

October 12, 2016

David Locey, Project Manager
New York State Department of Environmental Conservation
Division of Remediation, Region 9
270 Michigan Avenue
Buffalo, New York 14203

Re: Routine Progress Report - March 2016 to September 2016;

Standard Portable Site, 13 West Lake Road, Mayville, New York

BCA #C907030

Dear Mr. Locey:

This sixty second Routine Progress Report (RPR) has been prepared in accordance with Section XI of the Brownfield Cleanup Agreement (BCA) between the New York State Department of Environmental Conservation (NYSDEC) and Jo Lyn Enterprises, Ltd (Jo Lyn; d/b/a Standard Portable) for the Standard Portable Site at 13 West Lake Road in Mayville, New York (subject site) as shown on the Locus Plan included in Attachment A. This RPR describes the most recent activities at the above-referenced site. The following information and referenced attachments summarize the activities completed from March to September 2016.

<u>Activities Performed During March through September 2016</u>

- Injection and extraction activities are still ceased since the end of October 2014 and are anticipated to remain shut down. The system was shut down at the request of NYSDEC following a test injection that included wells on the subject site wells, as well as at off-site locations. NYSDEC experimental activities have expired, however the system is still non-operational. Therefore, no site visits were performed from March to September 2016.
- O HEI completed quarterly groundwater sampling on June 15 and 16, 2016. Sample locations are included on Figure 2 in Attachment A. Prior to sampling initial water level measurements were recorded at each of the seventeen wells. Groundwater measurements and estimated elevations are included on Table 1 in Attachment B. Additionally, groundwater contour map is included as Figure 3.
- Seventeen (17) monitoring well locations were sampled as part of the routine sampling program. Summary of samples selected for analysis is included on Table 2 in Attachment B. The seventeen samples were analyzed for VOCs via USEPA Method 8260 TCL plus 10 TICs. Analytical testing results are included on Table 3. Additionally, Trichloroethane (TCE) isopleth map is included as Figure 4.

Anticipated Activities for the remainder of 2016

Injection and extraction activities remain ceased due to off-site remedial efforts which utilized on-site monitoring wells. The system is anticipated to be remain shut down at this point.

- HEI will evaluate system upgrade requirements and submit a draft remedial system upgrade plan in 2017.
- Remedial system changes/upgrades are expected to be completed in 2017
- Remedial system is anticipated to be operational in 2017. At that time, a routine maintenance schedule will be identified.
- Groundwater samples are expected to be collected and analyzed in fourth quarter (October to December 2016).

Reports and Deliverables

The following reports and deliverables will be submitted as indicated:

- Routine e-mail updates will be sent to the NYSDEC as necessary.
- Routine Progress Reports will be submitted monthly to NYSDEC after the system upgrades and maintenance checks are completed.

Schedule

The long term schedule related to this site will be guided by the OM&M Plan.

Citizen Participation

The Citizen Participation Plan (CPP) was submitted in draft to NYSDEC in December, 2006. The CPP was approved by NYSDEC on December 8, 2006. The CPP addresses establishment of document repositories at the NYSDEC's Buffalo office and the Mayville Public Library. Copies of all relevant project documents were submitted to the repositories and are recorded in a CPP Document Repository Index, which is included as Attachment 3. Both future reports that are submitted to NYSDEC and Fact Sheets produced by NYSDEC will be provided to the repositories to provide interested persons with updated information regarding site activities.

The information presented above summarizes remedial efforts for the Standard Portable site since the last Routine Progress Report. If you have comments or questions regarding the contents of this Routine Progress Report, please contact me directly.

