured orally with a clinical thermometer as early as possible in the resting period. Oral temperature at the beginning of the rest period should not exceed 99.6 degrees Fahrenheit. If it does, the next work period should be shortened by 10 minutes (or 33%), while the length of the rest period remains the same. However, if the oral temperature exceeds 99.6 degrees Fahrenheit at the beginning of the next period, the work cycle may be further shortened by 33%. Oral temperature should be measured at the end of the rest



period to make sure that it has dropped below 99.6 degrees Fahrenheit. No TurnKey-Benchmark employee will be permitted to continue wearing semipermeable or impermeable garments when his/her oral temperature exceeds 100.6 degrees Fahrenheit.

# 10.2 Cold Stress Monitoring

Exposure to cold conditions may result in frostbite or hypothermia, each of which progresses in stages as shown below.

- **Frostbite** occurs when body tissue (usually on the extremities) begins to freeze. The three states of frostbite are:
  - 1) **Frost nip** This is the first stage of the freezing process. It is characterized by a whitened area of skin, along with a slight burning or painful sensation. Treatment consists of removing the victim from the cold conditions, removal of boots and gloves, soaking the injured part in warm water (102 to 108 degrees Fahrenheit) and drinking a warm beverage. Do not rub skin to generate friction/ heat.
  - 2) **Superficial Frostbite** This is the second stage of the freezing process. It is characterized by a whitish gray area of tissue, which will be firm to the touch but will yield little pain. The treatment is identical for Frost nip.
  - 3) **Deep Frostbite** In this final stage of the freezing process the affected tissue will be cold, numb and hard and will yield little to no pain. Treatment is identical to that for Frost nip.
- **Hypothermia** is a serious cold stress condition occurring when the body loses heat at a rate faster than it is produced. If untreated, hypothermia may be fatal. The stages of hypothermia may not be clearly defined or visible at first, but generally include:
  - 1) Shivering
  - 2) Apathy (i.e., a change to an indifferent or uncaring mood)
  - 3) Unconsciousness
  - 4) Bodily freezing

Employees exhibiting signs of hypothermia should be treated by medical professionals. Steps that can be taken while awaiting help include:



- 1) Remove the victim from the cold environment and remove wet or frozen clothing. (Do this carefully as frostbite may have started.)
- 2) Perform active re-warming with hot liquids for drinking (Note: do not give the victim any liquid containing alcohol or caffeine) and a warm water bath (102 to 108 degrees Fahrenheit).
- 3) Perform passive re-warming with a blanket or jacket wrapped around the victim.

In any potential cold stress situation, it is the responsibility of the Site Health and Safety Officer to encourage the following:

- Education of workers to recognize the symptoms of frostbite and hypothermia.
- Workers should dress warmly, with more layers of thin clothing as opposed to one thick layer.
- Personnel should remain active and keep moving.
- Personnel should be allowed to take shelter in a heated areas, as necessary.
- Personnel should drink warm liquids (no caffeine or alcohol if hypothermia has set in).
- For monitoring the body's recuperation from excess cold, oral temperature recordings should occur:
  - At the Site Safety Technicians discretion when suspicion is based on changes in a worker's performance or mental status.
  - At a workers request.
  - As a screening measure, two times per shift, under unusually hazardous conditions (e.g., wind chill less than 20 degrees Fahrenheit or wind chill less than 30 degrees Fahrenheit with precipitation).
  - As a screening measure whenever anyone worker on site develops hypothermia.



Any person developing moderate hypothermia (a core body temperature of 92 degrees Fahrenheit) will not be allowed to return to work for 48 hours without the recommendation of a qualified medical doctor.



# 11.0 WORK ZONES AND SITE CONTROL

Work zones around the areas designated for construction activities will be established on a daily basis and communicated to all employees and other site users by the SSHO. It shall be each Contractor's SSHO's responsibility to ensure that all site workers are aware of the work zone boundaries and to enforce proper procedures in each area. The zones will include:

- Exclusion Zone ("Hot Zone"): The area where contaminated materials may be exposed, excavated or handled and all areas where contaminated equipment or personnel may travel. The zone will be delineated by flagging tape. All personnel entering the Exclusion Zone must wear the prescribed level of personal protective equipment identified in Section 7.
- Contamination Reduction Zone: The zone where decontamination of personnel and equipment takes place. Any potentially contaminated clothing, equipment and samples must remain in the Contamination Reduction Zone until decontaminated.
- Support Zone: The part of the site that is considered non-contaminated or "clean." Support equipment will be located in this zone, and personnel may wear normal work clothes within this zone.

In the absence of other task-specific work zone boundaries established by the SSHO, the following boundaries will apply to all investigation and construction activities involving disruption or handling of site soils or groundwater:

- Exclusion Zone: 50 foot radius from the outer limit of the sampling/construction activity.
- Contaminant Reduction Zone: 100 foot radius from the outer limit of the sampling/construction activity.
- Support Zone: Areas outside the Contaminant Reduction Zone.

Access of non-essential personnel to the Exclusion and Contamination Reduction Zones will be strictly controlled by the SSHO. Only personnel who are essential to the completion of the task will be allowed access to these areas and only if they are wearing the prescribed level of protection. Entrance of all personnel must be approved by the SSHO.



The SSHO will maintain a Health and Safety Logbook containing the names of TurnKey-Benchmark workers and their level of protection. The zone boundaries may be changed by the SSHO as environmental conditions warrant, and to respond to the necessary changes in work locations on-site.



# 12.0 DECONTAMINATION

# 12.1 Decontamination for TurnKey-Benchmark Employees

The degree of decontamination required is a function of a particular task and the environment within which it occurs. The following decontamination procedure will remain flexible, thereby allowing the decontamination crew to respond appropriately to the changing environmental conditions that may arise at the site. All TurnKey-Benchmark personnel on-site shall follow the procedure below, or the Contractor's procedure (if applicable), whichever is more stringent.

**Station 1 - Equipment Drop:** Deposit visibly contaminated (if any) re-useable equipment used in the contamination reduction and exclusion zones (tools, containers, monitoring instruments, radios, clipboards, etc.) on plastic sheeting.

Station 2 - Boots and Gloves Wash and Rinse: Scrub outer boots and outer gloves.

Station 3 - Tape, Outer Boot and Glove Removal: Remove tape, outer boots and gloves. Deposit tape and gloves in waste disposal container.

Station 4 - Canister or Mask Change: If worker leaves exclusive zone to change canister (or mask), this is the last step in the decontamination procedure. Worker's canister is exchanged, new outer gloves and boot cover donned, and worker returns to duty.

Station 5 - Outer Garment/Face Piece Removal: Protective suit removed and deposited in separate container provided by Contractor. Face piece or goggles are removed if used. Avoid touching face with fingers. Face piece and/or goggles deposited on plastic sheet. Hard hat removed and placed on plastic sheet.

**Station 6 - Inner Glove Removal:** Inner gloves are the last personal protective equipment to be removed. Avoid touching the outside of the gloves with bare fingers. Dispose of these gloves in waste disposal container.

Following PPE removal, personnel shall wash hands, face and forearms with absorbent wipes. If field activities proceed for a duration of 6 consecutive months or longer, shower facilities will be provided for worker use in accordance with OSHA 29 CFR



1910.120(n).

# 12.2 Decontamination for Medical Emergencies

In the event of a minor, non-life threatening injury, personnel should follow the decontamination procedures as defined, and then administer first-aid.

In the event of a major injury or other serious medical concern (e.g., heat stroke), immediate first-aid is to be administered and the victim transported to the hospital in lieu of further decontamination efforts unless exposure to a site contaminant would be considered "Immediately Dangerous to Life or Health."

# 12.3 Decontamination of Field Equipment

Decontamination of heavy equipment will be conducted by the Contractor in accordance with his approved Health and Safety Plan in the Contamination Reduction Zone. As a minimum, this will include manually removing heavy soil contamination, followed by steam cleaning on an impermeable pad.

Decontamination of all tools used for sample collection purposes will be conducted by TurnKey-Benchmark personnel. It is expected that all tools will be constructed of nonporous, nonabsorbent materials (i.e., metal), which will aid in the decontamination effort. Any tool or part of a tool made of porous, absorbent material (i.e., wood) will be placed into suitable containers and prepared for disposal.

Decontamination of bailers, split-spoons, spatula knives, and other tools used for environmental sampling and examination shall be as follows:

- Disassemble the equipment.
- Water wash to remove all visible foreign matter.
- Wash with detergent.
- Rinse all parts with distilled-deionized water.
- Allow to air dry.
- Wrap all parts in aluminum foil or polyethylene.



# 13.0 CONFINED SPACE ENTRY

OSHA 29 CFR 1910.146 identifies a confined space as a space that is large enough and so configured that an employee can physically enter and do assigned work, has limited or restricted means for entry and exit, and is not intended for continuous employee occupancy. Confined spaces include, but are not limited to, trenches, storage tanks, process vessels, pits, sewers, tunnels, underground utility vaults, pipelines, sumps, wells, and excavations.

Confined space entry by TurnKey-Benchmark employees is not anticipated to be necessary to complete the investigation and remedial activities identified in Section 2.0. In the event that the scope of work changes or confined space entry appears necessary, the Project Manager will be consulted to determine if feasible engineering alternatives to confined space entry can be implemented. If confined space entry by TurnKey-Benchmark employees cannot be avoided through reasonable engineering measures, task-specific confined space entry procedures will be developed and a confined-space entry permit will be issued through TurnKey-Benchmark's corporate Health and Safety Director. TurnKey-Benchmark employees shall not enter a confined space without these procedures and permits in place.



# 14.0 FIRE PREVENTION AND PROTECTION

# 14.1 General Approach

Recommended practices and standards of the National Fire Protection Association (NFPA) and other applicable regulations will be followed in the development and application of Project Fire Protection Programs. When required by regulatory authorities, the project management will prepare and submit a Fire Protection Plan for the approval of the contracting officers, authorized representative or other designated official. Essential considerations for the Fire Protection Plan will include:

- Proper site preparation and safe storage of combustible and flammable materials.
- Availability of coordination with private and public fire authorities.
- Adequate job-site fire protection and inspections for fire prevention.
- Adequate indoctrination and training of employees.

