PERIODIC REVIEW REPORT

OLEAN REDEVELOPMENT PARCEL 2 BCP Site No. C905032

OLEAN, NEW YORK

April 2023

0370-016-001

Prepared for:

Solean West LLC

Prepared By:

Benchmark Civil/Environmental Engineering & Geology, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599

PERIODIC REVIEW REPORT - 2023

Olean Redevelopment Parcel 2

Table of Contents

1.0	INT	RODUCTION	1
	1.1	Site Background	1
	1.2	Purpose and Scope	
	_		
2.0	SITE	E OVERVIEW	
	2.1	Site Redevelopment Activities	5
3.0	SITE	E MANAGEMENT PLAN	7
	3.1	Monitoring and Sampling Plan	
	5.1	3.1.1 LNAPL Monitoring/Recovery System	
		3.1.2 Groundwater Sampling and Analysis	
		3.1.2.1 Results	
		3.1.3 SVE System and Monitoring	
		3.1.3.1 Results	
		3.1.4 Monitoring Results Summary	12
	3.2	Operation & Maintenance Plan	12
		3.2.1 SVE System	
		3.2.1.1 Routine System Operation and Maintenance	
		3.2.1.2 System Monitoring Devices and Alarms	13
		3.2.2 Annual Inspection and Certification Program	13
	3.3	Excavation Work Plan	14
		3.3.1 Institutional Controls	14
		3.3.2 Engineering Controls	14
4.0	Con	ICLUSIONS AND RECOMMENDATIONS	16
	4.1	Conclusions	
	4.2	Recommendations	
5.0	DEC	CLARATION/LIMITATION	17

PERIODIC REVIEW REPORT - 2023 Olean Redevelopment Parcel 2

Table of Contents

LIST OF FIGURES

Figure 1	Site Location and Vicinity Map
Figure 2	Site Plan (Pre-Remediation)
Figure 3	Site Plan (Post-Remediation)
Figure 4	Survey/Tax Parcel Map
Figure 5	Site Cover System Map
Figure 6	Groundwater Isopotential Map (August 2022)
Figure 7	Soil Vapor Extraction System Map

LIST OF TABLES

Table 1	LNAPL Monitoring and Collection Log
Table 2	Groundwater Monitoring Well Water Levels
Table 3	2008-2022 Groundwater Analytical Summary - Organics
Table 4	2008-2022 Groundwater Analytical Summary - Metals

APPENDICES

Appendix A Site Inspection Forms
Appendix B Site Photolog
Appendix C Groundwater Sampling Field Forms and Analytical Data
Appendix D SVE Periodic Inspection Logs

1.0 INTRODUCTION

Benchmark Civil/Environmental Engineering & Geology, PLLC (Benchmark) has prepared this Periodic Review Report (PRR) on behalf of Solean West LLC (Solean West) to summarize the post-remedial status of New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site No. C905032, located in Olean, Cattaraugus County, New York (see Figure 1), commonly referred to as the Olean Redevelopment Parcel 2 (Site).

This PRR has been prepared for the Site in accordance with NYSDEC DER-10/ Technical Guidance for Site Investigation and Remediation (May 3, 2010). This PRR and the NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form (see Appendix A) have been completed for the post-remedial activities at the Site for reporting period March 15, 2022 to March 15, 2023.

1.1 Site Background

The Olean Redevelopment Parcel 2 Site is a portion of a larger former refinery operation that operated in the Olean area from the mid-1800s through the 1950s. Separate refineries operated on the Site and were merged in 1902 into the Vacuum Oil Company, and then in 1931 became the Socony-Vacuum Oil Company until 1954 when the refinery closed (see Figure 2). The property was divided into multiple parcels in the 1960s. Felmont Oil Company (Felmont) constructed an anhydrous ammonia plant on the northern parcels where they manufactured ammonia from natural gas. Felmont sold the ammonia to Agway for use in manufacturing fertilizer at Agway's plant located on what is now referred to as Olean Redevelopment Parcel 1. In 1983, Agway purchased the portion of the Felmont site that included the ammonia production plant. Agway dismantled and sold both the ammonia and fertilizer plants in 1984.

The properties adjoining and near the Site include commercial and industrial properties including a vacant former industrial site (Olean Redevelopment Parcel 1) remediated under the BCP and undergoing redevelopment for commercial use to the south; Southern Tier Rail line to the north; a former industrial site (Olean Redevelopment Parcel 3) remediated under the BCP and redeveloped as a commercial solar farm to the east; and a Verizon Service Center to the west.

A Remedial Action Work Plan (RAWP) was prepared and submitted by Olean Gateway, LLC in March 2014 and approved by NYSDEC to address the residual soil and groundwater remediation. The remedial program was successful in achieving the remedial objectives for the Site, and the Site Management Plan (SMP) and Final Engineering Report (FER) were approved by NYSDEC in October 2014 and December 2014. The Certificate of Completion (COC) was received December 14, 2015 and recorded on December 24, 2015.

The Site has been redeveloped as a photovoltaic solar system consisting of nominally 300 solar arrays to in-feed the nearby National Grid commercial electrical system (grid) as described in the 2017 PRR. Figures 2 and 3 illustrate the pre- and post-remediation site conditions.

1.2 **Purpose and Scope**

The SMP requires, among other things, periodic inspection, and certification that the institutional and engineering controls implemented at the Site remain in place and are functioning as designed. This PRR serves that purpose as well as documenting post-remedial actions taken since the COC was issued and during this reporting period, if any.

2.0 SITE OVERVIEW

The Site is located at 1470 Buffalo Road in the City of Olean, Cattaraugus County, New York and identified as Section 94.047 Block 2 and Lot 28.1 on the Cattaraugus County Tax Map (see Figure 4). The Site is an approximately 9.1-acre area and is bounded by the Southern Tier Rail Authority railroad tracks to the north, the Olean Redevelopment Parcel 1 (NYSDEC BCP Site C905031) to the south, the Olean Redevelopment Parcel 3 (NYSDEC BCP Site C905033) to the east, and Verizon Service Center to the west. The owner of the Site at the time of issuance of the SMP was Olean Gateway LLC. Site ownership was transferred to Solean West LLC in 2016.

Remedial activities conducted between 2010 and 2015 were completed in accordance with the approved Interim Remedial Measures (IRM) Work Plan and RAWP. The remedial activities included:

Interim Remedial Measures

IRMs were previously performed in 2010 by ExxonMobil in accordance with the IRM Work Plan. The IRM Report for the Buffalo Street properties (referred to previously as BCP Site Nos. 1, 2 & 3) was prepared in March 2011 prior to the property being purchased by Olean Gateway. The previous IRM activities associated with the Olean Redevelopment Site 2 consisted of the following:

- Closure/removal of several structures/tanks:
 - One vault structure (20'x20'x8' deep) contained sediment/soil on the bottom of the vault, samples of which did not indicate the presence of significant levels of organics. The vault was closed in-place by filling with sand.
 - Two approximate 3,500-gallon and one 13,000-gallon steel underground storage tanks (USTs) were found by W&C that, when found, contained sand. A sample of the sand contained only minor detections of organics and, as such, the USTs were considered "closed in-place" by the NYSDEC.
 - Ten USTs were identified on the western portion of the Site. The USTs were believed to be process tanks associated with wax manufacturing. Liquid and solid samples from the tanks contained minor concentrations of organics. The size of the tanks ranged from approximately 700 to 2,300 gallons. The tanks were removed from the Site.
- Recovery of measurable light non-aqueous phase liquid (LNAPL) from groundwater monitoring wells via sorbent socks.

Remedial Actions

The following is a summary of the remedial actions completed by Olean Gateway at the Olean Redevelopment Parcel 2:

- Approximately 2,715 tons of arsenic-contaminated soil/fill was excavated, loaded, and transported off-site by D&H Excavating for disposal at Waste Management's Chaffee Landfill, located in Chaffee, NY.
- Approximately 143 tons of mercury-contaminated soil/fill was excavated, loaded, and transported off-site by D&H Excavating for disposal at Waste Management's Chaffee Landfill, located in Chaffee, NY.
- Approximately 638 tons of grossly contaminated petroleum soils (GCPS) was excavated, loaded, and transported off-site by D&H Excavating for disposal at Waste Management's Chaffee Landfill, located in Chaffee, NY.
- Approximately 33,767 linear feet of subsurface metallic product piping (steel, cast iron, lead and copper) was exposed, tapped, evacuated of contents, removed, cleaned, and recycled. An additional 156 linear feet of wood pipe was also exposed, tapped, evacuated of contents, removed, cleaned, and disposed off-site. Piping that extended beyond the property boundary was capped and/or grouted at the apparent property line. Approximately 240 cubic yards of GCPS was excavated during piping removal activities and treated on the on-site force vented biopiles (FVBPs) and reused as backfill below the cover system.
- Approximately 25, 55-gallon drums were generated from the removal of the abandoned subsurface piping. The contents of the piping included LNAPL, residual pipe scale, and product sludge. The drums were disposed at CWM Chemical Services, LLC, located in Model City, NY. Water extracted from excavations during piping removal was pumped into holding tanks, treated with bag filters and granular activated carbon (GAC) on-site, pumped into a secondary on-site temporary holding tank, sampled, and discharged to the City of the Olean sanitary sewer with approval under an Industrial Pretreatment Program permit.
- A soil vapor extraction (SVE) system was installed and operated to address GCPS remaining in-place in the deeper soil/fill from approximately 2 to 15 fbgs. The SVE system included the installation of 13 SVE wells, associated conveyance piping, and placement of one trailer-mounted SVE blower (refer to Figure 6). Emissions from the SVE system are controlled using a biofilter contained within an approximate 20-foot by 8-foot steel roll-off box outfitted with perforated pipe. The biofilters contain an approximate 1-foot thick gravel layer at the base of the box overlain by approximately 3 feet of wood chip and compost filter medium, which allowed the naturally occurring microbes to bioremediate the air stream and control the nuisance odors from the SVE system.

- LNAPL recovery was completed using hydrocarbon absorbent socks at monitoring well WCMW1 and a product pump at well W14. The LNAPL thickness at these two groundwater monitoring wells varied from 0 to 6.5 feet in well W14 and 0.02 to 0.6 feet in well WCMW1 in 2014-2015; there was no evidence of LNAPL in well WCMW4 in 2014-2015. During LNAPL monitoring events, the socks were wrung of product and reinstalled. The volume of recovered LNAPL from well W14 was approximately 48 gallons and well WCMW1 0.5 gallons. Recovered product was transferred to properly labeled and sealed 55-gallon drums at the Site for future off-site disposal. Socks with obvious staining/saturation of LNAPL were removed and replaced with new socks.
- A final cover system consisting of a demarcation layer, minimum 12 inches of clean imported soil, and vegetation was installed at the Site in April-May 2015. Prior to redevelopment, the vegetation was established across the Site.
- An Environmental Easement was executed in December 2015 between Olean Gateway and NYSDEC and recorded with the deed in the Cattaraugus County Clerk's office to restrict land use to commercial/industrial operations; restrict the use of groundwater as a source of potable or process water without necessary water quality treatment as determined by the NYSDOH or County DOH; and prevent future exposure to any contamination remaining at the Site.

Development and implementation of the SMP for management of remaining contamination as required by the Environmental Easement., which includes plans for (1) institutional and engineering controls, (2) excavation, (3) monitoring and reporting, and (4) operation and maintenance.

2.1 Site Redevelopment Activities

The Site was sold by Olean Gateway to Solean West in March 2016. Solean West leases the land to the Solar Company. The COC was transferred from Olean Gateway on June 21, 2016 to Solean West LLC (Solean West) and 1470B PV LLC (Solar Company). The Site was redeveloped, in accordance the NYSDEC-approved August 31, 2016 Work Plan for Redevelopment Activities, as a photovoltaic solar system consisting of nominally 300 solar arrays to in-feed the nearby National Grid commercial electrical system (grid). Redevelopment construction began in October 2016 and was substantially complete as of the date of the 2017 PRR. Solar facility construction activities included installation of a new access road, concrete pad, aboveground equipment, power poles, fence gates and support poles, and conduits. Two power poles, four equipment support poles, four gate posts, fence posts, and a small amount

of conduit (for Verizon/National Grid communications) penetrated through the cover system; all other construction activities occurred on the ground surface or above the demarcation layer. No additional redevelopment activities occurred during this reporting period.

3.0 SITE MANAGEMENT PLAN

An SMP was prepared for the Site and approved by the Department in November 2015. The SMP includes a Monitoring and Sampling Plan, an Operation & Maintenance (O&M) Plan, an Excavation Work Plan (EWP), and a copy of the Environmental Easement. A brief description of the components of the SMP is presented below.

3.1 Monitoring and Sampling Plan

The monitoring and sampling plan specifies the methods used for sampling of:

- LNAPL monitoring and collection.
- Sampling and analysis of groundwater.
- Remedial SVE system monitoring.
- Site-wide inspection.
- Evaluating Site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment.

3.1.1 LNAPL Monitoring/Recovery System

LNAPL has historically been detected on-site in monitoring well WCMW1 and W14. WCMW4 was previously monitored for LNAPL but NYSDEC approved the removal of the well from the LNAPL monitoring in a comment letter dated June 21, 2021. Table 1 presents a summary of the monthly LNAPL measurements for the period of July 17, 2014 through February 9, 2023. During the March 15, 2022 to March 15, 2023 reporting period, the LNAPL thickness ranged from not detectable to 0.09 feet in well WCMW1. LNAPL is recovered using hydrocarbon absorbent socks in well WCMW1. The adsorbent socks are installed in the well at the LNAPL/water interface. During monthly inspections, socks that had obvious staining/saturation of LNAPL are removed and replaced with new socks. As indicated on Table 1, there were four sock change-outs for well WCMW1 during this reporting period. Used socks that are changed out are containerized in drums, labeled, and characterized for off-site disposal. An oil skimmer was installed in well W14 in September 2015 and replaced in July 2016. Recoverable product at well W14 was present during 2 of the 12 monthly monitoring events, but any recoverable product generated by the belt skimmer went directly into an on-site storage drum for disposal and therefore no product level measurements were

taken. Approximately 2 gallons of LNAPL were recovered from well W14 this reporting period. The on-site drum currently contains approximately 22 gallons of product. Drums will be shipped when they are full.

3.1.2 Groundwater Sampling and Analysis

Benchmark completed the annual groundwater monitoring event August 2, 2022. Well WCMW4 measured only 0.4 inches of water during the June 2021 sampling event; therefore, there was insufficient water volume to sample. Wells WCMW1 and W14 both had product present at the time of the August 2022 sampling event; therefore, only three wells (W13, W17, and W28) were sampled. A groundwater sample was obtained from each well and analyzed for target compound list (TCL) volatile organic compounds (VOCs) and tentatively identified compounds (TICs) using USEPA Method 8260; semi-VOCs and TICs via USEPA Method 8270; and arsenic and lead using USEPA Method 6010. Appendix C includes field notes from the groundwater sampling event and the laboratory analytical data package. Table 2 summarizes groundwater elevations from 2012 through 2022. Tables 3 and 4 summarize the 2022 analytical results as well as historic groundwater quality data.

3.1.2.1 Results

Groundwater Elevations

The groundwater elevations were contoured as shown on Figure 6 using August 2022 water level data. Overall groundwater flow direction in the uppermost sand and gravel aquifer is toward the southeast consistent with the prior groundwater contour maps. As shown on Figure 7, all wells except W13 are downgradient of the SVE system.

Analytical Data

Analytical results from the August 2022 groundwater sampling event are presented in Table 3 (VOCs and SVOCs) and Table 4 (metals).

VOCs

Groundwater samples from wells W13 and W28 did not contain VOCs at concentrations above NYSDEC Class GA groundwater quality standards (GWQSs). Results from well W17 indicated five VOCs above GWQSs. Except for 1,2,4-trimethylbenzene, the

VOC concentrations are lower than those detected in 2021. VOC-TICs were detected at all three wells during the August 2022 sampling event. The VOC-TIC concentration at well W13 has decreased consistently since the June 2020 sampling. The VOC-TIC concentrations in wells W17 and W28 are consistent with 2021 results.

SVOCs

Benzo(a)anthracene was detected above its GWQS (0.002 ug/L) in wells W13 (0.02 ug/L) and W28 (0.05 ug/L). Chrysene was detected above its GWQS (0.002 ug/L) in wells W17 (0.03 ug/L) and W28 (0.08 ug/L). SVOC-TIC concentrations were of the same order of magnitude as prior testing results without any apparent trend.

Metals

Arsenic was not detected in well W17 and detected at concentrations well below the GWQS/GV in wells W13 and W28. Lead was not detected in any of the three wells sampled. Well WCMW4, where arsenic and lead were detected above GWQSs in July 2019¹, was not sampled due to insufficient volume at the time of the August 2022 sampling event.

3.1.3 SVE System and Monitoring

The SVE system (referred to as 2-SVE-1) has been in operation at Olean Redevelopment Parcel 2 since October 2014. The SVE system is comprised of two main components:

- 1. The collection system is a constructed of a series of vertical extraction wells and extraction well manifold piping.
- 2. The trailer-mounted mechanical SVE system consists of a blower, motor and ancillary equipment that generates the vacuum and moves the extracted vapor to the biofilter.

The blower is manifolded to a series of 13 wells designated 2-SVE-1 through 2-SVE-13 (refer to Figure 7). The extracted air is conveyed through 4" PVC piping installed below grade from the wells to the blower. Figure 7 shows the approximate piping network. The

¹ As discussed in the 2020 PRR, the metal detections in well WCMW4 were attributed to the turbid nature of the sample, and future groundwater samples with high turbidity are to be filtered by the laboratory prior to analysis.

extracted air is treated in a biofilter prior to discharge to the atmosphere. The biofilter treatment medium consists of a mixture of compost and mulch (approx. 50% each by weight). The natural bacteria in the biofilter use the organics in the waste stream as a source of energy. The biofilter medium needs to be maintained in a slightly wet state and periodically mixed (fluffed-up). Biofilter media requires mixing when nuisance odors become an issue or when a thick cake layer forms on top preventing proper venting. The top 4-6 inches of the biofilter media is mixed/raked periodically to keep the media broken up and loose. Raking of the biofilter was not required during the 2022/2023 reporting period due to low effluent PID readings. Table D-1 records biofilter mixing events, SVE monitoring parameters, and tracks total VOC mass removal rates and amounts.

On November 18, 2019, Solean West submitted a request to NYSDEC with verification soil/fill sampling data for consideration of termination of the SVE operation since the VOC removal had leveled off as evidenced by the data submitted in the PRR. The Department replied on January 6, 2020 stating that system shutdown was not approved; however, the SVE operation could be reduced and optimized to focus on treating areas that still show impact.

After further discussions with the Department, an additional request was filed on March 16, 2020² proposing the shut-down of the eastern leg of the SVE system (SVE wells 2-SVE-8 through 2-SVE-13). This request proposed the following revisions to the SMP for operation of SVE System 2-SVE-1 effective immediately:

- Discontinue operation of the eastern leg of the SVE system, which includes wells 2-SVE-8 through 2-SVE-13.
- Continue operation of wells 2-SVE-2 through 2-SVE-6 and discontinue operation of wells 2-SVE-1 and 2-SVE-7 due to consistently low wellhead PID readings and to obtain higher vacuum at the operating wells.
- Continue PID readings at wellheads 2-SVE-1 through 2-SVE-13.
- Discontinue operation of the SVE system during the winter months (December through March) with startup once temperatures are consistently above 32°F.

² Benchmark Environmental Engineering & Science, PLLC. March 16, 2020 Letter to NYSDEC Re: SMP Revision 1: Operation of SVE System 2-SVE-1 Olean Redevelopment Parcel 2 (Site No. C905032).

On April 1, 2020³ the Department issued an approval of the proposed reduction in SVE system operation, which supersedes the operational requirements of the SMP. On April 7, 2020, Benchmark attempted to shut off the proposed wells listed above, which resulted in an increase in vacuum with the potential to cause damage to the system. Alternative wells had to be shut off to relieve pressure on the system. Wells with the highest PID readings were left open to better balance the operating system. SVE wells 2-SVE-2, -7, -9, and -12 were turned off to further optimize the system. All other SVE wells were left open.

SVE system operation for the 2022/2023 reporting period remained consistent with the previous 2021/2022 period except for SVE well 2-SVE-2 was turned back on. The system was turned off on January 9, 2023 for the winter.

3.1.3.1 Results

The SVE system has been successful in removing volatile organic vapors from the subsurface soil/fill. Appendix D presents a summary of monitoring data and a graphic chart. The estimated mass of organic petroleum hydrocarbon removed through January 9, 2023 is 7,522 pounds. The rate of removal for 2-SVE-1 has decreased from a maximum of 95 pounds per day during the initial mass removal period (2014) to an average of 0.14 pounds per day over the 2022/2023 reporting period. The system mass removal rate continued to show 'waning' rates during this reporting period. Chart 2-SVE-1 depicts the continued 'waning' rates as Mass Removal (MR) 6.

Benchmark completed system checks on June 16, 2022, September 21, 2022, and January 3, 2023. Individual SVE well PID readings as well as the 2-SVE-1 system PID and vacuum readings were taken from the seven individual wells that were on to confirm the system is running within specifications (refer to Table D-2 in Appendix D). During the June 2022 system checks, PID readings from the individual wells ranged from 0.1 to 2.1 ppm. Although the individual well readings during the September 2022 system check were higher (ranging from 2.5 to 82.2 ppm), the most recent system check in January 2023 showed PID readings of 0.0 ppm for all wells except 2-SVE-5 (4.6 ppm) and 2-SVE-6 (0.7 ppm).

