202 FRANKLIN STREET CATTARAUGUS COUNTY CITY OF OLEAN, NEW YORK

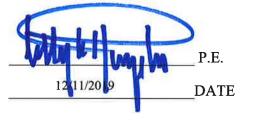
SITE MANAGEMENT PLAN

NYSDEC Site Number: C905043

Prepared for:

Silence Dogood, LLC 211 Franklin Street Olean, New York

Prepared by:


Day Environmental, Inc. 1563 Lyell Avenue Rochester, New York 14606 (585) 454-0210

Revisions to Final Approved Site Management Plan:

Revision No.	Date Submitted	Summary of Revision	NYSDEC Approval Date

CERTIFICATION STATEMENT

I <u>Timothy K. Hampton</u> certify that I am currently a NYS registered professional engineer and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

TABLE OF CONTENTS

202 FRANKLIN STREET CATTARAUGUS COUNTY CITY OF OLEAN, NEW YORK SITE MANAGEMENT PLAN

<u>Section</u>		Description	
LIST OF	ACR	ONYMS	
ES	EXE	CUTIVE SUMMARY	i
1.0	INT 1.1 1.2 1.3	RODUCTION General Revisions Notifications.	1 2
2.0	SUM 2.1 2.2 2.3 2.3	IMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL Site Location and Description. Physical Setting. 2.2.1 Land Use 2.2.2 Geology. 2.2.3 Hydrogeology . Investigation and Remedial History. 2.3.1 Past Uses and Ownership. 2.3.2 Previous Reports and Documents 2.3.3 Summary of Remedial Investigation Findings 2.3.4 Summary of Remedial Actions 2.3.4.1 Metal Waste Fill Removal 2.3.4.3 Installation of Cover System Remedial Action Objectives Remaining Contamination 2.5.1 Soil 2.5.2	5 5 5 6 7 10 10 11 11 15 19 22 25 26 27 27
3.0	INST 3.1 3.2	FITUTIONAL AND ENGINEERING CONTROL PLAN General Institutional Controls	30

TABLE OF CONTENTS (Continued)

Section		Description	Page
	3.3	Engineering Controls	
		3.3.1 Cover System	
		3.3.2 Criteria for Completion of Remediation/Termination	of Remedial
		Systems	32
		3.3.2.1 Cover System	32
		3.3.3 Soil Vapor Intrusion Evaluation and Mitigation	
4.0	MON	NITORING AND SAMPLING PLAN	33
	4.1	General	
	4.2	Site-wide Inspection	34
	4.3	Post-Remediation Media Monitoring and Sampling	35
		4.3.1 Groundwater Sampling	
		4.3.2 Monitoring and Sampling Protocol	
5.0	OPE	RATION AND MAINTENANCE PLAN	
	5.1	General	
6.0		IODIC ASSESSMENTS/EVALUATIONS	
	6.1	Climate Change Vulnerability Assessment	
	6.2	Green Remediation Evaluation	
	6.3	Remedial System Optimization	41
7.0	REP	ORTING REQUIREMENTS	
	7.1	Site Management Reports	
	7.2	Periodic Review Report	
		7.2.1 Certification of Institutional and Engineering Controls	
	7.3	Corrective Measures Work Plan	47
	7.4	Remedial Site Optimization Report	48
8.0	REF	ERENCES	49

TABLE OF CONTENTS (Continued)

List of Tables Within Report

Table 1	Notifications
Table 2	Schedule of Interim Monitoring/Inspection Reports43

List of Tables Within Tables Attachment

Table 3A:	Summary of Remaining Detected VOCs in Surface Soil Samples
Table 3B:	Summary of Remaining Detected SVOCs in Surface Soil Samples
Table 3C:	Summary of Remaining Detected Pesticide/Herbicide/PCBs in Surface Soil Samples
Table 3D:	Summary of Remaining Detected TAL Metals and Cyanide in Surface Soil Samples
Table 4A:	Summary of Remaining Detected VOCs in Soil Samples
Table 4B:	Summary of Remaining Detected SVOCs in Surface Soil Samples
Table 4C:	Summary of Remaining Detected Pesticide/Herbicide/PCBs in Surface Soil Samples
Table 4D:	Summary of Remaining Detected TAL Metals and Cyanide in Surface Soil Samples
Table 5A:	Summary of Remaining Detected VOCs in Groundwater
Table 5B:	Summary of Remaining Detected SVOCs in Groundwater
Table 5C:	Summary of Remaining Detected Pesticide/Herbicide/PCBs in Groundwater
Table 5D:	Summary of Remaining Detected TAL Metals and Cyanide in Groundwater
Table 6	Monitoring Well Construction Details, Groundwater Elevation Measurements and
	Sampling Parameters

TABLE OF CONTENTS (Continued)

List of Figures

- Figure 2: Site Layout Map showing Boundaries and Tax Parcels (Boundaries, Tax Parcels, etc.)
- Figure 3: Site Layout Map showing Sample Locations and Geologic Cross Section Locations
- Figure 4A: Geologic Cross Section A-A'
- Figure 4B: Geologic Cross Section B-B'
- Figure 5A: Groundwater Contour Map: July 10, 2014
- Figure 5B: Groundwater Contour Map: November 5, 2014
- Figure 6: Site Plan Depicting Removal Extents of Metal Waste Fill Area
- Figure 7 Site Plan Depicting UST Removal Area
- Figure 8: Remaining Soil Sample Exceeding Restricted Commercial SCOs
- Figure 9: Remaining Groundwater Exceeding Guidance and Standard Values
- Figure 10: Soil Cover System Demarcation Layers
- Figure 11: Institutional Control Boundaries and Site-Wide Cover System

List of Appendices

List of Site Contacts	A
Excavation Work Plan	B
Responsibilities of Owner and Remedial Party	C
Environmental Easement/Notice/Deed Restriction	
Monitoring Well Boring and Construction Logs	Е
Field Sampling Plan	
Quality Assurance Project Plan	
Health and Safety Plan	
Site Management Forms	
Remedial System Optimization Table of Contents	

List of Acronyms

AS	Air Sparging
ASP	Analytical Services Protocol
BCA	Brownfield Cleanup Agreement
BCP	Brownfield Cleanup Program
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
CAMP	Community Air Monitoring Plan
C/D	Construction and Demolition
CFR	Code of Federal Regulation
CLP	Contract Laboratory Program
COC	Certificate of Completion
CO2	Carbon Dioxide
CP	Commissioner Policy
DER	Division of Environmental Remediation
EC	Engineering Control
ECL	Environmental Conservation Law
ELAP	Environmental Laboratory Approval Program
ERP	Environmental Restoration Program
EWP	Excavation Work Plan
GHG	Green House Gas
GWE&T	Groundwater Extraction and Treatment
HASP	Health and Safety Plan
IC	Institutional Control
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
NYCRR	New York Codes, Rules and Regulations
O&M	Operation and Maintenance
OM&M	Operation, Maintenance and Monitoring
OSHA	Occupational Safety and Health Administration
OU	Operable Unit
PID	Photoionization Detector
PRP	Potentially Responsible Party
PRR	Periodic Review Report
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
RAO	Remedial Action Objective
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
RP	Remedial Party
RSO	Remedial System Optimization
SAC	State Assistance Contract
SCG	Standards, Criteria and Guidelines

SCO	Soil Cleanup Objective
SMP	Site Management Plan
SOP	Standard Operating Procedures
SOW	Statement of Work
SPDES	State Pollutant Discharge Elimination System
SSD	Sub-slab Depressurization
SVE	Soil Vapor Extraction
SVI	Soil Vapor Intrusion
TAL	Target Analyte List
TCL	Target Compound List
TCLP	Toxicity Characteristic Leachate Procedure
USEPA	United States Environmental Protection Agency
UST	Underground Storage Tank
VCA	Voluntary Cleanup Agreement
VCP	Voluntary Cleanup Program

ES EXECUTIVE SUMMARY

The following provides a brief summary of the controls implemented for the Site, as well as the inspections, monitoring, maintenance and reporting activities required by this Site Management Plan:

Site Identification:	202 Franklin Street, City of Olean, New York, NYSDEC Site Number C905043
Institutional Controls:	1. The property may be used for restricted commercial and/or restricted industrial uses;
	2. All ECs must be maintained as specified in this SMP.
	3. All ECs must be inspected at a frequency and in a manner defined in the SMP.
	4. The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Cattaraugus County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.
	5. Groundwater monitoring must be performed as defined in this SMP;
	6. Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;
	7. All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
	8. Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
	9. Operation, maintenance, monitoring, inspection, and reporting of any physical component of the remedy shall be performed as defined in this SMP;
	10. Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure

	 compliance with the restrictions identified by the Environmental Easement. 11. The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 11, and any potential impacts that are identified must be monitored or mitigated; and 12. Vegetable gardens and farming on the site are prohibited; 	
Engineering Controls:	1. Cover system	
Inspections:		Frequency
1. Cover inspection		Annually
Monitoring:		
2. Groundwater Monitoring Wells MW-A, MW-B, MW-C, MW-D, MW-E, MW-F and MW-G		Annually for the first three years following issuance of the COC
Maintenance:		
1. Cover System		As needed
Reporting:		
1. Groundwater Monitoring Data		Subsequent to Sampling Event
2. Periodic Review Report		Annually, or an alternate longer period of time allowed by the NYSDEC

Notes:

(1) The sampling duration and frequency, the sampling technique for monitoring events, the number of wells sampled during monitoring events, and the test parameters for samples collected during monitoring events, may be modified with the approval of the NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by the NYSDEC.

Further descriptions of the above requirements are provided in detail in the latter sections of this Site Management Plan.

1.0 INTRODUCTION

1.1 General

This Site Management Plan (SMP) is a required element of the remedial program for 202 Franklin Street located in City of Olean, Cattaraugus County, New York (hereinafter referred to as the "Site"). See Figure 1. The Site is currently in the New York State (NYS) Brownfield Cleanup Program (BCP) Site No. C905043, which is administered by New York State Department of Environmental Conservation (NYSDEC).

Silence Dogood, LLC entered into a Brownfield Cleanup Agreement (BCA) as a volunteer on May 22, 2014 with the NYSDEC to remediate the Site. A figure showing the Site location and boundaries of this Site is provided in Figure 2. The boundaries of the Site are more fully described in the metes and bounds site description that is part of the Environmental Easement provided in Appendix D.

After completion of the remedial work, some contamination was left at this site, which is hereafter referred to as "remaining contamination". Institutional and Engineering Controls (ICs and ECs) have been incorporated into the Site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Cattaraugus County Clerk, requires compliance with this SMP and all ECs and ICs placed on the Site.

This SMP was prepared to manage remaining contamination at the Site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

It is important to note that:

- This SMP details the site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the Environmental Easement, which is grounds for revocation of the Certificate of Completion (COC);
- Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6NYCRR Part 375 and the (Index #C090543-05-14; Site #C905043) for the Site, and thereby subject to applicable penalties.

All reports associated with the Site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State. A list of contacts for persons involved with the Site is provided in Appendix A of this SMP.

This SMP was prepared by Day Environmental, Inc. (DAY), on behalf of Silence Dogood, LLC (the Owner), in accordance with the requirements of the NYSDEC's DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated May 2010 (DER-10), and the guidelines provided by the NYSDEC. This SMP addresses the means for implementing the ICs and/or ECs that are required by the Environmental Easement for the Site.

1.2 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. Revisions will be necessary upon, but not limited to, the following occurring: a change in media monitoring requirements, upgrades to or shut-down of a remedial system, post-remedial removal of contaminated sediment or soil, or other significant change to the Site conditions. In accordance with the Environmental Easement for the Site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.3 Notifications

Notifications will be submitted by the property owner to the NYSDEC, as needed, in accordance with NYSDEC's DER – 10 for the following reasons:

• 60-day advance notice of any proposed changes in site use that are required under the terms of the BCA, 6NYCRR Part 375 and/or Environmental Conservation Law.

- 7-day advance notice of any field activity associated with the remedial program.
- 15-day advance notice of any proposed ground-intrusive activity pursuant to the Excavation Work Plan.
- Notice within 48-hours of any damage or defect to the foundation, structures or EC that reduces or has the potential to reduce the effectiveness of an EC, and likewise, any action to be taken to mitigate the damage or defect.
- Verbal notice by noon of the following day of any emergency, such as a fire; flood; or earthquake that reduces or has the potential to reduce the effectiveness of ECs in place at the Site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action submitted to the NYSDEC within 45 days describing and documenting actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the Site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser/Remedial Party has been provided with a copy of BCA, and all approved work plans and reports, including this SMP.
- Within 15 days after the transfer of all or part of the Site, the new owner's name, contact representative, and contact information will be confirmed in writing to the NYSDEC.

Table 1 includes contact information for the above notification. The information on this table will be updated as necessary to provide accurate contact information. A full listing of site-related contact information is provided in Appendix A.

Table 1: Notifications*

Name	Contact Information
Anthony L. Lopes, P.E. [NYSDEC Project Manager]	716-851-7220 / anthony.lopes@dec.ny.gov
Chad Staniszewski [NYSDEC Regional HW Engineer]	716-851-7220 / chad.staniszewski@dec.ny.gov

* Note: Notifications are subject to change and will be updated as necessary.

2.0 SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

2.1 Site Location and Description

The Site is located in City of Olean, Cattaraugus County, New York and is identified as Section 94.040 Block 1 and Lot 3 on the Cattaraugus County Tax Map (see Figure 2). The Site is an approximately 5.159-acre area and is bounded by the Interstate I-86 right-of-way (ROW) to the north, Franklin Street to the south, an athletic field to the east, and a railroad ROW to the west (see Figure 3– Site Layout Map). The boundaries of the Site are more fully described in Appendix D– Environmental Easement. The owner of the Site parcel at the time of issuance of this SMP is:

Silence Dogood, LLC.

The metes and bounds as recorded in the environmental easement for the Site are included in Appendix D.

2.2 Physical Setting

2.2.1 Land Use

The Site consists of the following: an approximate 5.79-acre parcel of land, of which a 1.83-acre portion is developed as a paved parking lot that services the Industrial Facility located adjacent to the south (i.e. 211 Franklin Street). The Site is zoned industrial and the eastern portion is currently utilized as an employee parking lot by SolEpoxy Inc. (i.e., the tenant at 211 Franklin Street); the remaining portion of the Site (i.e., approximately 4 acres) is vacant land.

The properties adjoining the Site and, in the neighborhood, surrounding the Site primarily include residential, and industrial properties. The properties immediately south of the Site include Franklin Street followed by industrial properties; the properties immediately north of the Site include the Interstate I-86 right-of-way (ROW); the properties immediately east of the Site include a park followed by residential properties; and the properties to the west of the Site include a railroad ROW followed by commercial and industrial properties.

2.2.2 <u>Geology</u>

Figure 3 is a plan view showing the locations of cross-sections prepared for the project. Geologic cross-sections A-A' and B-B' are designated as Figure 4A and Figure 4B, respectively. These cross-sections illustrate the overburden types and corresponding depths identified in test borings, test pits and wells that were advanced as part of the cumulative studies. In addition, the depth of groundwater in the overburden that was measured at respective overburden groundwater monitoring wells on July 10, 2014 and November 5, 2014 are provided on these cross-sections. Site specific boring and test pit logs are provided in Appendix E.

Overburden

The overburden material at the Site generally consists of stratified drift deposits comprised of outwash and kame deposits consisting primarily of sand and gravel with lesser amounts of silt in some locations. With depth, lacustrine silts and clays (i.e., the remnants of glacial lakes and post-glacial lakes that formed as the glaciers retreated northward) are evident near the bottom of the outwash deposits in the valley floor and in proximity to the bedrock surface.

The southern-most portion of the Site is covered with an approximate 79,800 square feet (i.e., approximately 1.83 acres) asphalt-paved parking lot. The asphalt pavement varies in thickness from about 0.2 ft. up to approximately 0.5 ft. with sub-base material or reworked soil extending below the asphalt pavement to an approximate depth of 1 ft. bgs. The ground surface surrounding, and to the northwest of, the asphalt parking is covered by at least 1.0 ft. of an imported cover soil/gravel material deemed to be free of target compounds/analytes at concentrations in excess of Restricted Commercial Use SCOs, and free of detectable concentrations of emerging contaminants. Heterogeneous fill, generally characterized as C&D debris or apparent railroad ballast, underlies the asphalt parking lot and soil cover; except along the northwest boundary of the Site where indigenous soil, consisting of topsoil underlain by sand with little clay above typically sand and gravel deposits, was encountered. The heterogeneous fill varies in thickness from about 1 foot to 11+ ft below the soil cover. The thickest fill deposits are located in the northeastern portion of the property where structures were previously located. The fill in these

areas is predominately C&D debris comprised of numerous bricks, concrete, pipe, scrap metal and wire intermixed within reworked soil (i.e., primarily sand and gravel). In some locations, apparent railroad ballast containing ash and coal fragments intermixed with re-worked soil is present, extending to depths of approximately 1 to 2 ft. below the soil cover. Additionally, layers of fibrous (paper-like) fill material and paper with a tar-like binder are present in isolated areas of the west-central portion of the Site, starting at a depth of about 2 ft. below the soil cover.

The indigenous soil beneath the fill at the Site generally consists of deposits of fine to medium sand and fine to coarse gravel. However, a deposit of sandy clay to clayey sand was encountered beneath the fill in some locations. This approximate 1.5 ft. to 4 ft. thick deposit was not continuous across the Site and it may have been removed in areas during previous construction activities. Where present, the sandy clay to clayey sand deposit was encountered between elevations of about 1420 ft. and 1427 ft.

Bedrock

Based on a review of "*Geology of Cattaraugus County*" by Irving Tesmer, 1975, bedrock is comprised of gray and black shale interbedded with gray siltstone and sandstone of the Conneaut Group, also referred to as the Chadakoin Formation. These sedimentary rocks are relatively flat lying and dip gently to the south at an approximate rate of 40 ft. per mile. Estimated depth to bedrock at the Site is greater than 200 ft. and was not encountered during previous subsurface investigations at the Site. [Note: The deepest test boring advanced at the Site extended to a depth of 48.0 ft. bgs or an elevation of about 1378.5 ft.]

2.2.3 Hydrogeology

The Site is located within an area designated by the United State Department of the Interior Geological Survey (USGS) as a primary water supply aquifer (Olean). A primary water supply aquifer is defined as: "A highly productive aquifer that is being used as a source of water supply in major public-supply systems." According to USGS Water-Resources report 85-4157 *Hydrogeology of the Olean Area, Cattaraugus County, New York* dated 1987 prepared by Phillip J. Zarriello and Richard J. Reynolds, the total saturated thickness of the outwash aquifer in

proximity of the Site ranges between approximately 20 ft. and 40 ft., and this aquifer is capable of producing water at rates in excess of 1,000 gallons per minute (GPM) depending on the size and construction of the supply well(s).

Regionally, groundwater flow is generally to the southwest, eventually discharging into the Allegheny River; however, in proximity of the Site, groundwater appears to flow generally to the south-southeast with a southwesterly component in the southern portion of the Site that is more pronounced as the groundwater levels decrease seasonally. Groundwater flow at the Site is in the direction of Olean Creek, which is located about 2,000 ft. east of the Site. Olean Creek flows generally to the south and discharges into the Allegheny River approximately 8,300 ft. south-southwest of the Site.

As described in USGS Water-Resources report 85-4082 titled *Effect of Reduced Industrial Pumpage on the Migration of Dissolved Nitrogen in an Outwash Aquifer in Olean, New York* dated 1987 prepared by Marcel P. Bergeron, extensive pumping was undertaken in the 1970s and 1980s to contain a dissolved nitrogen spill and prevent contaminated groundwater from impacting the municipal water supply wells. Some of the wells that were pumped at rates as high as 10 million gallons per day included wells located adjacent to the southwest boundary of the Site. During this pumping, a 20 ft. to 30 ft. deep cone of depression was created. The continuous pumping has stopped and water levels have since returned to pre-pumping levels. It is suspected that the extensive pumping that occurred in proximity of the Site may have contributed to the vertical distribution of the petroleum-impact identified in test borings at the Site.

The depth to groundwater at the Site varies seasonally. The groundwater elevations ranged from about 2.3 ft. (MW-G) to about 2.5 ft. (MW-A) lower during the November 5, 2014 sampling event than they were during the groundwater level measurements collected on July 10, 2014. The groundwater elevations ranged between about 1411.8 ft. (MW-F) and 1412.7 ft. (MW-C) on July 10, 2014 and between about 1409.3 ft. (MW-F) and 1410.3 ft. (MW-C) on November 5, 2014. These groundwater elevations represent depths to groundwater ranging between about 13.9 ft. bgs and 17.2 ft. bgs on July 10, 2014, and ranging between about 16.0 ft. bgs and 19.6 ft. bgs on November 5, 2014. Groundwater contour maps developed for measurements taken on July 10, 2014.

2014 and November 5, 2014 are presented as Figure 5a and Figure 5b, respectively. Groundwater elevation data is provided in Table 6.

The average of the "slug in" and "slug out" hydraulic conductivities measured in monitoring wells MW-B, MW-C and MW-K (i.e., located adjacent to the Site on property to the south) ranged between 1.63 ft/day or 5.75 x 10-4 cm/sec and 3.73 ft./day or 1.31 x 10-3 cm/sec. These values are consistent with the generalized soil permeability values ranging between 0.6 inches/hour and 6 inches/hour presented in Zarriello and Reynolds 1987.

Based upon measurements made at various times during this study, the average hydraulic gradient between the monitoring wells installed at the Site ranged between about 0.001 ft/ft and 0.002 ft/ft. Using the range of calculated hydraulic conductivities and average horizontal gradients and an estimated porosity of 0.3 (i.e., as referenced in Groundwater, by R. Allan Freeze & John A., Cherry, 1979), groundwater flow at the Site was calculated to range between about 0.0054 ft./day and 0.025 ft./day.

While no structures are present at the site that require water or sewer service, the Site is serviceable by a public water system and public sanitary sewer system that is located in the Franklin Street ROW. The City of Olean obtains drinking water from groundwater supply wells located on Richmond Avenue (Well Site M18, which produced 278 million gallons of water in 2013), East River Road (Well Site M37, M38, which produced 325 million gallons of water in 2013), and from Olean Creek (296 million gallons of water were obtained from this location in 2013). The water intake for Olean Creek is located at the River Street water treatment plant, approximately 2,000 ft east of the Site, and hydraulically upgradient of the Site. Well Site M18 is located about 2.3 miles southeast of the Site (i.e., beyond Olean Creek), and Well Site M37/M38 are located about 2.45 miles southeast of the Site (i.e., beyond the confluence of Olean Creek and the Allegheny River).

Groundwater monitoring well construction logs are provided in Appendix E.

2.3 Investigation and Remedial History

The following narrative provides a remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the Site. Full titles for each of the reports referenced below are provided in Section 8.0 - References.

2.3.1 Past Uses and Ownership

Based on information obtained from Sanborn Fire Insurance (Sanborn) maps, historic records, and historic directories from the City of Olean, industrial activities were conducted on the Site between 1909 and the early 1960's, including the following:

- The United Wood Alcohol Company was located on the eastern portion of the Site between at least 1909 until around 1915, and operations included the manufacturing and storage of wood alcohol (methanol). A 1909 Sanborn map depicts four buildings at this facility, and a railroad spur line that connects the western-most buildings of the United Wood Alcohol Company to railroad lines located to the south. A 1915 Sanborn map depicts the four buildings on the Site with a note "not in operation".
- Seaman Container occupied portions of the buildings at the Site between at least 1925 until around 1932, and operations included the manufacturing of paper pails, containers, coolers, etc. The Olean Bag Company also occupied portions of the buildings at the Site between at least 1925 until around 1932, and it is assumed that sewing operations were performed at this facility. A 1925 Sanborn map depicts a north-south trending railroad spur with industrial buildings on either side of the spur. The buildings to the east of the railroad spur are labeled, "dipping room, gas drying ovens, storage, painting dept., finishing dept., press room, tank room, beating room, and storage". The buildings to the west of the railroad spur are labeled, "stock room, sewing, cleaning and storage". An area of the map, approximately 3,200 square feet in size located adjacent to the east of the railroad spur and between the eastern and western buildings, is outlined and labeled "pile of old paper".
- The Arvey Ware Corporation occupied the buildings at the Site between at least 1932 until around 1941, and operations included manufacturing wastebaskets, vases, etc. from

reprocessed waste paper pulp. On the 1932 Sanborn map, the buildings at the Site are labeled, "stock room, enameling and asphalt coating, dress room, trimming/drying, beater room, tank room, machine shop, boiler room and "ovens – not used".

- The Fibre Forming Corporation occupied the buildings at the Site between around 1941 until around 1962, when they were demolished. Operations conducted by Fibre Forming Corporation included manufacturing wastebaskets, vases, etc. from reprocessed waste paper pulp. A 1956 Sanborn map depicts the buildings at the Site as being, "Vac." (Vacant), and also depicts a storage building and two alcohol tanks located on the southwest corner of the Site.
- Hysol, a Division of the Dexter Corporation [i.e., the entity that occupied the adjacent property and manufacturing facility to the south (i.e., 211 Franklin Street)], purchased the Site sometime around 1979. A parking lot was subsequently constructed on the southeastern portion of the Site.
- Since 2010, SolEpoxy, Inc. has used the parking lot on the Site for employee vehicle parking.
- In addition to operations conducted on the Site, industrial activities including an oil refinery, oil production/storage operations and railroad lines are/were located in proximity of the Site.
- The Site is located within a 500-acre area which has been designated as a Brownfields Opportunity Area. This designation recognizes that environmental contamination may be present based on historical industrial uses.

2.3.2 **Previous Reports and Documents**

The previous environmental assessments and studies completed at the Site are summarized below.

Phase I Environmental Site Assessments (Phase I ESAs)

Environmental Resources Management (ERM) prepared a Phase I ESA report dated May 2007 for the Site and select adjacent properties that included a total of approximately 13.5 acres (i.e., 202 Franklin Street, 119 Franklin Street, and 211 Franklin Street). This Phase I ESA report identified that the Site was historically used for residential occupancy, a wood alcohol manufacturing facility, and multiple waste paper pulp manufacturers. Recognized environmental conditions (RECs), pertaining to the Site, that were identified in the 2007 Phase I ESA report include:

- "Historical uses of the subject property included...wood alcohol production (circa 1910 to 1940)...and other manufacturing activities."
- "An approximate 500-acre area covering eleven current and former industrial properties, including the subject property, has been named by the City of Olean and the State of New York as a Brownfield Opportunity Area (BOA)...the BOA initiative includes creation of a statewide groundwater database to assist communities in evaluating groundwater issues related to the cleanup of contaminated properties...No soil or groundwater sampling has been performed to characterize site conditions on the subject property."

DAY completed a Phase I ESA in 2013 that included the Site and select adjacent properties that covered approximately 14.28 acres (i.e., 202 Franklin Street, 119 Franklin Street, 211 Franklin Street, and 120 West Connell Street). This report identified that the Site has been used for residential occupancy, a wood alcohol manufacturing facility and warehouses, a textile sewing operation, multiple waste paper pulp manufacturers, and a parking lot. A railroad spur was also identified crossing the southern portion of the Site. RECs pertaining to the Site, that were identified in the 2013 Phase I ESA include:

• Industrial historical occupants of the 202 Franklin Street parcel (i.e., the parcel located on the north side of Franklin Street) included the Olean Bag Co., Seaman Container Co., United Wood Alcohol Company, Arvey Ware Company, and Fibre Forming Corporation. Some of

the chemicals, hazardous substances and waste products used/generated during these operations included:

- Materials and waste products associated with the manufacture of wood alcohol; chemicals and waste products associated with waste paper pulp product manufacturing including paints, enamels and asphalt; and,
- Petroleum products, coal, and ash associated with power plants/boilers fueling operations at these facilities."
- Railroad spurs were present in various areas of the Site, both north and south of Franklin Street and apparent railroad ballast material was observed on the ground surface of the Site.
- The historical use of the adjoining and nearby properties revealed a long history of industrial use of the area. The most significant historical use of the area was an oil refinery, which extended to the northeast, north, northwest, west and southwest of the Site. Numerous oil storage tanks, processing equipment and pipelines were located on the refinery complex. Other industries, which were located in the vicinity of the Site, and which may have used, stored and disposed of hazardous/petroleum products/wastes included: Acme Glass, Seaman Container Manufacturing, Wheeling Corrugating Co, and Empire Mills.
- The NYSDEC spills database identified four spills at off-site properties, including: the adjoining property to the west/northwest ("Former Socony Vacuum" site); the adjoining property to the west/southwest ("Offsite Scott Rotary Seal BCP site"); and two properties located approximately 0.25 miles north ("MJ Painting Contractor" site and "Offsite Homer Street BCP site"). These four spills were attributed to the historic presence of an oil refinery operated by a predecessor to ExxonMobil. Off-site contaminant migration, potentially toward the assessed property, was identified at each of these spill sites.
- An approximate 500-acre area [in the vicinity of the Site] has been designated as a Brownfield Opportunity Area (BOA). This designation suggests recognition that environmental contamination may be present based on historical industrial uses. Additionally, this

designation indicates that certain community organizations and municipalities may be eligible for funding to complete revitalization plans and implementation strategies for areas or communities affected by the presence of Brownfield sites, and site assessments for strategic Brownfield sites.

Preliminary Phase II Environmental Site Assessment (Phase II ESA)

DAY completed a Preliminary Phase II ESA at the Site and select adjacent properties in 2013 (i.e., 202 Franklin Street, 119 Franklin Street, 211 Franklin Street, and 120 West Connell Street). The portion of the Preliminary Phase II ESA performed on the Site consisted of the advancement of two test borings (designated TB-01 and TB-06), the installation of one overburden groundwater monitoring well (designated MW-A) within test boring TB-01, and the collection and analysis of one groundwater sample.

The findings of the Preliminary Phase II ESA relative to the Site include:

- Beginning at a depth of about 20 feet (ft.) below ground surface (bgs), photoionization detector (PID) readings in excess of 100 parts per million (ppm) were measured above soil samples collected from test boring TB-01, and these samples exhibited a petroleum-like odor. A maximum PID reading of 121 ppm was measured above the bottom-most sample collected from test boring TB-01 at a depth of about 26 ft. bgs, and this sample exhibited petroleum-like odors.
- A peak PID reading of 275 ppm was measured above a groundwater sample collected from monitoring well MW-A. This sample exhibited a petroleum-like odor and petroleum-type sheen was observed on its surface.
- The laboratory reported a total petroleum hydrocarbon (TPH) concentration of 139 mg/l or ppm in the groundwater sample collected from monitoring well MW-A. The TPH was classified as 'unidentified petroleum product'. However, the laboratory indicated that the GC fingerprint of the petroleum product identified in groundwater sample MW-A was similar to #2 Fuel Oil and/or other oil, including lubricating, cutting, and silicon oil.

The concentration of tert-butylbenzene detected in the groundwater sample from MW-A [i.e., 5.38 ug/L or parts per billion (ppb)] exceeds the corresponding NYSDEC groundwater quality standard of 5 ug/l or ppb.

Limited Supplemental Phase II ESA

In February 2014, DAY completed a Limited Supplemental Phase II ESA at the Site which consisted of the advancement of ten test pits (designated TP-A through TP-J) and the collection and analysis of soil/fill samples.

The findings of the Limited Supplemental Phase II ESA relative to the Site include:

- Test pits excavated during this study detected the presence of fill materials typical of previous manufacturing operations (e.g., building debris, railroad ballast associated with former railroad lines, tar-like materials, etc.).
- Various metals (e.g., arsenic) and/or PAHs were measured in several of the samples tested during this study at concentrations that exceed Unrestricted Use SCOs, Restricted Commercial Use SCOs and/or Protection of Groundwater SCOs.

2.3.3 Summary of Remedial Investigation Findings

A Remedial Investigation (RI) was performed to characterize the nature and extent of contamination at the Site. The results of the RI are described in detail in the following report:

 Remedial Investigation Alternatives Analysis Report, 202 Franklin Street, City of Olean, Cattaraugus County, New York, BCP Site Number: C905043, prepared by DAY dated July 14, 2017. The RI/AA report summarizes studies previously conducted at the Site, and presents the results of Remedial Investigation (RI) activities and presents various remedial alternatives developed to address contaminant impact identified at the Site.

Work completed as part of the RI was done in general accordance with the provisions outlined in a document titled *Remedial Investigation/Remedial Alternatives Analysis Work Plan,* 202 Franklin Street, Olean, New York 14760, NYSDEC Site Number C905043-05-14 prepared by DAY dated May 2014 (the RIWP). The scope of work included the following:

- Geophysical Survey: A geophysical survey was completed over exterior areas of the Site to evaluate the potential presence of USTs and/or other buried anomalies. Ten anomalies identified by the geophysical survey were evaluated through test borings or test pits.
- Utilities Evaluation including review of utility maps.
- Surface Soil Samples: Eleven surface soil samples were collected and submitted for laboratory analysis.
- Test Boring and Monitoring Well Installation: 15 test borings were advanced at the Site. A portion of the test borings were completed as groundwater monitoring wells. Soil and groundwater samples collected from these test borings and groundwater monitoring wells and submitted for laboratory analysis.
- Test Pit Excavation: 23 test pits were excavated at the Site. Soil and fill material samples collected from these test pits were submitted for laboratory analysis.
- Hydraulic Conductivity Testing.

Below is a summary of Site conditions when the RI was performed:

Surface Soil

VOCs were not detected at concentrations exceeding Unrestricted Use SCO in the surface soil samples tested, except for an estimated concentration of acetone in surface soil sample SS-05. This concentration of acetone does not exceed the Commercial Use SCO.

The concentrations of the following PAH SVOCs exceed their respective Unrestricted Use SCO in one or more surface soil samples: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene and indeno(1,2,3-cd)pyrene. The concentrations of the following PAH SVOCs also exceed their respective Commercial Use SCO in one or more surface samples: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene.

The concentrations of the following pesticide/herbicide and/or PCB compounds exceed their respective Unrestricted Use SCO in one or more surface soil samples: 4,4'-DDE, 4,4'-DDT, aldrin, and PCBs . However, these pesticide/herbicide and PCB compound concentrations do not exceed the Commercial Use SCO.

The concentrations of the following metals exceed their respective Unrestricted Use SCO in one or more surface soil samples: arsenic, copper, lead, mercury, nickel, selenium, and zinc. The concentrations of arsenic in surface soil samples SS-01, SS-03, SS-05 and SS-08, also exceed the Commercial Use SCO.

Soil/Fill

The concentrations of the VOC acetone exceeded the respective Unrestricted Use SCO in one or more subsurface soil/fill samples. The concentrations of VOCs reported in the subsurface soil/fill samples do not exceed the Commercial Use SCO.

The concentrations of the following SVOCs exceed their respective Unrestricted Use SCO in one or more subsurface soil/fill samples tested: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and phenol. The concentrations of the following PAH SVOCs also exceed their respective Commercial Use SCO in one or more surface samples: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene

The concentrations of the following pesticide/herbicide compounds exceed their respective Unrestricted Use SCO in one or more subsurface soil/fill samples: 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, and PCBs. The concentrations of pesticide/herbicide and PCBs reported in the subsurface soil/fill samples do not exceed the Commercial Use SCO.

The concentrations of the following metals exceed their respective Unrestricted Use SCO in one or more subsurface soil/fill samples: arsenic, barium, cadmium, chromium, copper, lead, manganese, mercury, nickel, selenium, and zinc. The concentrations of the following metals also exceed their respective Commercial Use SCO in one or more subsurface soil/fill samples: arsenic, barium, cadmium, copper, and lead.

Site-Related Groundwater

VOCs and SVOCs were not detected in the groundwater samples tested at concentrations exceeding groundwater standards or guidance values during either of the sample rounds completed during this study. However, VOC TICs were identified in samples from each of the monitoring wells during at least one of the sample events completed during this study, ranging between 6.3 ug/l (or ppb) and 201.9 ppb. Total VOC TIC concentrations in excess of 100 ppb were reported in both samples collected from MW-G. SVOC TICs ranging between 4.6 ppb and 105 ppb were identified in samples from each of the monitoring wells during this study. Total SVOC TIC concentration is excess of 100 ppb were reported during this study. Total SVOC TIC concentration is excess of 100 ppb were reported in the sample collected on June 26, 2014 from MW-G.

Note: An apparent plume of petroleum-impacted groundwater was identified in the western portion of the Site. However, this plume is attributable to an off-site source and the concentrations measured and the apparent degree of petroleum impact do not appear to increase as groundwater migrates through the Site. Pesticide/herbicide and PCB compounds were not detected in the groundwater samples tested during this study.

The concentrations of the following metals measured during at least one of the sample events completed during this study exceed their respective groundwater standards or guidance values antimony, arsenic, barium, iron, manganese, selenium, and sodium. Although the concentrations of iron, manganese and sodium exceeded their respective groundwater standards or guidance values, the concentrations measured are typical of background conditions and, as such, apparently not attributable to contaminants at the Site. The arsenic concentrations detected in samples from monitoring well MW-D (i.e., 31.5 ug/l and 63.4 ug/l) were approximately six and twelve times (respectively) higher than the average of arsenic concentrations detected in the other wells sampled, and about 50% and 150% (respectively) higher than the groundwater standard of 25 ug/l. The barium concentrations detected in samples from monitoring well MW-D (i.e., 1,530 ug/l and 2,490 ug/l) were approximately five and eight times (respectively) higher than the average of barium concentrations detected in the other wells sampled, and about 50% and 150% (respectively) higher than the average of barium concentrations detected in the other wells sampled, and about 50% and 150% (respectively) higher than the average of barium concentrations detected in the other wells sampled, and about 50% and 150% (respectively) higher than the average of barium concentrations detected in the other wells sampled, and about 50% and 150% (respectively) higher than the average of barium concentrations detected in the other wells sampled, and about 50% and 150% (respectively) higher than the average of barium concentrations detected in the other wells sampled, and about 50% and 150% (respectively) higher than the groundwater standard of 1000 ug/l.

2.3.4 Summary of Remedial Actions

The following is a summary of the Remedial Actions performed at the Site:

- 1. Metal Waste Fill Removal
- 2. UST Removal.
- 3. Cover system

2.3.4.1 Metal Waste Fill Removal

Metal waste fill was removed from the subsurface at the Site between September 20 and 22, 2017. The approximate areas from which the metal waste fill was removed (i.e., located in the northeast portion of the Site) are depicted on Figure 6.

On September 20, 2017, the topsoil was stripped from an approximate 6,540 square-foot area located in the northeast portion of the Site to an approximate depth of 0.3 ft. bgs and stockpiled on the Site. The locations of the eleven anomalies identified by the geophysical survey during the RI, within the area that had been stripped of topsoil, (herein referred to as Area 1 through Area 11)were demarcated for subsequent excavation. The approximate locations of Area 1 through Area 11 are depicted on Figure 6.

Excavation in the vicinity of Area 1 and Area 2 was completed on September 20, 2017, starting at the northern edge of Area 1, followed by excavation of Area 2 before proceeding to the southern portion of Area 1. Waste materials encountered in the subsurface (i.e., starting below the stripped topsoil and extending to depths up to approximately 4 ft. bgs) were removed using an excavator. These materials included discolored (i.e., black) soil/fill, black vitrified fragments of apparent tar or plastic material, brick, iron bar, sheet metal, welded wire mesh, steel machinery components (e.g., gears), a rectangular steel open-top container (i.e., bin), and a 2-inch-thick layer of ash, slag and cinders. The excavated material was placed directly into the bucket of a loader, transported to the northeast portion of the employee parking lot, and stockpiled on two layers of 10-mil thick poly sheeting. The limits of Area 1 and Area 2 were increased or modified in order to remove the metal waste fill encountered, and excavation advanced in depth and/or area until the metal waste fill was no longer observed in the sidewalls or base of the excavation. During excavation activities, portions of the materials excavated, excavation sidewalls, and the excavation base were screened using a PID. PID readings above background levels (i.e., 0.0 ppm to 0.2 ppm) were not measured in the areas screened.

Excavation in the vicinity of Area 3 through Area 8 was completed on September 21, 2017, starting with Area 6 and proceeding toward the southwest, then east. Waste materials encountered in the subsurface (i.e., starting below the stripped topsoil and extending to depths up to approximately 4.5 ft. bgs) were removed using an excavator. These materials included discolored (i.e., black to rust colored) soil/fill, welded wire mesh, partially incinerated materials, black vitrified fragments of apparent tar or plastic material, steel cable, ash, and steel bar. The depths at which the top of the metal waste fill was encountered generally increased toward the north. Therefore, a 1 ft. to 2 ft. thick layer of 'clean' fill soil (i.e., that did not exhibit evidence of

containing metal waste or produce readings above background levels in the ambient air when screened with a PID) was encountered above portions of the metal waste fill, starting at the ground surface and extending to the top of the metal waste fill layer. When practical this material, where encountered, was stripped and used to backfill areas were removal activities had been completed. Excavation, removal, stockpiling, and screening activities completed on September 21, 2017 were conducted in a similar manner to that described above.

Excavation in the vicinity of Area 9 through Area 11 was completed on September 22, 2017, starting with Area 11 and proceeding toward the southwest. Waste materials encountered in the subsurface (i.e., starting below the stripped topsoil and extending to depths up to approximately 4.5 ft. bgs) where removed using an excavator. These materials included discolored (i.e., black or rust colored) soil/fill, sheet metal tabs (i.e., waste from an apparent stamping operation), brick, concrete, glass, a steel rail, a rail tie timber, apparent railroad bed ballast, partially incinerated materials, black vitrified fragments of apparent tar or plastic material, and steel cable. Excavation, removal, stockpiling, screening, and 'clean' soil stripping activities completed on September 22, 2017 were conducted in a similar manner to that described above.

Representative soil/fill samples were collected from the waste stockpile that was generated from the metal waste fill excavations between September 20 and 22, 2017. A portion of each sample was placed in laboratory provided glassware for subsequent testing by a NYSDOH environmental laboratory accreditation program (ELAP)-certified laboratory.

SolEpoxy prepared waste profile #118494NY on behalf of Silence Dogood. This profile, including the results of the testing described above, was submitted to Waste Management, Inc., in Model City, New York (Waste Management) for approval. Waste Management approved waste profile #118494NY on December 21, 2017.

On January 9, 2018, approximately 289 tons of soil/fill were transported to Waste Management's Chafee Landfill and disposed under Waste Management profile #118494NY. The soil/fill was transported from the Site to the Chafee landfill by D&H Excavating, a NYCRR Part 364 permitted waste hauler (permit #9A-834).

2.3.4.2. UST Removal

An 8,000-gallon UST was removed from the Site between September 25 and 26, 2017. The former location of UST (i.e., adjacent to the southwest corner of the employee parking lot at the Site) is depicted on Figure 7. Prior to the removal of the UST, the residual liquid from the tank was removed, to the extent possible, using a vacuum truck. Once the liquid contents were removed, a pressure washer was used to clean the UST interior, and the wash liquids were evacuated using the vacuum truck. The liquid removed from the UST interior (i.e., product and cleaning fluids) was transferred from the vacuum truck into three New York State Department of Transportation (NYSDOT) approved, steel, 55-gallon drums, that were subsequently placed on and covered with 2 layers of 10-mil thick poly sheeting on the northeast portion of the employee parking lot.

The UST was removed from the ground and observed. An apparent product supply pipe was observed to be broken below a 90° elbow fitting that was affixed to the UST (i.e., located at the invert of the south end wall). [Note: during the subsequent soil removal (described below), the apparent product supply pipe was observed to extend approximately five feet to the east, where it turned 90° and entered the south face of the concrete foundation wall, approximately one foot above the elevation of the footer. When the apparent product supply pipe was disconnected from the concrete foundation wall, perched water flowed from the opening in the wall. The water did not exhibit evidence of impact (i.e., sheen, odor, discoloration, etc.).] Although the steel walls were observed to be covered by rust, and pitting was noted, no obvious holes or other areas of potential failure were noted in the UST exterior.

After the tank was removed, a DAY representative observed the excavation floor and sidewalls of the excavation for evidence of impact (i.e., staining, petroleum or chemical type odors, free product, etc.) and screened soil samples collected from the excavation with a PID. During this evaluation, evidence of apparent impact was observed in the south end wall of the excavation, in the vicinity of the former location of the apparent product supply pipe described above. The impacts observed consisted of gray/black staining, chemical-type odors and a peak PID readings in excess of 500 ppm. In addition, a thin layer (i.e., approximately 0-1 ft. thick) of apparent fill

material was observed below the UST, located approximately 10.5 ft. to 11.5 ft. bgs. This material was black in color, but did not emit an odor. PID readings over this material were not measured above background levels. [Note: based on its location and thickness, is suspected that this material was placed below the UST as a bedding layer when the UST was installed, rather than the result of impacts from a release of the former UST contents.]

Between September 27 and 28, 2017, the 0-1 ft. thick layer of apparent tank bedding fill material was excavated and stockpiled on a double layer of 10-mil thick poly sheeting to await disposal at a regulated facility. In addition, apparently impacted soil located in the vicinity of the south end wall of the UST was excavated, and added to the stockpile described above. Specifically, this apparently impacted soil was removed from an area extending approximately 6.5 ft. to the south, southeast, and southwest of the south end wall of the former UST (refer to Figure 6); to a maximum depth of approximately 15.5 ft. bgs. The extent of the removal was determined by the DAY representative and the NYSDEC Project Manager based on observation of the impacted material in the excavation sidewalls and base (i.e., generally in the vicinity of, and extending away from, the apparent product pipe described above), the results of PID readings collected over spoils excavated from the impacted zone, and obstructions that limited the amount of material that could be removed. Specifically, the extent of the removal was limited by the proximity to the western property boundary and utilities located along Franklin Street, the concrete foundation wall, and the reach of the excavator bucket (i.e., to a maximum depth of approximately 15.5 ft. bgs). Excavation and removal of the impacted material continued, extending away from the apparent source (i.e., the apparent product pipe) until PID readings indicated the edge of the impact, or until further excavation was not practical, due to one or more of the limitations described above. Piping encountered during the excavation activities (i.e., extending from the concrete foundation wall) was disconnected and recycled as scrap.

Demarcation layers (i.e., orange plastic net fabric) were placed over the base and sidewalls to demarcate the furthest extent of excavation that was completed during the UST and impacted soil removals. In addition, a demarcation layer was placed in the southern portion of the excavation (i.e., generally to the south of the former position of the UST) at a depth of around 11 ft. bgs, for the purpose of marking the top of the impacted soil layer that was encountered. Confirmatory samples were collected from the sidewalls and base of the excavation on September 28, 2017 prior to placement of demarcation layers.

A representative sample of liquids removed from the UST interior (i.e., product and cleaning fluids) was collected by SUN on September 26, 2017 and submitted to Paradigm, a NYSDOH ELAP-certified laboratory. The liquid sample was tested for flashpoint using USEPA Method 1010A, and the results of the testing characterized the liquid waste a RCRA hazardous (D001) flammable liquid. Therefore, a temporary hazardous waste generator ID (NYR000233627) was obtained from the USEPA by SolEpoxy representatives. On November 8 2017, SUN transported three 55-gallon drums of liquid waste to Cycle Chem., Inc. in Lewisberry, Pennsylvania for treatment/disposal.

On September 29, 2017, three representative soil/fill samples were collected from the UST excavation waste stockpile that was generated between September 27 and 28, 2017. A portion of each sample was placed in laboratory provided glassware for subsequent testing by Spectrum, a NYSDOH ELAP-certified laboratory. The three soil samples were composited into a single sample by Spectrum and tested for VOCs plus TICs using USEPA Method 8260, SVOCs plus TICs using USEPA Method 8270, RCRA-list metals using various methods, pesticides using USEPA Method 8081, herbicides using USEPA Method 8151, PCBs using USEPA Method 8082, ignitability using USEPA Method 1010, corrosivity using USEPA Method 9045, and reactivity using various methods.

SolEpoxy prepared waste profile #118496NY on behalf of Silence Dogood. This profile, including the results of the testing described above, was submitted to Waste Management, Inc., in Model City, New York for approval. Waste Management approved waste profile #118496NY on December 21, 2017.

On January 9, 2018, approximately 86 tons of soil/fill were transported to Waste Management's Chafee Landfill and disposed of under Waste Management profile #118496NY. The soil/fill was transported from the Site to the Chafee landfill by D&H Excavating.

2.3.4.3 Installation of Cover System

Between October 23 and 27, 2017 and approximate 140,00 sq. ft. area of the Site located to the north of the employee parking lot was prepared for the placement of an interim soil cover by removal of vegetative cover and grading and compaction of the ground surface.

Between November 2 and 28, 2017, an interim soil cover was constructed over an approximate 107,350 sq. ft. area. This interim soil cover consisted of an approximate 0.45 ft. to 1.25 ft. layer of gravel fill meeting the criteria for aggregate material as outlined in Section 5.4(e) of DER-10, underlain by a layer of woven geotextile (i.e., which also acts as a demarcation layer to identify the bottom of the site cover, if disturbed during future intrusive work at the Site). The woven geotextile was placed on the ground surface, overlapping approximately 1-2 ft. when adjacent rolls of woven geotextile were placed as the construction proceeded toward the north and east. The gravel fill was subsequently placed on the woven geotextile, spread, and compacted using a flat-drum vibratory soil compactor.

An approximate 31,700 sq. ft. area, located on the northern portion of the Site and adjacent to the north of the interim soil cover was compacted as described above. However, the interim soil cover was not constructed over this area at that time.

Construction of the soil cover system for the Site resumed in July 2019 following a limited soil/fill removal, completed to provide adequate depth to place a 1-foot thick layer of "clean cover soil" over exterior portions of the Site, to the edge of the Site boundary, and maintain the existing grade over the adjacent employee parking lot. Additional soil/fill was removed for grading purposes prior to placement of a stone in the drainage channel that was constructed to the north of the employee parking lot. The material removed generally consisted of re-worked soil. However, some apparent construction and demolition type materials including brick, concrete, and asphalt were also noted in the fill. The excavated materials were loaded into a dump truck, transported to the northwest portion of the Site, and placed at the ground surface over an approximate 6,000 ft2 area to create a berm. This material was subsequently covered with demarcation fabric and a minimum 1-foot thick layer of import soil cover.

Subsequent to the excavation and grading activities, a demarcation fabric was placed over the areas designated for soil cover and temporary grade stakes were installed to guide the placement of the soil cover (refer to Section 2.5.1 for a description of the demarcation fabric).

Generally, the soil cover was constructed by placement of the import soil material onto the Site using a dump truck, and subsequently spreading the soil using a bulldozer and/or skid-steer loader to achieve a grade elevation of approximately 2-3 inches above the top of the grade stake markers. The material was subsequently compacted using a drum- roller until the required 1-foot thickness was achieved. However, the soil cover constructed along the southern perimeter of the Site was placed and compacted using an excavator bucket, in order to keep to import soil from migrating onto the asphalt parking lot. A portion of the soil cover system was constructed using a washed stone material, to facilitate stormwater drainage away from the Employee Parking Lot and this area is depicted on Figure 11. In addition, a much cover was constructed below the canopies of mature trees located on the eastern edge of Site, in lieu of a soil cover (i.e., due to the negative effect that the soil cover may have on the long-term health of the mature trees).

Subsequent to completing the construction of the soil cover, portions of the soil cover surface (i.e., along the southern, southwestern and northeastern edges of the Employee Parking Lot) were top-dressed with a one to three inch thick layer of screened soil (refer to Section 3.5) and subsequently seeded with grass seed and covered with straw to promote vegetative growth. The remainder of the soil cover was seeded by placement of grass seed and straw directly onto the compacted surface. The areas of soil cover that are considered part of the cover system are depicted on Figure 11.

2.4 Remedial Action Objectives

The Remedial Action Objectives (RAOs) for the Site as listed in the Decision Document dated August 2017 are as follows:

Groundwater

RAOs for Public Health Protection:

• Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.

RAOs for Environmental Protection:

- Remove the source of ground or surface water contamination.
- Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practical.

<u>Soil</u>

RAOs for Public Health Protection:

• Prevent ingestion/direct contact with contaminated soil.

RAOs for Environmental Protection:

• Prevent migration of contaminants that would result in groundwater or surface water contamination.

2.5 Remaining Contamination

2.5.1 <u>Soil</u>

Concentrations of individual constituents detected in specific surface soil samples, soil/fill samples, and confirmatory soil samples are presented on Table 3A and 4A (VOCs), Table 3B and 4B (SVOCs), Table 3C and 4C (PCBs and Pesticides) and Table 3D and 4D (Metals and Cyanide) which summarize the analytical samples results of soil remaining at the Site after completion of the remedial measures and indicates exceedance of Unrestricted Use SCOs and/or Restricted Commercial SCOs. [Note: Confirmatory soil samples were also tested for Alcohol using modified USEPA Method 8015, PCBs using USEPA Method 8082 and organochloride pesticides using USEPA Method 8081. However, these compounds were 'Not Detected' above the detection limits utilized by the analytical laboratory in the confirmatory soil samples tested. As such, summary tables for Alcohols, PCBs or Pesticides were not prepared for the confirmatory soil samples.]

Figure 8 presents the soil/fill samples that represent post-remediation Site conditions and designates samples containing one or more constituents at concentrations exceeding their respective Restricted Commercial Use SCOs. Figure 10 indicates the exterior areas of the site with a cover system consisting of a one-foot thick layer of cover soil underlain with a demarcation layer. Two distinct types of demarcation fabric were used at the Site, as described below:

- A black, woven geotextile fabric (i.e., TerraTex® GS) was placed over the approximate 107,350 sq. ft. area of interim soil cover, over an approximate 14,500 sq. ft. area located at the northeast corner of the Site, and within the drainage channel, to replace the demarcation fabric removed during the limited excavation activities described in Section 2.3.4.3.
- An orange netting-type fabric (i.e., High Visible Orange Demarcation Netting) was placed over the approximate 2,300 ft2 area located along the southwest edge of the Employee Parking Lot, the approximate 2,700 ft2 area located along the northeast edge of the Employee Parking Lot, the approximate 1,920 ft2 area located along the southeast edge of the Employee Parking Lot, and an approximate 13,800 ft2 area located to the north and northwest of the area of interim soil cover.

Remaining areas have a cover system consisting of asphalt pavement that is underlain by concrete pavement in some areas. As shown on Figure 8, contamination exceeding the Restricted Commercial Use SCOs remains in place following completion of the remedial measures. Contaminants of concern in soil above the Restricted Commercial Use SCOs that remain in place following remedial measures include benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, chrysene, dibenzo(a,h)anthracene and indeno(1,2,3-cd)pyrene, arsenic, barium, cadmium, copper, and lead.

2.5.2 Groundwater

Detectable levels of VOC TICs and SVOC TICs are present in groundwater at the Site; however, VOCs and SVOCs were not consistently detected in the groundwater samples at concentrations greater than groundwater standards or guidance values [i.e., the compounds tertbutylbenzene and bis(2-chloroethyl)ether were detected in groundwater samples collected from one or more of the monitoring wells at the Site. However, neither of these compounds was detected on more than one occasion in any of the locations tested.] Various metals are present in groundwater at concentrations greater than their respective groundwater standards or guidance values, including antimony, arsenic, barium, iron, manganese, selenium, sodium and thallium. The concentrations of iron, manganese and sodium are typical of background conditions and, as such, apparently not attributable to contaminants at the Site. As shown on Figure 9, a discernible plume in relation to metals was not identified at the Site. Rather localized areas of metal impacts appear to be present across the Site. Tables 5A through 5D and Figure 9 summarize the results of groundwater samples that exceed the SCGs after completion of the remedial action.

Note: An apparent plume of petroleum-impacted groundwater was identified in the western portion of the Site. However, this plume is attributable to an off-site source and the concentrations measured and the apparent degree of petroleum impact do not appear to increase as groundwater migrates through the Site.

3.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN

3.1 General

Since remaining contamination exists at the site, Institutional Controls (ICs) and Engineering Controls (ECs) are required to protect human health and the environment. This IC/EC Plan describes the procedures for the implementation and management of all IC/ECs at the site. The IC/EC Plan is one component of the SMP and is subject to revision by the NYSDEC.

This plan provides:

- A description of all IC/ECs on the Site;
- The basic implementation and intended role of each IC/EC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the controls to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of IC/ECs, such as the implementation of the Excavation Work Plan (EWP) (as provided in Appendix B) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the Site; and
- Any other provisions necessary to identify or establish methods for implementing the IC/ECs required by the site remedy, as determined by the NYSDEC.

