May 1, 2013

Southside Station Inc.
c/o Phillips Edison & Company Ltd.
Attn: Mr. Mike Leik
11501 Northlake Drive
Cincinnati, Ohio 45249

Re: Sub-Slab Depressurization System Installation Report
 Southside Plaza
 704-744 Foote Avenue
 Jamestown, New York 14701

Dear Mr. Leik,

Apex Companies, LLC (Apex) is pleased to provide Southside Station Inc. with this report documenting the installation of the sub-slab depressurization system (SSDS) at Southside Plaza, 704-744 Foote Avenue, Jamestown, New York (Site).

SUB-SLAB DEPRESSURIZATION SYSTEM

On February 26 and 27, 2013, an Apex associate was onsite to oversee the installation of a SSDS at the Site. The system was installed along the southern boundary of the property within the existing Tops Markets tenant space. All installation activities were performed in conformance with the New York State Department of Health (NYSDOH) document, “Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006”. The SSDS Construction Completion Report (CCR) submitted by Apex’s SSDS contractor, Mitigation Tech, documenting the installation of the system, is provided in Attachment A. Photographic documentation of the installed SSDS system is provided in Attachment B.

SSDS Objective

The objective of the SSDS installation was to mitigate the potential vapor intrusion of dry cleaning solvent vapors at the Site. The SSDS was installed in the Tops Market along the southern boundary of the property and north of the former location of the Anderson Cleaners and Whirley-Wash Drycleaners historically located on the adjoining Southside Foote Avenue Plaza (SFAP). The design of the SSDS was to create a negative pressure of at least 0.004 water column inches (wci) within the radius of influence of the system beneath the concrete slab.
of the building along the southern boundary of the Site and along the northern boundary of the SFAP property. This amount of negative pressure (vacuum) should be sufficient to capture vapors beneath the slab and redirect them through the system piping, prior to their potential intrusion into the building.

SSDS Construction Details

The installation of the SSDS involved the construction of three suction cavities through the concrete floor slab of the Tops Market along the southern property boundary. The suction cavities consisted of approximately one cubic foot of excavated space beneath the concrete slab of the tenant space, accessed through a 5-inch diameter hole drilled through the floor slab. Suction cavities were connected with 3-inch, schedule 40 polyvinyl chloride (PVC) piping, mounted against existing walls within the Tops Market and manifolded together to a horizontal PVC pipe above the ceiling trusses. Penetrations in the concrete floor slab were sealed with a flexible caulk to ensure a proper seal from the surface. All piping was secured to the walls and ceiling with metal hardware. The locations of all suction cavities and SSDS components are shown on the SSDS Map provided as Figure 1. Any floor cracks or other slab penetrations in the concrete floor slab were inspected for air leakage and polyurethane sealant was applied where necessary.

A vacuum fan was mounted to the manifolded piping ten feet above surface grade on the outside southwest wall of the Tops Market. The fan model is a RADONAWAY GP-501, creating a vacuum of approximately 1 water column inch (wci) in the SSDS system and is rated to remove 90 cubic feet per minute (CFM) from the sub-slab. Specifications for the GP-501 fan are provided in Attachment C. A U-tube style manometer, used to measure vacuum in the system, is mounted to the vertical piping at suction point #3 located immediately west of the produce cooler within the Tops Market. Upon installation of the system, the vacuum reading on the manometer was 1.3 wci. This manometer will be periodically inspected to ensure that the vacuum is maintained in the system. Should the indicated vacuum level drop significantly on the manometer from the initial installed reading of 1.3 wci, Apex should be notified immediately.

SSDS Performance Testing

Upon installation of the SSDS system, initial performance testing was conducted to verify the systems effectiveness. Four test points, labeled TP-1 through TP-4, were drilled through the concrete slab of the Tops Market north of the SSDS. Test points were 5/8-inch holes drilled through the concrete slab, cleaned out by vacuuming, and semi-permanently closed with a closed-cell backer rod and polyurethane sealant, pending testing. These test points were located at sufficient distances from the three suction cavities to evaluate the entire area beneath the concrete slab being depressurized. Additional performance testing was performed by Apex on March 15, 2013 in response to a request by the New York State Department of
Environmental Conservation (NYSDEC). Test points for the additional performance testing included the four post-installation test point locations, TP-1 through TP-4, as well as previously installed sub-slab vapor points, SS-1 through SS-3 and SS-6 through SS-9. Test point locations are shown on the SSDS Test Point Location Map provided as Figure 2.

The vacuum influence from the SSDS system was tested beneath the concrete slab at each of these test point and sub-slab vapor point locations. A digital manometer was used to measure the vacuum at each test point and sub-slab vapor point to determine the radius of influence of the SSDS. Vacuum testing results from the test points are provided in Table 1 and are shown on the SSDS Radius of Influence Map provided as Figure 3. Test results ranged from 0.001 to 0.017 wci with an average of 0.006 wci of vacuum across the radius of influence of the SSDS. Therefore, it is Apex’s opinion that the SSDS is providing a sufficient vacuum to mitigate the potential vapor intrusion of dry cleaning solvent vapors at the Site and on the adjoining SFAP property.

Indoor Air Sampling

Apex returned to the site on April 2, 2013 to collect indoor air and outdoor air samples at the Tops Market and inside two tenant spaces on the adjoining SFAP property. The indoor air and outdoor air sampling locations are shown on the Indoor and Outdoor Air Sample Location Map provided as Figure 4. Indoor and Outdoor Air samples were collected over an eight (8) hour period using batch-certified clean Summa® canisters equipped with appropriate flow controllers. Samples were considered representative when pressure within the Summa® canister dropped from an initial reading of approximately 30 inches Hg to less than 10 inches Hg. The Summa® canisters were shipped to Columbia Analytical Services, part of ALS Group, in Rochester, NY for analysis of volatile organic compounds (VOCs) using USEPA Method TO-15. The laboratory analytical report and chain-of-custody documentation is provided in Attachment D. Analytical results are presented in Table 2.