³ New York State Department of Environmental Conservation. April 1, 2020 Letter to Mr. Paul Curran, Solean West LLC, Re: Olean Redevelopment Parcel 2 #C905032, Olean (C), Cattaraugus County, Soil Vapor Extraction (SVE) Operation.

The effluent PID concentration was 0.0 ppm during all system checks. The system influent PID concentrations were as follows:

- June 2022: 0.2 ppm, operating at 94.3 inches of H₂O vacuum
- September 2022: 4.9 ppm, operating at 66.9 inches of H₂O vacuum
- January 2023: 0.0 ppm, operating at 75.1 inches of H₂O vacuum

SVE wells 2-SVE-7, -8, -9, -11, -12, and -13 remained off during the 2022/2023 reporting period. SVE well 2-SVE-2 was turned back on. PID readings collected during the 2022/2023 reporting period at SVE wells 2-SVE-1, -2, -3, -4, -5, -6, and -10 generally remained consistent with 2021/2022 reporting period results. SVE well 2-SVE-3 noted a measurable increase in its maximum detected PID value, increasing from 16.2 ppm in March 2021 to 82.2 ppm in September 2022. SVE well 2-SVE-5 again had the greatest decrease, from a maximum detected PID value of 27.7 ppm in March 2021 to 10.4 ppm in September 2022.

3.1.4 Monitoring Results Summary

The amount of LNAPL recovered from well W14 decreased from 3 gallons during the 2021/2022 reporting period to 2 gallons during the 2022/2023 reporting period. Product was detected in monitoring wells WCMW1 and W14 so they were not sampled during the August 2022 event. Groundwater quality has remained the same at all monitoring wells with the exception at W-17 where five VOCs exceeded GWQSs. The groundwater quality at wells W13 and W28 meets NYSDEC GWQS for VOCs and SVOCs. Monitoring wells W13, W17, and W28 meet the GWQS for arsenic and lead. Monitoring well WCMW4 was not sampled during the June 2021 sampling event as there was insufficient volume to sample. The SVE system has been very effective in removing organics vapors from the vadose zone, and continues to show a diminished organic removal rate.

3.2 Operation & Maintenance Plan

The O&M Plan addresses operation and maintenance for the SVE systems.

3.2.1 SVE System

3.2.1.1 Routine System Operation and Maintenance

The SVE system is designed to require little maintenance over the expected duration of use at the Olean Redevelopment Parcel 2 Site. The blower bearing housing is oil-filled and checked once per month. If the level is below the overflow, SAE 40 weight oil is added through the top fill port of the housing. Grease fittings for the blower shaft are topped off periodically (i.e., every 2 months).

3.2.1.2 System Monitoring Devices and Alarms

Monitored system operating conditions that trigger a local (red panel light) and remote (common autodialer channel) alarm condition include low air vacuum, high air pressure, moisture separator tank high level, condensate tank high level, and heater/exhaust fan failure. Except for heater/exhaust fan failure, these alarm conditions automatically shut down the SVE system. A trailer entry (security) relay also triggers a local and remote alarm but does not cause system shutdown. Blower and condensate pump failure (e.g., due to thermal overload, power loss, or manual shut down) also triggers the autodialer. If the SVE system alarm is activated, the autodialer will contact Benchmark. Based on the alarm fault, Benchmark will respond and/or contact the appropriate repair vendor (e.g., electrician, mechanical repair service). On September 17, 2021 the SVE system was shut-down due to the failure of the blower's electric motor. The motor was repaired, and the system was placed back into service on November 19, 2021.

3.2.2 Annual Inspection and Certification Program

The Annual Inspection and Certification Program outlines the requirements for the Site to certify and attest that the institutional controls and/or engineering controls (IC/ECs) employed at the Site are unchanged from the previous certification. The annual certification primarily consists of an annual Site Inspection to complete the NYSDEC's IC/EC Certification Form. The Site inspection will verify that the IC/ECs:

- Are in place and effective.
- Are performing as designed.
- That nothing has occurred that would impair the ability of the controls to protect the public health and environment.

- That nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls.
- Access is available to the Site to evaluate continued maintenance of such controls.

A Site inspection of the property was conducted on March 9, 2023 by Ms. Lori Riker, a Benchmark licensed professional engineer who meets the requirements of a Qualified Environmental Professional (QEP). No observable indication of intrusive activities, cover failure, or use of groundwater were noted during the Site inspection.

Appendix A includes the completed Site Management PRR Notice – IC/ECs Certification Form. Appendix B is a photolog showing the condition of the Site at the time of the March 9, 2023, inspection.

3.3 Excavation Work Plan

An Excavation Work Plan (EWP) was included in the approved SMP for the Site. The EWP provides guidelines for the management of soil and fill material during intrusive activities. There were no intrusive activities during the time of the PRR.

As detailed in the Environmental Easements, several IC/ECs need to be maintained as a requirement of the BCA for the Site.

3.3.1 Institutional Controls

- Groundwater-Use Restriction: The use of groundwater for potable and non-potable purposes is prohibited.
- Land-Use Restriction: The controlled property may be used for commercial and/or industrial use.
- Implementation of the SMP including the O&M Plan and EWP.

3.3.2 Engineering Controls

- Vapor Mitigation: There are no buildings on the Site and, as such, no active subslab depressurization (ASD) systems exist.
- SVE System: The SVE system has been operated and monitored since October 2014 and continues to operate except for the winter shutdown.

- LNAPL Recovery/Monitoring: LNAPL recovery and monitoring has been performed monthly via absorbent socks in well WCMW1 and an oil skimmer in well W14.
- Groundwater Monitoring: Annual sampling was completed in August 2022.
- Cover System: The cover system is intact and functioning as intended.

At the time of the Site inspection, the Site was compliant with all IC/EC requirements.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

At the time of the inspection, the Site complied with the SMP. Specifically, the Site is compliant with the ICs including land-use restrictions, groundwater-use restrictions, and the EWP component. The Site is compliant with the ECs as described below:

- Long-term groundwater monitoring indicates overall improved groundwater quality at well W17, which is the only well sampled that exceeds GWQS/GVs for VOCs. Only three SVOCs remain above GWQS/GVs across the three wells sampled.
- Oil skimming from well W14 has resulted in the total recovery of approximately 300 gallons of LNAPL, including approximately 2 gallons of LNAPL this reporting period.
- The rate of removal with the SVE system has decreased from a maximum of 95 pounds per day during the initial mass removal period (November 2014) to an average of 0.14 pounds per day over the 2022/2023 reporting period. Vapor mass removal has experienced an asymptotic reduction over the life of the system, which is an expected occurrence reflective of improvement in subsurface soil quality.

4.2 Recommendations

Benchmark, on behalf of Solean West, will submit to the Department a Work Plan to collect follow up soil samples in the vicinity of 2019 soil borings VSS-5 and VSS-6. Based on the results, Benchmark will petition the Department for approval to shut down the remaining SVE system.

If groundwater samples collected during the June 2023 event have high turbidity, the samples will be filtered by the laboratory and analyzed for dissolved arsenic and lead.

5.0 **DECLARATION/LIMITATION**

Benchmark Civil/Environmental Engineering & Geology, PLLC personnel conducted the annual site inspection for BCP Site No. C905032, Olean, New York according to generally accepted practices. This report complies with the scope of work provided to Solean West LLC by Benchmark Civil/Environmental Engineering & Geology, PLLC.

This report has been prepared for the exclusive use of Solean West LLC. The contents of this report are limited to information available at the time of the Site inspection. The findings herein may be relied upon only at the discretion of Solean West LLC. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Benchmark Civil/Environmental Engineering & Geology, PLLC.

TABLES

Page 1 of 2

TABLE 1 SVE SYSTEM 2-SVE-1 LNAPL MONITORING AND COLLECTION LOG

OLEAN REDEVELOPMENT PARCEL 2 NYSDEC BCP SITE NO. C905032 OLEAN, NEW YORK

				w	CMW1						W14			
Date	Inspector's Initials	Product Present? (Y / N)	Product Depth (fbTOR)	Water Level (fbTOR)	Product Level (feet)	Product Recovered (gallons)	Change Absorbent Sock? (Y / N)	Product Present? (Y / N)	Product Depth (fbTOR)	Water Level (fbTOR)	Product Level (feet)	Product Recovered (gallons)	Accumulated Volume Collected (gallons)	Skimmer Operational?
7/17/14	SF	Y	20.27	20.29	0.02	0	N			See note				NA
10/29/14	JJR	Y	23.19	23.52	0.33	0	Removed	Y	20.86	25.66	4.8	4	4	NA
11/5/14	JJR	Y	22.93	23.55	0.62	0.4	NA	Y	20.55	26.71	6.16	0	4	NA
11/13/14	JJR	Y Y	22.76	23.1	0.34	0	NA	Y	21.41	26.43	5.02	5	9	NA
12/15/14 1/15/15	JJR JJR	Y	22.04 21.21	22.31 21.42	0.27	0	NA NA	Y Y	19.64 18.91	25.26 24.97	5.62 6.06	5 See Notes	14 14	NA NA
2/27/15	BMG	Y	22.65	22.98	0.21	0.1	Y	Y	20.3	25.95	5.65	5	14	NA
3/11/15	BMG							Y	20.78	23.55	2.77	4	23	NA
3/12/15	BMG							Ŷ	20.97	24.15	3.18	3	26	NA
3/13/15	BMG							Ý	20.66	23.13	2.47	3.3	29	NA
3/16/15	BMG							Y	19.67	25.2	5.53	5	34	NA
4/6/15	BMG	Y	20.32	20.34	0.02	0	Y	Y	17.98	18.93	0.95	2	36	NA
7/2/15	BMG	N	NA	20.75	0	0	Y	Y	18.42	22.85	4.43	3.5	40	NA
9/2/15	PWW	Y	22.92	22.95	0.03	0	N	Y	20.38	27.0	6.62	5	45	NA
9/3/15	PWW							Y	20.51	25.59	5.08	3.5	48	NA
9/29/15	PWW	Y	23.19	23.26	0.07	0	Y	Y	20.87	26.21	5.34	See Notes		NA
10/14/15 10/28/15	PWW ML	Y	22.88 22.74	22.91 22.75	0.03	0	N Y	Y Y	22.75 23.61	29.3 27.62	6.55 4.01			Y Y
10/28/15	ML	Y	22.74	22.75	0.01	0	Ý Y	Y Y	23.61	27.62	4.01			Y Y
11/24/15	ML	Y	22.32	22.34	0.02	0	n n	Y Y	23.00	27.90	5.15			Y
12/9/15	ML	Y	21.8	22.19	0.39	0	N	Y	23.04	23.36	0.32			Y
12/22/15	ML	Ŷ	21.76	21.82	0.06	0	N	Ŷ	23.23	23.46	0.23			Y
1/5/16	ML	Ý	20.31	20.34	0.03	0	N	Ý	21.57	21.94	0.37			Ý
2/2/16	ML	Y	20.94	20.96	0.02	0	N	Y	22.18	22.29	0.11			Y
3/1/16	ML	Y	20.3	20.32	0.02	0	N	Y	21.49	21.69	0.2			Y
4/12/16	BG	N	NA	23.31	NA	0	Y	Y	22.09 (Note 1)	22.3	0.21			Y
5/4/16	ML	Y	20.52	20.53	0.01	0	N	Y	21.64	21.83	0.19			Y
6/2/16	ML	Y	21.69	21.71	0.02	0	N	Y	22.68	23.29	0.61			Y
7/6/16 7/15/16	BMG BMG	Y	23.1	DRY	NA 	0.1	Y	Y	24.18	28.2	4.02	32 18	80 98 (Note A)	Y Y
8/1/16	BMG	 Y	24.0	24.25	0.25	0.1	Y	 Y	25.85	25.85	0	34	132	Y Y
8/12/16	BMG		24.0	24.25	0.25	0.1			20.00		0	7	139 (Note B)	Y
9/19/16	BMG	Y	23.93	24.03	0.1	0.1	Ý	Y	25.5	28.8	3.3	46	185 (Note C)	Ý
10/27/16	BMG	Ň	NA	21.86	0	0.1	N	Y	22.95	22.97	0.02	29	214	Ý
11/22/16	BMG	N	NA	22.11	0	0	N	Y	NA	23.23	NA	10	224	Y
12/21/16	BMG	N	NA	21.55	0	0	N	Y	22.7	22.74	0.04	0	224	Y
1/5/17	BMG	N	NA	20.38	0	0	N	Y	21.6	21.62	0.02	0	224	Y
2/14/17	BMG	N	NA	18.9	0	0	N	Y	19.9	19.92	0.02	3	227	Y
3/28/17	BMG	N	NA	20.14	0	0	N	Y	21.1	21.15	0.05	1	228	Y
4/11/17	BMG	N	NA	19.41	0	0	N	Y	20.4	20.42	0.02	0	228 (Note D)	Y
5/30/17	BMG	N N	NA NA	20.35	0	0	N	Y	21	21.31	0.31	0	228	Y
6/28/17 7/24/17	BMG BMG	N	NA	21.45 22.25	0	0	N N	Y	22.5 23.25	22.51 23.46	0.01 0.21	0	228 229	Y
8/9/17	CFD	N	NA	23.06	0	0	N	Ý	24.05	24.15	0.21	12.5	242 (Note E)	Y
9/26/17	CFD	Y	23.71	23.85	0.14	0.2	Y	Ŷ	23.95	23.99	0.04	7.5	249	Ŷ
10/26/17	CFD	Y	24.02	24.12	0.1	0.1	Y	Y	25.31	25.32	0.01	5	254	Y
11/28/17	CFD	N	NA	24.05	0	0	N	Y	23.85	23.97	0.12	2	256	Y
12/26/17	CFD	N	NA	24.01	0	0	N	Y	21.89	21.93	0.04	0	256	Y
1/25/18	CFD	N	NA	23.68	0	0	N	N	NA	20.92	NA	1	257	Y
2/15/18	CFD	N	NA	20.43	0	0	Y	N	NA	21.33	NA	0	257	Y
3/12/18 4/27/18	CFD CFD	N	NA NA	19.56 19.06	0	0	N N	N N	NA NA	20.35 20.84	NA NA	0	257 258	Y Y
4/27/18 5/24/18	CFD	N Y	NA 21.02	19.06	0.03	0.05	N Y	N N	NA NA	20.84 21.24	NA NA	0.25	258	Y Y
6/28/18	CFD	T N	21.02 NA	21.05	0.03	0.05	T N	N	NA	21.24	NA	0.25	259	Y Y
7/17/18	CFD	Y	22.58	22.61	0.03	0.05	Y	N	NA	23.6	NA	0.23	259	Y
8/11/18	CFD	Ŷ	22.12	22.14	0.02	0.2	Ý	N	NA	23.45	NA	3	262	Ý
9/24/18	CFD	Ν	NA	21.9	0	0	N	Ν	NA	22.93	NA	1	263	Y
10/15/18	CFD	Y	21.01	21.03	0.02	0.1	Y	N	NA	21.94	NA	0.5	264	Y
11/29/18	CFD	N	NA	21.14	0	0	N	N	NA	21.53	NA	0.5	264	Y
12/20/18	CFD	N	NA	22.16	0	0	N	N	NA	21.10	NA	0.50	265	Y
1/21/19	CFD	N	NA 10.00	20.31	0	0	Y	N	NA	20.62	NA	1.00	266	Y
2/13/19 3/21/19	CFD CFD	Y Y	19.03 20.08	19.06 20.09	0.03	0.2	Y Y	N N	NA NA	19.89 21.00	NA NA	1.5 1.0	267 268	Y Y
3/21/19 4/24/19	CFD	Y N	20.08 NA	20.09	0.01	0.1	Y Y	N	NA	21.00	NA	0	268	Y Y
5/24/19	CFD	N	NA	20.87	0	0	r N	N	NA	21.00	NA	0.25	269	Y
6/21/19	CFD	N	NA	19.98	0	0	N	N	NA	20.86	NA	0.23	269	Y
7/30/19		N	NA	20.12	0	0	N	N	NA	21.00	NA	0.25	269	Ý
	CFD									20.84	NA	2.0		Ý
8/23/19	CFD CFD	N	NA	17.27	0	0	N	N	NA	20.04	INA	2.0	271	
9/30/19	CFD CWE	N N	NA	23.51	0	0	N	Ν	NA	24.35	NA	1.5	272	Y
	CFD	N												

TABLE 1 SVE SYSTEM 2-SVE-1 LNAPL MONITORING AND COLLECTION LOG

OLEAN REDEVELOPMENT PARCEL 2 NYSDEC BCP SITE NO. C905032 OLEAN, NEW YORK

				w	CMW1						W14			
Date	Inspector's Initials	Product Present? (Y / N)	Product Depth (fbTOR)	Water Level (fbTOR)	Product Level (feet)	Product Recovered (gallons)	Change Absorbent Sock? (Y / N)	Product Present? (Y / N)	Product Depth (fbTOR)	Water Level (fbTOR)	Product Level (feet)	Product Recovered (gallons)	Accumulated Volume Collected (gallons)	Skimmer Operational?
12/30/19	CWE	Y	21.77	21.8	0.03	0	N	N	NA	22.7	NA	0	277	Y
1/30/20	CWE	N	NA	20.45	0	0	N	N	NA	21.4	NA	0.0	277	Y
2/27/20	CWE	N	NA	19.5	0	0	N	N	NA	20.15	NA	0	277	Y
3/30/20	CWE	N	NA	19.51	0	0	N	N	NA	20.50	NA	0.0	277	Y
4/27/20	CWE	N	NA	19.7	0	0	N	N	NA	20.70	NA	1.0	278	Y
5/28/20	CWE	N	NA	20.31	0	0	N	N	NA	21.2	NA	0.0	278	Y
6/29/20	CWE	N	NA	21.51	0	0	N	N	NA	22.44	NA	0.0	278	Y
7/31/20	CWE	Y	24.41	24.6	0.19	0	N	N	NA	23.50	NA	0.0	278	Y
8/31/20	CWE	Y	25.72	25.98	0.26	0	N	N	NA	25.32	NA	12.0	290	Y
9/28/20	CWE	Y	24.2	24.51	0.31	0	Y	N	NA	25.4	NA	5.0	295	Y
10/29/20	CWE	Y	24.3	24.5	0.2	0	N	N	NA	25.40	NA	0.0	295	Y
11/25/20	CWE	Y	24.1	24.21	0.11	0	N	N	NA	25.10	NA	0.0	295	Y
12/17/20	CFD	Y	23.48	23.52	0.04	0	N	N	NA	24.69	NA	0.0	295	Y
1/21/21	CWE	N	NA	21.91	0	0	N	N	NA	22.75	NA	0.0	295	Y
2/22/21	CWE	Y	22.84	23	0.16	0	N	N	NA	23.81	NA	0.0	295	Y
3/25/21	CWE	Y	22.12	22.23	0.11	0	N	N	NA	23.12	NA	0.0	295	Y
4/12/21	CWE	Y	21.95	22.05	0.1	0	N	N	NA	22.71	NA	0.0	295	Y
5/20/21	CWE	Y	21.15	21.19	0.04	0	N	N	NA	21.9	NA	0.0	295	Y
6/24/21	CWE	Y	21.99	22.09	0.1	0	N	Y	NA	22.87	NA	1.0	296	Y
7/29/21	CWE	N	NA	19.71	0	0	N	Y	NA	20.40	NA	2.0	298	Y
8/30/21	CWE	Y	20.98	21.01	0.03	0	N	N	NA	21.8	NA	0.0	298	Y
9/30/21	CWE	Y	21.89	21.92	0.03	0	N	N	NA	22.41	NA	0.0	298	Y
10/28/21	CWE	Y	21.75	21.76	0.01	0	N	N	NA	22.78	NA	0.0	298	Y
11/29/21	CWE	Y	21.35	21.39	0.04	0	N	N	NA	22.21	NA	0.0	298	Y
12/29/21	CWE	Y	21.00	21.11	0.11	0	N	N	NA	21.7	NA	0.0	298	Y
1/24/22	CWE	Y	21.00	21.09	0.09	0	N	N	NA	21.88	NA	0.0	298	Y
2/14/22	CWE	Y	21.77	21.82	0.05	0	N	N	NA	22.70	NA	0.0	298	Y
3/21/22	CWE	Y	18.71	19.01	0.3	0	N	N	NA	19.56	NA	0.0	298	
4/26/22	CWE	N	NA	19.89	0	0	Y	N	NA	20.71	NA	0.0	298	Y
5/31/22	CWE	Y	20.88	20.93	0.05	0	N	N	NA	21.65	NA	0.0	298	Y
6/30/22	CWE	Y	21.85	21.87	0.02	0	Y	N	NA	22.49	NA	0.0	298	Y
7/28/22	CWE	Y	23.06	23.1	0.04	0.09	Y	N	NA	23.80	NA	0.0	298	Y
8/29/22	CWE	Y	23.88	23.99	0.11	0.05	Y	N	NA	25.22	NA	0.0	298	Y
9/29/22	CWE	Y	23.62	23.65	0.03	0	N	N	NA	24.66	NA	0.0	298	Y
10/31/22	CWE	Y	23.88	23.91	0.03	0	N	N	NA	24.72	NA	1.0	299	Y
11/28/22	CWE	Y	23.01	23.08	0.07	0	N	N	NA	23.81	NA	1.0	300	Y
12/29/22	CWE	Y	21.84	21.86	0.02	0	N	N	NA	22.72	NA	0.0	300	Y
1/23/23	CWE	N	NA	20.45	0	0	N	N	NA	21.25	NA	0.0	300	Y
2/9/23	CWE	N	NA	20.52	0	0	N	N	NA	21.35	NA	0.0	300	Y
Total LNAPL	Collected This I	Reporting Perio	bd			0.14 gal						2.0 gal		

Total Volume of LNAPL collected through 2/9/2023

0.14 gal 2.0 gal 2.0 gai 300 gal

Date	Note or Comment
7/17/14	Well W14 had blockage in the well casing. No measurement made.
1/15/15	W14 False Reading, Bailer had ~2.2 feet of product, more viscous than past rounds, Recovered 1.75 gallons of LNAPL
9/29/15	Set-up product skimmer
10/14/15	Used Spill Buddy to recover LNAPL, skimmer not functioning properly. Sock in well WCMW1 in good condition.
4/12/16	Note 1: Well W-14 cut down 3.47'.
7/7/16	Installed new solar panel powered skimmer at well W-14. Set to run on auto for 2 hours per day.
7/15/16	Note A: Transfer 40 gallons of oil from skimmer drum to storage drum. No product/water level measurements were collected
8/12/16	Note B: Transfer 45 gallons of oil from skimmer drum to storage drum. No product/water level measurements were collected.
9/19/16	Note C: Transfer 47 gallons of oil from skimmer drum to storage drum.
4/11/17	Note D: 48 Gallons accumulated product in drum since last time skimmer drum emptied.
8/8/17	Note E: Transfer 52 gallons of oil from skimmer drum to storage drum.
11/19/19	Note F: Transfer 45 gallons of oil from skimmer drum to storage drum.