3.2 Institutional Controls

A series of ICs is required by the Decision Document to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination; and, (3) limit the use and development of the Site to Restricted Commercial and Restricted Industrial uses only. Adherence to these ICs on the Site is required by the Environmental Easement and will be implemented under this SMP. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The IC boundaries are shown on Figure 11. These ICs are:

- The property may be used for restricted commercial and restricted industrial uses;
- All ECs must be operated and maintained as specified in this SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Cattaraugus County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any physical component of the remedy shall be performed as defined in this SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 11, and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the Site are prohibited

3.3 Engineering Controls

3.3.1 Cover System

Exposure to remaining contamination at the Site is prevented by a cover system placed over the Site. This cover system is comprised of asphalt pavement and/or a minimum of 12 inches of clean fill material, underlain by a demarcation layer. Figure 11 presents the location of the cover system and Figure 10 presents the extent of the demarcation layers. The Excavation Work Plan

(EWP) provided in Appendix B outlines the procedures required to be implemented in the event the cover system is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. Procedures for the inspection of this cover are provided in the Monitoring and Sampling Plan included in Section 4.0 of this SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) and associated Community Air Monitoring Plan (CAMP) prepared for the Site and provided in Appendix H.

3.3.2 Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, remedial processes are considered completed when monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.4 of NYSDEC DER-10.

3.3.2.1 - Cover System

The composite cover system is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in accordance with this SMP in perpetuity.

3.3.3 Soil Vapor Intrusion Evaluation and Mitigation

At the time of the writing of this SMP, there are no buildings located on the Site. However, the potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 11, and any potential impacts that are identified must be monitored or mitigated. Vapor intrusion mitigation systems, if required, will be designed and monitored as engineering controls, requiring modification of this document. Exposures related to soil vapor intrusion in future buildings at the Site may be addressed through remedial programs with ExxonMobil. [Note: As stated in Section 6.3 of the Decision Document, "This site is situated immediately downgradient of the former ExxonMobil Refinery footprint with documented petroleum contamination. The soil and groundwater impacts from the former refinery are being addressed under multiple Brownfield Cleanup Program sites and by ExxonMobil through the Department's spills program."]

4.0 MONITORING AND SAMPLING PLAN

4.1 General

This Monitoring and Sampling Plan describes the measures for evaluating the overall performance and effectiveness of the remedy. This Monitoring and Sampling Plan may only be revised with the approval of the NYSDEC. Details regarding the sampling procedures, data quality usability objectives, analytical methods, etc. for all samples collected as part of site management for the Site are included in the Quality Assurance Project Plan provided in Appendix G.

This Monitoring and Sampling Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance (SCGs), particularly groundwater standards and Part 375 SCOs for soil; and
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment;

To adequately address these issues, this Monitoring and Sampling Plan provides information on:

- Sampling locations, protocol and frequency;
- Analytical sampling program requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and
- Annual inspection and periodic certification.

Reporting requirements are provided in Section 7.0 of this SMP.

4.2 Site – wide Inspection

Site-wide inspections will be performed at a minimum of once per year. Modification to the frequency or duration of the inspections will require approval from the NYSDEC. Site-wide inspections will also be performed after all severe weather conditions that may affect ECs or monitoring devices. During these inspections, an inspection form will be completed as provided in Appendix I – Site Management Forms. The form will compile sufficient information to assess the following:

- Compliance with all ICs, including site usage;
- An evaluation of the condition and continued effectiveness of ECs;
- General site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection; and
- Confirm that Site records are up to date.

Inspections of all remedial components installed at the Site will be conducted. A comprehensive site-wide inspection will be conducted and documented according to the SMP schedule, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether ECs continue to perform as designed;
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria; and
- If Site records are complete and up to date.

Reporting requirements are outlined in Section 7.0 of this plan.

Inspections will also be performed in the event of an emergency. If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs that reduces or has the potential to reduce the effectiveness of ECs in place at the Site, verbal notice to the NYSDEC must be given by noon of the following day. In addition, an inspection of the Site will be conducted within 5 days of the event to verify the effectiveness of the IC/ECs implemented at the Site by a qualified environmental professional, as determined by the NYSDEC. Written confirmation must be provided to the NYSDEC within 7 days of the event that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.

4.3 Post-Remediation Media Monitoring and Sampling

Groundwater samples shall be collected from the groundwater monitoring wells at the Site on a routine basis. Groundwater sampling locations, required analytical parameters and schedule are provided in Table 6.

Detailed sample collection and analytical procedures and protocols are provided in Appendix F – Field Activities Plan and Appendix G – Quality Assurance Project Plan.

4.3.1 Groundwater Sampling

Groundwater monitoring will be performed annually for an initial period of three years to assess the performance of the remedy at which time the NYSDEC will be contacted to discuss subsequent sampling requirements. Modification to the frequency or sampling requirements will require approval from the NYSDEC.

The network of monitoring wells has been installed to monitor upgradient, on-site and downgradient groundwater conditions at the Site. The network of on-site wells has been designed based on the following criteria:

- Monitoring wells MW-A and MW-C are study area upgradient perimeter wells and provide information on contaminants that may be migrating onto the Site from adjoining properties.
- Monitoring wells MW-B and MW-D are Site area wells and provide information on contaminant concentrations within the Site.

• Monitoring wells MW-E, MW-F and MW-G are study-area downgradient perimeter wells and provide information on contaminants that may be migrating from the Site.

Refer to Figure 3 for a Site plan showing the locations of the monitoring wells installed at the Site. The encountered lithology types, monitoring well screened intervals and monitoring well installation depths are presented on the test boring and monitoring well construction logs included in Appendix E. Although groundwater elevations vary seasonally, the groundwater flow patterns presented on Figures 5A and 5B indicate that groundwater flow is typically towards the southeast.

Table 6 summarizes each wells' identification number, as well as the purpose, location, depth, diameter and screened interval of each well. As part of the groundwater monitoring, seven on-site wells will be sampled to evaluate the effectiveness of the remedial system. Table 6 also provides information on analytical parameters to be analyzed, and historical groundwater elevations from measurements performed in July 2014 and November 2014.

Monitoring well construction logs are included in Appendix E of this document.

If biofouling or silt accumulation occurs in the on-site and/or off-site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced, if an event renders the wells unusable.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

The NYSDEC will be notified prior to any repair or decommissioning of any monitoring well for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent Periodic Review Report. Well decommissioning without replacement will be done only with the prior approval of the NYSDEC. Well abandonment will be performed in accordance with NYSDEC's guidance entitled "CP-43: Groundwater Monitoring Well Decommissioning Procedures." Monitoring wells that are decommissioned because they have been rendered unusable will be replaced in kind in the nearest available location, unless otherwise approved by the NYSDEC.

The sampling frequency may only be modified with the approval of the NYSDEC. This SMP will be modified to reflect changes in sampling plans approved by the NYSDEC.

Deliverables for the groundwater monitoring program are specified in Section 7.0 - Reporting Requirements.

4.3.2 Monitoring and Sampling Protocol

Sampling activities will be recorded in a field book and associated sampling log as provided in Appendix I - Site Management Forms. Other observations (e.g., groundwater monitoring well integrity, etc.) will be noted on the sampling log. The sampling log will serve as the inspection form for the monitoring network. Additional detail regarding monitoring and sampling protocols are provided in the site-specific Field Activities Plan provided as Appendix F of this document.

5.0 OPERATION AND MAINTENANCE PLAN

5.1 General

The Site remedy does not rely on any mechanical systems, such as groundwater treatment systems, sub-slab depressurization systems or air sparge/soil vapor extraction systems to protect public health and the environment. Therefore, the operation and maintenance of such components is not included in this SMP.

6.0 PERIODIC ASSESSMENTS/EVALUATIONS

6.1 Climate Change Vulnerability Assessment

Increases in both the severity and frequency of storms/weather events, an increase in sea level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuation, resulting from global climactic change and instability, have the potential to significantly impact the performance, effectiveness and protectiveness of a given site and associated remedial systems. Vulnerability assessments provide information so that the Site and associated remedial systems are prepared for the impacts of the increasing frequency and intensity of severe storms/weather events and associated flooding.

This section provides a summary of vulnerability assessments that will be conducted for the Site during periodic assessments, and briefly summarizes the vulnerability of the Site and/or engineering controls to severe storms/weather events and associated flooding.

- Flood Plain: Based on review of a Flood Insurance Rate Map for a portion of the City of Olean, NY (Community Panel 360068 0001 B effective date November 1, 1978) acquired from the online FEMA Flood map services Center, the Site is identified with a Zone B designation. Zone B is defined as "Areas of moderate flood hazard, area between limits of the 100-year flood and 500-year flood; or certain areas subject to 100-year flooding with average depths less than 1 foot or where the contributing drainage are is less than one square mile; or areas protected by levees from the base flood". As such, the Site is considered outside the 100-year floodplain.
- Site Drainage and Storm Water Management: The existing Site development has adequate storm water management systems.
- Erosion: The grade of the Site is such that significant erosion will not occur during periods of severe rain events.
- High Wind: Remedial system components (i.e., asphalt and soil cover system) are not susceptible to damage from the wind itself or falling objects, such as trees or utility structures during periods of high wind.

- Electricity: Remedial system components (i.e., asphalt and soil cover system) are not susceptible to damage from power loss and/or dips/surges in voltage during severe weather events, including lightning strikes
- Spill/Contaminant Release: No areas of the Site and/or remedial system are anticipated to be susceptible to a spill or other contaminant release due to storm-related damage caused by flooding, erosion, high winds, loss of power etc.

6.2 Green Remediation Evaluation

NYSDEC's DER-31 Green Remediation requires that green remediation concepts and techniques be considered during all stages of the remedial program including site management, with the goal of improving the sustainability of the cleanup and summarizing the net environmental benefit of any implemented green technology. This section of the SMP provides a summary of any green remediation evaluations to be completed for the Site during site management, and as reported in the Periodic Review Report (PRR).

- Waste Generation: Waste generation is minimal since engineering controls and institutional controls are used as part of the remedy. In addition, groundwater sampling techniques utilized for this Site generate minimal quantities of waste. As such, it does not appear that additional waste reduction efforts are necessary at this time.
- Energy Usage: The remedy for the Site does not require an energy source.
- Emissions: Emissions from the Site, in relation to the site remedy, are not anticipated.
- Water usage: Potable water use at the Site as part of the remedy is minimal (e.g., decontamination water), and is procured from the City of Olean public water system.
 In addition, the analytical laboratory may provide minimal amounts of deionized water for certain types of samples associated with monitoring.
- Land and/or ecosystems: No disturbance or restoration of land and/or ecosystems is anticipated in relation to the remedy for the Site.

6.2.1 <u>Timing of Green Remediation Evaluations</u>

For major remedial system components, green remediation evaluations and corresponding modifications will be undertaken as part of a formal Remedial System Optimization (RSO), or at any time that the Project Manager feels appropriate, e.g. during significant maintenance events or in conjunction with storm recovery activities.

Modifications resulting from green remediation evaluations will be routinely implemented and scheduled to occur during planned/routine operation and maintenance activities. Reporting of these modifications will be presented in the PRR, and will incorporate the Green Remediation Metrics Form (Appendix I), as applicable.

6.2.2 Frequency of System Checks, Sampling and Other Periodic Activities

Transportation to and from the Site and use of consumables in relation to visiting the Site in order to conduct system checks and or collect samples and shipping samples to a laboratory for analyses have direct and/or inherent energy costs. The schedule and/or means of these periodic activities have been prepared so that these tasks can be accomplished in a manner that does not impact remedy protectiveness but reduces expenditure of energy or resources.

6.2.5 <u>Metrics and Reporting</u>

The remedy for the Site involves little to no waste generation, energy usage, water usage, transportation, and disturbance to land/ecosystems. As such, documentation and reporting in relation to green remediation during site management is not warranted.

6.3 Remedial System Optimization

A Remedial Site Optimization (RSO) study will be conducted any time that the NYSDEC or the remedial party requests in writing that an in-depth evaluation of the remedy is needed. An RSO may be appropriate if any of the following occur:

- The remedial actions have not met or are not expected to meet RAOs in the time frame estimated in the Decision Document;
- The management and operation of the remedial system is exceeding the estimated costs;
- The remedial system is not performing as expected or as designed;
- Previously unidentified source material may be suspected;
- Plume shift has potentially occurred;
- Site conditions change due to development, change of use, change in groundwater use, etc.;
- There is an anticipated transfer of the site management to another remedial party or agency; and
- A new and applicable remedial technology becomes available.

An RSO will provide a critique of a site's conceptual model, give a summary of past performance, document current cleanup practices, summarize progress made toward the Site's cleanup goals, gather additional performance or media specific data and information and provide recommendations for improvements to enhance the ability of the present system to reach RAOs or to provide a basis for changing the remedial strategy.

The RSO study will focuses on overall site cleanup strategy, process optimization and management with the intent of identifying impediments to cleanup and improvements to site operations to increase efficiency, cost effectiveness and remedial time frames. Green remediation technology and principals are to be considered when performing the RSO.

7.0. **REPORTING REQUIREMENTS**

7.1 Site Management Reports

All site management inspection, maintenance and monitoring events will be recorded on the appropriate site management forms provided in Appendix I. These forms are subject to NYSDEC revision.

All applicable inspection forms and other records, including media sampling data and system maintenance reports, generated for the Site during the reporting period will be provided in electronic format to the NYSDEC in accordance with the requirements of Table 2 and summarized in the Periodic Review Report.

Table 2: Schedule of Monitoring/Inspection Reports

Task/Report	Reporting Frequency*
Inspection Report (Site Cover)	Annually
Periodic Review Report	Annually, or as otherwise determined by the Department
Groundwater Monitoring Results Letter	Annually

* The frequency of events will be conducted as specified until otherwise approved by the NYSDEC.

All monitoring/inspections reports will include, at a minimum:

- Date of event or reporting period;
- Name, company, and position of person(s) conducting monitoring/inspection activities;
- Description of the activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet);

- Type of samples collected (e.g., groundwater);
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation, etc.);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format);
- Any observations, conclusions, or recommendations; and
- A determination as to whether contaminant conditions have changed since the last reporting event.

Routine maintenance event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting maintenance activities;
- Description of maintenance activities performed;
- Any modifications to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet); and,
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc., (attached to the checklist/form).

Non-routine maintenance event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;
- Description of non-routine activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and

• Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

Data will be reported in digital format as determined by the NYSDEC. Currently, data is to be supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link http://www.dec.ny.gov/chemical/62440.html.

7.2 Periodic Review Report

A Periodic Review Report (PRR) will be submitted to the Department beginning sixteen (16) months after the Certificate of Completion is issued. After submittal of the initial Periodic Review Report, the next PRR shall be submitted annually to the Department or at another frequency as may be required by the Department. In the event that the Site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the Site described in Appendix D -Environmental Easement. The report will be prepared in accordance with NYSDEC's DER-10 and submitted within 30 days of the end of each certification period. Media sampling results will also be incorporated into the Periodic Review Report. The report will include:

- Identification, assessment and certification of all ECs/ICs required by the remedy for the Site.
- Results of the required annual site inspections and severe condition inspections, if applicable.
- All applicable site management forms and other records generated for the Site during the reporting period in the NYSDEC-approved electronic format, if not previously submitted.
- Data summary tables and graphical representations of contaminants of concern by media (i.e., groundwater), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends.
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted in digital format as determined by the NYSDEC. Currently, data is supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link: http://www.dec.ny.gov/chemical/62440.html.

- A site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the site-specific RAWP, ROD or Decision Document;
 - Any new conclusions or observations regarding Site contamination based on inspections or data generated by the Monitoring and Sampling Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring and Sampling Plan; and
 - Trends in contaminant levels in the affected media will be evaluated to determine if the remedy continues to be effective in achieving remedial goals as specified by the Decision Document.
 - The overall performance and effectiveness of the remedy.

7.2.1 <u>Certification of Institutional and Engineering Controls</u>

Following the last inspection of the reporting period, a Professional Engineer licensed to practice in New York State will prepare, and include in the Periodic Review Report, the following certification as per the requirements of NYSDEC DER-10:

"For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;

- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices;
- The information presented in this report is accurate and complete; and
- No new information has come to my attention, including groundwater monitoring data from wells located at the site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as Silence DoGood, LLC.

In addition, the following certification will be added every five years:

• The assumptions made in the qualitative exposure assessment remain valid.

The signed certification will be included in the Periodic Review Report.

The Periodic Review Report will be submitted, in electronic format, to the NYSDEC Central Office, Regional Office in which the Site is located and the NYSDOH Bureau of Environmental Exposure Investigation. The Periodic Review Report may need to be submitted in hard-copy format, as requested by the NYSDEC project manager.

7.3 Corrective Measures Work Plan

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a Corrective Measures Work Plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Work Plan until it has been approved by the NYSDEC.

7.4 Remedial Site Optimization Report

In the event that an RSO is to be performed (see Section 6.3), upon completion of an RSO, an RSO report must be submitted to the Department for approval. A general outline for the RSO report is provided in Appendix K. The RSO report will document the research/ investigation and data gathering that was conducted, evaluate the results and facts obtained, present a revised conceptual site model and present recommendations. RSO recommendations are to be implemented upon approval from the NYSDEC. Additional work plans, design documents, HASPs etc., may still be required to implement the recommendations, based upon the actions that need to be taken. A final engineering report and update to the SMP may also be required.

The RSO report will be submitted, in electronic format, to the NYSDEC Central Office, Regional Office in which the Site is located, Site Control and the NYSDOH Bureau of Environmental Exposure Investigation.

8.0 **REFERENCES**

6NYCRR Part 375, Environmental Remediation Programs. December 14, 2006.

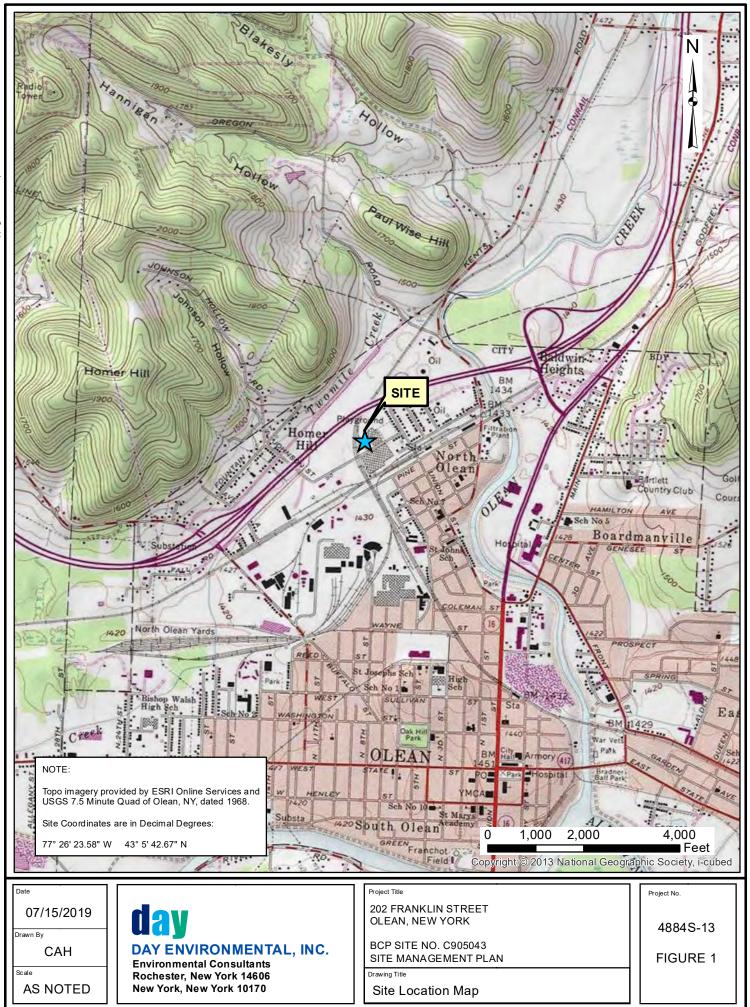
NYSDEC DER-10 - "Technical Guidance for Site Investigation and Remediation".

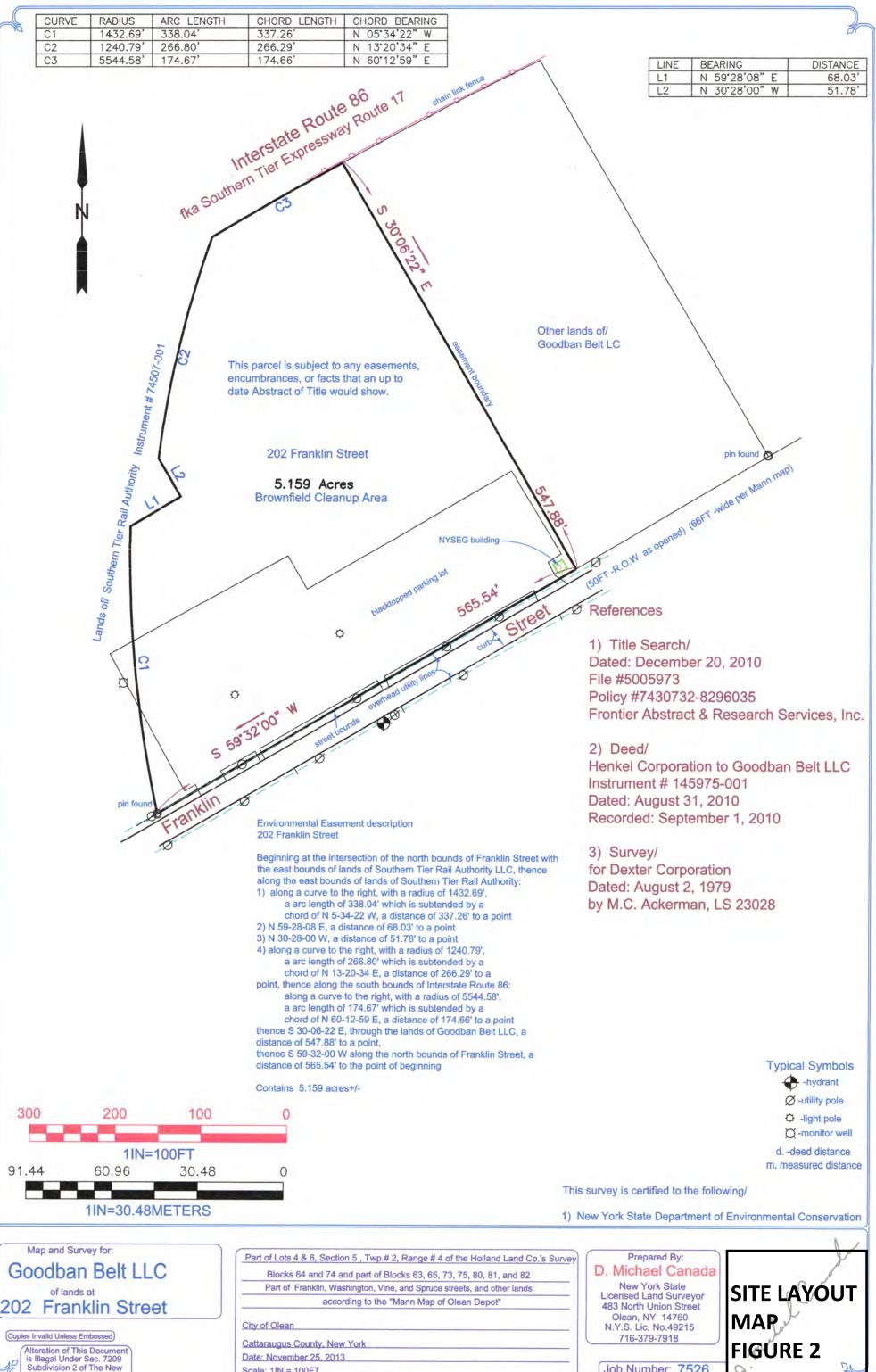
NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (April 2000 addendum).

Phase I Environmental Site Assessment, Henkel Corporation, 211 Franklin Street, Olean, New York dated May 2007 prepared by Environmental Resources Management.

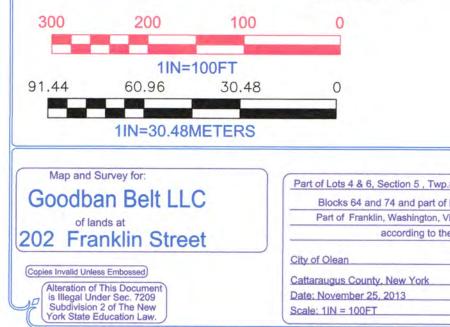
Phase 1 Environmental Site Assessment, 119, 202 & 211 Franklin Street and 120 West Connell Street, City of Olean, New York dated November 1, 2013 prepared by DAY.

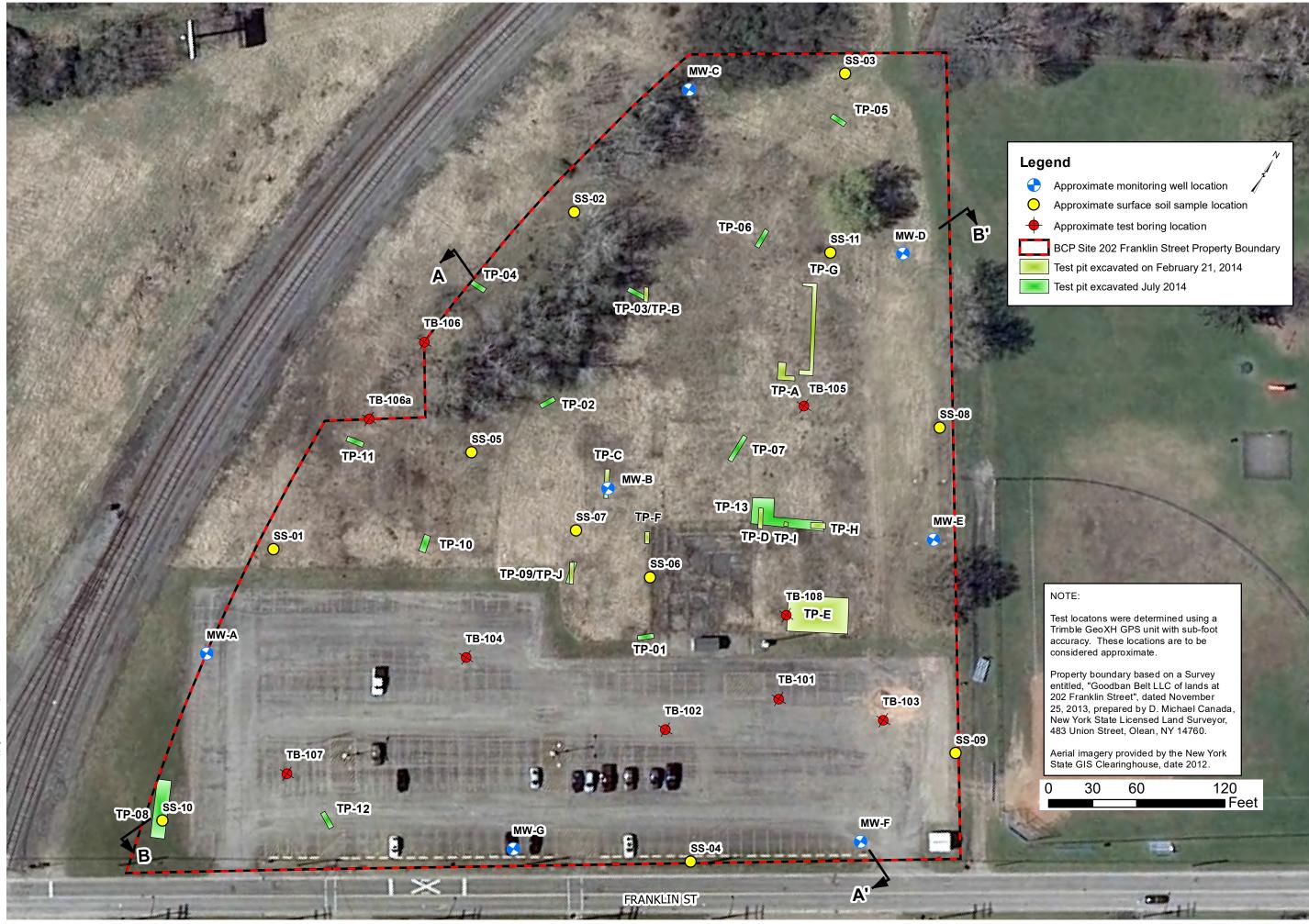
Preliminary Phase II Environmental Site Assessment, 119 Franklin Street, 211 Franklin Street, 202 Franklin Street and 120 West Connell Street, Olean, New York dated October 27, 2013 prepared by DAY.

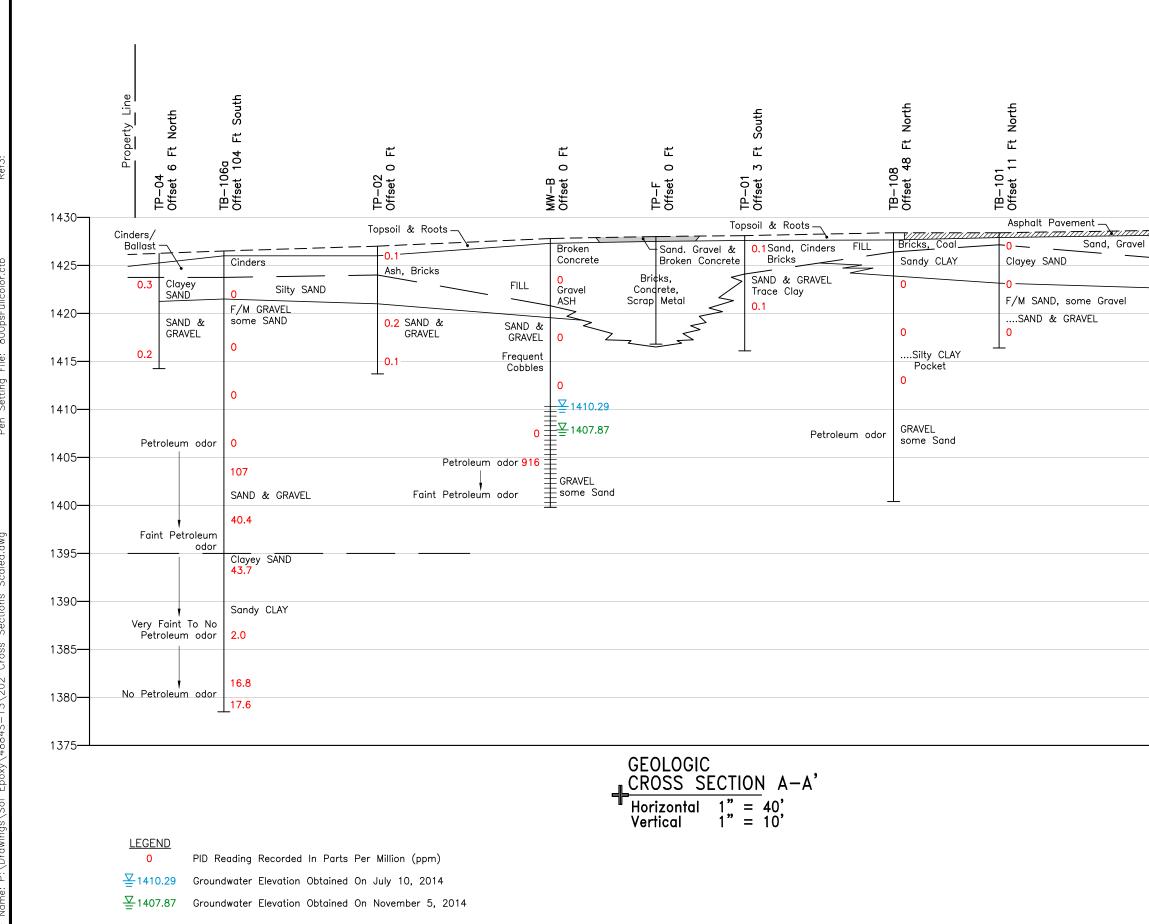

Remedial Investigation Alternatives Analysis Report, 202 Franklin Street, City of Olean, Cattaraugus County, New York, BCP Site Number C905043, dated July 14, 2017 prepared by DAY.


Remedial Investigation/Remedial Alternatives Analysis Work Plan, 202 Franklin Street, Olean, New York 14760, NYSDEC Site Number C905043-05-14 dated May 2014 prepared by DAY.

Groundwater, by R. Allan Freeze and John A. Cherry, 1979

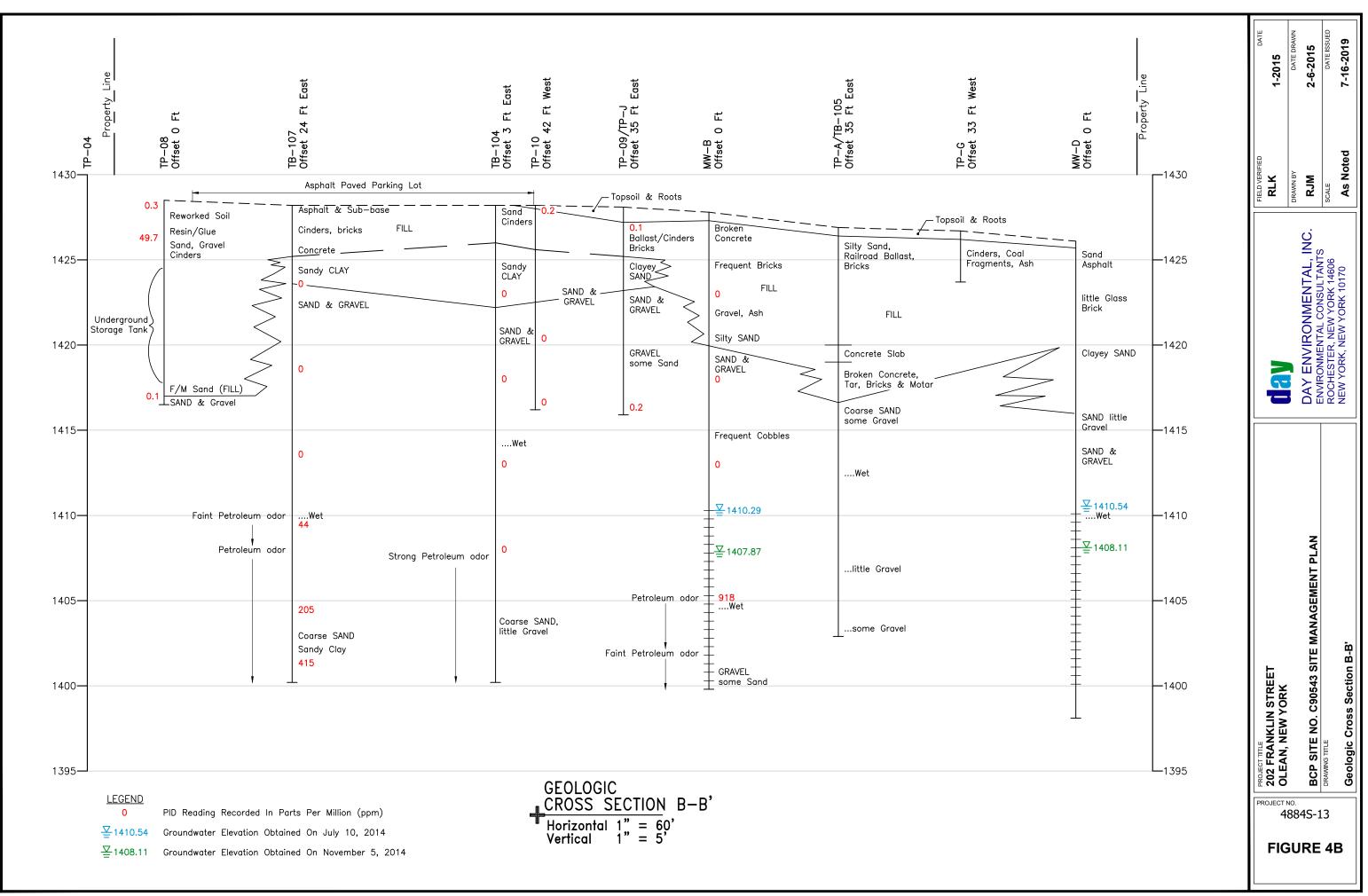

FIGURES


Site Management Plan, Site # [C905038]


Job Number: 7526

т	F	

Project Title Project Title Project Title Project Title 202 FRANKLIN STREET Designed BIV 202 FRANKLIN STREET 202 FRANKLIN STREET Designed BIV 0 LEAN, NEW YORK BCP SITE NO. C905043 PRAWNEN 8 CP SITE NO. C905043 BCP SITE NO. C905043 PRAWNENTAL, INC. 8 CP SITE NO. C905043 DAY ENVIRONMENTAL, INC. DRAWNENTAL, INC. 8 CP SITE NO. C905043 DAY ENVIRONMENTAL, INC. DRAWNENTAL, INC. 8 CP SITE NO. C905043 DAY ENVIRONMENTAL, INC. DRAWNENTAL, INC. 8 CALE Dawng Title Daving Title Drevioundental Consultants 8 Cochester, New York, New York, 10070 AS NOTED AS NOTED						
OLEAN, NEW YORK BCP SITE NO. C905043 BCP SITE NO. C905043 SITE MANAGEMENT PLAN Dawing Tile Dawing Tile Site Lavout Map with Sample Locations and Geologic Cross-Section Locations		Proje	Project Title 202 FRANKLIN STREET		DESIGNED BY	DATE
BCF SITE NO. C303043 SITE MANAGEMENT PLAN Dawing Title Dawing Title Environmental Consultants Rochester, New York 14606 New York, New York 10170 Site Lavout Map with Sample Locations and Geologic Cross-Section Locations					RLK	01-2015
CF Day ENVIRONMENTAL, INC. Dewing Tile Day ENVIRONMENTAL, INC. Dewing Tile Environmental Consultants C Environmental Consultants C New York 14606 Site Lavout Map with Sample Locations and Geologic Cross-Section Locations New York, New York 10170			BOP SHE NO. C300043		DRAWNBY	DATE DRAWN
L Dewing Title C Pervironmental Consultants C Rochester, New York 14606 Site Lavout Map with Sample Locations and Geologic Cross-Section Locations			SITE MANAGEMENT PLAN	DAY ENVIRONMENTAL, INC.	САН	01-2015
Site Lavout Map with Sample Locations and Geologic Cross-Section Locations			Drawing Title	Environmental Consultants		
Cross-Section Locations	-			Rochester, New York 14606	SUALE	DATE ISSUED
			Site Layout Map with Sample Locations and Geologic Cross-Section Locations	New York, New York 10170	AS NOTED	07-15-2019

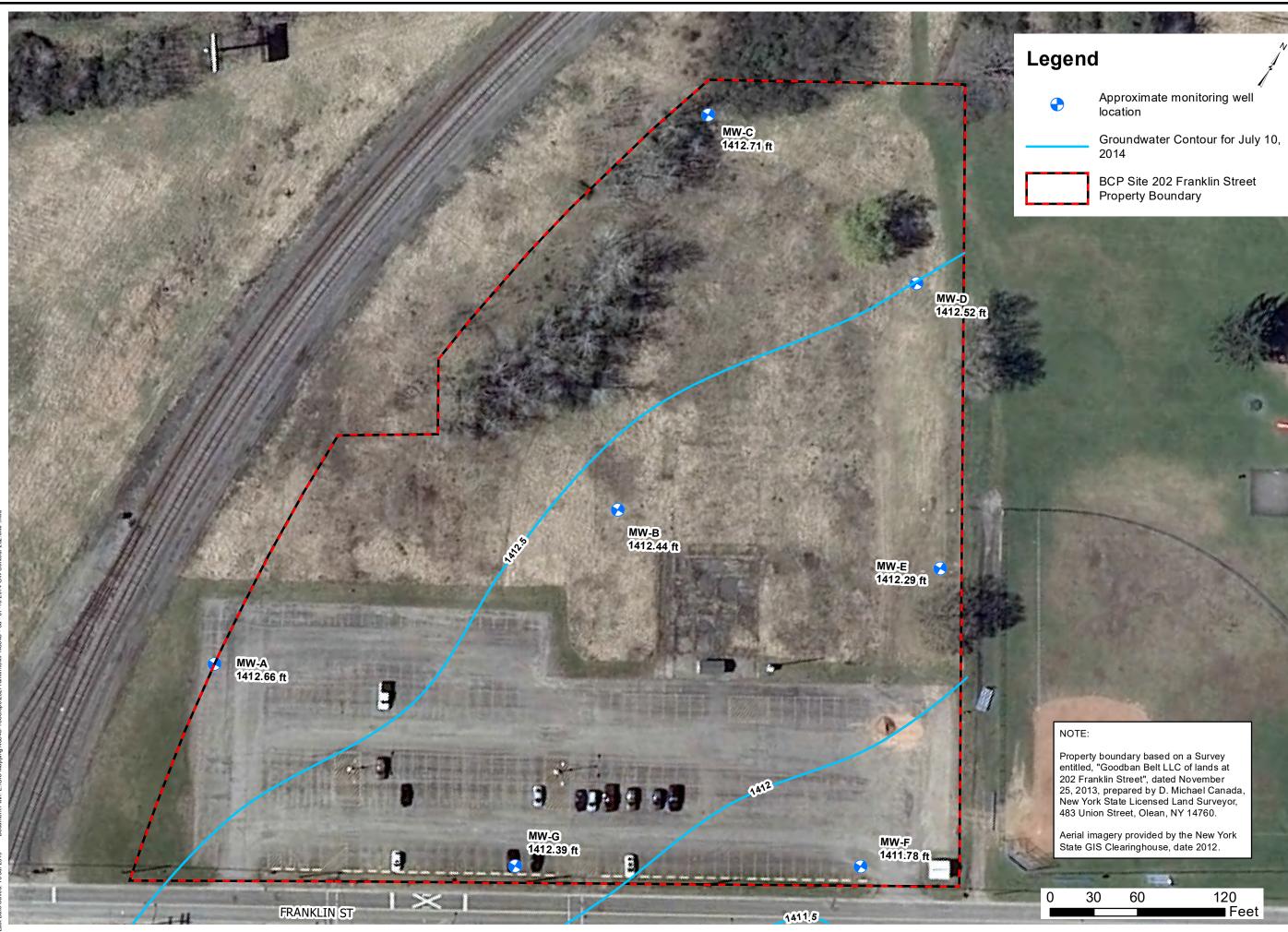


Ref1: 202 Cross Section A-A.dwg Ref2: Ref5:

Xerox432AnsiB-2; 11 × 17 Layout Name: A-A SMP Pen Setting File: 800psFullcolor.c

> e Plotted: Tuesday, July 16, 2019 12:48:05 PM Name: P:\Drawings\Sol Epoxy\4884S-13\202 Cross Sections Scaled.

		DATE	DATE DRAWN -2015	DATE ISSUED 6-2019
I		1-2015	DATE DR. 2-6-2015	DATE ISSU 7-16-2019
Offset 0 Ft MW-F Property Line		FIELD VERIFIED	drawn by RJM	scale As Noted
Offset	 1430		NC.)
FILL Sandy CLAY 0	—1425		ENTAL,	RK 14606 K 10170
SAND & GRAVEL	—1420		DAY ENVIRONMENTAL, INC.	ROCHESTER, NEW YORK 10170 NEW YORK, NEW YORK 10170
0 Sandy CLAY → ¥1412.05	—1415		AY ENV	DCHESTER EW YORK,
Sandy CLAY Sandy CLAY Sandy CLAY Sandy GRAVEL some Sand	—1410			I N N
0 SAND & GRAVEL	—1405			
±	—1400		_	
	—1395		NT PLAN	
	—1390		AGEMEI	
	—1385		SITE MAN	A-A'
	-1380	STREET ORK	;905043 {	Section
	L—1375	PROJECT TITLE 202 FRANKLIN STREET OLEAN. NEW YORK	BCP SITE NO. C905043 SITE MANAGEMENT PLAN	DRAWING TITLE Geologic Cross Section A-A'
				DRAWING TITLE Geologic
			884S-1	
		FIG	BURE	4A



Ref1: 202 Cross Section B–B. Ref2: Ref3:

dwg

Xerox432AnsiB-2; 11 × 17 Layout Name: B-B SMP Pen Setting File: 800psFullcolor.ctb

> Time Plotted: Tuesday, July 16, 2019 12:51:14 PM File Name: P:\Drawings\Sol Epoxy\4884S-13\202 Cross Sections Scaled.c

2025日常ANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043 SITE MANAGEMENT PLAN Drawing Title Groundwater Contour Map: July 10, 2014	Cound Ground Ground
---	---------------------------

Approximate monitoring well location showing groundwater elevation for November 5, 2014

Groundwater Contour November 5, 2014

BCP Site 202 Frankli Property Boundary

York 2.	ey sat er anada, /eyor,	in Street	ber 5, 2014 Ir for
Project No. 4884S-13	2025 FIRANKLIN STREET OLCAN, NEW YORK BCP SITE NO. C905043 SITE MANAGEMENT PLAN Draving Title Groundwater Contour Map: November 5, 2014	DAY ENVIRONMENTAL, INC. DAY ENVIRONMENTAL, INC. Environmental Consultants Rochester, New York 10170 New York, New York 10170	DESIGNED BY RLK DRAWN BY CAH/CPS SCALE AS NOTED

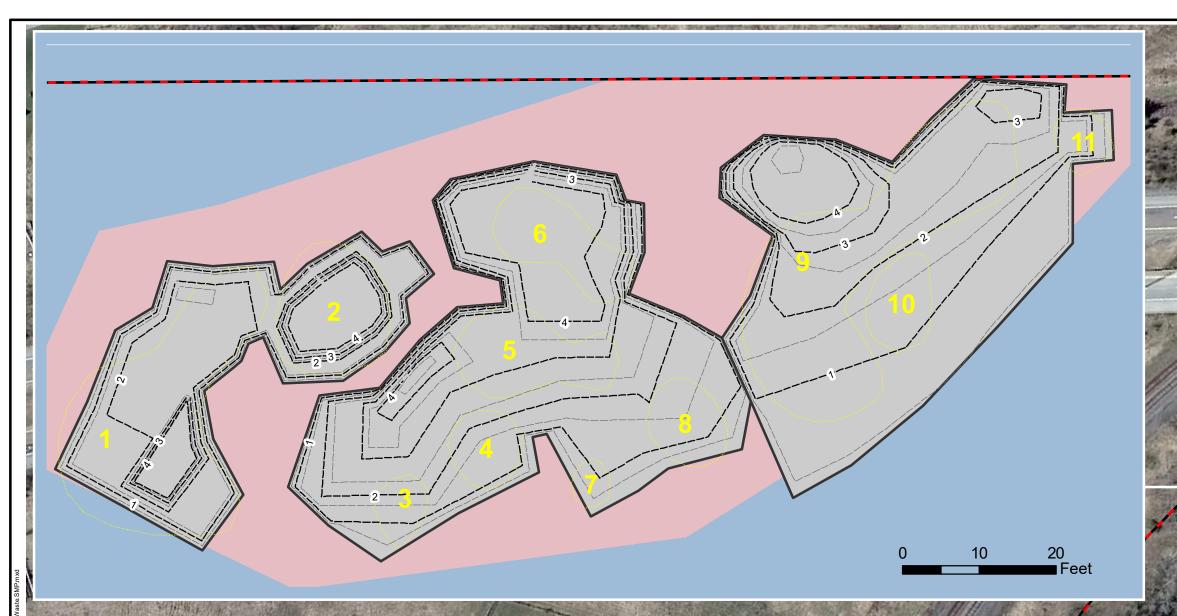
FIGURE 5B

02-2015 DATE ISSUED

02-2015

07-16-2019

30


Property boundary based on a Survey entitled, "Goodban Belt LLC of lands a 202 Franklin Street", dated November 25, 2013, prepared by D. Michael Car New York State Licensed Land Surve 483 Union Street, Olean, NY 14760.

Aerial imagery provided by the New State GIS Clearinghouse, date 2012

120

Feet

60

NOTES:

Excavation limits were determined using a Trimble GeoXH GPS unit with sub-foot accuracy. Excavation depth contours based are on measurements made in the field, and in reference to the ground surfaces adjacent to the excavations. These locations and depths are to be considered approximate.

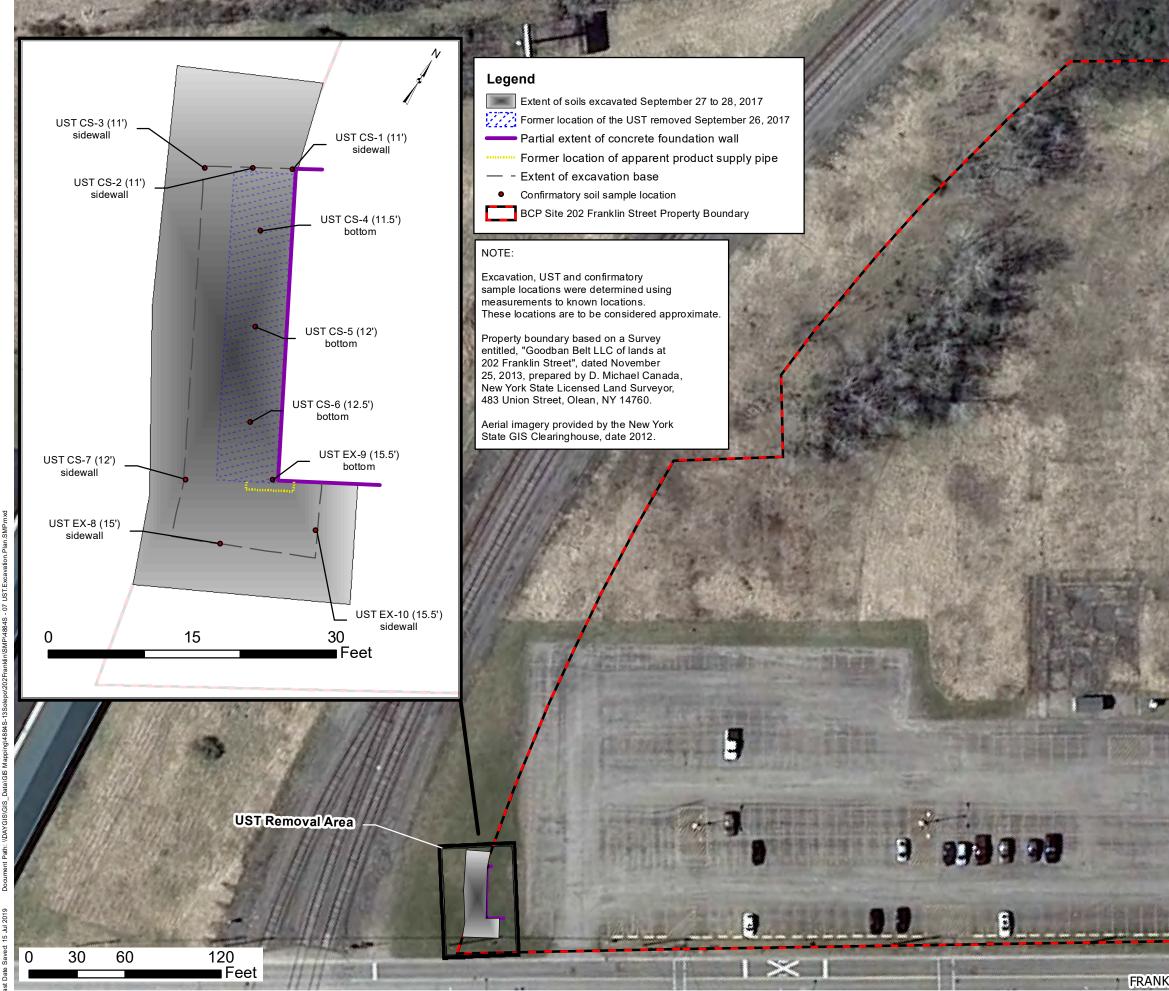
Property boundary based on a Survey entitled, "Goodban Belt LLC of lands at 202 Franklin Street", dated November 25, 2013, prepared by D. Michael Canada, New York State Licensed Land Surveyor, 483 Union Street, Olean, NY 14760.

Aerial imagery provided by the New York State GIS Clearinghouse, date 2012.