# 14.2 Equipment and Requirements

Fire extinguishers will be provided by each Contractor and are required on all heavy equipment and in each field trailer. Fire extinguishers will be inspected, serviced, and maintained in accordance with the manufacturer's instructions. As a minimum, all extinguishers shall be checked monthly and weighed semi-annually, and recharged if necessary. Recharge or replacement shall be mandatory immediately after each use.

# 14.3 Flammable and Combustible Substances

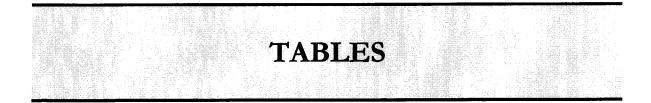
All storage, handling or use of flammable and combustible substances will be under the supervision of qualified persons. All tanks, containers and pumping equipment, whether portable or stationary, used for the storage and handling of flammable and combustible liquids, will meet the recommendations of the NFPA.

# 14.4 Hot Work

If the scope of work necessitates welding or blowtorch operation, the hot work permit presented in Appendix B will be completed by the SSHO and reviewed/issued by the Project Manager.



# **15.0 EMERGENCY INFORMATION**


In accordance with OSHA 29 CFR Part 1910, an Emergency Response Plan is attached to this HASP as Appendix A. The hospital route map is presented as Figure A-1.



# **16.0 REFERENCES**

1. New York State Department of Health. 2002. Generic Community Air Monitoring Plan, Appendix 1A, Draft DER-10 Technical Guidance for Site Investigation and Remediation. December.









1



# CONSTITUENTS OF POTENTIAL CONCERN

# Site-Wide Health and Safety Plan Tecumseh Redevelopment, Inc. Lackawanna, New York

|                             |                | Maximum Detected Concentration <sup>2</sup> |                              |                                     |                  |  |  |
|-----------------------------|----------------|---------------------------------------------|------------------------------|-------------------------------------|------------------|--|--|
| Parameter <sup>1</sup>      | CAS No.        | Groundwater <sup>3</sup><br>(mg/L)          | Surface Soil/Fill<br>(mg/kg) | Sub-Surface<br>Soil/Fill<br>(mg/kg) | LNAPL<br>(mg/kg) |  |  |
| Volatile Organic Compound   | ts (VOÇs):     |                                             |                              |                                     |                  |  |  |
| Benzene                     | 71-43-2        | 570                                         | 0.0047                       | 2800                                | 14,000           |  |  |
| Ethylbenzene                | 100-41-4       | 25                                          | Note 4                       | 170                                 | 4,600            |  |  |
| Toluene                     | 108-88-3       | 77                                          | 0.001                        | 1700                                | 5,700            |  |  |
| Xylene, Total               | 1330-20-7      | 390                                         | 0.0017                       | 1100                                | 31,000           |  |  |
| Polycyclic Aromatic Hydroe  | carbons (PAHs) | <b>1</b>                                    |                              |                                     |                  |  |  |
| Acenaphthene                | 83-32-9        | 0.36                                        | Note 4                       | Note 4                              | 400              |  |  |
| Acenaphthylene              | 208-96-8       | 0.09                                        | Note 4                       | Note 4                              | 570              |  |  |
| Anthracene                  | 120-12-7       | 0.27                                        | 0.23                         | Note 4                              | 240              |  |  |
| Benz(a)anthracene           | 56-55-3        | 0.28                                        | 0.7                          | Note 4                              | 27               |  |  |
| Benzo(a)pyrene              | 50-32-8        | 0.23                                        | 0.56                         | Note 4                              | ND               |  |  |
| Benzo(b)fluoranthene        | 205-99-2       | 0.069                                       | 0.86                         | Note 4                              | 12               |  |  |
| Benzo(ghi)perylene          | 191-24-2       | 0.033                                       | 0.35                         | Note 4                              | ND               |  |  |
| Benzo(k)fluoranthene        | 207-08-9       | 0.071                                       | 0.38                         | Note 4                              | ND               |  |  |
| Chrysene                    | 218-01-9       | 0.26                                        | 0.67                         | Note 4                              | 17               |  |  |
| Dibenz(ah)anthracene        | 53-70-3        | 0.022                                       | 0.08                         | Note 4                              | ND               |  |  |
| Fluoranthene                | 206-44-0       | 0.76                                        | 1.3                          | Note 4                              | 200              |  |  |
| Fluorene                    | 86-73-7        | 1.7                                         | Note 4                       | Note 4                              | 9,600            |  |  |
| Indeno(1,2,3-cd)pyrene      | 193-39-5       | 0.04                                        | 0.36                         | Note 4                              | ND               |  |  |
| Naphthalene                 | 91-20-3        | 280                                         | 0.29                         | 1100                                | 49,000           |  |  |
| Phenanthrene                | 85-01-8        | 0.94                                        | 0.87                         | Note 4                              | 800              |  |  |
| Pyrene                      | 129-00-0       | 0.41                                        | 0.87                         | Note 4                              | 220              |  |  |
| Inorganic Compounds:        |                | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1    |                              |                                     |                  |  |  |
| Arsenic                     | 7440-38-2      | 70.6                                        | 30.5                         | 17.7                                | 28.2             |  |  |
| Cadmium                     | 7440-43-9      | 20.6                                        | 9.7                          | 3.7                                 | 0.03             |  |  |
| Chromium                    | 7440-47-3      | 306                                         | 1190                         | 508                                 | 1.7              |  |  |
| Lead                        | 7439-92-1      | 26.3                                        | 160                          | 224                                 | 0.34             |  |  |
| Mercury                     | 7439-97-6      | 0.22                                        | 4.2                          | 0.99                                | ND               |  |  |
| Polychlorinated Biphenyls ( | (PCBs):        |                                             |                              |                                     |                  |  |  |
| Aroclor 1242                | 53469-21-9     | Note 4                                      | Note 4                       | Note 4                              | 2                |  |  |
| Aroclor 1260                | 11096-82-5     | Note 4                                      | Note 4                       | Note 4                              | 3.3              |  |  |

Notes:

1. Constituents were identified as parameters of interest during the RFI for the Benzol Plant Tank Storage Area (SWMU P-11).

2. Maximum detected concentrations as presented in the Final RFI Report for the Benzol Plant Tank Storage Area (SWMU P-11).

3. Groundwater analytical data collected from the Coke Oven Area of the Former Bethlehem Steel Lackawanna Coke Division Site.

4. Compounds with a detection frequency greater than 5% and a maximum concentration greater than the screening criteria were retained as potential parameters of interest during the RFI (Reference 1).

Acronyms:

NA = Not analyzed.

ND = Parameter not detected above method detection limits.



# TOXICITY DATA FOR CONSTITUENTS OF POTENTIAL CONCERN

### Site-Wide Health and Safety Plan **Tecumseh Redevelopment Site** Lackawanna, New York

|                           |                                    |            |       | Concentration Limits 1 |                    |      |  |  |
|---------------------------|------------------------------------|------------|-------|------------------------|--------------------|------|--|--|
| Parameter                 | Synonyms                           | CAS No.    | Code  | PEL                    | TLV                | IDLH |  |  |
| Volatile Organic Compoun  | ds (VOCs): ppm                     |            | 1     |                        | 1                  |      |  |  |
| Benzene                   | Benzol, Phenyl hydride             | 71-43-2    | Ca    | 1                      | 0.5                | 500  |  |  |
| Ethylbenzene              | Ethylbenzol, Phenylethane          | 100-41-4   | none  | 100                    | 100                | 800  |  |  |
| Toluene                   | Methyl benzene, Methyl benzol      | 108-88-3   | C-300 | 200                    | 50                 | 500  |  |  |
| Xylene, Total             | o-, m-, p-isomers                  | 1330-20-7  | none  | 100                    | 100                | 900  |  |  |
| Polycyclic Aromatic Hydro | carbons (PAHs) <sup>2</sup> : ppm  |            | 4.4   |                        |                    |      |  |  |
| Acenaphthene              | none                               | 83-32-9    | none  |                        |                    |      |  |  |
| Acenaphthylene            | none                               | 208-96-8   | none  |                        |                    |      |  |  |
| Anthracene                | none                               | 120-12-7   | none  |                        |                    |      |  |  |
| Benz(a)anthracene         | none                               | 56-55-3    | none  |                        |                    |      |  |  |
| Benzo(a)pyrene            | none                               | 50-32-8    | none  |                        |                    |      |  |  |
| Benzo(b)fluoranthene      | none                               | 205-99-2   | none  |                        |                    |      |  |  |
| Benzo(ghi)perylene        | none                               | 191-24-2   | none  |                        |                    |      |  |  |
| Benzo(k)fluoranthene      | none                               | 207-08-9   | none  |                        |                    |      |  |  |
| Chrysene                  | none                               | 218-01-9   | none  |                        |                    |      |  |  |
| Dibenz(ah)anthracene      | none                               | 53-70-3    | none  |                        |                    |      |  |  |
| Fluoranthene              | none                               | 206-44-0   | none  |                        |                    |      |  |  |
| Fluorene                  | none                               | 86-73-7    | none  |                        |                    |      |  |  |
| Indeno(1,2,3-cd)pyrene    | none                               | 193-39-5   | none  |                        |                    |      |  |  |
| Naphthalene               | Naphthalin, Tar camphor, White tar | 91-20-3    | none  | 10                     | 10                 | 250  |  |  |
| Phenanthrene              | none                               | 85-01-8    | none  |                        |                    |      |  |  |
| Pyrene                    | none                               | 129-00-0   | none  |                        |                    |      |  |  |
| Polychlorinated Inorganic | Compounds: mg/m *                  |            |       |                        |                    | E co |  |  |
| Aroclor 1242              | Chlorodiphenyl, 42% chlorine       | 53469-21-9 | Са    |                        |                    |      |  |  |
| Aroclor 1260              | Chlorodiphenyl, 60% chlorine       | 11096-82-5 | none  |                        |                    |      |  |  |
| Inorganic Compounds: mg   | Im <sup>3</sup>                    |            | 1. 0. |                        | e golf er er en se | 94   |  |  |
| Arsenic                   | none                               | 7440-38-2  | Са    | 0.01                   | 0.01               | 5    |  |  |
| Cadmium                   | none                               | 7440-43-9  | Са    | 0.005                  | 0.01               | 9    |  |  |
| Chromium                  | none                               | 7440-47-3  | none  | 1                      | 0.5                | 250  |  |  |
| Lead                      | none                               | 7439-92-1  | none  | 0.05                   | 0.15               | 100  |  |  |
| Mercury                   | none                               | 7439-97-6  | C-0.1 | 0.1                    | 0.05               | 10   |  |  |

Notes:

1. Concentration limits as reported by NIOSH Pocket Guide to Chemical Hazards, February 2004 (NIOSH Publication No. 97-140, fourth printing with changes and updates).