Shaded cells are data collected pre-remediation; all other data collected post-remediation.

TABLE 2

GROUNDWATER MONITORING WELL WATER LEVELS PERIODIC REVIEW REPORT OLEAN REDEVELOPMENT PARCEL 2 OLEAN, NEW YORK

Well	Purpose of Well	Top of Riser (TOR) Elevation (ft)	Depth to Water (ft)	Liquid Elevation (ft)	Depth to Water (ft)	Liquid Elevation (ft)	Water (ft)	Elevation (ft)	Depth to Water (ft)	Liquid Elevation (ft) /2015	Depth to Water (ft) 9/2/2015 8	Liquid Elevation (ft)	Water (ft)	Liquid Elevation (ft) /2016	Depth to Water (ft) 12/14	Liquid Elevation (ft)	Depth to Water (ft)	Liquid Elevation (ft)		Liquid Elevation (ft) 12/22/17	Depth to Water (ft) 6/13/	(11)	Depth to Water (ft)	(11)	Depth to Water (ft)	Liquid Elevation (ft)		Liquid Elevation (ft)		Liquid Elevation (ft)	Depth to Water (ft)	Liquid Elevation (ft)
WCMW-1	LNAPL	1430.89	23,90	1407 52	20.29	18/2014 1410.62	22.04	7 & 18/2014 1409.08	4/14/	/ 2015	22.95	1407.97	8/9		12/14	/ 2016	5/16 to	5/18/1/	12/20 to	12/22/1/	6/13/	2018	12/19 to	1411 31	20.12	1410.77	22.32	6/18/20 1408.57	22.02	1409.13	8/2/2 23.15	1407.84
WCMW-4	GWOM	1426.95	18.72	1408.23	15.22	1411.73	17.72	1409.23			18.59	1408.36	18.36	1408.59	15.81	1411.14	13.87	1413.08	18.03	1408.92	16.05	1410.90	14.55	1412.40	15.90	1411.05	18.37	1408.58	16.29	1410.66	dr	ry
W13	GWQM	1431.14	23.46	1407.68	21.14	1410.00	22.22	1408.92	19.40	1411.74	23.00	1408.14	24.32	1406.82			19.41	1411.73	22.20	1408.94	21.25	1409.89	19.65	1411.49	20.16	1410.98	21.28	1409.86	21.80	1409.34	23.05	1408.09
W14	LNAPL	1432.14	26.85	1406.91							27.00	1407.43											20.43	1411.71	17.72	1414.42	22.30	1409.84	19.34	1412.89	24.19	1407.96
W17	GWQM	1424.83	17.42	1407.41	14.27	1410.56	16.01	1408.82	13.46	1411.37	17.01	1407.82	18.36	1406.47	15.74	1409.09	13.87	1410.96	16.40	1408.43	15.40	1409.43	14.14	1410.69	14.62	1410.21	15.83	1409.00	16.82	1408.01	17.31	1407.52
W28	GWQM	1433.29	27.52	1405.77							25.06	1408.23	26.34	1406.95	-		21.52	1411.77	24.50	1408.79	23.30	1409.99	21.63	1411.66	22.28	1411.01	23.38	1409.91	23.95	1409.34	25.14	1408.15

Notes: Depth to water from top of well riser. 1) W14 well riser was increased by 3.47 feet (based on TOC delta) in November 2015. Revised well top of riser elevation is 1432.14'. Historic top of riser elevation was 1428.67'. Acronyms: NA = Not available --= Not measured = depth to water measurements pre-remediation

2008-2022 GROUNDWATER ANALYTICAL SUMMARY - ORGANICS PERIODIC REVIEW REPORT OLEAN REDEVELOPMENT PARCEL 2 OLEAN. NEW YORK

						OLEAN, NEW	TORK							
1	GWQS/GV ²							W-13						
Parameter ¹	GWQS/GV-	07/17/14	12/17/14	04/13/15	09/02/15	08/10/16	12/14/16	05/16/17	12/22/17	06/12/18	07/10/19	06/19/20	06/27/21	08/02/22
Volatile Organic Compounds	(0//1//14	12/17/14	04/13/15	09/02/15	08/10/16	12/14/16	05/16/17	12/22/17	06/12/18	07/10/19	06/19/20	06/27/21	08/02/22
1,2,4-Trimethylbenzene	(ug/L) 5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.79 J	ND
1,2,4- milletinyidenzene	3	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	0.79 J ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5- minethyldenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
,	3 50	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	12 J	ND ND	1.7 J
Acetone	50 1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	1.7 J ND
Benzene								=						
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane		NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane		NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total TICs		29	NA	11	3	ND	0.9	0.6	52	8	38	133	6	1 J
Total VOCs		29	ND	11	3	ND	0.9	0.6	52	8	38	145.0	0.8	1.7 J
Semi-Volatile Organic Compo	ounds (ug/L)													
Acenaphthene ⁴	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04 J	0.04 J
Anthracene ⁴	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene 4	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 J
Bis (2 ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND
Chrysene ⁴	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene ⁴	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03 J
Isophorone		NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Methylnaphthalene ⁴		NA	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene ⁴	10 *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene ⁴	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3 JB	ND	ND	0.03 J
Pyrene ⁴	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03 J	ND
Total TICs		20	ND	ND	13	54	20	161	124	124	189	73	23	63 J
Total SVOCs		20	ND	ND	13	54	20	161	124	124	190	73	0.04	0.06 J
				ļ					.=.	.=.		ļ <u> </u>	L	

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

3. WCMW4 not sampled in June 2020 due to well being dry

4. SVOC results obtained using Method 1,870D-SIM, (starting June 2021 to present)

Definitions:

ND = Parameter not detected above laboratory detection limit.

NA = Not analyzed

- F1 = MS and/or MSD Recovery is outside acceptance limits
- " * " = Groundwater Quality Guidance Value
- "--" = Sample not analyzed for parameter or no SCO available for the parameter.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.
- B = Compound was found in the blank and sample

BOLD = Analytical result exceeds individual GWQS/GV.

= Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

2008-2022 GROUNDWATER ANALYTICAL SUMMARY - ORGANICS PERIODIC REVIEW REPORT OLEAN REDEVELOPMENT PARCEL 2 OLEAN, NEW YORK

						OLEA	N, NEW YOR	ĸ							
1									/-17						
Parameter ¹	GWQS/GV ²	02/22/12	07/17/14	12/17/14	04/13/15	09/02/15	08/10/16	v 12/14/16	05/17/17	12/22/17	06/11/18	07/10/19	06/19/20	06/27/21	00/00/00
Volatile Organic Compounds	(49/1)	02/22/12	0//1//14	12/17/14	04/13/15	09/02/15	08/10/16	12/14/16	05/17/17	12/22/17	06/11/18	07/10/19	06/19/20	06/27/21	08/02/22
1,2,4-Trimethylbenzene	(ug/L) 5	123	61.2	145	134	70.7	57.3	67.7	43.6	60.9 F1	93.3	ND	78	ND	110 D
1,2,4-Thinethybenzene	3	3.1	2.63	2.68	3.23	2	1.91	2.23	1.4	1.95	3.25	ND	ND	4.40	2.8 J D
1,3,5-Trimethylbenzene	5	35.9	18.6	32.6	35.9	14.7	14.3	9.2	7.37	6.9	2.27	ND	ND	ND	ND
1,4-Dichlorobenzene	3	1	1.6	ND	ND	1.01	ND	ND	ND	ND	1.11	ND	ND	1.3 J	ND
Acetone	50	28.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	44 J	ND	ND	ND
Benzene	1	12.2	4.06	4.8	5.58	7.1	7.86	7.37	3.94	7.31	12	5.2 J	9.3 J	19	12 D
Chlorobenzene	5	4	5.7	3.68	3.57	3.19	3.21	2.78	1.95	2.33	2.57	ND	ND	2.4 J	1.7 J D
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane		NA	56.2	NA	76.4	34.8	32.2	37.4	31.3	38.2	69.6	35	49	65	47 D
Ethylbenzene	5	1.1	ND	ND	ND	ND	ND	ND	ND	1.02	1.52	ND	ND	2.2 J	1.8 J D
Isopropylbenzene	5	NA	5.51	12.1	12.2	6.66	5.83	5.91	4.39	6.56	10.2	9.1 J	ND	16	10 D
m&p-Xylene			16.4	8.05	3	ND	2.66	ND	ND	2.68	2.94	ND	ND	6	4.9 J D
Methylcyclohexane		NA	70	70	113	57.5	33.2	45.4	36.4	51.1 F1	82.7	31	54	110	64 D
n-Butylbenzene	5	0.51	ND	ND	1.71	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	11	5.15	11.1	12.2	5.6	5.47	5.51	3.8	5.61	8.31	ND	ND	14	9.3 D
p-Isopropyltoluene	5	NA	ND	1.29	1.49	ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND
o-Xylene			59.4	132	105	76.2	58.4	68	50.5	63.7 F1	82	ND	82	120	100 D
sec-Butylbenzene	5	1.4	1.29	1.37	1.99	ND	ND	ND	ND	ND	1.38	ND	ND	1.8 J	ND
tert-Butylbenzene	5	0.35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	6.5	3.16	4.82	2.71	1.75	1.44	1.75	ND	1.66	2.04	ND	ND	2.2 J	1.7 J D
Total xylenes	5	162	75.8	140	108	76.2	61.1	68.0	50.5	66.4	84.9	80	82	126	104.9
Total TICs		517	583	NA	190	148	87	174	69	97	287	98	ND	102	102 J
Total VOCs		908	894	429	702	429	372	427	254	347	662	302	354	491	365
Semi-Volatile Organic Compo													0	F	
Acenaphthene ⁴	20	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene ⁴	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.09 J
Benzo(a)anthracene ⁴	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04 J
Bis (2 ethylhexyl)phthalate	5	NA	10.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	0.56 J
Chrysene ⁴	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03 J
Fluorene ⁴	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.27	0.28
Isophorone		NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Methylnaphthalene ⁴		NA	NA	2.62	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene ⁴	10 *	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	0.18
Phenanthrene ⁴	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.2 JB	ND	ND	ND
Pyrene ⁴	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 272	0.05 J	ND
Total TICs		NA	175	ND	147	385	238	47	337	62	47	508	373	446	328 J
Total SVOCs		NA	186	3	147	385	238	47	337	62	47	510	373	0	0

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

3. WCMW4 not sampled in June 2020 due to well being dry

4. SVOC results obtained using Method 1,870D-SIM, (starting June 2021 to present)

Definitions:

ND = Parameter not detected above laboratory detection limit.

NA = Not analyzed

- F1 = MS and/or MSD Recovery is outside acceptance limits
- " * " = Groundwater Quality Guidance Value
- "--" = Sample not analyzed for parameter or no SCO available for the parameter.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Compound was found in the blank and sample

BOLD = Analytical result exceeds individual GWQS/GV.

= Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

2008-2022 GROUNDWATER ANALYTICAL SUMMARY - ORGANICS PERIODIC REVIEW REPORT OLEAN REDEVELOPMENT PARCEL 2 OLEAN. NEW YORK

							OLEA	N, NEW YORK									
Parameter ¹	GWQS/GV ²						W-28							WCI	/W-4		
Falameter	61103/61	02/22/12	08/10/16	12/14/16	05/16/17	12/22/17	06/12/18	07/10/19	06/19/20	06/27/21	08/02/22	08/11/16	12/14/16	05/17/17	12/22/17	06/12/18	07/10/19
Volatile Organic Compounds	(ug/L)																
1,2,4-Trimethylbenzene	5	0.25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Cyclohexane		NA	ND	ND	ND	ND	ND	ND	ND	0.72 J	0.95 J	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Isopropylbenzene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane		NA	ND	ND	ND	ND	ND	ND	ND	0.92 J	0.94 J	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
p-lsopropyltoluene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	0.38	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5	0.43	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Total xylenes	5	0.44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total TICs		155	238	44	131	46	34	94	64	30	32 J	635	1	ND	ND	ND	ND
Total VOCs		156	238	44	131	46	34	94	64	2	2 J	635	1	ND	ND	ND	ND
Semi-Volatile Organic Compo	unds (ug/L)																
Acenaphthene ⁴	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Anthracene ⁴	50	ND	ND	0.08 J	ND												
Benzo(a)anthracene 4	0.002	ND	ND	ND	0.05 J	ND	ND	ND	ND	ND	ND						
Bis (2 ethylhexyl)phthalate	5	ND	ND	ND	ND	16.4 B	ND	ND	ND	ND	ND						
Carbazole		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene ⁴	0.002	0.57	ND	ND	ND	ND	ND	ND	ND	ND	0.08 J	ND	ND	ND	ND	ND	ND
Fluorene ⁴	50	0.63	ND	ND	ND	ND	ND	ND	ND	0.3	ND						
Isophorone		NA	ND	ND	ND	ND	ND	ND	0.99 J	ND							
1-Methylnaphthalene ⁴		ND	ND	NA	ND												
Naphthalene ⁴	10 *	ND	ND	0.09 J	ND												
Phenanthrene ⁴	50	0.74	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene ⁴	50	0.55 J	ND	ND	ND	ND	ND	ND	ND	0.04 J	0.12	ND	ND	ND	ND	ND	ND
Total TICs		413	392	74	469	33	ND	301	204	250	290 J	168	162	257	123	77	315
Total SVOCs		415	392	74	469	33	ND	301	205	0	0.08 J	#VALUE!	162	257	123	77	315

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

3. WCMW4 not sampled in June 2020 due to well being dry

4. SVOC results obtained using Method 1,870D-SIM, (starting June 2021 to present)

Definitions:

ND = Parameter not detected above laboratory detection limit.

NA = Not analyzed

- F1 = MS and/or MSD Recovery is outside acceptance limits
- " * " = Groundwater Quality Guidance Value
- "--" = Sample not analyzed for parameter or no SCO available for the parameter.

BOLD = Analytical result exceeds individual GWQS/GV.

= Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

TABLE 4 2008-2021 GROUNDWATER ANALYTICAL SUMMARY - METALS PERIODIC REVIEW REPORT **OLEAN REDEVELOPMENT PARCEL 2** OLEAN, NEW YORK

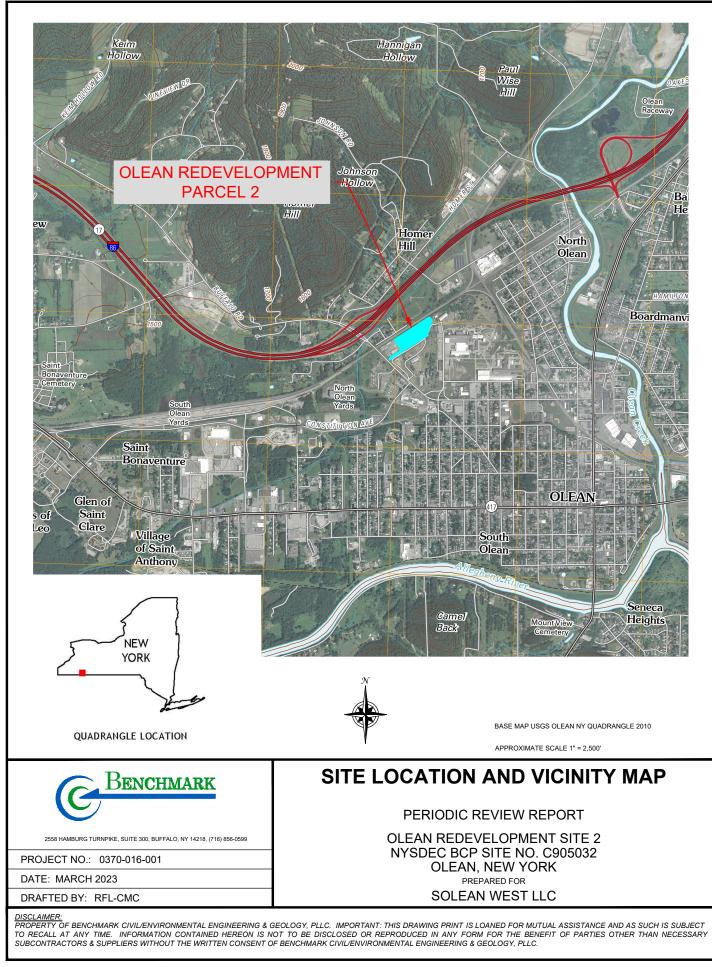
Parameter ¹	GWQS/GV ²					w	-13									W-'	17												W-28								1	WCMW4	
		08/29/08	08/10/16	12/14/16	05/16/17	12/22/17	06/12/18	07/10/19	06/19/20	06/27/21	08/02/22	08/29/08	08/10/16	12/14/16	05/17/17	12/22/17	06/11/18	07/10/19	06/19/20	06/27/21	08/02/22	02/16/11	02/16/11	05/18/11	08/17/11	11/16/11	02/22/12	08/10/16	12/14/16	05/16/17	12/22/17	06/12/18	07/10/19	06/19/20	06/27/21	08/02/22	05/17/17	06/11/18	07/10/19
Metals (ug/L)																																							
Arsenic	25	3.6	ND	4.0	4.0 J	5.4	ND	1.38	ND	30.4	13.8	20.5	27.1	20	70.4	ND	16.9	ND	ND	ND	9.8 J	13 J	6.3	4.0 J	22	27.1	140												
Lead	25	<3.0	ND	1.2	ND	<3.0	7.9	17.9	ND	ND	ND	3 J	ND	ND	ND	30.4	13.7	NA	NA	NA	NA	17.2	ND	6.3	ND	ND	5.8 J	3.3 J	ND	ND	9.6	12.7	29						

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

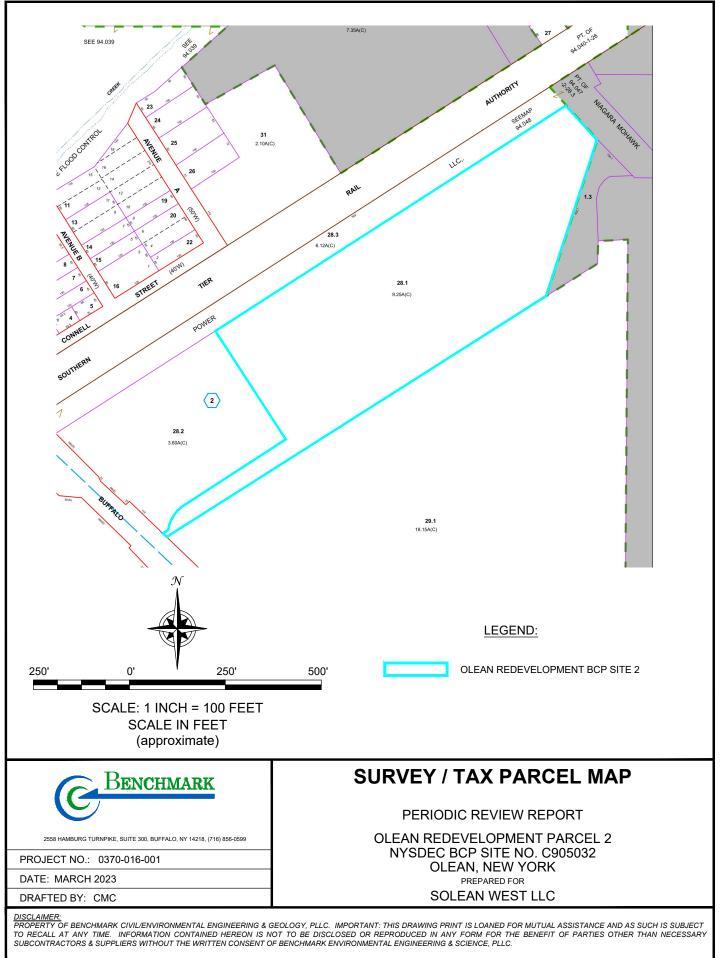
3. WCMW4 not sampled in June 2020 due to well being dry