Legend

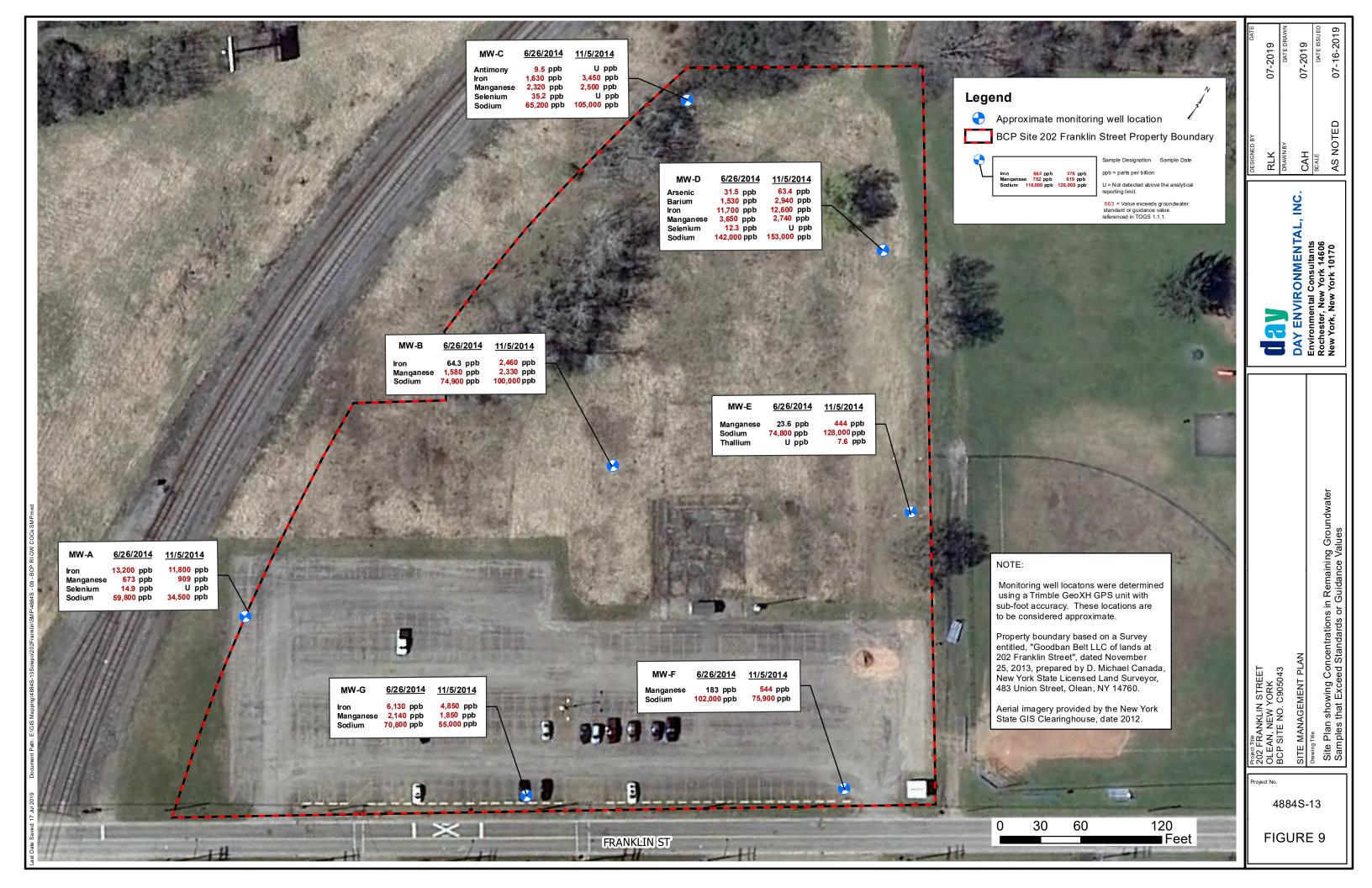
- Location of metal waste fill stockpile, September 20, 2017 to January 9, 2018
- Extent of excavations completed September 20-22, 2017
- ---- Excavation Depth, 1 ft. Contour Interval
- Excavation Depth, 1/2 ft. Contour Interval
- Extent of eleven "distinct" magnetic anomalies, identifed during RI
- Extent of magnetic anomaly area, identified during RI
- BCP Site 202 Franklin Street Property Boundary

1111

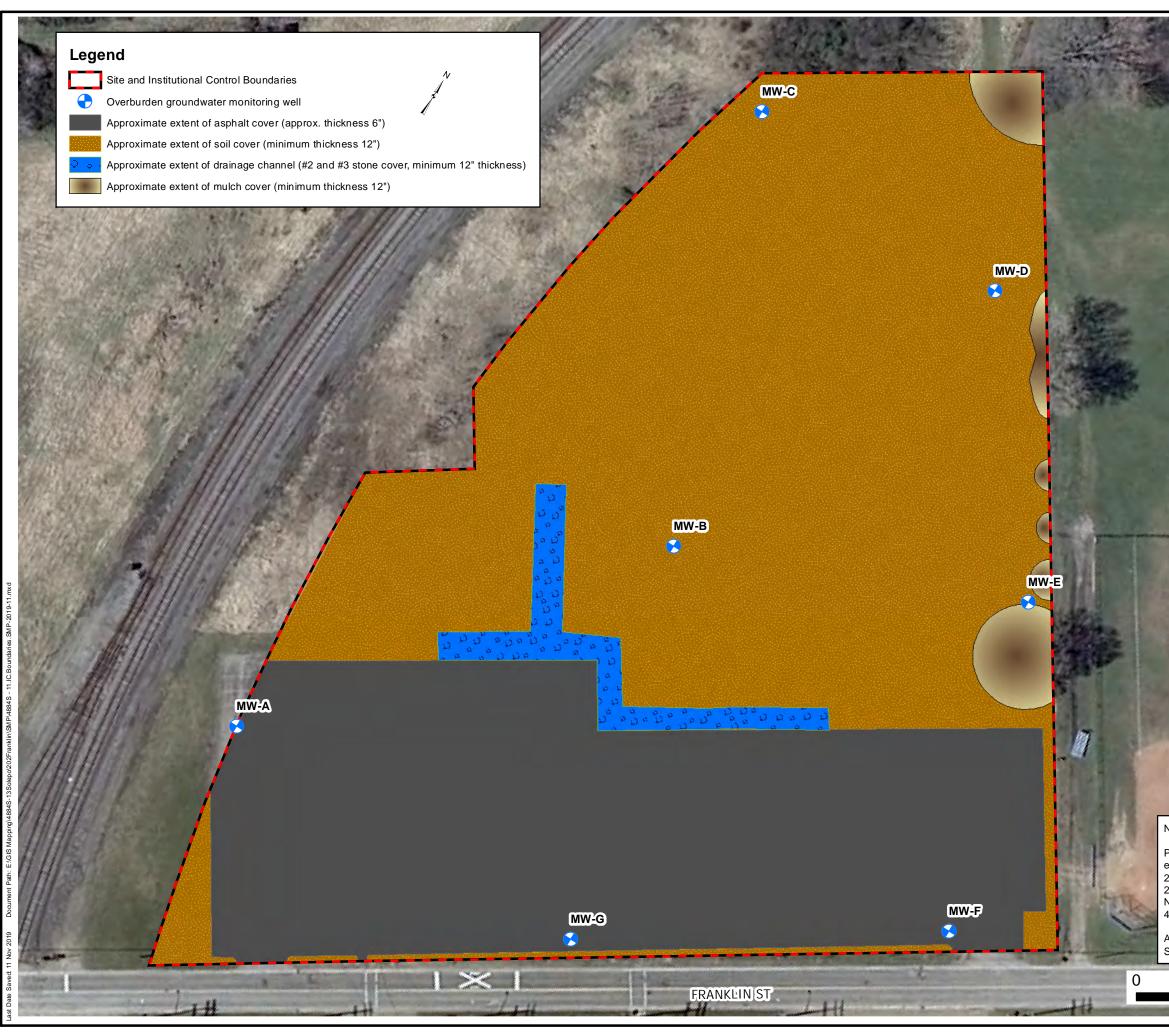

0 50 100 200

-

THE THE


3

	^{рате} 02-2018	DATE DRAWN	DATE ISSUED	07-15-2019
	DESIGNED BY	DRAWNBY	SCALE	AS NOTED (
	Ngh	DAY ENVIRONMENTAL, INC.	Environmental Consultants Rochester, New York 14606	New York, New York 10170
	Project Tue 202 FRANKLIN STREET 202 EAN, NEW YORK	BCF 31 E NO. C303043 SITE MANAGEMENT PLAN	Drawing Title	Site Plan Depicting UST Removal Area
	 Project No.	884S		,
LINST	 FI	GUF	KE 7	/



S-03 senic- 24.8 ppm enzo(a)pyrene -1.5 ppm	рате 02-2015 рате ряами 02-2015 рате issued 11-11-2019
P-G North (2') rsenic-26.3 ppm enz(a)anthracene-9.95 ppm enzo(a)pyrene -9.98 ppm enzo(b)fluoranthene-12.9 ppm	DESIGNED BY RLK DRAWN BY CAH SCALE AS NOTED
benz(a,h)anthracene-3.08 ppm deno(1,2,3-cd)pyrene-9.07 ppm P-G South (2') senic-27.4 ppm nz(a)anthracene-28.6 ppm nzo(a)pyrene -22.2 ppm penz(a,h)anthracene-5.47 ppm deno(1,2,3-cd)pyrene-16.3 ppm	day DAY ENVIRONMENTAL, INC. Environmental Consultants Rochester, New York 10170 New York, New York 10170
Benzo(a)pyrene -1.9 ppm TP-13 (12') Arsenic-25.2 ppm Barium-606 ppm Copper-271 ppm Benzo(a)pyrene -1.9 ppm TP-I (5') Benz(a)anthracene-51.8 ppm Benzo(a)pyrene -88.1 ppm	mples Containing Concentrations
P-D (8') Benz(a)anthracene-7.8 ppm Benzo(a)pyrene -10.3 ppm Benzo(b)fluoranthene-9.7 ppm Indeno(1,2,3-cd)pyrene-7.13 ppm	The FRANKLIN STREET AN, NEW YORK SITE NO. C905043 MANAGEMENT PLAN The Plan Showing Surface and Subsurface Soil Samples eding Commercial Use SCO
NOTE: Test locatons were determined using a Trimble Geo XH GPS unit with sub-foot accuracy. These locations are to be considered approximate.	KLIN STREET EW YORK NO. C905043 AGEMENT PLAN Showing Surfac g Commercial U
Property boundary based on a Surveyentitled, 'Goodban Belt LLC of lands at 202 Franklin Street" dated November 25, 2013, prepared by D. Michael Canada,New York State Licensed Land Surveyor, 483 Union Street, Olean, NY 14760.	Project Trate 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043 SITE MANAGEMENT PLAN Drawing Trate Site Plan Showing Surfac Exceeding Commercial L
Aerial imagery provided by the New York State GIS Clearinghouse, date 2012.	Project No. 4884S-13
Surface soil from the vicinities of SS-04, SS-09 and SS-10 was relocted to a berm on the northern portion of the Site. Thus, the COC identified in the surface soil during the RI are depicted at the location of the soil berm.	FIGURE 8

The control of the c		DESIGNED BY DATE RLK 09-2019 DRAWNBY DATE DRAWN	CAH 09-2019 SCALE DATE ISSUED AS NOTED 11-11-2019
OTE: roperty boundary based on a Survey titled, "Goodban Belt LLC of lands at		day	DAY ENVIRONMENTAL, INC. Environmental Consultants Rochester, New York 10170 New York, New York 10170
ew York State Licensed Land Surveyor, 33 Union Street, Olean, NY 14760. erial imagery provided by the New York	roperty boundary based on a Survey ntitled, "Goodban Belt LLC of lands at 02 Franklin Street", dated November 5, 2013, prepared by D. Michael Canada, ew York State Licensed Land Surveyor, 33 Union Street, Olean, NY 14760.		SITE MANAGEMENT PLAN Dawing Title Soil Cover System Demarcation Layers
30 60 120 Figure 10 Figure 10 Figure 10 Figure 10	30 60 120		

			вү DATE 08-2018	DATE DRAWN	DATE ISSUED	01-11-2019 01-11-2019
		120	DESIGNED BY	DRAWNBY	SCALE	AS NOTED
	0			DAY ENVIRONMENTAL, INC.	Environmental Consultants Rochester, New York 14606	New York, New York 10170
NOTE:			Project Tule 202 FRANKLIN STREET OLEAN, NEW YORK	BCF 311E NO. C303043 SITE MANAGEMENT PLAN		Institutional Control Boundaries and Site-Wide Cover System
roperty boundary based on a ntitled, "Goodban Belt LLC of	lands at		RANKLII N, NEW	MANAGI	Title	tutional
02 Franklin Street", dated Nov 5, 2013, prepared by D. Micha lew York State Licensed Land 83 Union Street, Olean, NY 14	ael Canada, Surveyor,	-		SITE	Drawing Title	Insti
erial imagery provided by the tate GIS Clearinghouse, date	New York	N.C.	Project No.	884S	-13	
30 60	120 Feet		FIG	BURE	E 11	
and the second sec	-	1-2-4-4				

TABLES

Site Management Plan, Site # [C905038]

TABLE 3A 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043

SUMMARY OF DETECTED VOLATILE ORGANIC COMPOUNDS (VOCS) IN SURFACE SOIL SAMPLES

CAS Number	A Unrestricted Use (SCO)	B Restricted Commercial Use (SCO)	SS-01 6/27/201	4	SS-02 6/27/2014	SS-03 6/27/2014	SS-04 6/27/2014	SS-05 6/27/2014			SS-07 6/27/2014	4	SS-08 6/27/201		SS-09 6/27/2014			
67-64-1	0.05	500	0.003 J		0.02 J	0.0061 J	0.0081 J	0.056 J A	UJ		0.018 J		ΟJ		UJ	UJ	0.0039 J	
75-09-2	NA	NA	U		U	U	U	0.0019	U		U		U		U	U	U	
			0.0199		U	U	U	U	U		U		U		U	U	U	
			0.0229		0.02	0.0061	0.0081	0.0579	U		0.018		U		U	U	0.0039	
	Number 67-64-1	Number Use (SCO) 67-64-1 0.05	NumberUse (SCO)Commercial Use (SCO)67-64-10.05500	Number Use (SCO) Commercial Use (SCO) 6/27/201- 6/27/201- 0.003 J 67-64-1 0.05 500 0.003 J 75-09-2 NA NA U 0.0199	Number Use (SCO) Commercial Use (SCO) 6/27/2014 67-64-1 0.05 500 0.003 J 75-09-2 NA NA U 0.0199	Number Use (SCO) Commercial Use (SCO) 6/27/2014 6/27/2014 67-64-1 0.05 500 0.003 J 0.02 J 75-09-2 NA NA U U 0.0199 U 0.0199 U	Number Use (SCO) Commercial Use (SCO) 6/27/2014 6/27/2014 6/27/2014 67-64-1 0.05 500 0.003 J 0.02 J 0.0061 J 75-09-2 NA NA U U U 0.0199 U U U U	Number Use (SCO) Commercial Use (SCO) Coort 6/27/2014 Coort 6/27/2014 Coort 6/27/2014 Coort 6/27/2014 Coort 6/27/2014 Coort 6/27/2014 67-64-1 0.05 500 0.003 J 0.02 J 0.0061 J 0.0081 J 75-09-2 NA NA U U U U U 0.0199 U U U U	Number Use (SCO) Commercial Use (SCO) COUL 6/27/2014 COUC 6/27/2014 COUC 6/27/2014	Number Use (SCO) Commercial Use (SCO) 6/27/2014	Number Use (SCO) Commercial Use (SCO) Commercial 6/27/2014 Corr/content 6/27/2014 Corr/corr 6/27/2014 Corr/co	Number Use (SCO) Commercial Use (SCO) Coord 6/27/2014 Coord 6/27/2014 <td>Number Use (SCO) Itestitietietietietietietietietietietietieti</td> <td>Number Use (SCO) Use (SCO) Number N</td> <td>Number Use (SCO) Use (SCO) Iterational Commercial Use (SCO) 6/27/2014 0.018 J U J U J 75-09-2 NA NA U</td> <td>Number Use (SCO) Use (SCO) Numercial Use (SCO) OCCOT 6/27/2014 OCCOT 6/27/2014</td> <td>Number Use (SCO) Hommercial Use (SCO) Hommercial 6/27/2014 G/27/2014 G/27/2</td> <td>Number Use (SCO) Hostinitical Commercial Use (SCO) 6/27/2014 $6/27/2014$ $0/27/2014$ $0/27/20$</td>	Number Use (SCO) Itestitietietietietietietietietietietietieti	Number Use (SCO) Use (SCO) Number N	Number Use (SCO) Use (SCO) Iterational Commercial Use (SCO) 6/27/2014 0.018 J U J U J 75-09-2 NA NA U	Number Use (SCO) Use (SCO) Numercial Use (SCO) OCCOT 6/27/2014 OCCOT 6/27/2014	Number Use (SCO) Hommercial Use (SCO) Hommercial 6/27/2014 G/27/2014 G/27/2	Number Use (SCO) Hostinitical Commercial Use (SCO) 6/27/2014 $6/27/2014$ $0/27/2014$ $0/27/20$

Notes:

Values are in milligrams per kilogram (mg/kg) or parts per million (ppm)

SCOs are as referenced in 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006

J = Estimated Value

N = Considered To Be Positively Identified

NA = Not Available

U = Not Detected

UJ = The analyte was analyzed for, but was not detected. The associated quantitation limit is approximate.

A = Exceeds Unrestricted Use SCO

TABLE 3B 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043

SUMMARY OF DETECTED SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCS) IN SURFACE SOIL SAMPLES

Contaminant	CAS Number	A Unrestricted Use	B Restricted Commercial	SS-01 6/27/2014	SS-02 6/27/2014	SS-03 6/27/2014		SS-04 6/27/2014		SS-05 6/27/2014	SS-06 6/27/2014	SS-07 6/27/2014	SS-08 6/27/2014	SS-09 6/27/201/	4	SS-10 6/27/201	4	SS-11 6/27/2014
	Number	(SCO)	Use (SCO)	6/27/2014	6/27/2014	6/27/2014		0/27/2014		0/27/2014	6/27/2014	6/27/2014	6/27/2014	6/27/2014	+	0/27/201	4	0/27/2014
-Methylnaphthalene	90-12-0	NA	NA	U	0.18 J	0.16 J		U		0.1 J	0.34 J	U	0.18 J	0.086 J		U		U
-Methylnaphthalene	91-57-6	NA	NA	U	0.2 J	0.17 J		U		0.079 J	0.3 J	U	0.23 J	0.074 J		U		U
cenaphthene	83-32-9	20	500	0.17 J	0.41	0.11 J		0.33 J		U	0.6	U	0.18 J	0.72		0.48		U
cenaphthylene	208-96-8	100	500	U	0.2 J	0.29 J		0.081 J		U	0.19 J	U	U	0.083 J		U		U
nthracene	120-12-7	100	500	0.36 J	0.82	0.56		1.2		U	1.4	0.16 J	0.45	2.1		1.6		0.12 J
Benzo(a)anthracene	56-55-3	1	5.6	1.5 A	1.7	A 1.7	Α	3.8	Α	0.21 J	2.6 A	0.58	0.92	<mark>8.8</mark>	AB	4.1	Α	0.46
Benzo(a)pyrene	50-32-8	1	1	1.6 AE	3 <mark>1.4</mark> /	AB 1.5	AB	3.7	AB	0.23 J	2.4 AB	0.59	0.75	U		4	AB	0.66
Benzo(b)fluoranthene	205-99-2	1	5.6	2.5 A	2	A 2	Α	5.1	Α	0.31 J	2.9 A	0.7	1	<mark>13</mark>	AB	<mark>5.8</mark>	AB	0.49
enzo(g,h,i)perylene	191-24-2	100	500	1.2	0.74	1.6		2.9		0.25 J	2.3	0.53	0.66	7.6		2.9		1.1
enzo(k)fluoranthene	207-08-9	0.8	56	A 86.0	0.78	0.76		2	Α	0.13 J	1 A	0.29 J	0.35 J	5.2	Α	2.1	Α	0.16 J
enzoic acid	65-85-0	NA	NA	U	0.47 J	0.19 J		U		1.5	0.15 J	U	0.13 J	U		U		0.15 J
is(2-ethylhexyl)phthalate	117-81-7	NA	NA	U	U	U		0.26 J		U	U	U	U	U		U		U
Carbazole	86-74-8	NA	NA	0.24 J	0.36 J	0.19 J		0.51		U	0.56	U	0.26 J	1.1		0.57		U
Chrysene	218-01-9	1	56	2 A	1.6	A 1.8	Α	4.5	Α	0.29 J	3 A	0.67	1	10	Α	4.9	Α	0.62
)ibenzo(a,h)anthracene	53-70-3	0.33	0.56	0.25 J	0.23 J	0.31 J		0.72	AB	U	0.44 A	0.1 J	0.17 J	<mark>1.8</mark>	AB	0.64	AB	U
Dibenzofuran	132-64-9	7	350	U	0.34 J	0.14 J		0.18 J		U	0.39 J	U	0.26 J	0.31 J		0.19 J		U
)i-n-butylphthalate	84-74-2	NA	NA	0.11 J	U	U		U		0.12 J	0.74	U	0.18 J	U		U		U
luoranthene	206-44-0	100	500	4.1	3.3	2.7		8.7		0.24 J	5.4	1	2	23		12 D		0.53
luorene	86-73-7	30	500	0.16 J	0.44	0.15 J		0.4		U	0.56	U	0.22 J	0.72		0.56		U
ndeno(1,2,3-cd)pyrene	193-39-5	0.5	5.6	1.2 A	0.9	A 1.1	Α	3.1	Α	0.18 J	1.5 A	0.4 J	0.47	<mark>7.8</mark>	AB	3.2	Α	U
laphthalene	91-20-3	12	500	U	0.27 J	0.14 J		U		U	0.4 J	U	0.21 J	U		U		U
henanthrene	85-01-8	100	500	2	3.1	1.7		5.1		0.15 J	6	0.7	2	12		6.6 D		0.44
yrene	129-00-0	100	500	3	2.5	2.6		7.8		0.26 J	4.9	0.91	1.3	20		8.4 D		0.57
otal IICs				21.82	12.74	19.99		24.61		9.5	29.52	9.89	9.05	15.68		19.87		12.34
otal SVOCs and TICs				43.19	34.68	39.86		74.991		13.549	67.59	16.52	21.97	130.07		77.91		17.64

Notes:

Values are in milligrams per kilogram (mg/kg) or parts per million (ppm)

SCOs are as referenced in 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006

D = Diluted Sample

J = Estimated Value

NA = Not Available

U = Not Detected

A = Exceeds Unrestricted Use SCO

B (Highlighted Value) = Exceeds Restricted Commercial Use SCO

¹ Analyte was not validated.

TABLE 3C 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043

SUMMARY OF PESTICIDE/HERBICIDE/PCBS IN SURFACE SOIL SAMPLES

Contaminant	CAS Number	A Unrestricted Use (SCO)	B Restricted Commercial Use (SCO)	SS-01 6/27/2014	SS-02 6/27/2014	SS-03 6/27/2014	SS-04 6/27/2014	SS-05 6/27/2014	SS-06 6/27/2014	SS-07 6/27/2014	SS-08 6/27/2014	SS-09 6/27/2014	SS-10 6/27/2014	SS-11 6/27/2014
4,4'-DDE	72-55-9	0.0033	62	U	U	U	U	0.0054 J	A U	U	U	U	U	U
4,4'-DDT	50-29-3	0.0033	47	U	UJ	0.03 A	U	UJ	0.029	A UJ	U	U	U	UJ
Aldrin	309-00-2	0.005	0.68	U	U	U	U	U	U	0.0036 J	0.0096 J A	U	U	0.0039 J
alpha-BHC	319-84-6	0.02	3.4	U	U	U	U	0.0045 P, NJ	U	UJ	U	U	U	U
alpha-Chlordane	5103-71-9	0.094	24	0.053	U	0.049 J	0.075 J	U	0.0085	UJ	U	ΟJ	0.042 J	0.0082 J
Endosulfan II	33213-65-9	2.4	200	U	0.0051 J	U	U	UJ	U	UJ	U	U	U	UJ
Endosulfan sulfate	1031-07-8	2.4	200	0.034 P	U	U	U	U	U	U	U	U	U	U
Endrin aldehyde	7421-93-4	NA	NA	U	UJ	U	U	UJ	0.017 P, NJ	UJ	U	U	U	UJ
Methoxychlor	72-43-5	NA	NA	0.34	U	U	U	U	0.11 P, J	UJ	U	U	U	UJ
Polychlorinated biphenyls	1336-36-3	0.1	1	U	0.13 P,J A	0.093	U	U	0.11	A U	U	U	U	U
Notes:														

Notes:

Values are in milligrams per kilogram (mg/kg) or parts per million (ppm)

SCOs are as referenced in 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006

NA = Not Available

P = Lower of Two Values Reported From Primary And Confirmation Analyses When > 25% Difference Detected

U = Not Detected

J = Estimated Value

NJ = The detection is tentative in identification and estimated in value.

UJ = The analyte was analyzed for, but was not detected. The associated quantitation limit is approximate.

A = Exceeds Unrestricted Use SCO

TABLE 3D 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043

SUMMARY OF TAL METALS AND CYANIDE IN SURFACE SOIL SAMPLES

Contaminant	CAS Number	A Unrestricted Use (SCO)	B Restricted Commercial Use (SCO)	SS-01 6/27/2014	SS-02 6/27/2014	SS-03 6/27/2014	SS-04 6/27/2014	SS-05 6/27/2014	SS-06 6/27/2014	SS-07 6/27/2014	SS-08 6/27/2014	SS-09 6/27/2014	SS-10 6/27/2014	SS-11 6/27/201	
Aluminum	7429-90-5	NA	NA	8320	9310	10800	2990	3900	6470	12400	2850	6390	6180	7570	
Antimony	7440-36-0	NA	NA	2.2 N	0.83 b,N	1.3 N	UN	0.69 b,N	UN	1.1 N,J	0.58 b,N	0.63 b,N	0.77 b,N	1.9 N	
Arsenic	7440-38-2	13	16	51.6 N AB	12.4 N	24.8 N	AB 3.7 N	18.2 N AB	3.4 N	14 N,J	A 20.4 N	AB 8.6 N	11.6 N	15.4 N	Α
Barium	7440-39-3	350	400	230 N	131 N	183 N	31 N	97.5 N	143 N	135 N,J	44.7 N	58.5 N	89.9 N	105 N	
Beryllium	7440-41-7	7.2	590	0.91 N	0.46 N	0.88 N	0.14 b,N	0.67 N	0.22 N	0.66 N,J	0.46 N	0.32 N	0.45 N	0.55 N	
Cadmium	7440-43-9	2.5	9.3	2.1 N	0.46 N	0.38 N	0.04 b,N	0.082 b,N	0.16 b,N	0.43 N,J	0.39 N	0.21 b,N	0.44 N	0.49 N	
Calcium	7440-70-2	NA	NA	5160	1840	3380	2140	898	6520	1950	572	8970	6080	2110	
Chromium	7440-47-3	30	1,500	24.8 N	12.1 N	19.8 N	5.2 N	8.6 N	3.6 N	15.9 N,J	6.5 N	15.6 N	12.1 N	13.4 N	
Cobalt	7440-48-4	NA	NA	6.6 N	7.1 N	8.7 N	2.3 N	4.8 N	0.86 b,N	9 N,J	5.5 N	5.8 N	5.7 N	7.9 N	
Copper	7440-50-8	50	270	105 N A	117 N A	84.4 N	A 14.2 N	47.7 N	5.3 N	44.1 N,J	28.9 N	27.2 N	31.8 N	74.1 N	Α
Iron	7439-89-6	NA	NA	25100	18800	35200	7760	33100	3610	22300	20800	16300	17300	25700	
Lead	7439-92-1	63	1000	441 A	149 A	134	A 16.3	25	23.5	100	A 37.3	44.3	62.5	213	Α
Magnesium	7439-95-4	NA	NA	1310	1760	1840	1170	297	756	2140	313	3100	2090	1490	
Manganese	7439-96-5	1600	10,000	397	533	586	258	61.8	94.1	725	96.8	554	625	454	
Mercury	7439-97-6	0.18	2.8	0.081	0.44 A	0.12	0.097	0.029 b	0.12	0.072	0.05 b	0.011 b	0.056	0.077	
Nickel	7440-02-0	30	310	35.7 N A	14.2 N	20.8 N	6 N	10.9 N	2.4 N	19.7 N,J	8.5 N	14.5 N	15 N	18.8 N	
Potassium	7440-09-7	NA	NA	1180	696	900	299	430	610	989	223	563	731	678	
Selenium	7782-49-2	3.9	1,500	7.2 N A	1.1 b,N	2.3	UN	UN	UN	0.88 b,N,J	1.1 N	UN	1.5 N	0.88 b,N	
Silver	7440-22-4	2	1,500	0.28 b	0.17 b	0.38 b	U	UN	U	U	0.088 b	U	U	0.079 b	
Sodium	7440-23-5	NA	NA	180	20.1 b	44.9 b	93.3	43.4 b	327	30.3 b	12.3 b	30.3 b	59.8	26.1 b	
Thallium	7440-28-0	NA	NA	0.37 b,N	UN	UN									
Vanadium	7440-62-2	NA	NA	22.2 N	15.7 N	22.9 N	3.9 N	19.1 N	6.6 N	22.5 N,J	10.7 N	11 N	12.6 N	18.8 N	
Zinc	7440-66-6	109	10,000	333 N 🛛 🗛	210 N A	139 N	A 80.3 N	32.5 N	46.9 N	124 N,J	A 77.1 N	91.6 N	114 N	A 215 N	Α
Total Cyanide	NA	27	27	U	U	U	U	U	U	U	U	U	U	U	

Notes:

Values are in milligrams per kilogram (mg/kg) or parts per million (ppm)

SCOs are as referenced in 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006

b = Trace Concentration Below Reporting Limit And Equal To Or Above Detection Limit

N = Matrix Spike Recovery Falls Outside Control Limit

NA = Not Available

U = Not Detected

J = Estimated Value

A = Exceeds Unrestricted Use SCO

B (Highlighted Value) = Exceeds Restricted Commercial Use SCO

TABLE 4A 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043

SUMMARY OF DETECTED VOLATILE ORGANIC COMPOUNDS (VOCS) IN SOIL/FILL SAMPLES

Contaminant	CAS Number	A Unrestricted Use (SCO)	B Restricted Commercial Use (SCO)	MW-G (3') 6/13/2014	TB-102 (2') 6/11/2014	TB-103 (24') 6/12/2014	TB-104 (24') 6/12/2014	TB-105 (8-10') 6/11/2014	TB-106 (20') 6/11/2014	TB-106a (24') 6/19/2014	TB-107 (24') 6/13/2014	TB-108 (24') 6/12/2014	TP-01 (2') 7/30/2014	TP-02 (2.5') 7/30/2014
2-Butanone	78-93-3	NA	NA	UJ	UJ	UJ	0.0012 J	UJ	UJ	UJ			UJ	UJ
Acetone	67-64-1	0.05	500	÷ •										
			NA	0.035 J	0.0015 J	UJ	0.0052 NJ	UJ	0.0013 J	0.0074 J	UJ	0.0052 J	UJ	1.1 J A
Carbon disulfide	75-15-0	NA		UJ	U	U	U	U	U	U	U	0.001 J	U	U
cis-1,2-Dichloroethene	156-59-2	0.25	500	UJ	U	U	U	U	U	U	U	UJ	0.0014 J	U
Ethylbenzene	100-41-4	1	390	UJ	U	U	U	U	U	U	U	UJ	U	U
Isopropylbenzene	98-82-8	NA	NA	UJ	U	U	U	U	U	U	U	UJ	U	U
4-Isopropyltoluene	99-87-6	NA	NA	U	U	U	U	U	U	U	U	U	U	U
Methylene chloride	75-09-2	500	500	UJ	U	U	U	U	U	0.0033 J+	U	ΟJ	U	0.35
Naphthalene	91-20-3	12	500	U	0.0019 J	U	U	U	U	U	U	U	U	0.027 J
n-Butylbenzene	104-51-8	12	500	UJ	U	U	U	U	U	U	U	UJ	U	U
n-Propylbenzene	103-65-1	3.9	500	U	U	U	U	U	U	U	U	U	U	U
sec-Butylbenzene	135-98-8	11	500	U	U	U	0.0006 J	U	U	U	U	U	U	U
tert-Butylbenzene	98-06-6	5.9	500	0.021	U	U	0.012	U	U	0.0057	0.25	U	U	U
Toluene	108-88-3	0.7	500	UJ	U	U	U	U	U	U	U	UJ	U	0.011 J
Trichloroethene	79-01-6	0.7	200	UJ	U	U	UJ	U	U	U	U	UJ	U	U
1,2,4-Trimethylbenzene ¹	95-63-6	3.6	190	U	U	U	U	U	U	U	U	U	U	0.021 J
1,3,5-Trimethylbenzene ¹	108-67-8	8.4	190	U	U	U	U	U	U	U	U	U	U	U
Mixed Xylenes	NA	0.26	500	UJ	U	U	U	U	U	U	U	UJ	U	U
Total TICs				21.7			2.73			1.096	66.7	0.143		
VOCs + TICs				21.756	0.0034		2.749	U	0.0013	1.1124	66.95	0.1492	0.0014	1.509

		A	В										
Contaminant	CAS	Unrestricted	Restricted	TP-03 (6')	TP-04 (1')	TP-05 (1')	TP-07 (3')	TP-08 (3')	TP-08 (12')	TP-11 (2-3')	TP-12 (2.5')	TP-13 (9')	TP-13 (12')
	Number	Use	Commercial	7/29/2014	7/30/2014	7/29/2014	7/29/2014	7/30/2014	7/31/2014	7/30/2014	7/30/2014	7/29/2014	7/29/2014
		(SCO)	Use (SCO)										
2-Butanone	78-93-3	NA	NA	UJ	UJ	UJ	UJ	UJ	UJ	0.033 J	0.02 J	UJ	UJ
Acetone	67-64-1	0.05	500	0.0048 J	UJ	UJ	0.0005 J	UJ	0.0039 J	0.2 J	A 0.068 J	A 0.047 J	0.12 J A
Carbon disulfide	75-15-0	NA	NA	U	U	UJ	UR	U	U	0.004 J	UJ	U	U
cis-1,2-Dichloroethene	156-59-2	0.25	500	0.0017 J	U	0.0032 J	0.0003 J	U	0.0022 J	U	0.0066 J	0.0012 J	0.0049 J
Ethylbenzene	100-41-4	1	390	U	U	UJ	UJ	U	U	0.0017 J	UJ	U	0.0013 J
Isopropylbenzene	98-82-8	NA	NA	U	U	UJ	UJ	U	U	0.0013 J	UJ	U	U
4-Isopropyltoluene	99-87-6	NA	NA	U	U	ΟJ	U	U	U	0.004 J	U	U	U
Methylene chloride	75-09-2	500	500	0.0031 J	U	U	0.0004 J	U	U	0.032 J	UJ	0.05	0.02
Naphthalene	91-20-3	12	500	U	U	U	U	U	U	0.0089 J	0.0013 J	U	U
n-Butylbenzene	104-51-8	12	500	U	U	U	U	U	U	0.0025 J	U	U	U
n-Propylbenzene	103-65-1	3.9	500	U	U	U	U	U	U	0.0038 J	U	U	U
sec-Butylbenzene	135-98-8	11	500	U	U	U	U	U	U	U	U	U	U
tert-Butylbenzene	98-06-6	5.9	500	U	U	U	U	U	U	U	0.0015 J	U	U
Toluene	108-88-3	0.7	500	U	U	ΟJ	ΟJ	U	U	0.0047 J	UJ	U	U
Trichloroethene	79-01-6	0.7	200	0.0042 J	U	ΟJ	ΟJ	U	U	U	UJ	U	U
1,2,4-Trimethylbenzene ¹	95-63-6	3.6	190	U	U	U	U	U	U	0.036 J	U	U	U
1,3,5-Trimethylbenzene ¹	108-67-8	8.4	190	U	U	U	U	U	U	0.012 J	U	U	U
Mixed Xylenes	NA	0.26	500	U	U	UJ	UJ	U	U	0.0155 J	UJ	U	U
Total TICs				U	U	0.0087	0.0018	U	U	0.165	0.327	 U	U
VOCs + TICs				0.0138	U	0.0119	0.003	U	0.0061	0.5244	0.4244	0.0982	0.1462

Values are in milligrams per kilogram (mg/kg) or parts per million (ppm)

SCOs are as referenced in 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006

¹ Analyte not validated.

J = Estimated Value NA = Not Available U = Not Detected

R = The sample results are rejected due to deficiencies in meeting quality control limits

A = Exceeds Unrestricted Use SCO

J+ = The analyte was positively identified; the numerical value is an estimated quantity that may be biased high.

