

155 Tri-County Parkway Suite 250 Cincinnati, Ohio 45246 Telephone: 513-771-3617 Facsimile: 513-771-3723

November 24, 2008

Ms. Vivian Knight, Esq. Phillips Edison & Company 11501 Northlake Drive Cincinnati, Ohio 45249

Re: Limited Site Investigation Report Southside Plaza, 704 – 744 Foote Avenue Jamestown, New York

Dear Ms. Knight,

Apex Companies, LLC is pleased to provide Phillips Edison & Company Ltd (PECO) with the results of a Limited Site Investigation recently conducted at the above-referenced Site. According to the information provided in the request for proposal (RFP), previous Phase 1 Assessments identified a dry cleaner and former gas station on the Site and groundwater was reported to be 20 - 40 feet below ground surface (bgs). The exact location of the dry cleaner was not known, however, it was reportedly located at the southern edge of the tenant lease areas.

The Southside Plaza is located at 704-744 Foote Avenue in Jamestown, New York (Figure 1). In accordance with the scope of work provided in the RFP, two sub surface soil gas samples and two sub-slab air samples were collected in the vicinity of the former dry cleaner. In addition, four soil borings were advanced to refusal in the area of the former gas station for the collection of soil and groundwater samples. A discussion of sampling methods and laboratory analytical results are presented below.

1. INITIAL SITE RECONNAISANCE

On August 14, 2008, Jon Ramsier, a representative from Apex, visited the Southside Plaza to conduct a pre-mobilization reconnaissance. The purpose for the visit was to meet with tenants where sub-slab soil vapor samples were being collected, mark boring locations for utility clearance purposes, and confirm Site conditions. "Call Before You Dig" was notified at least 72

hours prior to initiating the work for the clearance of underground utilities in the vicinity of each of the sampling locations.

Each of the sub-slab, soil gas, and soil boring locations identified in the PECO RFP was found to be in an accessible area. Soil borings, sub-slab and shallow soil gas sampling locations are shown on Figure 2.

Sub-slab samples locations were within the Quality Market tenant space, located on the southernmost portion of the property, and soil vapor samples locations were directly in front and behind the tenant space. Soil borings were advanced along the northern property boundary and the northernmost portion of the eastern property boundary, to the north and east of a McDonalds restaurant.

2. SUB-SLAB AND SHALLOW SOIL GAS SAMPLING

Installation of Semi-Permanent Sampling Points

An Apex representative, Greg Mendez-Chicas, performed soil gas sampling on August 18, 2008. Sub-slab and subsurface soil vapor sampling activities were conducted in general accordance with the applicable New York State Department of Health (NYSDOH) guidance document entitled "*Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York*," dated October of 2006, (hereinafter, the NYSDOH Guidance Document). The following provides the details of the two types of soil vapor sampling points. Upon completion of the sampling activities, the poly tubing and screens were removed, the penetrations sealed with hydrated bentonite and the surfaces repaired with concrete or asphalt, as appropriate.

Building Interior Sub-Slab Semi-Permanent Sampling Points

At each of the two building interior sampling locations (SS-SS-1 and SS-SS-2), a one-to-twoinch-diameter access hole was cut with a hammer drill equipped with a coring bit through the 6 to 8-inch-thick concrete floor. SS-SS-01 was located in the southwestern hallway on the interior of the store stocking area, behind the bakery department, and SS-SS-02 was located approximately 25 to 30 feet north east of SS-SS-01 near the fire exit door. The interior soil vapor sampling implants were installed utilizing hand-powered equipment (e.g., hand auger, post-hole digger, etc.) and each consisted of a six-inch-long stainless-steel screen with onequarter-inch-diameter polyethylene tubing set approximately 2-inches below the bottom of the slab. Decontaminated filter pack sand was utilized to fill the annular space to two-inches above the top of the screen, with the remaining annular space filled with hydrated bentonite and/or bentonite grout.

Exterior Soil Vapor Semi-Permanent Sampling Points

Soil vapor sample SS-SV-01 was collected directly in front of the Quality Market Store, and soil vapor sample SS-SV-2 was collected just outside the fire exit door, at the southwestern corner of the store. At each of the two exterior sampling locations (SS-SV-1 and SS-SV-2), semipermanent soil vapor sampling points were installed to a terminal depth of five-feet bgs. The soil borings were hand augered to a depth of 5 feet, and the six-inch-long stainless-steel screen with one-quarter-inch-diameter polyethylene tubing was placed at the bottom of the boring. Decontaminated filter pack sand was utilized to fill the annular space to two-inches above the top of the screen, followed by six-inches of hydrated bentonite, followed by decontaminated filter pack sand and finally overlain by six-to-12-inches of hydrated bentonite and/or bentonite grout.

Soil Vapor/Air Sampling

The semi-permanent vapor probes were allowed to equilibrate for a minimum of one hour prior to sampling. Prior to sampling, each point was purged of a minimum of three tube volumes of soil vapor. In addition, as a quality assurance/quality control (QA/QC) measure, helium was introduced into a closed/sealed space surrounding the sampling tube as a tracer gas to confirm the integrity of the probe seals to ensure that no air intrusion impacted the soil vapor sample (e.g., no "short circuiting" occurred). The closed/sealed space around the sampling tube was formed utilizing an inverted container placed atop of the ground at the point where sampling tubing exits the subsurface. The sampling tubing was run through an air-tight fitting installed on the top of the container and another length of tubing was run from the helium supply through another air-tight fitting on the side of the container. Photographs of the soil gas sampling apparatus and setup are included in Attachment A. The sampling tube was connected to a helium detector and monitored over a period of at least 5 minutes to confirm that helium was not present in the soil gas sample and the seals associated with the semi-permanent sampling points were effective in preventing infiltration of atmospheric air into the soil vapor points.

At each soil vapor sampling point, a laboratory-supplied six-liter vacuum Summa canister was connected to the polyethylene tubing subsequent to the purging and leak testing. The samples were collected over a two-hour period at a flow rate of 0.05 liters per minute (LPM), which is less than the maximum flow rate of 0.2 LPM as established in the NYSDOH Guidance Document.

Analysis of Soil Gas Samples

The sub-slab and soil gas samples (with appropriate chain-of-custody) were submitted to York Analytical Laboratories, Inc., a NYSDOH Environmental Laboratory Accreditation Program (ELAP)-certified laboratory for analysis of Halogenated VOCs by EPA Method TO-15. The laboratory analytical report and chain-of-custody forms are included in Attachment B.

3. SOIL AND GROUNDWATER SAMPLING

Soil and Groundwater Sampling by Direct Push Technology

On August 18, 2008, SS-SB-1 through SS-SB-4 were advanced using a truck-mounted Direct Push Technology (DPT) drill rig operated by Nature Way Environmental. Before drilling, each of the borings was cleared for utilities by hand augering to a depth of 4 feet. At each boring location, soil borings were logged, screened by visual and olfactory inspection by Apex geologist Jon Ramsier, and field screened for the presence of VOCs utilizing a calibrated PID.

Moist soils were encountered at a depth of approximately 8 feet bgs and borings were terminated when refusal was met at approximately 16 feet bgs. Beneath the parking lot blacktop and subbase, subsurface lithologies consisted of silty clay and fine grained sand with coarse gravel seams. With the exception of a discolored layer of soil at 1–2 feet bgs in SB-2, where the sample was collected, none of the soil samples collected from the four soil borings exhibited visual or olfactory evidence of a release of hydrocarbons or positive PID responses. Since no evidence of impacted soil was identified during the screening, soil samples were collected from the intervals at which the highest moisture content was observed, with the rational that petroleum may have become perched on a higher water zone. Soil boring logs are included in Attachment C.

A temporary well screen was placed in each of the boreholes and groundwater samples were collected from the open borehole at SB-01, SB-02 and SB-03 using a peristaltic pump and polyethylene tubing. The groundwater was pumped directly into the laboratory provided sample bottles. Though moist soils were encountered, no water was produced from the borehole at soil boring SB-4 and no sample was collected. Apex attempted to field filter the water samples for dissolved lead analysis, however, the filter became quickly clogged due to the high solids content in water sample, and samples were submitted to the lab without preservative and analysis for dissolved lead was conducted on samples that were filtered in the laboratory.

Analysis of Soil and Groundwater Samples

The soil and groundwater samples collected in the vicinity of the former gas station were submitted to York Analytical Laboratories, Inc. (York), a New York State Department of Health (NYSDOH) Environmental Laboratory Accreditation Program (ELAP)-certified laboratory for analysis of STARS volatile organic compounds (VOCs) by EPA Method 8021, STARS semi-volatile organic compounds (SVOCs) by EPA Method 8270, and lead and dissolved lead by EPA Method 610. The laboratory analytical report and chain of custody forms are included in Attachment D.

4. FINDINGS

Soil Gas Samples

The NYSDOH Guidance Document provides specific contaminant thresholds for the following VOCs in sub-slab and indoor air samples: carbon tetrachloride (CT), tetrachloroethene (PCE), 1,1,1 trichloroethane (TCA) and trichloroethene (TCE). The Guidance Document provides the following recommendations based upon both the sub-slab vapor and indoor air sampling results:

- No further action;
- Monitor; or
- Mitigate.

Since sampling of indoor air was not included in the project scope of work, sub-slab and soil gas data was evaluated using the assumption that levels of these VOCs in indoor were below the lowest indoor air threshold (<0.25 ug/m3 for CT and TCE and <3 ug/m3 for PCE and TCA). This assumes the "best case scenario" as opposed to the worst case or most conservative scenario. It should also be noted that the NYSDOH Guidance Document is intended for the evaluation of sub-slab soil gas data, and does not provide contaminant thresholds for VOCs for soil vapor samples collected outside of the footprint of the building. As such, soil vapor samples collected from outside the footprint of the building were evaluated in the same manner as the sub-slab samples.

Soil gas data was also evaluated based on the USEPA OSWER Draft Guidance for Evaluation in the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). The guidance recommends using an incremental individual lifetime cancer risk of 10e-5 (EPA, 2002).

LSI_Southside 112408.doc

The results of soil gas sampling are presented in Table 1 along with both NYSDOH Guidance Document and USEPA Subsurface Vapor Intrusion Guidance criteria for vapor intrusion. Values that exceeded either the NYSDOH or USEPA the evaluation criteria are shown in bold and highlighted in yellow.

Exceedences of the NYSDOH guidance criteria are summarized as follows:

- TCA concentrations of $161 \,\mu g/m^3$ at SS-SS-01 fell into the concentration range where the guidance recommends **monitoring**.
- PCE concentrations of 152, and 104 μ g/m³ at SS-SS-01 and SS-SS-02, respectively fell into the range where the guidance recommends **monitoring**.
- PCE concentrations of 1,310 μ g/m³ at SS-SV-01 fell within the range where the guidance recommends **mitigation**.
- TCE concentration of 224 μ g/m³ at SS-SV-01, fell into the range where the guidance recommends **monitoring**.

The NYSDOH Guidance Document is intended to provide guidance on the evaluation of soil vapor intrusion from volatile compounds. Based on results presented above, the guidance recommends additional monitoring of sub-slab vapor, lowest occupied living space air, and outdoor air.

Exceedences of USEPA guidance criteria are summarized as follows:

- PCE concentrations of 1,310 μ g/m³, 152 μ g/m³, and 104 μ g/m³ at SS-SV-01, SS-SS-01 and SS-SS-02, respectively exceeded th μ g/m³ e criteria of 81 μ g/m³.
- TCE concentrations of 224 μ g/m³, 7.65 μ g/m³, and 16.9 μ g/m³ at SS-SV-01, SS-SV-02 and SS-SS-01, respectively exceeded the criteria of 2.2 μ g/m³.