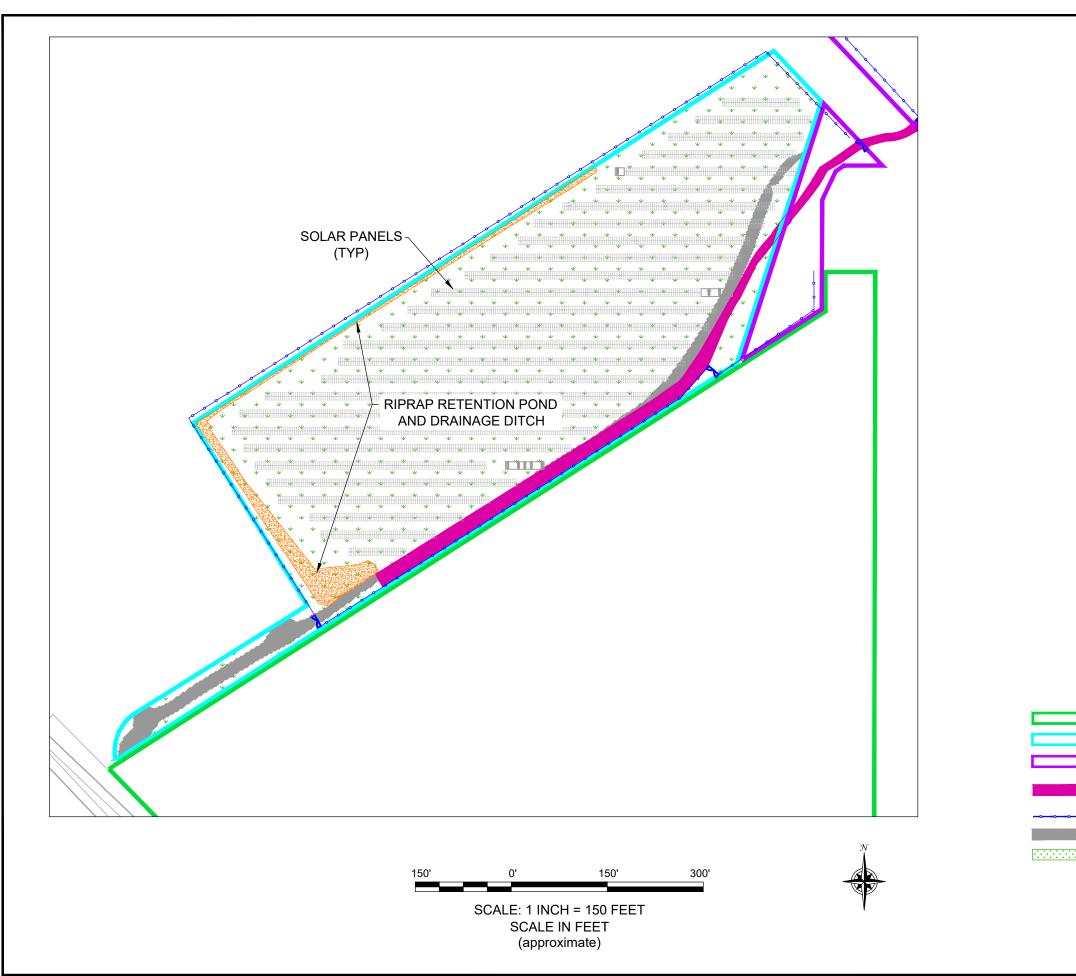

b. Working the samples in such a 2020 data to non-sound up, y
 Definitions:
 ND = Parameter not detected above laboratory detection limit.
 NA = Not analyzed
 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

BOLD = Analytical result exceeds individual GWQS/GV. = Dates highlighted in blue indicate samples collected pre-remediation; all other samples collected post-remediation.

FIGURES

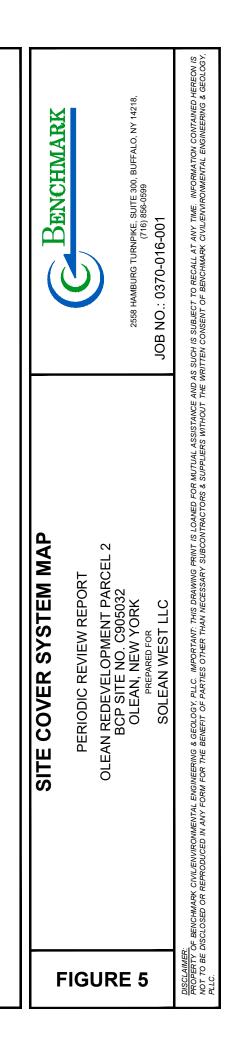
FIGURE 1




	<image/>	<image/> <image/>	
APPROXIMATE SCALE 1" = 300'	SITE PLAN PRE-		
Benchmark			끄
	PERIODIC REVI	EW REPORT	FIGU
2558 HAMBURG TURNPIKE, SUITE 300, BUFFALO, NY 14218, (716) 856-0599			
2558 HAMBURG TURNPIKE, SUITE 300, BUFFALO, NY 14218, (716) 856-0599 PROJECT NO.: 0370-016-001	- NYSDEC BCP SITI - OLEAN, NEV		RE
	OLEAN, NE PREPARED SOLEAN WI	N YORK	E 2

Cond	erty Boundary (Approximate) uit penetrations of cover system during redevelopment or Pole installed during redevelopment	New Fence installed during redeve Base Image Google Earth Augus	
2558 HAMBURG TURNPIKE, SUITE 300, BUFFALO, NY 14218, (716) 856-0599 PROJECT NO.: 0370-016-001 DATE: MARCH 2023 DRAFTED BY: RFL-CMC	SITE PLAN POST-REMEDIA PERIODIC REVIEW REPORT OLEAN REDEVELOPMENT PARCEL NYSDEC BCP SITE NO. C905032 OLEAN, NEW YORK PREPARED FOR SOLEAN WEST LLC		FIGURE 3
DISCLAIMER: PROPERTY OF BENCHMARK CIVIL/ENVIRONMENTAL ENGINEERING & GEOLOGY, PLLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK CIVIL/ENVIRONMENTAL ENGINEERING & GEOLOGY, PLLC.			

F\CAD\Benchmark\Solean West\2023 PRR\Figure 3; Site Plan Post-Development Aerial ORP2.dwg, 2/4/2023 11:44:02 AM


FIGURE 4

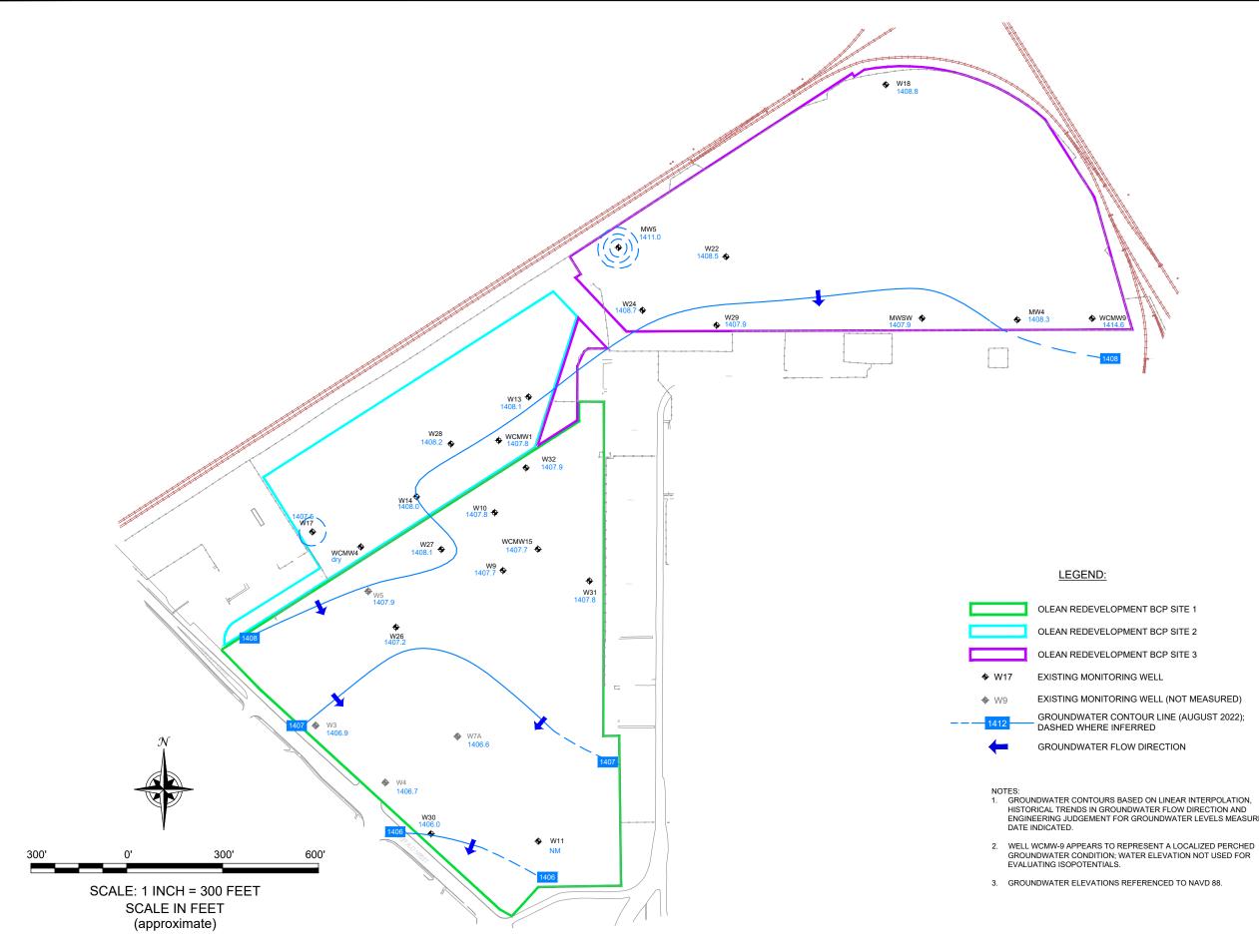
М

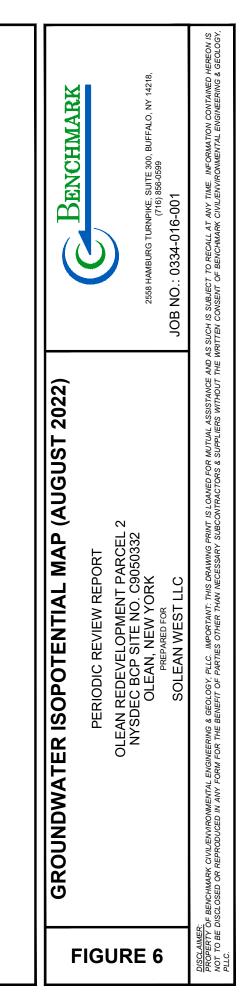
DATE: MARCH 2023 DRAFTED BY: CMC

LEGEND:

OLEAN REDEVELOPMENT BCP SITE 1

OLEAN REDEVELOPMENT BCP SITE 2

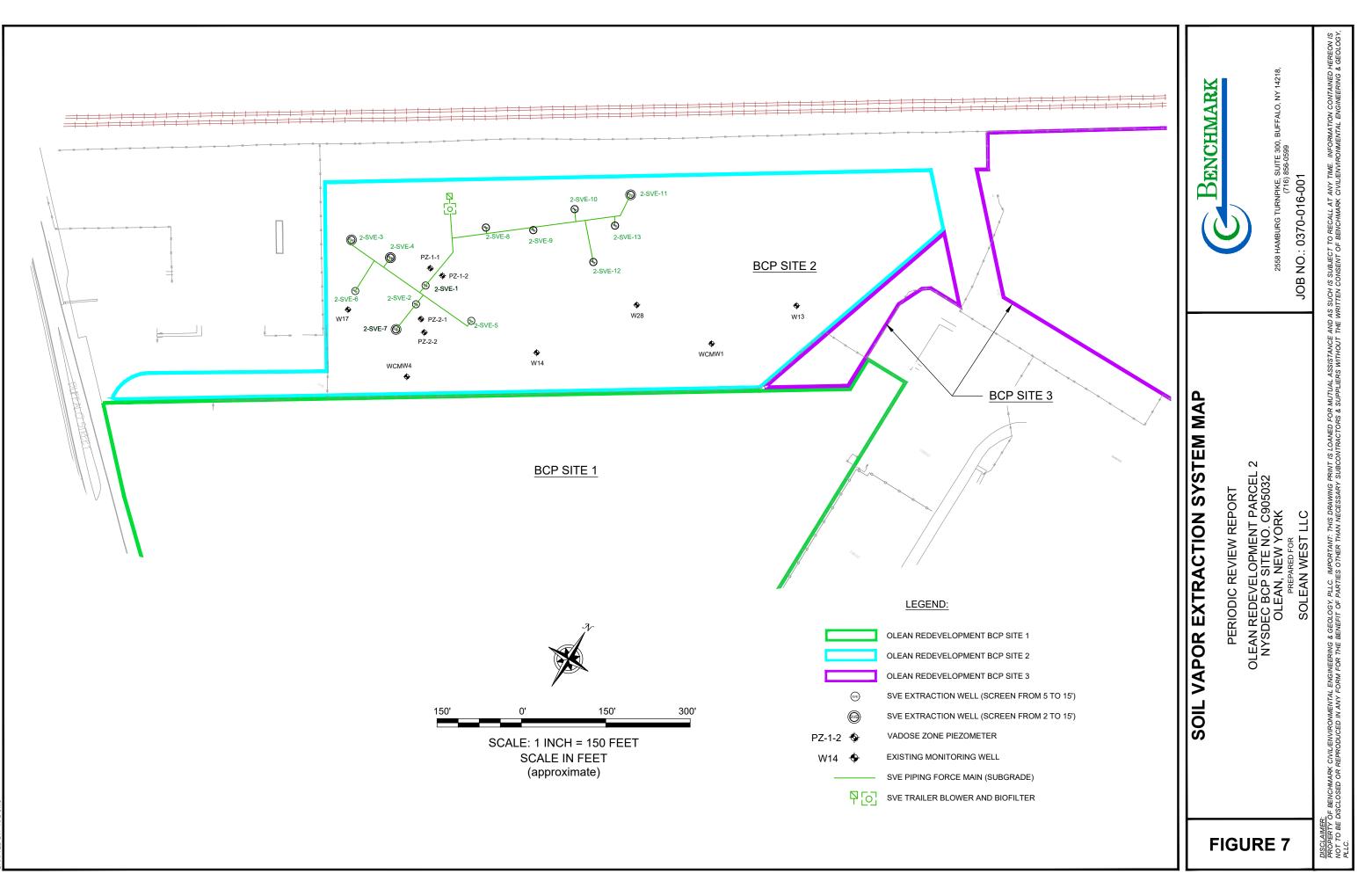

OLEAN REDEVELOPMENT BCP SITE 3


APPROXIMATE LOCATION OF ACCESS ROAD (12" MIN. GRAVEL)

ASPHALT ROADWAY

FENCE

VEGETATED SOIL COVER



GROUNDWATER CONTOURS BASED ON LINEAR INTERPOLATION, HISTORICAL TRENDS IN GROUNDWATER FLOW DIRECTION AND ENGINEERING JUDGEMENT FOR GROUNDWATER LEVELS MEASURED ON

APPENDIX A

INSTITUTIONAL & ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	e No.	C905032	Site Details	Box 1	Box 1		
Site	e Name Ol	ean Redevelopment Parc	cel 2				
City Co	e Address: y/Town: Ole unty: Cattara e Acreage:	ean augus	Zip Code: 14760				
Re	porting Perio	od: March 15, 2022 to Mar	rch 15, 2023				
1.	Is the inform	mation above correct?		YES N	10		
	lf NO, inclu	ide handwritten above or o	on a separate sheet.				
2.		or all of the site property be nendment during this Repo	een sold, subdivided, merged, or undergorting Period?	gone a	\checkmark		
3.		been any change of use at RR 375-1.11(d))?	the site during this Reporting Period		\checkmark		
4.	•	ederal, state, and/or local e property during this Repo	permits (e.g., building, discharge) been orting Period?	issued	\checkmark		
			2 thru 4, include documentation or ev iously submitted with this certificatio				
5.	Is the site of	currently undergoing devel	opment?		\checkmark		
				Box 2			
				YES N	10		
6.		ent site use consistent with al and Industrial	the use(s) listed below?	\checkmark			
7.	Are all ICs	in place and functioning as	s designed?				
	IF TI		QUESTION 6 OR 7 IS NO, sign and date E REST OF THIS FORM. Otherwise con				
AC	Corrective M	leasures Work Plan must I	be submitted along with this form to ad	Idress these issue	s.		
Sig	nature of Ow	vner, Remedial Party or Des	ignated Representative	Date			

			Box 2A	
 Has any new information revealed Assessment regarding offsite contain 		alitative Exposure	YES N	0 7
If you answered YES to question that documentation has been pro-				
9. Are the assumptions in the Qualitative Exposure Assessr	•			
If you answered NO to question updated Qualitative Exposure As				
SITE NO. C905032			Box 3	
Description of Institutional Contro	bls			
Parcel Owner 94.047-2-28.1 Solean Wes		Institutional Contro Ground Water Use Soil Management I Landuse Restrictio Monitoring Plan Site Management I O&M Plan IC/EC Plan	Restriction Plan n	
 The property may be used for commercial -All engineering controls (ECs) must be of Plan (SMP); -All ECs must be inspected at a frequence -The use of groundwater underlying the prodetermined by the NYSDOH or the Cattar drinking water or for industrial purposes, a from the Department. -Groundwater and other environmental of SMP; -Data and information pertinent to site madefined in the SMP; -All future activities that will disturb remain with the SMP; -Operation, maintenance, monitoring, insof the remedy shall be performed as defined as York with reasonable prior notice to the probability of the Environmental Easement. 	perated and maintained as spe y and in a manner defined in the property is prohibited without ner augus County Department of He and the user must first notify and r public health monitoring must l anagement must be reported at ning contaminated material must nd effectiveness of the remedy r pection, and reporting of any me ed in the SMP; and gents, employees or other represent	e SMP. cessary water quality ealth to render it safe d obtain written approv be performed as defin the frequency and in a st be conducted in acc must be performed as echanical or physical of esentatives of the Stat	treatment as for use as val to do so ed in the a manner as ordance defined in component e of New	5
Description of Engineering Contro	ble			
	713			

Parcel Engineering Control
94.047-2-28.1
Vapor Mitigation
Cover System Air Sparging/Soil Vapor Extraction
Groundwater Treatment System
-a site cover that will allow for commercial use, that will consist either of structures such as buildings,
pavement, sidewalks comprising the site development or a soil cover in areas where the upper one foot
of exposed surface soil will exceed the applicable SCOs; -removal of LNAPL from monitoring wells using the methods outlined in the SMP and RAWP;
-a soil vapor extraction (SVE) system to mitigate residual contamination in subsurface soil; and
-a vapor mitigation system for any future building(s) developed on-site.
Box 5
Periodic Review Report (PRR) Certification Statements
1. I certify by checking "YES" below that:
a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
YES NO
 For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
(a) The Engineering Control(s) employed at this site is unchanged
since the date that the Control was put in-place, or was last approved by the Department;
(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
YES NO
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
A Corrective Measures Work Plan must be submitted along with this form to address these issues.
Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C905032

Box	6
-----	---

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Michael Le	esakowski	TurnKey Environmental Re 2558 Hamburg Turnpike S at	estoration, LLC uite 300, Buffalo, NY 14218
print n	ame	print business add	dress
am certifying as	Designated	Representative of Owner	(Owner or Remedial Party)
	Nah	Section of this form.	04/06/2023

EC CERTIFICATIONS SITE NO. C905032

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Lori E. Riker	Benchmark Civil/Environmental Engineering & Geology, PLLC t,
print name	print business address
am certifying as a Professional Engineer f	or the
Signature of Professional Engineer, for the Remedial Party, Rendering Certification	e Owner or Stamp Date (Required for PE)

APPENDIX B

SITE PHOTOGRAPHIC LOG

SITE PHOTOGRAPHS

Photo 1:

Photo 3:

Photo 2:

Photo 4:

March 9, 2023 Site Visit

- Photo 1: Stone access road (looking northeast)
- Photo 2: Rip rap pond and drainage ditch (looking northwest)
- Photo 3: Vegetative soil cover around solar panels and belt skimmer shed (looking west)
- Photo 4: Vegetative soil cover between solar panel rows and northern fence line (looking southwest)

2023 PRR Olean Redevelopment Site 2 BCP Site No. 905032

SITE PHOTOGRAPHS

Photo 5:

Photo 7:

Photo 6:

Photo 8:

March 9, 2023 Site Visit

- Photo 5: Site vegetative soil conditions between typical solar panel rows (looking east)
- Photo 6: SVE trailer and biofilter
- Photo 7: Vegetative soil cover under solar panels (looking south)
- Photo 8: Riprap retention area with electrical conduit and solar panels beyond (looking east)

SITE PHOTOGRAPHS

Photo 9:

Photo 10:

Photo 9: Riprap detention pond and drainage ditch (looking northwest)

Photo 10: 2-SVE-1 treatment system trailer and bio pad (looking south)

APPENDIX C

GROUNDWATER SAMPLING FIELD FORMS AND ANALYTICAL DATA

GROUNDWATER FIELD FORM

Project Name: ORP #2 (Solean West)

Project Name: ORP #2 (Solean Wes	st)	Date: 8-2-2-2	
Location: Olean, NY	Project No.:	Field Team:	

Well No. WCMW1			Diameter (in	iches):		Sample Date / Time:			
Product Dep	oth (fbTOR):	23.03	Water Colur	mn (ft):		DTW when sampled:			
DTW (static	;) (fbTOR):	23.15	One Well Vo	olume (gal):		Purpose: Development Sample Purge & Sample			
Total Depth	(fbTOR);		Total Volum	e Purged (gal):		Purge Metho	od:		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU) DO (mg/L) ORP (mV) Appearance & Odor			
	 Initial 								
	1								
	2								
	3								
	4								·
	5								
	6								
	7								
	8								
	9								
	10						II		
Sample I	nformation:								
	S1								
	S2								

Well No	D. WCM	N4	Diameter (ir	nches): Ə		Sample Date / Time:					
Product De	pth (fbTOR):		Water Colu	mn (ft):		DTW whe	n sam	pled:			
DTW (static		ry	One Well Volume (gai):			Purpose:	Purpose: Development Sample Purge & Sar			Purge & Sample	
Total Depth	(fbTOR):	AUDA 16.3	7 Total Volum	e Purged (gal):		Purge Me	ge Method:				
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp, (deg. C)	SC (uS)	Turbidity (NTU)		DO (mg/L)		ORP (mV)	Appearance & Odor
	o Initial										
	1										
	2										
	3										
	4										
	5										
	6										
	7										
	8										
	9										
	10										
Sample I	nformation:										
	S1										
	S2						1				
											tion Criteria
REMARK	S: Hist	toric product	in WCMW1					Calculation		Parameter	Criteria
							Diam.	Vol. (g/ft)		pН	± 0,1 unit

1"

2"

4"

6"

0.041

0.163

0.653

1.469

SC

Turbidity

DO

ORP

± 3%

± 10%

± 0.3 mg/L

± 10 mV

Note: All water level measurements are in feet, distance from top of riser.