TABLE 4B 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043

SUMMARY OF DETECTED SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCS) IN SOIL/FILL SAMPLES

Contaminant	CAS Number	A Unrestricted Use (SCO)	B Restricted Commercial Use (SCO)	MW-G (3') 6/13/2014	TB-102 (2 6/11/201		103 (24') TB-104 2/2014 6/12/2		TB-105 (8-1) 6/11/2014) TB-106a (24 6/19/2014) TB-107 (24') 6/13/2014	TB-108 (24') 6/12/2014	TP-A (3') 2/21/2014	TP-B (1.5') 2/21/2014	TP-B (5') 2/21/2014	TP-C (4') 2/21/2014		TP-G (2') North 2/21/2014
1-Methylnaphthalene'	90-12-0	NA	NA	0.17 J	U	U	U		U	U	U	U	U	NT	NT	NT	NT	NT	NT
2-Methylnaphthalene	91-57-6	NA	NA	0.23 J	U	U	U		U	U	U	U	U	NT	NT	NT	NT	NT	NT
2,4-Dimethylphenol	105-67-9	NA	NA	U	U	U	U		U	U	U	U	U	NT	NT	NT	NT	NT	NT
2-Methylphenol	95-48-7	NA	500	U	U	U	U		U	U	U	U	U	NT	NT	NT	NT	NT	NT
4-Methylphenol	106-44-5	NA	500	U	U	U	U		U	U	U	U	U	NT	NT	NT	NT	NT	NT
Acenaphthene	83-32-9	20	500	U	U	U	U		Ŭ	U	Ŭ	U	U	U	U	U	U	U	U
Acenaphthylene	208-96-8	100	500	U	U	U	U		U	U	U	U	U	U	U	U	U	U	2.85 J
Anthracene	120-12-7	100	500	0.087 J	U	U	U		U	U	U	U	U	U	U	U	U	U	13.7
Benz(a)anthracene	56-55-3	100	5.6	0.39 J	U	U U	U		U	U	U	U	U	2.95 J	A U	U	U	7.8	AB 9.95 AB
Benzo(a)pyrene		1					-		-		-				-	-			
	50-32-8 205-99-2	1	5.6	0.45	U U	U U	U U		U	UU	UU	U	U			UU	U	10.3	
Benzo(b)fluoranthene Benzo(g,h,i)perylene	191-24-2	100	500	0.67	U	U U	U		U	U	U	UU	U	2.16 J U	A U	-	U	<u>9.7</u>	
				0.38 J	-				-	-	-	-		-	1.94	0.29 J	-	9.64	9.53
Benzo(k)fluoranthene	207-08-9	0.8	56	0.21 J	U	U	U		U	U	U	U	U	2.13 J	A U	U	U	9.19	A 8.03 A
Bis(2-ethylhexyl)phthalate	117-81-7	NA	NA	U	0.09 J	0.11 J			U	0.078 J	U	U	U	NT	NT	NT	NT	NT	NT
Butylbenzylphthalate	85-68-7	NA	NA	U	U	U	U		U	U	U	U	U	NT	NT	NT	NT	NT	NT
Carbazole	86-74-8	NA	NA	U	U	U	U		U	U	U	U	U	NT	NT	NT	NT	NT	NT
Chrysene	218-01-9	0.00	56	0.54	U	U	U		U	U	U	U	U	3.08 J	A U	0.253 J	U	12.3	A 13 A
Dibenz(a,h)anthracene	53-70-3	0.33	0.56	0.098 J	U	U	U		U	U	U	U	U	U	U	U	U	U	3.08 J AB
Dibenzofuran	132-64-9	/	350	U	U	U	U		U	U	U	U	U	NT	NT	NT	NT	NT	NT
Di-n-butylphthalate	84-74-2	NA	NA	U	U	U	U		U	U	U	U	U	NT	NT	NT	NT	NT	NT
Fluoranthene	206-44-0	100	500	0.63	U	U	U		U	U	U	U	U	6.38	U	U	U	22	13.9
Fluorene	86-73-7	30	500	U	U	U	U		U	U	Ŭ	U	U	U	U	U	U	U	2.01 J
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	5.6	0.3 J	U	U	U		U	U	U	U	U	U	U	U	U	7.13	AB 9.07 AB
Naphthalene	91-20-3	12	500	0.15 J	U	U	U		U	U	U	U	U	U	U	U	U	U	U
Phenanthrene	85-01-8	100	500	0.32 J	U	U	U		U	U	U	U	U	6.41	U	0.258 J	U	9.62	11.9
Phenol	108-95-2	0.33	500	U	U	U	U		U	U	U	U	U	NT	NT	NT	NT	NT	NT
Pyrene	129-00-0	100	500	0.65	U	U	U		U	U	U	U	U	5.94	U	0.283 J	U	18.2	14.9
Total TICs				9.78 NJ	3.2	3.6	8.58		3.53	3.19	9.34	15.47	5.91	43.67	11.402	6.213	381.2	59.02	115.37
SVOCs + TICs				15.055	3.29	3.71	8.58		3.53	3.268	9.34	15.47	5.91	75.12	13.342	7.297	381.2	174.9	250.17
[^		1	<u> </u>	1					1			<u>.</u>	<u>`</u>	1	1	1	
Contaminant	CAS Number	A Unrestricted Use (SCO)	B Restricted Commercial Use (SCO)	TP-G (2') South 2/21/2014	TP-I (5" 2/21/201	4 2/2	P-J (2') TP-01 1/2014 7/30/2		TP-02 (2.5' 7/30/2014	7/29/2014	TP-04 (1') 7/30/2014	TP-05 (1') 7/29/2014	TP-07 (3') 7/29/2014	TP-08 (3') 7/30/2014	TP-08 (12') 7/31/2014	TP-11 (2-3') 7/30/2014	7/30/2014	7/29/2014	7/29/2014
1-Methylnaphthalene ¹	Number 90-12-0	Unrestricted Use (SCO) NA	Restricted Commercial Use (SCO) NA	South 2/21/2014 NT	2/21/201 NT	4 2/2 NT	1/2014 7/30/2 0.3 J		7/30/2014 0.13 J	7/29/2014	7/30/2014	7/29/2014 U	7/29/2014 U	7/30/2014 U	7/31/2014 U	7/30/2014 0.29 J	7/30/2014 0.24 J	7/29/2014 0.14 J	7/29/2014 U
1-Methylnaphthalene ¹ 2-Methylnaphthalene	Number 90-12-0 91-57-6	Unrestricted Use (SCO) NA NA	Restricted Commercial Use (SCO) NA NA	South 2/21/2014 NT NT	2/21/201 NT NT	4 2/2 NT NT	1/2014 7/30/2 0.3 J 0.21 J		7/30/2014 0.13 J 0.11 J	7/29/2014 U U	7/30/2014 0.42 0.34 J	7/29/2014 U U	7/29/2014 U U	7/30/2014 U U	7/31/2014 U U	7/30/2014	7/30/2014 0.24 J 0.2 J	7/29/2014 0.14 J 0.16 J	U U U
1-Methylnaphthalene [†] 2-Methylnaphthalene 2,4-Dimethylphenol	Number 90-12-0 91-57-6 105-67-9	Unrestricted Use (SCO) NA NA NA	Restricted Commercial Use (SCO) NA NA NA	South 2/21/2014 NT NT NT	2/21/201 NT NT NT	4 2/2 NT NT NT	1/2014 7/30/2 0.3 J		7/30/2014 0.13 J	7/29/2014	7/30/2014	7/29/2014 U	7/29/2014 U	7/30/2014 U U 0.13 J	7/31/2014 U	7/30/2014 0.29 J	7/30/2014 0.24 J	7/29/2014 0.14 J	7/29/2014 U
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol	Number 90-12-0 91-57-6 105-67-9 95-48-7	Unrestricted Use (SCO) NA NA NA NA	Restricted Commercial Use (SCO) NA NA NA 500	South 2/21/2014 NT NT NT NT NT	2/21/201 NT NT NT NT NT	4 2/2 NT NT NT NT	1/2014 7/30/2 0.3 J 0.21 J U U		7/30/2014 0.13 J 0.11 J U U	7/29/2014 U U	7/30/2014 0.42 0.34 J U U U	7/29/2014 U U	7/29/2014 U U	7/30/2014 U U 0.13 J 0.16 J	7/31/2014 U U	7/30/2014 0.29 J 0.28 J 0	7/30/2014 0.24 J 0.2 J	0.14 J 0.16 J U U	U U U
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2.4-Dimethylphenol 2-Methylphenol 4-Methylphenol	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5	Unrestricted Use (SCO) NA NA NA NA NA	Restricted Commercial Use (SCO) NA NA NA 500 500	South 2/21/2014 NT NT NT NT NT	2/21/201 NT NT NT NT NT	4 2/2 NT NT NT NT NT	1/2014 7/30/2 0.3 J 0.21 J U U U U		7/30/2014 0.13 J 0.11 J U U U U	7/29/2014 U U U U U U U	7/30/2014 0.42 0.34 J U U U U	7/29/2014 U U U U	7/29/2014 U U U U U U U U	7/30/2014 U U 0.13 J	7/31/2014 U U U U	7/30/2014 0.29 J 0.28 J 0 0 0.15 J	7/30/2014 0.24 J 0.2 J U U U U	0.14 J 0.16 J U U U U	7/29/2014 U U U U U U U U
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9	Unrestricted Use (SCO) NA NA NA NA NA 20	Restricted Commercial Use (SCO) NA NA NA 500 500 500	South 2/21/2014 NT NT NT NT 6.92 J	2/21/201 NT NT NT NT U	4 2/2 NT NT NT NT U U	1/2014 7/30/2 0.3 J 0.21 J 0.21 J U U U U U 0.77 0.77		7/30/2014 0.13 J 0.11 J U U U U U U	7/29/2014	7/30/2014 0.42 0.34 J U U U U 0.11 J	7/29/2014 U U U U U U U U U U	7/29/2014 U U U U U U U U U U	7/30/2014 U 0.13 J 0.16 J 0.27 J U	7/31/2014 U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0 0.15 J 0.34 J	7/30/2014 0.24 J 0.2 J U U U U 0.38 J	7/29/2014 0.14 J 0.16 J U U U U U 0.24 J	7/29/2014 U U U U U U U U U U U
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthene Acenaphthylene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8	Unrestricted Use (SCO) NA NA NA NA 20 100	Restricted Commercial Use (SCO) NA NA NA 500 500 500 500 500	South 2/21/2014 NT NT NT NT 6.92 J U	2/21/201 NT NT NT NT U U U	4 2/2 NT NT NT NT U U U U	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.77 0.42		7/30/2014 0.13 J 0.11 J U U U U U U U	7/29/2014 U U U U U U U U U U U U U	7/30/2014 0.42 0.34 J U U U U 0.11 J U U	7/29/2014 U U U U U U U U U U U U U	7/29/2014 U U U U U U U U U U 0.084 J	7/30/2014 U 0.13 J 0.16 J 0.27 J U U	7/31/2014 U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0 0.15 J 0.34 J U	7/30/2014 0.24 J 0.2 J U U U 0.38 J 0.15 J	7/29/2014 0.14 J 0.16 J U U U 0.24 J 0.16 J	7/29/2014 U
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthene Acenaphthylene Anthracene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7	Unrestricted Use (SCO) NA NA NA NA NA 20	Restricted Commercial Use (SCO) NA S00 500 500 500 500 500 500 500 500	South 2/21/2014 NT NT NT NT 6.92 J U 21.9	2/21/201 NT NT NT NT U U U U U U	4 2/2 NT NT NT NT U U U 2.78	1/2014 7/30/2 0.3 J 0.21 J U U 0.77 0.42 2.3 2.3		7/30/2014 0.13 J 0.11 J U U U U U U U U U 0.16 J	7/29/2014 U U U U U U U U U U U U U U U U U	7/30/2014 0.42 0.34 J U U U 0.11 J U 0.22 J	7/29/2014 U U U U U U U U U U U U U U U U U	7/29/2014 U U U U U U U U U U U U U 0.084 J 0.18	7/30/2014 U 0.13 J 0.16 J 0.27 J U 0.18 J	7/31/2014 U U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0 0.15 J 0.34 J U 0.82	7/30/2014 0.24 J 0.2 J U U U 0.38 J 0.15 J 0.77	7/29/2014 0.14 J 0.16 J U U U 0.24 J 0.16 J 1.1	7/29/2014 U U U U U U U U U U U U U U U U U U U
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3	Unrestricted Use (SCO) NA NA NA NA 20 100	Restricted Commercial Use (SCO) NA NA NA 500 500 500 500 500	South 2/21/2014 NT NT NT 6.92 J U 21.9 28.6	2/21/201 NT NT NT NT U U U AB 51.8 J	4 2/2 NT NT NT NT U U U 2.78 AB 5.45	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.77 0.42 2.3 A	2014	7/30/2014 0.13 J 0.11 J U U U U U 0.16 J A 3.1 J	7/29/2014 U U U U U U U U A U	7/30/2014 0.42 0.34 J U U U 0.11 J U 0.22 J 0.39	7/29/2014 U U U U U U U U U U U U U U U U U U U	7/29/2014 U U U U U U U U 0.084 J 0.18 0.51	7/30/2014 U 0.13 J 0.16 J 0.27 J U 0.18 J 0.18 J 0.34	7/31/2014 U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4	7/30/2014 0.24 J 0.2 J U U U 0.38 J 0.15 J 0.77 A 2	7/29/2014 0.14 J 0.16 J U U U 0.24 J 0.16 J 1.1 A 1.9 NJ	7/29/2014 U U U U U U U U U U U U U U U U 0.38 J 0.98
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2.4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8	Unrestricted Use (SCO) NA NA NA NA NA 20 100 100 100 1 1	Restricted Commercial Use (SCO) NA S00 500 500 500 500 500 500 500 500 1	South 2/21/2014 NT NT NT NT 6.92 J U 21.9 28.6 22.2	2/21/201 NT NT NT NT U U U AB 51.8 J AB 88.1 J	4 2/2 NT NT NT NT U U 2.78 AB 5.45 AB 4.53	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.77 0.42 2.3 A 5.2 AB		7/30/2014 0.13 J 0.11 J U U U U 0.16 J A 3.1 J B 3.3 J	7/29/2014 U U U U U U U U U A U A B U	7/30/2014 0.42 0.34 J U U U 0.11 J 0.22 J 0.39 0.21 J	7/29/2014 U U U U U U U U U U U U U U U U U U U	7/29/2014 U U U U U U U U U U U U U 0.084 J 0.51 0.56	7/30/2014 U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34	7/31/2014 U U U U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0 0.15 J 0.34 J U 0.82 1.4 2.5	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2 AB 1.7	7/29/2014 0.14 J 0.16 J U U U 0.24 J 0.16 J 1.1 A 1.9 NJ AB 1.9	7/29/2014 U 0.38 J 0.98 AB 1.9 AB
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2	Unrestricted Use (SCO) NA NA NA NA 20 100 100 100 1 1 1 1	Restricted Commercial Use (SCO) NA S00 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 5.6 1 5.6	South 2/21/2014 NT NT NT 6.92 J U 21.9 28.6 22.2 19.8	2/21/201 NT NT NT NT U U U AB 51.8 J AB 68.1 J AB U	4 2/2 NT NT NT NT U U U 2.78 AB 5.45 AB 4.53 4.4	1/2014 7/30/2 0.3 J 0.21 J 0.21 J U 0.21 J 0.21 J 0.22 J 0.21 J 0.42 Z.3 0.4 5.2 AB 3.6 A A 4.3 0.21 J	2014	7/30/2014 0.13 J 0.11 J U U U U 0.16 J A 3.1 J B 3.3 J A 2.1 J	7/29/2014 U U U U U U U U A U A B U A U	7/30/2014 0.42 0.34 J U U 0.11 J U 0.22 J 0.39 0.21 J 0.32 J	7/29/2014 U U U U U U U U U U U U U	7/29/2014 U U U U U U U U U U U U 0.084 J 0.51 0.56 0.66	7/30/2014 U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47	7/31/2014 U U U U U U U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2 AB 1.7 A 2.3	7/29/2014 0.14 J 0.16 J U U U 0.24 J 0.16 J 1.1 A 1.9 NJ AB 1.9 A 2.3	7/29/2014 U B A O.98 A A D A D A D A 1.3
1-Methylnaphthalene 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthene Accenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(g),hj)perylene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2	Unrestricted Use (SCO) NA NA NA NA 20 100 100 100 1 1 1 1 1 100	Restricted Commercial Use (SCO) NA NA 500 500 500 500 500 500 500 5.6 1 5.6 500	South 2/21/2014 NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6	2/21/201 NT NT NT NT U U U AB 51.8 J AB 88.1 J AB U 124	4 2/2 NT NT NT NT U U U U 2.78 AB 5.45 AB 4.53 4.4 A 2.83	1/2014 7/30/2 0.3 J 0.21 J 0.21 J U U U 0.77 0.42 2.3 A 5.2 AB AB 3.6 A 4.3 2.5 2.5	2014	7/30/2014 0.13 J 0.11 J U U U 0.16 J A 3.1 J B 3.3 J A 2.1 J 3.3 J	7/29/2014 U U U U U U U U A U A B U A A U A A U A A U A O.66	7/30/2014 0.42 0.34 J U U 0.11 J 0.22 J 0.39 0.21 J 0.32 J 0.15 J	7/29/2014 U U U U U U U U U U U U U	7/29/2014 U U U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72	7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.36 0.47 0.18	7/31/2014 U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2 AB 1.7 A 2.3 1.1	7/29/2014 0.14 J 0.16 J U U 0.24 J 0.16 J 1.1 A 1.9 A 2.3 U	7/29/2014 U U U U U U U U U U U U U U U U U U U B 1.9 A 1.9
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9	Unrestricted Use (SCO) NA NA NA NA 20 100 100 1 100 1 1 1 1 00 0.8	Restricted Commercial Use (SCO) NA NA NA 500 500 500 500 500 500 500 500 5.6 5.6 5.6 500 56	South 2/21/2014 NT NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6 19	2/21/201 NT NT NT V U U U AB 51.8 J AB 68.1 J AB U 124 U U U L U L L L L L	4 2/2 NT NT NT NT V U 2.78 AB 5.45 AB 4.53 4.4 A 2.83 3.44	1/2014 7/30/2 0.3 J 0.21 J 0.21 J U 0.42 2.3 A 5.2 AB 3.6 A 4.3 2.5 A A 1.9	2014	7/30/2014 0.13 J 0.11 J U U U U 0.16 J A 3.1 J B 3.3 J A 1.6 J	7/29/2014 U U U U U U U U U A U A U A U A B U A A U A B U A C A C A U	7/30/2014 0.42 0.34 J U U 0.11 J 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J	7/29/2014 U U U U U U U U U U U U 0.089 J U 0.18 J U	7/29/2014 U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J	7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.36 0.47 0.18	7/31/2014 U U U U U U U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3 0.44 J	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2 AB 1.7 A 2.3 1.1 0.81	7/29/2014 0.14 J 0.16 J U U 0.16 J U 0.16 J U 0.16 J U 0.16 J 1.1 A 1.9 A 2.3 U A 0.71	7/29/2014 U 0.38 J A 1.9 0.38 J
1-Methylnaphthalene 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b,filuoranthene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7	Unrestricted Use (SCO) NA NA NA NA 20 100 100 100 1 1 1 1 100 0.8 NA	Restricted Commercial Use (SCO) NA NA 500 500 500 500 500 500 500 500 500 500 500 500 500 500 5.6 500 56 NA	South 2/21/2014 NT NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT	2/21/201	4 2/2 NT NT NT NT NT U U 2.78 AB 5.45 AB 4.53 4.4 A 2.83 3.344 NT	1/2014 7/30/2 0.3 J 0.21 J U U 0.21 J U 0.42 2.3 A 5.2 AB 3.6 A 4.3 2.5 A 0.9 U	2014	7/30/2014 0.13 J 0.11 J U U U U 0.16 J A 3.1 J B 3.3 J A 2.1 J 3.3 J A 1.6 J U	7/29/2014 U U U U U U U A U A U A U A A U A A U A A U A C 66 A U U	7/30/2014 0.42 0.34 J U U 0.11 J 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U	7/29/2014 U U U U U U U U U U U U U	7/29/2014 U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U	7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.36 0.47 0.18 0.21	7/31/2014 U U U U U U U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3 0.44 J U	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2 AB 1.7 A 2.3 1.1 0.81 U	7/29/2014 0.14 J 0.16 J U U 0.16 J 1 0.16 J 1 0.16 J 1.1 A 1.9 A 0.71	7/29/2014 U U U U U U U U U U U U U 0.38 J A 1.9 0.38 J U U.38 J
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol 4-Methylphenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)huoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Butylbenzylphthalate	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 85-68-7	Unrestricted Use (SCO) NA NA NA NA 20 100 100 100 1 1 1 1 00 0.8 NA NA	Restricted Commercial Use (SCO) NA NA 500 500 500 500 500 500 500 500 500 500 500 500 56 NA NA NA	South 2/21/2014 NT NT NT NT 0.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT	2/21/201 NT NT NT NT NT NT NT AB 51.8 J AB 51.8 J AB U 124 A U NT NT NT NT	4 2/2 NT NT NT NT NT U U U 2.78 AB 5.45 AB 4.53 AB 4.53 A4.4 A 2.83 3.44 NT NT NT	1/2014 7/30/2 0.3 J 0.21 J 0.21 J U 0.42 2.3 A 5.2 AB A 5.2 AB A 4.3 2.5 A 1.9 U U U	2014	7/30/2014 0.13 J 0.11 J U U U U 0.16 J A 3.3 J A 1.6 J U U	7/29/2014 U U U U U U U U A U A U A U A U A U A	7/30/2014 0.42 0.34 J U U 0.11 J 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U U U U U U U U U U U U U	7/29/2014 U U U U U U U U U U U U U	7/29/2014 U U U U U U U U U 0.084 J 0.51 0.56 0.66 0.72 0.25 J U U U	7/30/2014 U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U	7/31/2014 U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3 0.44 J U U U U U U U	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2 AB 1.7 A 2.3 1.1 0.81 U U U U U U U U U U U U U	7/29/2014 0.14 J 0.16 J U U 0.16 J 1.1 A 1.9 AB 1.9 A 0.71 U 0.48	7/29/2014 U U U U U U U U U U U U U U U U U 0.38 J A 1.9 A 0.38 J U U 1.2
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(c),hi)perylene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 85-68-7 86-74-8	Unrestricted Use (SCO) NA NA NA NA 20 100 100 100 1 1 1 1 1 00 0.8 NA NA NA	Restricted Commercial Use (SCO) NA NA 500 500 500 500 500 500 500 500 500 500 56 1 5.6 56 NA NA NA	South 2/21/2014 NT NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT	2/21/201 NT NT NT NT U U U IU AB 51.8 J AB 124 A NT NT NT NT	4 2/2 NT NT NT NT NT U U 2.78 AB 5.45 AB 4.53 4.4 AB 2.83 3.44 NT NT NT NT NT NT NT	1/2014 7/30/2 0.3 J 0.21 J 0.21 J U U U 0.21 J 0.21 J 0.21 J U 0.77 0.42 2.3 A 5.2 AB A 5.2 A 5.2 A 5.2 A 1.9 U U U U	2014	7/30/2014 0.13 J 0.11 J U U U 0.16 J A 3.1 J B 3.3 J A 1.6 J U U U U U U U U U U U U U U U U	7/29/2014 U U U U U U U U U U A U A U A U A U A U A U C C C C C C C C C C C C C	7/30/2014 0.42 0.34 J U U 0.11 J U 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U	7/29/2014 U U U U U U U U U U U U U	7/29/2014 U U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U U 0.28 J	7/30/2014 U U 0.13 J 0.16 J 0.27 J U U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U	7/31/2014 U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3 0.44 J U U U 0.34 J 2 0 3 0.44 J U 0 0 0 0 0 0 0 0 0 0 0 0 0	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2 AB 1.7 A 2.3 1.1 0.81 U U 0.34 J	7/29/2014 0.14 J 0.16 J U 0.24 J 0.16 J 1.1 A 1.9 NJ AB 1.9 U 0.71 U 0.48 0.53	7/29/2014 U U U U U U U U U U U U U U U U U 0.38 J A 1.9 A 0.38 J U U 1.2 0.29 J
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Butylbenzylphthalate Carbazole Chrysene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 86-68-7 86-74-8 218-01-9	Unrestricted Use (SCO) NA NA NA NA 20 100 100 1 100 1 1 1 1 1 00 0.8 NA NA NA 1	Restricted Commercial Use (SCO) NA NA 500 500 500 500 500 500 500 500 500 500 500 500 500 56 NA NA NA 56 NA NA	South 2/21/2014 NT NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT 28.1	2/21/201	4 2/2 NT NT NT NT NT V U 2.78 AB 5.45 AB 4.53 4.4 A 2.83 3.44 NT NT NT NT NT NT NT NT AB 5.56	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.77 0.42 2.3 A 5.2 AB A 5.2 AB 3.6 A 4.3 2.5 A U U U U 0.58 A		7/30/2014 0.13 J 0.11 J U U U 0.16 J A 3.1 J B 3.3 J A 1.6 J U U U U A 3.1 J A 1.6 J U U U	7/29/2014 U U U U U U U U U A U A U A U C A U U A U C A U C C C C C C C C C C C C C	7/30/2014 0.42 0.34 J U U 0.11 J U 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.32 J 0.32 J 0.15 J 0.11 J U U	7/29/2014 U U U U U U U U U U U 0.089 J U 0.18 J U U U U U U U U U U U U U	7/29/2014 U U U U U U 0.084 J 0.18 0.51 0.56 0.56 0.72 0.25 J U U 0.088 J 0.088 J 0.66	7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.36 0.47 0.18 0.21 U U 0.18	7/31/2014 U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 3 0.44 J U U 0.34 J 2 3 0.44 J U U 0.34 J 2 3 0.44 J 2 3 0.44 J 2 3 0.44 J 2 3 0.44 J 2 3 0.44 J 2 3 0.44 J 2 3 0.44 J 2 3 0.44 J 2 2 3 0.44 J 2 2 3 0 0.44 J 2 2 3 0 0.44 J 2 2 3 0 0.44 J 2 2 3 0 0.44 J 2 2 3 0 0 0 2 2 3 0 0 0 2 2 3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U U 0.34 J A	7/29/2014 0.14 J 0.16 J U U 0.16 J U 0.16 J 1.1 A 1.9 AB 0.71 U 0.71 0.48 0.53 A	7/29/2014 U U U U U U U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U 1.3 A 1.9 0.38 J U 1.2 0.29 J A 1.6
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(g,h.i)perylene Benzo(g,h.i)perylene Bis(2-ethylhexyl)phthalate Butylbenzylphthalate Carbazole Dibenzo(a,h)anthracene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 207-08-9 117-81-7 85-68-7 86-74-8 218-01-9 53-70-3	Unrestricted Use (SCO) NA NA NA NA 20 100 100 1 100 1 0.8 NA NA NA NA NA 1 0.33	Restricted Commercial Use (SCO) NA NA 500 500 500 500 500 500 500 500 500 500 500 500 56 NA NA NA	South 2/21/2014 NT NT NT NT 0.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT 28.1 5.47 J	2/21/201 NT NT NT NT U U U U 10 U 11/24 AB NT 124 A NT NT NT AB U 124 A NT NT AB U 124 A U NT AB NT AB U	4 2/2 NT NT NT NT NT VU VU 2.78 AB 5.45 AB 4.53 4.4 A 2.83 3.44 NT NT NT AB 5.56 1.21 J	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.21 J U U U 0.21 J U U U 0.21 J U 0.77 0.42 2.3 A A 5.2 AB 3.6 A 4.3 2.5 A A 1.9 U U 0.58 A A 4.5 J AB 0.75	2014	7/30/2014 0.13 J 0.11 J U U U U U U 0.16 J A 3.1 J B 3.3 J A 2.1 J 3.3 J A 1.6 J U U U U U A 3.1 J B 0.71 J 0.11 J	7/29/2014 U U U U U U U U U U U U U U U U O A U A U A U O.66 A U U U U U U U A U A U A U A U A U A U A U	7/30/2014 0.42 0.34 J U U 0.11 J U 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.14 J 0.21 J 0.32 J 0.15 J 0.11 J U U U U U U U U U U U U U U U	7/29/2014 U U U U U U U U U U U U U	7/29/2014 U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.66 0.71 J	7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U U	7/31/2014 U U U U U U U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 3 0.44 J U U 0.34 J 2 3 0.44 J U 0.34 J 2 3 0.44 J U 0.34 J 0 0 0 0 0 0 0 0 0 0 0 0 0	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U 0.34 J A 2.1 AB 0.31 J	7/29/2014 0.14 J 0.16 J U U 0.16 J Image: 100 million 0.16 J 0.16 J 0.16 J 1.1 A 1.9 A 0.71 U 0.48 0.53 A 1.7 0.41	7/29/2014 U U U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U U 0.38 J U 1.9 0.38 J U 1.2 0.29 J A 1.6 A U
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2.4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Beis(2-ethylhexyl)phthalate Butylbenzylphthalate Carbazole Dibenzo(a,h)anthracene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 85-68-7 86-74-8 218-01-9 53-70-3 132-64-9	Unrestricted Use (SCO) NA NA NA NA 20 100 100 1 1 1 1 1 1 00 0.8 NA NA NA NA NA NA 1 0.33 7	Restricted Commercial Use (SCO) NA NA 500 500 500 500 500 500 5.6 1 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	South 2/21/2014 NT NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT NT NT Start 28.1 5.47 J NT	2/21/201 NT NT NT NT U U U U U U U NT AB 88.1 J AB 124 A NT NT NT AT NT NT AT NT NT NT NT	4 2/2 NT NT NT NT NT U U U 2.78 AB 5.45 AB 4.53 4.4 A 2.83 3.44 NT NT NT AB 5.56 1.21 NT NT NT	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.21 J U U U 0.21 J U U U 0.42 2.3 A 5.2 AB 3.6 A 4.3 2.5 A A 1.9 U U 0.58 A A.55 J AB 0.75 0.47 0.47		7/30/2014 0.13 J 0.11 J U U U U U U U U U U U U U 0.16 J A 3.1 J B 3.3 J A 1.6 J U U A 1.16 J U U U U U U U U U U U U U	7/29/2014 U U U U U U U U U A U U A U U C A U U C A U U C C C C C C C C C C C C C	7/30/2014 0.42 0.34 J U U 0.11 J 0 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.32 J 0.32 J 0.32 J 0.15 J 0.11 J U U 0.14 J U 0.41 U 0.18 J	7/29/2014 U U U U U U U U U U U U U	7/29/2014 U U U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U	7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U U	7/31/2014 U U U U U U U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3 0.44 J U U 0.34 J U 0.44 J U 0.34 J 0.44 J 0.34 J 0.44 J 0.44 J 0.44 J 0.34 J 0.44 J 0.466 0 0.33 J	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2 AB 1.7 A 2.3 1.1 0.81 U U 0.34 J A 2.1 AB 0.31 J 0.26 J	7/29/2014 0.14 J 0.16 J U U 0.24 J 0.16 J 1.1 A 1.9 A 0.71 U 0.48 0.53 A 1.7 0.34 J	7/29/2014 U U U U U U U U U U U U U 0.38 J A 0.38 J A 1.9 0.38 J U U.22 J 0.29 J A 1.6 A U U
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol 4-Methylphenol Acenaphthene Acenaphthene Acenaphthene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)hilperylene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Dibenzofuran	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 85-68-7 86-74-8 218-01-9 53-70-3 132-64-9 84-74-2	Unrestricted Use (SCO) NA NA NA NA 20 100 100 100 1 1 1 1 1 00 0.8 NA NA NA NA NA NA NA NA NA	Restricted Commercial Use (SCO) NA NA NA 500 500 500 500 500 500 500 500 500 50	South 2/21/2014 NT NT NT NT 0.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT NT 28.1 5.47 J NT NT NT	2/21/201 NT NT NT NT NT U U U U U U U U AB 51.8 J AB 00 124 A U 124 A U NT NT NT NT A 79.8 J AB U NT	4 2/2 NT NT NT NT NT NT U U U 2.78 AB 5.45 AB 4.53 AB 4.53 AB 4.44 A 2.83 3.44 NT NT NT AB 5.56 1.21 J NT NT NT NT NT	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.21 J U U U 0.21 J U U U 0.3 J 0.21 J U U 0.77 0.42 2.3 A 5.2 AB 3.6 A 4.3 2.5 A A 1.9 U U 0.58 A A 4.5 J AB 0.75 0.47 U U		7/30/2014 0.13 J 0.11 J U U U 0.16 J A 3.1 J B 3.3 J A 1.6 J U U 0.16 J A 3.1 J B 0.57 J U U	7/29/2014 U U U U U U U U U U U U U U U U A U A U A U	7/30/2014 0.42 0.34 J U U 0.11 J U 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.32 J 0.31 J 0.32 J 0.15 J 0.11 J U U 0.18 J U 0.18 J U	7/29/2014 U U U U U U U U U U U U U	7/29/2014 U U U U U U U U U 0.084 J 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U U	7/30/2014 U U.13 J 0.16 J 0.27 J U U.18 J 0.34 0.36 0.47 0.18 0.21 U U U U 0.47 0.18 0.21 U 0.46 J	7/31/2014 U U U U U U U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3 0.44 J U U 0.34 J 2 0.44 J U 0.34 J 0 0.34 J 0.34 J 0.34 J 0 0.34 J 0 0.33 J 0.38 J	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U 0.34 J A 2.1 AB 0.31 J 0.26 J U	7/29/2014 0.14 J 0.16 J U U 0.16 J 1.1 A 1.9 A 0.71 U 0.48 0.53	7/29/2014 U U U U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U 1.2 0.29 J A 1.6 A U U 0.18 J
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol 4-Methylphenol Acenaphthene Acenaphthylen Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)hilperylene Bis(2-ethylhexyl)phthalate Chrysene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butylphthalate Fluoranthene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 85-68-7 86-74-8 218-01-9 53-70-3 3132-64-9 84-74-2 206-44-0	Unrestricted Use (SCO) NA NA NA NA 20 100 100 1 1 1 1 1 1 0.8 NA NA NA NA NA 1 0.33 7 NA 100	Restricted Commercial Use (SCO) NA NA NA 500 500 500 500 500 500 500 500 500 50	South 2/21/2014 NT NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT NT NT NT NT NT NT NT ONT ONT O	2/21/201 NT NT NT NT NT NT U U U U U U U U U U	4 2/2 NT NT NT NT NT U U U 2.78 AB 5.45 AB 4.53 4.4 A 2.83 3.44 NT A 2.83 3.44 NT NT AB 5.56 1.21 J NT NT NT AB 5.56 1.21 J NT NT NT 2.22	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.77 0.42 2.3 A 5.2 AB A 5.2 AB 3.6 A 4.3 2.5 A A 1.9 U U 0.58 A 4.5 J J AB 0.75 0.47 U 10 D		7/30/2014 0.13 J 0.11 J U U U U U 0.16 J A 3.1 J B 3.3 J A 2.1 J 3.3 J A 1.6 J U U U U U U U 0.16 J A 3.1 J B 0.57 J U U U 0.34 J	7/29/2014 U U U U U U U U U U U U U U U U U O A U O A U U U A U U U A U U U U U U U U U U U U U U U U U	7/30/2014 0.42 0.34 J U U 0.11 J U 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.18 J U 0.42	7/29/2014 U U U U U U U U U U U U U U U U U U U	7/29/2014 U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.66 0.72 0.25 J U U 0.13 J U U 0.88	7/30/2014 U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U 0.18 0.47 0.18 0.21 U U U U U U U U 0.41 U 0.46 J 0.75	7/31/2014 U U U U U U U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3 0.44 J U U 0.34 J U U 0.34 J 0.34 J 0.34 J 0.34 J 0.34 J 2 0.33 J 0.38 J 0.38 J 0.38 J	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U 0.34 J A 2.3 1.1 0.81 U 0.34 J A 2.1 AB 0.31 J 0.26 J U 4.1	7/29/2014 0.14 J 0.16 J U U 0.16 J 10 0.16 J 1.1 A 1.9 NJ AB 0.71 U 0.48 0.53 A 1.7 0.41 0.34 J 0.53 3.8	7/29/2014 U U U U U U U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U 0.29 J A 1.6 A U U U 0.18 J 1.6
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol 4-Methylphenol Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b,fluoranthene Benzo(c,h.i)perylene Benzo(c,h.i)perylene Benzo(c,h.i)perylene Benzo(c,h.i)perylene Bis(2-ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h.i)anthracene Dibenzofuran Di-n-butylphthalate Fluoranthene Fluorene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 85-68-7 86-74-8 218-01-9 53-70-3 132-64-9 84-74-2 206-44-0 86-73-7	Unrestricted Use (SCO) NA NA NA NA NA 100 0.8 NA NA NA 1 0.33 7 NA 100 30	Restricted Commercial Use (SCO) NA NA 500 500 500 500 500 500 5.6 1 5.6 500 56 NA NA NA S6 0.56 350 NA NA S6 0.56 350 S00 50 50 S00 50 S00 S00 S00 S00 S00	South 2/21/2014 NT NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT 28.1 5.47 J NT NT 61.5 11.7	2/21/201 NT NT NT NT U U U U AB 51.8 J AB 124 A NT NT NT AB U 124 A NT U U U U	4 2/2 NT NT NT NT NT NT U U U 2.78 AB 5.45 AB 4.53 4.4 A 2.83 3.44 NT NT NT NT AB 5.56 1.21 J NT NT NT NT AB 5.56 1.21 J NT NT NT NT 12.2 1.29 J	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.77 0.42 2.3 A A 5.2 AB 3.6 A 4.3 2.5 A A 1.9 U U 0.58 A A 4.5 J AB 0.76 0.47 U U 0.10 D 10 D		7/30/2014 0.13 J 0.11 J U U U U 0.16 J A 3.1 J B 3.3 J A 2.1 J 3.3 J A 1.6 J U U U U U A 3.1 J B 0.7 J U U U U U U U U U U U U U	7/29/2014 7/29/2014 U U U U U U U U A U A U A U A U A U C A U C A U C A U C C C C C C C C C C C C C	7/30/2014 0.42 0.34 J U U 0.11 J U 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.31 J 0.32 J 0.35 J 0.15 J 0.11 J U U 0.18 J U 0.66 0.11 J	7/29/2014 U U U U U U U U U U U U U	7/29/2014 U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U U 0.88 U	7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U 0.18 0.34 0.36 0.47 0.18 0.21 U U U 0.21 U U U 0.47 0.18 0.21 U U U U 0.41 U 0.46 J 0.75 U	7/31/2014 U U U U U U U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 3 0.44 J U 0.34 J 0 0.33 J 0.38 J 2.9 0.42 J	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U 0.34 J A 2.1 AB 0.31 J 0.26 J U 4.1 0.34 J	7/29/2014 0.14 J 0.16 J U U 0.16 J U 0.16 J U 0.16 J 1.1 A 1.9 A 0.71 U 0.48 0.53 A 1.7 0.41 0.34 J 0.53 3.8 0.42	7/29/2014 U U U U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U U 0.38 J A 1.9 0.38 J U 1.2 0.29 J A 1.6 U 0.18 J 1.6 U
1-Methylnaphthalene 2-Methylnaphthalene 2.4-Dimethylphenol 2-Methylphenol 4-Methylphenol 4-Methylphenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)huoranthene Benzo(b)fluoranthene Bis(2-ethylhexyl)phthalate Butylbenzylphthalate Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butylphthalate Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 207-08-9 117-81-7 85-68-7 86-74-8 218-01-9 53-70-3 132-64-9 84-74-2 206-44-0 86-73-7 193-39-5	Unrestricted Use (SCO) NA NA NA NA NA 20 100 100 1 100 100 1 1 1 1 0.0 8 NA NA NA NA NA NA NA 1 0.33 7 NA 100 30 0.5	Restricted Commercial Use (SCO) NA NA 500 500 500 500 500 500 500 500 500 500 500 56 NA NA S6 0.56 350 NA NA NA S6 0.56 350 NA S00 5600 500 500 500 500	South 2/21/2014 NT NT NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT NT NT NT NT NT NT NT	2/21/201 NT NT NT NT U U U U U U U NT AB S1.8 J AB NT AB NT AB NT AB NT NT AT 79.8 J AB NT NT NT NT OU U U U U U U U U U U U	4 2/2 NT NT NT NT NT NT VU VU VU 2.78 AB 5.45 AB 4.53 4.4 A 2.83 3.44 A 2.83 3.44 NT NT AB 5.566 1.21 S.56 1.21 NT NT NT L12.2 1.29 2.6	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.77 0.42 2.3 A A 5.2 AB 3.6 A 4.3 2.5 A A 1.9 U U 0.58 A A 4.5 J AB 0.75 0.44 0.58 A A 4.5 J D 0.58 A A 4.5 J J AB 0.75 0.47 U 0.47 U 0.86 A		7/30/2014 0.13 J 0.11 J U U U U 0.16 J A 3.1 J B 3.3 J A 1.6 J U U U 0.16 J A 3.1 J B 0.3.3 J A 1.6 J U A 1	7/29/2014 U U U U U U U U U U U U U U U U A U U A U	7/30/2014 0.42 0.34 J U U 0.11 J 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.15 J 0.18 J U 0.84	7/29/2014 U U U U U U U U U U U U U	7/29/2014 U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U U 0.88 U 0.43	7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U 0.47 0.18 0.21 U U U 0.41 U 0.46 J 0.75 U 0.22	7/31/2014 U U U U U U U U U U U U U U U U U U U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 3 0.44 J U 0.33 J 0.33 J 0.38 J 2.9 0.42 J 1.4	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U 0.34 J A 2.1 AB 0.31 J 0.26 J U 0.34 J A 0.34 J A 0.34 J A 0.34 J A 0.34 J	7/29/2014 0.14 J 0.16 J U U 0.16 J I 0.16 J I 0.16 J 1.1 A 1.9 AB 1.9 A 0.71 U 0.48 0.53 A 0.34 J 0.53 3.8 0.42 A	7/29/2014 U U U U U U U U U U U U U 0.38 J A 1.9 0.38 J U 1.9 0.38 J U 1.2 0.29 J A 1.6 U 0.18 J 1.6 U 0.6 J
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2.4-Dimethylphenol 2-Methylphenol 4-Methylphenol 4-Methylphenol Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)huoranthene Benzo(y,iluoranthene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(1,2,3-cd)pyrene Naphthalene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 85-68-7 86-74-8 218-01-9 53-70-3 132-64-9 84-74-2 206-44-0 86-73-7 193-39-5 91-20-3	Unrestricted Use (SCO) NA NA NA NA 20 100 100 1 1 1 1 1 1 0.00 100 1 1 1 1 0.00 1 0.8 NA NA NA NA NA NA NA 1 1 0.33 7 NA 100 0.5 12	Restricted Commercial Use (SCO) NA NA 500 500 500 500 500 500 500 500 500 500 500 500 56 NA NA NA 56 0.56 350 NA 560 5500 56 0.56 350 NA 56 0.56 350 500 500 500	South 2/21/2014 NT NT NT NT 0.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT 28.1 5.47 J NT NT 61.5 11.7 16.3 8.87	2/21/201 NT NT NT NT NT U U U U U U U U U AB 51.8 J AB 88.1 J AB 124 A U 124 A U 124 A U NT NT NT NT NT NT NT NT A 79.8 J AB U U U U	4 2/2 NT NT NT NT NT V U U 2.78 AB 5.45 AB 4.53 AB 4.53 AB 4.53 A,44 A 2.83 A,3.44 NT NT NT AB 5.56 I.21 NT NT AB 5.56 I.21 J NT L2.2 I.29 J 2.6 0.946 J	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.77 0.42 2.3 A A 5.2 AB 3.6 A 4.3 2.5 A A 1.9 U U 0.58 A A 4.5 J AB 0.75 0.47 U 0.58 0.47 0.47 0.47 0.48 0.75 0.47 0.47 0.48 0.75		7/30/2014 0.13 J 0.11 J U U U U U U U U U U U U U U 0.16 J A 3.3 J A 1.6 J U U U U U U U U U U U U U 0.34 J U A 1 U	7/29/2014 U U U U U U U U U U U U U U U U A U U A U	7/30/2014 0.42 0.34 J U U 0.11 J 0 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.32 J 0.32 J 0.15 J 0.11 J U 0.15 J 0.15 J 0.18 J U 0.66 0.11 J 0.15 J	7/29/2014 U	7/29/2014 U U U U U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U U 0.88 U 0.43 U	7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U 0.47 0.18 0.21 U U U 0.41 U 0.46 J 0.75 U 0.222 U	7/31/2014 U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3 0.44 J U 0.34 J 2 3 0.44 J U 0.34 J 2 0.33 J 0.38 J 2.9 0.42 J 1.4 0.47 J	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U 0.34 J A 2.3 1.1 0.31 J 0.26 J U 0.234 J A 2.1 AB 0.31 J 0.26 J U 4.1 0.34 J A 0.19 J	7/29/2014 0.14 J 0.16 J U U 0.24 J 0.16 J 1.1 A 1.9 A 0.71 U 0.48 0.53 A 1.7 0.41 0.53 3.8 0.42 A 0.24 J	7/29/2014 U U U U U U U U U U U U U 0.38 J A 1.9 0.38 J U 0.38 J U 0.29 J A 1.6 U 0.18 J 1.6 U 0.6 J U
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2.4-Dimethylphenol 2-Methylphenol 4-Methylphenol 4-Methylphenol Acenaphthene Acenaphthene Acenaphthene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)hilperylene Benzo(yhluoranthene Bis(2-ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butylphthalate Fluoranthene Fluorenthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 85-68-7 86-74-8 218-01-9 53-70-3 132-64-9 84-74-2 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8	Unrestricted Use (SCO) NA NA NA NA 20 100 100 1 1 1 1 1 1 1 1 0.8 NA NA NA NA NA NA 1 0.33 7 7 NA 100 30 0.5 12 100	Restricted Commercial Use (SCO) NA NA NA 500 500 500 500 500 500 500 56 1 1 1 5.6 500 56 NA NA NA NA NA NA S6 0.56 350 NA S00 500 500 500 500 500 500 500 500 500	South 2/21/2014 NT NT NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT NT NT NT NT 0.5 11.7 16.3 8.87 73.9	2/21/201 NT AB V NT NT A 79.8 J AB V NT NT A NT NT A U NT AB U U AB U A U A A U A A U A A U A A U A A A U A	4 2/2 NT NT NT NT NT NT U U 2.78 AB AB 5.45 AB 4.43 A 2.83 3.44 NT NT NT AB 5.56 1.21 NT NT NT NT NT 0.946 2.6 0.946 12.1	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.77 0.42 2.3 A A 5.2 AB 3.6 A 4.3 2.5 A A 1.9 U U 0.58 0.45 J AB 0.75 0.47 U 10 D J 0.86 A 2.6 J 0.18 J S.6 A		7/30/2014 0.13 J 0.11 J U U U U 0.16 J A 3.1 J B 3.3 J A 1.6 J U U U 0.16 J A 3.1 J B 0.57 J U 0.34 J U 0.75 J	7/29/2014 U U U U U U U U U U U U U U U U A U A U U U U A U	7/30/2014 0.42 0.34 J U U 0.11 J 0.22 J 0.39 0.21 J 0.32 J 0.315 J 0.15 J 0.18 J U 0.18 J U 0.16 J 1.2	7/29/2014 U U U	7/29/2014 U U U U U U U U U U 0.084 J 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U U 0.88 U 0.43 U	7/30/2014 U 0.13 J 0.16 J 0.27 J U 0.16 J 0.27 J U 0.16 J 0.27 J U 0.34 0.34 0.36 0.47 0.18 0.21 U U U U U U U U 0.47 0.18 0.21 U U U U U 0.47 0.18 0.21 U 0.47 U 0.47 U 0.46 J 0.75 U 0.22 U 0.53 J	7/31/2014 U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3 0.44 J U U 0.33 J 0.38 J 2.9 0.42 J 1.4	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U 0.34 J A 2.1 AB 0.31 J 0.26 J U 4.1 0.34 J A 1.2 0.19 J 3.7	7/29/2014 0.14 J 0.16 J U U 0.16 J 1.1 A 0.16 J 1.1 A 0.16 J 1.1 A 0.16 J 1.1 A 0.71 U 0.48 0.53 A 0.34 J 0.53 3.8 0.42 W 0.28 J 3.7	7/29/2014 U U U U U U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U 1.2 0.29 J A 1.6 A U 0.18 J 1.6 U 0.6 J Q 1.3
1-Methylnaphthalene 2-Methylpaphthalene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole Chrysene Dibenzofuran Dibenzofuran Di-n-butylphthalate Fluoranthene Fluorenthene Pluorene Naphthalene Phenanthrene Phenol	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 85-68-7 86-74-8 218-01-9 53-70-3 132-64-9 86-73-7 193-39-5 91-20-3 85-01-8 108-95-2	Unrestricted Use (SCO) NA NA NA NA NA 100 0.8 NA NA 1 100 0.8 NA NA 1 0.33 7 NA 100 30 0.5 12 100 0.33	Restricted Commercial Use (SCO) NA NA NA 500 500 500 500 500 56 1 1 5.6 500 56 NA NA NA NA 56 0.56 350 56 0.56 350 56 0.56 350 56 0.56 350 500 500 500 500 500 500 500 500 500	South 2/21/2014 NT NT NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT NT NT NT 0.5 11.7 16.3 8.87 73.9 NT	2/21/201 NT NT NT NT U U U U I NT NT NT NT I	4 2/2 NT NT NT NT NT NT QU 2.78 AB 5.45 AB 5.45 AB 4.43 A 2.83 3.44 NT NT NT AB 5.56 1.21 NT NT NT NT NT 2.22 1.22 1.22 1.22 2.60 0.946 0.946 12.1 NT NT	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.77 0.42 2.3 A A 5.2 AB 3.6 A 4.3 2.5 A A 1.9 U U 0.58 A A 4.5 J AB 0.75 0.47 U U 0.10 D 10 D J 0.86 A 2.6 J 0.18 J		7/30/2014 0.13 J 0.11 J U U U 0.16 J A 3.1 J B 3.3 J A 1.6 J U U 0.16 J A 3.1 J B 3.3 J A 1.6 J U	7/29/2014 U U U U U U U U U U U U U U U U U A U O.66 A U	7/30/2014 0.42 0.34 J U U 0.11 J U 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.32 J 0.35 J 0.15 J 0.11 J U 0.35 J 0.11 J U 0.18 J 0.18 J 0.16 J 0.15 J 0.11 J	7/29/2014 U U U U U U U U U U U U U U U U U 0.089 J U 0.18 J U	7/29/2014 U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.66 0.13 J U U 0.88 U 0.43 U 0.77	7/30/2014 U 0.13 J 0.16 J 0.27 J U 0.18 J 0.36 0.47 0.18 0.21 U U 0.18 0.21 U U 0.21 U U U U U 0.21 U U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.46 J 0.75 U 0.22 U 0.53 J 0.75	7/31/2014 U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 3 0.44 J U 0.33 J 0.33 J 0.38 J 2.9 0.42 J 1.4 0.47 J 3.5 U	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U 0.34 J A 2.3 1.1 0.81 U 0.34 J A 0.34 J A 0.31 J 0.26 J U 4.1 0.34 J A 1.2 0.19 J 3.7 U	7/29/2014 0.14 J 0.16 J U U 0.16 J U 0.16 J U 0.16 J 1.1 A 1.9 NJ AB 0.71 U 0.48 0.53 A 1.7 0.41 0.34 J 0.53 3.8 0.42 A 0.28 J 3.7 U	7/29/2014 U U U U U U U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 AB 1.9 O.38 J U U 1.2 0.29 J A 1.6 A U U U 0.18 J 1.6 U 0.6 J A U 1.3 U
1-Methylnaphthalene ¹ 2-Methylnaphthalene 2.4-Dimethylphenol 2-Methylphenol 4-Methylphenol 4-Methylphenol Acenaphthene Acenaphthene Acenaphthene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)hilperylene Benzo(yhluoranthene Bis(2-ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butylphthalate Fluoranthene Fluorenthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 85-68-7 86-74-8 218-01-9 53-70-3 132-64-9 84-74-2 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8	Unrestricted Use (SCO) NA NA NA NA NA 100 0.8 NA NA 1 100 0.8 NA NA 1 0.33 7 NA 100 30 0.5 12 100 0.33	Restricted Commercial Use (SCO) NA NA NA 500 500 500 500 500 500 500 56 1 1 1 5.6 500 56 NA NA NA NA NA NA S6 0.56 350 NA S00 500 500 500 500 500 500 500 500 500	South 2/21/2014 NT NT NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT NT NT NT NT 0.5 11.7 16.3 8.87 73.9	2/21/201 NT AB V NT NT A 79.8 J AB V NT NT A NT NT A U NT AB U U AB U A U A A U A A U A A U A A U A A A U A	4 2/2 NT NT NT NT NT NT U U 2.78 AB AB 5.45 AB 4.43 A 2.83 3.44 NT NT NT AB 5.56 1.21 NT NT NT NT NT 0.946 2.6 0.946 12.1	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.77 0.42 2.3 A A 5.2 AB 3.6 A 4.3 2.5 A A 1.9 U U 0.58 0.45 J AB 0.75 0.47 U 10 D J 0.86 A 2.6 J 0.18 J S.6 A		7/30/2014 0.13 J 0.11 J U U U U 0.16 J A 3.1 J B 3.3 J A 1.6 J U U U 0.16 J A 3.1 J B 0.57 J U 0.34 J U 0.75 J	7/29/2014 U U U U U U U U U U U U U U U U A U A U U U U A U	7/30/2014 0.42 0.34 J U U 0.11 J 0.22 J 0.39 0.21 J 0.32 J 0.315 J 0.15 J 0.18 J U 0.18 J U 0.16 J 1.2	7/29/2014 U U U	7/29/2014 U U U U U U U U U U 0.084 J 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U U 0.88 U 0.43 U	7/30/2014 U 0.13 J 0.16 J 0.27 J U 0.16 J 0.27 J U 0.16 J 0.27 J U 0.34 0.34 0.36 0.47 0.18 0.21 U U U U U U U U 0.47 0.18 0.21 U U U U U 0.47 0.18 0.21 U 0.47 U 0.47 U 0.46 J 0.75 U 0.22 U 0.53 J	7/31/2014 U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3 0.44 J U U 0.33 J 0.38 J 2.9 0.42 J 1.4	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U 0.34 J A 2.1 AB 0.31 J 0.26 J U 4.1 0.34 J A 1.2 0.19 J 3.7	7/29/2014 0.14 J 0.16 J U U 0.16 J 1.1 A 0.16 J 1.1 A 0.16 J 1.1 A 0.16 J 1.1 A 0.71 U 0.48 0.53 A 0.34 J 0.53 3.8 0.42 W 0.28 J 3.7	7/29/2014 U U U U U U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U 1.2 0.29 J A 1.6 Q 0.18 J 1.6 U 0.6 J Q 1.3
1-Methylnaphthalene 2-Methylnaphthalene 2.4-Dimethylphenol 2-Methylphenol 4-Methylphenol 4-Methylphenol Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Bis(2-ethylhexyl)phthalate Butylbenzylphthalate Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butylphthalate Fluoranthene Fluoranthene Piloenzofuran Di-n-butylphthalate Fluoranthene Piloensofuran Di-n-butylphthelate Pluoranthene Phenol Pyrene L	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 85-68-7 86-74-8 218-01-9 53-70-3 132-64-9 86-73-7 193-39-5 91-20-3 85-01-8 108-95-2	Unrestricted Use (SCO) NA NA NA NA NA 20 100 100 1 1 1 1 1 1 0.00 0.8 NA NA NA 1 0.33 7 NA 100 30 0.5 12 100 0.33	Restricted Commercial Use (SCO) NA NA NA 500 500 500 500 500 56 1 1 5.6 500 56 NA NA NA NA 56 0.56 350 56 0.56 350 56 0.56 350 56 0.56 350 500 500 500 500 500 500 500 500 500	South 2/21/2014 NT NT NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT NT 28.1 5.47 J NT NT 6.1.5 11.7 16.3 8.87 73.9 NT 46.1	2/21/201 NT NT NT NT U U U U U U U NT AB S1.8 J AB NT AB NT AB NT NT NT NT NT NT U U U U U U U U U U U NT 111	4 2/2 NT NT NT NT U U 2.78 4.4 A 2.83 3.44 A NT NT NT 4.4 A 2.83 3.44 NT NT NT NT NT AB 5.56 1.21 NT NT NT 2.6 0.946 0.946 12.1 NT NT A 9.26	1/2014 7/30/2 0.3 J 0.21 J U U 0.21 J U 0.77 0.42 2.3 A A 5.2 AB 3.6 A 4.3 2.5 A A 1.9 U U 0.58 A A 4.5 J AB 0.75 0.47 U 0.47 U 0.86 A 2.6 J 0.86 A 2.6 J 0.18 J 8.5 D U U 7.4 D		7/30/2014 0.13 J 0.11 J U U U U 0.16 J A 3.1 J B 3.3 J A 1.6 J U U 0.16 J A 3.1 J B 0.33 J A 1.6 J U U A 0.57 J U A 1 U A 0.75 J U 5.7 J	7/29/2014 U </th <th>7/30/2014 0.42 0.34 J U U 0.11 J 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.15 J 0.18 J U 0.41 U 0.18 J 0.15 J 0.16 J 1.2 U 0.49</th> <th>7/29/2014 U U U</th> <th>7/29/2014 U U U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U U 0.88 U 0.43 U 0.75</th> <th>7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U 0.47 0.18 0.21 U U 0.41 U 0.46 J 0.75 U 0.22 U 0.53 J 0.75 U 0.49</th> <th>7/31/2014 U</th> <th>7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 3 0.44 J U 0.33 J 0.38 J 2.9 0.42 J 1.4 0.47 J 3.5 U</th> <th>7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U U 0.34 J A 2.1 AB 0.34 J A 1.2 0.19 J 3.7 U 3</th> <th>7/29/2014 0.14 J 0.16 J U U 0.24 J 0.16 J 1.1 A 1.9 A 0.71 U 0.48 0.53 A 0.71 U 0.41 0.34 J 0.53 A 0.71 U 0.41 0.34 J 0.53 3.8 0.42 A U 0.28 J 3.7 U 2.2</th> <th>7/29/2014 U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U 0.29 J A 1.6 U 0.18 J 1.6 U 0.6 J U 1.3 U 1.3 U</th>	7/30/2014 0.42 0.34 J U U 0.11 J 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.15 J 0.18 J U 0.41 U 0.18 J 0.15 J 0.16 J 1.2 U 0.49	7/29/2014 U U U	7/29/2014 U U U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U U 0.88 U 0.43 U 0.75	7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U 0.47 0.18 0.21 U U 0.41 U 0.46 J 0.75 U 0.22 U 0.53 J 0.75 U 0.49	7/31/2014 U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 3 0.44 J U 0.33 J 0.38 J 2.9 0.42 J 1.4 0.47 J 3.5 U	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U U 0.34 J A 2.1 AB 0.34 J A 1.2 0.19 J 3.7 U 3	7/29/2014 0.14 J 0.16 J U U 0.24 J 0.16 J 1.1 A 1.9 A 0.71 U 0.48 0.53 A 0.71 U 0.41 0.34 J 0.53 A 0.71 U 0.41 0.34 J 0.53 3.8 0.42 A U 0.28 J 3.7 U 2.2	7/29/2014 U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U 0.29 J A 1.6 U 0.18 J 1.6 U 0.6 J U 1.3 U 1.3 U
1-Methylnaphthalene 2-Methylnaphthalene 2.4-Dimethylphenol 2-Methylphenol 4-Methylphenol 4-Methylphenol Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(1,2,3-cd)pyrene Naphthalene Phenol Pyrene Total TICs	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 85-68-7 86-74-8 218-01-9 53-70-3 132-64-9 86-73-7 193-39-5 91-20-3 85-01-8 108-95-2	Unrestricted Use (SCO) NA NA NA NA NA 20 100 100 1 1 1 1 1 1 0.00 0.8 NA NA NA 1 0.33 7 NA 100 30 0.5 12 100 0.33	Restricted Commercial Use (SCO) NA NA NA 500 500 500 500 500 56 1 1 5.6 500 56 NA NA NA NA 56 0.56 350 56 0.56 350 56 0.56 350 56 0.56 350 500 500 500 500 500 500 500 500 500	South 2/21/2014 NT NT NT NT NT 0.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT NT NT NT 0.5 11.7 16.3 8.87 73.9 NT 46.1 183.29	2/21/201	4 2/2 NT NT NT NT U U 2.78 AB AB 5.45 AB 4.53 4.4 A A 2.83 3.3.44 NT NT NT AB 5.56 I 1.21 NT NT NT NT I 1.22 I 2.6 0.946 J I 1.21 NT NT A 9.26 I 41.58	1/2014 7/30/2 0.3 J 0.21 J U U U U 0.77 0.42 2.3 A 5.2 AB 3.6 A 4.3 2.5 A 1.9 U U 0.58 A 4.5 0.42 2.3 A 5.2 AB 3.6 0.42 2.3 A 5.2 A A 4.3 0.42 2.3 A 5.2 AB 3.6 U U 0.58 A 4.5 0.75 0.47 U 0.58 A 4.5 0.47 U 0.86 A 2.6 J 0.18 J 8.5 D U 7.4 D 26.28		7/30/2014 0.13 J 0.11 J U U U U 0.16 J A 3.1 J B 3.3 J A 1.16 J U U U 0.16 J A 3.1 J B 0.37 J A 1.16 J U 0.75 J U 5.7 J I 79.9	7/29/2014 U </th <th>7/30/2014 0.42 0.34 J U U 0.11 J 0 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.32 J 0.35 J 0.11 J U 0.15 J 0.11 J U 0.41 U 0.18 J 0.15 J 0.16 J 1.2 U 0.49 18.12</th> <th>7/29/2014 U <!--</th--><th>7/29/2014 U U U U U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U U 0.88 U 0.43 U 0.75 U 0.75</th><th>7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U 0.18 0.21 U 0.21 U 0.41 U 0.46 J 0.75 U 0.22 U 0.75 0.49</th><th>7/31/2014 U X X 8.7</th><th>7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3 0.44 J U 0.34 J 2 3 0.44 J U 0.34 J 2 0.33 J 0.38 J 2.9 0.42 J 1.4 0.47 J 3.5 U 2.1</th><th>7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U 0.34 J A 2.3 1.1 0.31 J 0.26 J U 4.1 0.34 J A 1.1 0.34 J A 0.19 J 3.7 U 3</th><th>7/29/2014 0.14 J 0.16 J U U 0.16 J 1 0.16 J 0.16 J 1.1 A 0.16 J 1.1 A 0.16 J 1.1 A 0.71 U 0.48 0.53 A 0.71 U 0.41 0.34 J 0.53 3.8 0.42 Q 0.28 J 3.7 U 2.2</th><th>7/29/2014 U U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U 0.29 J A 1.6 A U 0.18 J 1.6 U 0.18 J 1.6 U 0.18 J 1.1 U 1.3 U 1.1</th></th>	7/30/2014 0.42 0.34 J U U 0.11 J 0 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.32 J 0.35 J 0.11 J U 0.15 J 0.11 J U 0.41 U 0.18 J 0.15 J 0.16 J 1.2 U 0.49 18.12	7/29/2014 U </th <th>7/29/2014 U U U U U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U U 0.88 U 0.43 U 0.75 U 0.75</th> <th>7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U 0.18 0.21 U 0.21 U 0.41 U 0.46 J 0.75 U 0.22 U 0.75 0.49</th> <th>7/31/2014 U X X 8.7</th> <th>7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3 0.44 J U 0.34 J 2 3 0.44 J U 0.34 J 2 0.33 J 0.38 J 2.9 0.42 J 1.4 0.47 J 3.5 U 2.1</th> <th>7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U 0.34 J A 2.3 1.1 0.31 J 0.26 J U 4.1 0.34 J A 1.1 0.34 J A 0.19 J 3.7 U 3</th> <th>7/29/2014 0.14 J 0.16 J U U 0.16 J 1 0.16 J 0.16 J 1.1 A 0.16 J 1.1 A 0.16 J 1.1 A 0.71 U 0.48 0.53 A 0.71 U 0.41 0.34 J 0.53 3.8 0.42 Q 0.28 J 3.7 U 2.2</th> <th>7/29/2014 U U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U 0.29 J A 1.6 A U 0.18 J 1.6 U 0.18 J 1.6 U 0.18 J 1.1 U 1.3 U 1.1</th>	7/29/2014 U U U U U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U U 0.88 U 0.43 U 0.75 U 0.75	7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U 0.18 0.21 U 0.21 U 0.41 U 0.46 J 0.75 U 0.22 U 0.75 0.49	7/31/2014 U X X 8.7	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 2 3 0.44 J U 0.34 J 2 3 0.44 J U 0.34 J 2 0.33 J 0.38 J 2.9 0.42 J 1.4 0.47 J 3.5 U 2.1	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U 0.34 J A 2.3 1.1 0.31 J 0.26 J U 4.1 0.34 J A 1.1 0.34 J A 0.19 J 3.7 U 3	7/29/2014 0.14 J 0.16 J U U 0.16 J 1 0.16 J 0.16 J 1.1 A 0.16 J 1.1 A 0.16 J 1.1 A 0.71 U 0.48 0.53 A 0.71 U 0.41 0.34 J 0.53 3.8 0.42 Q 0.28 J 3.7 U 2.2	7/29/2014 U U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U 0.29 J A 1.6 A U 0.18 J 1.6 U 0.18 J 1.6 U 0.18 J 1.1 U 1.3 U 1.1
1-Methylnaphthalene 2-Methylnaphthalene 2.4-Dimethylphenol 2-Methylphenol 4-Methylphenol 4-Methylphenol Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butylphthalate Fluoranthene Fluoranthene Pluoranthene Phenol Pyrene	Number 90-12-0 91-57-6 105-67-9 95-48-7 106-44-5 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 117-81-7 85-68-7 86-74-8 218-01-9 53-70-3 132-64-9 86-73-7 193-39-5 91-20-3 85-01-8 108-95-2	Unrestricted Use (SCO) NA NA NA NA NA 20 100 100 1 1 1 1 1 1 0.00 0.8 NA NA NA 1 0.33 7 NA 100 30 0.5 12 100 0.33	Restricted Commercial Use (SCO) NA NA NA 500 500 500 500 500 56 1 1 5.6 500 56 NA NA NA NA 56 0.56 350 56 0.56 350 56 0.56 350 56 0.56 350 500 500 500 500 500 500 500 500 500	South 2/21/2014 NT NT NT NT NT 6.92 J U 21.9 28.6 22.2 19.8 13.6 19 NT NT NT NT 28.1 5.47 J NT NT 6.1.5 11.7 16.3 8.87 73.9 NT 46.1	2/21/201 NT NT NT NT U U U U U U U NT AB S1.8 J AB NT AB NT AB NT NT NT NT NT NT U U U U U U U U U U U NT 111	4 2/2 NT NT NT NT U U 2.78 4.4 A 2.83 3.44 A NT NT NT 4.4 A 2.83 3.44 NT NT NT NT NT AB 5.56 1.21 NT NT NT 2.6 0.946 0.946 12.1 NT NT A 9.26	1/2014 7/30/2 0.3 J 0.21 J U U 0.21 J U 0.77 0.42 2.3 A A 5.2 AB 3.6 A 4.3 2.5 A A 1.9 U U 0.58 A A 4.5 J AB 0.75 0.47 U 0.47 U 0.86 A 2.6 J 0.86 A 2.6 J 0.18 J 8.5 D U U 7.4 D		7/30/2014 0.13 J 0.11 J U U U U 0.16 J A 3.1 J B 3.3 J A 1.6 J U U 0.16 J A 3.1 J B 0.33 J A 1.6 J U U A 0.57 J U A 1 U A 0.75 J U 5.7 J	7/29/2014 U </th <th>7/30/2014 0.42 0.34 J U U 0.11 J 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.15 J 0.18 J U 0.41 U 0.18 J 0.15 J 0.16 J 1.2 U 0.49</th> <th>7/29/2014 U U U</th> <th>7/29/2014 U U U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U U 0.88 U 0.43 U 0.75</th> <th>7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U 0.47 0.18 0.21 U U 0.41 U 0.46 J 0.75 U 0.22 U 0.53 J 0.75 U 0.49</th> <th>7/31/2014 U</th> <th>7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 3 0.44 J U 0.33 J 0.38 J 2.9 0.42 J 1.4 0.47 J 3.5 U</th> <th>7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U U 0.34 J A 2.1 AB 0.34 J A 1.2 0.19 J 3.7 U 3</th> <th>7/29/2014 0.14 J 0.16 J U U 0.16 J 1 0.16 J 1.1 A 1.9 A 0.71 U 0.48 0.53 A 1.7 0.41 0.34 J 0.53 A 0.71 U 0.41 0.34 J 0.53 3.8 0.42 A U 0.28 J 3.7 U 2.2</th> <th>7/29/2014 U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U 0.29 J A 1.6 U 0.18 J 1.6 U 0.6 J U 1.3 U 1.3 U</th>	7/30/2014 0.42 0.34 J U U 0.11 J 0.22 J 0.39 0.21 J 0.32 J 0.15 J 0.11 J U 0.15 J 0.18 J U 0.41 U 0.18 J 0.15 J 0.16 J 1.2 U 0.49	7/29/2014 U U U	7/29/2014 U U U U U U U U U U 0.084 J 0.18 0.51 0.56 0.66 0.72 0.25 J U U 0.088 J 0.6 0.13 J U U 0.88 U 0.43 U 0.75	7/30/2014 U U 0.13 J 0.16 J 0.27 J U 0.18 J 0.34 0.36 0.47 0.18 0.21 U U 0.47 0.18 0.21 U U 0.41 U 0.46 J 0.75 U 0.22 U 0.53 J 0.75 U 0.49	7/31/2014 U	7/30/2014 0.29 J 0.28 J 0 0.15 J 0.34 J U 0.82 1.4 2.5 3 0.44 J U 0.33 J 0.38 J 2.9 0.42 J 1.4 0.47 J 3.5 U	7/30/2014 0.24 J 0.2 J U U 0.38 J 0.15 J 0.77 A 2.3 1.1 0.81 U U 0.34 J A 2.1 AB 0.34 J A 1.2 0.19 J 3.7 U 3	7/29/2014 0.14 J 0.16 J U U 0.16 J 1 0.16 J 1.1 A 1.9 A 0.71 U 0.48 0.53 A 1.7 0.41 0.34 J 0.53 A 0.71 U 0.41 0.34 J 0.53 3.8 0.42 A U 0.28 J 3.7 U 2.2	7/29/2014 U U U U U U U U U U U 0.38 J A 0.98 AB 1.9 0.38 J U 0.29 J A 1.6 U 0.18 J 1.6 U 0.6 J U 1.3 U 1.3 U

Values are in milligrams per kilogram (mg/kg) or parts per million (ppm)

SCOs are as referenced in 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006

¹ Analyte not validated.

D = Diluted Sample NA = Not Available NT = Not Tested J = Estimated Value U = Not Detected

A = Exceeds Unrestricted Use SCO

B (Highlighted Value) = Exceeds Restricted Commercial Use SCO

NJ = The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive

TABLE 4C 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043

SUMMARY OF DETECTED PESTICIDE/HERBICIDE/PCBS IN SOIL/FILL SAMPLES

Contaminant	CAS Number	A Unrestricted Use (SCO)	B Restricted Commercial Use (SCO)	TB-104 (24') 6/12/2014	TB-105 (8-10') 6/11/2014	TP-B (1.5') 2/21/2014	TP-C (4') 2/21/2014	TP-01 (2') 7/30/2014	TP-02 (2.5') 7/30/2014	TP-03 (6') 7/29/2014	TP-04 (1') 7/30/2014	TP-05 (1') 7/29/2014	TP-07 (3') 7/29/2014	TP-08 (3') 7/30/2014	TP-08 (12') 7/31/2014	TP-11 (2-3') 7/30/2014	TP-12 (2.5') 7/30/2014	TP-13 (9') 7/29/2014	TP-13 (12') 7/29/2014
4,4'-DDD	72-54-8	0.0033	92	UJ	U	NT	NT	0.0064 J A	A U	UJ	0.011 P, NJ	U	U	UJ	UJ	U	U	U	U
4,4'-DDE	72-55-9	0.0033	62	UJ	U	NT	NT	U	U	UJ	UJ	U	U	0.006 P, J A	UJ	U	U	ΟJ	U
4,4'-DDT	50-29-3	0.0033	47	ΟJ	U	NT	NT	UJ	0.014 J	A UJ	UJ	ΟJ	0.012 J	A UJ	ΟJ	ΟJ	ΟJ	0.024 J	A U J
Aldrin	309-00-2	0.005	0.68	UJ	U	NT	NT	U	U	UJ	UJ	U	U	UJ	UJ	U	U	UJ	U
alpha-BHC	319-84-6	0.02	3.4	ΟJ	U	NT	NT	U	0.012 J	ΟJ	UJ	U	U	UJ	ΟJ	U	U	0.0051 J	U
alpha-Chlordane	5103-71-9	0.094	24	UJ	U	NT	NT	U	0.009 P, NJ	UJ	UJ	U	UJ	UJ	UJ	U	U	UJ	UJ
Dieldrin	60-57-1	0.005	1.4	ΟJ	U	NT	NT	U	U	ΟJ	UJ	U	UJ	UJ	UJ	U	U	U	U
Endosulfan II	33213-65-9	2.4	200	U	U	NT	NT	U	U	UJ	UJ	U	U	UJ	UJ	U	U	UJ	U
Endosulfan sulfate	1031-07-8	2.4	200	ΟJ	U	NT	NT	UJ	0.047 J	ΟJ	UJ	ΟJ	0.0037 R	UJ	UJ	ΟJ	0.018 P, J	ΟJ	UJ
Endrin aldehyde	7421-93-4	NA	NA	UJ	U	NT	NT	U	U	UJ	0.0075 P, NJ	U	U	UJ	UJ	U	U	UJ	0.59 J
Endrin ketone	53494-70-5	NA	NA	ΟJ	U	NT	NT	0.01 J	U	ΟJ	UJ	U	U	UJ	UJ	U	U	ΟJ	UJ
gamma-BHC (Lindane)	58-89-9	0.1	9.2	UJ	U	NT	NT	U	U	UJ	UJ	U	UJ	UJ	UJ	U	U	UJ	U
gamma-Chlordane	5103-74-2	NA	NA	UJ	U	NT	NT	0.0027 P, NJ	U	ΟJ	ΟJ	U	U	UJ	ΟJ	U	U	U	UJ
Heptachlor epoxide	1024-57-3	NA	NA	UJ	U	NT	NT	U	U	UJ	UJ	U	U	UJ	UJ	U	U	0.0051 P, J	U
Polychlorinated biphenyls	1336-36-3	0.1	1	U	U	UJ	UJ	U	U	U	U	U	0.056 P, J	U	U	U	ΟJ	0.12	A 0.2 A

Values are in milligrams per kilogram (mg/kg) or parts per million (ppm)

SCOs are as referenced in 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006

NT = Not Tested

NJ = The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.

R = The sample results are rejected due to deficiencies in meeting quality control limits

J = Estimated Value

NA = Not Available

P = Lower of Two Values Reported From Primary And Confirmation Analyses When > 25% Difference Detected

U = Not Detected

A = Exceeds Unrestricted Use SCO

TABLE 4D 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043

SUMMARY OF TAL METALS AND CYANIDE IN SOIL/FILL SAMPLES

N = Matrix Spike Recovery Falls Outside Control Limit

Contaminant	CAS Number	A Unrestricted Use (SCO)	B Restricted Commercial Use (SCO)	MW-G (3') 6/13/2014		TB-102 (2') 6/11/2014	TB-103 (24') 6/12/2014	TB-104 (24') 6/12/2014	TB-105 (8-10') 6/11/2014	TB-106 (20') 6/11/2014	TB-106a (24') 6/19/2014	TB-107 (24') 6/13/2014	TB-108 (24') 6/12/2014)	TP-A (3') 2/21/2014
Aluminum	7429-90-5	NA	NA	6870 *		19300 *	5300 *	5930 *	6340 *	3940 *	3900	5210 *	2710 *		10,900
Antimony	7440-36-0	NA	NA	0.82 b,N		UN	0.4 b,N	UN	0.45 b,N	0.5 b,N	U	UN	0.5 b,N		U
Arsenic	7440-38-2	13	16	29.4	AB	8.1	7.2	8.7	6.3	4.6	5.7	11.1	7.7		60.2
Barium	7440-39-3	350	400	156		55.5	76.5	44.8	32.4	22.7	49 b	38.8	26.9		161
Beryllium	7440-41-7	7.2	590	0.65		0.5	0.2 b	0.22 b	0.26	0.19 b	0.17 J	0.18 b	0.14 b		2.82
Cadmium	7440-43-9	2.5	9.3	0.22 b		0.14 b	0.12 b	0.094 b	0.13 b	0.16 b	0.036 J	0.076 b	0.09 b		4.77
Calcium	7440-70-2	NA	NA	5490		2020	68000	52700	52000	27800	38000	23900	54500		15,800
Chromium	7440-47-3	30	1,500	13.1		19.6	7.1	7.6	8.1	4.4	4.8	4.9	3.7		30.7
Cobalt	7440-48-4	NA	NA	4.4		11.6	4.1	4.5	4.4	4.6	3.7	4.6	2.5		13.8
Copper	7440-50-8	50	270	215	Α	18.8	21	20.6	22.7	13.9	18	19.9	15.9		105
Iron	7439-89-6	NA	NA	19100 *		25100 *	13000 *	12700 *	12900 *	11200 *	9400	12300 *	8010 *		31,300
Lead	7439-92-1	63	1000	388	Α	16.7	7.2	7.2	8.1	4.6	7.2	9.1	9.1		119
Magnesium	7439-95-4	NA	NA	1000 *		3900 *	6770 *	9820 *	6610 *	2560 *	5600 b	3500 *	6110 *		4,910
Manganese	7439-96-5	1600	10,000	78.9		601	713	557	634	394	620	371	854		549
Mercury	7439-97-6	0.18	2.8	0.2	Α	0.029 b	U	0.0036 b	0.0031 b	U	0.0039 J	U	U		0.159
Nickel	7440-02-0	30	310	12 *		17.7 *	10.5 *	10.9 *	11.4 *	9.9 *	9	10.6 *	5.7 *		27.7
Potassium	7440-09-7	NA	NA	602		1630	578	704	737	387	460	494	320		1,670
Selenium	7782-49-2	3.9	1,500	4.1 b	Α	U	U	U	U	0.82 b	U	U	U		U
Silver	7440-22-4	2	1,500	0.35		0.12	U	U	U	U	U	U	U		U
Sodium	7440-23-5	NA	NA	357		217	78.8	76	74.9	35.1 b	63 b	45.4 b	99		326 J
Thallium	7440-28-0	NA	NA	0.9 b		U	0.57 b	0.43 b	U	U	U	U	U		U
Vanadium	7440-62-2	NA	NA	16.6 *		30.6 *	8.1 *	8.4 *	10.2 *	5.9 *	6.4	7.9 *	6.1 *		26.6
Zinc	7440-66-6	109	10,000	87.1 N*		67.7 N*	63.4 N*	58.1 N*	94.8 N*	158 N*	A 46 b	55.4 N*	38.9 N*		1,160
Total Cyanide	NA	27	27	NT		NT	NT	U	U	NT	NT	NT	NT		NT

Contaminant	CAS Number	A Unrestricted Use (SCO)	B Restricted Commercial Use (SCO)	TP-G (2') South 2/21/2014		TP-J (2') 2/21/2014		TP-01 (2') 7/30/2014		P-02 (2.5') 7/30/2014		TP-03 (6') 7/29/2014		TP-04 (1') 7/30/2014		TP-05 (1') 7/29/2014		TP-07 (3') 7/29/2014		TP-08 (3') 7/30/2014		TP-08 (12 7/31/2014
Aluminum	7429-90-5	NA	NA	5,030		5,430		4310	191)	129	00		1170		18400		8710		7110		21700
Antimony	7440-36-0	NA	NA	U		U		0.76 b	1.9	Э	2	2.2		0.67 bN		6.2		1.4 N, J		U		UN
Arsenic	7440-38-2	13	16	27.4	AB	14.3	Α	9.9	7.	6	23	3.7	AB	<mark>39.8</mark>	AB	25 <mark></mark>	AB	10.2		22.3	AB	6.4
Barium	7440-39-3	350	400	59.4		179		207	24)	1	26		78.7 E*		436	AB	872 E*	AB	196		74.2 E*
Beryllium	7440-41-7	7.2	590	0.532 J		0.998		0.19 b	0.05	4 b	0.	44		0.28		0.19 b		0.16 b		1.1		0.87
Cadmium	7440-43-9	2.5	9.3	4.56	Α	2.83	Α	0.28 b	0.5	3	0.	61		0.21 b*		16.3	AB	0.78 *, J		2.8	A	1.1 *
Calcium	7440-70-2	NA	NA	3,220		3,770		22800	45	1	34	90		1670		4260		77300		5380		10400
Chromium	7440-47-3	30	1,500	11.5		14.1		9.1	81.8	3	A 22	2.5		7.2 E		100	Α	12 E		16.8		51.4 E
Cobalt	7440-48-4	NA	NA	6.33		5.67 J		4.3	0.9	5 b	5	5.5		1.7 bE		28.3		3.8 E, J		5.5		4.9 E
Copper	7440-50-8	50	270	40.6		166	Α	40.4	38.	2	2	02	A	21.1		357 357	AB	53.7	A	111	A	14
Iron	7439-89-6	NA	NA	37,000	1	8,700		13000	170)	190	00		12400 E*		239000		17800 E*, J		16300		16400 E*
Lead	7439-92-1	63	1000	48.4		100	Α	437	A 63	5	A 3	27	A	35.9 E		1150 1150	AB	<mark>1200</mark> E, J	AB	296	A	102 E
Magnesium	7439-95-4	NA	NA	1,090		718		1670	87.4	1	17	20		201 E		756		7320 E		949		18700 E
Manganese	7439-96-5	1600	10,000	269		120		271	10.	6	3	18		25.9 E		2800	Α	455 E		78.2		337 E
Mercury	7439-97-6	0.18	2.8	0.0705	C	0.0408		1.2	A 0.22	2	A 0.	16		0.25	Α	0.06		0.069		0.082		0.03 B
Nickel	7440-02-0	30	310	14.5		19.3		8.1	9.8	3	14	1.4		5 E		68	Α	10.1 E, J		41.1	A	13.3 E
Potassium	7440-09-7	NA	NA	529		545		502	45.	1 b	5	45		259		313		747		601		2070
Selenium	7782-49-2	3.9	1,500	U		U		0.9 b	ι	J	2	2.9		2.5		U		U		2.2		3.4
Silver	7440-22-4	2	1,500	U		U		U	0.3	3 b		U		0.1 b		U		0.14 b		U		U
Sodium	7440-23-5	NA	NA	U		192 J		175	12.3	3 b	34	1.8 b		72		75.5		142		181		922
Thallium	7440-28-0	NA	NA	U		U		U	l	J		U		1.1		U		0.88 b		1.1 b		U
Vanadium	7440-62-2	NA	NA	17.7		19.5		10.2	4.:	2	17	7.2		15.1 E*		5.2		16.9 E*		21.8		43.6 E*
Zinc	7440-66-6	109	10,000	280	Α	96		180	A 37	5	A 3	23	A	22 NE*		8800	Α	369 NE*, J	A	387	A	71.8 NE*
Total Cyanide	NA	27	27	NT		NT		U	4.4	4 J		U		UN		U		1 bN, J		U		0.94 bN, J

Values are in milligrams per kilogram (mg/kg) or parts per million (ppm)

SCOs are as referenced in 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006

b = Trace Concentration Below Reporting Limit And Equal To Or Above Detection Limit

J = Estimated Value E = Estimated Concentration

A = Exceeds Unrestricted Use SCO

B (Highlighted Value) = Exceeds Restricted Commercial Use SCO

Day Environmental, Inc.