Evaluation of the soil gas sample results with respect to the USEPA guidance criteria was generally consistent with the evaluation using NYSDOH Guidance.

The levels of chlorinated solvents in soil gas, particularly levels of PCE which fall within the range of values for which NYSDOH recommends mitigation, and which exceed the USEPA generic screening criteria by more that an order of magnitude, suggest that the site has been impacted by a release from the former dry cleaners.

In addition, Method Detection Limits (MDLs) for several analytes exceeded one or both of the guidance criteria, and are shown in bold italics on Table 1. When a sample contains elevated levels of VOCs, dilution may be required before the sample can be analyzed, and as a result MDLs are higher. Higher MDLs did not present a limitation to the interpretation of the data collected for this investigation.

Soil and Groundwater Samples

Soil analytical data was compared to NYSDEC Recommended Soil Cleanup Objectives (RSCOs) included in the NYSDEC Technical Administrative Guidance Memorandum (TAGM) 4046: Determination of Soil Cleanup Objectives and Cleanup Levels, revised in April 1995, and 2000 update (TAGM – RSCO).

As summarized in Table 2, no NYSDEC TCL VOCs or STAR SVOCs were detected in soils above their laboratory Method Detection Limits (MDLs). Lead was detected in each of the soil samples at levels below the cleanup criteria. These data support the visual and olfactory observations, and PID responses that indicated that soils have not been impacted by a release of petroleum hydrocarbons at the former gas station.

Method Detection Limits (MDLs) for several analytes exceeded the cleanup criteria, and are shown in bold italics on Table 2. Since there were no detections of any VOCs or SVOCs in soil samples, it is Apex's opinion that this does not limit our ability to evaluate whether soils have been impacted by a possible release.

Since groundwater at the Site has not been classified, for the purposes of this assessment, groundwater analytical data was compared to Standards for the Protection of Source Drinking Water (groundwater) provided in NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limits (TOGS111). These are conservative standards, but in the absence of a groundwater classification they provide suitable values for the initial screening of groundwater data.

As summarized in Table 3, with the exception of PCE was detected in SS-SB-01, no NYSDEC TCL VOCs or STAR SVOCs were detected in groundwater above their laboratory Method Detection Limits (MDLs). Total lead in groundwater exceeded the cleanup criteria in all samples, however these are believed to be due to the turbid nature of the samples, and are not reflective of site-related anthropogenic impacts to groundwater since lead concentrations in all filtered samples was below the cleanup criteria.

LSI_Southside 112408.doc

Method Detection Limits (MDLs) for several analytes exceeded the cleanup criteria, and are shown in italics on Table 3. Since there were no petroleum related detections of VOCs or SVOCs in water samples, it is Apex's opinion that this does not limit our ability to evaluate whether groundwater has been impacted by a possible release from USTs at the former gas station.

Based on Apex's evaluation of soil and groundwater data collected in the vicinity of the former gas station with respect to NYSDEC TAGM – RSCO and TOGS111, respectively:

- No TCL VOCs or STAR SVOCs are present above MDLs in the soil samples
- Levels of lead in soil are below cleanup criteria
- No petroleum-related TCL VOCs, STAR SVOCs or dissolved lead are present above MDLs in the groundwater samples

However, a groundwater sample collected at SB-1, located approximately 600 feet in the assumed downgradient direction from the presumed location of the former drycleaner identified PCE at 61 μ g/l, over an order of magnitude above selected cleanup criteria (in the absence of groundwater classification).

5. **REPORT LIMITATIONS**

The findings presented in this report are not specific certainties; rather they are probabilities based upon professional judgment, analytical results and risk-based guidance values published by the NYSDOH, NYSDEC and USEPA. Apex is not able to represent that the Site presents no environmental conditions other than those described during this investigation.

Implementation or use of the findings in this report does not assure the elimination of present or future liability or the fulfillment of the property owner's obligations under local, state or Federal laws. This report is prepared for the benefit of PECO and may not be relied upon by any other person or entity. The findings set forth in this report are limited in time and scope to the circumstances at the time of the field investigation.

Please feel free to call me with any questions that you may have.

Sincerely,

Apex Companies, LLC.

Jane Alla

Jane Allan, PhD Project Manager

Tables	1.	Soil Vapor Analysis Results
--------	----	-----------------------------

- 2. Soil Analytical Results
- 3. Groundwater Analytical Results
- Figures 1. Topographic Map
 - 2. Site Plan and Sampling Locations

Attachment A – Photos of Soil Gas Sampling

Attachment B – Laboratory Analytical Report for Soil Gas Samples

Attachment C – Soil Boring Logs

Attachment D – Laboratory Analytical Report for Soil and Groundwater Samples

TABLES

Table 1Soil Vapor Analysis ResultsSouthside Plaza704 - 744 Foote AvenueJamestown, New York

Analyte		Sample	Number			NYS	DOH Guidance** (µ	ıg/m3)
VOCs TO-15 Halogenated List (µg/m ³)	SS-SV-01	SS-SV-02	SS-SS-01	SS-SS-02	GSL*	NFA***	Monitor	Mitigate
1,1,1-Trichloroethane	< 10.2	< 2.03	161	< 19.8	2.2E+04	< 100	100 to < 1,000	≥ 1,000
1,1,2,2-tetrachloroethane	< 12.8	< 2.56	< 2.46	< 25	4.2E+00			
1,1,2-Trichloroethane	< 10.2	< 2.03	< 1.95	< 19.8	1.5E+01			
1,1-Dichloroethane	< 7.51	< 1.5	< 1.44	< 14.7	5.0E+03			
1,1-Dichloroethylene	< 7.42	< 1.48	< 1.43	< 14.5	2.0E+03			
1,2,4-Trichlorobenzene	< 15.2	< 3.04	< 2.92	< 29.7	2.0E+03			
1,2-Dibromoethane	< 14.3	< 2.85	< 2.75	< 27.9	1.1E+00			
1,2-Dichlorobenzene	< 11	< 2.2	< 2.11	< 21.4	2.0E+03			
1,2-Dichloroethane	< 7.51	< 1.5	< 1.44	< 14.7	9.4E+00			
1,2-Dichloropropane	< 8.61	< 1.72	< 1.65	< 16.8	4.0E+01			
1,2-Dichlorotetrafluoroethane	< 9.16	< 1.83	< 1.76	< 17.9	N/A			
1,3-Dichlorobenzene	< 11.2	< 2.23	< 2.15	< 21.8	1.1E+03			
1,4-Dichlorobenzene	< 11.1	67.3	79.5	1280	8.0E+03			
Allyl Chloride	< 11.6	< 2.32	< 2.24	< 22.7	N/A			
Benzyl Chloride	< 10.5	< 2.1	< 2.02	< 20.6	5.0E+00			
Bromodichloromethane	< 25	< 5	< 4.8	< 48.8	1.4E+01			
Bromoform	< 38.5	< 7.69	< 7.39	< 75.1	2.2E+02			
Bromomethane	< 7.24	< 1.45	< 1.39	< 14.1	N/A			
Carbon Tetrachloride	< 11.7	< 2.34	< 2.25	< 22.9	1.6E+01	< 50	50 to < 250	≥ 250
Chlorobenzene	< 8.61	< 1.72	< 1.65	< 16.8	6.0E+02			
Chloroethane	< 4.95	< 0.988	< 0.95	< 9.65	1.0E+05			
Chloroform	< 9.07	< 1.81	< 1.74	< 17.7	1.1E+01			
Chloromethane	< 3.85	< 0.769	< 0.739	< 7.51	2.4E+02			
cis-1,2-Dichloroethylene	137	< 1.48	< 1.43	< 14.5	3.5E+02			
cis-1,3-Dichloropropylene	< 9.07	< 1.81	< 1.74	< 17.7	N/A			
Dibromochloromethane	< 31.8	< 6.35	< 6.11	< 62	N/A			
Dichlorodifluoromethane	< 9.25	< 1.85	< 1.78	< 18	2.0E+03			
Freon-113	< 14.3	< 2.85	< 2.75	< 27.9	N/A			
Hexachloro-1,3-Butadiene	< 13	< 2.6	< 2.5	< 25.4	1.1E+01			
Methylene Chloride	< 6.5	< 1.3	< 1.25	< 12.7	5.2E+02			
Tetrachloroethylene	1310	34.5	152	104	8.1E+01	< 100	100 to < 1,000	≥ 1,000
trans-1,2-Dichloroethylene	31.5	< 2.95	< 2.83	< 28.8	7.0E+02			
trans-1,3-Dichloropropylene	< 9.25	< 1.85	< 1.78	< 18	N/A			
Trichloroethylene	224	7.65	16.9	< 19.5	2.2E+00	< 50	50 to < 250	≥ 250
Trichlorofluoromethane	291	< 2.09	62.9	56.6	7.0E+03			

Table 1Soil Vapor Analysis ResultsSouthside Plaza704 - 744 Foote AvenueJamestown, New York

Analyte		Sample Number				NYS D	OH Guidance**	(µg/m3)
VOCs TO-15 Halogenated List (µg/m ³)	SS-SV-01	SS-SV-02	SS-SS-01	SS-SS-02	GSL*	NFA***	Monitor	Mitigate
Vinyl Bromide	< 16.3	< 3.26	< 3.13	< 31.8	N/A			
Vinyl Chloride	< 4.76	< 0.952	< 0.915	< 9.29	2.8E+01			

* GSL = Generic Screening Levels as listed in Table 2B for Shallow Soil Gas Concentrations as listed in the EPA OSWER Draft Guidance Subsurface Vapor Intrusion Guidance

** NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York

*** NFA = No Further Action

152 Values in bold and highlighted in yellow exceeded either GSL or NFA

< 48.8 Values shown in italics had Method Detection Limits greater than GSL or NFA</p>

Table 2 Soil Analysis Results Southside Plaza

704 - 744 Foote Avenue Jamestown, New York

Sample Number	SB-01	SB-02	SB-03	SB-04	NYDEC
Sample Depth	12-14'	1-2'	10-12'	8-10'	TAGM RSCO
VOCs (µg/L)					
Chloromethane	<10	<10	<10	<10	N/A
Bromomethane	<10	<10	<10	<10	N/A
Vinyl chloride	<10	<10	<10	<10	200
Chloroethane	<10	<10	<10	<10	1900
Methylene chloride	<10	<10	<10	<10	100
Acetone	<10	<10	<10	<10	200
Carbon disulfide	<10	<10	<10	<10	2700
1,1-Dichloroethene	<10	<10	<10	<10	400
1,1-Dichloroethane	<10	<10	<10	<10	200
1,2-Dichloroethylene (cis-)	<10	<10	<10	<10	N/A
Chloroform	<10	<10	<10	<10	300
1,2-Dichloroethane	<10	<10	<10	<10	100
2-Butanone	<10	<10	<10	<10	300
1,1,1-Trichloroethane	<10	<10	<10	<10	800
Carbon tetrachloride	<10	<10	<10	<10	600
Bromodichloromethane	<10	<10	<10	<10	N/A
1,2-Dichloropropane	<10	<10	<10	<10	N/A
cis-1,3-Dichloropropene	<10	<10	<10	<10	N/A
Trichloroethene	<10	<10	<10	<10	700
Dibromochloromethane	<10	<10	<10	<10	N/A
1,1,2-Trichloroethane	<10	<10	<10	<10	N/A
Benzene	<10	<10	<10	<10	60
trans-1,3-Dichloropropene	<10	<10	<10	<10	N/A
Bromoform	<10	<10	<10	<10	N/A
4-Methyl-2-pentanone	<10	<10	<10	<10	1000
2-Hexanone	<10	<10	<10	<10	N/A
Tetrachloroethene	<10	<10	<10	<10	1400
1,1,2,2-Tetrachloroethane	<10	<10	<10	<10	600
Toluene	<10	<10	<10	<10	1500
Chlorobenzene	<10	<10	<10	<10	1700
Ethylbenzene	<10	<10	<10	<10	5500
Styrene	<10	<10	<10	<10	N/A
Xylenes (total)	<10	<10	<10	<10	1200
1,2-Dichloroethylene(trans-)	<10	<10	<10	<10	N/A
Methyl tert-butyl Ether (MTBE)	<10	<10	<10	<10	120
Dichlorodifluoromethane	<10	<10	<10	<10	N/A
1,1,2-Trichlorotrifluoroethane (Freon 11)	<10	<10	<10	<10	N/A
Trichlorofluoromethane	<10	<10	<10	<10	N/A
1,3-Dichlorobenzene	<10	<10	<10	<10	1600
Isopropylbenzene (Cumene)	<10	<10	<10	<10	2300
1,4-Dichlorobenzene	<10	<10	<10	<10	8500
1,2-Dichlorobenzene	<10	<10	<10	<10	7900
1,2-Dibromo-3-Chloropropane	<10	<10	<10	<10	N/A
1,2,4-Trichlorobenzene	<10	<10	<10	<10	3400
1,2-Dibromoethane (ethylene dibromide)	<10	<10	<10	<10	N/A