Analytical results show that tetrachloroethene (PCE), a typical drycleaning chemical, was detected in all of the indoor air samples above laboratory detection limits. The highest detection of PCE was in the indoor air sample collected from the Salon 1 Nail Salon, the location of the suspected former off-site drycleaner, Anderson Cleaners and Whirley-Wash Drycleaners. However, none of the detected indoor air concentrations of PCE exceed the corresponding NYSDOH NFA Guidance Action. Carbon tetrachloride (CT) was the only other VOC detected in the indoor and outdoor samples and was detected in all five samples collected. However, the detected concentrations of CT were well below the corresponding NYSDOH NFA Guidance Action. Apex will collect another round of indoor and outdoor air samples from the Site in July 2013.
Annual Operation and Maintenance

As is stated in the NYSDOH October 2006 Guidance, Section 4.4.1; “Routine maintenance should commence within 18 months after the system becomes operational, and should occur every 12 to 18 months thereafter”. As such, Apex recommends the following annual operation and maintenance procedures for the installed SSDS system.

1) Apex recommends conducting a visual inspection of all system components, including the vent fans, piping, U-tube style manometer, and labeling, to ensure that no components appear damaged or in need of replacement or repair.

2) Apex recommends that an inspection of the concrete floor slab, which is influenced by the vacuum of the SSDS, be performed to ensure that no cracks or penetrations have been introduced through the slab, thus short circuiting the system.

3) Apex recommends inspecting all system components for condition and proper operation.

4) Apex recommends performing a smoke test at any identified concrete floor cracks, floor joints and at the suction points to determine any vacuum leakage from the system. Apex recommends that the smoke test be performed in accordance with Sections 4.3.1(a) and 4.3.4(a) of the NYSDOH October 2006 Guidance.

5) Apex recommends verifying that no air intakes have been installed post-installation of the SSDS system within 10 feet of the SSDS exhaust point in accordance with Section 4.2.2(c)(6)(iv) of the NYSDOH October 2006 Guidance.

6) In accordance with Section 4.4.1 of the of the NYSDOH October 2006 Guidance, Apex recommends that pressure field extension testing be performed annually to ensure the system is maintaining the vacuum beneath the former drycleaner and adjoining tenant space concrete slabs.

7) Apex recommends interviewing tenant space occupants regarding observations and comments on the operation of the SSDS system.

REPORT LIMITATIONS

Implementation or use of the recommendations in this report does not assure the elimination of present or future liability or the fulfillment of the property owner’s obligations under local, state or Federal laws. This report is prepared for the benefit of Southside Station Inc. and may not be relied upon by any other person or entity.
Please feel free to call us with any questions that you may have.

Sincerely,

Apex Companies, LLC

Adam Flege, P.G.
Senior Geologist

Jeff Lower, P.E.
Senior Project Manager

Figures
Tables
Attachments
FIGURES
Figure 3
SSDS Radius of Influence Map
Figure 4: Indoor and Outdoor Sample Location Map
TABLES
Table 1
SSDS Radius of Influence

Southside Plaza
704-744 Foote Avenue
Jamestown, New York

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Test Date</th>
<th>Test Points</th>
<th>Sub-Slab Vapor Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Date</td>
<td>3/15/2013</td>
<td>3/15/2013</td>
<td>3/15/2013</td>
</tr>
<tr>
<td>Test Location</td>
<td>TP-1</td>
<td>TP-2</td>
<td>TP-3</td>
</tr>
<tr>
<td>Manometer Vacuum Reading (wci)*</td>
<td>0.005</td>
<td>0.012</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Notes:
a. wci - Water Column Inches of vacuum.
Table 2
Indoor and Outdoor Air Analytical Results

Southside Plaza
704-744 Foote Avenue
Jamestown, New York

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Indoor and Outdoor Air Samples Concentrations (μg/m³)</th>
<th>NYSDOH Guidance Action* (μg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-dichloroethene</td>
<td><0.66</td>
<td><0.79</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><0.90</td>
<td><1.1</td>
</tr>
<tr>
<td>carbon tetrachloride</td>
<td>0.71</td>
<td>0.67</td>
</tr>
<tr>
<td>cis-1,2-dichloroethene</td>
<td><0.66</td>
<td><0.79</td>
</tr>
<tr>
<td>tetrachloroethylene</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>trichloroethylene</td>
<td><0.090</td>
<td><0.11</td>
</tr>
<tr>
<td>vinyl chloride</td>
<td><0.090</td>
<td><0.11</td>
</tr>
</tbody>
</table>

Notes:
Bold - Results detected above laboratory detection limits.
* New York State Department of Health Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 and
** NFA = No Further Action
ATTACHMENT A

Sub-Slab Depressurization System
Construction Completion Report
March 28, 2013

Mr. Adam Flege
APEX Companies, LLC
155 Tri-County Parkway
Suite 250
Cincinnati, OH 45246
Via email: aflege@apexcos.com

Re: Southside Plaza, Jamestown NY
Construction of sub-slab depressurization system

CONSTRUCTION COMPLETION REPORT

1. OVERVIEW

This document presents a construction report, performance evaluation and O&M advice for the sub-slab depressurization (SSD) system installed by Mitigation Tech at Southside Plaza, 740-744 Foote Avenue, Jamestown, NY as commissioned February 27, 2013.

The subject area is the southern portion of the building occupied by Topps Market, specifically the interior portion border the separately owned adjacent building to the south. Based on an analysis of sub-slab air communication data and a general building assessment, a manifolded SSD System was installed using principles and equipment typically used for radon mitigation in buildings. The primary objective of implementing this preemptive measure was to mitigate potential intrusion of vapors that could migrate into occupied space from beneath the slab. This would be achieved by maintaining a negative pressure below the slab relative to the air pressure above the slab. All work is in compliance with the NYS DOH document, “Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006”.

2. BUILDING ASSESSMENT

Prior to construction, Mitigation Tech conducted a site visit for the purpose of building assessment, collection of sub-slab air communication data and system design. Significant finding was that sub-slab air flow testing indicated poor to fair porosity, suggesting suction cavity configuration based on a 15’-20’ radius of influence.

Work began with an analysis of appropriate locations for fan, suction cavities and other SSD system components. Both for physical protection and minimum impact on active use areas, riser pipes were installed on existing columns or on permanent walls; horizontal pipe was installed as close to the ceiling as possible, or in the case of the easternmost point, behind a cooler for aesthetic reasons. Work was coordinated with tenant to minimize disturbance of work areas, relocate obstacles and control dust. Vacuum and air flow measurements were performed continuously during construction to ensure integrity of design. Various fans were evaluated in place to determine the
most effective configuration. At commissioning, all components inspected for condition and proper operation. Premises left in clean condition.