Very truly yours,

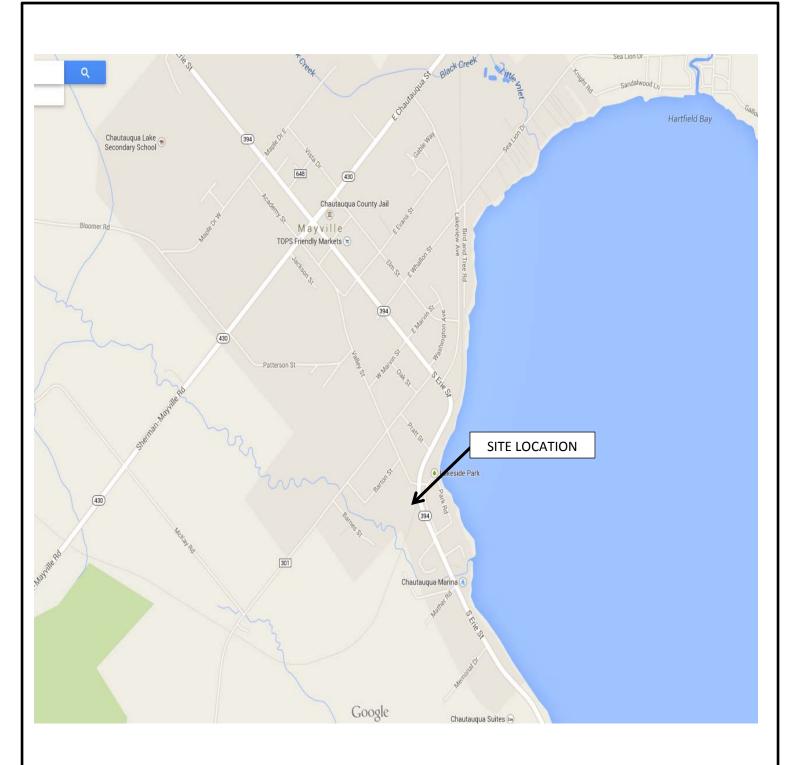
HAZARD EVALUATIONS, INC.

Michele M. Wittman, P.G. Director of Site Services

Attachments

cc: C. Stansizewski (NYSDEC Region 9)

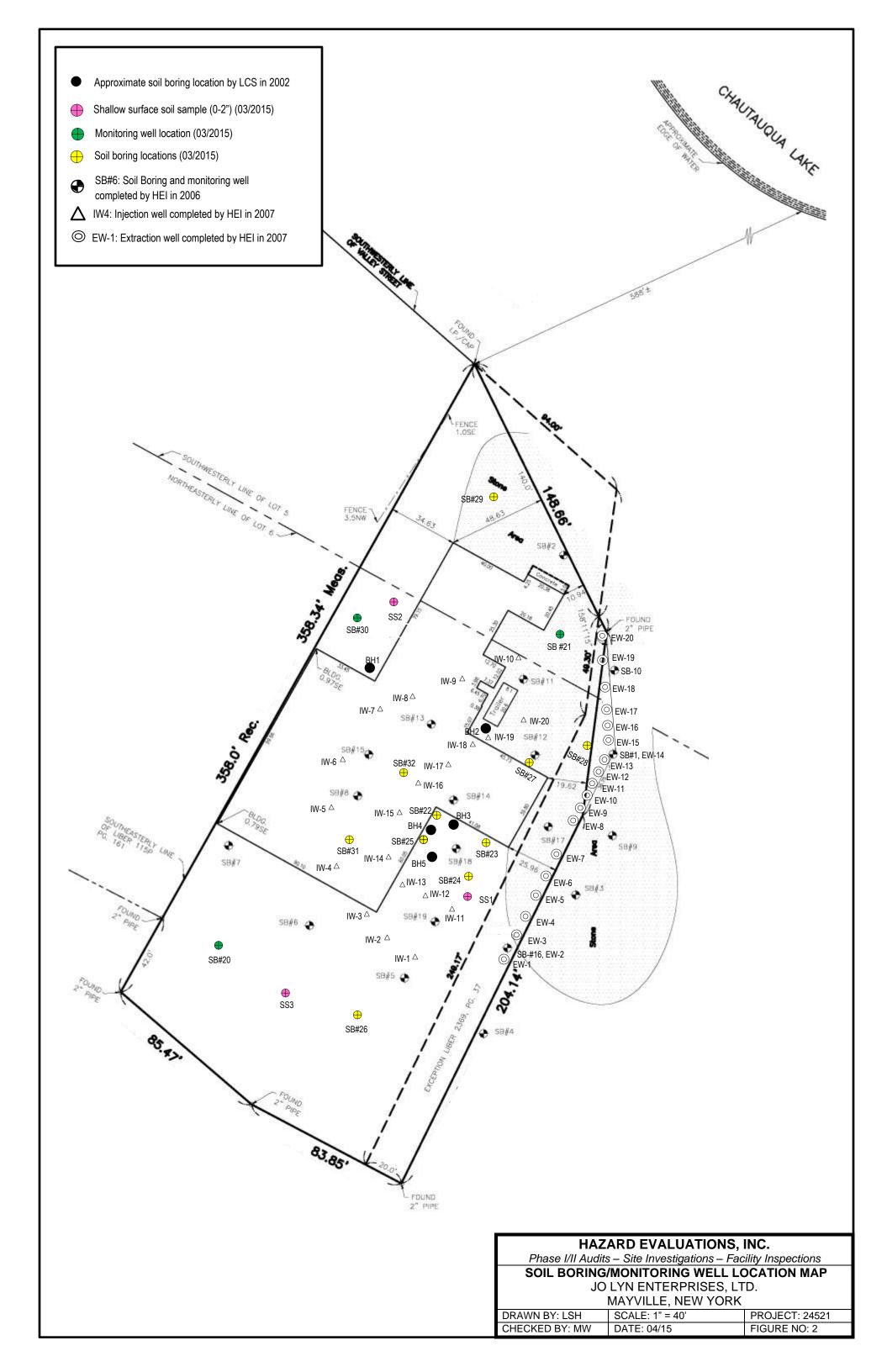
M. Jaworski (Phillips Lytle)