Table 2 Soil Analysis Results Southside Plaza

704 - 744 Foote Avenue Jamestown, New York

Sample Number	SB-01	SB-02	SB-03	SB-04	NYDEC
Sample Depth	12-14'	1-2'	10-12'	8-10'	TAGM RSCO
SVOCs (µg/kg)					
Naphthalene	<165	<165	<165	<165	13000
Anthracene	<165	<165	<165	<165	50000
Fluorene	<165	<165	<165	<165	50000
Phenanthrene	<165	<165	<165	<165	50000
Pyrene	<165	<165	<165	<165	50000
Acenaphthene	<165	<165	<165	<165	50000
Benzo[a]anthracene	<165	<165	<165	<165	224
Fluoranthene	<165	<165	<165	<165	50000
Benzo[b]fluoranthene	<165	<165	<165	<165	220
Benzo[k]fluoranthene	<165	<165	<165	<165	220
Chrysene	<165	<165	<165	<165	400
Benzo[a]pyrene	<165	<165	<165	<165	61
Benzo[g,h,i]perylene	<165	<165	<165	<165	50000
Indeno[1,2,3-cd]pyrene	<165	<165	<165	<165	3200
Dibenz[a,h]anthracene	<165	<165	<165	<165	14.3
Acenaphthylene	<165	<165	<165	<165	50000
Metals (mg/kg)					
Lead	61.6	125	8.35	36.4	400

 * NYSDEC TAGM - Recommended Soil Cleanup Objectives, HWR-94-4046, Revised 4/95 and 2000 NYSDEC STARS

67.3 Method Detection Limits in bold italics exceeded RSCO

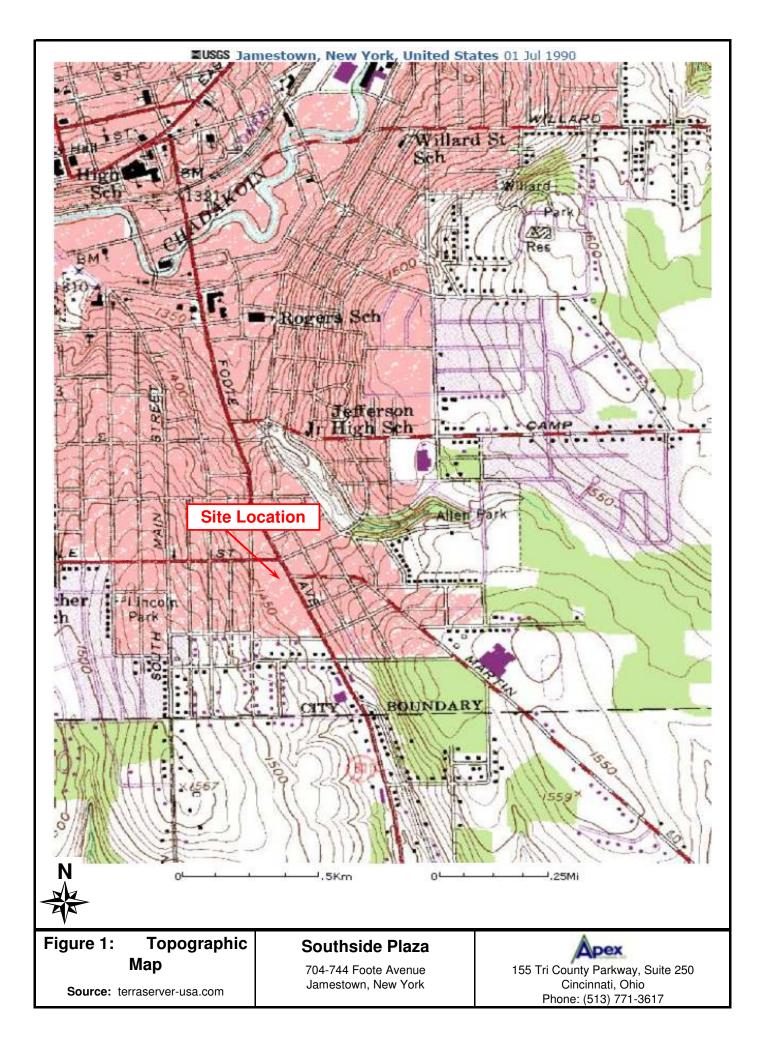
Table 3Groundwater Analysis ResultsSouthside Plaza

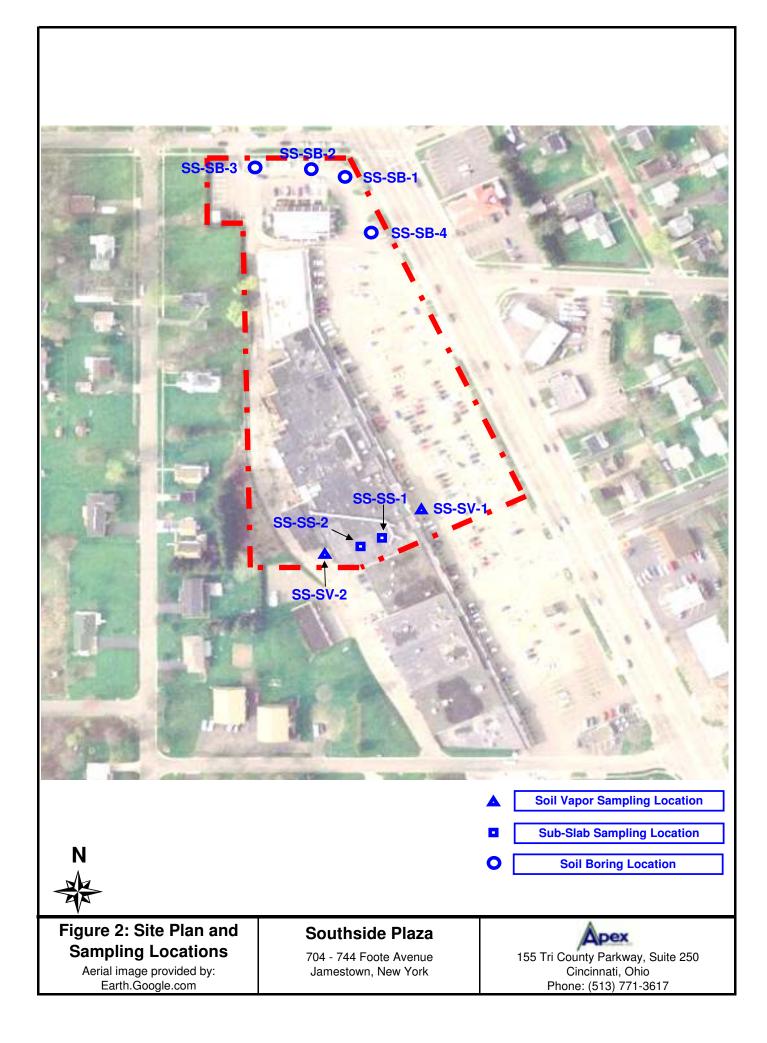
704 - 744 Foote Avenue Jamestown, New York

					NYSDEC GW
Sample Number	SB-01	SB-02	SB-03	SB-04	Standard *
VOCs (µg/L)					
Chloromethane	<5	<5	<5	N/A	N/A
Bromomethane	<5	<5	<5	N/A	5
Vinyl chloride	<5	<5	<5	N/A	2
Chloroethane	<5	<5	<5	N/A	5
Methylene chloride	<5	<5	<5	N/A	5
Acetone	<5	<5	<5	N/A	50
Carbon disulfide	<5	<5	<5	N/A	NA
1,1-Dichloroethene	<5	<5	<5	N/A	5
1,1-Dichloroethane	<5	<5	<5	N/A	5
1,2-Dichloroethylene (cis-)	<5	<5	<5	N/A	5
Chloroform	<5	<5	<5	N/A	7
1,2-Dichloroethane	<5	<5	<5	N/A	5
2-Butanone	<5	<5	<5	N/A	NA
1,1,1-Trichloroethane	<5	<5	<5	N/A	5
Carbon tetrachloride	<5	<5	<5	N/A	5
Bromodichloromethane	<5	<5	<5	N/A	N/A
1,2-Dichloropropane	<5	<5	<5	N/A	1
cis-1,3-Dichloropropene	<5	<5	<5	N/A	0.4
Trichloroethene	<5	<5	<5	N/A	5
Dibromochloromethane	<5	<5	<5	N/A	50
1,1,2-Trichloroethane	<5	<5	<5	N/A	N/A
Benzene	<5	<5	<5	N/A	1
trans-1,3-Dichloropropene	<5	<5	<5	N/A	0.4
Bromoform	<5	<5	<5	N/A	50
4-Methyl-2-pentanone	<5	<5	<5	N/A	N/A
2-Hexanone	<5	<5	<5	N/A	50
Tetrachloroethene	62	<5	<5	N/A	5
1,1,2,2-Tetrachloroethane	<5	<5	<5	N/A	5
Toluene	<5	<5	<5	N/A	5
Chlorobenzene	<5	<5	<5	N/A	5
Ethylbenzene	<5	<5	<5	N/A	5
Styrene	<5	<5	<5	N/A	5
Xylenes (total)	<5	<5	<5	N/A	5
1,2-Dichloroethylene(trans-)	<5	<5	<5	N/A	5
Methyl tert-butyl Ether (MTBE)	<5	<5	<5	N/A	NA
Dichlorodifluoromethane	<5	<5	<5	N/A	5
1,1,2-Trichlorotrifluoroethane (Freon 11	<5	<5	<5	N/A	N/A
Trichlorofluoromethane	<5	<5	<5	N/A	5
1,3-Dichlorobenzene	<5	<5	<5	N/A	3
Isopropylbenzene (Cumene)	<5	<5	<5	N/A	5
1,4-Dichlorobenzene	<5	<5	<5	N/A	3
1,2-Dichlorobenzene	<5	<5	<5	N/A	3
1,2-Dibromo-3-Chloropropane	<5	<5	<5	N/A	0.04
1,2,4-Trichlorobenzene	<5	<5	<5	N/A	5
1,2-Dibromoethane (ethylene dibromide)	<5	<5	<5	N/A	6.00E-04

Table 3 Groundwater Analysis Results Southside Plaza

704 - 744 Foote Avenue Jamestown, New York


					NYSDEC GW
Sample Number	SB-01	SB-02	SB-03	SB-04	Standard *
SVOCs (µg/L)					
Naphthalene	<7.1	<5.9	<7.1	N/A	10
Anthracene	<7.1	<5.9	<7.1	N/A	50
Fluorene	<7.1	<5.9	<7.1	N/A	50
Phenanthrene	<7.1	<5.9	<7.1	N/A	50
Pyrene	<7.1	<5.9	<7.1	N/A	50
Acenaphthene	<7.1	<5.9	<7.1	N/A	20
Benzo[a]anthracene	<7.1	<5.9	<7.1	N/A	NA
Fluoranthene	<7.1	<5.9	<7.1	N/A	50
Benzo[b]fluoranthene	<7.1	<5.9	<7.1	N/A	0.002
Benzo[k]fluoranthene	<7.1	<5.9	<7.1	N/A	0.002
Chrysene	<7.1	<5.9	<7.1	N/A	0.002
Benzo[a]pyrene	<7.1	<5.9	<7.1	N/A	ND
Benzo[g,h,i]perylene	<7.1	<5.9	<7.1	N/A	NA
Indeno[1,2,3-cd]pyrene	<7.1	<5.9	<7.1	N/A	0.002
Dibenz[a,h]anthracene	<7.1	<5.9	<7.1	N/A	NA
Acenaphthylene	<7.1	<5.9	<7.1	N/A	NA
Metals (mg/L)					
Lead	4.15	0.093	0.499	N/A	0.015
Lead, Dissolved	<0.005	<0.005	<0.005	N/A	0.015


* NYSDEC Class GA Ambient Water Quality Standards and Guidance Values, NYSDEC Division of Water Quality and Operational Guidance Series (1.1.1) - Ambient Water Quality and Guidance Values and Effluent Limitations Reissued June 1998.