3. **SUB-SLAB DEPRESSURIZATION SYSTEM GENERAL DESCRIPTION**

3.1. **Introduction.** The system consists of a sidewall mounted fan manifolde to three vapor extraction points. The system was constructed using principles and equipment typically used for radon mitigation in buildings as detailed in the United States Environmental Protection Agency (EPA) EPA 402-K-03-007 (May 2006), and the final NYS DOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006). The SSD system was installed as a permanent, integral addition to the structure. The key components of the SSD system are described below.

3.2. **Suction Points.** The location of each suction point (vapor extraction point) is shown on the attachment to this document. Each suction point consists of a 5” core boring into the slab to a depth of 1’, through which appx. 1 cubic feet of sub-slab material has been removed. Mechanically suspended Schedule 40 3” PVC pipe has been inserted into the boring and sealed with urethane sealant.

3.3. **Riser Piping.** The riser piping consists of 3” schedule 40 PVC pipe that follows a route from the extraction point to a manifold then to an exterior mounted vacuum fan, through a sidewall penetration. Weatherproof flashing or sealant has been applied to all penetrations. Vent pipes were installed at a pitch that ensures that any rainwater or condensation within the pipes drains downward into the ground beneath the slab. Piping is independently supported, and not supported from existing building mechanical systems. Piping is labeled at each level as “Sub-Slab Vent” with column designation.

3.4. **Exhaust Fan.** Exhaust fans consist of (1) RADONAWAY GP-501 centrifugal fan. Fan consumes approximately 150w of electricity respectively, and was field selected for efficiency and minimum maintenance. Fan has an adjacent disconnect switch connected to a circuit in the vicinity; hookup performed by a Chatauqua County Licensed electrical contractor. Fan is mounted with rubber Fernco couplings, for simplified replacement.

3.5. **Instrumentation and Control.** There is no centralized instrumentation or control for the SSD System. The fan can be switched from the exterior fan positioned disconnect. The system is equipped with a vacuum indicator mounted in a visible location on the western riser pipe. The indicator consists of an oil filled U-tube style manometer. The indicator is inspected by observing the level of colored fluid. This indicator is designed primarily to give a simple visual check that vacuum is present in the riser pipe, specifically by observation that the fluid levels on each side of the indicator are not even. Indicator is marked at level observed on February 27, 2013.

3.6. **Sealing measures.** Polyurethane sealants and mechanical barriers have been applied to floor cracks, slab penetrations and other openings to enhance the barriers between sub-slab and ambient air and improve the efficiency of the SSD System. Sealant has been applied primarily in the vicinity of suction points and at cracks in concrete bases of columns.

3.6. **Monitoring Points.** There are 4 sub-slab vacuum test points, as shown on the included. These consist of 3/4” drill points through the slab into which a digital micromanometer probe can be inserted. They are semi-permanently closed with closed cell backer rod and polyurethane sealant. These were established to aid in original system design and confirmatory testing. The primary future use is in annual recertification of system effectiveness.

3.7. **PERFORMANCE EVALUATION**

(Measurement date – February 27, 2013) In order to verify system effectiveness and as a performance evaluation, test points were established at various distances from the suction cavities suitable to determine that the sub-slab of the entire subject area was being depressurized at least to the objective, as shown in the following table: (locations per schematic)
March 28, 2013
Page 3

<table>
<thead>
<tr>
<th>Test Point</th>
<th>Vacuum in negative wci</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.003</td>
</tr>
<tr>
<td>2</td>
<td>0.014</td>
</tr>
<tr>
<td>3</td>
<td>0.015</td>
</tr>
<tr>
<td>4</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Manometer mounted on riser: 1.3 wci

4. **SUB-SLAB DEPRESSURIZATION SYSTEM OPERATION**

4.1. The fan should be kept in continuous operation. New York State Soil Vapor Intrusion Guidance (2006) specifies that operation, maintenance and monitoring of the SSD system should be included as part of site management. Until subsurface remediation efforts eventually address VOCs in soil and/or groundwater to acceptable levels (i.e. SSD operation no longer required) operation of the SSD system should continue. At that point, the vapor mitigation system may be shut down and/or removed and O&M requirements would cease.

4.2. Reset. Fan restarts automatically in event of power loss.

4.3. In the event of unusual fan noise, failure to start, physical damage, or repeated circuit breaker trip, turn fan off and call for service. MITIGATION TECH—585-637-7430

4.4. Regularly inspect fan gauge to verify that value, indicated by a mark on the gauge, has not changed significantly from the position of the mark. Gauge is inspected by observing the level of colored fluid or, in the case of a dial gauge, the position of the indicator needle.

4.5. Normal system operation requires unchanged structural conditions. Report any changes in structure, HVAC systems, slab conditions, etc., so that the change can be evaluated for impact on the SSD System. For service, call MITIGATION TECH at 637-7430

4.6. Ensure that a periodic inspection is performed

5. **SUB-SLAB DEPRESSURIZATION SYSTEM PERFORMANCE MONITORING**

5.1. Monthly Monitoring

5.1.1. Inspect the fan vacuum indicator to verify that value, indicated by a mark on the gauge, has not changed significantly from the position of the mark. Gauge is inspected by observing the level of colored fluid.

5.1.2. Record the observed measurement for the fan vacuum indicator on form labeled “SSD System Vacuum Gauge Record”. Store all forms in the facility maintenance office.

5.1.3. Inspect visible components of SSD system in vicinity of gauge for degraded condition.

5.1.4. Investigate and report any gauge reading that deviates significantly from its historical average, or any degraded condition of visible components. For reporting, call MITIGATION TECH at 585-637-7430.

5.2. Annual Inspection

5.2.1. Conduct a visual inspection of the complete System (e.g., vent fan, piping, warning devices, labeling)
5.2.2. Inspect all components for condition and proper operation;

5.2.3. Identify and repair any leaks in accordance with Sections 4.3.1(a) and 4.3.4(a) of the NYS DOH VI Guidance (i.e.; with the systems running, use smoke sticks to check for leaks through concrete cracks, floor joints and at the suction points; any leaks will be resealed until smoke is no longer observed flowing through the opening).