Individual parameters listed are those most commonly detected at steel/coke manufacturing sites.
 - - = concentration limit not available; exposure should be minimized to the extent feasible through appropriate engineering controls & PPE.

Explanation: Ca = NIOSH considers constituent to be a potential occupational carcinogen.

C-## = Ceiling Level equals the maximum exposure concentration allowable during the work day.

IDLH = Immediately Dangerous to Life or Health. ND indicates that an IDLH has not as yet been determined.

TLV = Threshold Limit Value, established by American Conference of Industrial Hygienists (ACGIH), equals the maximum exposure concentration allowable for 8 hours/day @ 40 hours/week. TLVs are the amounts of chemicals in the air that almost all healthy adult workers are predicted to be able to tolerate without adverse effects. There are three types.

TLV-TWA (TLV-Time-Weighted Average) which is averaged over the normal eight-hour day/forty-hour work week. (Most TLVs.) TLV-STEL or Short Term Exposure Limits are 15 minute exposures that should not be exceeded for even an instant. It is not a stand alone value but is accompanied by the TLV-TWA.

It indicates a higher exposure that can be tolerated for a short time without adverse effect as long as the total time weighted average is not exceeded. TLV-C or Ceiling limits are the concentration that should not be exceeded during any part of the working exposure. Unless the initials "STEL" or "C" appear in the Code column, the TLV value should be considered to be the eight-hour TLV-TWA.

PEL = Permissible Exposure Limit, established by OSHA, equals the maximium exposure conconcentration allowable for 8 hours per day @ 40 hours per week



# POTENTIAL ROUTES OF EXPOSURE TO CONSTITUENTS OF POTENTIAL CONCERN

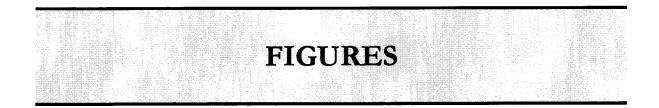
# Site-Wide Health and Safety Plan **Tecumseh Redevelopment Site** Lackawanna, New York

| Activity 1                                              | Direct<br>Contact<br>with Soll/Fill | Inhalation of<br>Vapors or<br>Dust | Direct<br>Contact with<br>Groundwater |
|---------------------------------------------------------|-------------------------------------|------------------------------------|---------------------------------------|
| 1. Soil/Fill Excavation                                 | x                                   | x                                  |                                       |
| 2. Soil/Fill Documentation Sampling                     | x                                   | x                                  |                                       |
| 3. Surface Water Management                             |                                     |                                    | x                                     |
| 4. Slag/Fill Subgrade Preparation                       | x                                   | x                                  |                                       |
| 5. Cover Soil Placement                                 | x                                   | x                                  |                                       |
| 6. Groundwater Monitoring Well<br>Installation/Sampling | x                                   | x                                  | x                                     |
| 7. Groundwater Remediation                              | x                                   | x                                  | x                                     |

Notes: 1. Activity as described in Section 1.5 of the Health and Safety Plan.



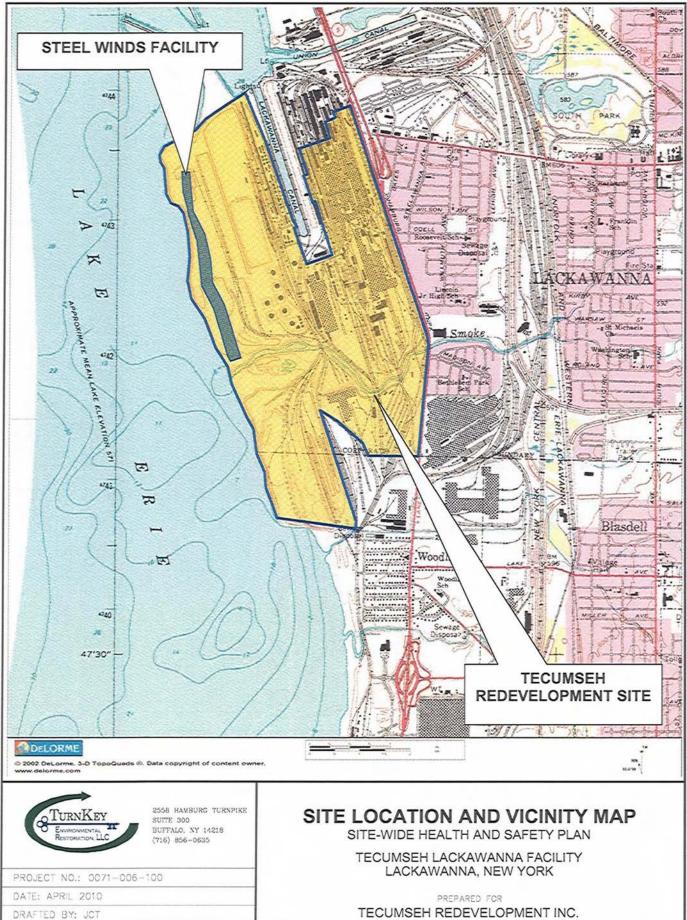
# FOR BCP INVESTIGATION AND REMEDIAL ACTIVITIES **REQUIRED LEVELS OF PROTECTION**