152 Values highlighted in yellow exceeded Groundwater Standard

< 48.8 Method Detection Limits in bold italics exceeded the groundwater standard</p>

FIGURES

Attachment A Photos of Soil Vapor Sampling

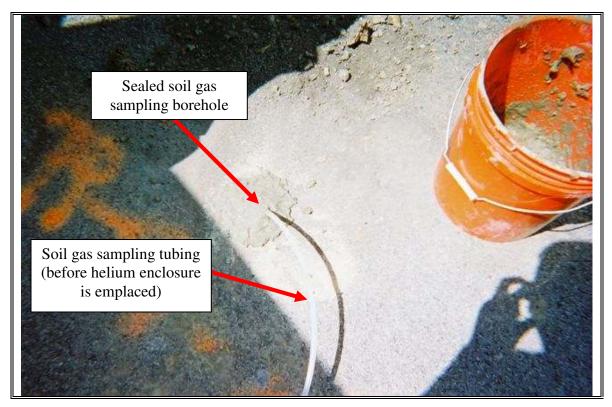


Photo No. 1

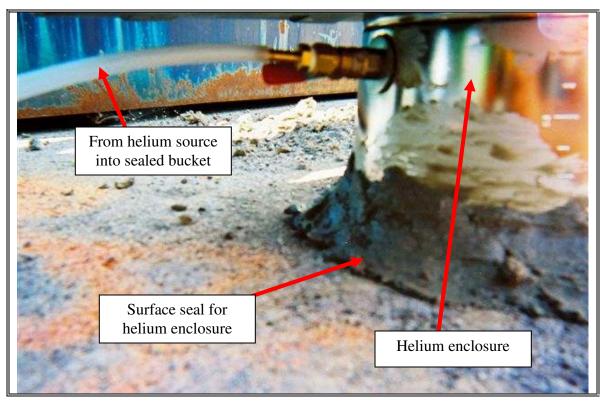


Photo No. 2

Photo No. 3

Attachment B Laboratory Analytical Report for Soil Gas Samples

Technical Report

prepared for:

Apex Companies, 1LC 155 Tri County Parkway, Suite 250 Cincinnati, OH 45246 Attention: Jane Allan

.

Report Date: 8/28/2008 Re: Client Project ID: 1200081.01 / Southside Plaza York Project No.: 08080716 A

CT Userse No. PH-0721.

New Josep License No. CT-003

New York Lottine No. 20154

120 RESLARCH DRIVE

STRATEORD. CT 06615 (203) 325-1371

(203) 325-1371 FAX (203) 357-0166

Report Date: 8/28/2008 Client Project ID: 1200081.01 / Southside Plaza York Project No.: 08080716 A

Apex Companies, LLC 155 Tri County Parkway, Suite 250 Cincinnati, OH 45246 Attention: Jane Allan

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain of custody received in our laboratory on 08/21/08. The project was identified as your project "1200081.01 / Southside Plaza"

The analyses were conducted utilizing appropriate EPA. Standard Methods, and ASTM methods as detailed in the data summary tables

All samples were received in proper condition meeting the NELAC acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All the analyses met the method and laboratory standard operating procedure requirements except as indicated under the Notes section of this report, or as indicated by any data flags, the meaning of which is explained in the attachment to this report. If applicable

The results of the analyses, which are all reported on an as-received basis unless otherwise noted, are summarized in the following table(s).

Client Sample ID			SS-SV-1		SS-SV-2	
York Sample ID		-	08080716-01		08080716-02	
Matrix			AIR		AIR	
Pariemeter	Method	Finits	Results	MD1.	Results	MDI.
Volatiles, TO-15 Halogenated List	EPA 13 H 5	ppbv		. .]
1.1.1-Trichloroethane			Not detected	1.63	Not detected	0366]
1,1,2.2-tetrachloroethane			Not detected	1.83	Not detected	0.366
1,1,2-Tricklocoethanc			Not detected	1.85	Not detected	0.366
1.1.4Dichloroethaac	[Not detected	1.83	Not detected	0 166
1.1-Dichloroethylene			Not detected	1.83	Not detected	0.366
1.2,4-Trichlorobenzene			Not detected	1.83	Not detected	0.366
1,2-D:bromoethase			Not detected	1.85	Not detected	0.366
1,2(Dichlorubenzene	İ		Not detected	1.85	Not detected	0.366
1,2-Dichloroethane			Not detected	1.83	Not detected	0.366
1.2-Dichloropropane			Not detected	1.83	Not detected	0.366
1,2-Dichloroteirafluoroethane			Not detected	1.83	Not detected	0.366
1,3 (Dichlorationzone	l l		Not detected	1,83	Not detected	0.366
1.4 Dichlorobenzene			Not detocted	1.83	11	0.366
Allyl Chloride			Not detected	1.83	Net detected	0.366
Benzyl Chloride			Not detected	1.83	Not detected	0.366
Bromodichloromethane			Not detected	1.85	Not detected	0 366

Analysis Results

YORK

Client Sample 10	·		SS-SV-1		SS-SV-2	i
York Sample (I)			08080716-01		08080716-02	
Matrix			AIR		AIR	t
Parameter	Method	Units	Results	MDI.	Results	MDL.
Bromoform			Not detected	1.83	Not detected	0.366
Bromomethane	1		Not detected	1.83	Not detected	0.366
Carbon Tetrachloride	1		Not detected	181	Not detected	D 366
Chlorabeazeae	1		Not detected	183	Not detected	0.366
Chloroethane	•		Net detected	1.83	Not delected	0.366
Chloroform	<u> </u>	<u> </u>	Net detected	1.83	Not delected	0.366
Chloromethane	1		Net detected	1.83	Not detected	0.366
cis-1.2-Dichloroethylene			34	1.83	Not detected	46.366
cis-1,3-Dichloropropylene			Not detected	1 83	Not detected	0.366
Dibromocidintoinethaue	<u> </u>		Not detected	1.83	Not detected	0.366
DichtorochQuoromethane	1		Not detected	2.83	Not detected	0366
Freon-113	1		Not detected	1.83	Not detected	0 366
Hexachlaro-1,3-Buladiene	·		Not detected	1.85	Not detected	0.366
Methylene Chloride	·		Not detected	1.83	Not detected	0.366
Tetrachtloroethylene	·		190	1.83	50	0 366
trans-1,2-Dichloroethyleng			7.8	1.83	Not detected	0.366
traux-1.5 Dichloropropylene	t		Not detected	1.83	Not detected	0.366
Trichloroethylene			41	1.83	1.4	0.366
Trichlerofleoromethane			51	1.83	Not detected	D.366
Vinyl Bromide			Not detected	1.81	Not detected	0.366
Vinyl Chloride			Not detected	1 83	Not detected	0.366
Volatiles, TO-15 Halogenoted List	EPA TOIN	ពម្ភ				
1,1,1-Erichloroethane		<u></u>	Not detected	10 2	Not detected	2.03
1,1,2,2 detrachloroethane			Not detected	12.8	Not delected	2.56
1.1.2-Trech?oroethane			Net detected	10.2	Not delected	2.03
1.1-Dichloroethane			Not detected	7.51	Not detected	1.50
\$,1-Dichloroethylene			Not detected	7.42	Not detected	148
1,2,4-Tricklarobenzene		·	Not detected	15.2	Not detected	3.04
1,2-Dibromeethaug	· · · · · · · ·		Not detected	14.3	Not detected	2.85
1.2-Dichlorobenzune	h—————		Not detected	11.0	Not detected	3.20
1.2-Dichloroethane			Not detected	7.51	Not detected	1.50
1,2-Dichloropropane			Not detected	8.61	Not detected	1.72
1.2-Dichlerotetratiuproethuie	· ·		Not detected	9.16	Not detected	1.83
1,3-Dicklorobenzene		•	Not detected	11.2	Not detected	2.23
1.4-Dichlorobenzene	;		Not detected	11.1	67.5	2.21
Allyi Chteride			Nut detected	11.6	Not detected	2 3 2
Benzyl Chloride			Not detected	10.5	Not detected	2.10
Bronsodielslosomethane	· · · · —		Not detected	25.0	Not detected	5.00
Bromaform			Not detected	\$8.5	Not detected	7.69
Bromomethane			Not detected	7 24	Not detected	145
Carbon Tetrachloride			Nol detected	11.7	Not detected	231
Chlucohenzene			Not detected	8.61	Not detected	1 72
Chloroethane			Not detected	4.95	Nut detected	0.988
Chloroform			Not detected	907	Nut detected	161
Chloromethane			Not detected	3.85	Not detected	0.769
cis-1,2-Dicklonoethylene	····· ···		137	7.42	Not detected	1.48
cis-1,3-Dickloropropylepe			Not detected	9.07	Not detected	5.61
Dibroinochloromethane			Not detected	1L K	Not detected	6.35
Dichlorodifluoromethane			Not detected	9.25	Not detected	1.85
Freun-113	•		Not detected	14.3	Not detected	
itexachlora-1,3-Butadiene						- 2.85
rie vatorioto-1,,i-150001600			Not detected	11.0	Not detected	2.60

Citeat Sample 10			SS-5V-1	İ .	SS-SV-2	
York Sample 10	!		08080716-01		08080716-02	
Matrix			AIR		AIR	
Parameter	[Method	Units	Results	MDL	Results	MDL
Methylene Chloride			Not detected	6.50	Not delected	130
Tetrachloroethylenr			1310	12.6	34,5	2.53
trans-1.2-Dichteroethylene			31.5	14 7	Not detected	2.95
trans-1,3-Dichloropropylene			Not detected	9,75	Not detected	1 85
frichloroethylene	T	1	224	9.98	7.65	1.99
Trichlorollogromethane			291	10.4	Not detected	2.09
Vinyl Bromide			Not detected	16.3	Not detected	3.26
Vinyl Chloride		i	Not detected	4.76	Not detected	0.952