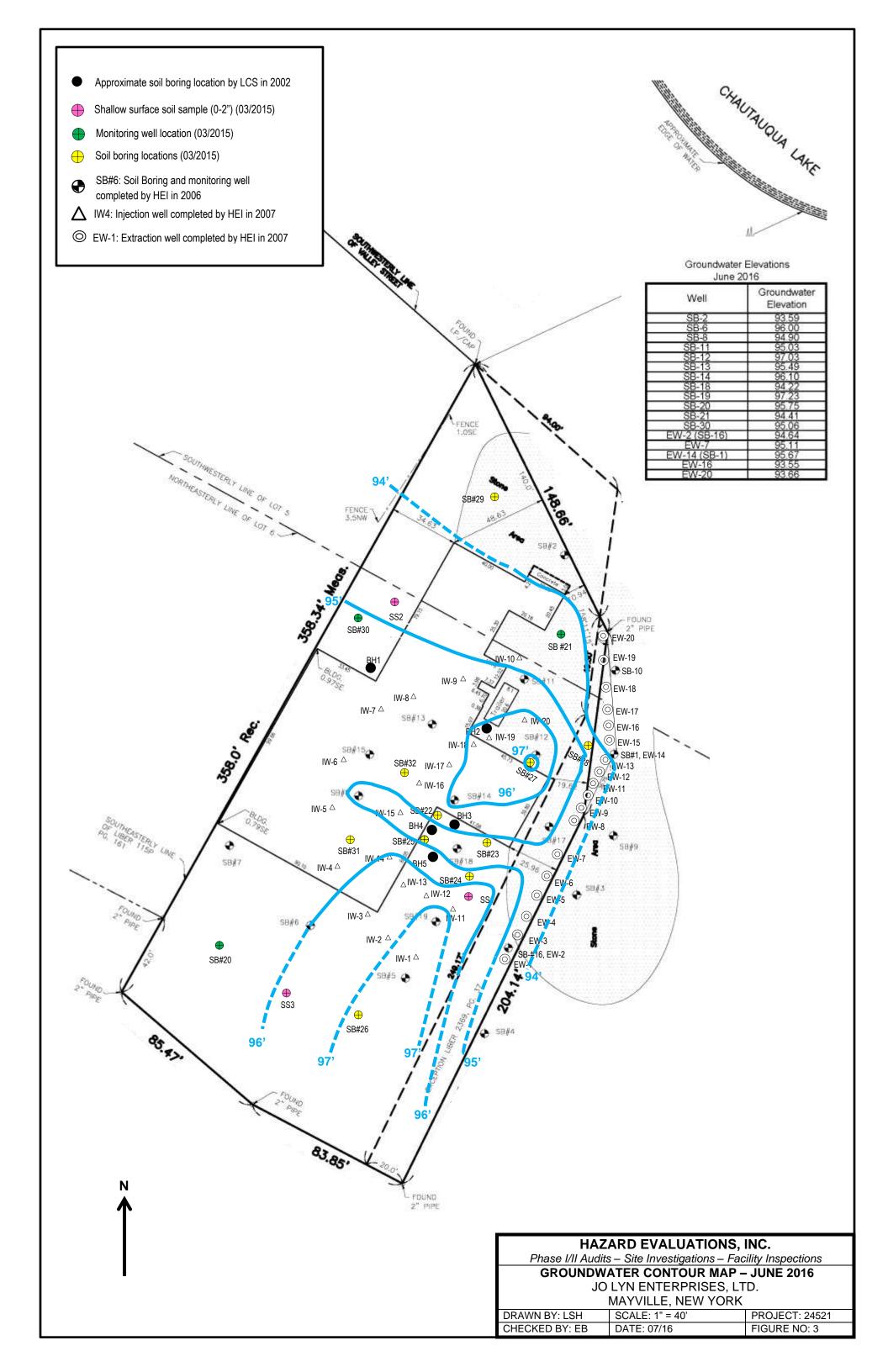

J. Baraniewicz (Jo Lyn)

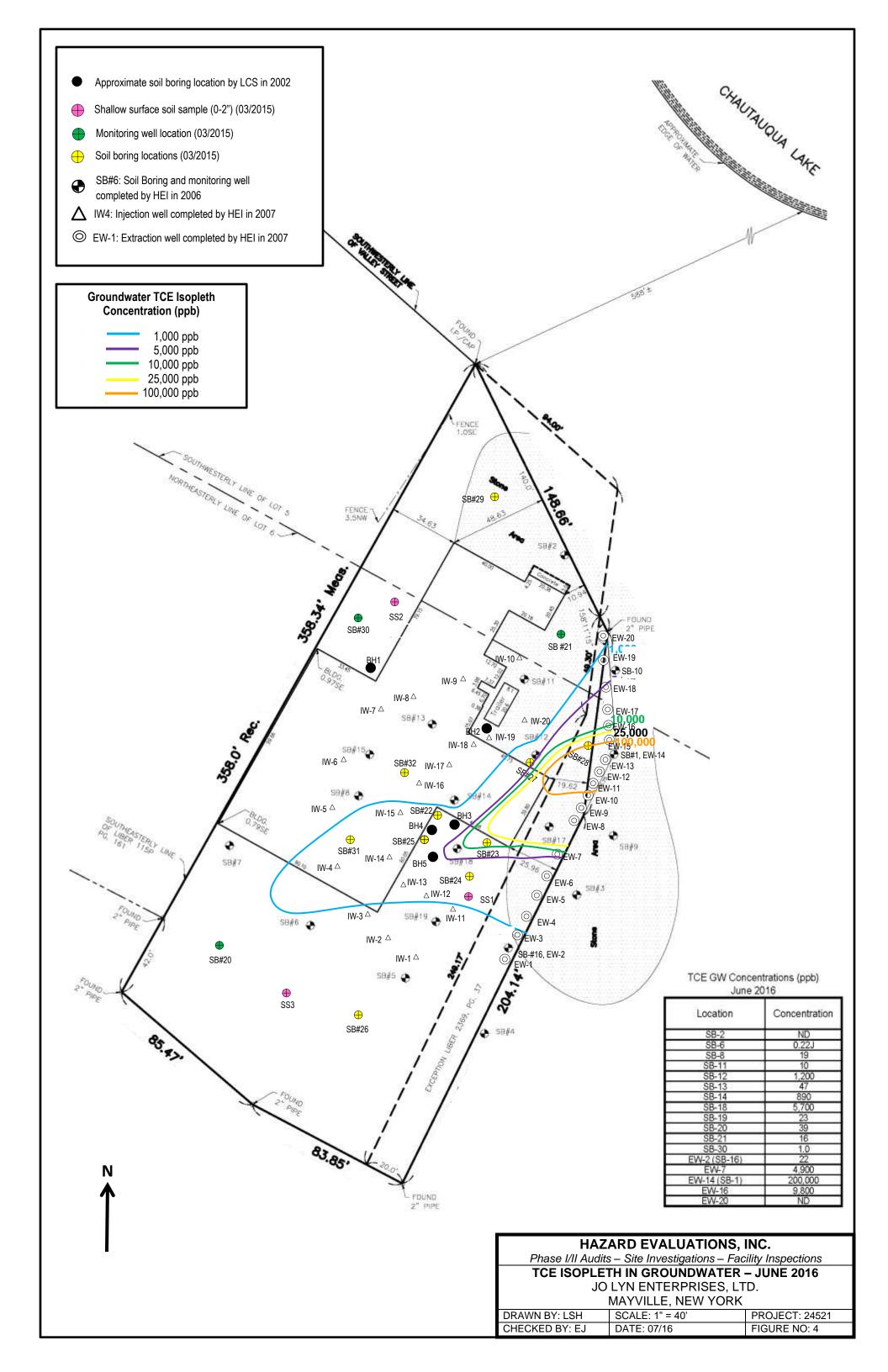
Attachment A

Figures

THIS DRAWING IS FOR ILLUSTRATIVE AND INFORMATIONAL PURPOSES ONLY AND WAS ADAPTED FROM GOOGLE MAPS.