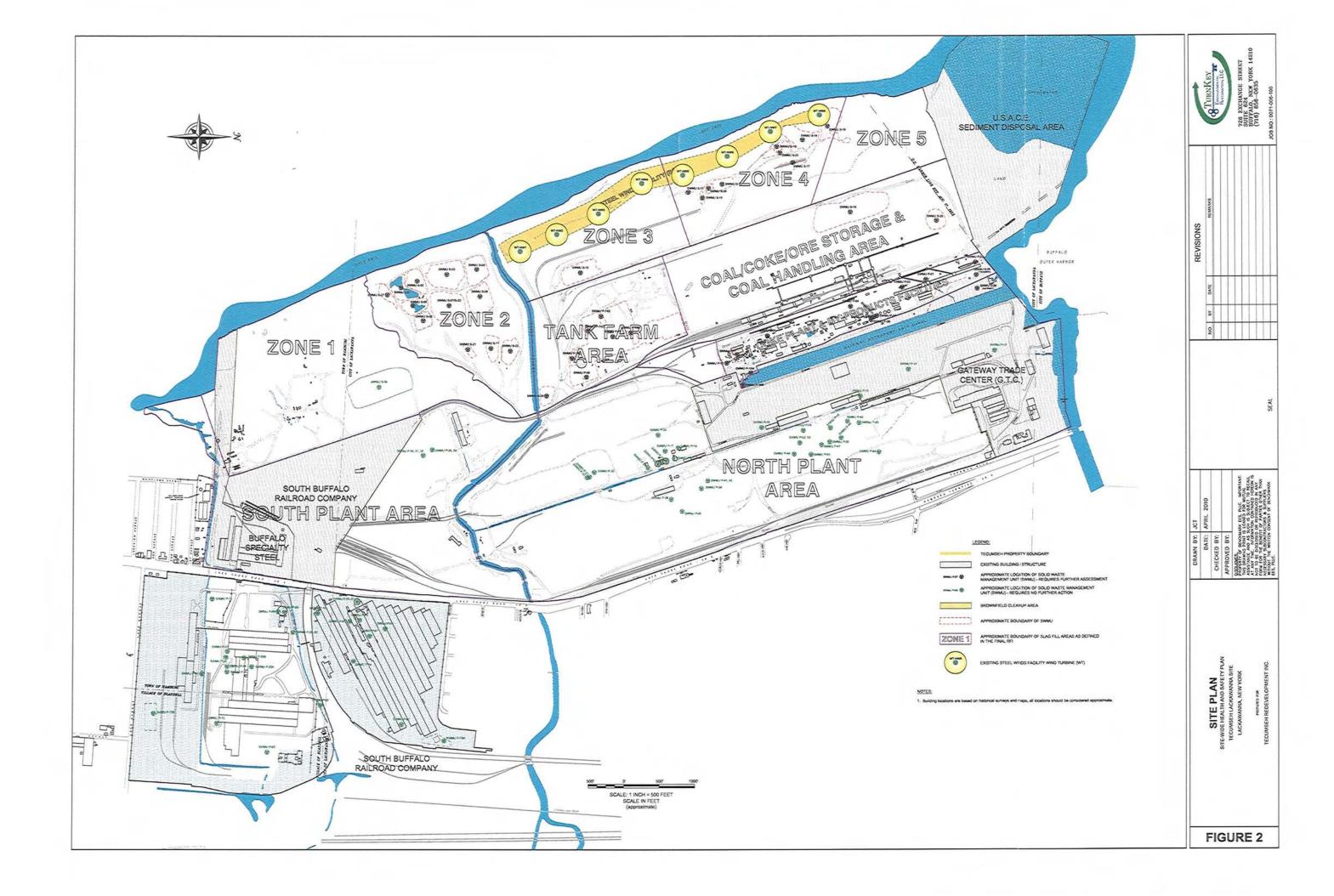

# Site-Wide Health and Safety Plan **Tecumseh Redevelopment Site** Lackawanna, New York

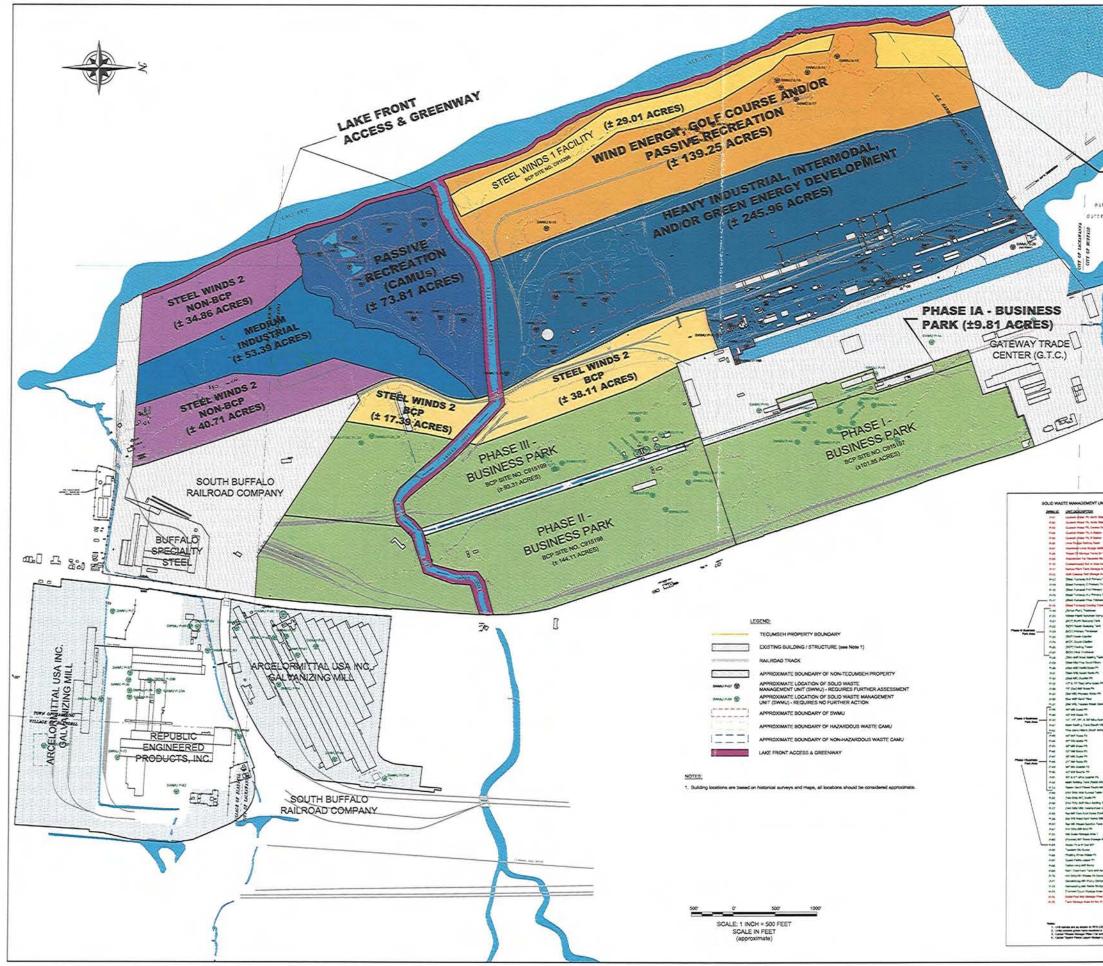
|                                                         | Protection <sup>1</sup>                         | Clothing                 | Gloves <sup>2</sup> | Boots <sup>2,3</sup>    | Other Required<br>PPE/Modifications <sup>2,4</sup> |
|---------------------------------------------------------|-------------------------------------------------|--------------------------|---------------------|-------------------------|----------------------------------------------------|
| 1. Soil/Fill Excavation (u                              | Level D<br>(upgrade to Level C if<br>necessary) | Work Uniform or<br>Tyvek |                     | outer: L<br>inner: STSS | HH<br>SGSS                                         |
| 2. Soil/Fill Documentation Sampling (u                  | Level D<br>(upgrade to Level C if<br>necessary) | Work Uniform or<br>Tyvek | Ļ                   | outer: L<br>inner: STSS | HH<br>SGSS                                         |
| 3. Surface Water Management (u                          | Level D<br>(upgrade to Level C if<br>necessary) | Work Uniform or<br>Tyvek | L/N                 | outer: L<br>inner: STSS | HH<br>SGSS                                         |
| 4. Slag/Fill Subgrade Preparation (u                    | Level D<br>(upgrade to Level C if<br>necessary) | Work Uniform or<br>Tyvek | -1                  | outer: L<br>inner: STSS | HH<br>SGSS                                         |
| 5. Cover Soil Placement (u                              | Level D<br>(upgrade to Level C if<br>necessary) | Work Uniform or<br>Tyvek | Ц                   | outer: L<br>inner: STSS | HH<br>SGSS                                         |
| 6. Groundwater Monitoring Well Installation/Sampling (u | Level D<br>(upgrade to Level C if<br>necessary) | Work Uniform or<br>Tyvek | Γ/N                 | outer: L<br>inner: STSS | HH<br>SGSS                                         |
| 7. Groundwater Remediation (u                           | Level D<br>(upgrade to Level C if<br>necessary) | Work Uniform or<br>Tyvek | L                   | outer: L<br>inner: STSS | HH<br>SGSS                                         |

# Notes:

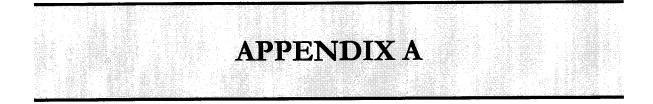
Respiratory equipment shall conform to guidelines presented in Section 7.0 of this HASP. The Level C requirement is an air-purifying respirator equiped with organic compound/acid gas/dust cartridge.
 HH = hardhat; L= Latex; L/N = latex inner glove, nitrile outer glove; N = Nitrile; S = Sarenex; SG = safety glasses; SGSS = safety glasses with sideshields; STSS = steel toe safety shoes.
 Latex outer boot (or approved overboot) required whenever contact with contaminated materials may occur. SSHO may downgrade to STSS (steel-toed safety shoes) if contact will be limited to


4. Dust masks shall be donned as directed by the SSHO (site safety and health officer) or site safety technician whenever potentially contaminated airborne particulates (i.e., dust) are present in significant amounts in the breathing zone. Goggles may be substituted with safety glasses whenever contact with contaminated liquids is not anticipated. cover/replacement soils.







# FIGURE 1







| <ul> <li>Termina de la construcción de la const</li></ul> |                                                                                                                                                                                                                                                                                                                                                                                            |                  | CONCEPTUAL REDEVELOPMENT MASTER PLAN | SITE-WIDE HEALTH AND SAFETY PLAN<br>TECHNEEHL ACKAMANNA SITE |                                              |                                                                                     | TECHNISEL DEPENDING                                                                                                |                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| SOLO MANTE MANAGEMENT VAITS  SOLO MANTE MANAGEMENT VAITS  SOLO MANTE MANAGEMENT VAITS  A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A CONTRACT MANAGEMENT VAITS A         | DRAWN BY: JCT                                                                                                                                                                                                                                                                                                                                                                              | DATE: APRIL 2010 | CHECKED BY:                          | APPROVED BY:                                                 | DSOLANES, DE ECHORALISE RES. PLLC. INFORTANT | THE DAY WAY OF AN A SUCH IS DAY AND TO MALLA AND AND AND AND AND AND AND AND AND AN | NOT TO BE USADORD OF APPROVED IN ANT<br>DOW FOR BENUTI OF PARTES OTHER THUN<br>NECESSANT SARENITALTIONS & SUPPLESS | WINOUT DR. MOTTON CONSONT OF BONOWASSY<br>BES, PLLG. |
| STEEL WINDS 1A<br>FACILITY<br>(±9.33 ACRES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | REVISIONS       No. pr     REVISIONS       No.     P     P       P     P     P       P     P     P       P     P     P       P     P     P       P     P     P       P     P     P       P     P     P       P     P     P       P     P     P       P     P     P       P     P     P       P     P     P       P     P     P       P     P     P       P     P     P       P     P     P |                  |                                      |                                                              |                                              |                                                                                     |                                                                                                                    |                                                      |



# **EMERGENCY RESPONSE PLAN**





# EMERGENCY RESPONSE PLAN for BROWNFIELD CLEANUP PROGRAM

# **TECUMSEH REDEVELOPMENT SITE**

# LACKAWANNA, NEW YORK

April 2010

0071-007-350

# TECUMSEH REDEVELOPMENT SITE SITE-WIDE HEALTH AND SAFETY PLAN APPENDIX A: EMERGENCY RESPONSE PLAN

# **TABLE OF CONTENTS**

| 1.0  | GENERAL1                                       |
|------|------------------------------------------------|
| 2.0  | Pre-Emergency Planning2                        |
| 3.0  | ON-SITE EMERGENCY RESPONSE EQUIPMENT           |
| 4.0  | Emergency Planning Maps 4                      |
| 5.0  | Emergency Contacts                             |
| 6.0  | Emergency Alerting & Evacuation                |
| 7.0  | EXTREME WEATHER CONDITIONS                     |
| 8.0  | Emergency Medical Treatment & First Aid9       |
| 9.0  | EMERGENCY RESPONSE CRITIQUE & RECORD KEEPING10 |
| 10.0 | EMERGENCY RESPONSE TRAINING 11                 |

# LIST OF FIGURES

| Figure A-1 | Hospital Route Map |
|------------|--------------------|
|------------|--------------------|

A-i



F:\TurnKey\Clients\Tecumseh Redevelopment\Brownfield Cleanup Program (BCP)\Site-Wide HASP\Appendices\Appendix A; Emergency Response Plan (April 2010).doc

# 1.0 GENERAL

This report presents the site-specific Emergency Response Plan (ERP) referenced in the Site-Wide Health and Safety Plan (HASP) prepared for BCP investigation and remedial activities conducted at the Tecumseh Redevelopment Site (former Bethlehem Steel Lackawanna Works), Lackawanna, New York. This appendix of the Site-Wide HASP describes potential emergencies that may occur at the Site; procedures for responding to those emergencies; roles and responsibilities during emergency response; and training all workers must receive in order to follow emergency procedures. This ERP also describes the provisions this Site has made to coordinate its emergency response planning with other contractors on-site and with off-site emergency response organizations.