PREPARED BY:

GROUNDWATER FIELD FORM

Project Name: ORP #2 (Solean West)

Location: Olean, NY

Project No.:

Date: 8-2-22 Field Team: <EA

Well N	o. W13		Diameter (ir	nches): 4		Sample Dat	te / Time: 🖇	· a - aa	/ 1130						
Product De	epth (fbTOR):		Water Colu	mn (ft): 9.	35										
DTW (stat	ic) (fbTOR):	23.07	One Well V	olume (gal):	6.11	Purpose:	Development	t 🗌 Sample	e 🗶 Pur	ge & S	ample				
Total Dept	h (fbTOR):	2.42	Total Volum	ne Purged (gal):	8.00	Purge Meth	od: Low FI	u v							
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)		arance Odor	8				
1118	o Initial	0.00	7.20	19.4	1159	460	1.05	.5	Turbid	1 00	das				
1121	1 23.49	1.00	6.89	17.4	1159	81.5	0.36	38	clear	Lan C	vloo				
1123	2 23.51	2.00	6.93	14.8	1109	24.4	0.82	-50	11	(1	Li				
1125	° 23.50	3.00	6.97	15.8	103.7	15.7	0.86	-59	11	41	11				
1127	123.50	4.00	7.03	14.1	1014	12.1	0.85	-67	H	at	16				
1129	° 23.48	5.00	7.04	14.1	1012	8.74	0.76	-71	11	11	11				
	6														
	7														
	8				1										
	9														
	10														
Sample	Information:	3													
1130	\$1 23.49	6.00	7.06	14.2	498.2	8.06	0.80	-76	clear	. 00	aller a				
1140	S2 33.50	8.00	7.69	15.1	974.8	8.08	0.97	81	11	11	11				

Well No	o. W14		Diameter (in	nches):		Sample Date	e / Time:		
Product De	pth (fbTOR):	24.18	Water Colu	mn (ft):		DTW when s	sampled:		
DTW (statio	c) (fbTOR):	24.19	One Well V	olume (gal):		Purpose:	Development	Sample	Purge & Sample
Total Depth	n (fbTOR):			ne Purged (gal):		Purge Metho	od:		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial								
· · · · · · · · · · · · · · · · · · ·	2								
	3								
	4								
	5	_							
	7								
	8								
	9								
	10								
Sample I	nformation								
	S1				×				
	S2								
								Stabiliz	ation Criteria
REMARK		product in W				Volu	me Calculation	Parameter	Criteria
T00 k	: Blind 1	JUP With	613			Dia	m. Vol. (g/ft)	pH	± 0.1 unit

TOOK Blind DUP with W13

Diam. Vol. (g/ft) pН 1" 0.041 SC 2" 0.163 Turbidity 4" 0.653 DO 6" 1.469 ORP

± 3%

± 10%

± 0.3 mg/L

± 10 mV

Note: All water level measurements are in feet, distance from top of riser.

PREPARED BY:

GROUNDWATER FIELD FORM

Project Name: ORP #2 (Solean West)

Location: Olean, NY

Date: 8-2-22 Field Team: CEH

Well No	o. W17		Diameter (inches): 4			Sample Date / Time: 8-2-22 /1430							
Product De	pth (fbTOR):		Water Colu	mn (ft): 9.1	25	DTW when sampled: 18.07							
DTW (statio	c) (fbTOR): 17	-35	One Well V	olume (gal): 🛛 🕻	5.64	Purpose:	Development	t 🗌 Sample	e 🔀 Purge & Sample				
Total Depth	(fbTOR): 2	6.60	Total Volum	e Purged (gal):	10.00	Purge Meth	od: Low Fl	011					
Time	Water Level (fbTOR)	Acc Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity DO ORP (NTU) (mg/L) (mV)			Appearance & Odor				
1403	o Initial	0.00	7.32	22.7	680.7	110	1.01	- 55	SL Turbid, no ala				
1406	1 17.80	1.00	7.11	18.1	670.5	37.7	0.97	91	clear, no ado				
1408	2 18.07	2.00	7.11	16-6	686.4	30.6	0.87	-96	11 11 11				
1410	3 18.07	3.00	7.01	14.1	723.5	19.0	0.81	-97	11 11 4				
1412	4 18.07	4.00	7.01	14.2	7.74.7	17.4	0.86	-97	11 11 11				
1414	\$ 18.07	5.00	6.19	14.1	816.5	16.5	0.67	-97	11 11 11				
1416	6 18.07	6.00	6.98	14.1	849.2	16.0	0.59	-97	11 11 (1				
1418	18.07	7.00	6.97	13.9	878.7	11.9	0.68	-99	11 11 11				
1420	8 18.07	8.00	6.96	13.8	886.3	12.4	0.67	-97	H H U				
	9												
	10												
Sample I	nformation:												
1430	51 18.07	9.00	6.98	14.3	894.3	10.3	0.73	-97	Cleur, no odom				
1433	52 8 . 1	10.00	7.03	i5.0	911.9	9.55	0.74	-98	J1 11 4				

Project No.:

Well N	o. W28		Diameter (ir	nches): 4		Sample Date / Time: 8-2-22 / 1240				
Product De	epth (fbTOR):		Water Colu	mn (ft): 55	2	DTW when		0.82		
DTW (stati	c) (fbTOR):	15.15	One Well V	olume (gal):	3.60	Purpose:	Development		e 🕱 Purge 8	& Sample
Total Dept	h (fbTOR): 3	0.67	Total Volum	e Purged (gal):	8.00	Purge Meth	od: Low F	106		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appeara Odo	
1214	o Initial	0.06	7.22	20.6	1123	19.8	0.93	-17	clear, no	alor
1551	1 26.03	1.00	7.05	16.5	1/31	20,9	0.80	- 60	11 11	(
1225	2 26.35	2.00	7.02	15.8	1136	29.9	0.78	-72	11 11	U U
1229	3 26.55	3.00	7.00	15.3	1135	43.2	0.74	-77	11 1	4
1231	4 26.69	4.00	7.02	15.9	1144	39.5	0.67	-82	111	1 11
1933	5 26 75	5.00	7.03	15.3	1149	41.0	0.63	-85	11	u u
	7									
	8									
	9									
	10									
Sample	Information:									
1240	61 26.82	6.00	7.03	15.4	1139	39.8	0.67	- 88	clearin	oalon
1246	S226.58	8.00	7.05	17.7	(139	238	0.62	-105	11 1	

REMARKS: TOOK MS/MSD with W28

 Volume Calculation

 Diam.
 Vol. (g/ft)

 1"
 0.041

 2"
 0.163

 4"
 0.653

 6"
 1.469

Stabilizati	on Criteria
Parameter	Criteria
pН	± 0.1 unit
SC	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

Note: All water level measurements are in feet, distance from top of riser.

PREPARED BY:

G BNCHMARK I HOMMENTAL SCIENCE, PLLC)		EQUIPM	EQUIPMENT CALIBRATION LOG	LATION LOG
PROJECT INFORMATION: Project Name: ORP #2 (Solean West)	N: (Solear	(West)			Date: <i>8</i>	CE-6-8		
Client: Journe					Instrumer	Instrument Source: X	BM	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
JH meter	units	0050	Myron L Company Litra Meter 6P	6213516 6243084 X	CEH	4.00 7.00	3 99 7 01	
				6212375 🗌 6223973 🗌		10.01	10.00	
			Hach 2100P or	06120C020523 (P)		< 0.4 or 10 for 2100 a	9.28	
 Turbidity meter 	NTU	00100	2100Q Turbidimeter	; 7 110 L 6 6 3 6 1 A X 13120 C 030 4 32 (Q) □	てでは	20 100 800		
Turbidity meter	NTU		LaMotte 2020	6523-1816 (La)		0.0 NTU 1.0 NTU 10.0 NTU		
Sp. Cond. meter	u S m	0060	Myron L Company Ultra Meter 6P	6213516 6243084 X 6212375 J	CEH	<u>7</u> mS @ 25 °C	700 i	
OId 🗌	mdd		MinRAE 2000]		open air zero pom Iso. Gas		MIBK response factor = 1.0
 Dissolved Oxygen 	mdd	4	HACH Model HQ30d		± !1	100% Satuartion	20 04	
		00100		100500041867	}			
Particulate meter	mg/m ³					zero air		
Oxygen	%					open air		
Hydrogen sulfide	mdd					open air		
Carbon monoxide	mdd					open air		
	%					open air		
Radiation Meter	uR/H					background area		
ADDITIONAL REMARKS: PEQUIPHENRED BY LOG.XIS				DATE: 8-2-22	4			

ANALYTICAL REPORT

Lab Number:	L2241788
Client:	Benchmark & Turnkey Companies
	2558 Hamburg Turnpike
	Suite 300
	Buffalo, NY 14218
ATTN:	Lori Riker
Phone:	(716) 856-0599
Project Name:	ORP #2
Project Number:	0370-016-001
Report Date:	08/19/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:08192214:43

 Project Name:
 ORP #2

 Project Number:
 0370-016-001

 Lab Number:
 L2241788

 Report Date:
 08/19/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2241788-01	W13	WATER	OLEAN, NY	08/02/22 11:30	08/03/22
L2241788-02	W17	WATER	OLEAN, NY	08/02/22 14:30	08/03/22
L2241788-03	W28	WATER	OLEAN, NY	08/02/22 12:40	08/03/22
L2241788-04	BLIND DUP	WATER	OLEAN, NY	08/02/22 08:00	08/03/22
L2241788-05	TRIP BLANK	WATER	OLEAN, NY	08/02/22 00:00	08/03/22

 Project Name:
 ORP #2

 Project Number:
 0370-016-001

 Lab Number:
 L2241788

 Report Date:
 08/19/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

 Project Name:
 ORP #2

 Project Number:
 0370-016-001

 Lab Number:
 L2241788

 Report Date:
 08/19/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2241788-02D: The sample has elevated detection limits due to the dilution required by the sample matrix (foam).

Semivolatile Organics

The WG1672732-1 Method Blank, associated with L2241788-01 through -04, has TIC(s) detected. The results are qualified with a "B" for any associated samples that have detections of the same TIC(s). The WG1672732-6/-7 MS/MSD recoveries, performed on L2241788-03, are below the acceptance criteria for 3,3'-dichlorobenzidine (0%/0%) and 4-nitrophenol (0%/0%) due to the concentration of these compounds in the MS/MSD falling below the reported detection limit.

Semivolatile Organics by SIM

The WG1672733-1 Method Blank, associated with L2241788-01 through -04, has a concentration above the reporting limit for Phenanthrene. Since the associated sample concentrations are either greater than 10x the blank concentration or non-detect to the RL for this target analyte, no corrective action is required. Any results detected below the reporting limit are qualified with a "B".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 08/19/22

ORGANICS

VOLATILES

			Serial_N	0:08192214:43
Project Name:	ORP #2		Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22
		SAMPLE RESULTS		
Lab ID:	L2241788-01		Date Collected:	08/02/22 11:30
Client ID:	W13		Date Received:	08/03/22
Sample Location:	OLEAN, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	08/10/22 13:52			
Analyst:	MV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

 Project Name:
 ORP #2
 Lab Number:
 L2241788

 Project Number:
 0370-016-001
 Report Date:
 08/19/22

 Lab ID:
 L2241788-01
 Date Collected:
 08/02/22 11:30

Client ID: W13 Sample Location: OLEAN, NY Date Collected: Date Received: Field Prep:

08/02/22 11:30 08/03/22 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND			2.5	0.70	1
			ug/l			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.7	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1
			3			

Tentatively Identified Compounds

Total TIC Compounds	1.09	J	ug/l	1
Unknown	1.09	J	ug/l	1

						Serial_No	0:08192214:43
Project Name:	ORP #2				Lab Nu	umber:	L2241788
Project Number:	0370-016-001				Report	t Date:	08/19/22
		SAMP	LE RESULTS	6			
Lab ID:	L2241788-01				Date Co	llected:	08/02/22 11:30
Client ID:	W13				Date Re	ceived:	08/03/22
Sample Location:	OLEAN, NY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborou	gh Lab					

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	99	70-130	

				Serial_No	0:08192214:43
Project Name:	ORP #2			Lab Number:	L2241788
Project Number:	0370-016-001			Report Date:	08/19/22
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2241788-02 W17 OLEAN, NY	D		Date Collected: Date Received: Field Prep:	08/02/22 14:30 08/03/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 08/09/22 23:35 MV				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	5.0	1.4	2
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
Chloroform	ND		ug/l	5.0	1.4	2
Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Dibromochloromethane	ND		ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Tetrachloroethene	ND		ug/l	1.0	0.36	2
Chlorobenzene	1.7	J	ug/l	5.0	1.4	2
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane	ND		ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
Bromoform	ND		ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Benzene	12		ug/l	1.0	0.32	2
Toluene	1.7	J	ug/l	5.0	1.4	2
Ethylbenzene	1.8	J	ug/l	5.0	1.4	2
Chloromethane	ND		ug/l	5.0	1.4	2
Bromomethane	ND		ug/l	5.0	1.4	2
Vinyl chloride	ND		ug/l	2.0	0.14	2
Chloroethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2
Trichloroethene	ND		ug/l	1.0	0.35	2
1,2-Dichlorobenzene	2.8	J	ug/l	5.0	1.4	2

Project Name: Project Number: Lab ID: Client ID: Sample Location:	ORP #2 0370-016-001 L2241788-02 W17 OLEAN, NY	S	AMPLE RESULT	s	Eab Nu Report Date Col Date Rec Field Pre	mber: Date: lected: ceived:	:08192214:43 L2241788 08/19/22 08/02/22 14:30 08/03/22 Not Specified
Sample Depth: Parameter		Res	ult Qualifier	Units	RL	MDL	Dilution Factor
	y GC/MS - Westbord			Units	NL .	MDE	Dilution ractor
volatile Organics b	by GC/MS - Westbord	bugn Lab					
1,3-Dichlorobenzene		N	D	ug/l	5.0	1.4	2
1,4-Dichlorobenzene		N	D	ug/l	5.0	1.4	2
Methyl tert butyl ether		N	D	ug/l	5.0	1.4	2
p/m-Xylene		4.	9 J	ug/l	5.0	1.4	2
o-Xylene		10	0	ug/l	5.0	1.4	2
cis-1,2-Dichloroethene		N	D	ug/l	5.0	1.4	2
Styrene		N	D	ug/l	5.0	1.4	2
Dichlorodifluoromethane		N	D	ug/l	10	2.0	2
Acetone		N	D	ug/l	10	2.9	2
Carbon disulfide		N	D	ug/l	10	2.0	2
2-Butanone		N	D	ug/l	10	3.9	2
4-Methyl-2-pentanone		N	D	ug/l	10	2.0	2
2-Hexanone		N	D	ug/l	10	2.0	2
Bromochloromethane		N	D	ug/l	5.0	1.4	2
1,2-Dibromoethane		N	D	ug/l	4.0	1.3	2
n-Butylbenzene		N	D	ug/l	5.0	1.4	2
sec-Butylbenzene		N	D	ug/l	5.0	1.4	2
1,2-Dibromo-3-chloroprop	bane	Ν	D	ug/l	5.0	1.4	2
Isopropylbenzene		1	0	ug/l	5.0	1.4	2
p-Isopropyltoluene		Ν	D	ug/l	5.0	1.4	2
n-Propylbenzene		9.	3	ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene		N	D	ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene		N	D	ug/l	5.0	1.4	2
1,3,5-Trimethylbenzene		N	D	ug/l	5.0	1.4	2
1,2,4-Trimethylbenzene		11	0	ug/l	5.0	1.4	2
Methyl Acetate		N	D	ug/l	4.0	0.47	2
Cyclohexane		4	7	ug/l	20	0.54	2
1,4-Dioxane		N	D	ug/l	500	120	2
Freon-113		N	D	ug/l	5.0	1.4	2
Methyl cyclohexane		64	4	ug/l	20	0.79	2

					Sei	rial_No:08192	2214:43
Project Name:	ORP #2				Lab Num	ber: L2	2241788
Project Number:	0370-016-001			_	Report Da	ate: 08	3/19/22
		SAM	PLE RESULTS	5			
Lab ID:	L2241788-02	D			Date Collec		2/22 14:30
Client ID: Sample Location:	W17 OLEAN, NY				Date Recei Field Prep:		3/22 Specified
	OLEAN, NT				ricia ricp.		opecilieu
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL Dilu	tion Factor
Volatile Organics b	y GC/MS - Westbor	ough Lab					
Tentatively Identified C	ompounds						
Total TIC Compounds		10)2 J	ug	/I		2
Cyclohexene		7.	44 NJ	ug	/I		2
Cyclopentane, Methyl-		19	.4 NJ	ug	/I		2
Unknown		4.	J8 J	ug	/I		2
Unknown Benzene		3.	38 J	ug	/I		2
Unknown		5.	20 J	ug	/I		2
Unknown Cycloalkane		5.	64 J	ug	/I		2
Cyclohexane, 1,1-dime	thyl-	7.	00 NJ	ug	/I		2
Unknown Benzene		11	.8 J	ug	/I		2
Unknown		6.	98 J	ug	/I		2
Unknown Aromatic		4.	60 J	ug	/I		2
Unknown Cycloalkane		5.	06 J	ug	/I		2
Unknown Cycloalkane		4.	18 J	ug	/I		2
Unknown Cycloalkane		9.	52 J	ug	/I		2
Unknown Benzene		3.	60 J	ug	/I		2
Unknown		3.	74 J	ug	/I		2
Surrogate				% Recovery	Qualifier	Acceptanc Criteria	e
1,2-Dichloroethane	e-d4			95		70-130	
Toluene-d8				100		70-130	

94

99

70-130

70-130

4-Bromofluorobenzene

Dibromofluoromethane

			Serial_N	0:08192214:43
Project Name:	ORP #2		Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22
		SAMPLE RESULTS		
Lab ID:	L2241788-03		Date Collected:	08/02/22 12:40
Client ID:	W28		Date Received:	08/03/22
Sample Location:	OLEAN, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	08/09/22 23:58			
Analyst:	MV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

 Project Name:
 ORP #2
 Lab Number:
 L2241788

 Project Number:
 0370-016-001
 Report Date:
 08/19/22

 Lab ID:
 L2241788-03
 Date Collected:
 08/02/22 12:4

Client ID: U2241788-0. Sample Location: OLEAN, NY Date Collected: Date Received: Field Prep: 08/02/22 12:40 08/03/22 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	0.95	J	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.94	J	ug/l	10	0.40	1

				Serial_No:08192214:43					
Project Name:	ORP #2				Lab	Number:	L2241788		
Project Number:	0370-016-001				Rep	oort Date:	08/19/22		
		SAMPLE	RESULTS						
Lab ID: Client ID: Sample Location:	L2241788-03 W28 OLEAN, NY				Date	Collected: Received: Prep:	08/02/22 12:40 08/03/22 Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	oy GC/MS - Westboro	ugh Lab							
Tentatively Identified C	Compounds								
Total TIC Compounds		32.3	J		ug/l		1		
Unknown Alkene		5.25	J		ug/l		1		
Unknown		1.88	J		ug/l		1		
Unknown		2.96	J		ug/l		1		
Unknown Aromatic		4.81	J		ug/l		1		
Unknown		2.00	J		ug/l		1		
Indane		6.89	NJ		ug/l		1		
Unknown Aromatic		2.61	J		ug/l		1		
Unknown Indene		1.85	J		ug/l		1		
Unknown		1.85	J		ug/l		1		
Cyclohexene, 1,2-dime	ethyl-	2.15	NJ		ug/l		1		
						Ac	ceptance		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	97	70-130	