(3') 014		TP-B (1.5') 2/21/2014		TP-B (5') 2/21/2014		TP-C (4') 2/21/2014		TP-G (2' North 2/21/2014	·
		3,820		9,510		7,610		5,470	
		U		U		U		U	
	AB	14.3	Α	15.1	Α	7.64		26.3	AB
		89.9		99.2		193		86.7	
-		0.537 J		0.962		U		0.534 J	
-	Α	3.03	A	3.16	Α	4.2	A	3.7	A
	A	2,610	~		A		A		
_		,		6,150		78,000		5,870	
	Α	11.7		13.1		18		12	
		6.33		9.92		3.37 J		6.27 J	
	Α	130	Α	59	Α	20.7		41.9	_
		22,400		25,600		9,420		28,300	_
	Α	126	Α	139	Α	280	Α	85.7	A
		865		1,360		3,520		1,140	
		163		896		300		290	
		0.055		0.121		0.362	Α	0.299	A
		16.7		25.1		9.65		15.6	
		317		745		797		595	
		U		U		U		U	
		U		U		U		U	
		U		U		170 J		U	
		U		U		U		U	
-		15.7		17		53.3		17.6	
	Α	274	Α	459	Α	882	Α	220	Δ
	A	 NT	~	 NT	A	NT	A	NT	
		INT		INI		INT			_
(12') 014		TP-11 (2-3' 7/30/2014)	TP-12 (2.5' 7/30/2014)	TP-13 (9') 7/29/2014		TP-13 (12 7/29/201	,
· /		7/30/2014)	7/30/2014)	7/29/2014		7/29/201	,
· /		7/30/2014)	7/30/2014)	7/29/2014 6550		7/29/201	'
· /		7/30/2014 5380 1.4 b)	7/30/2014 9260 0.7 bN		7/29/2014 6550 1.8 N		7/29/201 6760 2.2 N	4
· /		7/30/2014 5380 1.4 b 6.5)	7/30/2014 9260 0.7 bN 62.2) AB	7/29/2014 6550 1.8 N 12.3		7/29/201 6760 2.2 N 25.2	4
· /		7/30/2014 5380 1.4 b 6.5 101)	7/30/2014 9260 0.7 bN 62.2 160 E*		7/29/2014 6550 1.8 N 12.3 99.3 E*		7/29/201 6760 2.2 N 25.2 606 E*	4
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b)	7/30/2014 9260 0.7 bN 62.2 160 E* 0.57		7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b		7/29/201 6760 2.2 N 25.2 606 E* 0.18 b	4 AB AB
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51)	7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 *		7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 *		7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 *	4
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340		7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000		7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200	4 AB AB A
· /	A	7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103) 	7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E		7/29/2014 65550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E		7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E	4 AB AB
· /	A	7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E	AB	7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E		7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E	4 AB AB AB AB
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375		7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9		7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 271	4 AB AB A
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5 2550		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375 22800	AB	7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9 41500 E*		7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 271 202000 E*	4 AB AB A A A A A A A A A A B
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5 2550 656		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375 22800 1470 E	AB	7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9 41500 E* 95.1 E		7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 271 202000 E* 347 E	4 AB AB AB AB
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5 2550 656 196		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375 22800 1470 E 1620 E	AB	7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9 41500 E* 95.1 E 7260 E		7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 271 202000 E* 347 E 7840 E	4 AB AB A A A A A A A A A A B
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5 2550 656 196 22.1		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375 22800 1470 E 1620 E 106 E	AB	7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9 41500 E* 95.1 E 7260 E 456 E	A	7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 2711 202000 E* 347 E 7840 E 1190 E	4 AB AB AB AB AB AB
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5 2550 656 196 22.1 0.58		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375 22800 1470 E 1620 E 106 E 0.31	AB	7/29/2014 65550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9 41500 E* 95.1 E 7260 E 456 E 0.3		7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 271 202000 E* 347 E 7840 E 1190 E 0.2	4 AB AB AB AB A A A A
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5 2550 656 196 22.1 0.58 13.8		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375 22800 1470 E 1620 E 106 E 0.31 28.5 E	AB	7/29/2014 65550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9 41500 E* 95.1 E 7260 E 456 E 0.3 14.2 E	A	7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 271 202000 E* 347 E 7840 E 1190 E 0.2 37.3 E	4 AB AB AB AB AB AB
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5 2550 656 196 22.1 0.58 13.8 74.1 b		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375 22800 1470 E 1620 E 106 E 0.31 28.5 E 1220	AB	7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9 41500 E* 95.1 E 95.1 E 95.1 E 7260 E 456 E 0.3 14.2 E 660	A	7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 2711 202000 E* 347 E 7840 E 1190 E 0.2 37.3 E 1110	4 AB AB AB AB A A A A
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5 2550 656 196 22.1 0.58 13.8 74.1 b U		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375 22800 1470 E 1620 E 106 E 0.31 28.5 E 1220 8.7	AB	7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9 41500 E* 95.1 E 7260 E 456 E 0.3 14.2 E 660 U	A	7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 2711 202000 E* 347 E 7840 E 1190 E 0.2 37.3 E 1110 U	4 AB AB AB AB A A A A
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5 2550 656 196 22.1 0.58 13.8 74.1 b U 0.45 b		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375 22800 1470 E 1620 E 106 E 0.31 28.5 E 1220 8.7 0.4 b	AB	7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9 41500 E* 95.1 E 7260 E 456 E 0.3 14.2 E 660 U 0.21 b	A	7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 271 202000 E* 347 E 7840 E 1190 E 0.2 37.3 E 1110 U 3.7	4 AB AB AB AB A A A A
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5 2550 656 196 22.1 0.58 13.8 74.1 b U		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375 22800 1470 E 1620 E 106 E 0.31 28.5 E 1220 8.7	AB	7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9 41500 E* 95.1 E 7260 E 456 E 0.3 14.2 E 660 U	A	7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 2711 202000 E* 347 E 7840 E 1190 E 0.2 37.3 E 1110 U	4 AB AB AB AB AB A A A A A A A A A A A A A
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5 2550 656 196 22.1 0.58 13.8 74.1 b U 0.45 b		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375 22800 1470 E 1620 E 106 E 0.31 28.5 E 1220 8.7 0.4 b	AB	7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9 41500 E* 95.1 E 7260 E 456 E 0.3 14.2 E 660 U 0.21 b	A	7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 271 202000 E* 347 E 7840 E 1190 E 0.2 37.3 E 1110 U 3.7	4 AB AB AB AB AB A A A A A A A A A A A A A
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5 2550 656 196 22.1 0.58 13.8 74.1 b U 0.45 b 20.1 b		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375 22800 1470 E 1620 E 106 E 106 E 0.31 28.5 E 1220 8.7 0.4 b 1790	AB	7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9 41500 E* 95.1 E 7260 E 456 E 0.3 14.2 E 660 U 0.21 b 153	A	7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 271 202000 E* 347 E 7840 E 1190 E 0.2 37.3 E 1110 U 3.7 174 U 82.2 E*	4 AB AB AB AB A A A A A A A A A A A A A
· /		7/30/2014 5380 1.4 b 6.5 101 0.18 b 0.51 601 103 2.2 b 41.5 2550 656 196 22.1 0.58 13.8 74.1 b U 0.45 b 20.1 b U		7/30/2014 9260 0.7 bN 62.2 160 E* 0.57 0.41 * 2340 18 E 6 E 375 22800 1470 E 1620 E 106 E 0.31 28.5 E 1220 8.7 0.4 b 1790 0.68 b	AB	7/29/2014 6550 1.8 N 12.3 99.3 E* 0.12 b 1.6 * 64000 22.9 E 4.9 E 54.9 41500 E* 95.1 E 7260 E 456 E 0.3 14.2 E 660 U 0.21 b 153 0.46 b	A	7/29/201 6760 2.2 N 25.2 606 E* 0.18 b 7.3 * 61200 52.7 E 16.4 E 271 202000 E* 347 E 7840 E 1190 E 0.2 37.3 E 1110 U 3.7 174 U	4 AB AB AB AB A A A A A A A A A A A A A

* = RPD Duplicate Analyses Outside Control Limit

NT = Not Tested

U = Not Detected

NA = Not Available

TABLE 5A 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043

SUMMARY OF DETECTED VOLATILE ORGANIC COMPOUNDS (VOCS) IN GROUNDWATER SAMPLES

		X	MW-A		MW-B		MW-C		MW-D		MW-E		MW-F		MW-G	
Contaminant	CAS Number	Groundwater Standard or Guidance Value	6/27/14	11/05/14	6/26/14	11/05/14	6/26/14	11/05/14	6/26/14	11/05/14	6/25/14	11/05/14	6/25/14	11/06/14	6/26/14	11/06/14
tert-Butylbenzene'	98-06-6	5	1.4 J	U	U	U	U	U	1.1 J	U	U	U	U	U	U	U
Total VOCs			1.4	U	0	U	0	U	1.1	U	0	U	0	U	0	0
Total TICs			7	U	6.3	U	7.4	U	8.4	U	9.5	U	7.9	U	100.5	201.9
Total VOCs and TICs			8.4	U	6.3	U	7.4	U	9.5	U	9.5	U	7.9	U	100.5	201.9

Notes

 μ g/L = micrograms per Liter or parts per billion (ppb).

Groundwater Standards or Guidance Values as referenced in New York State Department of Environmental Conservation (NYSDEC) Technical and Guidance Series (TOGS) 1.1.1 dated June 1998 as amended by the NYSDEC's supplemental table dated

TIC = Tentatively Identified Compound

U = The analyte was analyzed for, but was not detected above the associated reported quantitation limit. Refer to the analytical laboratory report for the associated reported quantitation limit.

NA = Not Available

J = Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than the method detection limit. The concentration given is an approximate value.

(1) Analyte not validated.

TABLE 5B 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043

SUMMARY OF DETECTED SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCS) IN GROUNDWATER SAMPLES

G		X Groundwater	MV	V-A	MV	V-B	MV	V-C	MV	V-D	MM	V-E	MV	V-F	MV	V-G
Contaminant	CAS Number	Standard or Guidance Value	6/27/14	11/05/14	6/26/14	11/05/14	6/26/14	11/05/14	6/26/14	11/05/14	6/25/14	11/05/14	6/25/14	11/06/14	6/26/14	11/06/14
Bis(2-chloroethyl)ether	111-44-4	NA	U	U	U	U	U	U	U	U	U	U	U	U	1 J	U
Total SVOCs			U	U	U	0	U	U	U	U	U	0	U	U	1	0
Total TICs			17.7	90.2	16.4	6.8	18.8	5	12.4	4.6	16.8	19.4	38.4	9.7	105	53.8
Total SVOCs and TICs			17.7	90.2	16.4	6.8	18.8	5	12.4	4.6	16.8	19.4	38.4	9.7	106	53.8

Notes

 μ g/L = micrograms per Liter or parts per billion (ppb).

Groundwater Standards or Guidance Values as referenced in New York State Department of Environmental Conservation (NYSDEC) Technical and Guidance Series (TOGS) 1.1.1 dated June 1998 as amended by the NYSDEC's supplemental table

TIC = Tentatively Identified Compound

U = The analyte was analyzed for, but was not detected above the associated reported quantitation limit. Refer to the analytical laboratory report for the associated reported quantitation limit.

NA = Not Available

J = Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than the method detection limit. The concentration given is an approximate value.

TABLE 5C 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043

SUMMARY OF PESTICIDES AND PCBS IN GROUNDWATER SAMPLES

Contaminant	X Groundwater Standard or Guidance Value	MW-A 6/27/14	MW-B 6/26/14	MW-C 6/26/14	MW-D 6/26/14	MW-E 6/25/14	MW-F 6/25/14	MW-G 6/26/14
Pesticides	NA	U	U	U	U J	U	U	U
PCBs	0.09	U J	U	U	U J	U	U	U

Notes

 μ g/L = micrograms per Liter or parts per billion (ppb).

Groundwater Standards or Guidance Values as referenced in New York State Department of Environmental Conservation (NYSDEC) Technical and Guidance Series (TOGS) 1.1.1 dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

U = The analyte was analyzed for, but was not detected above the associated reported quantitation limit. Refer to the analytical laboratory report for the associated reported quantitation limit

NA = Not Available

UJ = The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise

TABLE 5D 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043

SUMMARY OF DETECTED TAL METALS IN GROUNDWATER SAMPLES

Contaminant	X Groundwater	M\	W-A	М	W-B	M\	N-C	M	N-D	M	W-E	M\	N-F	MW	/-G
Contaminant	Standard or Guidance Value	6/27/14	11/05/14	6/26/14	11/05/14	6/26/14	11/05/14	6/26/14	11/05/14	6/25/14	11/05/14	6/25/14	11/06/14	6/26/14	11/06/14
Aluminum	NA	U	U	U	U	82.6 b	U	3040	U	U	U	U	U	175 b	U
Antimony	3	U	U	U	U	9.5 b X	U	U	U	U	U	U	U	U	U
Arsenic	25	U	U	4.6 b	U	U	U	31.5 X	63.4 X	U	U	5.0 b	U	9.0 b	U
Barium	1,000	216	204	191 b	290	80.6 b	101.0 b	1530 X	. 2490 X	103 b	222	282	330	955	786
Calcium	NA	81800	103000	139000	149000	204000	222000	139000	141000	123000	154000	149000	119000	178000	145000
Chromium	50	U	U	U	U	U	U	3.7 b	U	0.77 b	U	U	U	U	U
Cobalt	NA	U	U	U	1.60 b	5.1 b	3.9 b	4.1 b	U	U	U	U	U	U	U
Copper	200	U	U	U	U	4.5 b	4.2 b	16.8 b	U	U	U	U	U	U	U
Iron	300	13200 X	11800 X	64.3 b	2460.0 X	1630 X	3450 X	(<mark>11700 X</mark>	12600 X	179 b	96.3 b	U	44.8 b	6130 X	4850 X
Lead	25	U	U	U	U	5.6	U	8.9 b	U	U	U	U	U	U	U
Magnesium	35,000	4460	5260	21700	23400	18700	23100	26000	26000	15900	24300	21900	17600	19600	15800
Manganese	300	673 X	909 X	1580	(2330 X	2320 X	2500 X	3650 X	2740 🗙	23.6 b	444.0 X	183	544 X	2140 X	1850 X
Nickel	100	U	U	5.2 b	3.4 b	10.2	6.4 b	9.5 b	1.1 b	0.85	1.9 b	U	0.87 b	U	U
Potassium	NA	5330	5020 E,J-	3880	4200	6320	6330 E	4490	4260 E	3230	4210 E	4100	4270 E	3290	3560 E
Selenium	10	14.9 b X	U	U	U	35.2 X	U	12.3 b X	U	U	U	U	U	U	U
Sodium	20,000	59800 X	34500 X	74900	(100000 X	65200 X	105000 X	142000 X	153000 X	(<mark>74800)</mark>	(128000 X	102000 X	75900	70800 X	55000 X
Thallium	0.5	U	U	U	U	U	U	U	U	U	7.6 b 🗙	U	U	U	U
Vanadium	NA	U	U	U	1.2 b	U	U	4.8 b	U	U	U	U	U	U	U
ZINC	2,000	U	U	U	U	22.5 b	U	54.1	U	5.9 b	U	U	U	U	U

Notes

 μ g/L = micrograms per Liter or parts per billion (ppb).

Groundwater Standards or Guidance Values as referenced in New York State Department of Environmental Conservation (NYSDEC) Technical and Guidance Series (TOGS) 1.1.1 dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

U = The analyte was analyzed for, but was not detected above the associated reported quantitation limit. Refer to the analytical laboratory report for the associated reported quantitation limit

J- = The analyte was positively identified; however, the associated numerical value is an estimated quantity that may be biased low.

b = indicates a concentration below thereporting limit and equal to or above the detection limit

E = an estimated concentration due to the presence of interferences

NA = Not Available

31.5 X = Exceeds Groundwater Standard or Guidance Value

TABLE 6 202 FRANKLIN STREET OLEAN, NEW YORK BCP SITE NO. C905043

SUMMARY OF MONITORING WELL LOCATION DETAILS, CONSTRUCTION, GROUNDWATER ELEVATIONS AND ANALYTICAL PARAMETERS FOR LONGTERM MONITORING

Monitoring Well ID Sample Locations	Well Location	UTM NAD 83 Coordinates (ft)	Well Diameter (inches)		El		Analytical Parameters to be Analyzed Year 1			
		(northing/ easting)		Casing	Surface	Screen Top	Screen Bottom	Groun 7/10/2014	dwater 11/5/2014	
MW-A	On-site perimeter (up-gradient)	763496.8 1186801.0	1	1427.70	1428.04	1411.80	1401.80	1412.66	1410.17	TAL Metals
MW-B	On-site	763736.2 1186986.0	2	1429.95	1427.72	1412.45	1402.45	1412.44	1410.02	TAL Metals
MW-C	On-site perimeter (up-gradient)	763995.0 1186888.3	2	1429.34	1426.69	1417.34	1407.34	1412.71	1410.27	TAL Metals
MW-D	On-site	763978.7 1187071.6	2	1428.08	1426.12	1412.08	1402.08	1412.52	1410.09	TAL Metals
MW-E	On-site perimeter (down-gradient)	763824.9 1187192.4	2	1427.40	1427.81	1409.40	1399.40	1412.59	1409.90	TAL Metals
MW-F	On-site perimeter (down-gradient)	763624.6 1187259.2	2	1428.53	1428.92	1411.03	1401.03	1411.78	1409.31	TAL Metals
MW-G	On-site perimeter (down-gradient)	763493.8 1187059.7	2	1429.26	1429.66	1411.76	1401.76	1412.39	1410.05	TAL Metals

Notes:

Detection Limits and Minimum Reporting Limits to be achieved by ELAP-certified Laboratory are those provided in DEC document entitled "Exhibit C Target Compound Lists (TCLs) and Contract Required Quantitation Limits (CRQLs), provided in Appendix G.

APPENDIX A LIST OF SITE CONTACTS

Site Management Plan, Site # [C905038]

APPENDIX A – LIST OF SITE CONTACTS

Name	Phone/Email Address
Silence Dogood, LLC c/o Jeff Belt [Site Owner and Remedial Party]	716 913 7878 / jeff.belt@solepoxy.com
Raymond L. Kampff. [Qualified Environmental Professional]	585 454 0210 x108 / rkampff@daymail.net
Tony Lopes [NYSDEC DER Project Manager]	716 851 7220 / anthony.lopes@dec.ny.gov
Chad Staniszewski [NYSDEC Regional HW Engineer]	716-851-7220/ chad.staniszewski@dec.ny.gov
Phillips Lytle LLP c/o Adam S. Walters [Remedial Party Attorney]	716 847 7023 / awalters@phillipslytle.com

APPENDIX B EXCAVATION WORK PLAN (EWP)

Site Management Plan, Site # [C905038]

APPENDIX B – EXCAVATION WORK PLAN (EWP)

B-1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the site owner or their representative will notify the NYSDEC. Table 1 includes contact information for the above notification. The information on this table will be updated as necessary to provide accurate contact information. A full listing of site-related contact information is provided in Appendix A.

Table [1]: Notifications*

Tony Lopes [NYSDEC DER Project Manager]	716 851 7220 / anthony.lopes@dec.ny.gov
Chad Staniszewski [NYSDEC Regional HW Engineer]	716 851 7220 / chad.staniszewski@dec.ny.gov

* Note: Notifications are subject to change and will be updated as necessary.

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent of excavation, plans/drawings for site re-grading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control;
- A summary of environmental conditions anticipated to be encountered in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work;
- A summary of the applicable components of this EWP;

- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120;
- A copy of the contractor's health and safety plan (HASP), in electronic format, if it differs from the HASP provided in Appendix H of this SMP;
- Identification of disposal facilities for potential waste streams; and
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

A community air monitoring plan will also be included in the notification when excavation activities are planned in areas where contaminated materials (e.g., soil, fill, etc.) may be disturbed.

B-2 SOIL SCREENING METHODS

Visual, olfactory and instrument-based (e.g. photoionization detector) soil screening will be performed by a qualified environmental professional during all excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed when invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the COC.

Soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal and material that requires testing to determine if the material can be reused on-site as soil beneath a cover or if the material can be used as cover soil. Further discussion of off-site disposal of materials and on-site reuse is provided in Sections B-6 and B-7 (respectively) of this Appendix.

B-3 SOIL STAGING METHODS

Depending upon the quantity of material excavated, impacted materials may be located directly into trucks for transport and off-Site for disposal, placed within roll-off containers and/or placed in a soil stockpile. Soil stockpiles will be continuously encircled with a berm and/or silt

fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by the NYSDEC.

B-4 MATERIALS EXCAVATION AND LOAD-OUT

A qualified environmental professional or person under their supervision will oversee all invasive work and the excavation and load-out of all excavated material.

The owner of the property and remedial party (if applicable) and its contractors are responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the site.

Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

A truck wash will be operated on-site, as appropriate. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the site until the activities performed under this section are complete Truck wash waters will be collected and disposed of off-site in an appropriate manner.

Locations where vehicles enter or exit the site shall be inspected daily for evidence of offsite soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the site are clean of dirt and other materials derived from the site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials.

B-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

Truck transport routes will be obtained by the transporter prior to transporting contaminated material off-Site. All trucks loaded with site materials will exit the vicinity of the site using only these approved truck routes. This is the most appropriate route and takes into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; (f) overall safety in transport; and (g) community input (where necessary).

Trucks will be prohibited from stopping and idling in the neighborhood outside the project site.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development.

Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Offsite queuing will be prohibited.

B-6 MATERIALS DISPOSAL OFF-SITE

As determined by characterization results, soil, fill or solid waste deemed to be impacted that is excavated and removed from the Site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. If disposal of material from this site is proposed for unregulated offsite disposal (i.e. clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from this site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the pre-excavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility).

B-7 MATERIALS REUSE ON-SITE

In the event that excavation activities at the Site encounter potentially contaminated materials the materials may be re-used on-Site in accordance with guidelines set forth below in this EWP. Chemical criteria for on-Site re-use of material that have been approved by NYSDEC are those set forth in 6 NYCRR Part 375 Table 375-6.8(a) and Table 375-6.8(b). The qualified

environmental professional will ensure that procedures defined for materials reuse in this SMP are followed and that unacceptable material does not remain on-site. Contaminated on-site material, including historic fill and contaminated soil, that is acceptable for reuse on-site will be placed below the demarcation layer or impervious surface, and will not be reused within a cover soil layer, within landscaping berms, or as backfill for subsurface utility lines.

In order to qualify for on-Site re-use as cover or off-Site re-use, the material must:

- Be free of extraneous debris or solid waste
- Consist of soil or other unregulated materials as set forth in 6NYCRR Part 360.
- Be tested at the rate outlined in Table B-7-A

Table B-7-A									
Required number of Soil Samples to determine re-use suitability of excavated on-Site soils									
Contaminant	VOCs SVOCs								
		Ino	rganics						
		PCBs/	Pesticides						
Soil Quantity (yd ³)	Discrete Samples	Composite	Discrete						
			Samples/Composite						
0-50	1	1							
50-100	2	1	3-5 discrete samples						
100-200	3	1	from different						
200-300	4	1	locations in the fill or						
300-400	4	2	soil to be re-used will						
400-500	5	2	comprise a composite						
500-800	6	2	sample for analysis						
800-1000	7	2							
>1000	Add an additional 2 VOC and 1 composite for each additional 1000								
	cubic yards or consult with NYSDEC DER Project Manager								

Based on the testing outcome, soil may be re-used on-site as cover or off-site in the following manner:

- Soil that meets the Unrestricted Use SCOs set forth in 6 NYCRR Part 375 Table 375-6.8(a) may be re-used without restriction on-Site (backfill, cover, etc.) or off-Site.
- Soil that meets the Restricted Commercial Use SCOs [set forth in 6 NYCRR Part 375 Table 375-6.8(b)] may be re-used on-Site without restriction (backfill, cover, etc.).
- Soil that exceeds Restricted Commercial Use SCOs [set forth in 6 NYCRR Part 375 Table 375-6.8(b)] may be re-used on-Site; however, it must be 1) placed below the existing cover system, or 2) placed below a new cover system meeting NYSDEC requirements. The location where it is re-used must be documented.

Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing on-site will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the site will not be reused on-site.

B-8 FLUIDS MANAGEMENT

All liquids to be removed from the site, including but not limited to, excavation dewatering, decontamination waters and groundwater monitoring well purge and development waters, will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the site, and will be managed off-site, unless prior approval is obtained from NYSDEC.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream or river) will be performed under a SPDES permit.

B-9 COVER SYSTEM RESTORATION

After the completion of soil removal and any other invasive activities the cover system will be restored in a manner that complies with the decision document. The existing cover system is comprised of a minimum of 12 inches of clean soil and/or asphalt pavement. The demarcation layer, consisting of orange snow fencing material or black geotextile material will be replaced to provide a visual reference to the top of the remaining contamination zone, the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this SMP. If the type of cover system changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt), this will constitute a modification of the cover element of the remedy and the upper surface of the remaining contamination. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in an updated SMP.

B-10 BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the site. A Request to Import/Reuse Fill or Soil form, which can be found at http://www.dec.ny.gov/regulations/67386.html, will be prepared and submitted to the NYSDEC project manager allowing a minimum of 5 business days for review.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the site.

All imported soils will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.7(d). Based on an evaluation of the land use, protection of groundwater and protection of ecological resources criteria, the resulting soil quality standards are the Restricted Commercial SCOs as referenced in 6 NYCRR 375-638(b). Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC. Solid waste will not be imported onto the site.

Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

B-11 STORMWATER POLLUTION PREVENTION

Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by the NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional.

All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials.

Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters.

Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

B-12 EXCAVATION CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for a full list of analytes (TAL metals; TCL volatiles and semi-volatiles, TCL pesticides and PCBs), unless the site history and previous sampling results provide a sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the Periodic Review Report.

B-13 COMMUNITY AIR MONITORING PLAN

Refer to Appendix H for a copy of the site-specific Health and Safety Plan that includes a community air monitoring plan.

Exceedances of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers on the day of exceedance. All data is to be reported in the final report for the excavation activity.

B-14 ODOR CONTROL PLAN

This odor control plan is capable of controlling emissions of nuisance odors off-site. If nuisance odors are identified at the site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the remedial party's Remediation Engineer, and any measures that are implemented will be discussed in the Periodic Review Report.

All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods, etc.

If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

B-15 DUST CONTROL PLAN

A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved through the use of a dedicated on-site water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.

B-16 OTHER NUISANCES

A plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.

B-17 REPORTING

A report is to be submitted to the NYSDEC within 90 days of completion of the activities performed under this EWP. This report shall contain a summary of the activities performed; a summary of all data gathered and results; information about any media that was removed from the Site: volume, contamination levels, area from which removed; and any other information that may

be indicate a change to the "remaining contamination" that is at the Site. Such changes may require revision of the SMP.

APPENDIX C

RESPONSIBILITIES of OWNER and REMEDIAL PARTY

Site Management Plan, Site # [C905038]

APPENDIX C RESPONSIBILITIES of OWNER and REMEDIAL PARTY

Responsibilities

The responsibilities for implementing the Site Management Plan ("SMP") for 202 Franklin Street site (the "site"), number C905043, are divided between the site owner(s) and a Remedial Party, as defined below. The owner(s) is/are currently listed as:

Silence Dogood, LLC (the "owner").

Solely for the purposes of this document and based upon the facts related to a particular site and the remedial program being carried out, the term Remedial Party ("RP") refers to any of the following: certificate of completion holder, volunteer, applicant, responsible party, and, in the event the New York State Department of Environmental Conservation ("NYSDEC") is carrying out remediation or site management, the NYSDEC and/or an agent acting on its behalf. The RP is:

Silence Dogood, LLC, 211 Franklin Street Olean, NY

Nothing on this page shall supersede the provisions of an Environmental Easement, Consent Order, Consent Decree, agreement, or other legally binding document that affects rights and obligations relating to the site.

Site Owner's Responsibilities:

- 1) The owner shall follow the provisions of the SMP as they relate to future construction and excavation at the site.
- 2) In accordance with a periodic time frame determined by the NYSDEC, the owner shall periodically certify, in writing, that all Institutional Controls set forth in a(n) Environmental Easement remain in place and continue to be complied with. The owner shall provide a written

certification to the RP, upon the RP's request, in order to allow the RP to include the certification in the site's Periodic Review Report (PRR) certification to the NYSDEC.

- 3) In the event the site is delisted, the owner remains bound by the Environmental Easement and shall submit, upon request by the NYSDEC, a written certification that the Environmental Easement is still in place and has been complied with.
- 4) The owner shall grant access to the site to the RP and the NYSDEC and its agents for the purposes of performing activities required under the SMP and assuring compliance with the SMP.
- 5) The owner is responsible for assuring the security of the remedial components located on its property to the best of its ability. In the event that damage to the remedial components or vandalism is evident, the owner shall notify the site's RP and the NYSDEC in accordance with the timeframes indicated in Section 1.3 -Notifications.
- 6) In the event some action or inaction by the owner adversely impacts the site, the owner must notify the site's RP and the NYSDEC in accordance with the time frame indicated in Section 1.3 Notifications and (ii) coordinate the performance of necessary corrective actions with the RP.
- 7) The owner must notify the RP and the NYSDEC of any change in ownership of the site property (identifying the tax map numbers in any correspondence) and provide contact information for the new owner of the site property. 6 NYCRR Part contains notification requirements applicable to any construction or activity changes and changes in ownership. Among the notification requirements is the following: Sixty days prior written notification must be made to the NYSDEC. Notification is to be submitted to the NYSDEC Division of Environmental Remediation's Site Control Section. Notification requirements for a change in use are detailed in Section 2.4 of the SMP. A 60-Day Advance Notification Form and Instructions are found at http://www.dec.ny.gov/chemical/76250.html.
- 8) The RP remains ultimately responsible for maintaining the engineering controls.
- 9) In accordance with the tenant notification law, within 15 days of receipt, the owner must supply a copy of any vapor intrusion data, that is produced with respect to structures and that exceeds NYSDOH or OSHA guidelines on the site, whether produced by the NYSDEC, RP, or owner, to the tenants on the property. The owner must otherwise comply with the tenant and occupant notification provisions of Environmental Conservation Law Article 27, Title 24.

Remedial Party Responsibilities

- 1) The RP must follow the SMP provisions regarding any construction and/or excavation it undertakes at the site.
- 2) The RP shall report to the NYSDEC all activities required for remediation, operation, maintenance, monitoring, and reporting. Such reporting includes, but is not limited to, periodic review reports and certifications, electronic data deliverables, corrective action work plans and reports, and updated SMPs.
- 3) Before accessing the site property to undertake a specific activity, the RP shall provide the owner advance notification that shall include an explanation of the work expected to be completed. The RP shall provide to (i) the owner, upon the owner's request, (ii) the NYSDEC, and (iii) other entities, if required by the SMP, a copy of any data generated during the site visit and/or any final report produced.
- 4) If the NYSDEC determines that an update of the SMP is necessary, the RP shall update the SMP and obtain final approval from the NYSDEC. Within 5 business days after NYSDEC approval, the RP shall submit a copy of the approved SMP to the owner(s).
- 5) The RP shall notify the NYSDEC and the owner of any changes in RP ownership and/or control and of any changes in the party/entity responsible for the operation, maintenance, and monitoring of and reporting with respect to any remedial system (Engineering Controls). The RP shall provide contact information for the new party/entity. Such activity constitutes a Change of Use pursuant to 375-1.11(d) and requires 60-days prior notice to the NYSDEC. A 60-Day Advance Notification Form and Instructions are found at http://www.dec.ny.gov/chemical/76250.html.
- 6) The RP shall notify the NYSDEC of any damage to or modification of the systems as required under Section 1.3 Notifications of the SMP.
- 7) Prior to a change in use that impacts the remedial system or requirements and/or responsibilities for implementing the SMP, the RP shall submit to the NYSDEC for approval an amended SMP.
- 8) Any change in use, change in ownership, change in site classification (*e.g.*, delisting), reduction or expansion of remediation, and other significant changes related to the site may result in a change in responsibilities and, therefore, necessitate an update to the SMP and/or updated legal documents. The RP shall contact the Department to discuss the need to update such documents.

Change in RP ownership and/or control and/or site ownership does not affect the RP's obligations with respect to the site unless a legally binding document executed by the NYSDEC releases the RP of its obligations.

Future site owners and RPs and their successors and assigns are required to carry out the activities set forth above.

APPENDIX D ENVIRONMENTAL EASEMENT

Site Management Plan, Site # [C905038]

Cattaraugus County Clerk Alan Bernstein

Instrument Number *201910479*

Cattaraugus County Center 303 Court Street Little Valley, NY 14755 716-938-2297 Fax: 716-938-2773

Document Type: EASEMENT

Receipt Number: 19-8751 Instrument Number: 201910479 Date/Time: 09/30/2019 03:28 PM

First Grantor: SILENCE DOGOOD LLC First Grantee: NEW YORK STATE PEOPLE

Town: CO - OLEAN (CITY)

Pages: 10

Mortgage Serial No.: Transfer Tax Number: 00502

Return To: PHILLIPS LYTLE ONE CANALSIDE ENV BUFFALO NY 14203

State of New York County of Cattaraugus

This sheet constitutes the Clerk endorsement required by Section 316-A(5) & Section 319 of the Real Property Law of the State of New York.

alan Banstein

Cattaraugus County Clerk Please do not remove this page

Deed Information

Transfer Tax

\$0.00

Mortgage Information

Basic Tax Local Tax Additional Tax Special Tax

Total Mortgage Tax

Taxable Amount

\$0.00

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this 27th day of _____, 2019 between Owner(s) Silence Dogood LLC, having an office at 211 Franklin Street, Olean, New York 14760, County of Cattaraugus, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee"), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 202 Franklin Street in the City of Olean, County of Cattaraugus and State of New York, known and designated on the tax map of the County Clerk of Cattaraugus as tax map parcel numbers: Section 94.040 Block 1 Lot 3, being the same as that property conveyed to Grantor by deed dated December 4, 2013 and recorded in the Cattaraugus County Clerk's Office in Instrument No. 209005-001. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 5.159 +/- acres, and is hereinafter more fully described in the Land Title Survey dated November 23, 2013 and last revised March 18, 2015 prepared by D. Michael Canada, L.L.S., which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is

extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C905043-05-14, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;

(4) The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Cattaraugus County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

(5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

County: Cattaraugus Site No: C905043 Brownfield Cleanup Agreement Index : C905043-05-14

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

(9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;

(10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for Residential or Restricted Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i) and (ii), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation County: Cattaraugus Site No: C905043 Brownfield Cleanup Agreement Index : C905043-05-14

Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

the institutional controls and/or engineering controls employed at such site:
 (i) are in-place;

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against

the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C905043 Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500

With a copy to:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the

recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

11. <u>Consistency with the SMP</u>. To the extent there is any conflict or inconsistency between the terms of this Environmental Easement and the SMP, regarding matters specifically addressed by the SMP, the terms of the SMP will control.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Silence Dogood LLC: By: Print Name: JEFF RM

Title: MANIAGETT Date: Auc 13. 2019

Grantor's Acknowledgment

STATE OF NEW YORK

COUNTY OF Catt.

) ss:

On the 13 day of 209, in the year 20 12 before me, the undersigned, personally appeared 3ecf Be/f, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

SHARON M. SEE Notary Public, State of New York Reg. No. 01SE6377914 Qualified in Cattaraugus County Commission Expires July 16, 20,22 THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting by and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Michael J. Ryan, Director Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF ALBANY)

On the $\partial \mathcal{F}^{H_2}$ day of \mathcal{H}^{U_1} , in the year 2019, before me, the undersigned, personally appeared Michael J. Ryan, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, excluded the instrument.

Notary Public state of New York

David J. Chiusano Notary Public, State of New York No. 01CH5032146 Qualified in Schenectady County Commission Expires August 22, 2022

SCHEDULE "A" PROPERTY DESCRIPTION

Environmental Easement Description 202 Franklin Street

Beginning at the intersection of the north bounds of Franklin Street with the east bounds of lands of Southern Tier Rail Authority LLC, thence along the east bounds of lands of Southern Tier Rail Authority:

1) along a curve to the right, with a radius of 1432.69', a arc length of 338.04' which is subtended by a chord of N 5-34-22 W, a distance of 337.26' to a point

2) N 59-28-08 E, a distance of 68.03' to a point

3) N 30-28-00 W, a distance of 51.78' to a point

4) along a curve to the right, with a radius of 1240.79', a arc length of 266.80' which is subtended by a chord of N 13-20-34 E, a distance of 266.29' to a point, thence along the south bounds of Interstate Route 86: along a curve to the right, with a radius of 5544.58', a arc length of 174.67' which is subtended by a chord of N 60-12-59 E, a distance of 174.66' to a point thence S 30-06-22 E, through the lands of Silence Dogood LLC, a distance of 547.88' to a point,

thence S 59-32-00 W along the north bounds of Franklin Street, a distance of 565.54' to the point of beginning.

Contains 5.159 acres +/-

Real Estate Transfer Tax Return For Public Utility Companies' and Governmental Agencies' Easements and Licenses

This form may only be used by public utility companies regulated by the Public Service Commission and governmental agencies for the recording of easements and licenses where the consideration for the grant of such easement or license is \$500.00 or less.

Name of grantee (public utility company on New York State Department	or governmental agency) It of Environmental Conservation	Federal employer identification number (<i>if applicable</i>) 14-10013200
Address of grantee 625 Broadway, Albany, Ne		Name and telephone number of person to contact
Name(s) of Grantor Of Easement or License	Address of Property	Consideration Given For Easement or License
1. Silence Dogood LLC	211 Franklin Street, Olean, New York	0
2. Silence Dogood LLC	202 Franklin Street, Olean, New York	
3 .		
4.		
5.		
6.		
7.		
8.		
9.		
<u>10.</u>		
11.		
12.		
13.		
14.		
15.		
	are to be recorded, attach a schedule of such other	conveyances.

Signature of Grantee

I certify that the grantee is a public utility regulated by the Public Service Commission or is a governmental agency and the grantee of the easements and/or licenses above; that it is true to the best knowledge of the grantee that the granting of each such easement and/or license is exempt from Real Estate Transfer Tax imposed by Article 31 of the Tax Law by reason that each such conveyance is for a consideration of five hundred dollars or less and/or the conveyance is being made to a governmental agency.

New York State Department of Environmental Conse	ervation Jump (Mehlow
Name of grantee	Signature of Partner, officer of corporation, governmental official, etc.
	Title

APPENDIX E MONITORING WELL BORING AND CONSTRUCTION LOGS

Site Management Plan, Site # [C905038]

TEST BORING LOGS:

TB-101 THROUGH **TB-108**

da	V									E	ENVIRONMENTAL CONSULTANTS
	_	ONME	NTAL, IN	IC.						AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	4884S-1 202 Frai		eet						Test Boring TB-101
,			Olean, N					Ground Elevation: NA	Datum: NA		Page 1 of 1
DAY F	epreser	ntative:	Z. Tenni	es				Date Started: 6/12/2014	Date Ended: 6/12/2	2014	
Drilling	Contra	ctor:	Nothnag	le Drillin	g			Borehole Depth: 12.0'	Borehole Diameter: 2 1/4	inches	
Sampl	ing Meth	nod:	Auger &	Macroc	ore			Completion Method: URL Well Installed	Backfilled with Grout	Backfilled with	Cuttings
								Water Level (Date): NA			
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)		Sample Des	cription		Notes
							0.0	Asphalt pavement above broken Asphalt and G			
								Black, fine to coarse Sand intermixed with Coal	-	t (FILL)	
1							0.0				
	NA	S-1	0-4	85	NA			Mottled, orange/brown, Clayey SAND, some Si	it, little Gravel, moist		
2	IN/A	5-1	0-4	00	IN/A						
							0.0				
3											
							0.0				
4											
4							0.0				
5							0.0				
	NA	S-2	4-8	80	NA		0.0				
6	INA	3-2	4-0	00	INA						
							0.0	Brown, fine to medium SAND, some Gravel, litt	le Silt, moist		
7											
							0.0				
8											
Ŭ							0.0				
9							0.0	SAND and GRAVEL			
	NA	S-3	8-12	75	NA						
10							0.0				
							0.0				
11											
							0.0				
12											
								Bottom of Test Boring	@ 12.0'		
13											
14											
15											
16											
Notes:	1) Water	levels •	ere made	at the tim	es and ur	nder cond	itions state	d. Fluctuations of groundwater levels may occur due to	seasonal factors and other conditions	. <u> </u>	
								ns may be gradual.			
						standard n	neasured	in the headspace above the sample using a MiniRae 2	000 equipped with a 10.6 eV lamp.		
			able or Not			hume -	Iro				Test Boring TB-101
	5) Heads YELL A\) readings	may be ir	muenced	by moisti	ne				420 LEXINGTON AVENUE, SUITE 300
ROCH	ESTER,	NEW 1	ORK 14	606							NEW YORK, NEW YORK 10170
	454-0210 585) 454							www.dovonvironmental.com			(212) 986-8645 FAX (212) 986-8657
(CAA (,007,404	-0020						www.dayenvironmental.com			PAA (212) 900-8037

da	V											ENVIRONMENTAL CONSULTANTS
	_	ONMEN	NTAL, IN	IC.							AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t#: tAddres	ss:	4884S-1 202 Frai		eet							Test Boring TB-102
			Olean, N	lew Yorl	k			Ground Elevation: NA		Datum: NA		Page 1 of 1
	epreser		Z. Tenni					Date Started: 6/12/2014		Date Ended: 6/12/		_
-	Contra		Nothnag Auger &					Borehole Depth: <u>12.0'</u> Completion Method: <u>Well In</u>	otallad	Borehole Diameter: 2 1/4	inches Backfilled with	Cuttings
Sampi	ng Meth	iou.	Auger &	Macroc	016			Completion Method: Well In Water Level (Date): NA	stalleu	Backfilled with Grout		r Cutungs
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)		Samp	le Descrij	otion		Notes
								Asphalt Pavement				
1				33				Concrete Slab			0.2' - 2.0' Au	ıger through concrete slab
3	NA	S-1	2-4	90	NA		0.0	Broken Concrete, Cinders and Pieces of	f Asphalt (FILL)		
4							0.0	Brown, Sandy CLAY, little medium to co	arse Grav	el, moist		
5							0.0					
	NA	S-2	4-8	65	NA		0.0					
6							0.0					
7							0.0	Yellow/Brown, Silty SAND, moist				
8							0.0	Fine to medium SAND, trace Silt, moist				
9							0.0					
10	NA	S-3	8-12	33	NA			Brown, SAND and GRAVEL, trace Silt, r	noist			
11							0.0					
40							0.0					
12								Bottom of Test	Boring @	12.0'		
13												
14												
15												
16												
Notes:								ed. Fluctuations of groundwater levels may occ	ur due to se	asonal factors and other condition	5.	
								ns may be gradual.	niPao 2000	equipped with a 10.6 cV/lom-		
			able or Not			sanuard f	reasured	in the headspace above the sample using a Mi	initale 2000	equipped with a 10.6 eV lamp.		Test Boring TB-102
) readings			by moist	ire					
	YELL A			306								420 LEXINGTON AVENUE, SUITE 300
	ESTER, 54-021		ORK 140	500								NEW YORK, NEW YORK 10170 (212) 986-8645
FAX (5								www.dayenvironmental.com				FAX (212) 986-8657

day										E	ENVIRONMENTAL CONSULTANTS
	_	ONMEN	NTAL, IN	IC.						AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	4884S-1 202 Frai		eet						Test Boring TB-103
-			Olean, N	New York	k			Ground Elevation: NA	Datum: NA		Page 1 of 2
			Z. Tenni				-	Date Started: 6/12/2014	Date Ended: 6/12/20		_
	g Contra		Nothnag				•	Borehole Depth: 28.0'	Borehole Diameter: 8 inche		
Sampl	ing Meth	nod:	Auger &	Macroc	ore			Completion Method: Well Installed Water Level (Date): NA	Backfilled with Grout	Backfilled with	Cuttings
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Desc	Sample Description		Notes
	NA	S-1	0-2	40	NA		0.0	Asphalt and Sub-Base			
1							0.0	Brown/Black Sand and Gravel, little Silt, trace Br	icks, trace broken Asphalt (FILL)		
2								Concrete Slab			
3										No Sample 2	
										auger throu	gh concrete to 4'
4							0.0	Gray/Black, Sand, some Gravel, little Silt, trace (Concrete (FILL)		
5								Brown, medium SAND, little Gravel, trace Silt, m			
	NA	S-2	4-8	38	NA		0.0				
6		0-2	4-0	50	114		0.0				
7							0.0				
8							0.0	Dark Brown, coarse SAND and GRAVEL, little S	ilt, moist		
9	NA	S-3	8-10	25	NA		0.0				
10							0.0	Gray/Brown			
11							0.0				
12	NA	S-4	10-14	12	NA		0.0				
13											
.3							0.0				
14							0.0				
15	NA	S-5	14-18	38	NA		0.0				
16							0.0				
Notes:								ed. Fluctuations of groundwater levels may occur due to	seasonal factors and other conditions.	l	
								ns may be gradual. in the headspace above the sample using a MiniRae 200	0 equipped with a 10.6 eV lamp		
			able or Not			andard I		the meanspace above the sample using a minifikal 200	o oquippou maria 10.0 ev lamp.		Test Boring TB-103
	5) Heads	space PIE) readings			by moist	ure				
1563 LYELL AVENUE ROCHESTER, NEW YORK 14606 (585) 454-0210											420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645
	585) 454							www.davenvironmental.com			FAX (212) 986-8657

da	Ŋ								E	NVIRONMENTAL CONSULTANTS
DAY	ENVIRO	ONMEN	ITAL, IN	IC.					AN AFFILI	ATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	ss:	4884S-1 202 Frar Olean, N	nklin Stre				Ground Elevation: NA Datum: NA		Test Boring TB-103 Page 2 of 2
	epreser Contra		Z. Tenni Nothnag		a			Date Started: 6/12/2014 Date Ended: 6/12/2014 Borehole Depth: 28.0' Borehole Diameter: 4"		-
-	ing Meth		Auger &					Completion Method: UVell Installed Backfilled with Grout	Backfilled with	Cuttings
						î		Water Level (Date): NA		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
							0.0			
17							0.0			
10							0.0	medium to coarse SAND, little Gravel		
19	NA	S-6	18-20	70	NA		0.0			
20							0.0	medium to coarse SAND and sub-rounded GRAVEL, little Silt		
21							0.0			
	NA	S-7	20-24	45	NA		0.0	wet		
22							0.0			
23							0.0			
24							0.0			
25	NA	S-8	24-28	70	NA		0.0			
26							0.0	Gray, GRAVEL, some coarse Sand, little Silt		
27							0.0			
28							-			
								Bottoom of Test Boring @ 28.0'		
29										
30										
31										
32										
Notes:								d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.		
	3) PID re 4) NA = N	eadings a Not Availa	re referend ble or Not	ced to a b Applicab	enzene s le	tandard n	neasured	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		Test Boring TB-103
1563 L	YELL A\	/ENUE	ORK 146		muenced	by moisti	пе			420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585) 4	ESTER, 154-021(585) 454	0	UNIX 140	,00				www.davenvironmental.com		(212) 986-8645 FAX (212) 986-8657

da	Ŋ									E	ENVIRONMENTAL CONSULTANTS
	_	ONMEN	NTAL, IN	IC.						AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	ss:	4884S-1 202 Frai		eet						Test Boring TB-104
			Olean, N	New York	(Ground Elevation: NA	Datum: NA		Page 1 of 2
	lepreser		Z. Tenni					Date Started: 6/12/2014	Date Ended: 6/12/20		_
	Contra ing Meth		Nothnag Auger &					Borehole Depth: 28.0' Completion Method: Well Installed	Borehole Diameter: 8 inche	s	Cuttings
Sampi	ing weu	iou.	Auger &	Macroc	ore			Water Level (Date): ~ 13.0' (6/12/14)	Backfilled with Grout		Cutungs
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Descri	Sample Description		Notes
							0.0	Asphalt and Sub-base			
1								Brown/Black, Sand and Gravel, little Silt, trace cru	shed Brick, trace Cinders (FILL)		
1							0.0				
	NA	S-1	0-4	70	NA						
2							0.0				
							0.0	Black, mottled Brown, Sandy CLAY, moist			
3											
							0.0	Brown			
4											
							0.0	some Gravel			
_											
5							0.0				
	NA	S-2	4-8	58	NA						
6							0.0				
							0.0	Brown, SAND and GRAVEL, some Silt, moist			
7											
							0.0				
8								little Silt			
_							0.0				
	NA	S-3	8-10	70	NA						
9							0.0				
10							0.0				
								SAND and sub-rounded GRAVEL			
11											
							0.0				
12	NA	S-4	10-14	38	NA						
							0.0				
13											
							0.0				
14							0.0	Gray/Brown, wet			
15	NA	S-5	14-18	52	NA		0.0				
				52			0.0				
16							0.0				
Notes:	1) Water	r levels w	ere made	at the tim	es and ur	nder cond	0.0 itions state	ed. Fluctuations of groundwater levels may occur due to se	asonal factors and other conditions		
110103.								ns may be gradual.	Contraction of and other contractions.		
						standard n	neasured	in the headspace above the sample using a MiniRae 2000	equipped with a 10.6 eV lamp.		
			able or Not			hume -	Iro				Test Boring TB-104
	5) Heads) readings	may be lf	muenced	by moist	110				420 LEXINGTON AVENUE, SUITE 300
ROCH	ESTER,	, NEW Y	ORK 14	606							NEW YORK, NEW YORK 10170
	585) 454-0210 AX (585) 454-0825							www.dayenvironmental.com			(212) 986-8645 FAX (212) 986-8657

da	ENVIRONMENTAL CONSULTANTS											
DAY	ENVIRO	ONMEN	ITAL, IN	IC.					AN AFFIL	ATE OF DAY ENGINEERING, P.C.		
Projec Projec	t #: t Addres		4884S-1 202 Frar		et					Test Boring TB-104		
			Olean, N					Ground Elevation: NA Datum: NA		Page 2 of 2		
	epresen Contrac		Z. Tennie Nothnag		a			Date Started: 6/12/2014 Date Ended: 6/1. Borehole Depth: 28.0' Borehole Diameter: 8 in		-		
-	ing Meth		Auger &					Completion Method: Well Installed Backfilled with Grout	Backfilled with	Cuttings		
								Water Level (Date): ~ 13.0' (6/12/14)				
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes		
		.,		5			0.0					
17							0.0					
10							0.0	Gray/Brown, coarse SAND, little Gravel, trace Silt, wet				
19	NA	S-6	18-20	20	NA							
							0.0	Gray/Brown, coarse SAND and sub-rounded GRAVEL, little Silt, wet				
20						-		Gray, trace Silt	Strong Petro	bleum Odor		
										PID malfunction		
21												
22	NA	S-7	20-24	50	NA		NA					
23												
24								Gray, coarse SAND, little sub-rounded Gravel, wet				
25												
								medium to coarse SAND				
26	NA	S-8	24-28	88	NA		NA					
27												
28												
20								Bottoom of Test Boring @ 28.0'				
29												
30												
21												
31												
32												
								ed. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions may be gradual.	ns.			
	3) PID re	eadings a	re referenc	ced to a b	enzene s			in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		Tost Boring TP 404		
	5) Heads	pace PID	ble or Not readings			by moistu	ire			Test Boring TB-104		
ROCH		NEW Y	ORK 146	306						420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170		
	154-0210 585) 454							www.dayenvironmental.com		(212) 986-8645 FAX (212) 986-8657		

da	Ŋ									E	ENVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONME	NTAL, IN	IC.				1		AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: Addres	SS:	4884S-1 202 Frai		eet						Test Boring TB-105
			Olean, N	New York	(Ground Elevation: NA	Datum: NA		Page 1 of 2
	Represe		Z. Tenni					Date Started: 6/11/2014	Date Ended: 6/12/2		_
	g Contra ling Metl		Nothnag Auger &					Borehole Depth: 24.0' Completion Method: Well Installed	Borehole Diameter: 8 inch	es Backfilled with	Cuttings
Sampi	iing weu	ilou.	Auger a	Spin Sp	0011			Water Level (Date): 14.9' (6/12/14)			Cuturiys
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Descr	ption		Notes
	2						0.0	TOPSOIL with organics			
1	2 2 4	S-1	0-2	10	4		0.0	Black/Brown, Silty Sand intermixed with railroad E	Ballast, broken red Bricks (FILL)		
_	3						0.0				
3	4 4 4	S-2	2-4	10	8		0.0				
5	6 8 10	S-3	4-6	55	18		0.0	little Ash, little Tar (Roofing material?)			
	3							frequent Red Bricks			
0	18						0.0	Gray, Silty Sand intermixed with broken red Brick	s Ash Cinders pieces of		
	13	S-4	6-7.5	40	31				-,,,		
7	50/3						0.0	Concrete (FILL) Concrete Slab		Augered to a	3'
			No sa	mple 7.5	5' - 8.0'			Concrete Stab		- J	_
8 9	6 7 11 12	S-5	8-10	48	18		0.0	Gray, coarse Sand, broken Concrete, red Brick a	nd Mortar, trace Tar (FILL)		
10	11						0.0		0 1 1 0 1		
	11	S-6	10-12	70	24		2.0	Gray/Brown, medium dense, coarse SAND, some	Gravel, trace Slit, MOISt		
11	13 14				-7		0.0				
12	10						0.0				
13	10 10 15 16	S-7	12-14	60	25		0.0				
14	9						0.0				
			14.40	50	40		0.0	Brown, litle Silt, wet			
15	9	S-8	14-16	52	18						
	9						0.0				
16	10	<u> </u>									
	2) Strati 3) PID r	fication lir eadings a	nes repres	ent appro ced to a b	ximate bo enzene s	undaries.	Transitio	ed. Fluctuations of groundwater levels may occur due to s ns may be gradual. in the headspace above the sample using a MiniRae 200			Test Boring TB-105
) readings			by moistu	ıre				
	YELL A			202							420 LEXINGTON AVENUE, SUITE 300
(585)	454-021 585) 454	0	ORK 140	000				www.davenvironmental.com			NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