This ERP is consistent with the requirements of 29 CFR 1910.120(1) and provides the following site-specific information:

- Pre-emergency planning.
- Personnel roles, lines of authority, and communication.
- Emergency recognition and prevention.
- Safe distances and places of refuge.
- Evacuation routes and procedures.
- Decontamination procedures.
- Emergency medical treatment and first aid.
- Emergency alerting and response procedures.
- Critique of response and follow-up.
- Emergency personal protective equipment (PPE) and equipment.



# 2.0 PRE-EMERGENCY PLANNING

This Site has been evaluated for potential emergency occurrences, based on site hazards, the required work tasks, the site topography, and prevailing weather conditions. The results of that evaluation indicate the potential for the following site emergencies to occur at the locations indicated.

Type of Emergency:

- 1. Medical, due to physical injury
- 2. Fire

Source of Emergency:

- 1. Slip/trip/fall
- 2. Fire

Location of Source:

1. Non-specific





# 3.0 ON-SITE EMERGENCY RESPONSE EQUIPMENT

Emergency procedures may require specialized equipment to facilitate worker rescue, contamination control and reduction, or post-emergency clean up. Emergency response equipment available on the Site is listed below. The equipment inventory and storage locations are based on the potential emergencies described above. This equipment inventory is designed to meet on-site emergency response needs and any specialized equipment needs that off-site responders might require because of the hazards at this Site but not ordinarily stocked.

Any additional personal protective equipment (PPE) required and stocked for emergency response is also listed in below. During an emergency, the Emergency Response Coordinator (ERC) is responsible for specifying the level of PPE required for emergency response. At a minimum, PPE used by emergency responders will comply with Section 7.0, Personal Protective Equipment, of this HASP. Emergency response equipment is inspected at regular intervals and maintained in good working order. The equipment inventory is replenished as necessary to maintain response capabilities.

| Emergency Equipment        | Quantity    | Location                                                                                          |  |  |  |
|----------------------------|-------------|---------------------------------------------------------------------------------------------------|--|--|--|
| Spill Response Kit         | 2           | Benzol Yard ICM Treatment<br>Building; Wastewater Treatment<br>Plant Garage (Phase III parcel)    |  |  |  |
| First Aid Kit              | 3           | Site Vehicle; Benzol Yard ICM<br>Treatment Building; Field Office<br>in Coke Oven Office Building |  |  |  |
| Chemical Fire Extinguisher | 2 (minimum) | All heavy equipment and Site<br>Vehicle                                                           |  |  |  |

| Emergency PPE            | Quantity          | Location     |
|--------------------------|-------------------|--------------|
| Full-face respirator     | 1 for each worker | Site Vehicle |
| Chemical-resistant suits | 4 (minimum)       | Site Vehicle |



### 4.0 **EMERGENCY PLANNING MAPS**

An area-specific map of the Tecumseh Redevelopment Site will be developed on a daily basis during performance of field activities. The map will be marked to identify critical on-site emergency planning information, including: emergency evacuation routes, a place of refuge, an assembly point, and the locations of key site emergency equipment. Site zone boundaries will be shown to alert responders to known areas of contamination. There are no major topographical features; however, the direction of prevailing winds/weather conditions that could affect emergency response planning are also marked on the map. The map will be posted at site-designated place of refuge and inside the TurnKey personnel field vehicle.





# 5.0 EMERGENCY CONTACTS

The following identifies the emergency contacts for this ERP.

# Emergency Telephone Numbers:

# Project Manager: Patrick T. Martin

Work: (716) 856-0599 Mobile: (716) 867-2860

# Corporate Health and Safety Director: Thomas H. Forbes

Work: (716) 856-0599 Mobile: (716) 864-1730

# Site Safety and Health Officer (SSHO): Richard L. Dubisz

Work: (716) 856-0635 Mobile: (716) 998-4334

# Alternate SSHO: Thomas Behrendt

Work: (716) 856-0635 Mobile: (716) 818-8358

| MERCY HOSPITAL (ER):              | (716) 826-7000 |
|-----------------------------------|----------------|
| FIRE:                             | 911            |
| AMBULANCE:                        | 911            |
| BUFFALO POLICE:                   | 911            |
| STATE EMERGENCY RESPONSE HOTLINE: | (800) 457-7362 |
| NATIONAL RESPONSE HOTLINE:        | (800) 424-8802 |
| NYSDOH:                           | (716) 847-4385 |
| NYSDEC:                           | (716) 851-7220 |
| NYSDEC 24-HOUR SPILL HOTLINE:     | (800) 457-7252 |
|                                   | · · ·          |

The Site location is:

Tecumseh Redevelopment Inc. 1951 Hamburg Turnpike Lackawanna, New York 14218 Site Phone Number: (Insert Cell Phone or Field Trailer):



# 6.0 EMERGENCY ALERTING & EVACUATION

Internal emergency communication systems are used to alert workers to danger, convey safety information, and maintain site control. Any effective system can be employed. Two-way radio headsets or field telephones are often used when work teams are far from the command post. Hand signals and air-horn blasts are also commonly used. Every system <u>must</u> have a backup. It shall be the responsibility of each contractor's SSHO to ensure an adequate method of internal communication is understood by all personnel entering the site. Unless all personnel are otherwise informed, the following signals shall be used.

- 1) Emergency signals by portable air horn, siren, or whistle: two short blasts, personal injury; continuous blast, emergency requiring site evacuation.
- 2) Visual signals: hand gripping throat, out of air/cannot breathe; hands on top of head, need assistance; thumbs up, affirmative/ everything is OK; thumbs down, no/negative; grip partner's wrist or waist, leave area immediately.

If evacuation notice is given, site workers leave the worksite with their respective buddies, if possible, by way of the nearest exit. Emergency decontamination procedures detailed in Section 12.0 of the HASP are followed to the extent practical without compromising the safety and health of site personnel. The evacuation routes and assembly area will be determined by conditions at the time of the evacuation based on wind direction, the location of the hazard source, and other factors as determined by rehearsals and inputs from emergency response organizations. Wind direction indicators are located so that workers can determine a safe up wind or cross wind evacuation route and assembly area if not informed by the emergency response coordinator at the time the evacuation alarm sounds. Since work conditions and work zones within the site may be changing on daily basis, it shall be the responsibility of the construction Site Health and Safety Officer to review evacuation routes and procedures as necessary and to inform all TurnKey-Benchmark workers of any changes.

Personnel exiting the site will gather at a designated assembly point. To determine that everyone has successfully exited the site, personnel will be accounted for at the assembly site. If any worker cannot be accounted for, notification is given to the SSHO (*Thomas*)



# APPENDIX A: EMERGENCY RESPONSE PLAN

**Behrendt** or **Richard Dubisz**) so that appropriate action can be initiated. Contractors and subcontractors on this site have coordinated their emergency response plans to ensure that these plans are compatible and that source(s) of potential emergencies are recognized, alarm systems are clearly understood, and evacuation routes are accessible to all personnel relying upon them.





# 7.0 EXTREME WEATHER CONDITIONS

In the event of adverse weather conditions, the SSHO in conjunction with the Contractor's SSHO will determine if engineering operations can continue without sacrificing the health and safety of site personnel. Items to be considered prior to determining if work should continue include but are not limited to:

- Potential for heat/cold stress.
- Weather-related construction hazards (i.e., flooding or wet conditions producing undermining of structures or sheeting, high wind threats, etc).
- Limited visibility.
- Potential for electrical storms.
- Limited site access/egress (e.g., due to heavy snow)





#### APPENDIX A: EMERGENCY RESPONSE PLAN

## 8.0 EMERGENCY MEDICAL TREATMENT & FIRST AID

## Personnel Exposure:

The following general guidelines will be employed in instances where health impacts threaten to occur acute exposure is realized:

- <u>Skin Contact</u>: Use copious amounts of soap and water. Wash/rinse affected area for at least 15 minutes. Decontaminate and provide medical attention. Eyewash stations will be provided on site. If necessary, transport to Mercy Hospital.
- Inhalation: Move to fresh air and, if necessary, transport to Mercy Hospital.
- <u>Ingestion</u>: Decontaminate and transport to Mercy Hospital.

## Personal Injury:

Minor first-aid will be applied on-site as deemed necessary. In the event of a life threatening injury, the individual should be transported to Mercy Hospital via ambulance. The SSHO will supply available chemical specific information to appropriate medical personnel as requested.

First aid kits will conform to Red Cross and other applicable good health standards, and shall consist of a weatherproof container with individually sealed packages for each type of item. First aid kits will be fully equipped before being sent out on each job and will be checked weekly by the SSHO to ensure that the expended items are replaced.

## Directions to Mercy Hospital (see Figure A-1):

The following directions describe the best route to Mercy Hospital:

- From Gate 2, proceed onto the Hamburg Turnpike (SR 5).
- Proceed east on Hamburg Turnpike (SR 5) to the Tifft Street Exit and turn right onto Tifft Street.
- Take Tifft Street east crossing South Park Avenue and McKinley Parkway. Bear left on Edgewood Avenue.
- Turn right on Abbott Road and Mercy Hospital will be on right hand side. Follow signs to emergency room (ER).