HAZARD EVALUATIONS, INC.


Phase I/II Audits - Site Investigations - Facility Inspections


JOLYN ENTERPRISES LTD.

21 VALLEY STREET MAYVILLE, NEW YORK 14757

DRAWN BY: LSH SCALE: NOT TO SCALE PROJECT: 24512
CHECKED BY: MW DATE: 3/15 FIGURE NO: 1

Attachment B

Tables

Table 1
Summary of Groundwater Measurements and Elevations
21 Valley Street
Mayville, New York
June 2016

Well	Reference Elevation (*)	Depth to Water (**)	Depth to Product (**)	Depth to Bottom(**)	Groundwater Elevation
Monitoring Wells		/			
SB-2	97.60	4.01	-	8.75	93.59
SB-6	101.25	5.25	-	9.48	96.00
SB-8	98.27	3.37	-	10.58	94.90
SB-11	97.98	2.95	-	7.70	95.03
SB-12	99.56	2.53	-	8.65	97.03
SB-13	99.19	3.70	-	11.01	95.49
SB-14	99.68	3.58	-	7.70	96.10
SB-18	97.60	3.38	-	7.89	94.22
SB-19	101.25	4.02	-	7.62	97.23
SB-20	100.21	4.46	-	9.80	95.75
SB-21	97.81	3.40	-	10.36	94.41
SB-30	98.16	3.10	-	6.20	95.06
Extraction Wells					•
EW-1	98.40	NG	-	-	-
EW-2 (SB-16)	98.28	3.64	-	6.67	94.64
EW-3	98.10	NG	-	-	-
EW-4	98.19	NG	-	-	-
EW-5	98.16	NG	-	-	-
EW-6	98.07	NG	-	ı	-
EW-7	97.96	3.42	-	13.60	94.54
EW-8	97.87	NG	-	-	-
EW-9	97.86	NG	-	1	-
EW-10	97.70	NG	-	ı	-
EW-11	97.66	NG	-	ı	-
EW-12	97.70	NG	-	-	-
EW-13	97.67	NG	-	-	-
EW-14 (SB-1)	97.66	3.75	-	11.03	93.91
EW-15	97.58	NG	-	-	-
EW-16	97.69	4.14	-	12.95	93.55
EW-17	97.46	NG	-	-	-
EW-18	97.50	NG	-	ı	-
EW-19	97.40	NG	-	-	-
EW-20	97.56	3.90	-	10.38	93.66

Notes:

NG = Not Gauged

^{* =} Relative to Benchmark which is the top of the fire hydrant near the sidewalk (See June 4, 2008 Survey Data)

^{** =} Relative to measuring point, which is top of each well casing (north side).

Table 2 Analytical Sample Summary Table 21 Valley Street Mayville, New York June 2016

Location	Depth/ Interval (bgs)	VOCs EPA Method 8260 TCL
Ground Water San	nples	
SB1/EW14	N/A	X
SB2	N/A	X
SB6	N/A	X
SB8	N/A	X
SB11	N/A	X
SB12	N/A	X
SB13	N/A	X
SB14	N/A	X
SB16/EW2	N/A	X
SB18	N/A	X
SB19	N/A	X
SB20	N/A	X
SB21	N/A	X
SB30	N/A	X
EW7	N/A	X
EW16	N/A	X
EW20	N/A	X

Notes:

- 1. bgs = below ground surface
- 2. VOCs = Volatile Organic Compounds
- 3. TCL = Target Compound List

Table 3 Groundwater Analytical Testing Results 21 Valley Street Mayville, New York June 2016