da	ENVIRONMENTAL CONSULTANTS											
DAY	ENVIR	ONMEN	NTAL, IN	IC.				AN AFFI	LIATE OF DAY ENGINEERING, P.C.			
Projec Projec	t #: t Addres	ss:	4884S-1 202 Frai		eet				Test Boring TB-105			
DAVE			Olean, N		k			Ground Elevation: NA Datum: NA	Page 2 of 2			
	tepreser Contra		Z. Tenni Nothnag		a			Date Started: 6/11/2014 Date Ended: 6/12/2014 Borehole Depth: 24.0' Borehole Diameter: 8 inches	—			
	ing Meth		Auger &					Completion Method: 🗌 Well Installed 🔳 Backfilled with Grout 🗌 Backfilled with	h Cuttings			
			1		1			Water Level (Date): 14.9' (6/12/14)				
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description	Notes			
	11						0.0	Brown, coarse SAND, some Gravel, little Silt, wet				
17	12 13	S-9	16-18	63	25	NA	0.0					
18	13 5						0.0					
	5	S-10	18-20	10	15	NA	0.0					
19	10						0.0					
20	11											
20	5						0.0	little Gravel				
21	5	S-11	20-22	48	14	NA						
	9						0.0					
22	9											
	10						0.0	coarse to medium SAND				
23	11	S-12	22-24	70	26	NA	0.0					
	15 16						0.0	some sub-angular Gravel				
24	10							Bottoom of Test Boring @ 24.0'				
25												
26												
27												
28												
29												
30												
31												
32												
Notes:								d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.				
			re referen able or Not			standard n	neasured	in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	Test Boring TB-105			
	5) Heads	space PIE) readings			by moistu	ıre					
ROCH		, NEW Y	ORK 14	606					420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170			
(585)	454-021 585) 454	0				www.dayenvironmental.com	(212) 986-8645 FAX (212) 986-8657					

da	Ŋ									I	ENVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONMEN	NTAL, IN	IC.						AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	4884S-1 202 Frai		eet						Test Boring TB-106
			Olean, N		(Ground Elevation: NA	Datum: NA		Page 1 of 2
	epreser		Z. Tenni		~			Date Started: 6/11/2014 Borehole Depth: 20.0'	Date Ended: 6/12/20		-
-	Contra		Nothnag Auger &					Borehole Depth: 20.0' Completion Method: Well Installed	Borehole Diameter: 8 inche Backfilled with Grout	Backfilled with	Cuttings
			<u></u>						4) through augers		g-
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample De	scription		Notes
							0.0	TOPSOIL and Roots			
1								Black, Cinders, Coal fragments, fine to mediur	n Sand, moist (FILL)		
							0.0	Silty SAND, trace Gravel, trace Clay, moist			
	NA	S-1	0-4	NA	NA						
2							0.0				
3							0.0				
4							0.0				
							0.0	Brown, fine to medium GRAVEL, some Sand,	little Silt, moist		
5							0.0				
							0.0				
6	NA	S-2	4-8	NA	NA						
							0.0				
7											
							0.0				
8											
							0.0				
9											
							0.0				
10	NA	S-3	8-12	NA	NA						
							0.0				
44											
11							0.0				
12							0.0				
13							0.0				
	NA	S-4	12-14	NA	NA			wet			
14							0.0				
							-				
15							0.0				
							0.0				
16											
Notes:	1) Water	r levels w	ere made	at the time	es and ur	nder condi	tions state	d. Fluctuations of groundwater levels may occur due	to seasonal factors and other conditions.	<u> </u>	
	2) Stratif	ication lir	nes repres	ent appro	ximate bo	oundaries.	Transitio	ns may be gradual.			
			ire referen able or Not			standard n	neasured	in the headspace above the sample using a MiniRae 2	2000 equipped with a 10.6 eV lamp.		Test Boring TB-106
			able or Not) readings			l by moistu	ire				Test During 1D-100
1563 L'	YELL A\	/ENUE									420 LEXINGTON AVENUE, SUITE 300
	ESTER, 154-0210		ORK 140	606							NEW YORK, NEW YORK 10170 (212) 986-8645
FAX (5								www.davenvironmental.com			FAX (212) 986-8657

da	Ŋ									I	ENVIRONMENTAL CONSULTANTS
DAY	ENVIRG	ONMEN	ITAL, IN	IC.						AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	4884S-1 202 Frar	nklin Stre							Test Boring TB-106
	Represer		Olean, N Z. Tenni					Ground Elevation: NA Date Started: 6/11/2014	Datum: NA Date Ended: 6/12/20	114	Page 2 of 2
	g Contrac		Nothnag		g			Borehole Depth: 20.'	Borehole Diameter: 8 inche		_
Sampl	ing Meth	iod:	Auger &	Macroco	ore			Completion Method: Well Installed	Backfilled with Grout	Backfilled with	Cuttings
						<u> </u>		Water Level (Date): 13.8 (6/11/14) t	nrougn augers		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Descr	iption		Notes
							0.0	Brown, fine to medium GRAVEL, some Sand, littl	e Silt, wet		
17			10.00				0.0				
18	NA	S-5	16-20	NA	NA		0.0				
19											
19							0.0				
20								Gray/Brown, fine to medium SAND, little Gravel,			
								Bottom of Test Boring @	20.0'		
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											
32											
Notes:								ed. Fluctuations of groundwater levels may occur due to s ns may be gradual.	seasonal factors and other conditions.		
			re referend Ible or Not			tandard r	neasured	in the headspace above the sample using a MiniRae 200	0 equipped with a 10.6 eV lamp.		Test Boring TB-106
	5) Heads	pace PID	readings			by moist	ıre				
ROCH	YELL A\ IESTER, 454-021(NEW Y	ORK 146	606							420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645
	454-02 n 585) 454							www.dayenvironmental.com			(212) 986-8645 FAX (212) 986-8657

da	Ŋ								E	NVIRONMENTAL CONSULTANTS
	_	ONMEN	NTAL, IN	IC.					AN AFFILI	ATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	4884S-1 202 Frar		eet					Test Boring TB-106A
,			Olean, N					Ground Elevation: NA Datum: NA		Page 1 of 2
			Z. Tenni		a			Date Started: 6/19/2014 Date Ended: 6/19/2014 Borehole Depth: 48.0' Borehole Diameter: 8 inches		-
	g Contrac ing Meth		Nothnag Auger &						Backfilled with	Cuttings
	-							Water Level (Date): 20.0' (6/19/14) through augers		-
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
								Auger 0 - 20.0 ft. and begin sampling		
20							49.1	Gray, angular GRAVEL, some Sand, wet	Petroleum O	dor
21										
	NA	S-1	20-24	21	NA	80.9				
22										
23							107			
24										
							98.2			
25								little coarse Sand		
26	NA	S-2	24-28	38	NA	807				
							44.5	SAND and angular GRAVEL, frequent Cobbles noted during augering		
27										
28				-			40.4			
							31.2			
29										
							18.7			
30	NA	S-3	28-32	41	NA	287				V
							56.1		Faint Petrole	
31							40.0			
							40.2		+	
32							17.9	Gray/Brown, Clayey SAND, trace Gravel, wet		
							11.9			
33							43.7	Sandy CLAY	Ň	\checkmark
	NA	S-4	32-36	21	NA	159	40.1			
34			02 00							
							24.5			
35										
Notes:								d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	1	
								ıs may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		
			able or Not					,		Test Boring TB-106A
	5) Heads		readings	may be ir	nfluenced	by moistu	ire			420 LEXINGTON AVENUE, SUITE 300
ROCH	IESTER,	NEW Y	ORK 146	606						NEW YORK, NEW YORK 10170
	454-021(585) 454							www.dayenvironmental.com		(212) 986-8645 FAX (212) 986-8657

da	Ŋ								E	ENVIRONMENTAL CONSULTANTS
DAY	ENVIRO	ONMEN	ITAL, IN	IC.					AN AFFIL	ATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	ss:	4884S-1 202 Frar		et					Test Boring TB-106A
			Olean, N					Ground Elevation: NA Datum: NA		Page 1 of 2
	epresen Contrac		Z. Tenni Nothnag		g			Date Started: 6/19/2014 Date Ended: 6/19/2014 Borehole Depth: 48.0' Borehole Diameter: 8 inches		-
-	ing Meth		Auger &					Completion Method: 🗌 Well Installed 🔳 Backfilled with Grout	Backfilled with	Cuttings
					1	_		Water Level (Date): 20.0' (6/19/14) through augers	1	
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
								Gray/Brown, Sandy CLAY, trace Gravel, wet	Faint Petrole	eum Odor
36										
37										
38			No Sa	ample 36	6' - 40'					
39										
40							2.0	Gray-Brown, Sandy CLAY, trace Silt, wet	Very Faint to	o no Petroleum Odor
41						6.7		Gray-blowit, Sandy CLAT, trace Sitt, wet		
42	NA	S-6	40-44	100	NA		4.9			
43							0.1			
44						4.9				
45							15.7 16.8		No Petroleui	n Odor
46	NA	S-7	44-48	74	NA	20.5	14.3			
47							17.6			
48								Bottom of Test Boring @ 48.0'		
49										
50										
51										
								ed. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.		
	3) PID re 4) NA = N	eadings a Not Availa		ced to a b Applicab	enzene s le	tandard n	neasured	in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		Test Boring TB-106A
1563 L ROCH (585) 4	YELL A\	VENUE , NEW Y 0	ORK 146					www.dayenvironmental.com		420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

da	Ŋ								ENVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONMEN	ITAL, IN	IC.				Al	N AFFILIATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	4884S-1 202 Frar		eet				Test Boring TB-107
,			Olean, N					Ground Elevation: NA Datum: NA	Page 1 of 2
DAY F	lepreser	ntative:	Z. Tenni	es				Date Started: 6/13/2014 Date Ended: 6/13/2014	
	Contra		Nothnag					Borehole Depth: 28.0' Borehole Diameter: 8 inches	
Sampl	ing Meth	nod:	Auger &	Macroc	ore			Completion Method: ☐ Well Installed ■ Backfilled with Grout ☐ Back Water Level (Date): 18.8' (6/13/14) through augers	filled with Cuttings
	r 0.5 ft.	umber	epth (ft)	ery.	r RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description	Notes
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspa	PID Read		
							0.0	Asphalt and Sub-base	
1								Brown, Sand, some Gravel, little Silt, moist (FILL)	
	NA	S-1	0-4	62	NA		0.0	Black, Sand and Gravel, some Cinders, little crushed red Brick, moist (FILL)	
2				02			0.0	Gray-Black	
3								Concrete	
							0.0	Brown-Gray, Sandy CLAY, little Gravel, moist	
4							0.0		
5							0.0	Brown/Gray, SAND and sub-angular GRAVEL, trace Silt, moist	
6	NA	S-2	4-8	28	NA		0.0		
7							0.0		
8							0.0		
	NA	S-3	8-10	92	NA		0.0		
9							0.0		
10							0.0		
11							0.0		
12	NA	S-4	10-14	44	NA		0.0	Tan to Brown	
13							0.0		
14							0.0		
15	NA	S-5	14-18	30	NA		0.0	Brown, SAND and medium to coarse angular GRAVEL	
16									
Notes:	1) Water	levels w	ere made	at the tim	es and ur	nder cond	0.0 itions state	ed. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	
								ns may be gradual. in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	
			able or Not			uuru I			Test Boring TB-107
			readings	may be ir	fluenced	by moist	ıre		
	YELL AN		ORK 146	606					420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585)	454-021	0							(212) 986-8645
FAX (585) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657

da	Ŋ								E	ENVIRONMENTAL CONSULTANTS
DAY	ENVIRO	ONMEN	ITAL, IN	IC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	is:	4884S-1 202 Frar		et					Test Boring TB-107
			Olean, N					Ground Elevation: NA Datum: NA		Page 2 of 2
	epresen Contrac		Z. Tenni Nothnag		a			Date Started: 6/13/2014 Date Ended: 6/13/2014 Borehole Depth: 28.0' Borehole Diameter: 8 inches		-
-	ing Meth		Auger &						Backfilled with	Cuttings
								Water Level (Date): 18.8' (6/13/14) through augers		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
17								Gray, SAND and medium to coarse GRAVEL, trace Silt, moist		
								Gray, SAND, little Gravel, wet	Faint Petrole	eum Odor
19	NA	S-6	18-20	82	NA	44		Gray, SAND and sub-angular GRAVEL, trace Silt, wet		
20						53.6				
						70.1		GRAVEL, some coarse Sand		
21										
22	NA	S-7	20-24	54	NA					
~~								SAND and GRAVEL, some Silt		
						53.2				
23										
						52.4				
24						205				•
								Gray, coarse SAND, some Gravel, wet	1	
25								Gray, Sandy CLAY, trace Gravel, wet	1	
	NA	S-8	24-28	75	NA					
26						415				
27										
28								Bottom of Test Boring @ 28.0'	1	
29										
30										
31										
32										
Notes:								ed. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.		
								ns may be gradual. in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		
			ible or Not				. sacarda			Test Boring TB-107
	5) Heads		readings	may be ir	fluenced	by moistu	ire			420 LEXINGTON AVENUE, SUITE 300
ROCH	ESTER,	NEW Y	ORK 146	606						NEW YORK, NEW YORK 10170
	154-0210 585) 454							www.dayenvironmental.com		(212) 986-8645 FAX (212) 986-8657

da	Ŋ								ENVIRONMENTAL CONSULTANTS
	_	ONMEN	NTAL, IN	IC.					AN AFFILIATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	4884S-1 202 Frai		eet				Test Boring TB-108
			Olean, N	lew Yorl	k			Ground Elevation: NA Datum: NA	Page 1 of 2
	Represer		Z. Tenni		-			Date Started: 6/11/2014 Date Ended: 6/12/2014	1
	g Contra ing Meth		Nothnag Auger &					Borehole Depth: 28.0' Borehole Diameter: 8 inches Completion Method: Well Installed Backfilled with Grout	Backfilled with Cuttings
Gampi	ing mea	iou.	/ luger u	Opin Op				Water Level (Date): 15.7 (6/12/14) through augers	
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description	Notes
		0/		-0	-	-	0.0	Topsoil and Roots	
1							0.0	Bricks intermixed with Black fine to medium Sand, Coal fragments, moist (FILL)	
		<u>.</u>					0.0		
2	NA	S-1	0-4	38	NA				
							0.0	Brown, Sandy CLAY, little Gravel interbedded with layers of tan/brown Silty Clay,	
3								moist	
							0.0		
4									
							0.0		
5								Brown, Sandy GRAVEL, little Silt, moist	
5							0.0		
	NA	S-2	4-8	5	NA				
6							0.0		
7							0.0		
8							0.0		
							0.0		
9									
							0.0		
10	NA	S-3	8-12	33	NA				
							0.0		
11									
							0.0		
12									
							0.0		
13								Brown, fine to coarse SAND with pockets of Clayey Silt, moist	
							0.0		
	NA	S-4	12-16	38	NA				
14							0.0	Brown, Sandy GRAVEL, little Silt, moist	
								wet	
15							0.0	tan/brown	
16			-		1		-		
Notes:	1) Water	levels w	ere made	at the tim	es and ur	nder condi	itions state	d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	<u> </u>
								is may be gradual.	
			re reteren able or Not			sanuaro n	reasured	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	Test Boring TB-108
	5) Heads	pace PID				l by moistu	ire		
	YELL A		ORK 14	306					420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
	454-021		UKK 140	500					NEW YORK, NEW YORK 10170 (212) 986-8645
	585) 454							www.dayenvironmental.com	FAX (212) 986-8657

da	Ŋ									E	ENVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONMEN	NTAL, IN	IC.						AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	4884S-1 202 Frar		eet						Test Boring TB-108
			Olean, N		(Ground Elevation: NA	Datum: NA		Page 2 of 2
	tepreser Contra		Z. Tennie Nothnag		a			Date Started: 6/11/2014 Borehole Depth: 28.0'	Date Ended: <u>6/12/2014</u> Borehole Diameter: 8 inches		-
-	ing Meth		Auger &					Completion Method: Well Installed		Backfilled with	1 Cuttings
								Water Level (Date): 15.7 (6/12/14) t	hrough augers		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Descr	iption		Notes
								Brown, SAND and sub-angular to rounded GRA	/EL, little Silt, wet		
17											
18	NA	S-5	16-20	34	NA						
19											
20											
21										+	
	NA	S-6	20-24	55	NA			Gray, sub-rounded to angular GRAVEL, some Sa	and, wet		
22	INA	3-0	20-24	55	INA						
										Petroleum C	Ddor
23											
24											
25											
	NA	S-7	24-28	52	NA			faint sheet on water			
26											
27											
21											
28											
								Bottom of Test Boring @	<u>)</u> 28.0'		
29											
30											
31											
32											
Notes:	1) Water	r levels w	ere made :	at the tim	es and ur	nder condi	tions state	ed. Fluctuations of groundwater levels may occur due to	easonal factors and other conditions.		
	2) Stratif	fication lir	ies represe	ent appro	ximate bo	undaries.	Transitio	ns may be gradual.			
			re referenc able or Not			tandard n	reasured	in the headspace above the sample using a MiniRae 200	0 equipped with a 10.6 eV lamp.		Test Boring TB-108
	5) Heads	space PIC	readings			by moistu	re				
ROCH		, NEW Y	ORK 146	606							420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
	454-021 585) 454							www.dayenvironmental.com			(212) 986-8645 FAX (212) 986-8657

TEST BORING LOGS:

MW-A THROUGH MW-G

da	Ŋ									l	ENVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONMEN	NTAL, IN	IC.						AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	ss:	4884S-1 211 Frar	nklin Stre	eet						Test Boring MW-A
	lepreser	ntativo:	Olean, N Z. Tenni					Ground Elevation: NA Date Started: 9/10/2013	Datum: NA Date Ended: 9/10/2013	3	Page 1 of 2
	Contra		Applus	65				Borehole Depth: 27.0'	Borehole Diameter: 8 inches)	_
Sampl	ing Meth	nod:	Direct P	ush & Sp	olit Spoo	n			Backfilled with Grout	Backfilled with	n Cuttings
								Water Level (Date): <u>18.8' (9/10/13) th</u>	rough augers		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Descrip	tion		Notes
							0.0	Brown, fine to medium Sand, some Roots, little Red	Brick (FILL)		
1	NA	S-1	0-4	69	NA		0.0	Brown-Red, fine to medium SAND, little coase Grav	rel, damp		
							0.0				
3							0.0	Gray-Black, trace fine Gravel			
								Gray-Brown, SAND, trace fine Gravel, damp			
4							0.0				
5	NA	S-2	4-8	38	NA		0.0				
0							0.0				
7							0.0	fine to medium SAND			
0							0.0				
9 10	NA	S-3	8-10	10	NA		0.0	Gray-Brown, medium to coarse GRAVEL, some Sa	nd, damp		advanced to 10 feet via direct- ids and completed to 27 feet
10							0.2	Gray-Brown, Silty fine to coarse SAND, little mediur	n coarse Gravel, damp	with HSA	with split spoon samples
11	NA	S-4	10-12	78	NA		0.0			collected at	5-foot intervals.
12											
13											
14		1					3.1				
15	NA	S-5	14-16	75	54						
16							14.7				
Notes:	1) Water	levels w	ere made	at the tim	es and ur	nder cond	itions state	ed. Fluctuations of groundwater levels may occur due to sea	sonal factors and other conditions.		
	2) Stratif 3) PID re 4) NA = №	ication lir eadings a Not Availa	nes represe re referene able or Not	ent appro: ced to a b Applicab	ximate bo enzene s le	oundaries. standard r	Transitio neasured	ns may be gradual. in the headspace above the sample using a MiniRae 2000 e			Test Boring MW-A
	5) Heads) readings	may be ir	fluenced	by moist	ire				420 LEXINGTON AVENUE, SUITE 300
ROCH (585)		, NEW Y 0	ORK 146	606				www.dayenvironmental.com			420 LEXINGTON AVENUE, SOTTE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

da	Ŋ								E	NVIRONMENTAL CONSULTANTS
DAY	ENVIRO	ONMEN	NTAL, IN	IC.					AN AFFILI	ATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	4884S-1 211 Frar	nklin Stre	eet					Test Boring MW-A
	epresen	ntative:	Olean, N Z. Tenni					Ground Elevation: NA Datum: NA Date Started: 9/10/2013 Date Ended: 9/10/2013		Page 2 of 2
	Contrac		Applus	65				Borehole Depth: 27.0' Borehole Diameter: 8 inches		
Sampli	ing Meth	nod:	Direct P	ush & Sp	olit Spoo	n			ackfilled with	Cuttings
			1	1			1	Water Level (Date): 18.8' (9/10/13) through augers		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
Δ	۵	ö	ö	%	z	Ĩ	•			
17										
18										
10										
19										
20										
		S-6	00.00	07	67		101	Very dense, Gray, Silty fine to coarse SAND and medium to coarse GRAVEL, moist		
21		5-0	20-22	67	57	-	25.7 81.1	petroleum/chemical odor		
							01.1			
22										
23										
24										
25										
							13	wet		
26		S-7	25-27	65	44	-	42.2 121	Dense		
							121			
27								End of Boring @ 27.0'		
28										
29										
30										
31										
32										
								d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.		
								is may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		l
			able or Not) readings			by moist	ıre			Test Boring MW-A
1563 L'	YELL AV	/ENUE	ORK 146			,				420 LEXINGTON AVENUE, SUITE 300
(585) 4	ESTER, 154-021(585) 454	0	UKK 14t	00				www.dayenvironmental.com		NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

da	y									E	ENVIRONMENTAL CONSULTANTS
	_	ONMEN	NTAL, IN	NC.						AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	4884S-1 202 Fra		eet						Test Boring MW-B
	.,		Olean, N					Ground Elevation: NA	Datum: NA		Page 1 of 2
DAY F	Represer	ntative:	Z. Tenni					Date Started: 6/11/2014	Date Ended: 6/12/2	2014	
Drilling	g Contra	ctor:	Nothnag	gle Drillin	g			Borehole Depth: 27.5'	Borehole Diameter: 8 inch	ies	
Sampl	ing Meth	nod:	Auger &	Split Sp	oon			Completion Method: Well Installe Water Level (Date): NA	Backfilled with Grout	Backfilled with	n Cuttings
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample De	scription		Notes
							0.0	TOPSOIL, ROOTS			
1								Broken Concrete			
							0.0				
	NA	S-1	0-4	32	NA			Frequent Bricks			
2							0.0				
3							0.0				
							0.0				
4											
							0.0				
5											
							0.0				
	NA	S-2	4-8	38	NA			Gray, Gravel, some Ash, moist (FILL)			
6							0.0				
								Brown, Silty fine to coarse SAND, trace round	lad Graval maint		
7							0.0	blown, Silly line to coarse SAND, trace found	ieu Gravei, moist		
8							0.0				
							0.0	Brown, SAND and fine to medium GRAVEL, t	race Silt, moist		
9											
							0.0				
10	NA	S-3	8-12	50	NA						
							0.0				
11											
							0.0				
12			1	1	1		0.0				
								frequent Cabbles during assessment			
13							0.0	frequent Cobbles during augering			
	NA	S-4	12-16	40	NA		2.0				
14	11/24	0-4	12-10	40	INA			trace Clay			
							0.0				
15											
							0.0	wet			
16											
Notes:								ed. Fluctuations of groundwater levels may occur due ns may be gradual.	to seasonal factors and other conditions		
								ns may be gradual. in the headspace above the sample using a MiniRae	2000 equipped with a 10.6 eV lamp.		
			able or No								Test Boring MW-B
) readings	may be ir	nfluenced	l by moistu	ıre				
	YELL AV		ORK 14	606							420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585)	454-021	0									(212) 986-8645
FAX (585) 454	-0825						www.davenvironmental.com			FAX (212) 986-8657

da	y									E	ENVIRONMENTAL CONSULTANTS
DAY I	ENVIRO	ONMEN	ITAL, IN	C.						AN AFFIL	ATE OF DAY ENGINEERING, P.C.
	t Addres		4884S-1 202 Frar Olean, N	iklin Stre lew York				Ground Elevation: NA	Datum: <u>NA</u>		Test Boring MW-B Page 2 of 2
	epresen Contrac		Z. Tenni Nothnag		a			Date Started: 6/11/2014 Borehole Depth: 28.0'	Date Ended: <u>6/12/20</u> Borehole Diameter: 8 inche		-
-	ing Meth		Auger &					Completion Method: Well Installed	Backfilled with Grout	Backfilled with	Cuttings
						î		Water Level (Date): NA			
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Desc	ription		Notes
							0.0				
17 18	NA	S-5	16-20	52	NA		0.0				
							0.0				
19							0.0	fine to coarse SAND and fine to medium GRA	/EL		
20											
							0.0				
21							0.0				
22	NA	S-6	20-24	45	NA						
										Petroleum C	ldor
23							916	Gray, wet		Felioleum	
24											
25											\checkmark
26	NA	S-7	24-28	50	NA			Gray, sub-angular GRAVEL, some Sand, wet		Faint Petrole	eum Odor
27											\checkmark
28								Bottom of Test Boring (<u>ወ</u> 27.5'		
29											
29											
30											
31											
32											
	2) Stratifi	ication lin	es represe	ent approx	kimate bo	oundaries.	Transitio	d. Fluctuations of groundwater levels may occur due to ns may be gradual.			
			re referend ble or Not			standard n	neasured	in the headspace above the sample using a MiniRae 200	00 equipped with a 10.6 eV lamp.		Test Boring MW-B
1563 L'	YELL AV	/ENUE	readings		fluenced	by moist	ire				420 LEXINGTON AVENUE, SUITE 300
(585) 4	ESTER, 154-0210 185) 454	C	ORK 146	606				www.dayenvironmental.com			NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

d a	y								ENVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONME	NTAL, IN	IC.					AN AFFILIATE OF DAY ENGINEERING, P.C.
Projec Projec	t#: tAddres	ss:	4884S-1 202 Fra		eet				Test Boring MW-C
			Olean, N		(Ground Elevation: NA Datum: NA	Page 1 of 2
	epreser		Z. Tenni					Date Started: 6/11/2014 Date Ended: 6/12/2014	
	Contra ng Meth		Nothnag Auger &					Borehole Depth: 24.0' Borehole Diameter: 8 inches Completion Method: ■ Well Installed □Backfilled with Grout □ Backfilled	kfilled with Cuttings
oumpi	ng meu	iou.	/luger a	opin op	0011	<u> </u>		Water Level (Date): NA	
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description	Notes
							0.0	Topsoil, Roots Black, fine to medium Sand, intermixed with Brick, Wood fragments (railroad ties?), moist (FILL)	
1							0.0		
	NA	S-1	0-4	75	NA			Black Cinders and fine to coarse Sand, moist (FILL)	
2							0.0	Brown Silty fine to medium SAND, wet	
3							0.0		
4									
							0.0		
5							0.0		
	NA	S-2	4-8	40	NA		0.0		
6	INA.	3-2	4-0	40	11/4		0.0		
							0.0		
7							0.0		
							0.0		
8							0.0		
9									
9							0.0		
	NA	S-3	8-12	35	NA				
10							0.0	Tan, Light Brown, Sandy CLAY, trace Gravel, trace Silt, wet	
11									
							0.0		
12									
							0.0		
13									
							0.0	Brown, SAND and GRAVEL, trace Silt, wet	
14	NA	S-4	12-16	40	NA				
							0.0		
15									
							0.0		
16									
Notes:	1) Water	r levels 14	ere made	at the tim	es and ur	ider conditio	ns state	ed. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	
	2) Stratif	fication li	nes repres	ent appro	ximate bo	undaries. T	ransitio	ns may be gradual.	
			are referen able or No			tandard me	asured	in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	Test Boring MW-C
						by moisture			
	YELL AV ESTER		YORK 14	606					420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585)	54-021	0							(212) 986-8645
+AX (85) 454	-0825						www.dayenvironmental.com	FAX (212) 986-8657

da	y									E	ENVIRONMENTAL CONSULTANTS
	_	ONMEN	NTAL, IN	IC.						AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	4884S-1 202 Frar		eet						Test Boring MW-C
	epreser		Olean, N Z. Tenni	lew York				Ground Elevation: NA Date Started: 6/11/2014	Datum: NA Date Ended: 6/12/20	014	Page 2 of 2
Drilling	Contra	ctor:	Nothnag	le Drillin				Borehole Depth: 24.0'	Borehole Diameter: 8 inche	es	-
Sampl	ing Meth	iod:	Auger &	Macroc	ore			Completion Method: Well Installed Water Level (Date): NA	Backfilled with Grout	Backfilled with	Cuttings
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Desc	ription		Notes
				0.		-	0.0				
17 18	NA	S-5	16-20	38	NA		0.0				
19 20 -							0.0	rust staining			
21	NA	6.6	20.04	40			0.0	Brown, fine to medium SAND, trace rounded Gr			
22 23	NA	S-6	20-24	40	NA		0.0	Gray/Brown, SAND and angular GRAVEL, trace	Silt, wet		
24							0.0				
								Bottom of Test Boring	@ 24.0'		
25 26											
27											
28											
29											
30											
31											
32											
	2) Stratif	ication lir	ies represe	ent appro	ximate bo	undaries.	Transitio	rd. Fluctuations of groundwater levels may occur due to ns may be gradual. in the headspace above the sample using a MiniRae 20			
			able or Not) readings			by moistu	ıre				Test Boring MW-C
1563 L ROCH (585) 4	YELL A	/ENUE , NEW Y 0	ORK 146					www.dayenvironmental.com			420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

day AY ENVIR	ONME	NTAL. IN	IC.						AN AFF	ENVIRONMENTAL CONSULTANT
roject #:		4884S-1 202 Frai	3	eet						Test Boring MW-D
AY Represe rilling Contra ampling Met	entative: actor:	Olean, N	lew Yorl es Ile Drillin	g				Datum: <u>NA</u> e Ended: <u>6/1</u> Diameter: <u>8 ir</u> with Grout	11/2014	Page 1 of 2
Uepth (ft) Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description			Notes
2 3 4 2	S-1	0-2	58	7		0.0	Topsoil and Roots Gray/Brown, Sand, little Gravel, Asphalt (FILL)			
2 2 3 2 4	S-2	2-4	25	3		0.0				
4 1 5 1 6 1	S-3	4-6	10	2		0.0	little Glass, crushed red Brick			
W.O.H W.O.H W.O.H W.O.H	S-4	6-8	25	0		0.0	Very soft, Brown, Clayey SAND, trace Gravel, little Organic mate	rial, moist		
9 W.O.H 9 1 9		8-10	43	1		0.0	little fine to medium Gravel			
4 11 4 12	S-6	10-12	40	8		0.0	Loose, Brown, SAND, little fine to medium Gravel, trace Silt, mois	st		
7 9 13 12 12	S-7	12-14	53	21		0.0	Medium Dense, Gray/Brown, SAND and fine to coarse GRAVEL.	, trace Silt, mc	Dist	
14 5 7 15 7 7	S-8	14-16	55	14		0.0	Gray/Black			
							Brown d. Fluctuations of groundwater levels may occur due to seasonal factors and	nd other conditio	ons.	
3) PID r 4) NA = 5) Head	readings a Not Avail Ispace PII	are referen able or Not D readings	ced to a b Applicab	enzene s le	standard n	neasured	is may be gradual. n the headspace above the sample using a MiniRae 2000 equipped with a	10.6 eV lamp.		Test Boring MW-D
63 LYELL A OCHESTER 35) 454-021 X (585) 454	R, NEW ' 10		606				www.dayenvironmental.com			420 LEXINGTON AVENUE, SUITE NEW YORK, NEW YORK 10 (212) 986-80 FAX (212) 986-80

da	Ŋ											ENVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONMEN	NTAL, IN	IC.				1			AN	N AFFILIATE OF DAY ENGINEERING, P.C
Projec Projec	t #: t Addres	ss:	4884S-1 202 Frai		eet							Test Boring MW-D
			Olean, N		(Ground Elevation: NA		Datum:		Page 2 of 2
	tepreser Contra		Z. Tenni Nothnag		a			Date Started: 6/11/2014 Borehole Depth: 26.0'		Date Ended: Borehole Diameter:		
-	ing Meth		Auger &						I Installed	Backfilled with Grout		filled with Cuttings
								Water Level (Date): NA				-
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sa	mple Descri	ption		Notes
	12						0.0	Medium Dense, Brown, medium to co	arse SAND,	little Gravel, trace Silt, we	et	
17	13 12	S-9	16-18	33	25		0.0	Medium Dense, Brown, medium to co	oarse SAND	and GRAVEL, trace Silt, v	vet	
18	12											
	12						0.0					
19	14	S-10	18-20	70	30							
	16						0.0					
20	13 6						0.0	medium to coarse SAND and medi	um to coarse	GRAVEL, trace Clay		
	6	S-11	20-22	20	16		0.0					
21	10						0.0	no Clay, wet				
	13							no Glay, wet				
22	8						0.0					
23	13	S-12	22-24	30	30							
25	17						0.0					
24	20											
	16						0.0					
25	21	S-13	24-26	95	34			dense				
	14						0.0					
26	10							Bottom of T	est Boring @	26.0'		
27												
28												
29												
30												
31												
32												
Notes:								ed. Fluctuations of groundwater levels may	occur due to s	easonal factors and other con	ditions.	
								ns may be gradual. in the headspace above the sample using a	MiniRae 2000	equipped with a 10.6 eV lam	p.	
			able or Not) readings			hy moiet	ire					Test Boring MW-D
1563 L	YELL A	VENUE				J moiall						420 LEXINGTON AVENUE, SUITE 30
(585) 4	ESTER 154-021 585) 454	0	ORK 140	000				www.dayenvironmental.c	om			NEW YORK, NEW YORK 1017 (212) 986-864: FAX (212) 986-865

da	y								EN	VIRONMENTAL CONSULTANTS
DAY	ENVIR	ONMEN	NTAL, IN	IC.					AN AFFILIA	TE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	ss:	4884S-1 202 Fra		eet				-	Test Boring MW-E
			Olean, N	New York	k			Ground Elevation: NA Datum: NA		Page 1 of 2
	lepreser		Z. Tenni					Date Started: 6/12/2014 Date Ended: 6/12/2014		
-	Contra		Nothnag				•	Borehole Depth: 28.0' Borehole Diameter: 8 inches		
Sampi	ing Meth	10a:	Auger &	Macroc	ore		•	Completion Method: Well Installed Backfilled with Grout Backfilled with Grout Water Level (Date): NA	ackfilled with C	uttings
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
							0.0	Topsoil, Organic Material		
								Broken Asphalt and Concrete, little Sand, little Gravel (FILL)		
1							0.0			
	NA	S-1	0-4	42	NA					
2							0.0	Black, medium to coarse Sand, little Gravel, broken Asphalt, trace red Bricks and Concrete, moist (FILL)		
3							0.0	frequent broken red Bricks		
4										
							0.0	Brown, Clayey Sand intermixed with Ash, broken Bricks, moist (FILL)		
5										
							0.0	Brown, Clayey SAND, trace Gravel, moist		
6	NA	S-2	4-8	59	NA					
_							0.0	Brown, SAND, some Gravel, trace Silt, moist		
7							0.0	fine to medium SAND, little Gravel		
8										
							0.0			
9	NA	S-3	8-10	60	NA					
9							0.0	some Gravel		
10							0.0	Brown, coarse SAND and angular GRAVEL, trace Silt, moist		
11										
							0.0			
	NA	S-4	10-14	55	NA					
12							0.0			
13							0.0			
14							0.0			
15	NA	S-5	14-18	42	NA		0.0			
	11/1	0-0	10-10	72	11/4		0.0			
16							0.0			
Notes:								d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.		
								ns may be gradual. in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	г	
			able or No					,,,,,, g a man do 2000 oqupped min a 10.0 ov hamp.	-	Test Boring MW-E
) readings	may be ir	nfluenced	l by moist	ure			
	YELL AV		ORK 14	606						420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585) 4	454-021	0								(212) 986-8645
FAX (5	585) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657

da	Ŋ								ENVIRONMENTAL CONSULTANTS
DAY	ENVIRO	ONMEN	ITAL, IN	IC.				AN AFF	LIATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	is:	4884S-1 202 Frar	nklin Stre					Test Boring MW-E
DAY F	epreser		Olean, N Z. Tenni		(Ground Elevation: NA Datum: NA Date Started: 6/12/2014 Date Ended: 6/12/2014	Page 2 of 2
-	Contrac		Nothnag					Borehole Depth: 28.0' Borehole Diameter: 8 inches	
Sampi	ing Meth	100:	Auger &	Macroc	bre			Completion Method: Well Installed Backfilled with Grout Backfilled with Grout Water Level (Date): NA	in Cuttings
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description	Notes
			.,				0.0	Brown, coarse SAND and angular GRAVEL, trace Silt, moist	
17	NA	S-6	14-18				0.0		
18							0.0	Brown, fine to medium SAND, some Gravel, little Silt, wet	
19	NA	S-7	18-20	25	NA				
							0.0	Brown, fine to medium SAND and angular GRAVEL, trace Silt, wet	
20							0.0		
21									
							0.0	fine to medium SAND, some Gravel	
22	NA	S-8	20-24	78	NA		0.0	modium to operate SAND and sub-rounded CDAV/CL	
								medium to coarse SAND and sub-rounded GRAVEL	
23							0.0		
24							0.0	Brown-Gray, coarse SAND, little Gravel, trace Silt, wet	
25							0.0	Gray, SAND and angular GRAVEL, wet	
26	NA	S-9	24-28	52	NA		0.0		
27							0.0		
28									
								Bottom of Test Boring @ 28.0'	
29									
30									
31									
32									
Notes:								d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.	
	3) PID re 4) NA = N	eadings a Not Availa	re referend Ible or Not	ced to a b Applicab	enzene s le	tandard n	neasured	in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.	Test Boring MW-E
1563 L	YELL A\	/ENUE	readings		tluenced	by moistu	ire		420 LEXINGTON AVENUE, SUITE 300
(585) 4	ESTER, 154-021(585) 454	C	ORK 146	000				www.dayenvironmental.com	NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

da	Ŋ									E	ENVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONMEN	NTAL, IN	IC.						AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	4884S-1 202 Frai	nklin Stre							Test Boring MW-F
	lepreser	ntativo:	Olean, N Z. Tenni		(Ground Elevation: NA Date Started: 6/12/2014	Datum: NA Date Ended: 6/12/	/2014	Page 1 of 2
	Contra		Nothnag		g			Borehole Depth: 28'	Borehole Diameter: 8 incl		_
	ing Meth		Auger &					Completion Method: Well Installed Water Level (Date): NA	Backfilled with Grout	Backfilled with	Cuttings
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Descr	iption		Notes
								Asphalt			
1 2	NA	S-1	0-4	24	NA		0.0	Black, fine to coarse Sand with Brick, Concrete, S	Slag/Coal, moist (FILL)	No Secolo	Drive for more in still one it
3							0.0			No Sample -	Brick fragments in drill spoil
5							0.0	Sandy CLAY, little Gravel, moist			
6	NA	S-2	4-8	40	NA		0.0	Brown, SAND and GRAVEL, little Clay, little Silt,	moist		
7							0.0				
8							0.0	no Clay			
9	NA	S-3	8-12	40	NA		0.0				
							0.0				
11 12							0.0	Yellow/Brown, fine to medium SAND, some angu	lar Gravel, trace Silt, moist		
13							0.0	Brown, SAND and GRAVEL, trace Silt, moist			
14	NA	S-4	12-16	45	NA		0.0				
15							0.0	Yellow/Brown, SAND and angular Gravel			
16											
	2) Stratif 3) PID re	ication lir eadings a	nes represe re referen	ent appro: ced to a b	ximate bo oenzene s	oundaries.	Transitio	ed. Fluctuations of groundwater levels may occur due to s ns may be gradual. in the headspace above the sample using a MiniRae 200		s.	Test Boring MW-F
			able or Not) readings			l by moistu	ıre				Test During WIW-F
	YELL A		ORK 14	306							420 LEXINGTON AVENUE, SUITE 300
(585)	154-021 1553) 454	0	UNA 140	500				www.dayenvironmental.com			NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

da	Ŋ								E	NVIRONMENTAL CONSULTANTS
DAY	ENVIR	ONMEN	ITAL, IN	IC.					AN AFFILI	ATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	ss:	4884S-1 202 Frar Olean, N	nklin Stre				Ground Elevation: NA Datum: NA		Test Boring MW-F
DAY F	lepreser	ntative:	Z. Tenni		`			Date Started: 6/12/2014 Date Ended: 6/12/2014		1 age 2 01 2
-	Contra		Nothnag					Borehole Depth: 28' Borehole Diameter: 8 inches	1.50	0.11
Sampi	ing Meth	100:	Auger &	Macroco	ore			Completion Method: Well Installed Backfilled with Grout Backfilled with Grout Water Level (Date): NA	ckfilled with	Cutungs
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
							0.0	Yellow/Brown, SAND and GRAVEL, trace Silt, moist		
17	NA	S-5	16-20	2.4	NA		0.0			
18		00	10 20	2			0.0	Sandy CLAY		
								Brown, fine to medium GRAVEL, some fine to coarse Sand, moist		
19							0.0	wet		
20							0.0	medium subrounded GRAVEL, some fine to coarse Sand		
21										
	NA	S-6	20-24	2.6	NA		0.0			
22	NA.	0-0	20-24	2.0	NA.		0.0			
23							0.0			
24							0.0	fine to medium angular GRAVEL		
25										
							0.0			
26	NA	S-8	24-28	NA	NA		0.0			
27							0.0	Gray/Brown, SAND and fine to coarse GRAVEL, trace Silt, wet		
28								Bottom of Test Boring @ 28.0'		
29										
30										
31										
32										
Notes:								A. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.		
			re referen ible or Not			tandard n	neasured	in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		Test Boring MW-F
	5) Heads	pace PIC	readings			by moistu	ıre			
ROCH		NEW Y	ORK 146	606						420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 000 0045
	454-0210 585) 454							www.dayenvironmental.com		(212) 986-8645 FAX (212) 986-8657

da	y								ENV	IRONMENTAL CONSULTANTS
	-	ONME	NTAL, IN	IC.					AN AFFILIAT	E OF DAY ENGINEERING, P.C.
Projec Projec	:t #: :t Addres	ss:	4884S-1 202 Frai		eet				т	est Boring MW-G
			Olean, N		K			Ground Elevation: NA Datum: NA		Page 1 of 2
	Represer		Z. Tenni		_			Date Started: 6/13/2014 Date Ended: 6/13/2014		
	g Contra ling Meth		Nothnag Auger &					Borehole Depth: 28.0' Borehole Diameter: 8 inches Completion Method: ■ Well Installed ☐ Backfilled with Grout	Backfilled with Cu	ttings
oump	g mou	iou.	<u>/ lugor u</u>	maoree	0.0			Water Level (Date): NA		ango (
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
							0.0	Asphalt and Sub-base		
								Brown, Sand and Gravel, moist (FILL)		
1							0.0			
	NA	S-1	0-4	55	NA			Black, Sand, some Gravel, Cinders, moist (FILL)		
2							0.0	Brown, Sandy CLAY, little Gravel, moist		
								Brown, Sandy CLAT, little Gravel, moist		
3							0.0			
							0.0			
4							0.0		_	
							0.0	Brown, fine to medium SAND, little Gravel, moist		
5									_	
							0.0	Dark Brown, SAND and GRAVEL, trace Silt, moist		
6	NA	S-2	4-8	22	NA					
							0.0			
7										
,							0.0			
8							0.0			
9							0.0			
	NA	S-3	8-12	49	NA			some fractured Cobbles		
10							0.0			
11							0.0			
12							0.0			
							0.0	Tan-Brown		
13							0.0			
				<i>a</i> -			0.0			
14	NA	S-4	12-16	62	NA					
							0.0			
15										
							0.0			
16										
Notes:								ed. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.		
								in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		
			able or Not						Т	est Boring MW-G
	5) Heads) readings	may be ir	nfluenced	by moistu	re		A'	20 LEXINGTON AVENUE, SUITE 300
ROCH	IESTER	NEW 1	ORK 14	606					42	NEW YORK, NEW YORK 10170
	454-021 585) 454							www.dayenvironmental.com		(212) 986-8645 FAX (212) 986-8657
		0020								

da	y									E	NVIRONMENTAL CONSULTANTS
DAY E	ENVIRO	ONMEN	ITAL, IN	IC.						AN AFFIL	ATE OF DAY ENGINEERING, P.C.
Project Project	:#: Addres		4884S-1 202 Frar	nklin Stre							Test Boring MW-G
DAY R	epreser	ntative:	Olean, N Z. Tennie					Ground Elevation: NA Date Started: 6/13/2014	Datum: NA Date Ended: 6/13/2	2014	Page 1 of 2
	Contrac		Nothnag		g			Borehole Depth: 28.0'	Borehole Diameter: 8 inch		-
Sampli	ng Meth	iod:	Auger &	Macroco	ore			Completion Method: Well Installed Water Level (Date): NA	Backfilled with Grout	Backfilled with	Cuttings
	0.5 ft.	umber	epth (ft)	۲.	r RQD%	Headspace PID (ppm)	(udd) Bu	Sample Desc	ription		Notes
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspac	PID Reading (ppm)				
							0.0	Gray/Brown, SAND and Gravel, little Silt, moist			
17		0.5	40.00	10			0.0				
18	NA	S-5	16-20	46	NA		0.0				
19							0.0	wet			
20											
21							139	Gray, SAND and GRAVEL, trace Silt, wet		Strong Petro	leum Odor
22	NA	S-6	20-24	55	NA		305				
23							222				
24						313	419				
25							1385	medium to coarse SAND, some Gravel			
26	NA	S-7	24-28	44	NA		538	coarse SAND and GRAVEL			
27							618				
28											\downarrow
29								Bottom of Test Boring (මු 28.0'		
30											
31											
32	1) W/otc	lavela	are mode	at the tire	e and	der cond	tions state	d. Eluctuations of aroundwater levels may operative to	seesenal factors and other see differ-	<u>, </u>	
	2) Stratif	ication lin	es represe	ent approx	kimate bo	undaries.	Transitio	ed. Fluctuations of groundwater levels may occur due to ns may be gradual. in the headspace above the sample using a MiniRae 200			
			ible or Not readings i			by moistu	ıre				Test Boring MW-G
1563 L`	/ELL A\	/ENUE	ORK 146								420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585) 4	54-0210 85) 454	C						www.dayenvironmental.com			(212) 986-8645 FAX (212) 986-8657

MONITORING WELL INSTALLATION DIAGRAMS

day			ENVIRONMENTAL CONSULTANTS
DAY ENVIRONME	NTAL, INC.		AFFILIATE OF DAY ENGINEERING, P.C.
		MONITORING WELL CONSTRUCTION DIAGRAM	
Project #: 4884 Project Address: 211	4S-13 Franklin Street	-	MONITORING WELL MW-A
	an, New York Z. Tennies Applus	Ground Elevation: <u>1428.04'</u> Datur Date Started: <u>9/10/2013</u> Date Ender	
Refer to Test Boring Log TB-01 for Soil Description		Flush Mount Top of Casing 0.34 ft. below ground surface 4.0 Depth to Bottom of Bentonite Surface Patch (ft) Backfill Type Soil 13.9 Depth to Top of Bentonite Seal (ft) 14.9 Depth to Bottom of Bentonite Seal (ft) 15.9 Depth to Top of Well Screen (ft) 4.0 Diameter of Borehole (in) Backfill Type Sand 1.0 Inside Diameter of Well (in) Type of Pipe PVC Screen slot size 10 Slot 25.9 Depth to Bottom of Well Screen (ft) 27.0 Depth to Bottom of Borehole (ft)	
	re made at the times and u able or Not Applicable	nder conditions stated. Fluctuations of groundwater levels may occur due to seas	ional factors and other conditions.
			MONITORING WELL MW-A

420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

٦

Project Address: 202 Franklin Street Olean, NY Ground Elevation: 1427.72' Datum: NAVD83 OAY Representative: Z. Tennies Date Started: 6/12/2014 Date Ended: 6/12/2014	Troject Address: 202 Franklin Street Olean, NY Ground Elevation: 1427.72' Datum: NAVD83 Date Started: 6/12/2014 Date Ended: 6/12/2014 AY Representative: Z. Tennies Date Started: 6/12/2014 Date Ended: 6/12/2014 Villing Contractor: Nothnagle -2.23_Height of Stickup (ft) -2.23_Height of Stickup (ft) -2.23_Height of Stickup (ft)			MONITORING WELL CONSTR	UCTION DIAGRAM	
Olean, NY Ground Elevation: 1427.72' Datum: NAVD83 DAY Representative: Z. Tennies Date Started: 6/12/2014 Date Ended: 6/12/2014 Date Started: 0/12/2014 Date Ended: 6/12/2014 Date Ended: 6/12/2014 Image: Started: 0 0 Cound Surface 1.5 Depth to Bottom of Cement Surface Patch (ft) 12.5 Depth to Bottom of Bentonite Seal (ft) 15.5 Depth to Top of Bentonite Seal (ft) 17.5 Depth to Top of Well Screen (ft) 2.0 Diameter of Borehole (in) Backfill Type Sand - Silicone Quartz 8.0 Inside Diameter of Well (in) Type of Pipe PVC Screen slot size 10 Slot 27.5 Depth to Bottom of Well Screen (ft) 27.5 Depth to Bottom of Well Screen (ft)	Olean, NY Ground Elevation: 1427.72' Datum: NAVD83 DAY Representative: Z. Tennies Date Started: 6/12/2014 Date Ended: 6/12/2014 Date Started: Motinagle -2.23 Height of Stickup (ft)					MONITORING WELL MW-B
Ground Surface 1.5 Depth to Bottom of Cement Surface Patch (ft) Backfill Type 12.5 Depth to Top of Bentonite Seal (ft) 15.5 Depth to Top of Well Screen (ft) 2.0 Diameter of Borehole (in) Backfill Type Sand - Silicone Quartz 8.0 Inside Diameter of Well (in) Type of Pipe PVC Screen slot size 10 Slot 27.5 Depth to Bottom of Well Screen (ft)	University of Pipe	Olean, DAY Representative:	NY Z. Tennies			
		Refer to Test Boring Log MW-B for Soil Description		Ground Surface <u>1.5</u> Depth to Bottom of Cement 3 Backfill Type <u>12.5</u> Depth to Top of Bentonite So <u>15.5</u> Depth to Top of Well Screen <u>2.0</u> Diameter of Borehole (in) Backfill Type <u>Sand - Silicone</u> <u>8.0</u> Inside Diameter of Well (in) Type of Pipe <u>PVC</u> Screen slot size <u>10 Slot</u>	eal (ft) e Seal (ft) (ft) Quartz en (ft)	

420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

MONITORING WELL CONSTRUCTION DIAGRAM Project #: 48845-13 202 Franklin Street Olean, NY Ground Elevation: 1426.69' Datum: NAVD83 6/12/2014 DAY Representative: Z. Tennies Dilling Contractor: Nothnagle Date Started: 6/11/2014 Date Ended: 6/12/2014 Output: Day Representative: Z. Tennies Nothnagle Date Started: 6/11/2014 Date Ended: 6/12/2014 Output: Date Started: 6/11/2014 Date Ended: 6/12/2014 Output: Date Started: 6/11/2014 Date Ended: 6/12/2014 Output: Date Started: 0 Date Ended: 6/12/2014 Output: Date Started: 6/11/2014 Date Ended: 6/12/2014 Output: Date Started: 0 Date Ended: 6/12/2014 Output: Date Started: 0 Date Ended: 6/12/2014 Output: Date Started: 0 Date Started: 0 0 Output: Date Started: 0 Date Ended: 0 0 Output: Date Started: 0 Date Started: 0	MONITORING WELL MW-C Datum: NAVD83 Date Ended: 6/12/2014
202 Franklin Street Olean, NY Ground Elevation: 1426.69' Datum: NAVD83 OAY Representative: Z. Tennies Date Started: 6/11/2014 Date Ended: 6/12/2014 Orilling Contractor: Nothnagle	Datum: <u>NAVD83</u> Date Ended: <u>6/12/2014</u> e Patch (ft) (ft)
DAY Representative: Z. Tennies Date Started: <u>6/11/2014</u> Date Ended: <u>6/12/2014</u> Date Started: <u>6/11/2014</u> Date Ended: <u>6/12/2014</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u>	Date Ended: <u>6/12/2014</u>
Ground Surface <u>1.5</u> Depth to Bottom of Cement Surface Patch (ft) Backfill Type Bentonite	(ft)
Type of Pipe PVC Screen slot size 10 Slot 22.0 Depth to Bottom of Well Screen (ft) 24.0 Depth to Bottom of Borehole (ft)	

420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

	MONITORING WELL CONSTRUCTION DIAGRAM	
oject #: <u>4884S-13</u> oject Address: 202 Franklin Stre	st	MONITORING WELL MW-D
Olean, NY Y Representative: Z. Tennies Iling Contractor: Nothnagle	Ground Elevation: 1426.12' Datum:	NAVD83 6/11/2014
Refer to Test Boring Log MW-D for Soil Description		

420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

		ENVIRONMENTAL CONSULTANTS
DAY ENVIRONMENTAL, INC.	MONITORING WELL CONSTRUCTION DIAGRAM	LIATE OF DAY ENGINEERING, P.C.
Project #: <u>4884S-13</u> Project Address: 202 Franklin Street		MONITORING WELL MW-E
Olean, NY DAY Representative: Z. Tennies Drilling Contractor: Nothnagle	Ground Elevation: 1427.81' Datum: Date Started: 6/12/2014 Date Ended:	NAVD83 6/12/2014
Refer to Test Boring Log MW-E for Soil Description	Flush Mount Top of Casing 0.41 ft. below ground surface 1.0 Depth to Bottom of Cement Surface Patch (ft) Backfill Type Bentonite 12.0 Depth to Top of Bentonite Seal (ft) 16.0 Depth to Bottom of Bentonite Seal (ft) 18.0 Depth to Top of Well Screen (ft) 8.0 Diameter of Borehole (in) Backfill Type Sand - Silicone Quartz 2.0 Inside Diameter of Well (in) Type of Pipe PVC Screen slot size 10 Slot 28.0 Depth to Bottom of Well Screen (ft) 28.0 Depth to Bottom of Borehole (ft)	
Notes: 1) Water levels were made at the times and u 2) NA = Not Available or Not Applicable	under conditions stated. Fluctuations of groundwater levels may occur due to seasonal fac	MONITORING WELL MW-E

420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

day Day Environmental, INC.	AN AFFI	ENVIRONMENTAL CONSULTANTS LIATE OF DAY ENGINEERING, P.C.
Project #: 4884S-13 Project Address: 202 Franklin Street		MONITORING WELL MW-F
Dean, NY DAY Representative: Z. Tennies Drilling Contractor: Nothnagle	Ground Elevation: <u>1428.92'</u> Datum: Date Started: <u>6/12/2014</u> Date Ended:	NAVD83 6/12/2014
Refer to Test Boring Log MW-F for Soil Description	Flush Mount Top of Casing 0.39 ft. below ground surface 1.0 Depth to Bottom of Cement Surface Patch (ft) Backfill Type Bentonite 13.5 Depth to Top of Bentonite Seal (ft) 15.5 Depth to Bottom of Bentonite Seal (ft) 17.5 Depth to Top of Well Screen (ft) 8.0 Diameter of Borehole (in) Backfill Type Sand - Silicone Quartz 2.0 Inside Diameter of Well (in) Type of Pipe PVC Screen slot size 10 Slot 27.5 Depth to Bottom of Well Screen (ft) 28.0 Depth to Bottom of Borehole (ft)	
Notes: 1) Water levels were made at the times and u 2) NA = Not Available or Not Applicable	nder conditions stated. Fluctuations of groundwater levels may occur due to seasonal fac	tors and other conditions. MONITORING WELL MW-F