Client Sample ID	1		SS-SS-1		\$\$-\$\$-2	[
York Sample (D			08080716-03		08080716-04	
Matejx			AIR	⊢ −-	AIR	
Parameter	Method	Units	Results	MDL	Results	MDL
Volatiles, TO-15 Halogenated List	EPA TOIS	ррыч				
1.1.1 Fracaloroethane			29	0.2	Not detected	3.57
1,1,2.2-totrachleroethane			Not detected	0.2	Not detected	3.57
1,1.2-Trichloroethane			Not detected	0.2	Not detected	3.57
1,1-Dichloroethane			Not detected	0.2	Not detected	3.57
1,2-Dicklaroethylene	···· ·		Net desected	0.2	Not detected	3.57
1.2,4-Trichlorobenzend			Not detected	0.2	Not detected	3.57
£2-Dibromeethane			Nat detected	0.2	Not detected	3.57
1.2-Dichlorobenzene			Not detected	0.2	Not detected	3,57
1.2-Dichloroethane	-		Not detected	0.2	Not detected	1.57
1,2-Dichtoropropane			Not detected	02	Not detected	3.57
1.2-Dichlerotetrafluoroethane			Not detected	0.2	Not detected	3.57
1.3-Dichlorobenzene			Not detected	0.2	Not detected	3.57
1,4 Dichlorobenzene			13	0.2	210	3.57
ARyl Chloride			Not detected	D.2	Not ifeteeted	3.57
Benzyl Chloride			Not detected	0.2	Not ifetected	3 57
Bromodichloronuthate			Not detected	0.2	Not detected	3 57
Bromuform			Not detected	0.2	Not detected	3.57
Bromomethane			Not detected	0.2	Not detected	\$ 57
Carbon Tetrachloride			Not detected	0.2	Not detected	3.17
Chlorobenzene			Not detected	0.2	Not detected	3.57
Chloroethane			Not detected	0.2	Not detected	3.57
Chlorofernt			Not detected	0.2	Not detected	3.57
Chleroniethane			¹ Not detected	0.2	Not detected	1.57
cis-1,2-Dichloroethylene			Not detected	0.2	Not detected	1.57
cis-1,3-Dichloropropylene			Not detected	0.2	Not deleased	3.57
Distomochloromethage]		Net detected	0.2	Not detected	3.57
Dicklorediffuoromethane	1		Not detected	0.2	Not detected	3.57
Freon-113			Not detected	0.2	Not detected	3.57
Hexachloro-1,3-Butadiene			Not detected	02	Not detected	3.57
Methylene Chloride	!		Not detected	02	Not detected	3.57
Tetrachtoroethy lene			22	υż	15	3 57
trans-1.2-Dichloroethylene			Not detected	0.2	NoI detected	3.57
trans-1,3-Dichloropropylene			Not detected	0.2	Not detected	3.57
Trichloroethylone			3.1	0.2	Not detected	3.57
fricitionofluoromethane			1 1	0,7	99	3.57

Client Sample ID York Sample ID Matrix Parameter Vinyl Brontide Vinyl Chluride Volatiles, TO-15 Halogenated List 1,1,1-Trichtoroethane 1,1,2,2-tetrachloroethane	Method EPA TO15	Մոնե	08080716-03 AIR Results Not detected	MDL	08080716-04 AIR	
Matrix Parameter Vinyl Brontide Vinyl Chloride Volatiles, TO-15 Halogenated List 1,1,1-Trichtoroethane 1,1,2,2-tetrachloroethane		Units	AIR Results	MDL	AIR	
Parameter Vinyl Brontide Vinyl Chluride Volatiles, TO-15 Halogenated List 1,1,1-Trichtoroethane 1,1,2,2-tetrachloroethane		Units	Results	MDL		
Vinyl Brontide Vinyl Chluride Volatiles, TO-15 Halogenated List 1,1,1-Trichtoroethane 1,1.2,2-tetrachloroethane					Results	MDL
Vinyl Caluride Volatiles, TO-15 Halogenated List 1,1,1-Trichtoroethane 1,1,2,2-tetrachloroethane	EPA TO15		I SAVE OFFERIOR	0.2	Not detected	3.57
Volatiles, TO-15 Halogenated List 1,1,1-Trichtoroethane 1,1,2,2-tetrachloroethane	EPA TO15		Not detected	0.2	Not detected	3.57
1,1,1-Trichtoroethane 1,1,2,2-tetrachloroethane		ugiquian		·	· ·	
1,1.2,2-tetrachloroethane			6	1.95	Not detected	19.8
			Not detected	2.46	Not detected	25.0
1,1,2-Frichloroethane			Not detected	1.95	NM detected	19.\$
1,1-Dichtoroethane			Not detected	1 4 4	Not detected	14.7
1.1-Dichioroethylene			Not detected	143	Not detected	14.5
1.2.4-Trichlorobenzene			Not detected	2.92	Not detected	29.7
1,2-Dibromoethane			Not detected	2.75	Not detected	27.9
1,2-Dichlorobenzene			Not detected	2.11	Not detected	21.4
1,2-Dichloroethane			Not detected	1 14	Not detected	14.7
1.2-Dichloropropane			Not detected	1.65	Not detected	16.8
1,2-Dichlorotetrafluoroethane			Not detected	i 76	Not detected	17.9
1.3-Dichlorobenzene			Not detected	2.15	Not detected	218
1,4-Dichlorobenzene			79.5	2.13	1280	21.6
Allyl Chloride			Not detected	2.24	Not detected	22.7
Benzyl Chloride			Not detected	2.02	Not detected	20.6
Bromodichloromethane			Not detected	4.80	Not detected	48.8
Bromotorm		• • • •	Not detected	7.39	Not detected	75.1
Bromomethane			Not detected	1.39	Not detected	14.1
Carbon Tetrachleride			Not detected	2.25	Not detected	22.9
Chlorobenzene			Not detected	1.65	Not detected	16.8
Chloroethane			Nut detected	0.950	Not detected	9.65
Chloraform			Nut detected	1.74	Not detected	17.7
Chloromethane		•	Not detected	0 739	Not detected	7.51
cis-1.2-Dichtoroethylene			Not detected	1.43	Not detected	14.5
cis-1,3-Dichleropropylene			Not detected	1.74	Net detected	17.7
Dibromochloromethane			Not detected	6.13	Not detected	62.0
Dickloristiflaoromethane			Nut detected	1.78	Not detected	18.0
Freou-LL?			Not detected	2.75	Not detected	27.9
Hexachlaro-1,3-Butadiene			Not detected	2 50	Not detected	25.4
Methylone Chloride			Not detected	1.25	Not detected	12.7
Tetrachloreethylene			152	2 43	104	24.7
trans-1,2-Dichloroethylene			Not detected	2 81	Not detected	28.8
trans-1,3-Dichlorapropylene	1		Not detected	178	Not detected	18 0
Trichforgethylene			16.9	1 92	Not detected	19.5
Trichlezofleoromethane			62.4	2.01	56.6	20.4
Vinyl Bromide			Not detected	311	Not detected	31 8
Vutyl Chloride		····	Not detected	0.915	Not detected	9 2 9

Units Key: For Waters Usgauls: avg 1 - ppt/l. bg 1 = ppds For Sorts Solids, avg kg + ppt/l. ug/kg + ppb

Report Date: 8/28/2008 Client Project ID: 1200081.01 / Southside Plaza York Project No.: 06080716 A

Notes for York Project No. 08080716 A

- the MDL (Minimum Detectable Unrit) reported is adjusted for any dilution necessary due to the levels of target and/or nontarget analytes and matrix interference. This MDL is the REPORTING LIVET and is based upon the lowest standard utilized for calibration where applicable.
- 2. Samples are retained for a period of fnirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is initial to the dollar value paul to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, the
- 5. All samples were received in groper condition for analysis with proper documentation
- 6. All analyses conducted met method or 1 aboratory SOP requirements.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory.

Q. Bradley Approved By: Managing Dis

Date: 8/28/2008

	IOX	ORK	Гисі		Fiel	ld Chain	0.00		Page Lof	_
	ע באשם ולוויזיבון פנו זייז - אכו-לנלוולקטייי	Vrwirden GT David Fan Station 247-0145	67 34416 0149				1807-00	ACCURATE ADDISTORIAL ACCURATION ADDISTOR	ē	
	Company Name		Report To:	t To:	Invoice To:		Project ID/No		ONONO ILA	
	How Companies, LLC		Jame Allan	ألعب	<u> </u>	2000		- mate	ang printer the	
			Jallan Dopexies.	Sector.			, , ,	M M	Jan- Ohiear	
,	Sample No.	Locei	Location/ID	Date Sampled	mpled	Sample Matrix			Name (Printed)	
-	55-SV-1 5	6 e 4 h S	South side Pleza	+				ANAL TOES REQUESTED	Description(s)	(5)
\searrow	SS-5V-2			. 上	-		TO-15 Chlorinated	lorinate d	Canister	
<u>,</u>	55-55 -1			<u> </u>	 		 			Ī
	55-55-2				 - 		-		 [_	Ī
é	UP- SV-1 U	Niver61	University Plaza	× 14	00					
\geq	0-25-D				 		╺┼╌	 		Ī
\sim	92-1-25-94		0		 		- - 			i
Y	PP-55-2	 -			-				! — _ 	
, ,	PA-54-1									-
_		ſ	 	2					 - 	
		D /¢38			121			大学が行きためであると	建築家族の行きる語を読	
	Battes Rolingwished from Let by	رو بوليو او	()ata/Firre		Surveyo Resinguened by			b)the Received by	$-\frac{1}{2}$	<u> </u>
	Buttles Received in Field by	<u>چ</u>	0.1bTTme	. 	Shinde Reditiquehed by		× - -	}	19/10/20/10/R	×
	Comments/Special Instructions	struction	(%				*[- 	man Received in LAB by Three-Arcurod Three	Descripte	3
									RUSH(rfef.a.e.)	_
								Į.		-]

Attachment C Soil Boring Logs

VISUAL CLASSIFICATION OF SOILS THSIDE PLAZA PROJECT NUMBER: 1200081.001 NY P-2 Sites (1200081-001 PROJECT NAME: Phillips Editor BORING NUMBER: SS-SB-MI DATE: 8-18-08 COORDINATES: ELEVATION: GWL: Depth Date/Time DATE STARTED ENGINEER/GEOLOGIST: RAINGher Depth Date/Time DATE COMPLETED DRILLING METHODS: Alect Phah PAGE CF BLOWS ON SAMPLER PER WELL MEASUNGD CONSISTENCY (75F) USCS SYMBOL AECOVERY () YPE & NO SAMPLE DEPTH DESCRIPTION REMARKS \mathcal{O} Fill, Subbase, Blacktop 0-4 AIG Brown form gran Sund. SI/H/ Brown Stuff Clay 214 -8 Brown Silty Clay Stiff morst 0,00 BOON A SHEPE CLUY 4-4 ft 10 Brown Mist Clay (St. Ff) 0.00 684 8-D Brown Soft Clay Brown to Black gourse Sand and Gravel Seem 0.00 8-15\$ Brown Sulty Clay with graveled 0,00 12-14 Soft Brown Clay Sundy silty Brown Soft Chay Silty Sendy Clay with gramp moist silty Sandy Clay with grave 1 10-227 0.00 12-14 Brown/Red weathind shale Reifusa 1 @ 16,554 0.00 30 14-16 0.00 40 NOTES: Sampled @ 1:00 **Dnilling Contractor** Soil Sampled firm 12-14ft No upsuel or clafactory markers **Oniting Equipment**. Oniller: observed