	Groundwater															1		
Parameter	SB1/EW14	SB2	SB6	SB8	SB11	SB12	SB13	SB14	SB16/ EW2	SB18	SB19	SB20	SB21	SB30	EW7	EW16	EW20	Class GA Criteria (ug/L)
Volatile Organic Compounds -	USEPA Metho	od 8260C T	CL (ug/L)															
1,1- Dichlorethene	ND	ND	ND	0.87	ND	ND	ND	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Acetone	ND	1.8J	2.0J	ND	ND	ND	2.4J	ND	2.1J	ND	ND	1.9J	ND	21	ND	ND	ND	50
Benzene	ND	ND	ND	6.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromodichloromethane	ND	0.82	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Bromoform	ND	1.0J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Carbon disulfide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
cis-1,2-Dichloroethene	85,000	ND	ND	200	12	5,000	18.0	790	9.5	2,500	ND	2.1J	30	ND	6,200	42,000	22	5
Cyclohexane	ND	ND	ND	230	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Dibromochloromethane	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Isopropylbenzene	ND	ND	ND	9.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Methyl cyclohexane	ND	ND	ND	120	ND	ND	ND	ND	ND	ND	0.42J	ND	ND	ND	ND	ND	ND	NV
Tetrachloroethene	ND	ND	ND	ND	2.3	ND	1.2	24	0.40J	ND	1.0	ND	0.54	ND	26J	ND	26	5
Toluene	ND	ND	ND	1.5J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
trans-1,2-Dichloroethene	ND	ND	ND	7.8	ND	ND	ND	53	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Trichloroethene	200,000	ND	0.22J	19	10	1,200	47	890	22	5,700	23	39	16	1.0	4,900	9,800	ND	5
Vinyl chloride	4,500	0.10J	ND	25	5.3	140	ND	130	0.14J	220	ND	0.09J	1.1	ND	1,200	5,700	1.5	2
p/m-Xylene	ND	ND	ND	0.75J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
o-Xylene	ND	ND	ND	1.8J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Total Xylene	ND	ND	ND	2.55	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Tentatively Identified Compour	nds (ug/L)																	
Butane, 2-Methyl-	ND	ND	ND	16.6NJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Cyclopentane, Methyl-	ND	ND	ND	67.6NJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Clclohexane	ND	ND	ND	17.1NJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Hexane, 3-methyl-	ND	ND	ND	6.07NJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
n-Hexane	ND	ND	ND	26.0NJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Pentane, 3-methyl-	ND	ND	ND	25.1NJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Pentane, 2-methyl-	ND	ND	ND	62.3NJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Pentane	ND	ND	ND	50.8NJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Unknown Cycloalkane	ND	ND	ND	8.83J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Unknown Cycloalkane	ND	ND	ND	7.79J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NV
Unknown	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.50J	ND	ND	ND	ND	ND	ND	NV
Unknown	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.21J	ND	ND	ND	ND	ND	1.41J	NV
Total TIC Compounds	ND	ND	ND	288J	ND	ND	ND	ND	ND	ND	2.71J	ND	ND	ND	ND	ND	1.41J	NV

Notes:

- 1. Analytical testing performed by Alpha Analytical. Compounds detected in one or more samples are pesented in this table. Refere to Appendix For the full analytical report.
- 2. ug/L = part per billion.
- 3. NV= no value.
- 4. ND = not detected above method detection limits.
- 5. Analytical results compared to NYSDEC Class GA criteria obtained from the Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), dated October 1993, revised June 1999, January 1999 errata sheet, and April 2000 addendum.
- 6. Gray shading indicates exceedance of NYSDEC Class GA Criteria.
- 7. Qualifiers: J= Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL); NJ= an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Table 4
Historical Groundwater Analytical Testing Results
21 Valley Street
Mayville, New York