420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

		ENVIRONMENTAL CONSULTANTS
DAY ENVIRONMENTAL, INC.	MONITORING WELL CONSTRUCTION DIAGRAM	LIATE OF DAY ENGINEERING, P.C.
Project #: <u>4884S-13</u> Project Address: 202 Franklin Street		MONITORING WELL MW-G
Olean, NY DAY Representative: Z. Tennies Drilling Contractor: Nothnagle	Ground Elevation: <u>1429.66'</u> Datum: Date Started: <u>6/13/2014</u> Date Ended:	NAVD83 6/13/2014
Refer to Test Boring Log MW-G for Soil Description	Flush Mount Top of Casing 0.40 ft. below ground surface 1.0 Depth to Bottom of Cement Surface Patch (ft) Backfill Type Bentonite 15.5 Depth to Top of Bentonite Seal (ft) 16.5 Depth to Bottom of Bentonite Seal (ft) 17.5 Depth to Top of Well Screen (ft) 8.0 Diameter of Borehole (in) Backfill Type Sand - Silicone Quartz 2.0 Inside Diameter of Well (in) Type of Pipe PVC Screen slot size 10 Slot 27.5 Depth to Bottom of Well Screen (ft) 28.0 Depth to Bottom of Borehole (ft)	
Notes: 1) Water levels were made at the times and u 2) NA = Not Available or Not Applicable	nder conditions stated. Fluctuations of groundwater levels may occur due to seasonal fac	tors and other conditions. MONITORING WELL MW-G

420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

SURFACE SOIL SAMPLE COLLECTION LOGS

202 FRANKLIN STREET OLEAN, NEW YORK NYSDEC BCP SITE NO C905043

Sample Collection Log - Surface Soil Samples June 27, 2014

Sample Designation	Sample Time	PID Headspace (ppm)	Sample Description	
SS-01	8:00	0.0	Dark brown, silty Sand and fine to medium Gravel, trace Brick Fragments, Roots, damp	
SS-02	8:20	0.0	Dark brown, silty Sand, little Gravel, Roots, damp	
SS-03	8:40	0.0	Dark brown/black, silty Sand, some Gravel, Roots, damp	
SS-04	9:05	0.0	Brown, Sand and medium-rounded Gravel, little Silt, Roots, damp	
SS-05	9:25	0.0	Black, loamy Sand, some Cinders, some Coal Fragments, Roots, damp	
SS-06	9:55	0.0	Brown, silty Sand, little Gravel, little Brick Fragments, Roots, damp	
SS-07	10:10	0.0	Brown, clayey Sand, some Gravel, Roots, damp	
SS-08	10:30	0.0	Black, Sand, some Cinders, some Slag, some Brick Fragments, little Silt, Roots, damp	
SS-09	10:40	0.0	Pea Gravel, some fine to coarse Sand, trace Silt, damp	
SS-10	10:55	0.0	Brown, silty Sand, some fine to medium Gravel, Roots, damp	
SS-11	11:10	0.0	Black, Sand, little Silt, little Gravel, little Coal Fragments, Roots, damp	

Notes:

ppm = parts per million

TEST PIT LOGS

202 Franklin Street, Olean, New York NYSDEC BCP Site No. 905043

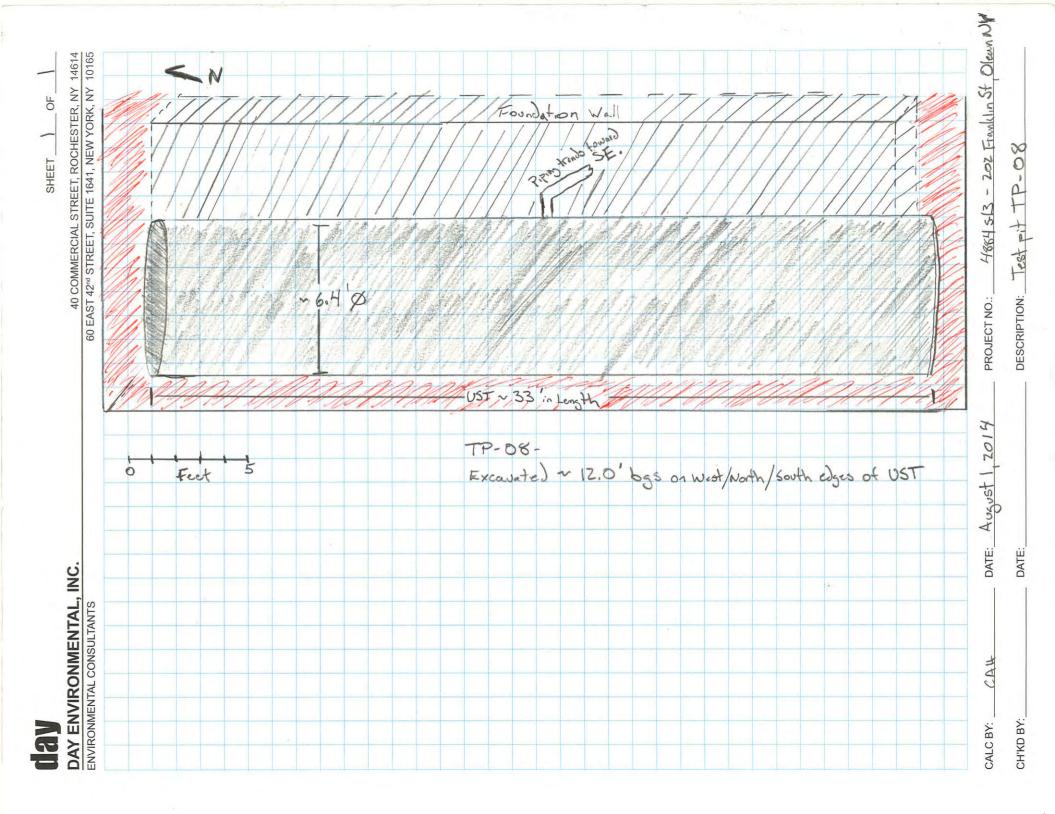
Subsurface Conditions- Test Pits TP-A through TP-J

Test Pit	Approximate Depth of	Materials Encountered	Remarks
ID	Test Pit (ft.)		including.
TP-A	6.0	0-0.3': silty Sand and Gravel [FILL] 0.3'-Bottom of Hole (BOH): Gray/Brown, silty Sand and Gravel intermixed with frequent Bricks and Concrete, occasional Scrap metal, Piping, Cinders and Ash, moist [Fill]	Sample collected @ 3 ft. [TP-A(3')] and tested for TAL metals, SVOCs (PAHs) plus TICs
TP-B	6.0	0-0.4': silty Sand, some f/m Gravel, moist [Fill] 0.4'-5.5': Dark Brown/Black, Sand, some fine to medium (f/m) Gravel intermixed with Cinders and Ash, moist [Fill] 5.5'-BOH: Brown, silty SAND, some fine Gravel, moist	Sample collected @ 1.5 ft. [TP-B (1.5')] and tested for TAL metals, PCBs, SVOCs (PAHs) plus TICs Decaying railroad ties @ 2.0 ft. Sample collected @ 5 ft. [TP-B (5')] and tested for TAL metals, SVOCs (PAHs) plus TICs
TP-C	6.0	0-0.3': silty Sand and Gravel [FILL] 0.3'-BOH (concrete floor): Gray/Brown, silty Sand and Gravel intermixed with frequent Bricks, and lesser amounts of Cinders, Concrete, Scrap Metal, Pipe, Electrical Conduit, occasional black tar-like material, moist [FILL}	Sample collected @ 4 ft. [TP-C (4')] and tested for TAL metals, PCBs, SVOCs (PAHs) plus TICs
TP-D	8.0	0-BOH: Dark Brown/Gray, silty Sand, little f/m Gravel, intermixed with frequent Brick and Concrete, occasional Scrap Metal, trace amounts of Wood/Paper, moist [FILL] wet at 8 ft.	Sample collected @ 8 ft. [TP-D(8')] and tested for SVOCs (PAHs) plus TICs
TP-E	0.5	0-0.5': silty Sand and Gravel [FILL]	Equipment refusal on concrete pad no samples collected
TP-F	11.0	0-0.3': silty Sand and Gravel [FILL] 0.3'-BOH: Gray/Brown, silty Sand, some f/m Gravel intermixed with frequent Bricks and Concrete, occasional Scrap metal and Pipe, moist [FILL]	No samples submitted for testing
TP-G	3.0	0-0.3': silty Sand and Gravel [FILL] 0.3'-3': Dark Brown/Black, silty fine Sand, intermixed with Cinders, Coal fragments, and Ash, moist	Samples collected at 2 ft. [TP-G(2') south and TP-G(2') north] and tested for TAL metals, PCBs, SVOCs (PAHs) plus TICs
ТР-Н	9.0	0-0.4': silty Sand, some f/m Gravel, moist [Fill] 0.4'-BOH: Dark Brown, silty Sand, little fine to coarse (f/c) Gravel, some Brick, occasional Scrap Metal and Concrete, moist	No samples submitted for testing
TP-I	2.5	0-0.3': silty Sand and Gravel [FILL] 0.3'-1.0: Black, Cinders, Ash and Coal fragments 1.0'-BOH: Tan/Brown, fine Sand, trace Silt, moist [FILL]	Sample collected @ 0.4 ft. [TP-I(5")] and tested for SVOCs (PAHs) plus TICs
TP-J	6.0	0-0.4': silty Sand, some f/m Gravel, moist [Fill] 0.4'-2.5': Gray/Green, fine Sand, some Silt, little Ash, Cinders and Slag, moist [FILL] 2.5'-BOH (concrete floor): Light Brown, medium to coarse (m/c) SAND, trace Silt, moist	Sample collected @ 2 ft. [TP-I (2')] and tested for TAL metals, and SVOCs (PAHs) plus TICs

	VIRONMEN	TAL. INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #: Project Ad	Idress:	4884S-13 202 Franklir	Street		TEST PIT TP-01
		Olean, New		Date: 7/30/2014	Page 1 of 1
		Z. Tennies		Test Pit Depth: 12.0'	
Contractor: Equipment			k Construction		
Equipment				n w/40	1
Depth (ft)	PID Reading (ppm)		PID Headspace (ppm)	Sample Description	Notes
				TOPSOIL and Organic Material Concrete Slab	-
1-	0		0	Black, Sand and Cinders intermixed with red bricks, metal, broken concrete, glass (FILL)	1-
2-				gray/black	2-
3-				light brown, trace clayey Silt	3-
4-				Brown, SAND and GRAVEL, trace Silty Clay, wet	-4-
5-					5-
6-					6-
7-					7-
8-	0.1		0.1	Gravel, some Sand, little Cobbles	8-
9-					9-
10-					10-
11-					11-
12-					-12-
				Bottom of Test Pit @ 12.0'	
		A. S.			
Notes:	1) Water leve	s were made a	at the times and	Uiew of TP-01 excavation s	
	2) Stratification	n lines represer	nt approximate	boundaries. Transitions may be gradual. e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lam	
	4) NA = Not A			e samas mesere in un neuespace above un sample using a mittinde 2000 equipped with a 10.0 eV lam	TEST PIT TP-01
	L AVENUE TER, NEW YO	ORK 14606			420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585) 454-	-0210			www.dovenvironmental.com	(212) 986-8645
	-0210	14000		www.dayenvironmental.com	

	VIRONMEN	TAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		4884S-13			TEST PIT TP-02
Project Ac	ldress:	202 Franklin			
DAY Repr	esentative:	Olean, New Z. Tennies	YOFK	Date: 7/30/2014 Test Pit Depth: 13.3'	Page 1 of 1
Contractor		Richard Peo	k Constructi		
Equipment	t:	Hitachi 160	LC Excavato	nr w/40"	
Depth (ft)	PID Reading (ppm)		PID Headspace (ppm)	Sample Description	Notes
	0.1			TOPSOIL and Organic Material	
1-	0.1 0.2			Gray/Black, Sand, some Gravel, intermixed with Ash, Shingles, broken/crushed red Bricks (FILL)	1-
2-	0.2		0.3	frequent layered Gray/Black Paper material with tar-like binder	2-
3-				Light Brown, SAND, some Gravel, little Clay, moist	-3-
4-	0.1				4-
5-				Brown, medium to coarse SAND and GRAVEL, trace Silt, moist	5-
6-					6-
7-					7-
8-	0.2		0.2	some Cobbles	8-
9-					9-
10-	0.1		0.1		10-
11-					11-
12-	0.1		0.1		12-
13-					13-
				Bottom of Test Pit @ 13.3'	
				and the second	
				View of TP-02, facing east	
Notes:	2) Stratificatio	n lines represer	nt approximate	d under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other con boundaries. Transitions may be gradual.	
		gs are reference vailable or Not		e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lam	p. TEST PIT TP-02
ROCHES ¹ (585) 454-	L AVENUE TER, NEW Y -0210				420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645
FAX (585)	454-0825			www.dayenvironmental.com	FAX (212) 986-8657

	VIRONMEN	ITAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		4884S-13			TEST PIT TP-03
Project Ad	ldress:	202 Franklin	Street		
5.1V 5		Olean, New	York	Date: 7/29/2014	Page 1 of 1
Contractor	esentative:	Z. Tennies Richard Pec	k Constructi	Test Pit Depth: 13.1' Depth to Water: Not encountered	
Equipment		Hitachi 160			
Depth (ft)	PID Reading (ppm)		PID Headspace (ppm)	Sample Description	Notes
				TOPSOIL	
1-	0.3		0.3	Black, Cinders/Ballast, some red Brick, Concrete, trace Metal, Ash (FILL)	1-
2-	0.1		0.3		2-
3-	0.3		0.3	Tan/Brown, Sand, some Gravel, little Clay, little cobbles(FILL)	3-
4-					4-
5-	0.1			Black, Cinders/Ballast, intermixed with pieces of Metal, Concrete and trace Crushed Brick	5-
6-	0.2		0.1	(FILL)	6-
7-				Brown, SAND, some Gravel, Cobbles trace Silt, moist	7-
8-					8-
9-					9-
10-					10-
11-					11-
12-	0.1		0.1		12-
13-					-13-
				Bottom of Test Pit @ 13.1'	
Notes:	1) Water leve	els were made a	t the times and	No Photo Available	ditions.
	2) Stratificatio	on lines represer	it approximate	boundaries. Transitions may be gradual. e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lam	
4500 11 5	4) NA = Not A	Available or Not		, <u>, , , , , , , , , , , , , , , , , , </u>	TEST PIT TP-03
ROCHEST (585) 454-	L AVENUE TER, NEW Y -0210 454-0825	ORK 14606		www.dayenvironmental.com	420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657


day Day EN	VIRONMEN	ITAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		4884S-13			TEST PIT TP-04
Project Ac	dress:	202 Franklin			
DAY Repr	esentative:	Olean, New Z. Tennies	/ York	Date: 7/30/2014 Test Pit Depth: 12.0'	Page 1 of 1
Contractor			ck Construct		
Equipment	t:	Hitachi 160	LC Excavate	or w/40"	
Depth (ft)	PID Reading (ppm)		PID Headspace (ppm)	Sample Description	Notes
	0.3			TOPSOIL and Organic Material	
				Black, Cinders/Ballast, little Gravel, Organic Material (FILL)	_
1-	0.3		0.3	Ten Oleven Oracle even Oracel little Oracen Dellect (201)	
				Tan, Clayey Sand, some Gravel, little Cinders/Ballast (FILL)	
	0.3				
2-					2-
	0.3		0.3	Tan, Clayey SAND, some Gravel, little Cobbles, moist	
3-					3-
4-					4-
4-					-
5-				Brown, coarse SAND and GRAVEL, some Cobbles, trace Clay, moist	5-
6-					6-
7-					7-
					8-
8-					0-
9-					9-
	0.2		0.2		
10-				medium to coarse SAND, some fine to coarse Gravel, some Cobbles	10-
11-					11- Caved In
				coarse SAND and GRAVEL	Caved in
12-					-12-
12-				Dett	1
				Bottom of Test Pit @ 12.0'	
	14.50 A 11	ALC: NO.		P STANDAR DE LA VIENE DE LA	
Notos:				View of TP-04, facing east	ntilon
Notes:	2) Stratification	on lines represe	nt approximate	d under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other co boundaries. Transitions may be gradual.	
	3) PID readin		ed to a benzer	ne standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lan	np. TEST PIT TP-04
	L AVENUE				420 LEXINGTON AVENUE, SUITE 300
ROCHES ¹ (585) 454-	TER, NEW Y -0210	URK 14606			NEW YORK, NEW YORK 10170 (212) 986-8645
	454-0825			www.dayenvironmental.com	FAX (212) 986-8657

	VIRONMEN	TAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		4884S-13			TEST PIT TP-05
Project Ad	ldress:	202 Franklir			
	esentative:	Olean, New Z. Tennies	York	Date: 7/29/2014 Test Pit Depth: 12.0'	Page 1 of 1
Contractor			ck Constructi		
Equipment			LC Excavato		
Depth (ft)	PID Reading (ppm)		PID Headspace (ppm)	Sample Description	Notes
	0.1		0.1	Black, Ballast/Cinders, large chunks of Metal, some rusted Wire, little Charcoal, little crushed red Brick, Paper (FILL)	
1-					1-
2-				Brown, SAND, some Gravel, little Clay, moist	2-
3-					3-
4-				Brown-Gray, SAND and GRAVEL, trace Silt, moist	4-
5-					5-
6-					6-
7-					7-
8-	0.1				8-
9-				GRAVEL, some Sand	9-
10-					10-
11-	0.1		0.2		11-
12-				Bottom of Test Pit @ 12.0'	-
				View of TP-05, facing south	T
Notes:	2) Stratificatio	n lines represer	nt approximate	d under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other con boundaries. Transitions may be gradual.	
		s are reference	ed to a benzer	e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lam	р. ТЕST PIT ТР-05
ROCHES (585) 454	L AVENUE TER, NEW Y0 0210				420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645
FAX (585)	454-0825			www.dayenvironmental.com	FAX (212) 986-8657

	VIRONMEN	TAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		4884S-13			TEST PIT TP-06
Project Ac	ldress:	202 Franklin		D-4 7/00/0044	
DAY Repr	esentative:	Olean, New Z. Tennies	YOFK	Date: 7/29/2014 Test Pit Depth: 12.2'	Page 1 of 1
Contractor			ck Constructi		
Equipment		Hitachi 160	LC Excavato	r w/40"	
Depth (ft)	PID Reading (ppm)		PID Headspace (ppm)	Sample Description	Notes
				Black, Cinders/Ballast, chunks of Concrete, red Brick, trace red Brick, crushed, little Metal Wires, trace Plastic, Paper material (FILL)	
1-			0.1		1-
2-	0.2				2-
3-	0.1			Brown, SAND, some Gravel, little Clay, moist	3-
4-					4-
5-				SAND and GRAVEL, trace Silt	5-
6-					6-
7-				some Cobbles	7-
8-	0.1		0.2		8-
9-					9-
10-					10-
11-					11-
12-	0.2		0.2		-12-
				Bottom of Test Pit @ 12.2'	
				View of TP-06, partially excav	
Notes:	2) Stratificatio	n lines represer	nt approximate	d under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other con boundaries. Transitions may be gradual.	
	3) PID reading		ed to a benzen	e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lam	р. ТЕЅТ РІТ ТР-06
	L AVENUE TER, NEW Y	ORK 14606			420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170
(585) 454 FAX (585)	-0210			www.dayenvironmental.com	(212) 986-8645 FAX (212) 986-8657

Bit Add Fire Description Description Description V Repertance interime Antice View 12, Construction interime Antice View 12, Construction interime Interime Interim Interim Interim Int		VIRONWEI	NTAL, INC.				AN AFFILIATE OF DAY ENGINEERING, P
One-to-to-to-to-to-to-to-to-to-to-to-to-to-	oject #:						TEST PIT TP-07
Type services 2 Torres Type services Type services Type services gend 100.100 (C Executor w/d' 100.100 (C Executor w/d' Notes gend 0 0 0 Notes gend 0 0 0 Notes gend 0 0 100.100 (C Executor w/d' Notes gend 0 0 0 100.100 (C Executor w/d' Notes gend 0 0 0 100.100 (C Executor w/d' Notes gend 0 0 0 100.100 (C Executor w/d' Notes gend 0 0 100.100 (C Executor w/d' 100.100 (C Executor w/d' 100.100 (C Executor w/d' gend 0 0 100.100 (C Executor w/d' 100.100 (C Executor w/d' 100.100 (C Executor w/d' 100.100 (C Executor w/d' gend 0 0 0 100.100 (C Executor w/d' 100.100 (C Executor w/d' 100.100 (C Executor w/d' 100.100 (C Executor w/d' gend 0 0 0 100.100 (C Executor w/d' 100.100 (C Executor w/d' 100.100 (C Executor w/d' 100.100 (C Executor w/d'	oject Ad	dress:			Date: 7/20/2014		Page 1 of 1
Instruction Read Plane Symplex Second read Image: Instruction Construction Image: Instruction Construction Notes Image: Instruction Construction Image: Instruction Construction Constr	AY Repr	esentative:					Page 1 01 1
Image: Provide and Provide the set of the s	ntractor:						
1 0.1	uipment	:	Hitachi 160	LC Excavat	or w/40"		
1 0.1				Ê			
1 0.1	pth (ft)) Reading (ppm)) Headspace (pp	Sample Description		Notes
1 0.1	De	IId		l	Tanggi with Organic Material tragg Cravel		
1 1 0.1 0.2 1 2 3 0.1 0.2 2 4 4 4 4 0.1 0.2 4 4 4 4 6 0.1 0.2 0.1 4 4 4 4 6 0.1 0.2 0.1 4					Topsoli, with Organic Material, trace Gravel		
1 1 0.1 0.2 1 2 3 0.1 0.2 2 4 4 4 4 0.1 0.2 4 4 4 4 6 0.1 0.2 0.1 4 4 4 4 6 0.1 0.2 0.1 4		0.1		0.1			
a 0.1 0.2 see enclosed red biols, the Grave, times Glave, Paper, Robert (HL) a a 0.1 0.2 a a b a a a a c a a a a c a a a a c a a a a c a a a a a 12.1 0.1 a a a b 12.1 0.1 a a a b 12.1 12.1 a a a a b 12.1 12.1 a a a a b 12.1 12.1 a a a a c 12.1 12.1 a a a </td <td>1-</td> <td></td> <td></td> <td></td> <td>Red/Black Sand, broken Concrete slabs and red Bricks, large Metal pieces (gua</td> <td>rd rail?).</td> <td></td>	1-				Red/Black Sand, broken Concrete slabs and red Bricks, large Metal pieces (gua	rd rail?).	
a 0.1 0.2 . . b c c c c 12.1 0.1 . . d 0.3 0.2 Corrent Flore Tabe . c c 0.3 0.2 Corrent Flore Tabe . c c c c c c c c c c . . .							
a 0.1 0.2 . . b c c c c 12.1 0.1 . . d 0.3 0.2 Corrent Flore Tabe . c c 0.3 0.2 Corrent Flore Tabe . c c c c c c c c c c . . .			1				
3 I	2-		1			2-	
3 I							
• • • • • •	_	0.1	1	0.2			
a b b 7 b b 6 c c 7 c c 6 c c 7 c c 6 c c 7 c c 6 c c	3-		1			3-	
a b b 7 b b 6 c c 7 c c 6 c c 7 c c 6 c c 7 c c 6 c c							
a b b 7 b b 6 c c 7 c c 6 c c 7 c c 6 c c 7 c c 6 c c	4-					4-	
6 - 7 - 9 12.1 0 - 12.1 0.1 14 - 15 - 16 - 16 - 17 - 18 - 12 - 14 - 15 - 12 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 12 - 14 - 15 - 16 - 17 - 18 - 19 - 10 - 11 - 12 - 12 - 13 - 14 - 15 - 16 - 17						-	
6 - 7 - 9 12.1 0 - 12.1 0.1 14 - 15 - 16 - 16 - 17 - 18 - 12 - 14 - 15 - 12 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 12 - 14 - 15 - 16 - 17 - 18 - 19 - 10 - 11 - 12 - 12 - 13 - 14 - 15 - 16 - 17							
7 12.1 0.1 7. 8 12.1 0.1 8. 9 0.3 0.2 0.2 10 0.3 0.2 0.2 11 12.1 10.1 10.1 12 10 10.1 12.1 14 10 10.1 12.1 15 12.1 12.1 12.1 16 10 12.1 12.1 17 10.1 10.1 12.1 18 1.1 12.1 12.1 19 10.1 10.1 12.1 10 10 10.1 12.1 10 10 10.1 12.1 10 10 10.1 12.1 10 10 10.1 12.1 11 12.1 12.1 12.1 12.1 10 10.1 10.1 10.1 12.1 10 10.1 10.1 10.1 12.1 11 10.1 10.1 10.1 10.1 11 10.1 <td>5-</td> <td></td> <td></td> <td></td> <td></td> <td>5-</td> <td></td>	5-					5-	
7 12.1 0.1 7. 8 12.1 0.1 8. 9 0.3 0.2 0.2 10 0.3 0.2 0.2 11 12.1 10.1 10.1 12 10 10.1 12.1 14 10 10.1 12.1 15 12.1 12.1 12.1 16 10 12.1 12.1 17 10.1 10.1 12.1 18 1.1 12.1 12.1 19 10.1 10.1 12.1 10 10 10.1 12.1 10 10 10.1 12.1 10 10 10.1 12.1 10 10 10.1 12.1 11 12.1 12.1 12.1 12.1 10 10.1 10.1 10.1 12.1 10 10.1 10.1 10.1 12.1 11 10.1 10.1 10.1 10.1 11 10.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
7 12.1 0.1 7. 8 12.1 0.1 8. 9 0.3 0.2 0.2 10 0.3 0.2 0.2 11 12.1 10.1 10.1 12 10 10.1 12.1 14 10 10.1 12.1 15 12.1 12.1 12.1 16 10 12.1 12.1 17 10.1 10.1 12.1 18 1.1 12.1 12.1 19 10.1 10.1 12.1 10 10 10.1 12.1 10 10 10.1 12.1 10 10 10.1 12.1 10 10 10.1 12.1 11 12.1 12.1 12.1 12.1 10 10.1 10.1 10.1 12.1 10 10.1 10.1 10.1 12.1 11 10.1 10.1 10.1 10.1 11 10.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
a 12.1 0.1 B b 0.1 0.1 B 10 0.3 0.2 Concrete Floor Stab D 11 12 10 10 10 12 10 10 12 12 12 10 10 12 12 12 10 10 12 12 13 10 10 12 12 14 10 10 12 12 15 12 12 12 12 14 10 10 12 12 15 12 12 12 12 16 10 10 12 12 17 12 12 12 12 12 18 13 14 14 14 14 14 14 19 10 10 10 10 10 10 10 19 10 10 10 10 10 10 10 10	6-					6-	
a 12.1 0.1 B b 0.1 0.1 B 10 0.3 0.2 Concrete Floor Stab D 11 12 10 10 10 12 10 10 12 12 12 10 10 12 12 12 10 10 12 12 13 10 10 12 12 14 10 10 12 12 15 12 12 12 12 14 10 10 12 12 15 12 12 12 12 16 10 10 12 12 17 12 12 12 12 12 18 13 14 14 14 14 14 14 19 10 10 10 10 10 10 10 19 10 10 10 10 10 10 10 10							
a 12.1 0.1 B b 0.1 0.1 B 10 0.3 0.2 Concrete Floor Stab D 11 12 10 10 10 12 10 10 12 12 12 10 10 12 12 12 10 10 12 12 13 10 10 12 12 14 10 10 12 12 15 12 12 12 12 14 10 10 12 12 15 12 12 12 12 16 10 10 12 12 17 12 12 12 12 12 18 13 14 14 14 14 14 14 19 10 10 10 10 10 10 10 19 10 10 10 10 10 10 10 10							
8- I I 9- 9- 10- 0.3 10- 10- 11- I 12- I 12- I 13- I 14- I 15- I 16- I 17- I 18- I 19- I 10- I 11- I 12- I 12- I 13- I 14- I 15- I 16- I 17- I 18- I 19- I 19- I 10- I 10- I 11- I 12- I 12- I 12- I 13- I 14- I 15- I 16- I 17- I 18- I 19- I 19- I 19- I 10- I 10- I 10- I 11- I 12- I 12- I 13- I 14- I 15- I 15- I 16- I 17- I 18- I 19- I 19- I 19- I 19- I	7-					7-	
8- I I 9- 9- 10- 0.3 10- 10- 11- I 12- I 12- I 13- I 14- I 15- I 16- I 17- I 18- I 19- I 10- I 11- I 12- I 12- I 13- I 14- I 15- I 16- I 17- I 18- I 19- I 19- I 10- I 10- I 11- I 12- I 12- I 12- I 13- I 14- I 15- I 16- I 17- I 18- I 19- I 19- I 19- I 10- I 10- I 10- I 11- I 12- I 12- I 13- I 14- I 15- I 15- I 16- I 17- I 18- I 19- I 19- I 19- I 19- I							
a 0.3 0.2 Concrete Floor Stab 0.4 10 0.3 0.2 Concrete Floor Stab 10 11 1 1.4 1.4 1.4 12 1.4 1.4 1.4 1.4 12 1.4 1.4 1.4 1.4 12 1.4 1.4 1.4 1.4 13 1.4 1.4 1.4 1.4 14 1.4 1.4 1.4 1.4 14 1.4 1.4 1.4 1.4 14 1.4 1.4 1.4 1.4 15 1.4 1.4 1.4 1.4 15 1.4 1.4 1.4 1.4 16 1.4 1.4 1.4 1.4 1.4 17 1.4 <td></td> <td>12.1</td> <td></td> <td>0.1</td> <td></td> <td></td> <td></td>		12.1		0.1			
10 0.3 0.2 Concrete Floor Slab 11 1 Equipment Refusal @ 10.4' 12 12 13 14 14 14 15 15 16 16 17 18 19 19 19 19 10 10 10 10 10 10 10 10 11 12 12 12 13 14 14 15 16 16 17 17 18 19 19 19 19 19 19 19 10 <p< td=""><td>8-</td><td></td><td></td><td></td><td></td><td>8-</td><td></td></p<>	8-					8-	
10 0.3 0.2 Concrete Floor Slab 11 1 Equipment Refusal @ 10.4' 12 12 13 14 14 14 15 15 16 16 17 18 19 19 19 19 10 10 10 10 10 10 10 10 11 12 12 12 13 14 14 15 16 16 17 17 18 19 19 19 19 19 19 19 10 <p< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></p<>							
10 0.3 0.2 Concrete Floor Slab 11 1 Equipment Refusal @ 10.4' 12 12 13 14 14 14 15 15 16 16 17 18 19 19 19 19 10 10 10 10 10 10 10 10 11 12 12 12 13 14 14 15 16 16 17 17 18 19 19 19 19 19 19 19 10 <p< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></p<>							
0.3 0.2 Concrete Floor Slab 11 I I 12 12 13 14 15 16 17 18 19 10 11 12 <td>9-</td> <td></td> <td></td> <td></td> <td></td> <td>9-</td> <td></td>	9-					9-	
0.3 0.2 Concrete Floor Slab 11 I I 12 12 13 14 15 16 17 18 19 10 11 12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
0.3 0.2 Concrete Floor Slab 11 I I 12 12 13 14 15 16 17 18 19 10 11 12 <td>10-</td> <td></td> <td></td> <td></td> <td></td> <td>10-</td> <td></td>	10-					10-	
11- 12- 12- 12- 12- 12- 13- 12- 14- 12- 15- 12- 16- 12- 17- 12- 18- 12- 19- 12- 19- 12- 19- 12- 19- 12- 19- 12- 19- 12- 10- 12- 10- 12- 10- 12- 10- 12- 10- 12- 11- 12- 11- 12- 11- 12- 10- 12- 10- 12- 10- 12- 10- 12- 10- 12- 10- 12- 10- 12- 10- 12- 10- 12- 10- 12- 10- 12- 10- 12- 10- 1		0.3	1	0.2	Concrete Eloor Slah		
11- 12- 12- 12- 12- 13- Wew of TP-07 excavation spoils, facing north 14- Wew of TP-07 excavation spoils, facing north 15- 19- 19-Water keeks were made at the times and under conditions stated. Fuctuations of groundwater keeks may occur due to seasonal factors and other conditions. 19- 19- 10- 19- 10- </td <td>ŀ</td> <td></td> <td>1</td> <td></td> <td></td> <td>————</td> <td></td>	ŀ		1			————	
12 12 12 12 13 14 14 14 15 14 16 14 17 14 18 14 19 14 19 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 12 14 12 14 13 14 14 14 14 14 14 14 15 14 14 14 15 14 15 14 14 14	11-		1		Equipment Relusal @ 10.4	11-	
Wiew of TP-07 excavation spoils, facing north Wiew of TP-07 excavation spoils, facing north Wiew of TP-07 excavation spoils, facing north It was a specific to the state of the three and under conditions taket. Fuctuations of yourdwater levels may occur due to seasonal factors and other conditions. It was a specific to the state of the three			1				
Wiew of TP-07 excavation spoils, facing north Wiew of TP-07 excavation spoils, facing north Wiew of TP-07 excavation spoils, facing north It was a specific to the state of the three and under conditions taket. Fuctuations of yourdwater levels may occur due to seasonal factors and other conditions. It was a specific to the state of the three			1				
Image: Statification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a berzene standard measured in the headspace above the sample using a MinRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST PIT TP-07 33 LYELL AVENUE 20 CHESTER, NEW YORK 14606	12-		1			12-	
Image: Statification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a berzene standard measured in the headspace above the sample using a MinRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST PIT TP-07 33 LYELL AVENUE 20 CHESTER, NEW YORK 14606			1				
Image: Statification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a berzene standard measured in the headspace above the sample using a MinRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST PIT TP-07 33 LYELL AVENUE 20 CHESTER, NEW YORK 14606	Ţ		1				
Image: Statification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a berzene standard measured in the headspace above the sample using a MinRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST PIT TP-07 33 LYELL AVENUE 20 CHESTER, NEW YORK 14606		1	1		and the second sec	1	
Image: Statification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a berzene standard measured in the headspace above the sample using a MinRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST PIT TP-07 33 LYELL AVENUE 20 CHESTER, NEW YORK 14606		C.A.	1000	- Color	and the second		
Image: Statification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a berzene standard measured in the headspace above the sample using a MinRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST PIT TP-07 33 LYELL AVENUE 20 CHESTER, NEW YORK 14606			the state	and and			
Image: Statification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a berzene standard measured in the headspace above the sample using a MinRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST PIT TP-07 33 LYELL AVENUE 20 CHESTER, NEW YORK 14606		Thereit	in the second	- Anto			
2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST PIT TP-07 33 LYELL AVENUE DCHESTER, NEW YORK 14606 NEW YORK 14606 NEW YORK 14606		140	X - SF	Ser Card	View of IP-07 exca	avalion spolls, tacing	y north
2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST PIT TP-07 33 LYELL AVENUE DCHESTER, NEW YORK 14606 NEW YORK 14606 NEW YORK 14606		100 Ton	and the	the s	The second s		
2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST PIT TP-07 33 LYELL AVENUE DCHESTER, NEW YORK 14606 NEW YORK 14606 NEW YORK 14606		DI.	and a set	P			
2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST PIT TP-07 33 LYELL AVENUE DCHESTER, NEW YORK 14606 NEW YORK 14606 NEW YORK 14606		-	Sel al	" in s			
2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST PIT TP-07 33 LYELL AVENUE DCHESTER, NEW YORK 14606 NEW YORK 14606 NEW YORK 14606		in se		1			
2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable TEST PIT TP-07 33 LYELL AVENUE DCHESTER, NEW YORK 14606 NEW YORK 14606 NEW YORK 14606			Real P	ALC: S			
3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable 33 LYELL AVENUE 2420 LEXINGTON AVENUE, SUITE NEW YORK 14606 NEW YORK, NEW YORK 14606	tes:					rs and other conditions.	
4) NA = Not Available or Not Applicable 33 LYELL AVENUE DCHESTER, NEW YORK 14606 NEW YORK, NEW YORK 14606		3) PID readin	ngs are referen	ed to a benzer		h a 10.6 eV lamp.	
DCHESTER, NEW YORK 14606 NEW YORK, NEW YORK 1		4) NA = Not /	Available or No				

	/IRONMEN	TAL, INC.					ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		4884S-13					TEST PIT TP-8
Project Address:		202 Franklin Olean, New		Date: 7/31/2014		Page 1 of 1	
	esentative:	Z. Tennies		Test Pit Depth: 12.0'		_	
Contractor Equipment			ck Constructi				
			1				
Depth (ft)	PID Reading (ppm)		PID Headspace (ppm)	Sample Description			Notes
	<u> </u>	Ì		Topsoil and Organic Material			
1-	0.3		0.3	Reworked Soil (FILL)	1-		
	0.3		0.3	Layer of Resin/Glue above layer of Paper-like material (FILL)			Concrete foundation well along cost side of test sit
2-				Gray/Black, medium to coarse Sand, some medium gravel intermixed with Cinders/Ballast,trace Clay, moist (FILL)	2-		Concrete foundation wall along east side of test pit
3-	0.9		49.7		3-		
4-				Tan, Clayey coarse SAND and GRAVEL, some Cobbles, moist	4		Top of Tank encountered
5-					5-	Soil descri	
6-					6-	Soil description for western side of tank, see attached	
7-				Gray	7-	stern side of	
8-					8-	tank, see at	
9-					9-	tached photo	
10-				Black, fine to medium Sand (FILL)	10-	õ	Bottom of Tank
11-	0.1		0.1		11-		
12-	0.1		0.1	Tan, Clayey coarse SAND and GRAVEL, some Cobbles, moist	12-		
				Bottom of Hole @ 12.0'	-		
Notes:				wall wall i under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other co			III of tank in TP-08, facing north
	 2) Stratification 3) PID reading 	n lines represer gs are reference	nt approximate ed to a benzen	boundaries. Transitions may be gradual. e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lar			
1563 LYEL	4) NA = Not A	vailable or Not	Applicable				TEST PIT TP-8 420 LEXINGTON AVENUE, SUITE 300
ROCHES ⁻ (585) 454- FAX (585)		ORK 14606		www.dayenvironmental.com			NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

day Day EN	VIRONMEN	ITAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		4884S-13			TEST PIT TP-09
Project Address:		202 Franklin			
DAY Repr	resentative:	Olean, New Z. Tennies	York	Date: 7/30/2014 Test Pit Depth: 12.3'	Page 1 of 1
Contractor			ck Constructi		
Equipment	t:	Hitachi 160	LC Excavato	or w/40"	
Depth (ft)	PID Reading (ppm)		PID Headspace (ppm)	Sample Description	Notes
	0		0.1	TOPSOIL with Organics, some Gravel	
1-	0.1		0.1	Black/Gray, Sand, Ballast/Cinders, some red Brick, broken Concrete, little Shingles, Glass, crushed red Brick (FILL)	-1-
2-					2-
3-				Tan, Clayey SAND, some Gravel, moist	-3-
4-	0.1				4-
5-				Brown, coarse SAND and GRAVEL, trace Silt, moist	- 5-
6-					6-
7-					7-
8-					8-
9-				GRAVEL, some Sand	9-
10-					10-
11-					11-
12-	0.2		0.2		-12-
				Bottom of Test Pit @ 12.3'	
	- Free	-			
Notes:	1) Water leve	els were made a	at the times an	Uiew of TP-09, facing north	ditions.
	2) Stratification	on lines represer	nt approximate	boundaries. Transitions may be gradual. e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lam	p.
1562 1 1		Available or Not			TEST PIT TP-09
ROCHES (585) 454	TER, NEW Y	ORK 14606		www.dayenvironmental.com	420 LEXINGTON AVENUE, SUITE 300 NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657
CAH0812 (4	4884S-13) Te	st Pit Log (7-	30-14)\TP-09		1/29/2015

day Day EN	VIRONMEN	ITAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #:		4884S-13			TEST PIT TP-10
Project Ac	dress:	202 Franklin Olean, New		Date: 7/30/2014	Page 1 of 1
DAY Repr	esentative:	Z. Tennies	TOIK	Test Pit Depth: 12.0'	rage i oi i
Contractor			ck Constructi		
Equipment	t:	Hitachi 160	LC Excavato	or w/40"	
Depth (ft)	PID Reading (ppm)		PID Headspace (ppm)	Sample Description	Notes
	0.2			TOPSOIL and Organics	
1-				Tan, SAND, little Clay, trace Gravel, moist	1-
	0.2				
2-				Medium to coarse SAND, little Gravel, trace Silt, moist	-2-
3-					3-
4-	0.2		0.2	Brown, coarse SAND and GRAVEL, trace Silt, moist	4-
5-					5-
6-					6-
7-					7-
8-			0.0		8-
9-					9-
10-					10-
11-					11-
12-			0.0	Rotter of Tool Dit @ 42 01	12-
			1	Bottom of Test Pit @ 12.0'	
			A MARCE	View of TP-10, facing north	
Notes:	2) Stratification	on lines represe	nt approximate	d under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other cor boundaries. Transitions may be gradual.	
	PID reading		ed to a benzer	e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lam	p. TEST PIT TP-10
	L AVENUE				420 LEXINGTON AVENUE, SUITE 300
(585) 454	-0210	ORK 14606			NEW YORK, NEW YORK 10170 (212) 986-8645
FAX (585)	454-0825			www.dayenvironmental.com	FAX (212) 986-8657

day Day EN	VIRONMEN	TAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.			
Project #: 4884S-13					TEST PIT TP-11			
Project Address:		202 Franklin						
DAY Representative: Z. Tennies		York	Date: 7/30/2014 Test Pit Depth: 13.5'	Page 1 of 1				
Contractor		Richard Peo	k Constructi					
Equipment		Hitachi 160	LC Excavato	or w/40"				
Depth (ft)	PID Reading (ppm)		PID Headspace (ppm)	Sample Description	Notes			
				TOPSOIL				
1-	0.0		0.1	Brown, Silty Sand and Gravel/Cobbles, moist (FILL)	1-			
2-	0.0		0.0	Brown little Clay, Black, fibrous material (paper) in layers	2-			
3-	0.0		0.0	Tan/Brown, Sandy CLAY, some Gravel, some Cobbles, moist	-3-			
4-					4-			
5-					5-			
6-				Brown, coarse SAND and GRAVEL, some Cobbles, moist	6-			
7-					7-			
8-	0.0		0.0		8-			
9-					9-			
10-					10-			
11-				wet	11-			
12-	0.2		0.2		12-			
				Bottom of Test Pit @ 13.5'				
				View of TP-11, facing east				
Notes:	2) Stratificatio	n lines represer	nt approximate	d under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other con boundaries. Transitions may be gradual.				
		gs are reference vailable or Not		e standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lam	D. TEST PIT TP-11			
	L AVENUE				420 LEXINGTON AVENUE, SUITE 300			
(585) 454-		UNN 14000			NEW YORK, NEW YORK 10170 (212) 986-8645			
FAX (585)	www.dayenvironmental.com FAX (212) 986-8657							

	/IRONMEN	ITAL, INC.			ENVIRONMENTAL CONSULTANTS AN AFFILIATE OF DAY ENGINEERING, P.C.
Project #: Project Ac	ldress:	4884S-13 202 Franklii			TEST PIT TP-12
	esentative:	Olean, New Z. Tennies	York	Date: 7/30/2014 Test Pit Depth: 8.5'	Page 1 of 1
Contractor			ck Constructi		
Equipment	-	Hitachi 160	LC Excavate	or w/40"	
Depth (ft)	PID Reading (ppm)		PID Headspace (ppm)	Sample Description	Notes
				ASPHALT	_
1-	2.1 17.5		6.1	Asphalt and Sub-base Material (FILL) Gray/Black, Sand and fine to coarse Gravel intermixed with Cobbles, Brick, Wood, moist (FILL)	1-
2-	17.5		8.0		2-
3-					3-
5-				Gray, Clayey SAND and fine to coarse GRAVEL some Cobbles, wet	5-
6-					6-
7-					7-
8-	0.6		0.5		8-
9-				Bottom of Test Pit @ 8.5'	9-
10-					10-
11-					11-
Notes:	1) Water leve	als were made	at the times an	View of TP-12, facing north	rditions.
1563 LYEL	2) Stratification 3) PID reading 4) NA = Not A	on lines represe gs are referenc Available or Not	nt approximate ed to a benzer	o under condutors stated, indiculations of groundwater levels may occur due to seasonal factors and other con- boundaries. Transitions may be gradual. le standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lan	P. TEST PIT TP-12 420 LEXINGTON AVENUE, SUITE 300
(585) 454-	FER, NEW Y 0210 454-0825	URK 14606		www.dayenvironmental.com	NEW YORK, NEW YORK 10170 (212) 986-8645 FAX (212) 986-8657

day						
Project #:	IRONMEN	4884S-13				AN AFFILIATE OF DAY ENGINEERING, P.C
Project #. Project Address: DAY Representative:		202 Frank	klin Street			TEST PIT TP-13
		Olean, Ne Z. Tennie		Date: 7/29/2014 Test Pit Depth: 12.0'		Page 1 of 1
Contractor:			eck Construct	on Depth to Water: Not encountered		_
quipment:		Hitachi 16	60 LC Excavato	r w/40"	1	
Depth (ft)	PID Reading (ppm)		PID Headspace (ppm)	Sample Description		Notes
	0.3			Brown, Topsoil (Sandy), some Organic Material, little Gravel, trace Silt		Concrete foundation wall along west end of test pit
1-				Red/Black, Sand intermixed with Red Brick, some broken Concrete, Metal [*] , little Rebar, Ballast, trace Glass, trace Paper (FILL)	1-	*Metal includes: apparent highway guard rail, sheet metal, structural steel beam drain pipe, etc.
2-					2-	
3-					3-	
4-	0.3		0.3		4-	Encountered top of tank in north wall of excavation.
5-					5-	
6-					6-	Vertical steel tank, cut open with top removed (see attached sketch), filled with demolition debris.
7-					7-	Excavated demolition debris from tank and attempeted to penetrate tank floor.
8-					8-	
9-	0.3 0.2		0.3 0.3		9-	
10-				Concrete Floor Slab Equipment Refusal @ 9.5'	10-	
11-					11-	
12-	0.2		1.2		-12-	Bottom of tank extends to 12 ft bgs. Equipment refusal in tank @ 12' bgs.
				Dusfile Okatak	View of Tan	k in TP-13, facing north
A	K			Profile Sketch		
11	X			C		
otes:				d under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other cor boundaries. Transitions may be gradual.	ditions.	
	3) PID readin	ngs are refere		te standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lam	p.	TEST PIT TP-13
563 LYELI	L AVENUE ER, NEW Y					420 LEXINGTON AVENUE, SUITE 3 NEW YORK, NEW YORK 10 (212) 986-86
	454-0825			www.dayenvironmental.com		FAX (212) 986-86

APPENDIX F FIELD SAMPLING PLAN

Site Management Plan, Site # [C905038]

APPENDIX F – FIELD SAMPLING PLAN

Groundwater Sampling Methodology

- In order to minimize the potential re-suspension of solids in the bottom of the well, well depths will not be measured prior to or during low-flow purging and sampling. Well depth information will be obtained from: 1) measurements collected during well development;
 2) from well logs; or 3) will be measured after sampling is completed.
- Subsequent to obtaining static water level measurements and monitoring the wells for free LNAPL, the following low-flow purge and sample techniques will be used to collect a groundwater sample from each well:
- A portable bladder pump connected to new disposable polyethylene tubing will be lowered and positioned at or slightly above the mid-point of the water column within the well screen when the screened interval is set in relatively homogeneous material. When the screened interval is set in heterogeneous materials, the pump will be positioned adjacent to the zone of highest hydraulic conductivity (as defined by geologic samples). Care will be taken to install and lower the bladder pump slowly in order to minimize disturbance of the water column.
- The pump will be connected to a control box that is operated on compressed gas (nitrogen, air, etc.) and is capable of varying pumping rates. An in-line flow-through cell attached to a Horiba U-22 water quality meter (or similar equipment) will be connected to the bladder pump effluent tubing to measure water quality data.
- The pump will be started at a pumping rate of 100 ml/min or less (for pumps that can not achieve a flow rate this low, the pump will be started at the lowest pump rate possible). The water level in the well will be measured and the pump rate will be adjusted (i.e., increased or decreased) until the drawdown is stabilized. In order to establish the optimum flow-rate for purging and sampling, the water level in the well will be measured on a periodic basis (i.e., every one or two minutes) using an electronic water level meter or an oil/water interface meter. When the water level in the well has stabilized (i.e., use goal of <0.33 ft. of constant drawdown), the water level measurements will be collected less frequently.
- While purging the well at the stabilized water level, water quality indicator parameters will be monitored on a three to five-minute basis with the Horiba U-52 water quality meter (or similar equipment). Water quality indicator parameters will be considered stabilized when the parameter readings listed below are generally achieved after three consecutive readings:
 - pH (+ 0.1);
 - specific conductance (+ 3%);
 - dissolved oxygen (+ 10 %);

- oxidation-reduction potential (+ 10 mV);
- temperature (+10%); and
- turbidity (+ 10%, when turbidity is greater than 10 NTUs)
- Following stabilization of the water quality parameters, the flow-through cell will be disconnected and a groundwater sample will be collected from the bladder pump effluent tubing. The pumping rate during sampling will remain at the established purging rate or it may be adjusted downward to minimize aeration, bubble formation, or turbulent filling of sample containers. A pumping rate below 250 ml/min will be used when collecting VOC samples.
- The procedures and equipment used during the purging and groundwater sampling, and the field measurement data obtained, will be documented in the field and recorded on Monitoring Well Sampling Logs.
- During sampling, the following parameters will be measured using a water quality meter(s) and will later be presented on Monitoring Well Sampling Logs:
 - Dissolved Oxygen (DO)
 - Conductivity
 - Oxidation/Reduction Potential (redox)
 - pH
 - Temperature
 - Turbidity

The procedures and equipment used during the purging and groundwater sampling, and the field measurement data obtained, will be documented in the field and recorded on Monitoring Well Sampling Logs.

In addition to the 7 samples collected from the long-term groundwater monitoring system, one field blank sample and one MS/MSD sample will be collected and submitted under chain-of-custody control to a NYSDOH ELAP-certified analytical laboratory and tested via ASP protocol for the following:

• TAL metals

Analytical methods references (for preparation and analysis of the samples) and well as field sampling SOPs that will be used are indicated below.

ANALYTICAL METHOD REFERENCE (Include document title, method name/number, revision number, date) 1a. SW846 Method 6010C, ICP-AES Metals, August 2008 2a. SW846 Methods 7470/7471 CVAA Mercury, February 2007 FIELD SAMPLING SOPs

(Include document title, date, revision number, and originator's name)

1c. Field Sampling and Decontamination SOP, Day Environmental, Inc.

2c. NYSDEC DER-10/Technical Guidance for Site Investigation and Remediation

APPENDIX G QUALITY ASSURANCE PROJECT PLAN

Site Management Plan, Site # [C905038]

APPENDIX G – QUALITY ASSURANCE PROJECT PLAN

QAPP TABLE OF CONTENTS

1.0	I	ntroduction	1
1.	.1	Project Scope and Project Goals	1
2.0	q	uality assurance/quality control	
2.	.1	Operation and Calibration of On-Site Monitoring Equipment	2
	2.1.	1 VOC Monitoring Equipment	2
	2.1.2	2 Particulate Monitoring Equipment	2
	2.1	3 Global Positioning System Equipment	
	2.1.4	4 Miscellaneous Field Monitoring Equipment	
2.	.2	Well Development	
2.	.3	Groundwater Sampling Procedure	4
3.0	E	quipment decontamination procedures	7
4.0	Sa	ample handling and custody requirements	8
	4.1	Chain-Of-Custody	
	4.2	Sample Labels	
	4.3	Custody Seals	9
	4.4	Sample Identification	9
	4.5	Transportation of Samples	
5.0	Α	NALYTICAL Laboratory QUALITY ASSURANCE/QUALITY CONTR	
	5.1	Data Usability Summary Report	
	5.2	Reporting	
6.0		ECORD KEEPING AND DATA MANAGEMENT	
7.0	ACRONYMS1		

1.0 INTRODUCTION

This project-specific Quality Assurance Project Plan (QAPP) was prepared in accordance with Section 2.4 of the New York State Department of Environmental Conservation (NYSDEC) document titled *DER-10, Technical Guidance for Site Investigation and Remediation* dated May 2010 (DER-10). This QAPP provides quality assurance/quality control (QA/QC) protocols and guidance that are to be followed when conducting sampling and analysis as part of the long-term monitoring program, or during intrusive work requiring media monitoring, at the property addressed as 202 Franklin Street, Olean, New York (Site). The QAPP also provides procedures to be used during sampling of environmental media, other field activities, and the analytical laboratory testing of samples. The components of the QAPP are provided herein.

1.1 Project Scope and Project Goals

The QAPP applies to the aspects of the project associated with the collection of field data, the collection and analytical laboratory testing of field samples and QA/QC samples, and the evaluation of the quality of the data that is generated. Specifically, the investigation will include a geophysical survey, passive soil gas testing, utility assessment, surface soil sampling, soil borings and subsurface soil sampling, monitoring well installation and groundwater sampling, aquifer physical characteristic evaluations, an underground storage tank (UST) excavation and removal, and a basement/vault assessment that may include confined space entry. A summary of the anticipated number, type, and test parameters to be submitted for analytical laboratory testing is provided in Table 6. Detailed discussions of the project scope and project goals are provided in the RI/RAA Work Plan. In general, the project goal is to obtain sufficient information to characterize the nature and extent of contamination at the Site sufficiently to develop remedial alternatives for the Site.

2.0 QUALITY ASSURANCE/QUALITY CONTROL

As part of this QAAP, QA/QC protocol and procedures have been developed and are described below. The objective of the QA/QC protocol and procedures is to ensure that the information, data, and decisions associated with this project are technically sound and properly documented. The QA/QC protocol and procedures also pertain to the collection, evaluation, and review of activities and data that are part of this project.

2.1 Operation and Calibration of On-Site Monitoring Equipment

On-site monitoring equipment will play a significant role in meeting the long-term monitoring objectives and to determine the appropriate personal protective equipment (PPE) as noted in the health and safety plan (HASP). The on-site, monitoring equipment may include volatile organic compound (VOC) monitors, particulate monitors, air quality monitors, oil/water interface probes, an electronic static water level indicator; water quality monitors, and global position system (GPS) instrumentation. Operation and calibration of on-site monitoring equipment that are anticipated for use during the RI are discussed below.

2.1.1 <u>VOC Monitoring Equipment</u>

Real-time monitoring for VOCs will be conducted to evaluate the onsite groundwater monitoring wells prior to sample collection. The primary field instrument for monitoring VOCs during the RI will be a photoionization detector (PID). It is anticipated that a Minirae 2000 PID (or equivalent) equipped with a 10.7 eV lamp, or a MiniRae PPB RAE PID will be used during this project. An accredited firm/testing laboratory will calibrate the equipment on a yearly basis. During fieldwork, the PID will be calibrated on a daily basis in accordance with the manufacturer's specifications. Isobutylene gas will be used to calibrate the PID prior to use and as necessary during fieldwork.

2.1.2 Particulate Monitoring Equipment

Particulate monitoring will be conducted during intrusive activities as noted in the Community Air Monitoring Plan (CAMP) portion of the HASP. It is anticipated that the particulate air monitoring will be conducted using a real-time aerosol monitor (RATM) particulate meter. An accredited firm/testing laboratory will calibrate the equipment on a yearly basis. During fieldwork, the particulate meter will be regularly calibrated in accordance with the manufacturer's specifications. Measurements will be

collected along the upwind perimeter of the intrusive investigation activities to determine the amount of particulates naturally occurring in the air (i.e., background concentrations) as per the requirements of the CAMP.

2.1.3 <u>Global Positioning System Equipment</u>

A GPS unit will be used to obtain the precise locations of sampling points and significant site features. It is anticipated that a Trimble GeoXH will be used during this project. The GPS location accuracy of less than 1 horizontal foot is the data quality objective for this project. The GPS unit will be calibrated as needed in accordance with the manufacturer's specifications. The GPS location data will be projected using a coordinate system and datum relevant to the region of the Site (e.g., NAD 1983 State Plane New York West).

2.1.4 Miscellaneous Field Monitoring Equipment

Several other pieces of miscellaneous field monitoring equipment will be used as part of the project including:

- An electronic static water level indicator;
- An oil/water interface meter, and;
- A Horiba U-52 water quality meter (or equivelent) that measures pH, specific conductivity, temperature, dissolved oxygen, oxygen-reduction potential, and turbidity.

These meters will be calibrated, operated, and maintained in accordance with the manufacturer's instructions.

2.2 Well Development

In the event that it is necessary to re-develop one or more of the existing monitoring wells prior to completing a periodic groundwater monitoring event, the following procedure will be followed. Monitoring wells will be developed by utilizing either a new dedicated disposable bailer with dedicated cord, and/or a pump and dedicated disposable tubing depending on the field conditions. No fluids will be added to the wells during development without prior approval of the NYSDEC, and well development equipment will be decontaminated prior to development of each well.