VISUAL CLASSIFICATION OF SOILS

SITES - SOUTHSIDE PLAZA NY P-2 PROJECT NUMBER: 12000\$1.001 PROJECT NAME: Phillips Dian 8/18/08 BORING NUMBER: 55-53-00 DATE: COORDINATES: ELEVATION: DATE STARTED: GWL: Depth Date/Time ENGINEER/GEOLOGIST: Kamplux Depth Date/Time DATE COMPLETED ORILLING METHODS: Push Prop-PAGE CF WELL BLOWS ON SAMPLER PER CONSISTENCY (TSF) JSCS SYMBOL RECOVERY NEASUNGO IYPE & NO SAMPLE DEPTH DESCRIPTION REMARKS 2 94 Fill, gravel, solt base gravely sand and brown clay Black Clay inver observed Ο PID 2026 1-24 Rown Clas Sandy graquel 0.00 Safe Brow Clay with Fed mothing 2-46+ and organics the Red organizes 0,00 10 8-18 Brown monst Clay 4-6 84 Course Sand and growel seem (gravel Morst Brown Play with Sand (gravel Sud and grower moist Brom medium grave 0.00 6-851 All Brown from to involution sand 0.00 Course Brown sand and BMALL granel -7 water observed 8-10 Ft 76 0.00 Brown stift Clay Moist 10-12 ET Refusal Q 164 0.00 30 Samphiel Q 11:30 Soil Sampled from 1-2 ft The to observed Black NOTES Drilling Contractor Dnilling Equipment _ Onller: ayer

VISUAL CLASSIFICATION OF SOILS

ROJECT NUMBER: 120001.00)	COORDINATES:	P LINNA	13.	DATE.	8/18/08
LEVATION:	GWL: Depth	Date/Time		DATE S	TARTED:
NGINEER/GEOLOGIST: RAMSKY	Depth Date/Time			OATE C	OMPLETED:
RILLING METHODS: Push Pichd				PAGE	CF
- HILLING METHODS: Phole Problem - HILL	Depth DESCRIPTION don Gub base with grevel & sold with grevel & sold with gome so and clay with gome so a Clay with gome so a Clay with gome so a Clay with gome so a Clay with gome so a clay with gome so a	Date/Time Topus Seam Seam Same	with the second	DATE C PAGE HOLLDINULSHUD PAGE HOLLDINULSHUD PAGE HOLLDINULSHUD PAGE VIIIN	CF CF REMARKS CF REMARKS CF REMARKS CF REMARKS CF REMARKS CF REMARKS CF REMARKS CF REMARKS CF REMARKS CF CF REMARKS CF CF CF CF CF CF CF CF CF CF
ng Equipment	Soi	pled O Depth	-12 ¢J		
	ν	visual or	r olifi rmime	actory 1 Dass	marturs on faction

VISUAL CLASSIFICATION OF SOILS

4

ORING NUM	BER CV-	5B-04	COORDINATES:	Phillips Edis			DATE	Jes - Swithside PU 8/18/08
LEVATION:	10	0001	GWL: Depth	Date/Time			DATEST	
and the second se	EOLOGIST: R	141941	Depth	Date/Time			The state of the local division in the local	DMPLETED:
AILLING ME		1 Plobo					PAGE	CF
1	1.05	1000				1 1	-1	
() SAMPLE TYPE & NO.	BLOWS ON SAMPLER PER () RECOVERV ()		DESCRIPTION		USCS SYMBOL	MEASUNED CONSISTENCY (TSF)	CONSTRUCTION	REWARKS
	9-8 8-12 1-10 1-10 1-10 1-10 1-10 1-10 1-10 1	Course Brown C Brown C Brown C Soft gr gravel Brown C gray Soft Course Sa Stay Soft Stown Si Stown Stoff	silty Sand se silty Sand y Silty Clau Hyclay with Clay with f Silty Clau And Clay Shall 1.15.8 ft	H Trace Sundy Trace Biny Ba Agricel Mariel			040.00000000000000000000000000000000000	100 100 100 100 100 100 100 100
ing Contracto	r		5	ample 0	di	20	01	
ing Equipmen	te		50	11 Sampl	sЛ	8-	10 ft 16 ft	Brand an third doserved Morst Hy Markers
			No	Visual,	01	- ofe	fecto	ry markers

2128.2.44

÷.,

Attachment D

Laboratory Analytical Report for Soil and Groundwater Samples

Technical Report

prepared for:

Apex Companies, LLC 155 Tri County Parkway Suite 250 Cincinnatl, OH 42546 Attention: Jane Allen, PhD

Report Date: 8/26/2008 *Re: Client Project ID: 1200081* York Project No.: 08080653

CT Liceve No. PH/9723

New Jervey Excesse No. CT (00)

New York Jacense No. 10854

120 RESEARCH OHIVE

Page 1 of 12

Fax 1203(357/0166

. . ..

Report Date: 8/26/2008 Client Project ID: 1200081 York Project No.: 08080653

Apex Companies, LLC 155 Tri County Parkway, Suite 250 Cincinnati, OH 45246 Attention: Jane Allen, PhD

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on 08/20/08. The project was identified as your project "1200081".

The analyses were conducted utilizing appropriate EPA. Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the NELAC acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All the analyses met the method and laboratory standard operating procedure requirements except as indicated under the Notes section of this report, or as indicated by any data flags, the meaning of which is explained in the attachment to this report, if applicable.

The results of the analyses, which are all reported on an as-received basis unless otherwise noted, are summarized in the following (able(6).

Client Sample ID			SS-SB-03	
York Sample ID			08080653-01	
Matrix			\$00 .	
Parameter	Method	Units	Results	MDL
Semi-Volatiles, STARS List	SW846-8270	ug/kG		
Acenaplathene			Not detected	165
Acenaphthylene			Not detected	165
Anthracene	. I		Not detected	165
Benzojajanthracene			Not detected	165
Benzo[a]pyrene			Not detected	165
Benzo h fluor antheae			Not detected	165
Benzolg.h.i(perylene			Not detected	165
Benzo[k]flueranthene			Not detected	165
Chrysene			Not detected	165
Dibenz[a,b]antitracene			Not detocted	165
Flooranthene			Not detected	165
Fluorene			Not detected	165
Indexo[1.2,3-ed]pyrene			Not detected	165
Naphthalene			Not detected	165
Phonanibrene			Not detected	165
Pyrene	-		Not detected	165

Analysis Results

Client Sample ID		1	S5-SB-03	
York Sample ID		!	08080653-01	<u> </u>
Matrix	<u>├</u>		SOIL	
Purameter	Method	Units	Results	MDL
Vulatiles, Target Cmpd. List (TCL)	SW846-8260	ug/kG		
1,1,1-Trichtoroethane			Not detected	10
1.1.2.2-Tetrachloroethane			Not detected	10
1.1.2-Trichlorochane	·		Not detected	10
1,1,2-Trichlorotriflunrocthane	<u> </u>		Not detected	10
(Freen 113)]			
1.1-Dichloroethane	·	<u>† </u>	Not detected	10
1.1-Dichloroethene			Not detected	10
1.2,4-Trichtorobenzese	į	•	Not detected	10
1,2-Dibrano-3-Chloropropane	_		Not detected	10
1,2-Dibronuethane (ethylene dibromide)			Not detected	10
1.2 Dichlorobenzene			Not detected	10
1.2-Dichlorcethane		· · ·	Not detected	10
1.2-Dichloroethylene (eis-)			Not detected	10
1.2-Dichloroeshylene(trans-)		<u> </u>	Not detected	10
1,2-Dichloropropane	· ·	- .	Not detected	10
1,3-Dichloruhenzene			Not detected	10
1.4 Dicblombenzene			Not detected	10
2-Butanone			Not detected	10
2-Hexanone			Not detected	10
4-Methyl-2-pentanone	· · · · ·		Not detected	10
Acetone	· · · · ·		Not detected	10
Benzene			Not detected	10
Bronadichloromethane			Not detected	10
ຢ່າກກອງໂຄດລ		···-	Not detected	10
Hronwapethane			Not detected	10
Carbon disulfide			Not detected	10
Carbon testachloride			Not detected	10
Chlorobenzene			Not detected	10
Chlotoethane			Nut detected	10
Chlopoform		:	Not detected	ia - :
Chloromethane			Not detected	10
cis-1.3-Dichloropropene			Not detected	10
Dibromochloromethane			Not detected	10
Dichlorodifluoromethane			Not detected	10
Ethylbenzene			Nut detected	10
Isopropylbenzene (Consene)			Not detected	11
Methyl tert-butyl Ether (MTBE)			Not detected	10
Methylene chloride			Not detected	10
Styreoe			Not detected	10
1 ettachtoroethene	• • • • •	· · ··	Not detected	10
Totoene			Not detected	10
trans-1,3-Dichtoropropene			Not detected	<u> </u>
Trichloroethene			Not detected	10
Trichlomfluoromethane			Not detected	10
Vanyi chlonde		· · · · ·	Not detected	10
Xylenes (total)		-	Not detected	tii
Lead	SW846-6010	mg/kG	8.35	0.500

Client Sample ID			SS-SB-03	
York Sample ID			06080653-02	
Matrix			WATER	
Parameter	Method	Units	Results	MDL
Semi-Volatiles, STARS List	SW846-8270	ug/L		
Acenaphthene			Not detected	7,1
Acenaphthylene	<u> </u>		Non detected	7.1
Aathracene			Not detected	7.1
Henza (a) authracene			Not detected	7.1
Benzu[a]pyrcne			Not detected	7.1
Benyo(b)flourapthene			Not detected	7.1
Benzo[g.h.a]perylene			Not detected	7,1
Benzo[k]fluoranthene	- ·		Not detected	7.1
Chrysene			Non detected	7.1
Dibenz[a,b]anthracene			Not detected	7.1
Pluoranthene			Not detected	7.1
Pluorene			Not detected	7.1
Indeno[1,2,3-cd]pyrene			Not detected	7.1
Naphthalene			Not detected	7.1
Phonanthrene			Not detected	71
Pyscae	·		Not detected	71
Volatiles, Target Cmpd. List (TCL)	SW846-8260	ug/1.		
I.I.I. Truchloroethane			Not detected	50
1.1.2.2-Tetrachloroethane			Not detected	5.0
1.1.2-Trichloroethane			Not detected	5.0
1,1,2-Trichlorotrifluoreethene			Not detected	5.0
(Freen 113)				
1,1-Dichloroethane			Not detected	5.0
1,1-Dichlorethete		<u>-</u>	Not detected	5.0
1.2.4-Trichlernbenzene			Not detected	5,0
1,2-Dibromo-3-Chlorupropane			Not detected	5.0
1,2 Dibroanoethane (ethylene dibroande)			Not detected	5.0
1,2-Dichlorobenzene			Nos detected	5.0
1,2-Dichloroethane			Not detected	5.0
1,2-Dichlorocitylene (cis-)			Not detected	5.0
1,2-Dichlorogiltylene(trans-)			Not detected	5.0
1.2-Dichloropropane		<u> </u>	Not detected	5.0
1,3-Dichlorobenzere			Not detected	50
1,4-Dichlorobenzene	1		Not detected	5.0
2.Butanone	 		Not detected	5.0
2-Heraisone			Not detected	5.0
4-Methyl-2-pentanunc	· · · ·		Not detected	5.0
Acetone		<u> </u>	Not detected	5.0
Benzene			Nut detected	5.0
Browndichlocomethane	 · · · · · · · · · · · · · · · · · · ·		Not detected	5.0
Broguform		1	Not detected	5.0
Bromomethane		┼━──	Not detected	5.0
Carbon disulfide			Not detected	5.0
Carbon tetrachlonde	· · · ·		Not detected	5.0
Chlorobenzone	<u> ·</u> ··		Not detected	5.0
Chloroethane	i	<u> </u>	Not detected	5.0
Chloroform	1		Not detected	50
Cijnromethane	•{		Not detected	5.0
eis-1,3-Dechloropropeou	<u> </u>	1	Not detected	5.0
CIS-1, 2-EXCILITE VIOLECIE		,		