Parameter	Year	SB1/EW14	SB2	SB6	SB8	SB11	SB12	SB13	SB14	SB16/ EW2	SB18	SB19	SB20	SB21	SB30	EW7	EW16	EW20	Class GA Criteria (ug/L)
	5/12/2006	497**	ND	NT	ND	7.08	NT	3.86	NT	NT	540	4.07	N/A	N/A	N/A	NT	NT	NT	5
e L	7/23/2008	NT	ND	ND	ND	ND	ND	2.99	ND	NT	ND	ND	N/A	N/A	N/A	NT	NT	NT	5
hel	10/30/2008	NT	ND	ND	ND	15.4	ND	3.96	ND	NT	ND	ND	N/A	N/A	N/A	NT	NT	NT	5
oet	6/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	N/A	N/A	N/A	NT	NT	NT	5
<u>o</u>	8/9 & 8/23/2012	ND*	ND	ND	ND	5.34	ND	2.78	ND	ND	ND	ND	N/A	N/A	N/A	NT	NT	NT	5
Сh	4/10/2013	550	NT	NT	ND	7.4	ND	2.1	NT	ND***	ND	NT	N/A	N/A	N/A	59	230	51	5
tra	9/31-10/1/2014	490	NT	ND	ND	7.2	ND	3	ND	1.1	ND	0.99	N/A	N/A	N/A	ND	NT	ND	5
<u></u>	7/29-7/30/2015	ND	NT	ND	ND	0.39J	6.6J	1.5	11J	1	ND	1.1	0.27J	0.85	ND	ND	NT	0.56	5
	6/14-6/15/2016	ND	ND	ND	ND	2.3	ND	1.2	24	0.40J	ND	1.0	ND	0.54	ND	26J	ND	26	5

Parameter	Year	SB1/EW14	SB2	SB6	SB8	SB11	SB12	SB13	SB14	SB16/EW2	SB18	SB19	SB20	SB21	SB30	EW7	EW16	EW20	Class GA Criteria (ug/L)
	5/12/2006	132,000**	14.6	NT	773	77.7	NT	552	NT	NT	151,000	86.6	N/A	N/A	N/A	NT	NT	NT	5
o o	7/23/2008	NT	ND	ND	690	15.9	11,900	202	2,140	NT	1,230	66.4	N/A	N/A	N/A	NT	NT	NT	5
en	10/30/2008	NT	2.17	NT	294	99.4	49,000	167	289	NT	7,360	38.2	N/A	N/A	N/A	NT	NT	NT	5
eth	6/24/2009	1,020,000	ND	ND	271	10.2	4,850	3,500	477	NT	1,330	27.7	N/A	N/A	N/A	NT	NT	NT	5
Ž	8/9 & 8/23/2012	432,000*	2.14	ND	21.5	13	1,790	79.2	578	35.9**	ND	52.6	N/A	N/A	N/A	NT	NT	NT	5
Plc	4/10/2013	790,000	NT	NT	44	35	260,000	170	NT	8.2***	1,110	NT	N/A	N/A	N/A	120,000	340,000	6,400	5
i:	9/31-10/1/2014	480,000	NT	0.51	49	32	270,000	96	2,000	110	3,100	25	N/A	N/A	N/A	140,000	NT	3,500	5
-	7/29-7/30/2015	46,000	NT	ND	20	2	1,100	62	3,100	47	50	28	16	24	4	17,000	NT	180	5
	6/14-6/15/2016	200,000	ND	0.22J	19	10	1,200	47	890	22	5,700	23	39	16	1.0	4,900	9,800	ND	5

Parameter	Year	SB1/EW14	SB2	SB6	SB8	SB11	SB12	SB13	SB14	SB16/EW2	SB18	SB19	SB20	SB21	SB30	EW7	EW16	EW20	Class GA Criteria (ug/L)
(I)	5/12/2006	18,000**	ND	NT	396	164	NT	33.4	NT	NT	10,500	ND	N/A	N/A	N/A	NT	NT	NT	5
ene	7/23/2008	NT	ND	ND	564	191	2,430	26.2	178	NT	2,360	6.7	N/A	N/A	N/A	NT	NT	NT	5
eth	10/30/2008	NT	3.43	ND	175	6.55	3,440	21	43.2	NT	8,450	3.54	N/A	N/A	N/A	NT	NT	NT	5
oro	6/24/2009	12,500	7.29	ND	203	92.2	1,480	487	176	NT	2,730	ND	N/A	N/A	N/A	NT	NT	NT	5
망	8/9 & 8/23/2012	37,800*	3.26	ND	23.3	36	3,750	31.7	378	49.9**	4,840	4.65	N/A	N/A	N/A	NT	NT	NT	5
Ϊ	4/10/2013	50,000	NT	NT	950	170	6,500	81	NT	2.3***	6,400	NT	N/A	N/A	N/A	26,000	40,000	2,400	5
<u> </u>	9/31-10/1/2014	29,000	NT	ND	1,200	48	14,000	33	470	64	1,900	ND	N/A	N/A	N/A	31,000	NT	4,000	5
<u> </u>	7/29-7/30/2015	79,000	NT	ND	700	2.1J	2,500	8.8	1,200	20	1,400	ND	ND	38	ND	4,800	NT	80	5
	6/14-6/15/2016	85,000	ND	ND	200	12	5,000	18.0	790	9.5	2,500	ND	2.1J	30	ND	6,200	42,000	22	5