5.2.4. Inspect the exhaust or discharge point of each exhaust fan to verify that no air intakes have been located within 10 feet

5.2.5. Conduct pressure field extension testing (to ensure that the system is maintaining a vacuum beneath the entire slab). Perform at least one differential pressure reading for each building slab section enclosed by a separate footer

5.2.6. Interview appropriate building occupants seeking comments and observations regarding the operation of the System

5.2.7. Check to see that the circuit breakers controlling the circuits on which the soil vapor vent fans operate are labeled “Soil Vapor System”

6. SUB-SLAB DEPRESSURIZATION SYSTEM MAINTENANCE

6.1. Routine Maintenance

6.1.1. Perform procedures as specified in sections 5.2 and 5.3

6.1.2. There are no routine component replacement procedures; Replace components upon findings of damage or failure

6.1.3. All routine and non-routine maintenance activities should be documented and reported to the agencies, as appropriate

6.2. Non-Routine Maintenance

6.2.1. Non-routine maintenance may also be appropriate during the operation of the mitigation system. Examples of such situations include the following:

6.2.2. It is determined through inspection or notification by others that the warning device indicates the mitigation system is not operating properly

6.2.3. the mitigation system becomes damaged

6.2.4. the building has undergone renovations that may reduce the effectiveness of the mitigation system.

6.2.5. Activities conducted during non-routine maintenance visits will vary depending upon the reason for the visit. In general, building-related activities may include examining the building for structural or HVAC system changes, or other changes that may affect the performance of the depressurization system (e.g., new combustion appliances, deterioration of the concrete slab, or other significant changes). Depressurization system-related activities may include examining the operation of the warning device or indicator and the vent fan, or measurement of the extent of sub-slab depressurization. Repairs or adjustments should be made to the system as appropriate.
ATTACHMENT B

Photographic Documentation
Photograph 1

View of 4” PVC manifold line extending from overtop of the produce cooler (left) to a tee for the 3” riser for suction point #3 and the 4” vent line through the southwest exterior wall to the fan. Note this was the first piping installed so that the crew could make sure to properly align the vent pipe through the exterior wall for installation of the fan.

Photograph 2

View of the vent pipe exterior to the southwest wall with the installed fan and switch.

Photograph 3

View of the 4” manifold piping running above the suspended ceiling tile above the produce and floral prep room.
Photograph 4
View looking into the suction point #2 hole in the produce and floral prep room.

Photograph 5
View of the bottom portion of the 3" riser at suction point #1 behind the produce cooler along the south wall. View is looking underneath the cooler where the contractor had temporarily removed the front panel.

Photograph 6
View of piping running along the south wall from suction point #1 behind the produce cooler.
Photograph 7
View of the same piping shown in Photograph 6 where it enters the southeast wall of the produce and floral prep room.

Photograph 8
View of the 3" riser at suction point #2 in the southeast corner of the produce and floral prep room up to the tee that extends through the wall for the piping to suction point #1 behind the produce cooler.

Photograph 9
View of the floor penetration at suction point #2 in the produce and floral prep room after the sealant was applied.
Photograph 10

View of the wall penetration at suction point #2 in the produce and floral prep room after the sealant was applied.

Photograph 11

View of the sealant used for the floor penetrations.

Photograph 12

View of the sealant used for the interior wall penetrations.
<table>
<thead>
<tr>
<th>Photograph 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>View of the southeast corner of the produce and floral prep room at the end of the first work day (2/26/13) following the crew’s cleanup and returning of store materials.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photograph 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>View of the southwest corner of the produce area at the end of the first work day (2/26/13) following the crew’s cleanup and returning of store display to its original location.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photograph 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>View of the riser at suction point #3 located immediately west of the produce cooler.</td>
</tr>
</tbody>
</table>
Photograph 16
View of the riser at suction point #3 entering the floor penetration prior to the sealant application.

Photograph 17
View of the pipe support used to secure the riser for suction point #3.

Photograph 18
View of the test point #1 located at the inside corner of the back hallway approximately 10 feet inside the southwest exit door. This location is approximately 34 feet west-northwest of suction point #3.
Photograph 19

View of the airflow reading at test point #1 during the initial test run on the system.

Photograph 20

View of the test point #2 located in the bakery behind the carousel cake display.

Photograph 21

View of the test point #3 located in the floral prep area to the right of the helium storage cabinet.
Photograph 22

View of the test point #4 located in front of the produce cooler along the south wall approximately 10 feet west of the east (front) wall.

Photograph 23

View of the airflow reading at test point #4 during the initial test run on the system.

Photograph 24

View of the “soil vent” labeling above suction point #3 on the exhaust/vent line.
Photograph 25

View of the exhaust/vent line going through the exterior southwest wall after the sealant was applied. The electrical box to the right is for the system’s exhaust fan.

Photograph 26

Close up view of the front of the box cover shown in Photograph 25 which has been labeled “outside fan G-36”, which indicates the electrical panel and circuit number.

Photograph 27

View of the electrical conduit running along the southwest wall over to the box above the southwest exit wall.
Photograph 28
View of the electrical conduit (left) running into the electrical box above the southwest exit door.

Photograph 29
View of the system gauge on the riser at suction point #3. Note the label is only temporary and will be replaced.

Photograph 30
View of the electrical panel label “G” indicating this is the panel in which the fan was hooked up.
Photograph 31
View of the circuit label inside panel “G” showing that “soil vent fan” was added for circuit #36.

Photograph 32
View of the sealant applied the test hole #1 (including the initial hole that hit refusal).

Photograph 33
View of the sealant applied to test hole #2.
<table>
<thead>
<tr>
<th>Photograph 34</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>View of the sealant applied to test hole #3.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photograph 35</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>View of the sealant applied to test hole #4.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photograph 36</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>View of the back storage hallway (west of the produce cooler) at the end of the 2nd work day showing that the crew had cleaned up and moved the store materials back to their original locations.</td>
<td></td>
</tr>
</tbody>
</table>
ATTACHMENT C

Sub-Slab Depressurization System
Fan Specifications
Radon Mitigation Fans
All RadonAway fans are specifically designed for radon mitigation. GP Series Fans provide a wide range of performance that makes them ideal for most sub-slab radon mitigation systems.

Features:
- Five-year hassle-free warranty
- Mounts on duct pipe or with integral flange
- 3.5” diameter ducts for use with 3” or 4” pipe
- Electrical box for hard wire or plug in
- ETL Listed - for indoor or outdoor use
- Meets all electrical code requirements
- Thermally protected
- Rated for commercial and residential use.