Client Sample ID			SS-SB-03	
York Sample ID			08080653-02	
Matrix		1	WATER	
Parameter	Method	Units	Results	MDŁ
Dibromschloromeihane			Not detected	5.0
Dichlorodifluoromethane			Not detected	5.0
Ethylbenzene			Not detected	5.0
Isopropylbenzene (Currene)			Not detected	5.0
Methyl tert-butyl Ether (MTBE)			Not detected	5.0
Methylene chloride			Not detected	50
Styrene			Not detected	5.0
Tetrachioroethene			Not detected	5.0
Tohiere			Not delected	5.0
trans-1,3-Dathloropropene			Not detected	5.0
Trichloroethene			Not detected	5.0
Trichlorofluoromethane			Not detected	5.0
Vinyl chloride			Not detected	5.0
Xylenes (total)			Not detected	5.0
Load, Dissolved	SW846-6010	mg/L	Not detected	0.005
Lead	SW846-6010	mg/l.	0.499	0.005

Client Sample ID			SS-SB-02	
York Sample ID			08080653-03	
Matrix			SOIL,	
Parameter	Method	Units	Results	MIN,
Semi-Volutiles, STARS List	SW846-8270	og/kG		
Accnaphthene			Not detected	165
Accepabilitylene			Not detected	165
Anthracene			Not detected	165
Benzo[a]anihracene			Not detected	165
Benzola)pyrene			Not detected	165
Benzo[b]fluoranthene			Not detected	165
Benzo[g.h,i]perytene			Not detected	165
Benzu(k)fluorantiliene			Not detected	165
Chrysine			Not detected	165
Dibenz[a,h]anthracene			Not detected	165
Fluoranthene			Not detected	165
Fluorenc			Not detected	165
Indeno[1,2,3-ed]pyreoc			Not detected	165
Naphthalenc			Not detected	165
Phonanthreny			Not detected	165
Pyrene			Not detected	165
Volatiles, Target Cmpd. List (TCL)	SW846-8260	ug/kC		
1,1,1-Trichlorochane		_	Not detected	10
1,1,2,2 Tetrachloroethane			Not detected	10
1.1.2-Trichloroethane			Not detected	10
1.1,2-Trichlorotrifluoroethane			Not detected	10
(Freen 113)				
1.1-Dichloroethane			Not detected	10
1,1-Dichloroethene			Not detected	10
1,2,4 Trieldurobenzene			Not detected	10
1.2-Dibromo-3-Chloropropane			Not detected	10
1,2-Dibromoethane (ethylene dibromide)			Not detected	10
1.2-Dichlorobenzene			Not detected	10

Client Sample ID			SS-SB-02	
York Sample ID			08080653-03	
Matrix			SOIL	
Parameter	Method	Units	Results	MDL
1,2-Dichloroethane		·	Not detected	10
1,2-Dichloroethylene (cis-)			Not detected	10-
1,2-Dachlomethylenc(trans-)			Not detected	111
1.2-Dichloropropone			Not detected	10
1,3-Dichlorobenzene			Not detected	10
1,4-Dichlorobenzene			Not detected	10
2-Butanone	-		Not detected	10
2-Неканоте		-	Not detected	10
4-Methyl-2-pentanone			Not detected	10
Acctone			Not detected	10
Велисте			Not detected	10
Bromodichloromethane			Not detorted	10
Bromoform			Not detected	10
Bromomethane			Not detected	10
Carbon disolfide			Not detected	10
Carbon tetrachloride			Not detected	10
Chlorobenzene		1	Not detected	10
Chloroethane			Not detected	10
Chloroform			Not detected	10
Chloromethane			Not detected	10
cis/1,3-Dichlocopropene			Not detected	10
Dibromochlucomethane			Not detected	10
Dichlorodifluoromethane	· [Not detected	10
Ethylbenzene			Not detected	10
Isopropylbenzene (Cumene)			Not detected	10
Methyl ten-bulyl Ether (MTBE)			Not detected	10
Methylene chloride			Not detected	10
Stytene			Not detected	10
Tetrachloruetheite			Not detected	10
Toluenc			Not detected	10
trans-1.3-Dichloropropene			Not detected	10
Trichloroeshene			Not detected	10
Trichlorofluoromethane			Not detected	10
Vinyl chloride			Not detected	10
Xylenes (total)			Not detected	10
Lead	SW846-6010	mg/&G	125	0.500

Client Sample 1D			88-8R-02	
York Sumple ID			08080653-04	
Matrix			WATER	
Parameter	Method	Units	Results	MDL
Semi-Volatiks, STARS List	5W846-8270	ug/L		
Accnaphthene			Not detected	5.9
Accaphthylene			Not detected	5.9
Anthracene			Not detected	5.9
Benzojajantiracene			Not detected	5.9
Benzola pyrene	1		Not detected	5.9
Benzo[b]fluoranthene		·	Not detected	5.9
Benzolg,b,i perylene			Not detected	5.9

Client Sample ID	r=		SS-SB-02	
York Sample ID	<u> </u>	-	08080653-04	
Matrix			WATER	
Purameter	Method	Units	Results	MDL
Benzojk)fluoranthene			Not detected	5.9
Chrysene			Not detected	5.9
Diben/[a,h]anthracene	<u> </u>	-	Not detected	5.9
Fluoranthene			Not detected	5.9
Fluorenc			Not detected	5.9
Indeno[1,2.3-ed]pyrene			Not detected	5.9
Naphthalenc			Not detected	5.9
Phenorethrene			Not detected	5,9
Ругос	· · · · · ·	ł	Not detected	5.9
Volatiles, Target Cmpd. List (TCL)	SW846-8260	ug/I.		
1.1,1-Trichloroethane			Not detected	5.0
1, J.2, 2 Tetrachioroethane	-		Not detected	5.0
1.1,2-Trichloroethane		-	Not detected	5.0
1.1.2-Trachlorotrifluoroethaue			Not detected	5.0
(Freon 113)				
I.I-Dichlorgethane			Not detected	5.0
I.I-Dichloroethene			Not detected	5.0
1,2,4-Trichlorobenzene		· · · -	Not detected	5.0
1,2 Dibruno-3-Chloropropane			Not detected	5.0
1.2-Dibromoethane (ethylene dibromide)			Not detected	5.0
1.2-Dichtorobenzene			Not detected	5.0
1.2-Dichloroothane			Not detected	5.0
1,2-Dichloroethylene (cis-)			Not detected	50
1,2-Dichloroethylene(trans-)			Not detected	5.0
1,2-Dichloropropane	· ·	ľ	Not detected	5.0
1,3-Dichlorobenzene			Not detected	5.0
1,4 Dichlorobenzene			Not detected	5.0
2- (totanung		i	Not detected	5.0
2-Hexanone		1	Not detected	5.0
4-Methyl-2-penianone			Not detected	5.0
Acetone			Not detected	5.0
Веллене			Not detected	5.0
Bromodichlorumethate	• •	<u> </u>	Not detected	5.0
Bromotorn			Not detected	5.0
Bromemethane			Not detected	5.0
Carbon disulfide			Not detected	5.0
Carbon tetrachloride			Not detected	5.0
Clumobenzene			Not detected	5.0
Chlomethane		 -	Not detected	5.0
Chloraform		—	Not detected	5.0
Chloromethune			Not detected	5.0
cis-1,3-Dichloropropene			Not detected	5.0
Dibromochloromethane	-		Not detected	5.0
Dichloroditluoromethane			Not detected	541
Bihylbenzony	<u> </u>	t —	Not detected	5.0
Esopropylbenzene (Camene)	†		Not detected	5.0
Methyl tert butyl Ether (MTHE)			Not detected	5.0
Methylene chluride	t —	t-	Not detected	5.0
Styrene		·	Not detected	5.0
Tetrachtoroethene	1	-	Not detected	5.0
Toluenc	+		Not detected	5.0
TOTUCIAC				

Client Sample ID		Ľ	SS-SR-02	
York Sample ID			08080653-04	
Matrix			WATER	
Parameter	Method	Units	Results	MDL
trans-1,3-Dichtoropropene			Not detected	5.0
Trichtoroethene	1		Not detected	5.0
Trichlornfluoromethane			Not detected	5.0
Vinyl chloride			Not detected	5.0
Xylenes (total)			Not detected	50
Lead, Dissolved	SW846-6010	mg/L	Not detected	0.005
Lead	SW846-6010	mg/L	0.093	0.005

Client Sample ID			SS-SB-01	
York Sample ID		· · · ·	08080653-05	
Matcia	1		SOIL	
Perameter	Method	Units	Results	MDL
Semi-Yolatiles, STARS List	SW846-8270	uy/kG		
Avenaphthene	• • • • • • • • • • • • • • • • • • • •		Not detected	165
Acceaphthylenc			Not detected	165
Anthracene			Not detected	165
Benzo(a)anthracene	1		Not detected	165
Benzojajpyrene	1		Not detected	165
Benzo[b]fluoranthene	1		Not detected	161
Benzu(g,h,i)perylette			Not detected	165
Bepzojk fluorantbenc			Not detected	65
Chrysene			Not detected	165
Diberz[a,b]onthrocere			Not detected	165
Fluoranthene			Not detected	165
Fluorenc			Not detected	165
Indexo[1,2,3-od]pyrene			Not detected	165
Napinhalene			Not detected	165
Phononthrene			Not detected	165
Pyrene			Not detected	165
Volatiles, Target Cmpd. List (TCL)	SW846 8260	dg/\$G		
1,1,1-Trichloroethane		[Not detected	10
1,1,2,2 Tetrachloroethane			Nos detected	10
1,1,2-Trichlorgethaue			Not detected	10
1.1.2-Trichlorotrifluoroethane			Not detected	10
(Freen 113)		<u> </u>		
1,1-Dichloroethane			Not detected	10
[,]-Dichloruetheise			Not detected	10
1,2.4-Trichlorobenzene			Not detected	10
1,2-Dibronxo-3-Chloropropane			Not detected	10
1,2-Dibromoethatic (ethylene dibromide)		<u> </u>	Not detected	10
1.2-Dichlorobenzenc			Not detected	10
1.2-Dichloroethare		1	Not detected	10
1,2-Dichloroethylene (cis-)			Not detected	10
1,2-Dichloroethylene(trans-)			Not deterted	10
1.2 Dichloropropane			Not detected	10
1.3-Dichlorobenzene			Not detected	10
1.4-Dichlorobenzene			Not detected	10
2-Bulanoise		1	Not detected	10
2-Bexanone			Not detected	10

Client Sample ID			SS-SB-01	
York Sample ID		1	08080653-05	
Mateta]	SOIL	
Parameter	Method	Units	Results	MDI.
4 Methyl 2 pentanne	-		Not detected	10
Acelone			Not detected	111
Benzene			Not detected	10
Bromodichloromethane			Not detected	10
Bromoform		F	Not detected	10
Bronunethane			Not detected	10
Carbon disulfide	1		Not detected	01
Carbon tetrachfonde			Not detected	10
Chlorobenzene			Not detected	10
Chloroethane			Not detected	ເບ
Chloraform			Not detected	10
Chloromethane			Not detected	10
cix-1, 1-Dickluropropene			Not detected	10
Dibromochloromethane			Not detected	10
Dichloredifluoromethane			Not detected	10
Eshylhenzene			Not detected	10
Isopropylbenzene (Cumene)			Not detected	10
Methyl tert butyl Ether (MTBE)			Not detected	10
Methylene chluride			Not detected	10
Styrene			Not detected	111
Tetrachloroethene			Not detected	10
Toluene			Not detected	10
trans-1,3-Dichloropropene			Not detected	10
Trichloraethene			Not detected	10
Trichtorofluoromethane			Not detected	10
Vinyl chloride			Not detected	10
Xylenes (total)			Not detected	10
Letad	SW846-M101	mgAG	61.6	0.500