Table 4 Historical Groundwater Analytical Testing Results 21 Valley Street Mayville, New York

Parameter	Year	SB1/EW14	SB2	SB6	SB8	SB11	SB12	SB13	SB14	SB16/EW2	SB18	SB19	SB20	SB21	SB30	EW7	EW16	EW20	Class GA Criteria (ug/L)
	5/12/2006	4,660**	ND	NT	21	6.69	NT	ND	NT	NT	335	ND	N/A	N/A	N/A	NT	NT	NT	2
	7/23/2008	NT	ND	ND	ND	8.55	ND	ND	ND	NT	375	ND	N/A	N/A	N/A	NT	NT	NT	2
de	10/30/2008	NT	ND	ND	11.1	ND	ND	ND	ND	NT	264	ND	N/A	N/A	N/A	NT	NT	NT	2
<u>o</u>	6/24/2009	ND	ND	ND	7.44	5.08	ND	ND	ND	NT	ND	ND	N/A	N/A	N/A	NT	NT	NT	2
ວ	8/9 & 8/23/2012	ND*	ND	ND	ND	ND	356	ND	ND	ND**	423	ND	N/A	N/A	N/A	NT	NT	NT	2
کر	4/10/2013	ND	NT	NT	96	4.7	ND	ND	NT	ND***	140	NT	N/A	N/A	N/A	420	3,900	ND	2
==	9/31 & 10/1/2014	1,800	NT	ND	210	1.4	ND	ND	ND	ND	580	210	N/A	N/A	N/A	2,100	NT	200	2
	7/29-7/30/2015	4,900	NT	ND	53	0.94J	200	ND	14J	ND	550	ND	ND	6.5	ND	99J	NT	0.43J	2
	6/14-6/15/2016	4,500	0.10J	ND	25	5.3	140	ND	130	0.14J	220	ND	0.09J	1.1	ND	1,200	5,700	1.5	2

Parameter	Year	SB1/EW14	SB2	SB6	SB8	SB11	SB12	SB13	SB14	SB16/EW2	SB18	SB19	SB20	SB21	SB30	EW7	EW16	EW20	Class GA Criteria (ug/L)
	5/12/2006	1,210**	ND	NT	NT	ND	NT	ND	NT	NT	1,550	ND	N/A	N/A	N/A	NT	NT	NT	1
ane	7/23/2008	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	N/A	N/A	N/A	NT	NT	NT	1
l ĝ	10/30/2008	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	N/A	N/A	N/A	NT	NT	NT	1
ğ	6/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND	N/A	N/A	N/A	NT	NT	NT	1
일	8/9 & 8/23/2012	ND*	ND	ND	ND	ND	ND	ND	ND	ND**	ND	ND	N/A	N/A	N/A	NT	NT	NT	1
l ≝	4/10/2013	210	NT	NT	ND	ND	ND	ND	NT	ND***	ND	NT	N/A	N/A	N/A	4.2	ND	ND	1
' ,	9/31 & 10/1/2014	82	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	N/A	ND	NT	ND	1
7,	7/29-7/30/2015	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NT	ND	1
	6/14-6/15/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1

Notes:

- 1. Analytical results from "Routine Progress Report- September& October 2014; BCA # C907030, Standard Portable Site, 13 West Lake Road, Mayville, New York & completed by HEI dated October 30, 2014.
- 2. Analytical results compared to NYSDEC Class GA criteria obtained from the Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), dated October 1993, revised June 1999, January 1999 errata sheet, and April 2000 addendum.
- 3. ug/L = part per billion
- 4. NT = not tested; NV = no value.
- 5. ND = not detected
- 6. Shading indicates exceedance of NYSDEC Class GA Criteria
- 7. Quailifiers: J = result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value
- 8. DL= Diluted.
- 9. * = sampled on August 23,2012.
- 10. **= Result does not include free product portion of sample.
- 11. *** EW-1 was sampled as a substitute for SB-16/EW-2 due to the cover being dislodged on that well upon arrival at the site; sample date (4/10/2013).
- 12. N/A = Not Available; (monitoring well not installed).