<table>
<thead>
<tr>
<th>Model</th>
<th>Watts</th>
<th>Max. Pressure WC</th>
<th>1.0”</th>
<th>1.5”</th>
<th>2.0”</th>
<th>2.5”</th>
<th>3.0”</th>
<th>3.5”</th>
<th>4.0”</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP201</td>
<td>40-60</td>
<td>2.0</td>
<td>82</td>
<td>58</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GP301</td>
<td>55-90</td>
<td>2.6</td>
<td>92</td>
<td>77</td>
<td>45</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GP401</td>
<td>60-110</td>
<td>3.4</td>
<td>93</td>
<td>82</td>
<td>60</td>
<td>40</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GP501</td>
<td>70-140</td>
<td>4.2</td>
<td>95</td>
<td>87</td>
<td>80</td>
<td>70</td>
<td>57</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

Choice of model is dependent on building characteristics including sub-slab materials and should be made by a radon professional.
ATTACHMENT D

Indoor and Outdoor Air Sample Laboratory Analytical Report and Chain-of-Custody Documentation
April 19, 2013

Mr. Adam Flege
Apex Companies, LLC
155 Tri County Parkway, Suite 250
Cincinnati, OH 45246

Laboratory Results for: Southside Plaza/1200202.005

Dear Mr. Flege:

Enclosed are the results of the sample(s) submitted to our laboratory on April 4, 2013. For your reference, these analyses have been assigned our service request number R1302190.

All analyses were performed according to our laboratory’s quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7472. You may also contact me via email at Janice.Jaeger@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

Janice Jaeger
Client Services Manager

Page 1 of 15
CASE NARRATIVE
This report contains analytical results for the following samples:
Service Request Number: R1302190

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Client ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1302190-001</td>
<td>1200202.005.4213.00A</td>
</tr>
<tr>
<td>R1302190-002</td>
<td>1200202.005.4213.00B</td>
</tr>
<tr>
<td>R1302190-003</td>
<td>1200202.005.4213.00C</td>
</tr>
<tr>
<td>R1302190-004</td>
<td>1200202.005.4213.00D</td>
</tr>
<tr>
<td>R1302190-005</td>
<td>1200202.005.4213.00E</td>
</tr>
</tbody>
</table>

All samples were received in good condition unless otherwise noted on the cooler receipt and preservation check form located at the end of this report.

All samples were preserved in accordance with approved analytical methods.

All samples have been analyzed by the approved methods cited on the analytical results pages.

All holding times and associated QC were within limits.

No analytical or QC problems were encountered.

All sampling activities performed by CAS personnel have been in accordance with "CAS Field Procedures and Measurements Manual" or by client specifications.
REPORT QUALIFIERS

U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.

J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Aroclors).

B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.

E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.

E Organics- Concentration has exceeded the calibration range for that specific analysis.

D Concentration is a result of a dilution, typically a secondary analysis of the sample cu to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.

* Indicates that a quality control parameter has exceeded laboratory limits. Under the “Notes” column of the Form I, this qualifier denotes analysis was performed out of Holding Time.

H Analysis was performed out of hold time for tests that have an “immediate” hold time criteria.

Spike was diluted out.

+ Correlation coefficient for MSA is <0.995.

N Inorganics- Matrix spike recovery was outside laboratory limits.

N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.

S Concentration has been determined using Method of Standard Additions (MSA).

W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.

P Concentration >40% (25% for CLP) difference between the two GC columns.

C Confirmed by GC/MS

Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).

X See Case Narrative for discussion.

Rochester Lab ID # for State Certifications

<table>
<thead>
<tr>
<th>State</th>
<th>ID Number</th>
<th>ID Number</th>
<th>ID Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NELAP Accredited</td>
<td>Maine ID # NY0032</td>
<td>New Hampshire ID #</td>
<td>294100 A/B</td>
</tr>
<tr>
<td>Connecticut ID # PH0556</td>
<td>Nebraska Accredited</td>
<td>Nevada ID # NY-00032</td>
<td>North Carolina #576</td>
</tr>
<tr>
<td>Delaware Accredited</td>
<td>New Jersey ID # NY004</td>
<td>Pennsylvania ID# 68-786</td>
<td>Rhode Island ID # 158</td>
</tr>
<tr>
<td>DoD ELAP #65317</td>
<td>New York ID # 10145</td>
<td>Rhode Island ID # 158</td>
<td>Virginia #460167</td>
</tr>
<tr>
<td>Florida ID # E87674</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois ID #200047</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Analyses were performed according to our laboratory’s NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to http://alsglobal.com/environmental/laboratories/rochester-environmental-lab.aspx

ALS GROUP USA, CORP. Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER
Analytical Report

Client: Apex Companies, LLC
Project: Southside Plaza/1200202.005
Sample Matrix: Air
Sample Name: 1200202.005.4213.00A
Lab Code: R1302190-001
Analytical Method: TO-15

Initial Pressure (psig): -1.33
Final Pressure (psig): 3.75
Date Analyzed: 4/9/13 1905
Canister Dilution Factor: 1.38

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Analyte Name</th>
<th>Sample Amount</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>Result ppbv</th>
<th>MRL ppbv</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>1000</td>
<td>0.083</td>
<td>0.083</td>
<td>0.032</td>
<td>0.032</td>
<td>U</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethene</td>
<td>1000</td>
<td>0.61</td>
<td>0.61</td>
<td>0.15</td>
<td>0.15</td>
<td>U</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>1000</td>
<td>0.61</td>
<td>0.61</td>
<td>0.15</td>
<td>0.15</td>
<td>U</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane (TCA)</td>
<td>1000</td>
<td>0.83</td>
<td>0.83</td>
<td>0.15</td>
<td>0.15</td>
<td>U</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>1000</td>
<td>0.56</td>
<td>0.097</td>
<td>0.089</td>
<td>0.015</td>
<td>U</td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene (TCE)</td>
<td>1000</td>
<td>0.083</td>
<td>0.083</td>
<td>0.015</td>
<td>0.015</td>
<td>U</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethene (PCE)</td>
<td>1000</td>
<td>0.11</td>
<td>0.11</td>
<td>0.016</td>
<td>0.016</td>
<td>U</td>
</tr>
</tbody>
</table>

Surrogate Name
%Rec
Control Limits
Date Analyzed
Note

- 4-Bromofluorobenzene
 - 111
 - 70-130
 - 4/9/13 1905
 - Note
Analyte Results

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Analyte Name</th>
<th>Sample Amount mL</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>Result ppbv</th>
<th>MRL ppbv</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>800</td>
<td>0.11</td>
<td>0.11</td>
<td>0.042</td>
<td>0.042</td>
<td>U</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethene</td>
<td>800</td>
<td>0.79</td>
<td>0.79</td>
<td>0.20</td>
<td>0.20</td>
<td>U</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>800</td>
<td>0.79</td>
<td>0.79</td>
<td>0.20</td>
<td>0.20</td>
<td>U</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane (TCA)</td>
<td>800</td>
<td>1.1</td>
<td>1.1</td>
<td>0.20</td>
<td>0.20</td>
<td>U</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>800</td>
<td>0.67</td>
<td>0.13</td>
<td>0.11</td>
<td>0.020</td>
<td>U</td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene (TCE)</td>
<td>800</td>
<td>0.11</td>
<td>0.11</td>
<td>0.020</td>
<td>0.020</td>
<td>U</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethene (PCE)</td>
<td>800</td>
<td>1.3</td>
<td>0.14</td>
<td>0.19</td>
<td>0.021</td>
<td>U</td>
</tr>
</tbody>
</table>