Client Sample ID			SS-SB-01	
Yor <u>k Sampl</u> e ID			08080653-06	·
Matrix			WATER	
Parameter	Method	Units	Results	MDL
Semi-Volatiles, STARS List	SW846-8270	ug/l.		
Acenaphthene	_]	[]	Not detected	7.1
Accuaphthylene			Not detected	7.]
Anthracene			Not detected	7.1
Benzo[a]anthracene			Not detected	7.1
Benzo]a]pyrene			Not detected	7.1
Benzo[h][]uuranthepe]		Not detected	7.1
Benzoighalperylene			Not detected	71
Benzo[k]fluoranthene			Not detected	7.1
Chrysene			Not detected	7.1
Dihenzja.bjanthracene			Not detected	7.1
Huoranthene			Not detected	7.1
Fluorence			Not detected	7.1
listeno[1,2,3-cd]pyrcne			Not detected	7.1
Naphthalene			Not detected	7.1
Phenanthrene			Not detected	7.1

Client Sample ID			SS-SB-01	
York Sample ID			08080653-06	
Matrix			WATER	
Parameter	Method	Units	Results	MDL
Pyrene			Not detected	7.]
Volatiles, Target Cmpd. List (TCL)	SW846-8760	.υ <u>ε</u> /Ι,		
1,1,1-Trichloroethane			Not detected	5.0
1,1,2,2/Tetrachloroeitane			Not detected	5.0
1.1.2-Trachlomethane			Not detected	5.0
1.1.2-Trichlorotrifluoroethane	Ī		Not detected	3.0
(Freen 113)				
1,1 Dickloroethane			Not detected	5.0
1,1-Dickloroethene			Not detected	5.0
1.2.4-Trichlorobenzzne			Not detected	5.0
1.2-Dibromo-3-Chlompropane			Not detected	5.0
1,2-Dibromoethane (ethylene dibromude)			Not detected	5.0
1,2-Dichlorobenzene			Not detected	5.0
1,2-Dichloroethane			Not detected	5.0
1.2-Dichlorucitylene (cis-)			Not detected	5.0
1.2-Dichlorog(hylenc(hans-)			Not detected	5.0
1.2-Dichloropropane			Not detected	5.0
1.3-Dichlorobenzene			Not detected	5.0
1.4-Dichlorobenvene			Not detected	5.0
2-Butanone			Not detected	5.0
2 Нехание			Not detected	5.0
4-Methyl-2 pentanone			Not detected	5.0
Acetone			Not detected	5.0
Benzene			Not detected	5.0
Bronxodichloromethane			Not detected	\$.0
Bromoform			Not detected	5.0
Brumoniethane			Not detected	5.0
Çarbun disulfide			Not detected	5,0
Carbon tetrachloride			Not detected	5,0
Chlorobenzene			Not detected	5.0
Chloroethape			Not detected	5.0
Chloroform	1		Not detected	5.0
Chloromethane			Not detected	5.0
cis-1,3-Dichloropropene			Not detected	3.0
Dibromochloroparthane			Not detected	5.0
Dichloredifluoromethane			Not detected	50
Eahylbenzene			Not detected	5.0
Isopropythenzene (Curnero)			Not detected	5.0
Methyl tert buryl Ether (MTBE)			Not detected	5.0
Mothylene chloride		ļ	Not detected	5.0
Styrene		<u> </u>	Not detected	<u>5.0</u>
Tetrachloroothone			62	5,11
Toluene			Not detected	5.0
trans-1.3 Dichloropopene	<u> </u>		Not detected	5.0
Trichintoethene	!	1 _	Not detected	<u>\$.0</u>
Trichlorofluoromethone			Not detected	5.0
Vinyl chlonde			Not detected	5.0
Xylenes (total)	· · · ·	L	Not detected	5.0
Lead, Dissolved	SW846-6010		Not detected	0.005
Lead	SW646-6010	ாழ/ப	4.15	0.005

Client Sample 10			55-58-04	
York Sample ID	· ·		08080653-07	
Matria			SOIL	
Parameter	Method	Units	Realts	MDL
Semi-Volatiles, STARS List	SW846-8270	ug/kG		
Acenaphthene			Not detected	165
Accnaphthylene	· · · -	•	Not detected	165
Anthracene	+	<u> </u>	Not detected	165
Benzojajanthracene	†		Not detected	165
Benzolalpyzeny			Not detected	165
Benzo[b]Deoranthane			Not detected	165
Benzo[g.h.i]perylene		· ·	Not detected	165
Benzo(k)Buoranthene			Not detected	165
Chrysene			Not detected	165
Dibenz[a,b]anthracene		· ··•	Not detected	165
Fluoranthene	i 	1	Not detected	165
Fluorence		1	Not detected	165
Indeno[1,2,3-cd]pyrene			Not desceled	165
Naphthalene		· · ·	Nut detected	165
Phenanshrene		·	Not detected	165
Pyrene	· · ··· ·		Not detected	165
Volutiles, Target Cmpd. List (TCL)	SW846-8260	ng/KG		
1.1.1 Trickloroethane			Not detected	10
1,1,2,2 Tetrachloroethare	+		Not detected	10
1.1.2.Trichloroethane			Not detected	10
1.1.2.Trichlorotriftooroethane			Not detected	10
(Freen 113)			The Bercelea	157
E, I-Dichluroethane		-	Not detected	10
L.I. Dichlorgethene			Not detected	10
1,2,4 Enchlopphenzene			Not detected	10
1.2-Dibromo-3-Chioropropane	1		Not detected	10
1.2-Dibromoethane (ethylene dibromide)			Not detected	30
1,2-Dichlorobenzene	1		Not detected	10
1.2 Dichtoroethane	1		Not detected	111
1,2 Daciduroethylene (cis.)			Not detected	10
1.2 Dichloroethylenettrans-)	1 1		Not detected	10
1,2-Dichloropropane	1		Not detected	10
1,3-Dichlorobenzene	1		Not detected	10
1,4-Dichlornhenzene			Not detected	[1]
2 Butanone			Not detected	141
2-Hexanone	1		Not detected	10
4-Methyl-2-penianone			Not detected	10
Acetone			Not detected	10
Benzene	1		Not detected	10
Bronodichlomoethane	├		Not detected	111
Bronolumo	; ··· · · ·		Not detected	10
Bromomethane	<u>† </u>		Not detected	10
Carbon disulfide			Not detected	10
Carbon tetrach/orde	<u>}</u> ───		Not detected	10
Chlorohenzere	<u>├</u> ─ <u>-</u>		Not detected	10
	<u> </u>	<u> </u>	Not detected	10
Chloraethane			THOU DETECTED	1.0
Chloroethane Chloroform			Nor determed	10
Chloroethane Chloroform Chloromethate			Not detected Not detected	10

Client Sample ID			SS-SB-04	
York Sample ID	1		08080653-07	
Mateix			SOIL	
Parameter	Method	Units	Results	MDL
Dibromochloromethane			Nut detected	10
Dichlorodifluoromethane			Not detected	н 0
Ethylbenzene			Not detected	HÏ
Isopropyflsenzese (Cursene)			Not detected	60
Methyl tert-butyl Ether (MTBE)			Not detected	10
Methylene obloride			Not detected	F0
Siyrene			Not detected	60
Tetrachloroethene			Not detected	[[(i)
Tolucne			Not detected	MI
trans-1.3-Dicisioropropane			Not detected	10
Tricbloroetbene			Not detected	10
Trichlorofluoromethane			Not detected	FO
Vinyl chloride			Not detected	10
Xylenes ((mal)			Not detected	10
Load	SW846-6010	mg/kG	36.4	0.500

Cnits Key:

For Waters/Liquids: ing/L = ppin : ug/L = ppb

For Soils/Solals: mg/kg = ppm ; ug/kg = ppb

Notes for Yark Project No. 08080653

- The MDI. (Munimum Detectable Limit) reported is adjusted for any dilution necessary due to the levels of target and/or nontarget analyses and matrix interference. This MDL is the <u>REPORTING LIMIT</u> and is based upon the lowest standard unlized for calibration where applicable.
- 2. Samples are retained for a period of flority days after submittal of report, unless other arrangements are made.
- 3. York's hability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation-
- All analyses conducted met method or Laboratory SOP requirements.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory.

Approved By: Fruth Gutter Managing Dirés

Date: 8/26/2008

DRK	Field C	Field Chain-of-Custody Record	Record
140 MERENAL ONVER ANALTONE, ET DAN 15 1. 169-40 Ben unt - ten 1200 ben binge			
Company Name Report To:	<u>Invoice To</u>	Project ID/No	
Aprix Companies Lane Allan	Lade Allan	12000 81	Somples Collected By (Sonalure)
			1 - In fame Ner
Sample No. Location/ID Date Sampled	V'ater	Sample Matrix Soil Art OTHER ANALYSES REQUESTED	• —
55-5B-03 Sm Hishe Plaz 2/19/08	× 	Vecs	1 Sovel 67 1095
55-52-03 Scutto 9 de Plaza B/19/08	<u>×</u> ×		
55-58-03 Sutt 51 de March - 8/14/68	- 		
55-58-03 Juth 91 de Place 8/18/08	1 X	5406 -	1/acre Ambre
58-513 22 July 5. de Pleze 8/18/08	1 1 1 20	Indestrut Led	1 Discher 1
·	1. X	· ·	Reb File of 1 Prairie
3558-02 Surth Sdr. 70 Za 8/18/08	X	1/0/2	11 12421
SS-SB-ad South Side Maran B/18/00	× _ }		1 hue, Caless
21, Sonth Side Haza 8/18/0	- X	1/0/2	
32-53-02 South 51th Place \$1/10/08			
Chain-of-Custody Record	í C		
\sim	Sample Reinquished by	\$19/08 7 30 Outer Vecence 14	
Dottes Recoverd in File d by Date: Time Sa	Sample Reinquened by		•
Comments/Special Instructions	1	SINC STARCPA 2770 U.2 - TUM-Around Time	PH IS HIMA A MARINE

YORK	Field	d Chain-c	Field Chain-of-Custody Record	d Page 2 of 2
120 Reminister Omit – Sférikersen, 27 Drætig 			ð	ORNINS3
Company Name Report To.	rt To. Invoice To:		Project ID/No. 7 7	
Apex Campanies Jane #11an	- 1	120		ambes Colected By ISignature)
, ,		 .		A WIS LEF
Sample No. Location/ID	Date Sampled - S	Sample Matrix [r Soi Air DTHER]	ANALYSES REQUESTED	Container Descrimton/s)
SSB-02 Suth Side Place, 3/19/08	× 3/14/08 X	L2 	Until 350 406 Land	
S-5B-02 Smith Side Pazer	X 80/8/12		Dosdived Land Cale Atter	
255 01 Sut 5de Pres 8/18/08	8/18/05	×	11000	Soull Ober
55-5B-01 South Side Plaza	8/18/08		SUDCS Lead	/ here alos
55-58-01 South Side Plaza 3/18/08	5/18/08 X		1	Brall Coloss
55-58-01 Duth Side Paza 8/18/08	\$18/08 X		SUOCS	1 lar Ge Maper
25-58-01 Supped Place \$1/9/08	× 2/8/00 ×	-	Undesslord Lead	1 Plastic
55-58-01 South Side Plaza 2/15/03	2/15/03 X		Dissolved Lead Lat River	<u>]</u> `
SS SB of Suttor Share a/13/08	2/12/08	 	thice	Isael Alece
55-5B CH South Side Place 1 8/18/08	8/18/08		Since Les	Proceeding
Chain-of-Custody Record	((
י ייס: - י	the Haimule Reinquished hy	\$ 19 08 7:50	- Samba Ranamut ha	
:	G/H/ 320 Sample Reinquisted by		Same Racing in USE	8/26/08 930
Comments/Special Instructions			12.6	2 2 2 2
Land - 272 400 / 1441 106 - TCL 274 8340		DVICC - STAR 674 6370	Standard	RUSH(define)