			Serial_N	0:08192214:43
Project Name:	ORP #2		Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22
		SAMPLE RESULTS		
Lab ID:	L2241788-04		Date Collected:	08/02/22 08:00
Client ID:	BLIND DUP		Date Received:	08/03/22
Sample Location:	OLEAN, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	08/10/22 00:22			
Analyst:	MV			
•				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: ORP #2

Project Number: 0370-016-001

SAMPLE RESULTS

Lab ID:L2241788-04Client ID:BLIND DUPSample Location:OLEAN, NY

Serial_No:08192214:43 Lab Number: L2241788 Report Date: 08/19/22

Date Collected: Date Received: Field Prep: 08/02/22 08:00 08/03/22 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

	Serial_No:08192214:43					
SAMPLE RESULTS Lab ID: L2241788-04 Date Collected: Client ID: BLIND DUP Date Received: Sample Location: OLEAN, NY Field Prep: Sample Depth: Result Qualifier Units RL MDL Volatile Organics by GC/MS - Westborough Lab Tentatively Identified Compounds 5.42 J ug/l Cyclotrisiloxane, Hexamethyl- 1.36 NJ ug/l Image: Cyclotrisiloxane, Hexamethyl- 1.14 NJ ug/l Image: Cyclotrisiloxane, Hexamethyl- 1.48 NJ ug/l Image: Cyclotrisiloxane, Hexamethyl- 1.44 J ug/l Image: Cyclotrisiloxane, Hexamethyl- 1.44 J ug/l Image: Cyclotrisiloxane, Hexamethyl- Image: Cyclo	Lab N		Lab Nu	umber:	L2241788	
Lab ID: L2241788-04 Date Collected: Client ID: BLIND DUP Date Received: Sample Location: OLEAN, NY Field Prep: Sample Depth: Volatile Organics by GC/MS - Westborough Lab Units RL MDL Volatile Organics by GC/MS - Westborough Lab Tentatively Identified Compounds 5.42 J ug/l Total TIC Compounds 5.42 J ug/l Image: Collected: Empirical Science Sci	Repo		Repor	t Date:	08/19/22	
Client ID: BLIND DUP OLEAN, NY Date Received: Field Prep: Sample Location: OLEAN, NY Field Prep: Sample Depth: Result Qualifier Units RL MDL Volatile Organics by GC/MS - Westborough Lab Total TIC Compounds 5.42 J ug/l Volatile Organics Diget Prep: Sulfur Dioxide 1.36 NJ ug/l Volatile Organics Diget Prep: Sulfur Dioxide 1.48 NJ ug/l Volatile Prep: Sulfur Dioxide 1.44 J ug/l Volatile Prep:						
Sample Location: OLEAN, NY Field Prep: Sample Depth: Parameter Result Qualifier Units RL MDL Parameter Result Qualifier Units RL MDL Volatile Organics by GC/MS - Westborough Lab Tentatively Identified Compounds 5.42 J ug/l Cyclotrisiloxane, Hexamethyl- 1.36 NJ ug/l Image: Cyclotrisiloxane, Hexamethyl- 1.14 NJ ug/l Image: Cyclotrisiloxane, Hexamethyl- 1.14 NJ ug/l Image: Cyclotrisiloxane, Hexamethyl- 1.14 NJ ug/l Image: Cyclotrisiloxane, Hexamethyl- 1.48 NJ ug/l Image: Cyclotrisiloxane, Hexamethyl- 1.44 J ug/l Image: Cyclotrisiloxane, Hexamethyl- 1.44 J ug/l Image: Cyclotrisiloxane, Hexamethyl- Image: Cyclotrisiloxane, Hexamethyl	Date C	I	Date Co	llected:	08/02/22 08:0	00
Sample Depth: Parameter Result Qualifier Units RL MDL Volatile Organics by GC/MS - Westborough Lab Tentatively Identified Compounds Total TIC Compounds 5.42 J ug/l Cyclotrisiloxane, Hexamethyl- 1.36 NJ ug/l Butane, 2,3-Dimethyl- 1.14 NJ ug/l Sulfur Dioxide 1.48 NJ ug/l Unknown Aromatic 1.44 J ug/l	Date R		Date Re	ceived:	08/03/22	
ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough LabTentatively Identified CompoundsTotal TIC Compounds5.42Jug/lCyclotrisiloxane, Hexamethyl-1.36NJug/lButane, 2,3-Dimethyl-1.14NJug/lSulfur Dioxide1.48NJug/l	Field P	I	Field Pre	ep:	Not Specified	
Volatile Organics by GC/MS - Westborough Lab Tentatively Identified Compounds Total TIC Compounds 5.42 J ug/l Cyclotrisiloxane, Hexamethyl- 1.36 NJ ug/l Butane, 2,3-Dimethyl- 1.14 NJ ug/l Sulfur Dioxide 1.48 NJ ug/l						
Tentatively Identified Compounds Total TIC Compounds 5.42 J ug/l Cyclotrisiloxane, Hexamethyl- 1.36 NJ ug/l Butane, 2,3-Dimethyl- 1.14 NJ ug/l Sulfur Dioxide 1.48 NJ ug/l	RL		RL	MDL	Dilution Factor	
Total TIC Compounds 5.42 J ug/l Cyclotrisiloxane, Hexamethyl- 1.36 NJ ug/l Butane, 2,3-Dimethyl- 1.14 NJ ug/l Sulfur Dioxide 1.48 NJ ug/l Unknown Aromatic 1.44 J ug/l						
Total TIC Compounds 5.42 J ug/l Cyclotrisiloxane, Hexamethyl- 1.36 NJ ug/l Butane, 2,3-Dimethyl- 1.14 NJ ug/l Sulfur Dioxide 1.48 NJ ug/l Unknown Aromatic 1.44 J ug/l						
Total TIC Compounds 5.42 J ug/l Cyclotrisiloxane, Hexamethyl- 1.36 NJ ug/l Butane, 2,3-Dimethyl- 1.14 NJ ug/l Sulfur Dioxide 1.48 NJ ug/l Unknown Aromatic 1.44 J ug/l						
Cyclotrisiloxane, Hexamethyl- 1.36 NJ ug/l Butane, 2,3-Dimethyl- 1.14 NJ ug/l Sulfur Dioxide 1.48 NJ ug/l Unknown Aromatic 1.44 J ug/l						
Butane, 2,3-Dimethyl- 1.14 NJ ug/l Sulfur Dioxide 1.48 NJ ug/l Unknown Aromatic 1.44 J ug/l	g/I	ug/l	g/l			1
Sulfur Dioxide 1.48 NJ ug/l Unknown Aromatic 1.44 J ug/l	g/l	ug/l	g/l			1
Unknown Aromatic 1.44 J ug/l	g/l	ug/l	g/l			1
Α	g/l	ug/l	g/l			1
	g/l	ug/l	g/l			1
Surrogate % Recovery Qualifier					cceptance Criteria	

Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	101		70-130	

			Serial_No:08192214:43		
Project Name:	ORP #2		Lab Number:	L2241788	
Project Number:	0370-016-001		Report Date:	08/19/22	
		SAMPLE RESULTS			
Lab ID:	L2241788-05		Date Collected:	08/02/22 00:00	
Client ID:	TRIP BLANK		Date Received:	08/03/22	
Sample Location:	OLEAN, NY		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	08/10/22 00:45				
Analyst:	MV				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

 Project Name:
 ORP #2

 Project Number:
 0370-016-001

Serial_No:08192214:43 Lab Number: L2241788 Report Date: 08/19/22

SAMPLE RESULTS

Lab ID:L2241788-05Client ID:TRIP BLANKSample Location:OLEAN, NY

Date Collected: Date Received: Field Prep: 08/02/22 00:00 08/03/22 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
				0.5	0.70	
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1
			-			

Tentatively Identified Compounds

Total TIC Compounds	1.29	J	ug/l	1
Cyclotrisiloxane, Hexamethyl-	1.29	NJ	ug/l	1

		Serial_No:08192214:43					
Project Name:	ORP #2				Lab Nu	umber:	L2241788
Project Number:	0370-016-001				Report	Date:	08/19/22
		SAMPL	E RESULTS	5			
Lab ID:	L2241788-05				Date Co	llected:	08/02/22 00:00
Client ID:	TRIP BLANK				Date Re	ceived:	08/03/22
Sample Location:	OLEAN, NY				Field Pre	əp:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	Volatile Organics by GC/MS - Westborough Lab						

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	100	70-130	

 Lab Number:
 L2241788

 Report Date:
 08/19/22

Method Blank Analysis Batch Quality Control

Analytical Method:1,8Analytical Date:08/Analyst:TM

1,8260C 08/09/22 20:25 TMS

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS	- Westborough Lab	o for sample(s):	02-05 Batch:	WG1673714-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: **ORP** #2 **Project Number:** 0370-016-001 Lab Number: L2241788 **Report Date:** 08/19/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: Analyst: TMS

08/09/22 20:25

arameter	Result C	ualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab fo	or sample(s):	02-05 Batch:	WG1673714-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

 Lab Number:
 L2241788

 Report Date:
 08/19/22

Project Name: ORP #2 Project Number: 0370-016-001

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/09/22 20:25Analyst:TMS

Parameter	Result	Qualifier Un	its	RL	MDL	
Volatile Organics by GC/MS - We	estborough La	b for sample(s)	: 02-05	Batch:	WG1673714-5	
Tentatively Identified Compounds						
Total TIC Compounds	1.32	J	ug/l			
Cyclotrisiloxane, Hexamethyl-	1.32	NJ	ug/l			

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	94	70-130
Dibromofluoromethane	99	70-130

 Lab Number:
 L2241788

 Report Date:
 08/19/22

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/10/22 10:23Analyst:PD

arameter	Result	Qualifier Ur	its	RL	MDL
olatile Organics by GC/MS - V	Westborough Lat	o for sample(s	: 01	Batch:	WG1673963-5
Methylene chloride	ND	ι	ıg/l	2.5	0.70
1,1-Dichloroethane	ND	ι	ıg/l	2.5	0.70
Chloroform	ND	ι	ıg/l	2.5	0.70
Carbon tetrachloride	ND	ι	ıg/l	0.50	0.13
1,2-Dichloropropane	ND	ι	ıg/l	1.0	0.14
Dibromochloromethane	ND	ι	ıg/l	0.50	0.15
1,1,2-Trichloroethane	ND	ι	ıg/l	1.5	0.50
Tetrachloroethene	ND	ι	ıg/l	0.50	0.18
Chlorobenzene	ND	ι	ıg/l	2.5	0.70
Trichlorofluoromethane	ND	ι	ıg/l	2.5	0.70
1,2-Dichloroethane	ND	ι	ıg/l	0.50	0.13
1,1,1-Trichloroethane	ND	ι	ıg/l	2.5	0.70
Bromodichloromethane	ND	ι	ıg/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ι	ıg/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ι	ıg/l	0.50	0.14
Bromoform	ND	ι	ıg/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ι	ıg/l	0.50	0.17
Benzene	ND	ι	ıg/l	0.50	0.16
Toluene	ND	ι	ıg/l	2.5	0.70
Ethylbenzene	ND	ι	ıg/l	2.5	0.70
Chloromethane	ND	ι	ıg/l	2.5	0.70
Bromomethane	ND	ι	ıg/l	2.5	0.70
Vinyl chloride	ND	ι	ıg/l	1.0	0.07
Chloroethane	ND	ι	ıg/l	2.5	0.70
1,1-Dichloroethene	ND	ι	ıg/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ι	ıg/l	2.5	0.70
Trichloroethene	ND	ι	ıg/l	0.50	0.18
1,2-Dichlorobenzene	ND	ι	ıg/l	2.5	0.70
1,3-Dichlorobenzene	ND	ι	ıg/l	2.5	0.70

 Lab Number:
 L2241788

 Report Date:
 08/19/22

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/10/22 10:23Analyst:PD

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - W	/estborough Lat	o for sampl	e(s): 01	Batch:	WG1673963-5
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
n-Butylbenzene	ND		ug/l	2.5	0.70
sec-Butylbenzene	ND		ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
p-Isopropyltoluene	ND		ug/l	2.5	0.70
n-Propylbenzene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70
Methyl Acetate	ND		ug/l	2.0	0.23
Cyclohexane	ND		ug/l	10	0.27
1,4-Dioxane	ND		ug/l	250	61.
Freon-113	ND		ug/l	2.5	0.70
Methyl cyclohexane	ND		ug/l	10	0.40

 Lab Number:
 L2241788

 Report Date:
 08/19/22

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/10/22 10:23Analyst:PD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough Lat	o for sampl	e(s): 01	Batch:	WG1673963-5	
Tentatively Identified Compounds						

Total TIC Compounds	1.19	J	ug/l
Unknown	1.19	J	ug/l

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	99		70-130	

ORP #2

arameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	02-05	Batch:	WG1673714-3	WG1673714-4			
Methylene chloride	91			89		70-130	2		20
1,1-Dichloroethane	87			86		70-130	1		20
Chloroform	92			90		70-130	2		20
Carbon tetrachloride	96			96		63-132	0		20
1,2-Dichloropropane	84			84		70-130	0		20
Dibromochloromethane	97			98		63-130	1		20
1,1,2-Trichloroethane	90			90		70-130	0		20
Tetrachloroethene	100			100		70-130	0		20
Chlorobenzene	94			94		75-130	0		20
Trichlorofluoromethane	93			94		62-150	1		20
1,2-Dichloroethane	87			90		70-130	3		20
1,1,1-Trichloroethane	92			92		67-130	0		20
Bromodichloromethane	92			92		67-130	0		20
trans-1,3-Dichloropropene	91			93		70-130	2		20
cis-1,3-Dichloropropene	89			89		70-130	0		20
Bromoform	99			100		54-136	1		20
1,1,2,2-Tetrachloroethane	86			89		67-130	3		20
Benzene	88			88		70-130	0		20
Toluene	90			90		70-130	0		20
Ethylbenzene	91			90		70-130	1		20
Chloromethane	50	Q		50	Q	64-130	0		20
Bromomethane	47			48		39-139	2		20
Vinyl chloride	70			69		55-140	1		20

Lab Number: L2241788

Project Number: 0370-016-001

ORP #2

Project Name:

arameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	02-05	Batch:	WG1673714-3	WG1673714-4				
Chloroethane	78			82		55-138	5		20	
1,1-Dichloroethene	90			91		61-145	1		20	
trans-1,2-Dichloroethene	92			93		70-130	1		20	
Trichloroethene	95			94		70-130	1		20	
1,2-Dichlorobenzene	97			98		70-130	1		20	
1,3-Dichlorobenzene	98			99		70-130	1		20	
1,4-Dichlorobenzene	97			96		70-130	1		20	
Methyl tert butyl ether	90			94		63-130	4		20	
p/m-Xylene	95			95		70-130	0		20	
o-Xylene	95			95		70-130	0		20	
cis-1,2-Dichloroethene	93			94		70-130	1		20	
Styrene	95			95		70-130	0		20	
Dichlorodifluoromethane	81			81		36-147	0		20	
Acetone	56	Q		74		58-148	28	Q	20	
Carbon disulfide	86			85		51-130	1		20	
2-Butanone	57	Q		66		63-138	15		20	
4-Methyl-2-pentanone	81			82		59-130	1		20	
2-Hexanone	75			77		57-130	3		20	
Bromochloromethane	100			110		70-130	10		20	
1,2-Dibromoethane	96			98		70-130	2		20	
n-Butylbenzene	93			92		53-136	1		20	
sec-Butylbenzene	94			92		70-130	2		20	
1,2-Dibromo-3-chloropropane	96			98		41-144	2		20	

Project Name: ORP #2 **Project Number:** 0370-016-001 Lab Number: L2241788

Parameter	LCS %Recovery	Qual		LCSD lecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	02-05	Batch:	WG1673714-3	WG1673714-4			
Isopropylbenzene	93			93		70-130	0		20
p-lsopropyltoluene	98			96		70-130	2		20
n-Propylbenzene	91			90		69-130	1		20
1,2,3-Trichlorobenzene	96			100		70-130	4		20
1,2,4-Trichlorobenzene	98			100		70-130	2		20
1,3,5-Trimethylbenzene	94			93		64-130	1		20
1,2,4-Trimethylbenzene	97			95		70-130	2		20
Methyl Acetate	74			75		70-130	1		20
Cyclohexane	85			86		70-130	1		20
1,4-Dioxane	92			96		56-162	4		20
Freon-113	100			100		70-130	0		20
Methyl cyclohexane	91			90		70-130	1		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Q	ual %Recovery Qua	al Criteria
1,2-Dichloroethane-d4	93	95	70-130
Toluene-d8	99	98	70-130
4-Bromofluorobenzene	95	95	70-130
Dibromofluoromethane	100	100	70-130

Lab Number: L2241788

Project Number: 0370-016-001

ORP #2

Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough I	Lab Associated	sample(s): 0	1 Batch: WG	1673963-3	WG1673963-4		
Methylene chloride	93		98		70-130	5	20
1,1-Dichloroethane	110		110		70-130	0	20
Chloroform	99		100		70-130	1	20
Carbon tetrachloride	95		100		63-132	5	20
1,2-Dichloropropane	96		100		70-130	4	20
Dibromochloromethane	87		96		63-130	10	20
1,1,2-Trichloroethane	95		100		70-130	5	20
Tetrachloroethene	98		100		70-130	2	20
Chlorobenzene	95		100		75-130	5	20
Trichlorofluoromethane	100		110		62-150	10	20
1,2-Dichloroethane	100		110		70-130	10	20
1,1,1-Trichloroethane	93		98		67-130	5	20
Bromodichloromethane	110		110		67-130	0	20
trans-1,3-Dichloropropene	90		99		70-130	10	20
cis-1,3-Dichloropropene	91		97		70-130	6	20
Bromoform	87		97		54-136	11	20
1,1,2,2-Tetrachloroethane	91		110		67-130	19	20
Benzene	100		110		70-130	10	20
Toluene	97		100		70-130	3	20
Ethylbenzene	97		100		70-130	3	20
Chloromethane	150	Q	160	Q	64-130	6	20
Bromomethane	110		110		39-139	0	20
Vinyl chloride	140		150	Q	55-140	7	20

Lab Number: L2241788

Project Number: 0370-016-001

ORP #2

Project Name:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0'	1 Batch: WG	1673963-3	WG1673963-4			
Chloroethane	260	Q	250	Q	55-138	4	20	
1,1-Dichloroethene	99		110		61-145	11	20	
trans-1,2-Dichloroethene	99		100		70-130	1	20	
Trichloroethene	93		96		70-130	3	20	
1,2-Dichlorobenzene	92		100		70-130	8	20	
1,3-Dichlorobenzene	96		100		70-130	4	20	
1,4-Dichlorobenzene	97		99		70-130	2	20	
Methyl tert butyl ether	85		94		63-130	10	20	
p/m-Xylene	95		100		70-130	5	20	
o-Xylene	95		100		70-130	5	20	
cis-1,2-Dichloroethene	94		100		70-130	6	20	
Styrene	95		100		70-130	5	20	
Dichlorodifluoromethane	140		150	Q	36-147	7	20	
Acetone	93		120		58-148	25	Q 20	
Carbon disulfide	110		120		51-130	9	20	
2-Butanone	80		93		63-138	15	20	
4-Methyl-2-pentanone	85		100		59-130	16	20	
2-Hexanone	76		97		57-130	24	Q 20	
Bromochloromethane	90		94		70-130	4	20	
1,2-Dibromoethane	86		98		70-130	13	20	
n-Butylbenzene	110		110		53-136	0	20	
sec-Butylbenzene	100		100		70-130	0	20	
1,2-Dibromo-3-chloropropane	72		88		41-144	20	20	

Lab Number: L2241788

Project Number: 0370-016-001

ORP #2

Project Name:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01 Batch: WG	1673963-3	WG1673963-4			
Isopropylbenzene	95		98		70-130	3		20
p-Isopropyltoluene	96		98		70-130	2	-	20
n-Propylbenzene	100		100		69-130	0	-	20
1,2,3-Trichlorobenzene	79		94		70-130	17		20
1,2,4-Trichlorobenzene	82		94		70-130	14		20
1,3,5-Trimethylbenzene	97		99		64-130	2		20
1,2,4-Trimethylbenzene	95		96		70-130	1		20
Methyl Acetate	98		120		70-130	20		20
Cyclohexane	120		130		70-130	8		20
1,4-Dioxane	74		92		56-162	22	Q	20
Freon-113	110		120		70-130	9		20
Methyl cyclohexane	100		110		70-130	10		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Qual	Criteria
1,2-Dichloroethane-d4	108	111	70-130
Toluene-d8	104	103	70-130
4-Bromofluorobenzene	93	90	70-130
Dibromofluoromethane	98	101	70-130