Surrogate Name

<table>
<thead>
<tr>
<th>Surrogate Name</th>
<th>%Rec</th>
<th>Control Limits</th>
<th>Date Analyzed</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>113</td>
<td>70-130</td>
<td>4/9/13 1955</td>
<td></td>
</tr>
</tbody>
</table>
Analytical Report

Client: Apex Companies, LLC
Project: Southside Plaza/1200202.005
Sample Matrix: Air
Sample Name: 1200202.005.4213.00C
Lab Code: R1302190-003
Analytical Method: TO-15
Date Collected: 4/2/13 1802
Date Received: 4/4/13
Date Analyzed: 4/16/13 1427
Canister Dilution Factor: 1.50

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Analyte Name</th>
<th>Sample Amount mL</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>Result ppbv</th>
<th>MRL ppbv</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>1000</td>
<td>0.090</td>
<td>0.090</td>
<td>0.035</td>
<td>0.035</td>
<td>U</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethene</td>
<td>1000</td>
<td>0.66</td>
<td>0.66</td>
<td>0.17</td>
<td>0.17</td>
<td>U</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>1000</td>
<td>0.66</td>
<td>0.66</td>
<td>0.17</td>
<td>0.17</td>
<td>U</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane (TCA)</td>
<td>1000</td>
<td>0.90</td>
<td>0.90</td>
<td>0.17</td>
<td>0.17</td>
<td>U</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>1000</td>
<td>0.71</td>
<td>0.11</td>
<td>0.11</td>
<td>0.017</td>
<td>U</td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene (TCE)</td>
<td>1000</td>
<td>0.090</td>
<td>0.090</td>
<td>0.017</td>
<td>0.017</td>
<td>U</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethene (PCE)</td>
<td>1000</td>
<td>1.3</td>
<td>0.12</td>
<td>0.19</td>
<td>0.018</td>
<td></td>
</tr>
</tbody>
</table>

Surrogate Name
%Rec
Control Limits
Date Analyzed
Note

4-Bromofluorobenzene
112
70-130
4/16/13 1427
ALS ENVIRONMENTAL

Analytical Report

Client: Apex Companies, LLC
Project: Southside Plaza/1200202.005
Sample Matrix: Air
Sample Name: 1200202.005.4213.00D
Lab Code: R1302190-004

Analytical Method: TO-15

Initial Pressure (psig): 2.01
Final Pressure (psig): 3.73

Date Analyzed: 4/9/13 2132
Canister Dilution Factor: 1.45

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Analyte Name</th>
<th>Sample Amount mL</th>
<th>Result μg/m³</th>
<th>MRL μg/m³</th>
<th>Result ppbv</th>
<th>MRL ppbv</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>1000</td>
<td>0.087</td>
<td>0.087</td>
<td>0.034</td>
<td>0.034</td>
<td>U</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethene</td>
<td>1000</td>
<td>0.64</td>
<td>0.64</td>
<td>0.16</td>
<td>0.16</td>
<td>U</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>1000</td>
<td>0.64</td>
<td>0.64</td>
<td>0.16</td>
<td>0.16</td>
<td>U</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane (TCA)</td>
<td>1000</td>
<td>0.87</td>
<td>0.87</td>
<td>0.16</td>
<td>0.16</td>
<td>U</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>1000</td>
<td>0.52</td>
<td>0.10</td>
<td>0.083</td>
<td>0.016</td>
<td>U</td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene (TCE)</td>
<td>1000</td>
<td>0.087</td>
<td>0.087</td>
<td>0.016</td>
<td>0.016</td>
<td>U</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethene (PCE)</td>
<td>1000</td>
<td>0.45</td>
<td>0.12</td>
<td>0.066</td>
<td>0.017</td>
<td></td>
</tr>
</tbody>
</table>

Surrogate Name
<table>
<thead>
<tr>
<th>%Rec</th>
<th>Control Limits</th>
<th>Date Analyzed</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>114</td>
<td>70-130</td>
<td>4/9/13 2132</td>
</tr>
</tbody>
</table>
Client: Apex Companies, LLC
Project: Southside Plaza/1200202.005
Sample Matrix: Air
Sample Name: 1200202.005.4213.00E
Lab Code: R1302190-005

Analytical Method: TO-15
Initial Pressure (psig): -1.72
Final Pressure (psig): 3.55

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Analyte Name</th>
<th>Sample Amount (mL)</th>
<th>Result (µg/m³)</th>
<th>MRL (µg/m³)</th>
<th>Result (ppbv)</th>
<th>MRL (ppbv)</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>200</td>
<td>0.42</td>
<td>0.42</td>
<td>0.17</td>
<td>0.17</td>
<td>U</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethene</td>
<td>200</td>
<td>3.1</td>
<td>3.1</td>
<td>0.78</td>
<td>0.78</td>
<td>U</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>200</td>
<td>3.1</td>
<td>3.1</td>
<td>0.78</td>
<td>0.78</td>
<td>U</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane (TCA)</td>
<td>200</td>
<td>4.2</td>
<td>4.2</td>
<td>0.78</td>
<td>0.78</td>
<td>U</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>200</td>
<td>0.58</td>
<td>0.49</td>
<td>0.093</td>
<td>0.078</td>
<td>U</td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene (TCE)</td>
<td>200</td>
<td>0.42</td>
<td>0.42</td>
<td>0.079</td>
<td>0.079</td>
<td>U</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethene (PCE)</td>
<td>200</td>
<td>18</td>
<td>0.56</td>
<td>2.6</td>
<td>0.083</td>
<td></td>
</tr>
</tbody>
</table>

Surrogate Name: 4-Bromofluorobenzene
%Rec: 114
Control Limits: 70-130
Date Analyzed: 4/9/13 1814
Note:

Printed 4/22/13 7:52
Form 1A
\[\text{Superset Reference: 13-0000245175 rev 00}\]
ALS ENVIRONMENTAL

Analytical Report

<table>
<thead>
<tr>
<th>Client:</th>
<th>Apex Companies, LLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project:</td>
<td>Southside Plaza/1200202.005</td>
</tr>
<tr>
<td>Sample Matrix:</td>
<td>Air</td>
</tr>
<tr>
<td>Sample Name:</td>
<td>Method Blank</td>
</tr>
<tr>
<td>Lab Code:</td>
<td>RQ1303782-01</td>
</tr>
</tbody>
</table>

Analytical Method: TO-15

Date Collected: NA

Date Received: NA

Date Analyzed: 4/9/13 1226

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Analyte Name</th>
<th>Sample Amount mL</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>Result ppbv</th>
<th>MRL ppbv</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>1000</td>
<td>0.060</td>
<td>0.060</td>
<td>0.023</td>
<td>0.023</td>
<td>U</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethene</td>
<td>1000</td>
<td>0.44</td>
<td>0.44</td>
<td>0.11</td>
<td>0.11</td>
<td>U</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>1000</td>
<td>0.44</td>
<td>0.44</td>
<td>0.11</td>
<td>0.11</td>
<td>U</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane (TCA)</td>
<td>1000</td>
<td>0.60</td>
<td>0.60</td>
<td>0.11</td>
<td>0.11</td>
<td>U</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>1000</td>
<td>0.070</td>
<td>0.070</td>
<td>0.011</td>
<td>0.011</td>
<td>U</td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene (TCE)</td>
<td>1000</td>
<td>0.060</td>
<td>0.060</td>
<td>0.011</td>
<td>0.011</td>
<td>U</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethene (PCE)</td>
<td>1000</td>
<td>0.080</td>
<td>0.080</td>
<td>0.012</td>
<td>0.012</td>
<td>U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate Name</th>
<th>%Rec</th>
<th>Control Limits</th>
<th>Date Analyzed</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>109</td>
<td>70-130</td>
<td>4/9/13 1226</td>
<td></td>
</tr>
</tbody>
</table>
Analytical Method: TO-15

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Analyte Name</th>
<th>Sample Amount mL</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>Result ppbv</th>
<th>MRL ppbv</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>1000</td>
<td>0.060</td>
<td>0.060</td>
<td>0.023</td>
<td>0.023</td>
<td>U</td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethene</td>
<td>1000</td>
<td>0.44</td>
<td>0.44</td>
<td>0.11</td>
<td>0.11</td>
<td>U</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>1000</td>
<td>0.44</td>
<td>0.44</td>
<td>0.11</td>
<td>0.11</td>
<td>U</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane (TCA)</td>
<td>1000</td>
<td>0.60</td>
<td>0.60</td>
<td>0.11</td>
<td>0.11</td>
<td>U</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>1000</td>
<td>0.070</td>
<td>0.070</td>
<td>0.011</td>
<td>0.011</td>
<td>U</td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene (TCE)</td>
<td>1000</td>
<td>0.060</td>
<td>0.060</td>
<td>0.011</td>
<td>0.011</td>
<td>U</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethene (PCE)</td>
<td>1000</td>
<td>0.080</td>
<td>0.080</td>
<td>0.012</td>
<td>0.012</td>
<td>U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surrogate Name</th>
<th>%Rec</th>
<th>Control Limits</th>
<th>Date Analyzed</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>109</td>
<td>70-130</td>
<td>4/16/13 1024</td>
<td></td>
</tr>
</tbody>
</table>
Lab Control Sample Summary
Volatile Organic Compounds in Air Collected In SUMMA Passivated Canisters and Analyzed By GC/MS

Analytical Method: TO-15

Units: µg/m³
Basis: NA
Analysis Lot: 336740

<table>
<thead>
<tr>
<th>Analyte Name</th>
<th>Result</th>
<th>Spike Amount</th>
<th>% Rec</th>
<th>% Rec Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl Chloride</td>
<td>5.97</td>
<td>6.58</td>
<td>91</td>
<td>70 - 130</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>9.30</td>
<td>10.4</td>
<td>89</td>
<td>70 - 130</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>8.85</td>
<td>10.5</td>
<td>84</td>
<td>70 - 130</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane (TCA)</td>
<td>13.5</td>
<td>14.3</td>
<td>94</td>
<td>70 - 130</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>15.1</td>
<td>15.9</td>
<td>95</td>
<td>70 - 130</td>
</tr>
<tr>
<td>Trichloroethene (TCE)</td>
<td>12.4</td>
<td>14.0</td>
<td>89</td>
<td>70 - 130</td>
</tr>
<tr>
<td>Tetrachloroethene (PCE)</td>
<td>16.6</td>
<td>18.0</td>
<td>93</td>
<td>70 - 130</td>
</tr>
</tbody>
</table>

Results flagged with an asterisk (*) indicate values outside control criteria.
Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.
Lab Control Sample Summary
Volatile Organic Compounds in Air Collected In SUMMA Passivated Canisters and Analyzed By GC/MS

Analytical Method: TO-15

Units: µg/m³
Basis: NA
Analysis Lot: 336880

<table>
<thead>
<tr>
<th>Analyte Name</th>
<th>Result</th>
<th>Spike Amount</th>
<th>% Rec</th>
<th>% Rec Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl Chloride</td>
<td>6.12</td>
<td>6.58</td>
<td>93</td>
<td>70 - 130</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>10.1</td>
<td>10.4</td>
<td>97</td>
<td>70 - 130</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>8.96</td>
<td>10.5</td>
<td>85</td>
<td>70 - 130</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane (TCA)</td>
<td>15.4</td>
<td>14.3</td>
<td>108</td>
<td>70 - 130</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>17.2</td>
<td>15.9</td>
<td>108</td>
<td>70 - 130</td>
</tr>
<tr>
<td>Trichloroethene (TCE)</td>
<td>13.0</td>
<td>14.0</td>
<td>93</td>
<td>70 - 130</td>
</tr>
<tr>
<td>Tetrachloroethene (PCE)</td>
<td>17.5</td>
<td>18.0</td>
<td>98</td>
<td>70 - 130</td>
</tr>
</tbody>
</table>

Results flagged with an asterisk (*) indicate values outside control criteria.
Percent recoveries and relative percent differences (RFD) are determined by the software using values in the calculation which have not been rounded.
Chain of Custody - Air