#### APPENDIX A: EMERGENCY RESPONSE PLAN

## 9.0 EMERGENCY RESPONSE CRITIQUE & RECORD KEEPING

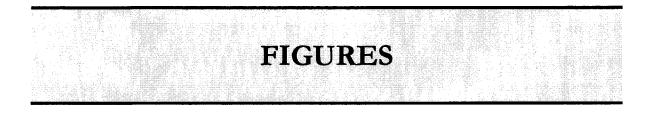
Following an emergency, the SSHO and Project Manager shall review the effectiveness of this Emergency Response Plan (ERP) in addressing notification, control and evacuation requirements. Updates and modifications to this ERP shall be made accordingly. It shall be the responsibility of each contractor to establish and assure adequate records of the following:

- Occupational injuries and illnesses.
- Accident investigations.
- Reports to insurance carrier or State compensation agencies.
- Reports required by the client.
- Records and reports required by local, state, federal and/or international agencies.
- Property or equipment damage.
- Third party injury or damage claims.
- Environmental testing logs.
- Explosive and hazardous substances inventories and records.
- Records of inspections and citations.
- Safety training.



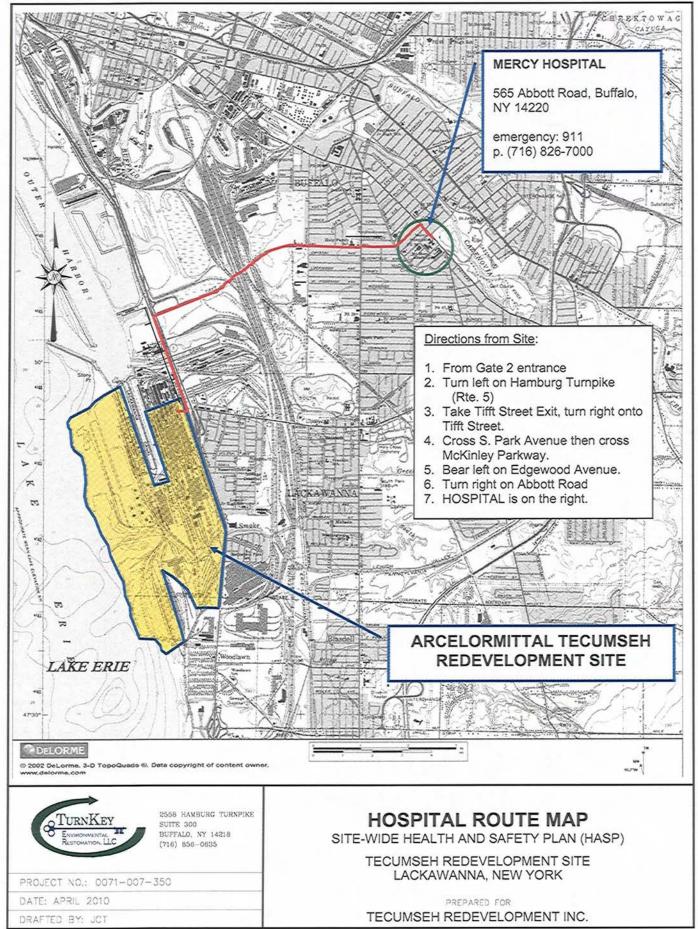


APPENDIX A: EMERGENCY RESPONSE PLAN


## **10.0 Emergency Response Training**

All persons who enter the worksite, including visitors, shall receive a site-specific briefing about anticipated emergency situations and the emergency procedures by the SSHO. Where this site relies on off-site organizations for emergency response, the training of personnel in those off-site organizations has been evaluated and is deemed adequate for response to this site.




SITE-WIDE HEALTH AND SAFETY PLAN Tecumseh Redevelopment Site

APPENDIX A: EMERGENCY RESPONSE PLAN





# **FIGURE A-1**



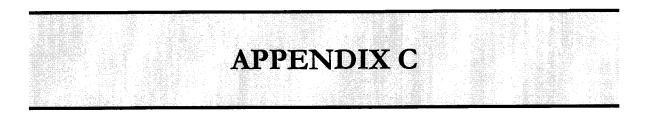
SITE-WIDE HEALTH AND SAFETY PLAN TECUMSEH REDEVELOPMENT SITE



# HOT WORK PERMIT FORM








# HOT WORK PERMIT

| PART 1 - INFORMATION                                                                             |                                     |
|--------------------------------------------------------------------------------------------------|-------------------------------------|
| Issue Date:                                                                                      |                                     |
| Date Work to be Performed: Start:                                                                | Finish (permit terminated):         |
| Performed By:                                                                                    |                                     |
| Work Area:                                                                                       |                                     |
| Object to be Worked On:                                                                          |                                     |
| PART 2 - APPROVAL                                                                                |                                     |
| (for 1, 2 or 3: mark Yes, No or NA)*                                                             |                                     |
| Will working be on or in:                                                                        | Finish (permit terminated):         |
| 1. Metal partition, wall, ceiling covered by combustible material?                               | yes no                              |
| 2. Pipes, in contact with combustible material?                                                  | yes no                              |
| 3. Explosive area?                                                                               | yes no                              |
| Check all conditions that must be met)                                                           |                                     |
| PROTECTIVE ACTION                                                                                | PROTECTIVE EQUIPMENT                |
| Specific Risk Assessment Required                                                                | Goggles/visor/welding screen        |
| Fire or spark barrier                                                                            | Apron/fireproof clothing            |
| Cover hot surfaces                                                                               | Welding gloves/gauntlets/other:     |
| Move movable fire hazards, specifically                                                          | Wellintons/Knee pads                |
| Erect screen on barrier                                                                          | Ear protection: Ear muffs/Ear plugs |
| Restrict Access                                                                                  | B.A.: SCBA/Long Breather            |
| Wet the ground                                                                                   | Respirator: Type:                   |
| Ensure adequate ventilation                                                                      | Cartridge:                          |
| Provide adequate supports                                                                        | Local Exhaust Ventilation           |
| Cover exposed drain/floor or wall cracks                                                         | Extinguisher/Fire blanket           |
| Fire watch (must remain on duty during duration of permit)                                       | Personal flammable gas monitor      |
| Issue additional permit(s):                                                                      |                                     |
| Other precautions:                                                                               |                                     |
|                                                                                                  |                                     |
|                                                                                                  |                                     |
| ** Permit will not be issued until these conditions are me                                       | ət.                                 |
|                                                                                                  | et.                                 |
| ** Permit will not be issued until these conditions are me<br>SIGNATURES<br>Orginating Employee: | ot.<br>Date:                        |
| GIGNATURES                                                                                       |                                     |

Prepared By: \_\_\_\_\_

SITE-WIDE HEALTH AND SAFETY PLAN TECUMSEH REDEVELOPMENT SITE



# NYSDOH GENERIC COMMUNITY AIR MONITORING PLAN





## Appendix 1A New York State Department of Health Generic Community Air Monitoring Plan

## Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical- specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

## Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

**Continuous monitoring** will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

**Periodic monitoring** for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

## VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.

2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.

3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

## Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter  $(mcg/m^3)$  greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m<sup>3</sup> above the upwind level and provided that no visible dust is migrating from the work area.

2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m<sup>3</sup> above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m<sup>3</sup> of the upwind level and in preventing visible dust migration.

3. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009

# **APPENDIX F**

# **RAILROAD BALLAST SPECIFICATIONS**



Erie County Industrial Development Agency East Harbor Rail Lead Relocation

#### Sub-Ballast

This item shall be paid for under NYSDOT Specification 304.14. For this project, based on Geotechnical Evaluations, a 6 inch layer of sub-ballast will consist of the foundation course for the railroad roadbed. The material shall be composed of either caliche, argillaceous limestone, conglomerate, gravel, crushed slag, or other granular materials.

The materials shall meet the requirement herein after as specified by special note. Aggregate retained on a No 10 sieve shall consist of hard, durable particles or fragments of stone, gravel, sand or slag. Materials that break up when alternatively frozen and thawed or soaked and dried shall not be used. Allowable wear, based on the Los Angeles abrasion test, shall not be greater than 50%. A higher or lower percentage of wear may be specified by the Engineer.

It is the intent of this special note is that the sub-ballast shall consist of gradations as set forth in the following table.

| Sieve Size           | 2"   | 1'     | 3/4"  | <u>No 10</u> | <u>No 40</u> | <u>No 200</u> |
|----------------------|------|--------|-------|--------------|--------------|---------------|
| % Pass (optimum)     | 100% | 95%    | 67%   | 38%          | 21%          | 7%            |
| % Pass (Permissible) | 100% | 90-100 | 50-84 | 26-50        | 12-30        | 0-10          |

The sub-ballast shall be constructed on the properly prepared subgrade in conformance with the plans, specifications and sections provided for this project. The maximum compacted thickness of the subballast shall not exceed 7 inches or another compacted lift shall be provided. Each lift must be compacted to not less than 95% of the maximum density and to within 2% of the optimal moisture content, as determined by ASTM D 1557.

## ITEM C675.1399 - FURNISH, PLACE AND COMPACT BALLAST BASE COURSE

#### Description

The work shall consist of furnishing, placing and compacting stone ballast for the construction of tracks, and/or turnouts, and/or the reconstruction of rail-highway grade crossings as indicated in the contract documents or where directed by the Engineer.

#### **Materials**

Materials Specification 703-02, Coarse Aggregate shall apply except as modified herein.

All stone ballast shall be composed of angular fragments of rock, reasonably uniform in quality, and having specified durability and wear resistance qualities. Screened gravel, crushed gravel, marble, sandstone, argillaceous limestones, argillaceous dolomites or crushed slag are not acceptable for use as stone ballast.