L2241788 08/19/22

Matrix Spike Analysis

Project Name:	ORP #2	Batch Quality Control	Lab Number:
Project Number:	0370-016-001		Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/N W28	/IS - Westborough	Lab Assoc	ciated sample((s): 02-05 QC	Batch ID: \	WG16737	714-6 WG1673	3714-7	QC Sample	: L2241	788-03	Client ID:
Methylene chloride	ND	10	10	100		9.8	98		70-130	2		20
1,1-Dichloroethane	ND	10	9.8	98		9.6	96		70-130	2		20
Chloroform	ND	10	10	100		9.9	99		70-130	1		20
Carbon tetrachloride	ND	10	11	110		11	110		63-132	0		20
1,2-Dichloropropane	ND	10	9.4	94		9.4	94		70-130	0		20
Dibromochloromethane	ND	10	10	100		10	100		63-130	0		20
1,1,2-Trichloroethane	ND	10	13	130		12	120		70-130	8		20
Tetrachloroethene	ND	10	12	120		12	120		70-130	0		20
Chlorobenzene	ND	10	10	100		10	100		75-130	0		20
Trichlorofluoromethane	ND	10	11	110		11	110		62-150	0		20
1,2-Dichloroethane	ND	10	9.4	94		9.1	91		70-130	3		20
1,1,1-Trichloroethane	ND	10	11	110		11	110		67-130	0		20
Bromodichloromethane	ND	10	10	100		9.9	99		67-130	1		20
trans-1,3-Dichloropropene	ND	10	10	100		9.9	99		70-130	1		20
cis-1,3-Dichloropropene	ND	10	9.6	96		9.4	94		70-130	2		20
Bromoform	ND	10	11	110		10	100		54-136	10		20
1,1,2,2-Tetrachloroethane	ND	10	9.7	97		9.8	98		67-130	1		20
Benzene	ND	10	10	100		10	100		70-130	0		20
Toluene	ND	10	10	100		10	100		70-130	0		20
Ethylbenzene	ND	10	10	100		10	100		70-130	0		20
Chloromethane	ND	10	4.9	49	Q	5.0	50	Q	64-130	2		20
Bromomethane	ND	10	3.4	34	Q	4.0	40		39-139	16		20
Vinyl chloride	ND	10	8.5	85		8.4	84		55-140	1		20

L2241788 08/19/22

Matrix Spike Analysis

Project Name:	ORP #2	Batch Quality Control	Lab Number:
Project Number:	0370-016-001		Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS W28	S - Westborough La	ab Asso	ciated sample(s): 02-05 Q	C Batch ID:	WG16737	714-6 WG1673	3714-7	QC Sample	: L2241	788-03	Client ID:
Chloroethane	ND	10	9.3	93		9.2	92		55-138	1		20
1,1-Dichloroethene	ND	10	11	110		11	110		61-145	0		20
trans-1,2-Dichloroethene	ND	10	11	110		11	110		70-130	0		20
Trichloroethene	ND	10	11	110		11	110		70-130	0		20
1,2-Dichlorobenzene	ND	10	11	110		11	110		70-130	0		20
1,3-Dichlorobenzene	ND	10	11	110		11	110		70-130	0		20
1,4-Dichlorobenzene	ND	10	10	100		10	100		70-130	0		20
Methyl tert butyl ether	ND	10	10	100		10	100		63-130	0		20
p/m-Xylene	ND	20	22	110		21	105		70-130	5		20
o-Xylene	ND	20	21	105		21	105		70-130	0		20
cis-1,2-Dichloroethene	ND	10	10	100		10	100		70-130	0		20
Styrene	ND	20	21	105		21	105		70-130	0		20
Dichlorodifluoromethane	ND	10	9.5	95		9.2	92		36-147	3		20
Acetone	ND	10	8.6	86		10	100		58-148	15		20
Carbon disulfide	ND	10	10	100		10	100		51-130	0		20
2-Butanone	ND	10	9.6	96		8.9	89		63-138	8		20
4-Methyl-2-pentanone	ND	10	10	100		10	100		59-130	0		20
2-Hexanone	ND	10	9.5	95		9.5	95		57-130	0		20
Bromochloromethane	ND	10	11	110		11	110		70-130	0		20
1,2-Dibromoethane	ND	10	11	110		10	100		70-130	10		20
n-Butylbenzene	ND	10	10	100		10	100		53-136	0		20
sec-Butylbenzene	ND	10	11	110		10	100		70-130	10		20
1,2-Dibromo-3-chloropropane	ND	10	12	120		12	120		41-144	0		20

_

Matrix Spike Analysis

Project Name:	ORP #2	Batch Quality Control	Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22

Parameter	Native Sample A	MS dded	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/M W28	S - Westborough La	b Asso	ciated sample(s): 02-05 Q0	C Batch ID:	WG16737	714-6 WG1673	3714-7	QC Sample	e: L2241	1788-03	Client ID:
Isopropylbenzene	ND	10	10	100		10	100		70-130	0		20
p-Isopropyltoluene	ND	10	11	110		11	110		70-130	0		20
n-Propylbenzene	ND	10	10	100		10	100		69-130	0		20
1,2,3-Trichlorobenzene	ND	10	12	120		12	120		70-130	0		20
1,2,4-Trichlorobenzene	ND	10	12	120		12	120		70-130	0		20
1,3,5-Trimethylbenzene	ND	10	10	100		10	100		64-130	0		20
1,2,4-Trimethylbenzene	ND	10	10	100		10	100		70-130	0		20
Methyl Acetate	ND	10	7.5	75		7.3	73		70-130	3		20
Cyclohexane	0.95J	10	11	110		11	110		70-130	0		20
1,4-Dioxane	ND	500	520	104		490	98		56-162	6		20
Freon-113	ND	10	11	110		11	110		70-130	0		20
Methyl cyclohexane	0.94J	10	11	110		11	110		70-130	0		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	92	91	70-130
4-Bromofluorobenzene	93	93	70-130
Dibromofluoromethane	99	98	70-130
Toluene-d8	100	99	70-130

SEMIVOLATILES

			Serial_No	0:08192214:43
Project Name:	ORP #2		Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22
		SAMPLE RESULTS		
Lab ID:	L2241788-01		Date Collected:	08/02/22 11:30
Client ID:	W13		Date Received:	08/03/22
Sample Location:	OLEAN, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D		Extraction Date:	08/09/22 12:24
Analytical Date:	08/15/22 14:32			
Analyst:	SZ			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

			Serial_No	0:08192214:43
Project Name:	ORP #2		Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22
		SAMPLE RESULTS		
Lab ID:	L2241788-01		Date Collected:	08/02/22 11:30
Client ID:	W13		Date Received:	08/03/22
Sample Location:	OLEAN, NY		Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1		
2-Chlorophenol	ND		ug/l	2.0	0.48	1		
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1		
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1		
2-Nitrophenol	ND		ug/l	10	0.85	1		
4-Nitrophenol	ND		ug/l	10	0.67	1		
2,4-Dinitrophenol	ND		ug/l	20	6.6	1		
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1		
Phenol	ND		ug/l	5.0	0.57	1		
2-Methylphenol	ND		ug/l	5.0	0.49	1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1		
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1		
Carbazole	ND		ug/l	2.0	0.49	1		
Atrazine	ND		ug/l	10	0.76	1		
Benzaldehyde	ND		ug/l	5.0	0.53	1		
Caprolactam	ND		ug/l	10	3.3	1		
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1		

		Serial_No:08192214:43					8192214:43	
Project Name:	ORP #2					Lab Numb	per:	L2241788
Project Number:	0370-016-001					Report Da	ite:	08/19/22
		SAMPLE	RESULTS					
Lab ID:	L2241788-01				D	ate Collec	ted:	08/02/22 11:30
Client ID:	W13					ate Receiv		08/03/22
Sample Location:	OLEAN, NY				F	ield Prep:		Not Specified
Sample Depth:								
Parameter		Result	Qualifier	Units		RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Wes	tborough Lab						
Tentatively Identified C	Compounds							
Total TIC Compounds		62.5	J		ug/l			1
Benzoic Acid		2.29	NJ		ug/l			1
Unknown		2.44	J		ug/l			1
Unknown		3.09	J		ug/l			1
Unknown		1.74	J		ug/l			1
Unknown		2.54	J		ug/l			1
Unknown		5.24	J		ug/l			1
Unknown		1.67	J		ug/l			1
Unknown		12.2	J		ug/l			1
Unknown		2.73	J		ug/l			1
Unknown Alkane		4.84	J		ug/l			1
Unknown Alkane		2.84	J		ug/l			1
Unknown Benzene		3.38	J		ug/l			1
Unknown Organic Acio	1	2.33	J		ug/l			1
Unknown Organic Acio	1	2.40	J		ug/l			1
Unknown Organic Acio	3	12.8	JB		ug/l			1
Surrogate				% Recov	ery	Qualifier	Accep Crit	otance teria
2-Fluorophenol				52			2'	1-120

2-Fluorophenol	52	21-120	
Phenol-d6	50	10-120	
Nitrobenzene-d5	75	23-120	
2-Fluorobiphenyl	72	15-120	
2,4,6-Tribromophenol	70	10-120	
4-Terphenyl-d14	79	41-149	

L2241788 08/19/22
19/02/22 11:20
10/02/22 11.20
08/02/22 11:30 08/03/22 Not Specified EPA 3510C 08/09/22 12:25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	-SIM - Westborough La	ab				
Acenaphthene	0.04	J	ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.02	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	0.03	J	ug/l	0.10	0.01	1
Phenanthrene	0.03	J	ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Parameter		Result	Qualifier	Units	RL M	DL Dilution Factor
Sample Depth:						
Lab ID: Client ID: Sample Location:	L2241788-01 W13 OLEAN, NY				Date Collecter Date Receiver Field Prep:	
Project Name: Project Number:	ORP #2 0370-016-001	SAMP	LE RESULTS	5	Lab Numbe Report Date	: 08/19/22

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	56		21-120	
Phenol-d6	52		10-120	
Nitrobenzene-d5	82		23-120	
2-Fluorobiphenyl	82		15-120	
2,4,6-Tribromophenol	122	Q	10-120	
4-Terphenyl-d14	93		41-149	

			Serial_No	p:08192214:43
Project Name:	ORP #2		Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22
		SAMPLE RESULTS		
Lab ID:	L2241788-02		Date Collected:	08/02/22 14:30
Client ID:	W17		Date Received:	08/03/22
Sample Location:	OLEAN, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D		Extraction Date:	08/09/22 12:24
Analytical Date:	08/16/22 19:20			
Analyst:	JG			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

			Serial_No	0:08192214:43
Project Name:	ORP #2		Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22
		SAMPLE RESULTS		
Lab ID:	L2241788-02		Date Collected:	08/02/22 14:30
Client ID:	W17		Date Received:	08/03/22
Sample Location:	OLEAN, NY		Field Prep:	Not Specified

Sample Depth:

orough Lab ND ND					
ND		ug/l	2.0	0.35	1
		ug/l	2.0	0.48	1
ND		ug/l	5.0	0.41	1
ND		ug/l	5.0	1.8	1
ND		ug/l	10	0.85	1
ND		ug/l	10	0.67	1
ND		ug/l	20	6.6	1
ND		ug/l	10	1.8	1
ND		ug/l	5.0	0.57	1
ND		ug/l	5.0	0.49	1
ND		ug/l	5.0	0.48	1
ND		ug/l	5.0	0.77	1
0.56	J	ug/l	2.0	0.49	1
ND		ug/l	10	0.76	1
ND		ug/l	5.0	0.53	1
ND		ug/l	10	3.3	1
ND		ug/l	5.0	0.84	1
	ND ND	ND ND	ND ug/l ND	ND ug/l 2.0 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 20 ND ug/l 5.0 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 10 ND ug/l 5.0 ND ug/l 10	ND ug/l 2.0 0.48 ND ug/l 5.0 0.41 ND ug/l 5.0 1.8 ND ug/l 10 0.85 ND ug/l 10 0.67 ND ug/l 20 6.6 ND ug/l 10 1.8 ND ug/l 5.0 0.57 ND ug/l 5.0 0.57 ND ug/l 5.0 0.49 ND ug/l 10 0.76 ND ug/l 5.0 0.53 ND ug/l 10 0.76 ND ug/l 5.0 0.53 ND ug/l 10

		Serial_No:08192214:4					8192214:43	
Project Name:	ORP #2					Lab Numb	er:	L2241788
Project Number:	0370-016-001					Report Da	te:	08/19/22
		SAMPLE	RESULTS					
_ab ID:	L2241788-02					Date Collect		08/02/22 14:30
Client ID: Sample Location:	W17 OLEAN, NY					ate Receiv		08/03/22
	OLEAN, INF				Г	leiu Fiep.	I	Not Specified
Sample Depth:								
Parameter		Result	Qualifier	Units		RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - West	oorough Lab						
Tentatively Identified C	Compounds							
Total TIC Compounds		328	J		ug/l			1
Unknown		11.7	J		ug/l			1
Unknown		12.0	J		ug/l			1
Unknown		17.0	J		ug/l			1
Unknown		21.6	J		ug/l			1
Unknown		13.6	J		ug/l			1
Unknown		14.0	J		ug/l			1
Unknown		20.5	J		ug/l			1
Unknown		16.5	J		ug/l			1
Unknown		13.2	J		ug/l			1
Unknown Alkane		20.9	J		ug/l			1
Unknown Benzene		42.9	J		ug/l			1
Unknown Benzene		50.5	J		ug/l			1
Unknown Benzene		19.6	J		ug/l			1
Unknown Organic Acid	b	39.4	J		ug/l			1
Unknown Organic Acid		14.7	JB		ug/l			1
Surrogate				% Recov		Qualifier	Accep	otance teria
				/0 RECOV	ery	Qualifier		
2-Fluorophenol				69			21	1-120

2-Fluorophenol	69		21-120	
Phenol-d6	60		10-120	
Nitrobenzene-d5	93		23-120	
2-Fluorobiphenyl	75		15-120	
2,4,6-Tribromophenol	122	Q	10-120	
4-Terphenyl-d14	91		41-149	

			Serial_No	:08192214:43
Project Name:	ORP #2		Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	L2241788-02 W17 OLEAN, NY Water 1,8270D-SIM 08/18/22 10:12 JJW		Date Collected: Date Received: Field Prep: Extraction Method Extraction Date:	08/02/22 14:30 08/03/22 Not Specified : EPA 3510C 08/09/22 12:25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	ND		ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	0.18		ug/l	0.10	0.05	1			
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	1			
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1			
Chrysene	0.03	J	ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	0.09	J	ug/l	0.10	0.01	1			
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1			
Fluorene	0.28		ug/l	0.10	0.01	1			
Phenanthrene	ND		ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1			
Pyrene	ND		ug/l	0.10	0.02	1			
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	OLEAN, NY				Field Prep:		Not Specified
Client ID:	W17				Date Receiv	ved:	08/03/22
Lab ID:	L2241788-02				Date Collec	ted:	08/02/22 14:30
		SAMP		5			
Project Number:	0370-016-001				Report Da	ate:	08/19/22
Project Name:	ORP #2				Lab Numb	per:	L2241788
					Ser	ial_No	0:08192214:43

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	63	21-120
Phenol-d6	57	10-120
Nitrobenzene-d5	80	23-120
2-Fluorobiphenyl	68	15-120
2,4,6-Tribromophenol	94	10-120
4-Terphenyl-d14	73	41-149

			Serial_No	p:08192214:43
Project Name:	ORP #2		Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22
		SAMPLE RESULTS		
Lab ID:	L2241788-03		Date Collected:	08/02/22 12:40
Client ID:	W28		Date Received:	08/03/22
Sample Location:	OLEAN, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D		Extraction Date:	08/09/22 12:24
Analytical Date:	08/16/22 19:46			
Analyst:	JG			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1			
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1			
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1			
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1			
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1			
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1			
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1			
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1			
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1			
Isophorone	ND		ug/l	5.0	1.2	1			
Nitrobenzene	ND		ug/l	2.0	0.77	1			
NDPA/DPA	ND		ug/l	2.0	0.42	1			
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1			
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1			
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1			
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1			
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1			
Diethyl phthalate	ND		ug/l	5.0	0.38	1			
Dimethyl phthalate	ND		ug/l	5.0	1.8	1			
Biphenyl	ND		ug/l	2.0	0.46	1			
4-Chloroaniline	ND		ug/l	5.0	1.1	1			
2-Nitroaniline	ND		ug/l	5.0	0.50	1			
3-Nitroaniline	ND		ug/l	5.0	0.81	1			
4-Nitroaniline	ND		ug/l	5.0	0.80	1			
Dibenzofuran	ND		ug/l	2.0	0.50	1			
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1			
Acetophenone	ND		ug/l	5.0	0.53	1			
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1			

			Serial_No	0:08192214:43
Project Name:	ORP #2		Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22
		SAMPLE RESULTS		
Lab ID:	L2241788-03		Date Collected:	08/02/22 12:40
Client ID:	W28		Date Received:	08/03/22
Sample Location:	OLEAN, NY		Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1			
2-Chlorophenol	ND		ug/l	2.0	0.48	1			
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1			
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1			
2-Nitrophenol	ND		ug/l	10	0.85	1			
4-Nitrophenol	ND		ug/l	10	0.67	1			
2,4-Dinitrophenol	ND		ug/l	20	6.6	1			
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1			
Phenol	ND		ug/l	5.0	0.57	1			
2-Methylphenol	ND		ug/l	5.0	0.49	1			
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1			
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1			
Carbazole	ND		ug/l	2.0	0.49	1			
Atrazine	ND		ug/l	10	0.76	1			
Benzaldehyde	ND		ug/l	5.0	0.53	1			
Caprolactam	ND		ug/l	10	3.3	1			
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1			

						Seri	al_No:0	8192214:43
Project Name:	ORP #2					Lab Numb	er:	L2241788
Project Number:	0370-016-001					Report Da	te:	08/19/22
		SAMPLE	RESULTS					
Lab ID:	L2241788-03					ate Collect		08/02/22 12:40
Client ID:	W28					ate Receiv		08/03/22
Sample Location:	OLEAN, NY				F	ield Prep:	l	Not Specified
Sample Depth:								
Parameter		Result	Qualifier	Units		RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS - Westh	oorough Lab						
Tentatively Identified C	ompounds							
Total TIC Compounds		290	J		ug/l			1
•								
Unknown		18.2	J		ug/l			1
Unknown		18.9	J		ug/l			1
Unknown		34.0	J		ug/l			1
Unknown		27.2	J		ug/l			1
Unknown		19.6	J		ug/l			1
Unknown		20.4	J		ug/l			1
Unknown		18.1	J		ug/l			1
Unknown		15.6	J		ug/l			1
Unknown		29.0	J		ug/l			1
Unknown		18.1	J		ug/l			1
Unknown		15.8	J		ug/l			1
Unknown		10.6	J		ug/l			1
Unknown Alkane		16.9	J		ug/l			1
Unknown Organic Acid		11.7	JB		ug/l			1
Unknown Organic Acid		15.4	JB		ug/l			1
	·				~9, I		A	
Surrogate				% Recove	ery	Qualifier	Accep Crit	teria
2-Fluorophenol				63			21	-120

2-Fluorophenol	63	21-120
Phenol-d6	58	10-120
Nitrobenzene-d5	93	23-120
2-Fluorobiphenyl	83	15-120
2,4,6-Tribromophenol	84	10-120
4-Terphenyl-d14	103	41-149

Lab Number: L2241788 Report Date: 08/19/22 PLE RESULTS Comparison
• • • • • • • • • • • • • • • • • • • •
PLE RESULTS
Date Collected:08/02/22 12:40Date Received:08/03/22Field Prep:Not SpecifiedExtraction Method:EPA 3510CExtraction Date:08/09/22 12:25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	ND		ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	ND		ug/l	0.10	0.05	1			
Benzo(a)anthracene	0.05	J	ug/l	0.10	0.02	1			
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1			
Chrysene	0.08	J	ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	ND		ug/l	0.10	0.01	1			
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1			
Fluorene	ND		ug/l	0.10	0.01	1			
Phenanthrene	ND		ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1			
Pyrene	0.12		ug/l	0.10	0.02	1			
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	OLEAN, NY				Field Prep		Not Specified
Client ID:	W28				Date Rece	eived:	08/03/22
Lab ID:	L2241788-03				Date Colle	ected:	08/02/22 12:40
		SAMP	LE RESULTS	5			
Project Number:	0370-016-001				Report I	Date:	08/19/22
Project Name:	ORP #2				Lab Nur	nber:	L2241788
					S	erial_No	0:08192214:43

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	65	21-120
Phenol-d6	61	10-120
Nitrobenzene-d5	90	23-120
2-Fluorobiphenyl	89	15-120
2,4,6-Tribromophenol	93	10-120
4-Terphenyl-d14	103	41-149

			Serial_N	0:08192214:43
Project Name:	ORP #2		Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22
		SAMPLE RESULTS		
Lab ID:	L2241788-04		Date Collected:	08/02/22 08:00
Client ID:	BLIND DUP		Date Received:	08/03/22
Sample Location:	OLEAN, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Metho	d: EPA 3510C
Analytical Method:	1,8270D		Extraction Date:	08/09/22 12:24
Analytical Date:	08/16/22 20:12			
Analyst:	JG			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1		
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1		
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1		
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1		
Isophorone	ND		ug/l	5.0	1.2	1		
Nitrobenzene	ND		ug/l	2.0	0.77	1		
NDPA/DPA	ND		ug/l	2.0	0.42	1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1		
Bis(2-ethylhexyl)phthalate	1.8	J	ug/l	3.0	1.5	1		
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1		
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1		
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1		
Diethyl phthalate	ND		ug/l	5.0	0.38	1		
Dimethyl phthalate	ND		ug/l	5.0	1.8	1		
Biphenyl	ND		ug/l	2.0	0.46	1		
4-Chloroaniline	ND		ug/l	5.0	1.1	1		
2-Nitroaniline	ND		ug/l	5.0	0.50	1		
3-Nitroaniline	ND		ug/l	5.0	0.81	1		
4-Nitroaniline	ND		ug/l	5.0	0.80	1		
Dibenzofuran	ND		ug/l	2.0	0.50	1		
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1		
Acetophenone	ND		ug/l	5.0	0.53	1		
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1		