Company Name: APERX COMANIES
Address: 155 Tri-County PKWY Suite 250
City, State, Zip: CINCINNATI, OH 45247
Project Name: SOUTH SLOF PLAZA
Project Number: 12002020008
P.O.#/Billing Information:
Sampled By: Terrie L. Swanson
Sampler (Print & Sign): aplec@aperxios.com
Comments Specific Instructions:
What State were samples collected in: NEW YORK

Analysis Method and/or Analytes:
- TO-15
 - 111, 112, 113 trichloroethane
 - 111, 112, 114 trichloroethane
 - 1,1,1-trichloroethane

Client Sample ID	**Laboratory ID Number**	**Date Collected**	**Canister ID**	**Flow Controller ID**	**Flammable Start/Finish**
1200202005.421.006 | 0901/1155 | 4-2-13 | 9043 | FC-006754 | 29/5
1200202005.421.008 | 0903/1151 | 4-2-13 | 9192 | FC-006737 | 29/4
1200202005.421.009 | 0907/1152 | 4-2-13 | 9098 | FC-006733 | 29/5
1200202005.421.007 | 0921/1150 | 4-2-13 | 9099 | FC-007100 | 30/5
1200202005.421.008 | 0934/1150 | 4-2-13 | 7781 | FC-007500 | 39/5

Report Tier Levels - please select:
- Tier I (Results/Default, if not specified)
- Tier II (Results + CC)
- Tier II (CLP Forms Only)
- Tier IV (Data Validation)

Exxel Units: \(\mu g/M^3 \)

Project Requirements (MR1s, QAPP, etc.):

UPS Samples Drop Off:
Date: 4-2-13
Time: 2025HRS
Received by: (Signature)
Reinforced by: (Signature)

2025HRS:
Date: 4-2-13
Time: 2025HRS
Received by: (Signature)
Reinforced by: (Signature)
CHAIN OF CUSTODY - AIR

Request Turnaround Time in Business Days from Receipt, please circle:
- 1 Day
- 2 Day
- 3 Day
- 4 Day
- 5 Day
- 10 Day-Standard

CAS Project #:

CAS Contact:

Analysis Method and/or Analytes

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Laboratory ID Number</th>
<th>Date Collected</th>
<th>Time Collected</th>
<th>Canister ID</th>
<th>Flow Controller ID</th>
<th>PRECIPITABLE SAMPLE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>12800302.005.000</td>
<td>111.21.023.000</td>
<td>4/2/12</td>
<td>11:01/11:05</td>
<td>7043</td>
<td>FC007954</td>
<td>Y</td>
</tr>
<tr>
<td>12800302.005.000</td>
<td>111.21.023.000</td>
<td>4/2/12</td>
<td>11:01/11:05</td>
<td>9197</td>
<td>FC007937</td>
<td>X</td>
</tr>
<tr>
<td>12800302.005.000</td>
<td>111.21.023.000</td>
<td>4/2/12</td>
<td>11:01/11:05</td>
<td>7048</td>
<td>FC008232</td>
<td>X</td>
</tr>
<tr>
<td>12800302.005.000</td>
<td>111.21.023.000</td>
<td>4/2/12</td>
<td>11:01/11:05</td>
<td>7281</td>
<td>FC007950</td>
<td>X</td>
</tr>
</tbody>
</table>

What State were samples collected in:

Project Requirements (MRLs, QAPP, etc.)

Report Tier Levels - please select:
- Tier I (Results/Default, if not specified)
- Tier II (Results + QC)
- Tier III (CLP Forms Only)
- Tier IV (Data Validation)

EDD required:
- YES
- NO

EDD Units:
- mg/m^3

Relinquished by:
- [Signature]

Date: 4/2/12
Time: 11:01
Received by: [Signature]

Date: 4/2/12
Time: 11:01
Received by: [Signature]

Date: 4/2/12
Time: 11:01
Received by: [Signature]

Columbia Analytical Services

1566 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 | 585.288.5380 | 585.288.8475 (fax) | www.caslab.com
Cooler Receipt and Preservation Check Form

Project/Client: APEX Companies Folder Number: 2190
Cooler received on 4/4/13 by: COURIER: ALS UPS FEDEX VELOCITY CLIENT

1. Were custody seals on outside of cooler? YES NO
2. Were custody papers properly filled out (ink, signed, etc.)? YES NO
3. Did all bottles arrive in good condition (unbroken)? YES NO
4. Did VOA vials, Alkalinity, or Sulfide have significant* air bubbles? YES NO N/A
5. Were Ice or Ice packs present? YES NO
6. Where did the bottles originate? ALS/ROC, CLIENT
7. Soil VOA samples received as: Bulk Jar; Encore TerraCore Lab5035set N/A
8. Temperature of cooler(s) upon receipt: Air Canisters
 Is the temperature within 0° - 6° C?: Y N Y N Y N Y N
 Thermometer ID: IR GUN#3 / IR GUN#4 Reading From: Temp Blank / Sample Bottle

If out of Temperature, note packing/ice condition & Client Approval to Run Samples:
 All Samples held in storage location by on at
 5035 samples placed in storage location by on at
 PC Secondary Review:

Cooler Breakdown: Date: 4/4/13 Time: 11:16 by:
1. Were all bottle labels complete (i.e. analysis, preservation, etc.)? YES NO
2. Did all bottle labels and tags agree with custody papers? YES NO
3. Were correct containers used for the tests indicated? YES NO
4. Air Samples: Cassettes / Tubes Intact Canisters Pressurized Tedlar® Bags Inflated N/A

Explain any discrepancies:

<table>
<thead>
<tr>
<th>pH</th>
<th>Reagent</th>
<th>YES</th>
<th>NO</th>
<th>Lot Received</th>
<th>Exp</th>
<th>Sample ID</th>
<th>Vol. Added</th>
<th>Lot Added</th>
<th>Final pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥12</td>
<td>NaOH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤2</td>
<td>HNO₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤2</td>
<td>H₂SO₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤4</td>
<td>NaHSO₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Residual Chlorine (-):
- For TCN Phenol and 522
- If present, contact PM to add ascorbic acid
 Or sodium sulfite (522)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂S₂O₃</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Zn Aceta</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

*Not to be tested before analysis – pH tested and recorded by VOAs or GenChem on a separate worksheet

Bottle lot numbers: Scanned
Other Comments:

PC Secondary Review: 4/19/13

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

G:\SMODOCS\Cooler Receipt 6.doc 11/6/12