The well development procedure is listed below:

- Obtain pre-development static water level and oil/water interface reading for presence of LNAPL or DNAPL using a Heron Model HO1.L oil/water interface probe or similar instrument;
- Calculate water/sediment volume in the well;

- Obtain initial field water quality measurements (e.g., pH, specific conductivity, turbidity, temperature, and PID readings). The pH, specific conductivity, turbidity and temperature readings will be obtained using Horiba U-22 water quality meter (or similar equipment);
- Select development method and set up equipment depending on method used;
- Alternate water agitation methods (e.g., moving a bailer or pump tubing up and down inside the screened interval) and water removal methods (e.g., pumping or bailing) in order to suspend and remove solids from the well;
- Obtain field water quality measurements for every two to five gallons of water removed. Record water quantities and rates removed;
- Stop development when the following water quality criteria are met and at least 10 well volumes have been removed;
 - Water is clear and free of sediment and turbidity is less than 50 nephelometric turbidity units (NTUs);
 - \circ pH is ± 0.1 standard unit between readings;
 - Specific conductivity is $\pm 3\%$ between readings, and;
 - \circ Temperature is $\pm 10\%$ between readings.
 - Obtain post-development water level readings; and
 - Document development procedures, measurements, quantities, etc.

Pertinent information for each well will be recorded on well development logs

2.3 Groundwater Sampling Procedure

Groundwater samples will be collected by utilizing a low-flow pump. Each groundwater monitoring event will consist of the following activities, which will be documented as necessary to provide a record of the work completed:

- Prior to purging and sampling, static water level measurements will be taken from each well included in the long-term groundwater monitoring system using an oil/water interface meter. The presence of LNAPL will be evaluated by using visual observations and the oil/water interface meter at each well location.
- In order to minimize the potential re-suspension of solids in the bottom of the well, well depths will not be measured prior to or during low-flow purging and sampling. Well depth information will be obtained from: 1) measurements collected during well development; 2) from well logs; or 3) will be measured after sampling is completed.
- Subsequent to obtaining static water level measurements and monitoring the wells for free LNAPL, the following low-flow purge and sample techniques will be used to collect a groundwater sample from each well:

- A portable bladder pump connected to new disposable polyethylene tubing will be lowered and positioned at or slightly above the mid-point of the water column within the well screen when the screened interval is set in relatively homogeneous material. When the screened interval is set in heterogeneous materials, the pump will be positioned adjacent to the zone of highest hydraulic conductivity (as defined by geologic samples). Care will be taken to install and lower the bladder pump slowly in order to minimize disturbance of the water column.
- The pump will be connected to a control box that is operated on compressed gas (nitrogen, air, etc.) and is capable of varying pumping rates. An in-line flow-through cell attached to a Horiba U-22 water quality meter (or similar equipment) will be connected to the bladder pump effluent tubing to measure water quality data.
- The pump will be started at a pumping rate of 100 ml/min or less (for pumps that cannot achieve a flow rate this low, the pump will be started at the lowest pump rate possible). The water level in the well will be measured and the pump rate will be adjusted (i.e., increased or decreased) until the drawdown is stabilized. In order to establish the optimum flow-rate for purging and sampling, the water level in the well will be measured on a periodic basis (i.e., every one or two minutes) using an electronic water level meter or an oil/water interface meter. When the water level in the well has stabilized (i.e., use goal of <0.33 ft. of constant drawdown), the water level measurements will be collected less frequently.
- While purging the well at the stabilized water level, water quality indicator parameters will be monitored on a three to five-minute basis with the Horiba U-22 water quality meter (or similar equipment). Water quality indicator parameters will be considered stabilized when the parameter readings listed below are generally achieved after three consecutive readings:
 - pH (+ 0.1);
 - specific conductance (+ 3%);
 - dissolved oxygen (+ 10 %);
 - oxidation-reduction potential (+ 10 mV);
 - temperature (+10%); and
 - turbidity (+ 10%, when turbidity is greater than 10 NTUs)
- Following stabilization of the water quality parameters, the flow-through cell will be disconnected and a groundwater sample will be collected from the bladder pump effluent tubing. The pumping rate during sampling will remain at the established purging rate or it may be adjusted downward to minimize aeration, bubble formation, or turbulent filling of sample containers. A pumping rate below 250 ml/min will be used when collecting VOC samples.

- The procedures and equipment used during the purging and groundwater sampling, and the field measurement data obtained, will be documented in the field and recorded on Monitoring Well Sampling Logs.
- During sampling, the following parameters will be measured using a water quality meter(s) and will later be presented on Monitoring Well Sampling Logs:
 - Dissolved Oxygen (DO)
 - Conductivity
 - Oxidation/Reduction Potential (redox)
 - pH
 - Temperature
 - Turbidity

The procedures and equipment used during the purging and groundwater sampling, and the field measurement data obtained, will be documented in the field and recorded on Monitoring Well Sampling Logs.

3.0 EQUIPMENT DECONTAMINATION PROCEDURES

In order to reduce the potential for cross-contamination of samples collected during this project, the following procedures will be implemented to ensure that the data collected (primarily the laboratory data) is acceptable.

It is anticipated that most of the materials used to assist in obtaining samples will be disposable one-time use materials (e.g., sampling containers, pump tubing, latex gloves, etc.). However, when equipment must be re-used (e.g., static water level indicator, split bladder pump, etc.), it will be decontaminated by at least one of the following methods:

- Steam clean the equipment within a dedicated decontamination area; or
- Rough wash in tap water; wash in mixture of tap water and Alconox-type soap; double rinse with deionized or distilled water; and air dry and/or dry with clean paper towel.

The effectiveness of the equipment decontamination of non-dedicated sampling equipment such as the low flow bladder pump will be evaluated via analytical laboratory testing of field blanks (e.g., rinsate samples). Decontamination liquids and disposable equipment and PPE will be containerized and left on-site until a proper disposal method is determined.

4.0 SAMPLE HANDLING AND CUSTODY REQUIREMENTS

During sampling activities, personnel will wear disposable latex or nitrile gloves. Between collection of samples, personnel performing the sampling will discard used latex gloves and put on new gloves to preclude cross-contamination between samples. As few personnel as possible will handle samples or be in charge of their custody prior to shipment to the analytical laboratory.

New laboratory-grade sample containers will be used to collect samples. Sufficient volume will be collected to ensure that the laboratory has adequate sample volume to perform the specified analyses. Samples with zero headspace will be collected when VOC analysis is going to be performed. Samples will be kept on ice in a cooler for shipment to the analytical laboratory.

Samples will be preserved as specified by the analytical laboratory for the type of parameters and matrices being tested. The required amount of preservatives will be added by the analytical laboratory to the sample containers prior to delivery to the Site. The sample preservation requirements and holding times will be in accordance with the NYSDEC ASP requirements.

4.1 <u>Chain-Of-Custody</u>

Samples that are collected for subsequent testing as part of this project will be handled using chain-of-custody control. Chain-of-custody documentation will accompany samples from their inception to their analysis, and copies of chain-of-custody documentation will be included with the laboratory's report. The chain-of-custody will include the date and time the sample was collected, the sample identity and sampling location, the requested analysis, and any request for accelerated turnaround time.

4.2 <u>Sample Labels</u>

Sample labels for field samples and QC samples with adhesive backing will be placed on sample containers in order to identify the sample. Sample information will be clearly

written on the sample labels using waterproof ink. Sufficient sample information will be provided on the label to allow for cross-reference with the field sampling records or sample logbook.

The following information will be provided on each sample label:

Name of company; Initials of sampler; Date and time of collection; Sample identification; Intended analyses; and Preservation required.

4.3 <u>Custody Seals</u>

Custody seals are preprinted adhesive-backed seals that are designed to break if disturbed. Seals will be signed and dated before being placed on the shipping cooler. Seals will be placed on one or more location on each shipping cooler as necessary to ensure security. Shipping tape will be placed over the seals on the coolers to ensure that the seals are not accidentally broken during shipment. Sample receipt personnel at the laboratory will check and document whether the seals on the shipping coolers are intact when received.

4.4 <u>Sample Identification</u>

The following format will be used on the labels affixed to sample containers to identify samples:

MW-A xx/xx/xx	Groundwater sample with monitoring well letter and month / day /year
TB xx/xx/xx	Trip Blank sample with month/day /year
FB xx/xx/xx	Field Blank sample (rinsate) with month/day /year

As an example, assuming the first project sample is a groundwater sample collected from a monitoring well MW-A on July 1, 2020, the sample will be designated as MW- $A_07/01/20$.

4.5 <u>Transportation of Samples</u>

Samples will be handled, packaged and shipped in accordance with applicable regulations, and in a manner that does not diminish their quality or integrity. Samples will be delivered to the laboratory within the holding times indicated for the specific analysis and sample media.

5.0 ANALYTICAL LABORATORY QUALITY ASSURANCE/QUALITY CONTROL

The ELAP-certified analytical laboratory test results will be reported in NYSDEC Analytical Services Protocol (ASP) Category B deliverable reports. Analytical laboratory test results for soil samples will be reported on a dry-weight basis. The ELAP-certified analytical laboratory will make every effort to analyze the samples using the lowest practical quantitation limits (PQLs) possible for air and groundwater samples. In addition, analytical laboratory results will be provided to the NYSDEC using the NYSDEC's Equis Format.

The ELAP-certified analytical laboratory will provide internal QA/QC checks that are required by NYSDEC ASP and/or USEPA contract laboratory protocol (CLP) protocol, such as analyses performed, spike blanks, internal standards, surrogate samples, calibration standards, and reference standards. Laboratory results will be compared to data quality indicators in accordance with the ELAP-certified analytical laboratory QAP/SOP and the NYSDEC ASP.

In order to provide control over the collection, analysis, review, and interpretation of analytical laboratory data, the following QA/QC samples will be included as part of this project.

• During each periodic groundwater monitoring event, one trip blank sample, one field blank sample (i.e., equipment rinsate sample) and one matrix spike/matrix spike duplicate (MS/MSD) sample will be collected and submitted under chain-of-custody control and tested via ASP protocol for TAL metals (except the trip blank, which would only be tested for TCL VOCs plus TICs).

5.1 Data Usability Summary Report

A qualified data validator will be retained to complete a data usability summary report (DUSR) on the Category B deliverables analytical laboratory data that is generated as part of the long-term monitoring program. The DUSR will be conducted in accordance with the provisions set forth in Appendix 2B of *DER-10, Technical Guidance for Site Investigation and Remediation* dated May 2010. The findings of the DUSR will be incorporated in the periodic review report and will present the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method.

5.2 <u>Reporting</u>

Analytical and QC data will be included in the periodic review report. The periodic review report will summarize the environmental work and provide evaluation of the data that is generated, including the validity of the results in the context of QA/QC procedures.

6.0 RECORD KEEPING AND DATA MANAGEMENT

SMP monitoring activities will be documented in a bound field book on a daily basis. Information that will be recorded in the field book will include:

- Dates and time work is performed;
- Details on work being performed;
- Details on field equipment being used;
- Field evidence of contamination such as staining, odors, degree of saturation, etc.
- Field meter measurements collected during monitoring activities;
- Sampling locations and depths measured in tenths of feet;
- Measurements of sample locations, and test locations, excavations, etc.;
- Personnel and equipment on-site;
- Weather conditions; and
- Other pertinent information as warranted.

In addition, the field notes will be converted into logs for each sampling and monitoring event completed as part of the SMP.

Differential GPS, swing ties from existing surveyed site structures, and/or a licensed surveyor will be used to collect spatial data. The spatial data will be plotted using integrated GIS and/or computer-aided design (CAD) mapping.

7.0 ACRONYMS

ASP	Analytical Services Protocol
ASTM	American Society for Testing and Materials
CAD	Computer-Aided Design
CAMP	Community Air Monitoring Plan
CLP	Contract Laboratory Protocol
DNAPL	Dense Non-Aqueous Phase Liquid
DUSR	Data Usability Summary Report
ELAP	Environmental Laboratory Approval Program
GPS	Global Positioning System
HASP	Health and Safety Plan
IDW	Investigation-Derived Waste
LFL	Lower Flammable Limit
LNAPL	Light Non-Aqueous Phase Liquid
MS/MSD	Matrix Spike/Matrix Spike Duplicate
NAD	North American Datum
NAPL	Non-Aqueous Phase Liquid
NTU	Nephelometric Turbidity Units
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OSHA	Occupational Safety and Health Administration
PID	Photoionization Detector
PPE	Personal Protective Equipment
PQL	Practical Quantitation Limit
PVC	Polyvinyl Chloride
QAP	Quality Assurance Plan
QAPP	Quality Assurance Project Plan
QA/QC	Quality Assurance/Quality Control
RQL	Reported Quantitation Limit
RTAM	Real-Time Aerosol Monitor
SOP	Standard Operating Procedure
SMP	Site Management Plan
SVOC	Semi-Volatile Organic Compounds
TCL	Target Compound List
USEPA	United States Environmental Protection Agency
VOC	Volatile Organic Compound

APPENDIX H HEALTH AND SAFETY PLAN

Site Management Plan, Site # [C905038]

HEALTH AND SAFETY PLAN

REMEDIAL INVESTIGATION 202 FRANKLIN STEET OLEAN, NEW YORK

NYSDEC SITE NUMBER C905043-05-14

Prepared by: Day Environmental, Inc. 1563 Lyell Avenue Rochester, New York 14606

Project No.: 4884S-13

Date: May 2014

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	Site History/Overview	1
	1.2	Planned Activities Covered by HASP	3
2.0	KE	Y PERSONNEL AND MANAGEMENT	4
	2.1	Project Manager	4
	2.2	Site Safety Officer	4
	2.3	Employee Safety Responsibility	4
	2.4	Key Safety Personnel	
3.0		FETY RESPONSIBILITY	
4.0	JOI	3 HAZARD ANALYSIS	
	4.1	Chemical Hazards	6
	4.2	Physical Hazards	
	4.3	Environmental Hazards	
		4.3.1 Heat Stress	
		4.3.2 Exposure to Cold	
5.0		E CONTROLS	
	5.1	Site Zones	
	5.2	General	
6.0		DTECTIVE EQUIPMENT	
	6.1	Anticipated Protection Levels	
	6.2	Protection Level Descriptions	
		6.2.1 Level D	
		6.2.2 Modified Level D	11
		6.2.3 Level C	
		6.2.4 Level B	
		6.2.5 Level A	12
	6.3	Respiratory Protection	
7.0	DE	CONTAMINATION PROCEDURES	
	7.1	Personnel Decontamination	
	7.2	Equipment Decontamination	13
	7.3	Disposal	13
8.0	AIR	MONITORING	14
	8.1	Particulate Monitoring	14
	8.2	Volatile Organic Compound Monitoring	15
	8.3	Community Air Monitoring Plan	
		8.3.1 VOC Monitoring, Response Levels, and Actions	16
		8.3.2 Particulate Monitoring, Response Levels, and Actions	17
9.0	EM	ERGENCY CONTINGENCY PLAN	
	9.1	Emergency Telephone Numbers	18
	9.2	Evacuation	19
	9.3	Medical Emergency	
	9.4	Contamination Emergency	19
	9.5	Fire Emergency	19
	9.6	Spill or Air Release	
	9.7	Locating Containerized Waste and/or Underground Storage Tanks	21

10.0	ABBREVIATIONS	22	2
------	---------------	----	---

ATTACHMENTS

Attachment 1	Figure 1 - Route for Emergency Services
Attachment 2	Figure 2 - Site Plan Depicting Tentative CAMP Station Locations

1.0 INTRODUCTION

Day Environmental, Inc. (DAY) prepared this Health and Safety Plan (HASP) outlining policies and procedures to protect workers and the public from potential environmental Investigation hazards during the Remedial described in the Remedial Investigation/Remedial Alternatives Analysis (RI/RAA) Work Plan for the property addressed 202 Franklin Street, Olean, County of Cattaraugus, New York (the Site). The location of the approximate 5.4 acre Site is depicted on the map included as Figure 1. Currently the Site consists of an of vacant grass/weed covered land with some scattered trees and an approximate 2.2-acre paved parking lot that services the industrial facility located to the south (i.e., at 211 Franklin Street).

Although the HASP focuses on the specific work activities planned for the Site, it must remain flexible due to the nature of this work. Conditions may change and unforeseen situations can arise that require deviations from the original HASP

1.1 Site History/Overview

The Site is located in an industrial-use area in the City of Olean, Cattaraugus County, New York. The Site is bound to the north by the Southern Tier Expressway (i.e., Interstate 86), to the east by an athletic field and a residential neighborhood beyond, to the south by Franklin Street and a manufacturing facility beyond, and to the west a railroad right of way (ROW) and commercial-use properties beyond. Historically, the Site was improved with several buildings that operated as manufacturing facilities. Specific information regarding the previous use of the Site is provided below.

Facility	Approximate Dates of Operation	Remarks
United Wood Alcohol	1909-1925	Manufacturer of wood alcohol
Company		(methanol)
Seaman Container	1925-1930	Manufacturer of paper pails
		containers, coolers, etc.
Olean Bag Company	1925-1930	Sewing operations
Avery Ware Corporation	1930-1941	Manufacturer of wastebaskets,
		vases, etc. from reprocessed waste
		paper pulp
Fibre Forming Corporation	1941-1956	Manufacturer of wastebaskets,
		vases, etc. from reprocessed waste
		paper pulp

Recognized Environmental Conditions (RECs) pertaining to the Site, that were identified a Phase I Environmental Site Assessment (ESA) completed by DAY in November 2013 include:

- □ Materials and waste products associated with the manufacture of wood alcohol; chemicals and waste products associated with waste paper pulp product manufacturing including paints, enamels and asphalt.
- □ Petroleum products, coal, and ash associated with power plants/boilers fueling operations at these facilities.
- □ Railroad spurs were present in various areas of the Site and apparent railroad ballast material was observed on the ground surface of the Site.
- □ The historical use of the adjoining and nearby properties revealed a long history of industrial use of the area including an oil refinery, which extended to the northeast, north, northwest, west and southwest of the Site. Numerous oil storage tanks, processing equipment and pipelines were located on the refinery complex. Other industries, which were located in the vicinity of the Site, may have used, stored and disposed of hazardous/petroleum products/wastes.
- □ The NYSDEC spills database identified four spills at off-site properties, including: the adjoining property to the west/northwest ("Former Socony Vacuum" site); the adjoining property to the west/southwest ("Offsite Scott Rotary Seal BCP Site"); and two properties located approximately 0.25 miles north ("MJ Painting Contractor" site and "Offsite Homer Street BCP Site"). These four spills were attributed to the historic presence of an oil refinery operated by a predecessor to ExxonMobil. Off-site contaminant migration, potentially toward the assessed property, was identified at each of these spill sites.
- An approximate 500-acre area [in the vicinity of the Site] has been designated as a Brownfield Opportunity Area (BOA). This designation suggests recognition that environmental contamination may be present based on historical industrial uses.

A Preliminary Phase II ESA report dated October 17, 2013 identified the following relative to the Site:

- Beginning at a depth of about 20 feet (ft.) below ground surface (bgs), photoionization detector (PID) readings in excess of 100 parts per million (ppm) were measured above soil samples collected from test boring TB-01 (advanced on the western portion of the Site), and these samples exhibited a petroleum-like odor. A maximum PID reading of 121 ppm was measured above the bottom-most sample collected from test boring TB-01 at a depth of about 26 ft. bgs, and this sample exhibited petroleum-like odors.
- □ A peak PID reading of 275 ppm was measured above a groundwater sample collected from monitoring well MW-A (installed in test boring TB-01). This sample exhibited a petroleum-like odor and petroleum-type sheen was observed on its surface.

- The laboratory reported a total petroleum hydrocarbon (TPH) concentration of 139 mg/l or ppm in the groundwater sample collected from monitoring well MW-A. The TPH was classified as 'unidentified petroleum product'. However, the laboratory indicated that the GC fingerprint of the petroleum product identified in groundwater sample MW-A was similar to #2 Fuel Oil and/or other oil, including lubricating, cutting, and silicon oil.
- The concentration of tert-butylbenzene detected in the groundwater sample from MW-A [i.e., 5.38 ug/L or parts per billion (ppb)] exceeds the corresponding NYSDEC groundwater quality standard of 5 ug/l or ppb.

1.2 Planned Activities Covered by HASP

This HASP is intended to be used during field activates conducted at the Site as outlined in the RI/RAA Work Plan. Currently, identified activities include:

- □ Site Preparation
- □ Geophysical Survey
- □ Surface Soil Sampling
- □ Test Pit Excavations
- **Completion of Soil Borings**
- Monitoring Well Construction and Sampling
- □ Handling of Investigation Derived Waste Management

This HASP can be modified to cover other site activities as deemed appropriate. The owner of the property, its contractors, and other site workers will be responsible for the development and/or implementation of health and safety provisions associated with site activities.

2.0 KEY PERSONNEL AND MANAGEMENT

The Project Manager (PM) and Site Safety Officer (SSO) are responsible for formulating health and safety requirements, and implementing the HASP.

2.1 **Project Manager**

The PM has the overall responsibility for the project and will coordinate with the SSO to ensure that the goals of the project are attained in a manner consistent with the HASP requirements.

2.2 Site Safety Officer

The SSO has responsibility for administering the HASP relative to site activities, and will be in the field while activities are in progress. The SSO's operational responsibilities will be monitoring, including personal and environmental monitoring, ensuring personal protective equipment (PPE) maintenance, and identification of protection levels. The air monitoring data obtained by the SSO will be available for review by regulatory agencies and other on-site personnel.

2.3 Employee Safety Responsibility

Each employee is responsible for personal safety as well as safety of others in the area. The employee will use the equipment provided in a safe and responsible manner as directed by the SSO.

2.4 Key Safety Personnel

The following individuals are anticipated to share responsibility for health and safety of DAY representatives at the Site.

DAY Project Manager

Raymond Kampff

DAY Site Safety Officer

William Batiste, Charles Hampton, or Zachary Tennies

3.0 SAFETY RESPONSIBILITY

Contractors, consultants, state or local agencies, or other parties, and their employees, involved with this project will be responsible for their own safety while on-site. Their employees will be required to understand the information contained in this HSAP, and must follow the recommendations that are made in this document. As an alternative, contractors, consultants, state or local agencies, or other parties, and their employees, involved with this project can utilize their own health and safety plan for this project as long as it is found acceptable to the New York State Department of Health (NYSDOH) and /or the Cattaraugus County Health Department (CCHD).

4.0 JOB HAZARD ANALYSIS

There are many hazards associated with environmental work on a site, and this HASP discusses some of the anticipated hazards for the Site. The hazards listed below deal specifically with those hazards associated with the management of potentially contaminated media (e.g. soil, fill, etc.).

4.1 Chemical Hazards

Chemical substances can enter the unprotected body by inhalation, skin absorption, ingestion, or injection (i.e., a puncture wound, etc.). A contaminant can cause damage to the point of contact or can act systemically, causing a toxic effect at a part of the body distant from the point of initial contact.

A list of selected constituents that have been detected at the Site, and constituents that may be detected based upon historic operations that were conducted on the Site, are presented below. This list also presents the Occupational Safety and Health Administration (OSHA) permissible exposure limits (PELs), National Institute for Occupational Safety and Health (NIOSH) recommended exposure limits (RELs), and NIOSH immediately dangerous to life or health (IDLH) levels.

CONSTITUENT	OSHA PEL	NIOSH REL	IDLH
tert-butylbenzene	NA	NA	NA
Lead	0.05 mg/m^3	0.05 mg/m^3	100 mg/m ³
PAHs ¹	0.2 mg/m^3	0.1 mg/m^3	80 mg/m ³
PCBs	0.5 mg/m^3	0.01 mg/m ³	5 mg/m^3

NA = Not Available

The potential routes of exposure for these analytes and chemicals include inhalation, ingestion, skin absorption and/or skin/eye contact. The potential for exposure through any one of these routes will depend on the activity conducted. The most likely routes of exposure for these activities that are performed during environmental activities at the Site include inhalation and skin/eye contact.

4.2 Physical Hazards

There are physical hazards associated with this project, which might compound the chemical hazards. Hazard identification, training, adherence to the planned environmental measures, and careful housekeeping can prevent many problems or accidents arising from physical hazards. Potential physical hazards associated with this project and suggested preventative measures include:

¹ PAH exposure limits listed as coal tar pitch volatiles in 1910.1000 Table Z-1 and NIOSH Pocket Guide to Chemical Hazards.

- Slip/Trip/Fall Hazards Some areas may have wet or frozen surfaces that will greatly increase the possibility of inadvertent slips. Caution must be exercised when using steps and stairs due to slippery surfaces in conjunction with the fall hazard. Good housekeeping practices are essential to minimize the trip hazards.
- Small Quantity Flammable Liquids Small quantities of flammable liquids will be stored in "safety" cans and labeled according to contents.
- Electrical Hazards Electrical devices and equipment shall be de-energized prior to working near them. All extension cords will be kept out of water, protected from crushing, and observed regularly to ensure structural integrity. Temporary electrical circuits will be protected with ground fault circuit interrupters. Only qualified electricians are authorized to work on electrical circuits. Heavy equipment (e.g., excavator, backhoe, drill rig) shall not be operated within 10 feet of high voltage lines, unless proper protection form the high voltage lines is provided by the appropriate utility company.
- Noise Work around large equipment often creates excessive noise. The effects of noise can include:
 - Workers being startled, annoyed, or distracted.
 - Physical damage to the ear resulting in pain, or temporary and or/permanent hearing loss.
 - Communication interference that may increase potential hazards due to the inability to warn of danger and proper safety precautions to be taken.

Proper hearing protection will be worn as deemed necessary. In general, feasible administrative or engineering controls shall be utilized when on-site personnel are subjected to noise exceeding an 8-hour time weighted average (TWA) sound level of 90 decibels on the A-weighted scale (dBA). In addition, whenever employee noise exposures equal or exceed an 8-hour TWA sound level of 85 dBA, employers shall administer a continuing, effective hearing conservation program as described in the OSHA Regulation 29 Code of Federal Rules (CFR) Part 1910.95.

- □ <u>Heavy Equipment</u> Each morning before start-up, heavy equipment will be checked to ensure safety equipment and devices are operational and ready for immediate use.
- Subsurface and Overhead Hazards Before any excavation activity, efforts will be made to determine whether underground utilities and potential overhead hazards will be encountered. Underground utility clearance must be obtained prior to subsurface work.
- <u>Excavation and Trenching Hazards</u> Excavations and trenches (i.e., test pits and removal of underground storage tanks) required during the course of this project will be completed in accordance with the requirements of 29 CFR 196 Part P (OSHA Excavations Regulation). As shown in 29 CFR 196.652(a)(1)(ii), excavations that are greater than 5 feet in depth require an adequate protective

system prior to entry by qualified personnel. The SSO will be responsible for identifying excavations that require protective systems and their implementation. Adequate protective systems will be designed and implemented as required in Part P of the applicable regulation.

Qualified personnel should remain at least 3 feet from edge of sidewalls of excavation and should view excavation from end walls to avoid cave-in. Samples from excavation should be collected using remote methods such as with an excavator bucket.

4.3 Environmental Hazards

Environmental factors such as weather, wild animals, insects, snakes and irritant plants can pose a hazard when performing outdoor tasks. The SSO shall make reasonable efforts to alleviate these hazards should they arise.

4.3.1 Heat Stress

The combination of warm ambient temperature and protective clothing increases the potential for heat stress. In particular,

- □ Heat rash
- □ Heat cramp
- □ Heat exhaustion
- □ Heat stroke

Site workers will be encouraged to increase consumption of water or electrolytecontaining beverages such as $Gatorade^{\text{(R)}}$ when the potential for heat stress exists. In addition, workers are encouraged to take rests whenever they feel any adverse effects that may be heat-related. The frequency of breaks may need to be increased upon worker recommendation to the SSO.

4.3.2 Exposure to Cold

With outdoor work in the winter months, the potential exists for hypothermia and frostbite. Protective clothing greatly reduces the possibility of hypothermia in workers. However, personnel will be instructed to wear warm clothing and to stop work to obtain more clothing if they become too cold. Employees will also be advised to change into dry clothes if their clothing becomes wet from perspiration or from exposure to precipitation.

5.0 SITE CONTROLS

To prevent migration of contamination caused through tracking by personnel or equipment, work areas, and personal protective equipment staging/decontamination areas will be specified prior to beginning operations.

5.1 Site Zones

In the area where contaminated materials present the potential for worker exposure (work zone), personnel entering the area must wear the mandated level of protection for the area. A "transition zone" shall be established where personnel can begin and complete personal and equipment decontamination procedures. This can reduce potential off-site migration of contaminated media. Contaminated equipment or clothing will not be allowed outside the transition zone (e.g., on clean portions of the Site) unless properly containerized for disposal. Operational support facilities will be located outside the transition zone (i.e., in a "support zone"), and normal work clothing and support equipment are appropriate in this area. If possible, the support zone should be located upwind of the work zone and transition zone.

5.2 General

The following items will be requirements to protect the health and safety of workers during implementation of activities that disturb contaminated material.

- □ Eating, drinking, chewing gum or tobacco, smoking, or any practice that increased the probability of hand to mouth transfer and ingestion of contamination shall not occur in the work zone and/or transition zone during disturbance of contaminated material.
- Personnel admitted in the work zone shall be properly trained in health and safety techniques and equipment usage.
- □ No personnel shall be admitted in the work zone without the proper safety equipment.
- □ Proper decontamination procedures shall be followed before leaving the Site.

6.0 **PROTECTIVE EQUIPMENT**

This section addresses the various levels of PPE, which are or may be required at this job site. Personnel entering the work zone and transition zone shall be trained in the use of the anticipated PPE to be utilized.

6.1 Anticipated Protection Levels

The following table summarizes the protection levels (refer to Section 6.2) anticipated for tasks to be implemented during this project.

TASK	PROTECTION LEVEL	COMMENTS/MODIFICATIONS
Site mobilization	D	
Site preparation	D	
Intrusive work	C/Modified D/D	Based on air monitoring, and SSO discretion.
Decontamination Area	D	
Site breakdown and demobilization	D	

It is anticipated that work conducted as part of this project will be performed in Level D or modified Level D PPE. If conditions are encountered that require Level A or Level B PPE, the work will immediately be stopped. The appropriate government agencies (e.g., City of Olean, NYSDEC, NYSDOH, CCHD, etc.) will be notified and the proper health and safety measures will be implemented (e.g., develop and implement engineering controls, upgrade in PPE, etc.). If conditions are encountered that require Level C PPE, the work will be temporarily suspended and the work site will be evaluated to limit exposure prior to implementing Level C PPE.

6.2 **Protection Level Descriptions**

This section lists the minimum requirements for each protection level. Modifications to these requirements can be made upon approval of the SSO. If Level A, Level B, and/or Level C PPE is required, Site personnel that enter the work zone and/or transition zone must be properly trained and certified in the use of those levels of PPE.

6.2.1 Level D

Level D consists of the following:

- □ Safety glasses
- □ Hard hat when working with heavy equipment

- Steel-toed or composite-toed work boots
- **D** Protective gloves during sampling or handling of potentially contaminated media
- Work clothing as prescribed by weather

6.2.2 Modified Level D

Modified Level D consists of the following:

- □ Safety glasses with side shields
- □ Hard hat when working with heavy equipment
- □ Steel-toed or composite-toed work boots
- □ Protective gloves during sampling or handling of potentially contaminated media
- Outer protective wear, such as Tyvek coverall [Tyveks (Sarans) and polyvinyl chloride (PVC) acid gear will be required when workers have a potential to be exposed to impacted liquids or impacted particulates].
- 6.2.3 Level C

Level C consists of the following:

- Air-purifying respirator with appropriate cartridges
- Outer protective wear, such as Tyvek coverall [Tyveks (Sarans) and PVC acid gear will be required when workers have a potential to be exposed to impacted liquids or particulates].
- □ Hard hat when working with heavy equipment
- □ Steel-toed or composite-toed work boots
- □ Nitrile, neoprene, or PVC overboots, if appropriate
- □ Nitrile, neoprene, or PVC gloves, if appropriate
- □ Face shield (when projectiles or splashes pose a hazard)

6.2.4 Level B

Level B protection consists of the items required for Level C protection with the exception that an air-supplied respirator is used in place of the air-purifying respirator. Level B PPE is not anticipated to be required during this project. If the need for level B PPE becomes evident, activities in the affected area will be stopped until conditions are further evaluated, and any necessary modifications to the HASP have been approved by the PM and SSO. Subsequently, the appropriate safety measures (including Level B PPE) must be implemented prior to commencing site activities.

6.2.5 Level A

Level A protection consists of the items required for Level B protection with the addition of a fully-encapsulating, vapor-proof suit capable of maintaining positive pressure. Level A PPE is not anticipated to be required during this project. If the need for level A PPE becomes evident, activities in the affected area will be stopped until conditions are further evaluated, and any necessary modifications to the HASP have been approved by the PM and SSO. Subsequently, the appropriate safety measures (including Level A PPE) must be implemented prior to commencing site activities.

6.3 **Respiratory Protection**

Any respirator used will meet the requirements of the OSHA 29 CFR 1910.134. Both the respirator and cartridges specified shall be fit-tested prior to use in accordance with OSHA regulations (29 CFR 1910). Air purifying respirators shall not be worn if contaminant levels exceed designated use concentrations. The workers will wear respirators with approval for: organic vapors less than 1,000 ppm; and dusts, fumes and mists with a TWA less than 0.05 milligrams per cubic meter (mg/m³).

No personnel who have facial hair, which interferes with respirator sealing surface, will be permitted to wear a respirator and will not be permitted to work in areas requiring respirator use.

Only workers who have been certified by a physician as being physically capable of respirator usage shall be issued a respirator. Personnel unable to pass a respiratory fit test or without medical clearance for respirator use will not be permitted to enter or work in areas that require respirator protection.

7.0 DECONTAMINATION PROCEDURES

This section describes the procedures necessary to ensure that both personnel and equipment are free from contamination when they leave the work site.

7.1 Personnel Decontamination

Personnel involved with activities that involve disturbing contaminated media will follow the decontamination procedures described herein to ensure that material which workers may have contacted in the work zone and/or transition zone does not result in personal exposure and is not spread to clean areas of the Site. This sequence describes the general decontamination procedure. The specific stages can vary depending on the Site, the task, and the protection level, etc.

- 1. Leave work zone and go to transition zone
- 2. Remove soil/debris from boots and gloves
- 3. Remove boots
- 4. Remove gloves
- 5. Remove Tyvek suit and discard, if applicable
- 6. Remove and wash respirator, if applicable
- 7. Go to support zone

7.2 Equipment Decontamination

Decontamination procedures for equipment are presented as Section 4.0 of the Quality Assurance Project Plan (QAPP).

7.3 Disposal

Disposable clothing will be disposed in accordance with applicable regulations. Liquids (e.g., decontamination water, etc.) or solids (e.g., soil) generated by remedial activities will be disposed in accordance with applicable regulations.

8.0 AIR MONITORING

During activities that have the potential to disturb contaminated soil, fill material, or groundwater, air monitoring will be conducted in order to determine airborne particulate and contamination levels. This ensures that respiratory protection is adequate to protect personnel against the chemicals that are encountered and that chemical contaminants are not migrating off-site. Additional air monitoring may be conducted at the discretion of the SSO. Readings will be recorded and be available for review.

Monitoring Device Action Level Response/Level of PPE < 1 ppm in breathing zone, Level D sustained 5 minutes Cease work, implement measures to reduce air emissions when the work is 1-25 ppm in breathing zone, performed, etc. If levels can sustained 5 minutes not be brought below 1 ppm PID Volatile Organic in the breathing zone, then **Compound Meter** upgrade PPE to Level C Level B, Stop work, 26-250 ppm in breathing evaluate the use of zone, sustained 5 minutes engineering controls, etc. Level A, Stop work, >250 ppm in breathing zone evaluate the use of engineering controls, etc. $< 100 \ \mu g/m^3$ over an integrated period not to Continue working exceed 15 minutes. Cease work, implement dust **RTAM Particulate Meter** suppression, change in way work performed, etc. If $> 100 \ \mu g/m^3$ levels can not be brought below 150 μ g/m³, then upgrade PPE to Level C

The following chart describes the direct reading instrumentation that will be utilized and appropriate action levels.

8.1 Particulate Monitoring

During activities where contaminated materials (e.g., soil, fill, etc.) may be disturbed, air monitoring will include real-time monitoring for particulates using a real-time aerosol monitor (RTAM) particulate meter at the perimeter of the work zone in accordance with the Final DER-10 Technical Guidance for Site Investigation and Remediation dated May 2010. DER-10 uses an action level of 100 μ g/m³ (0.10 mg/m³) over background conditions for an integrated period not to exceed 15 minutes. If the action level is

exceeded, or if visible dust is encountered, then work shall be discontinued until corrective actions are implemented. Corrective actions may include dust suppression, change in the way work is performed, and/or upgrade of personal protective equipment.

8.2 Volatile Organic Compound Monitoring

During activities where contaminated materials may be disturbed, a photoionization detector (PID) will be used to monitor total VOCs in the ambient air. The PID will prove useful as a direct reading instrument to aid in determining if current respiratory protection is adequate or needs to be upgraded. The SSO will take measurements before operations begin in an area to determine the amount of VOCs naturally occurring in the air. This is referred to as a background level. Levels of VOCs will periodically be measured in the air at active work sites, and at the transition zone when levels are detected above background in the work zone.

8.3 Community Air Monitoring Plan

During activities that have the potential to disturb contaminated soil, fill material, or groundwater, this Community Air Monitoring Plan (CAMP) will be implemented. The CAMP includes real-time monitoring for VOCs and particulates (i.e., dust) at the downwind perimeter of each designated work area when activities with the potential to release VOCs or dust are in progress at the Site. This CAMP is based on the NYSDOH Generic CAMP included as Appendix 1A of the NYSDEC document titled "*DER-10*, *Technical Guidance for Site Investigation and Remediation*" dated May 2010. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences/businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of project activities.

Exterior Investigations

The most significant nearby receptor is the residential housing located along North Union Street to the east of the Site. Due to proximity of the houses, at least one of the CAMP stations will be placed between the area of intrusive activities and the receptor. In addition, one CAMP monitoring station will be placed on the downwind Site perimeter, and the upwind Site perimeter will be periodically monitored to obtain background levels. [Note: The specific locations will be determined based upon wind conditions at the time of fieldwork.] A Site Plan depicting potential CAMP station locations is provided on Figure 2.

The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air. Reliance on the CAMP should not preclude simple, common sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

<u>Continuous monitoring</u> will be conducted during ground intrusive activities involving potentially contaminated soil, fill material or groundwater. Ground intrusive activities include, but are not limited to, test pitting or trenching, advancement/installation of test borings or monitoring wells, etc.

<u>**Periodic monitoring**</u> for VOCs will be conducted during non-intrusive activities involving potentially contaminated soil, fill material or groundwater where deemed appropriate (e.g., during collection of soil samples or groundwater samples, etc.).

8.3.1 VOC Monitoring, Response Levels, and Actions

VOCs must be monitored at the downwind perimeter of the immediate work area (i.e., the work zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- □ If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 ppm above background for the 15minute average, work activities must be temporarily halted and monitoring must be continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- □ If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source or vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less (but in no case less than 20 feet), is below 5 ppm over background for the 15-minute average.
- □ If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

The 15-minute readings must be recorded and made available for NYSDEC and NYSDOH personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

8.3.2 Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the downwind perimeters of the work zone at temporary particulate monitoring stations. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during work activities.

- □ If the downwind PM-10 particulate level is 100 micrograms per cubic meter $(\mu g/m^3)$ greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 $\mu g/m^3$ above the upwind level and provided that no visible dust is migrating from the work area.
- □ If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 μ g/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 μ g/m³ of the upwind level and in preventing visible dust migration.

Readings will be recorded and made available for review.

9.0 EMERGENCY CONTINGENCY PLAN

This section presents the emergency contingency plan (ECP) describing the procedures to be performed in the event of an emergency (e.g., fire, spill, tank/drum release, etc.). To provide first-line assistance to field personnel in the case of illness or injury, the following items will be made immediately available on the Site:

- □ First-aid kit;
- □ Portable emergency eye wash; and
- □ Supply of clean water.

9.1 Emergency Telephone Numbers

The following telephone numbers are listed in case there is an emergency at the Site:

Fire/Police Department:	911
Poison Control Center:	(800) 222-1222
<u>NYSDEC</u> Environmental Remediation Spill Hotline	(716) 851-7220 (800) 457-7362
<u>NYSDOH</u> Public Health Duty Officer	(866) 881-2809
<u>CCHD</u> 24 Hour Hotline	(716) 373-8010 ext. 3980
SOLEPOXY Mark Wendel	(716) 378-8546
DAY ENVIRONMENTAL, INC. Raymond Kampff	(585) 454-0210 x108
<u>Nearest Hospital</u> :	Olean General Hospital 515 Main Street, Olean, NY 14760 (716) 373-2600 (Main) (716) 375-2675 (Emergency Department)
Directions to the Hospital:	Head northeast on Franklin Street toward North Union Street for approximately 0.1 miles. Turn right on N. Union Street and proceed approximately 0.8 miles. Continue onto Main Street and travel approximately 0.1 miles, then turn left into Olean General Hospital (Figure 1).

9.2 Evacuation

During activities involving potential disturbance of contaminated soil, fill material, or groundwater, a log of each individual entering and leaving the Site will be kept for emergency accounting practices. Although unlikely, it is possible that a site emergency could require evacuating personnel from the Site. If required, the SSO will give the appropriate signal for site evacuation (i.e., hand signals, alarms, etc.).

All personnel shall exit the Site and shall congregate in an area designated by the SSO. The SSO shall ensure that all personnel are accounted for. If someone is missing, the SSO will alert emergency personnel. The appropriate government agencies will be notified as soon as possible regarding the evacuation, and any necessary measures that may be required to mitigate the reason for the evacuation.

9.3 Medical Emergency

In the event of a medical emergency involving illness or injury to one of the on-site personnel, Emergency Medical Services (EMS) and the appropriate government agencies should be notified immediately. The area in which the injury or illness occurred shall not be entered until the cause of the illness or injury is known. The nature of injury or illness shall be assessed. If the victim appears to be critically injured, administer first aid and/or cardio-pulmonary resuscitation (CPR) as needed. If appropriate, instantaneous real-time air monitoring shall be done in accordance with air monitoring outlined in Section 8.0 of this HASP.

9.4 Contamination Emergency

It is unlikely that a contamination emergency will occur; however, if such an emergency does occur, the specific work area shall be shut down and immediately secured. If an emergency rescue is needed, notify Police, Fire Department and EMS units immediately. Advise them of the situation and request and expedient response. The appropriate government agencies shall be notified immediately. The area in which the contamination occurred shall not be entered until the arrival of trained personnel who are properly equipped with the appropriate PPE and monitoring instrumentation as outlined in Section 8.0 of this HASP.

9.5 Fire Emergency

In the event of a fire on-site, all non-essential site personnel shall be evacuated to a safe, secure area. The Fire Department will be notified immediately, and advised of the situation and the identification of any hazardous materials involved. The appropriate government agencies shall be notified as soon as possible.

The four classes of fire along with their constituents are as follows:

Class A:	Wood, cloth, paper, rubber, many plastics, and ordinary combustible materials.
Class B:	Flammable liquids, gases and greases.
Class C:	Energized electrical equipment.
Class D:	Combustible metals such as magnesium, titanium, sodium, and potassium.

Small fires on-site may be actively extinguished; however, extreme care shall be taken while in this operation. Approaches to the fire shall be done from the upwind side if possible. Distance from on-site personnel to the fire shall be close enough to ensure proper application of the extinguishing material but far enough away to ensure that the personnel are safe. The proper extinguisher shall be utilized for the Class(es) of fire present on the site. If possible, the fuel source shall be cut off or separated from the fire. Care must be taken when performing operations involving the shut-off of valves and manifolds, if present.

Examples of proper extinguishing agent as follows:

Class A:	Water Water with 1% AFFF Foam (Wet Water) Water with 6% AFFF or Fluorprotein Foam ABC Dry Chemical
Class B:	ABC Dry Chemical Purple K Carbon Dioxide Water with 6% AFFF Foam
Class C:	ABC Dry Chemical Carbon Dioxide
Class D:	Metal-X Dry Powder

No attempt shall be made against large fires these shall be handled by the Fire Department.

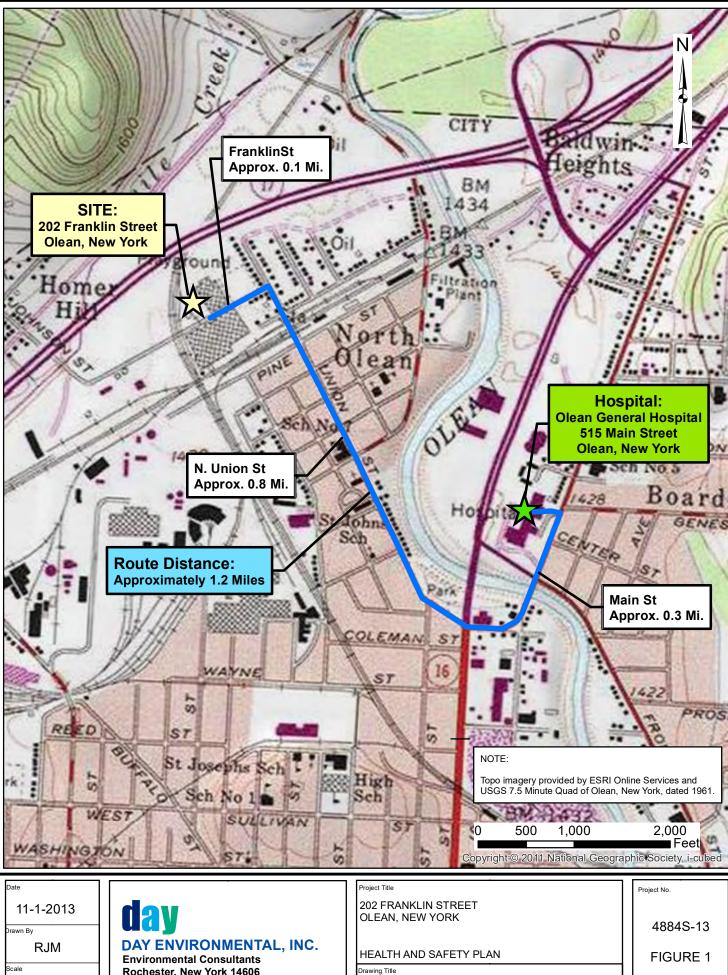
9.6 Spill or Air Release

In the event of a spill or air release of hazardous materials on-site, the specific area of the spill or release shall be shut down and immediately secured. The area in which the spill or release occurred shall not be entered until the cause can be determined and site safety

can be evaluated. Non-essential site personnel shall be evacuated to a safe and secure area. The appropriate government agencies shall be notified as soon as possible. The spilled or released material shall be immediately indentified and appropriate containment measures shall be implemented, if possible. Real-time air monitoring shall be implemented as outlined in Section 8.0 of this HSAP. If the materials are unknown, Level B protection is mandatory. If warranted, samples of the materials shall be acquired to facilitate identification.

9.7 Locating Containerized Waste and/or Underground Storage Tanks

In the event that unanticipated containerized waste (e.g., drums) and/or USTs are located during remedial activities, the work must be stopped in the specific area until site safety can be evaluated and addressed. Non-essential Site personnel shall not work in the immediate area until conditions including possible exposure hazards are addressed. The appropriate government agencies shall be notified as soon as possible. The SSO shall monitor the area as outlined in Section 8.0 of this HASP.


Prior to any handling, unanticipated containers will be visually assessed by the SSO to gain as much information as possible about their contents. As a precautionary measure, personnel shall assume that unlabelled containers and/or tanks contain hazardous materials until their contents are characterized. To the extent possible based upon the nature of the containers encountered, actions may be taken to stabilize the area and prevent migration (e.g., placement of berms, etc.). Subsequent to initial visual assessment and any required stabilization, properly trained personnel will sample, test, remove, and dispose of any containers and/or tanks, and their contents. After visual assessment and air monitoring, if the material remains unknown, Level B protection is mandatory.

10.0 ABBREVIATIONS

AFFF	Aqueous Film Forming Foams
BCP	Brownfield Cleanup Program
BOA	Brownfield Opportunity Area
CAMP	Community Air Monitoring Program
CCHD	Cattaraugus County Health Department
CFR	Code of Federal Regulations
CPR	Cardio-Pulmonary Resuscitation
DAY	Day Environmental, Inc.
dBA	Decibels on the A-Weighted Scale
ECP	Emergency Contingency Plan
EMS	Emergency Medical Service
ESA	Environmental Site Assessment
GC	Gas Chromatograph
HASP	Health and Safety Plan
IDLH	Immediately Dangerous to Life or Heath
mg/m ³	Milligram Per Meter Cubed
NIOSH	National Institute for Occupational Safety and Health
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OSHA	Occupational Safety and Health Administration
PEL	Permissible Exposure Limit
PID	Photoionization Detector
PM	Project Manager
PM-10	Particulate Matter Less Than 10 Micrometers In Diameter
PPE	Personal Protection Equipment
ppb	Parts Per Billion
ppm	Parts Per Million
PVC	Polyvinyl Chloride
QAPP	Quality Assurance Project Plan
REC	Recognized Environmental Condition
REL	Recommended Exposure Limit
RI/RAA	Remedial Investigation/Remedial Alternatives Analysis
ROW	Right-of-Way
RTAM	Real-Time Aerosol Monitor
SCG	Standards, Criteria and Guidance
SSO	Site Safety Officer
TPH	Total Petroleum Hydrocarbon
TWA	Time-Weighted Average
$\mu g/m^3$	Micrograms Per Meter Cubed
UST	Underground Storage Tank
VOC	Volatile Organic Compound
	- 0 r

Attachment 1

Figure 1 – Route for Emergency Services


Route to Emergency Services

AS NOTED

Rochester, New York 14606 New York, New York 10170

Attachment 2

Figure 1 – Site Plan Depicting Tentative CAMP Station Locations

	Proje	Project Title		DESIGNED BY	DATE
FI	ect No. 4			RLK	11-2013
Gl	884			DRAWN BY	DATEDRAWN
JR	4S	HEALTH AND SAFETY PLAN	DAY ENVIRONMENTAL, INC.	S d J	11-2013
E	-1	Deswine Title	Environmental Consultants	0	
Ξ2	3		Rochester, New York 14606	SCALE	DATEISSUED
2		Proposed Community Air Monitoring Plan Locations	New York, New York 10170	AS NOTED	11-18-2013

APPENDIX I SITE MANAGEMENT FORMS

Site Management Plan, Site # [C905038]

Site-Wide Inspection Form

211 Franklin Street

City of Olean, New York

NYSDEC Site Number: C905038

Date of Inspection Site Visit:

Personnel Performing Inspection Site Visit:

Affiliation of Personnel:

1. Check integrity of impermeable portions (e.g., concrete and asphalt) of cover system, include whether any sloughing, cracks, settlement, damage, etc.

Discuss observations and any corrective actions:

2. Check integrity of permeable portions (e.g., soil) of cover system, include whether any sloughing, cracks, settlement, damage, etc.

Discuss observations and any corrective actions:

3. Check integrity of vegetative cover (e.g., grass), include whether any dead areas, erosion, etc.

Discuss observations and any corrective actions:

4. Groundwater Monitoring Well Assessment

Discuss observations and any corrective actions:

Summary of Green Remediation Metrics for Site Management

Site Name:		Site Code:
Address:		City:
State:	Zip Code:	_County:

Initial Report Period (Start Date of period covered by the Initial Report submittal) Start Date: ______

Current Reporting Period

Reporting Period From: ______To: _____

Contact Information

Preparer's Name:	Phone No.:
Preparer's Affiliation:	

I. Energy Usage: Quantify the amount of energy used directly on-site and the portion of that derived from renewable energy sources.

	Current Reporting Period	Total to Date
Fuel Type 1 (e.g. natural gas (cf))		
Fuel Type 2 (e.g. fuel oil, propane (gals))		
Electricity (kWh)		
Of that Electric usage, provide quantity:		
Derived from renewable sources (e.g. solar, wind)		
Other energy sources (e.g. geothermal, solar thermal (Btu))		

Provide a description of all energy usage reduction programs for the site in the space provided on Page 3.

II. Solid Waste Generation: Quantify the management of solid waste generated onsite.

	Current Reporting Period (tons)	Total (tons)	to	Date
Total waste generated on-site				
OM&M generated waste				
Of that total amount, provide quantity:				
Transported off-site to landfills				
Transported off-site to other disposal facilities				
Transported off-site for recycling/reuse				
Reused on-site				

Provide a description of any implemented waste reduction programs for the site in the space provided on Page 3.

III. Transportation/Shipping: Quantify the distances travelled for delivery of supplies, shipping of laboratory samples, and the removal of waste.

	Current Reporting Period (miles)	Total to Date (miles)
Standby Engineer/Contractor		
Laboratory Courier/Delivery Service		
Waste Removal/Hauling		

Provide a description of all mileage reduction programs for the site in the space provided on Page 3. Include specifically any local vendor/services utilized that are within 50 miles of the site.

IV. Water Usage: Quantify the volume of water used on-site from various sources.

	Current Reporting Period (gallons)	Total to Date (gallons)
Total quantity of water used on-site		
Of that total amount, provide quantity:		
Public potable water supply usage		
Surface water usage		
On-site groundwater usage		
Collected or diverted storm water usage		

Provide a description of any implemented water consumption reduction programs for the site in the space provided on Page 3.

V. Land Use and Ecosystems: Quantify the amount of land and/or ecosystems disturbed and the area of land and/or ecosystems restored to a pre-development condition (i.e. Green Infrastructure).

	Current Reporting Period (acres)	Total to (acres)	Date
Land disturbed			
Land restored			

Provide a description of any implemented land restoration/green infrastructure programs for the site in the space provided on Page 3.

Description of green remediation programs reported above
(Attach additional sheets if needed)
Energy Usage:
Waste Generation:
Transportation/Shipping:
Water usage:
Land Use and Ecosystems:
Other:

CERTIFICATION BY CONTRAC	CTOR						
I,	(Name)	do	hereby	certify	that	Ι	am
(Title) of	the Compa	.ny/C	orporation	herein	referen	ced	and
contractor for the work described in	the foregoin	ng ap	plication f	for paym	ent. Ac	cor	ding
to my knowledge and belief, all items	s and amoun	ts sho	own on the	e face of	this app	olica	tion
for payment are correct, all work h	as been per	form	ed and/or	material	s suppl	lied,	the
foregoing is a true and correct statem	ent of the co	ontrac	et account	up to and	l includ	ling	that
last day of the period covered by this	application	•					

Date

Contractor

APPENDIX J REMEDIAL SYSTEM OPTIMIZATION TABLE OF CONTENTS

Site Management Plan, Site # [C905038]

REMEDIAL SYSTEM OPTIMIZATION FOR [Site Name]

- TABLE OF CONTENTS
- 1.0 INTRODUCTION
- 1.1 SITE OVERVIEW
- **1.2 PROJECT OBJECTIVES AND SCOPE OF WORK**
- **1.3 REPORT OVERVIEW**
- 2.0 REMEDIAL ACTION DESCRIPTION
- 2.1 SITE LOCATION AND HISTORY
- 2.2 REGULATORY HISTORY AND REQUIREMENTS
- 2.3 CLEAN-UP GOALS AND SITE CLOSURE CRITERIA
- 2.4 PREVIOUS REMEDIAL ACTIONS
- 2.5 DESCRIPTION OF EXISTING REMEDY
- 2.5.1 System Goals and Objectives
- 2.5.2 System Description
- 2.5.3 Operation and Maintenance Program
- 3.0 FINDINGS AND OBSERVATIONS
- 3.1 SUBSURFACE PERFORMANCE
- 3.2 TREATMENT SYSTEM PERFORMANCE
- 3.3 REGULATORY COMPLIANCE 3-3
- 3.4 MAJOR COST COMPONENTS OR PROCESSES
- 3.5 SAFETY RECORD
- **4.0 RECOMMENDATIONS**
- 4.1 RECOMMENDATIONS TO ACHIEVE OR ACCELERATE SITE CLOSURE
- 4.1.1 Source Reduction/Treatment
- 4.1.2 Sampling
- 4.1.3 Conceptual Site Model (Risk Assessment)
- 4.2 RECOMMENDATIONS TO IMPROVE PERFORMANCE
- 4.2.1 Maintenance Improvements
- 4.2.2 Monitoring Improvements
- 4.2.3 Process Modifications

4.3 RECOMMENDATIONS TO REDUCE COSTS

- 4.3.1 Supply Management
- 4.3.2 Process Improvements or Changes
- 4.3.3 Optimize Monitoring Program
- 4.3.4 Maintenance and Repairs
- 4.4 RECOMMENDATIONS FOR IMPLEMENTATION