All physical requirements and limitations on deleterious materials for crushed stone ballast are listed in Table 703-90 (below).

Stone ballast shall be handled in such a manner that it is kept clean and free from segregation. Any stone which requires washing or scrubbing to insure cleanliness shall be washed at the quarry or crusher site. The gradation requirements of stone sizes shall conform to Table 703-91 (below), "Size Gradation-Stone Ballast."

All sampling and testing shall be done in accordance with Engineer written instructions. Each portion of a quarry exhibiting a variation in quality of stone shall be tested separately. The test results shall not be averaged. The Engineer reserves the right to sample and test the stone ballast up to and including the point of use.

| TABLE 703-90                                             |                   |                   |                   |
|----------------------------------------------------------|-------------------|-------------------|-------------------|
| BALLAST CLASS TESTS <sup>(1)</sup>                       |                   |                   |                   |
|                                                          | Bal               | last Cl           | ass               |
|                                                          | NY1               | NY2               | NY3               |
| Magnesium Sulfate Test (NYSDOT 703-7P) (2)               |                   |                   |                   |
| Max. percent loss by weight at 10 cycles                 | 18                | 18                | 18                |
|                                                          |                   |                   |                   |
| Freezing and Thawing Test (NYSDOT 703-8P) <sup>(3)</sup> |                   |                   |                   |
| Max. percent loss by weight at 25 cycles                 | 10                | 10                | 10                |
|                                                          |                   |                   |                   |
| Los Angeles Abrasion Test (AASHTO T96)                   |                   |                   |                   |
| Max. percent loss by weight (Grading A or B)             | 15 <sup>(4)</sup> | 20 <sup>(4)</sup> | 35 <sup>(4)</sup> |
|                                                          |                   | 45 <sup>(5)</sup> | 45 <sup>(5)</sup> |
|                                                          |                   |                   |                   |
| Flat and Elongated Pieces (ASTM C125)                    |                   |                   |                   |
| Max. percent by weight of:                               |                   |                   |                   |
| Flat or Elongated to the Degree of 3:1                   | 30                | 30                | 30                |
| Flat or Elongated to the Degree of 5:1                   | 10                | 10                | 10                |
|                                                          |                   |                   |                   |
| Impedance Test (NYSDOT 703-12G)                          |                   |                   |                   |
| Impedance, Kohms                                         | 2.6+              | 2.6+              | 2.6+              |
|                                                          |                   |                   |                   |
| Petrographic Test                                        |                   |                   |                   |
| Shale or other deleterious materials <sup>(6)</sup>      | 1.0               | 1.0               | 1.0               |
| Clay balls or lumps                                      | 0.2               | 0.2               | 0.2               |
| Materials passing the 75 m sieve (NYSDOT 703-2P)         | 0.7               | 0.7               | 0.7               |

# ITEM C675.1399 - FURNISH, PLACE AND COMPACT BALLAST BASE COURSE

<sup>(1)</sup> To determine its conformance to specification limits, processed crushed stone may be tested at any point after completion of processing. The manufactured material shall be separated into the primary sizes indicated in Table 703-5, "Primary Sizes". Each size fraction shall conform to the requirements 703-90,

Stone Ballast. <sup>(2)</sup> Magnesium Sulfate loss applies to No. 2 primary size fraction. <sup>(3)</sup> The freeze-thaw loss applies to the No. 3 primary size fraction, but the Engineer reserves the option to (4) Loss applies to granite, anorthosite, and gabbro.
 (5) Loss applies to granite, anorthosite, and gabbro.
 (6) Argillaceous limestone's and dolomites are considered to be deleterious materials.

## ITEM C675.1399 – FURNISH, PLACE AND COMPACT BALLAST BASE COURSE

|             |                     |        | PERCENT BY WEIGHT |             |             |           |            |      |                |                 |  |
|-------------|---------------------|--------|-------------------|-------------|-------------|-----------|------------|------|----------------|-----------------|--|
| SIZE<br>NO. | NOMINAL<br>SIZE     | 2 1⁄2" | 2"                | 1 ½"        | 1"          | 3⁄4"      | 1⁄2"       | 3/8" | No. 4<br>Sieve | No. 10<br>Sieve |  |
| CR3-4       | 2" - 1/2"           | 100    | 98 -<br>100       | 60 -<br>85  | 20 -<br>40  | 5-15      | 0-5        | 0-1  | -              | _               |  |
| 4           | 1½" – ¾"            | -      | 100               | 90 -<br>100 | 20 -<br>55  | 0-15      | -          | 0-5  | -              | -               |  |
| 5           | 1" – 3/8"           | -      | -                 | 100         | 90 -<br>100 | 40-<br>75 | 15 -<br>35 | 0-15 | 0-5            | -               |  |
| 57          | 1" – No. 4<br>Sieve | -      | -                 | 100         | 95 -<br>100 | -         | 25 -<br>60 | -    | 0-10           | 0-5             |  |

#### TABLE 703-91 SIZE GRADATION - STONE BALLAST AMOUNTS FINER THAN EACH SIEVE\*

\* Sieves shall meet the requirements of ASTM designation E-11

#### **Construction Details**

Self-spreading vehicles of a type approved by the Engineer may be used. When stone is initially spread by self-spreading vehicles, a power grader of a type approved by the Engineer may be used to assist the spreading operation. If results of spreading with the power grader are found to be unsatisfactory, permission for use of a grader may be withdrawn. Alternate methods of spreading may be approved by the Engineer for limited areas such as grade crossings. The stone ballast shall be shaped to a true section conforming to the ballast section shown on the plans and thoroughly compacted until the surface is true and unyielding.

Compaction may be done with rollers or with vibratory compactors subject to the following requirements:

- The contractor shall place ballast on the graded and compacted sub-base with the maximum lift thickness being determined by the compaction equipment selected and the requirements for proper compaction as given in Section 203-3.12 of the Standard Specifications.
- The top grade of the ballast base course shall be a minimum of 2 in. below the bottom of tie elevation as determined from the top of rail profile shown in the contract documents, the rail section, tie plate thickness, and nominal tie thickness being used at a particular location.
- The requirements for Standard Proctor Maximum Density and Moisture Control shall not apply for ballast, however, compaction shall be continued until the stones are firmly interlocked and the surface is true and unyielding.

# ITEM C675.1399 – FURNISH, PLACE AND COMPACT BALLAST BASE COURSE

• The ballast from 2 inches below the tie grade line to the finished surface shall be placed, tamped and dressed after the proposed track is in place, and will be paid for under its respective item.

#### Method of Measurement

The work will be measured as the number of tons of stone ballast is placed and compacted.

#### **Basis of Payment**

The unit price bid per ton shall include the cost of all labor, material and equipment necessary to complete the work.

| DESIGN FILE: UNLPIT                       | F                             |                          |                                                                                      |                 |                         |                                                                                   |                                                                             |                         |             |                  |               |                   | ſ       |
|-------------------------------------------|-------------------------------|--------------------------|--------------------------------------------------------------------------------------|-----------------|-------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------|-------------|------------------|---------------|-------------------|---------|
|                                           | TABLE                         | LE No.                   | l Recom                                                                              | mended          | Llml+lng                | ng Values                                                                         | <b>ب</b>                                                                    | Testing for             | Ballast     | t Materlal       | lal           |                   |         |
| PROPERTY                                  | RTY                           |                          | Gran1ta                                                                              | Traprock        |                         | Quartzite                                                                         | L 1 mestane                                                                 | e Domestic<br>Limestone |             | Blast<br>Furnace | Steel<br>Slag | ASTM T            | Test    |
| Percent Material Passing<br>No. 200 Sleve | artat Pass<br>/e              | i ng                     | 1.0%                                                                                 | - 0%            |                         | 1.0%                                                                              | - 0%                                                                        | - 0%                    | 80          | 1. 0%            |               | C 117             | 2       |
| Bulk Specific G<br>(See Note #2)          | fic Gravity<br>e #2)          | 7                        | 2. 60                                                                                | 2.60            |                         | 2.60                                                                              | 2.60                                                                        | 2.                      | 2.60        | 2.30             | 2.90          | C 127             | 2       |
| Absorption Percent                        | n Percent                     |                          | 0.1                                                                                  | 0.1             |                         | 1.0                                                                               | 2.0                                                                         | 2.0                     | 0           | 5.0              | 2. 0          | C 127             | 7       |
| Clay Lumps 8<br>5 Cycles                  | s & Friable<br>cies           | 0                        | 0.5%                                                                                 | 0. 5%           |                         | 0. 5%                                                                             | 0. 5%                                                                       | 0                       | 0. 5%       | 0. 5%            | 0. 5%         | C 142             | 5       |
| Degro                                     | Degradat I on                 |                          | 35%                                                                                  | 25%             |                         | 30%                                                                               | 35%                                                                         | 36                      | 35%         | 40%              | 30%           | See Note<br>#1    | +e      |
| Soundness (Sod!um Sulfate)                | sodium Sul                    | fate)                    | 5. 0%                                                                                | 5. 0%           |                         | 5.0%                                                                              | 5.0%                                                                        | ທໍ                      | స           | 5. 0%            | 5. 0%         | C 8               | 88      |
| Flat and/or El<br>Particles               | and/or Elongated<br>Particles | D<br>D                   | 5. 0%                                                                                | 5, 0%           |                         | 5. 0%                                                                             | 5. 0%                                                                       | ů<br>-                  | 5. 0%       | 5. 0%            | 5. 0%         | USACE<br>CRD-C II | ы<br>1- |
| Note #1 - Materia<br>sieve                | als having g<br>shail be tes  | gradations<br>sted by AS | Materials having gradations containing parti<br>sieve shail be tested by ASTM C 131. | loles reta      | ales retained on the !" | e i" sieve sho                                                                    | sieve shall be tested by ASTM C 535. Materials having graduations with 100% | by ASTM C 5             | 35, Materla | ils having g     | graduat lons  | w1th 100%         |         |
| Note #2 - The L                           | mlt for spec                  | 51110 grav               | The limit for specific gravity is a minimum TABLE NO. 2                              | Recommended     | mits for th<br>iended E | value. Limits for the tests are maximum values.<br>Recommended Ballast Graduation | maximum values.<br>Graduations                                              | ی<br>ت                  |             | ·                |               |                   |         |
|                                           | S1ze<br>No.                   | Nom1<br>Sqaur            | Nomînal Sîze<br>Sqaure Openîng                                                       | "M              | 2-1/2"                  | 2"                                                                                | 11/2"                                                                       | -                       | 3,4 "       | y2"              | 3,8"          | No. 4             | No. 8   |
| E                                         | 24                            |                          | 2-1/2" - 34"                                                                         | 8               | 001 - 06                |                                                                                   | 25 - 60                                                                     |                         | 01 - 0      | 0 - 5            |               |                   |         |
| 2X                                        | 25                            | 2                        | 2-1/2" - 孫"                                                                          | 001             | 80 - 100                | 60 - 85                                                                           | 5ģ - 70                                                                     | 25 - 50                 |             | 5 - 20           | 0<br>- 0<br>0 | 0 - 3             |         |
| HI                                        | m                             |                          | 2" - 1"                                                                              |                 | 100                     | 95 - 100                                                                          | 35 - 70                                                                     | 0 - 15                  |             | 1<br>0           |               |                   |         |
| [ <b>B</b> ]                              | 4A                            |                          | 2" - 34"                                                                             |                 | 00 1                    | 001 - 06                                                                          | 60 - 90                                                                     | 10 - 35                 | 01 - 0      |                  | 0 - 3         |                   |         |
| [T                                        | 4                             | <u>-</u>                 | -   / 2" - 34"                                                                       |                 |                         | 100                                                                               | 001 - de                                                                    | 20 - 55                 | 0 - 15      |                  | 0 - 5         |                   |         |
| 99                                        | 5                             |                          | " - 3,6"                                                                             |                 |                         |                                                                                   | 100                                                                         | 001 - 06                | 40 - 75     | 15 - 35          | 0 - 15        | 0 - 5             |         |
| G"                                        | 57                            | -                        | " - No. 4                                                                            |                 |                         |                                                                                   | 100                                                                         | 95 - 100                |             | 25 - 60          |               | 01 - 0            | 0 - 5   |
| )                                         | No+e #                        | - Gradu<br>Gradu         | Graduation Numbers<br>Graduation Numbers                                             | 24, 25<br>5 and | ~                       | 4 <u>0</u>                                                                        | are main line ballast materials.<br>last materials.                         | oallast ma              | terials.    |                  |               |                   |         |
| EXHIBIT                                   | "G"                           |                          |                                                                                      |                 |                         |                                                                                   |                                                                             |                         |             |                  |               |                   |         |

# ITEM C675.15 – FURNISH AND PLACE STONE BALLAST SURFACING COURSE ON TRACKS

#### **Description:**

The work shall consist of furnishing and placing stone ballast for the raising and surfacing of tracks, turnouts, track crossings and road crossings where indicated in the contract documents or where directed by the Engineer.

#### Materials:

Materials Specification 703-02, Coarse Aggregate shall apply except as modified herein.

All stone ballast shall be composed of angular fragments of rock, reasonably uniform in quality, and having specified durability and wear resistance qualities. Screened gravel, crushed gravel, marble, sandstone, argillaceous limestones, argillaceous dolomites or crushed slag are not acceptable for use as stone ballast.

All physical requirements and limitations on deleterious materials for crushed stone ballast are listed in Table 703-90 (below).

Stone ballast shall be handled in such a manner that it is kept clean and free from segregation. Any stone which requires washing or scrubbing to insure cleanliness shall be washed at the quarry or crusher site. The gradation requirements of stone sizes shall conform to Table 703-91 (below), "Size Gradation-Stone Ballast."

All sampling and testing shall be done in accordance with Engineer written instructions. Each portion of a quarry exhibiting a variation in quality of stone shall be tested separately. The test results shall not be averaged. The Engineer reserves the right to sample and test the stone ballast up to and including the point of use.

## ITEM C675.15 - FURNISH AND PLACE STONE BALLAST SURFACING COURSE **ON TRACKS**

| TABLE 703-90                                             |                   |                                           |                   |
|----------------------------------------------------------|-------------------|-------------------------------------------|-------------------|
| BALLAST CLASS TESTS <sup>(1)</sup>                       |                   |                                           |                   |
|                                                          | Bal               | last Cl                                   | ass               |
|                                                          | NY1               | NY2                                       | NY3               |
| Magnesium Sulfate Test (NYSDOT 703-7P) <sup>(2)</sup>    |                   |                                           |                   |
| Max. percent loss by weight at 10 cycles                 | 18                | 18                                        | 18                |
|                                                          |                   |                                           |                   |
| Freezing and Thawing Test (NYSDOT 703-8P) <sup>(3)</sup> |                   |                                           |                   |
| Max. percent loss by weight at 25 cycles                 | 10                | 10                                        | 10                |
|                                                          |                   |                                           |                   |
| Los Angeles Abrasion Test (AASHTO T96)                   |                   |                                           |                   |
| Max. percent loss by weight (Grading A or B)             | 15 <sup>(4)</sup> | 20 <sup>(4)</sup>                         | 35 <sup>(4)</sup> |
|                                                          |                   | 45 <sup>(5)</sup>                         | 45 <sup>(5)</sup> |
|                                                          |                   |                                           |                   |
| Flat and Elongated Pieces (ASTM C125)                    |                   |                                           |                   |
| Max. percent by weight of:                               |                   | i alimitati<br>Lind Alixan<br>Matematikan |                   |
| Flat or Elongated to the Degree of 3:1                   | 30                | 30                                        | 30                |
| Flat or Elongated to the Degree of 5:1                   | 10                | 10                                        | 10                |
|                                                          |                   |                                           |                   |
| Impedance Test (NYSDOT 703-12G)                          |                   | 0.61                                      | 2.6+              |
| Impedance, K ohms                                        | 2.6+              | 2.6+                                      | 2.0+              |
|                                                          |                   |                                           |                   |
| Petrographic Test                                        |                   |                                           | 4.0               |
| Shale or other deleterious materials <sup>(6)</sup>      | 1.0               | 1.0                                       | 1.0               |
| Clay balls or lumps                                      | 0.2               | 0.2                                       | 0.2               |
| Materials passing the 75 m sieve (NYSDOT 703-2P)         |                   | 0.7                                       | 0.7               |

<sup>(1)</sup> To determine its conformance to specification limits, processed crushed stone may be tested at any point after completion of processing. The manufactured material shall be separated into the primary sizes indicated in Table 703-5, "Primary Sizes". Each size fraction shall conform to the requirements 703-90, Stone Ballast. <sup>(2)</sup> Magnesium Sulfate loss applies to No. 2 primary size fraction.

<sup>(3)</sup> The freeze-thaw loss applies to the No. 3 primary size fraction, but the Engineer reserves the option to <sup>(4)</sup> Loss applies to limestone, dolomite, quartzite, and trap rock.
 <sup>(5)</sup> Loss applies to granite, anorthosite, and gabbro.
 <sup>(6)</sup> Argillaceous limestone's and dolomites are considered to be deleterious materials.

,

# ITEM C675.15 – FURNISH AND PLACE STONE BALLAST SURFACING COURSE ON TRACKS

|             |                     | PERCENT BY WEIGHT |             |             |             |           |            |      |                |                 |  |
|-------------|---------------------|-------------------|-------------|-------------|-------------|-----------|------------|------|----------------|-----------------|--|
| SIZE<br>NO. | NOMINAL<br>SIZE     | 2 ½"              | 2"          | 1 ½"        | 1"          | 3⁄4"      | 1⁄2"       | 3/8" | No. 4<br>Sieve | No. 10<br>Sieve |  |
| CR3-4       | 2" – ½"             | 100               | 98 -<br>100 | 60 -<br>85  | 20 -<br>40  | 5-15      | 0-5        | 0-1  | -              | -               |  |
| 4           | 1½" - ¾"            | -                 | 100         | 90 -<br>100 | 20 -<br>55  | 0-15      | -          | 0-5  | -              | -               |  |
| 5           | 1" – 3/8"           | -                 | -           | 100         | 90 -<br>100 | 40-<br>75 | 15 -<br>35 | 0-15 | 0-5            | -               |  |
| 57          | 1" – No. 4<br>Sieve | -                 | -           | 100         | 95 -<br>100 | -         | 25 -<br>60 | -    | 0-10           | 0-5             |  |

## TABLE 703-91 SIZE GRADATION - STONE BALLAST AMOUNTS FINER THAN EACH SIEVE\*

\* Sieves shall meet the requirements of ASTM designation E-11

#### **Construction Details:**

Stone Ballast shall not be distributed, until track and turnouts have been lined to within 2 in, of final alignment.

The ballast required for raising and surfacing track shall be distributed from hopper bottom or special ballast railroad cars, or alternate method of distribution approved by the Engineer, in the quantities as shown in the contract documents or ordered by the Engineer as necessary for the raise. Immediately after distributing the ballast, the track shall be dressed as necessary to permit continued operation of normal train service including proper operation of switches, frogs, guard rails, and flange areas.

The rail cars used to transport the ballast shall be in good condition, so that leakage of ballast does not occur, and so that the spreading operation can be controlled. The rail cars or other equipment shall be free of any debris or foreign material that might contaminate the ballast.

The requirements for Standard Proctor Maximum Density and Moisture Control shall not apply for ballast, however, compaction shall be continued until the stones are firmly interlocked and the surface is true and unyielding.

#### Method of Measurement:

This work will be measured as the number of tons of stone ballast furnished, and placed.

#### **Basis of Payment:**

The unit price bid per ton shall include the cost of all labor, material and equipment necessary to complete the work.