Serial_No:08192214:43 Project Name: Lab Number: ORP #2 L2241788 **Project Number:** Report Date: 0370-016-001 08/19/22 SAMPLE RESULTS Lab ID: L2241788-04 Date Collected: 08/02/22 08:00 Client ID: **BLIND DUP** Date Received: 08/03/22 Sample Location: Field Prep: Not Specified OLEAN, NY

Sample Depth:

Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab								
ND		ua/l	2.0	0.35	1			
ND			2.0	0.48	1			
ND		ug/l	5.0	0.41	1			
ND		ug/l	5.0	1.8	1			
ND		ug/l	10	0.85	1			
ND		ug/l	10	0.67	1			
ND		ug/l	20	6.6	1			
ND		ug/l	10	1.8	1			
ND		ug/l	5.0	0.57	1			
ND		ug/l	5.0	0.49	1			
ND		ug/l	5.0	0.48	1			
ND		ug/l	5.0	0.77	1			
ND		ug/l	2.0	0.49	1			
ND		ug/l	10	0.76	1			
ND		ug/l	5.0	0.53	1			
ND		ug/l	10	3.3	1			
ND		ug/l	5.0	0.84	1			
	estborough Lab ND	estborough Lab ND	ND ug/l ND	ND ug/l 2.0 ND ug/l 2.0 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 10 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 5.0	ND ug/l 2.0 0.35 ND ug/l 2.0 0.48 ND ug/l 5.0 0.41 ND ug/l 5.0 0.41 ND ug/l 5.0 1.8 ND ug/l 10 0.85 ND ug/l 10 0.67 ND ug/l 10 0.67 ND ug/l 10 0.67 ND ug/l 10 0.67 ND ug/l 5.0 0.57 ND ug/l 5.0 0.57 ND ug/l 5.0 0.49 ND ug/l 5.0 0.49 ND ug/l 5.0 0.48 ND ug/l 5.0 0.49 ND ug/l 10 0.76 ND ug/l 10 0.76 ND ug/l 10 0.53 ND ug/l 10			

						Seria	al_No:08′	192214:43
Project Name:	ORP #2					Lab Numb	er:	L2241788
Project Number:	0370-016-001					Report Dat	e:	08/19/22
		SAMPLE	RESULTS					
Lab ID:	L2241788-04					ate Collecte		8/02/22 08:00
Client ID:	BLIND DUP					ate Receive		8/03/22
Sample Location:	OLEAN, NY				F	ield Prep:	No	ot Specified
Sample Depth:								
Parameter		Result	Qualifier	Units		RL I	MDL [Dilution Factor
Semivolatile Organ	nics by GC/MS - West	tborough Lab						
Tentatively Identified C	Compounds							
Total TIC Compounds		36.7	J		ug/l			1
Unknown		1.60	J		ug/l			1
Unknown		2.76	J		ug/l			1
Unknown		1.56	J		ug/l			1
Unknown		1.53	J		ug/l			1
Unknown		1.93	J		ug/l			1
Unknown		1.78	JB		ug/l			1
Unknown Alcohol		2.33	J		ug/l			1
Unknown Alkane		1.96	J		ug/l			1
Unknown Alkane		5.53	J		ug/l			1
Unknown Alkane		3.82	J		ug/l			1
Unknown Alkane		1.96	J		ug/l			1
Unknown Benzene		4.04	J		ug/l			1
Unknown Ketone		1.49	J		ug/l			1
Unknown Organic Acio	d	2.18	J		ug/l			1
Unknown Organic Acio	d	2.25	J		ug/l			1
Surrogate				% Recov	ery	Qualifier	Accepta Criter	
2-Fluorophenol				45			21-1	20

2-Fluorophenol	45	21-120
Phenol-d6	44	10-120
Nitrobenzene-d5	75	23-120
2-Fluorobiphenyl	65	15-120
2,4,6-Tribromophenol	67	10-120
4-Terphenyl-d14	82	41-149

			Serial_No	:08192214:43
Project Name:	ORP #2		Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22
		SAMPLE RESULTS		
Lab ID:	L2241788-04		Date Collected:	08/02/22 08:00
Client ID:	BLIND DUP		Date Received:	08/03/22
Sample Location:	OLEAN, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	08/09/22 12:25
Analytical Date:	08/12/22 16:53			
Analyst:	AH			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	0.03	J	ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.02	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	0.02	J	ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	0.03	J	ug/l	0.10	0.01	1
Phenanthrene	0.03	J	ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	OLEAN, NY				Field Prep:		Not Specified
Client ID:	BLIND DUP				Date Receiv	ed:	08/03/22
Lab ID:	L2241788-04				Date Collect		08/02/22 08:00
		UA III I		•			
	0370-010-001	SAMP			Report Da		00/19/22
Project Number:	0370-016-001				Report Dat	te [.]	08/19/22
Project Name:	ORP #2				Lab Numb	er:	L2241788
					Seri	al_No	0:08192214:43

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	53	21-120
Phenol-d6	50	10-120
Nitrobenzene-d5	77	23-120
2-Fluorobiphenyl	76	15-120
2,4,6-Tribromophenol	111	10-120
4-Terphenyl-d14	89	41-149

L2241788

08/19/22

Lab Number:

Report Date:

 Project Name:
 ORP #2

 Project Number:
 0370-016-001

1,8270D

SZ

08/09/22 17:54

Analytical Method:

Analytical Date:

Analyst:

Method Blank Analysis Batch Quality Control

> Extraction Method: EPA 3510C Extraction Date: 08/08/22 23:34

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/MS	- Westborough	Lab for sample(s):	01-04	Batch: WG1672732-1
Bis(2-chloroethyl)ether	ND	ug/l	2.0	0.50
3,3'-Dichlorobenzidine	ND	ug/l	5.0	1.6
2,4-Dinitrotoluene	ND	ug/l	5.0	1.2
2,6-Dinitrotoluene	ND	ug/l	5.0	0.93
4-Chlorophenyl phenyl ether	ND	ug/l	2.0	0.49
4-Bromophenyl phenyl ether	ND	ug/l	2.0	0.38
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	0.53
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	0.50
Hexachlorocyclopentadiene	ND	ug/l	20	0.69
Isophorone	ND	ug/l	5.0	1.2
Nitrobenzene	ND	ug/l	2.0	0.77
NDPA/DPA	ND	ug/l	2.0	0.42
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	0.64
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	1.5
Butyl benzyl phthalate	ND	ug/l	5.0	1.2
Di-n-butylphthalate	ND	ug/l	5.0	0.39
Di-n-octylphthalate	ND	ug/l	5.0	1.3
Diethyl phthalate	ND	ug/l	5.0	0.38
Dimethyl phthalate	ND	ug/l	5.0	1.8
Biphenyl	ND	ug/l	2.0	0.46
4-Chloroaniline	ND	ug/l	5.0	1.1
2-Nitroaniline	ND	ug/l	5.0	0.50
3-Nitroaniline	ND	ug/l	5.0	0.81
4-Nitroaniline	ND	ug/l	5.0	0.80
Dibenzofuran	ND	ug/l	2.0	0.50
1,2,4,5-Tetrachlorobenzene	ND	ug/l	10	0.44
Acetophenone	ND	ug/l	5.0	0.53
2,4,6-Trichlorophenol	ND	ug/l	5.0	0.61
p-Chloro-m-cresol	ND	ug/l	2.0	0.35

 Project Name:
 ORP #2
 Lab Number:

 Project Number:
 0370-016-001
 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	Extraction Me
Analytical Date:	08/09/22 17:54	Extraction Da
Analyst:	SZ	

Extraction Method:EPA 3510CExtraction Date:08/08/22 23:34

L2241788

08/19/22

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	S - Westboroug	h Lab for s	ample(s):	01-04	Batch:	WG1672732-1
2-Chlorophenol	ND		ug/l	2.0		0.48
2,4-Dichlorophenol	ND		ug/l	5.0		0.41
2,4-Dimethylphenol	ND		ug/l	5.0		1.8
2-Nitrophenol	ND		ug/l	10		0.85
4-Nitrophenol	ND		ug/l	10		0.67
2,4-Dinitrophenol	ND		ug/l	20		6.6
4,6-Dinitro-o-cresol	ND		ug/l	10		1.8
Phenol	ND		ug/l	5.0		0.57
2-Methylphenol	ND		ug/l	5.0		0.49
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		0.48
2,4,5-Trichlorophenol	ND		ug/l	5.0		0.77
Carbazole	ND		ug/l	2.0		0.49
Atrazine	ND		ug/l	10		0.76
Benzaldehyde	ND		ug/l	5.0		0.53
Caprolactam	ND		ug/l	10		3.3
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0		0.84

Tentatively Identified Compounds			
Total TIC Compounds	14.7	J	ug/l
Unknown	2.36	J	ug/l
Unknown	3.74	J	ug/l
Unknown	3.64	J	ug/l
Unknown Organic Acid	4.98	J	ug/l

Serial_No:08192214:43

Project Name: Project Number:	ORP #2 0370-016-001		Lab Number: Report Date:	L2241788 08/19/22
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270D 08/09/22 17:54 SZ		Extraction Method: Extraction Date:	EPA 3510C 08/08/22 23:34

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborougl	h Lab for s	ample(s):	01-04	Batch:	WG1672732-1

Surrogate	%Recovery Qual	Acceptance ifier Criteria
2-Fluorophenol	56	21-120
Phenol-d6	47	10-120
Nitrobenzene-d5	60	23-120
2-Fluorobiphenyl	59	15-120
2,4,6-Tribromophenol	75	10-120
4-Terphenyl-d14	61	41-149

Project Name: **ORP** #2 **Project Number:** 0370-016-001

1,8270D-SIM

JJW

08/09/22 11:56

Analytical Method:

Analytical Date:

Analyst:

Method Blank Analysis Batch Quality Control

Extraction Method: EPA 3510C Extraction Date:

Lab Number:

Report Date:

08/08/22 23:35

L2241788

08/19/22

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC	MS-SIM - Westbo	rough Lab	for sample(s)): 01-04	Batch:	WG1672733-1
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	0.08	J	ug/l	0.10	0.02	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	0.05	J	ug/l	0.10	0.02	
Benzo(a)pyrene	0.03	J	ug/l	0.10	0.02	
Benzo(b)fluoranthene	0.06	J	ug/l	0.10	0.01	
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	
Chrysene	0.05	J	ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	0.03	J	ug/l	0.10	0.01	
Benzo(ghi)perylene	0.03	J	ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	0.10		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	0.04	J	ug/l	0.10	0.01	
Pyrene	0.07	J	ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	

Serial_No:08192214:43

Project Name: Project Number:	ORP #2 0370-016-001		Lab Number: Report Date:	L2241788 08/19/22
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270D-SIM 08/09/22 11:56 JJW		Extraction Method: Extraction Date:	EPA 3510C 08/08/22 23:35

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-S	IM - Westb	orough Lab	for sample	e(s): 01-04	Batch: WG1672733-	·1

Surrogate	%Recovery Qu	Acceptance alifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	52	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	57	15-120
2,4,6-Tribromophenol	69	10-120
4-Terphenyl-d14	60	41-149

Lab Number: L2241788

Project Number: 0370-016-001

ORP #2

Project Name:

Report Date: 08/19/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - West	borough Lab Associ	ated sample(s):	01-04 Bate	h: WG1672	2732-2 WG16727	32-3		
Bis(2-chloroethyl)ether	47		47		40-140	0	30	
3,3'-Dichlorobenzidine	43		46		40-140	7	30	
2,4-Dinitrotoluene	50		48		48-143	4	30	
2,6-Dinitrotoluene	48		50		40-140	4	30	
4-Chlorophenyl phenyl ether	53		53		40-140	0	30	
4-Bromophenyl phenyl ether	57		54		40-140	5	30	
Bis(2-chloroisopropyl)ether	49		49		40-140	0	30	
Bis(2-chloroethoxy)methane	49		49		40-140	0	30	
Hexachlorocyclopentadiene	50		53		40-140	6	30	
Isophorone	49		48		40-140	2	30	
Nitrobenzene	51		52		40-140	2	30	
NDPA/DPA	54		51		40-140	6	30	
n-Nitrosodi-n-propylamine	52		51		29-132	2	30	
Bis(2-ethylhexyl)phthalate	61		58		40-140	5	30	
Butyl benzyl phthalate	59		57		40-140	3	30	
Di-n-butylphthalate	54		52		40-140	4	30	
Di-n-octylphthalate	64		62		40-140	3	30	
Diethyl phthalate	55		54		40-140	2	30	
Dimethyl phthalate	50		48		40-140	4	30	
Biphenyl	52		53		40-140	2	30	
4-Chloroaniline	44		44		40-140	0	30	
2-Nitroaniline	51	Q	50	Q	52-143	2	30	
3-Nitroaniline	45		44		25-145	2	30	

Project Name: ORP #2 Project Number: 0370-016-001 Lab Number: L2241788

Report Date: 08/19/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limit	
emivolatile Organics by GC/MS - West	borough Lab Associ	ated sample(s):	01-04 Batch	WG1672	2732-2 WG16727	32-3		
4-Nitroaniline	50	Q	49	Q	51-143	2	30	
Dibenzofuran	53		54		40-140	2	30	
1,2,4,5-Tetrachlorobenzene	55		58		2-134	5	30	
Acetophenone	54		53		39-129	2	30	
2,4,6-Trichlorophenol	53		57		30-130	7	30	
p-Chloro-m-cresol	55		57		23-97	4	30	
2-Chlorophenol	53		54		27-123	2	30	
2,4-Dichlorophenol	57		56		30-130	2	30	
2,4-Dimethylphenol	50		40		30-130	22	30	
2-Nitrophenol	51		50		30-130	2	30	
4-Nitrophenol	50		49		10-80	2	30	
2,4-Dinitrophenol	51		57		20-130	11	30	
4,6-Dinitro-o-cresol	47		45		20-164	4	30	
Phenol	41		40		12-110	2	30	
2-Methylphenol	50		49		30-130	2	30	
3-Methylphenol/4-Methylphenol	53		52		30-130	2	30	
2,4,5-Trichlorophenol	55		56		30-130	2	30	
Carbazole	53	Q	54	Q	55-144	2	30	
Atrazine	62		61		40-140	2	30	
Benzaldehyde	65		67		40-140	3	30	
Caprolactam	22		24		10-130	9	30	
2,3,4,6-Tetrachlorophenol	53		54		40-140	2	30	

 Project Name:
 ORP #2

 Project Number:
 0370-016-001

Lab Number: L2241788

Report Date: 08/19/22

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
				-					
Semivolatile Organics by GC/MS - Westbo	rough Lab Associa	ated sample(s	s): 01-04 Batch:	: WG1672	2732-2 WG16727	32-3			

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	52	53	21-120
Phenol-d6	46	45	10-120
Nitrobenzene-d5	53	55	23-120
2-Fluorobiphenyl	51	53	15-120
2,4,6-Tribromophenol	65	66	10-120
4-Terphenyl-d14	54	52	41-149

Lab Number: L2241788

Project Number: 0370-016-001

ORP #2

Project Name:

Report Date: 08/19/22

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recover Qual Limits	y RPD	Qual	RPD Limits
emivolatile Organics by GC/MS-SIM - We	stborough Lab As	sociated sample(s): 01-04	Batch: WG1672733-2	WG1672733-3		
Acenaphthene	80	56	40-140	35		40
2-Chloronaphthalene	70	52	40-140	30		40
Fluoranthene	65	44	40-140	39		40
Hexachlorobutadiene	82	63	40-140	26		40
Naphthalene	74	55	40-140	29		40
Benzo(a)anthracene	85	58	40-140	38		40
Benzo(a)pyrene	75	51	40-140	38		40
Benzo(b)fluoranthene	92	58	40-140	45	Q	40
Benzo(k)fluoranthene	83	59	40-140	34		40
Chrysene	87	57	40-140	42	Q	40
Acenaphthylene	65	47	40-140	32		40
Anthracene	78	53	40-140	38		40
Benzo(ghi)perylene	87	60	40-140	37		40
Fluorene	78	54	40-140	36		40
Phenanthrene	79	53	40-140	39		40
Dibenzo(a,h)anthracene	88	62	40-140	35		40
Indeno(1,2,3-cd)pyrene	93	64	40-140	37		40
Pyrene	64	43	40-140	39		40
2-Methylnaphthalene	72	53	40-140	30		40
Pentachlorophenol	64	40	40-140	46	Q	40
Hexachlorobenzene	98	67	40-140	38		40
Hexachloroethane	74	56	40-140	28		40

 Project Name:
 ORP #2

 Project Number:
 0370-016-001

Lab Number: L2241788

Report Date: 08/19/22

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS-SIM - \			mple(s): 01-04	Batch: WG	61672733-2 WG1	672733-3			

Surrogate	LCS %Recovery Qua	LCSD I %Recovery	Qual	Acceptance Criteria
2-Fluorophenol	69	51		21-120
Phenol-d6	60	44		10-120
Nitrobenzene-d5	80	58		23-120
2-Fluorobiphenyl	72	53		15-120
2,4,6-Tribromophenol	102	70		10-120
4-Terphenyl-d14	56	38	Q	41-149

Matrix Spike Analysis Batch Quality Control

		Batch C

 Project Name:
 ORP #2

 Project Number:
 0370-016-001

 Lab Number:
 L2241788

 Report Date:
 08/19/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	R Qual Lii	PD nits
Semivolatile Organics by GC/MS	S - Westbor	ough Lab	Associated sa	ample(s): 01-04	QC Batc	h ID: WG1	672732-6 WG	6167273	32-7 QC Sa	ample: I	_2241788-03	B Client
Bis(2-chloroethyl)ether	ND	18.2	11	61		8.6	47		40-140	24		30
3,3'-Dichlorobenzidine	ND	18.2	ND	0	Q	ND	0	Q	40-140	NC		30
2,4-Dinitrotoluene	ND	18.2	11	61		11	61		48-143	0		30
2,6-Dinitrotoluene	ND	18.2	14	77		11	61		40-140	24		30
4-Chlorophenyl phenyl ether	ND	18.2	10	55		9.7	53		40-140	3		30
4-Bromophenyl phenyl ether	ND	18.2	11	61		10	55		40-140	10		30
Bis(2-chloroisopropyl)ether	ND	18.2	10	55		9.2	51		40-140	8		30
Bis(2-chloroethoxy)methane	ND	18.2	11	61		10	55		40-140	10		30
Hexachlorocyclopentadiene	ND	18.2	12.J	66		11.J	61		40-140	9		30
Isophorone	ND	18.2	11	61		10	55		40-140	10		30
Nitrobenzene	ND	18.2	11	61		10	55		40-140	10		30
NDPA/DPA	ND	18.2	10	55		10	55		40-140	0		30
n-Nitrosodi-n-propylamine	ND	18.2	11	61		10	55		29-132	10		30
Bis(2-ethylhexyl)phthalate	ND	18.2	17	94		16	88		40-140	6		30
Butyl benzyl phthalate	ND	18.2	16	88		15	83		40-140	6		30
Di-n-butylphthalate	ND	18.2	14	77		13	72		40-140	7		30
Di-n-octylphthalate	ND	18.2	17	94		16	88		40-140	6		30
Diethyl phthalate	ND	18.2	12	66		10	55		40-140	18		30
Dimethyl phthalate	ND	18.2	11	61		10	55		40-140	10		30
Biphenyl	ND	18.2	11	61		11	61		40-140	0		30
4-Chloroaniline	ND	18.2	5.6	31	Q	6.9	38	Q	40-140	21		30
2-Nitroaniline	ND	18.2	15	83		14	77		52-143	7		30
3-Nitroaniline	ND	18.2	4.4J	24	Q	8.3	46		25-145	61	Q	30

Matrix Spike Analysis Batch Quality Control

ORP #2		
010 112		

Project Number: 0370-016-001

Project Name:

 Lab Number:
 L2241788

 Report Date:
 08/19/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GO ID: W28	C/MS - Westbor	ough Lab	Associated sat	mple(s): 01-04	QC Bate	h ID: WG1	672732-6 WG	6167273	32-7 QC Sa	ample: l	_224178	8-03 Client
4-Nitroaniline	ND	18.2	5.5	30	Q	5.5	30	Q	51-143	0		30
Dibenzofuran	ND	18.2	11	61		9.6	53		40-140	14		30
1,2,4,5-Tetrachlorobenzene	ND	18.2	12	66		11	61		2-134	9		30
Acetophenone	ND	18.2	11	61		11	61		39-129	0		30
2,4,6-Trichlorophenol	ND	18.2	13	72		12	66		30-130	8		30
p-Chloro-m-cresol	ND	18.2	13	72		13	72		23-97	0		30
2-Chlorophenol	ND	18.2	11	61		10	55		27-123	10		30
2,4-Dichlorophenol	ND	18.2	12	66		11	61		30-130	9		30
2,4-Dimethylphenol	ND	18.2	2.9J	16	Q	3.8J	21	Q	30-130	27		30
2-Nitrophenol	ND	18.2	11	61		10	55		30-130	10		30
4-Nitrophenol	ND	18.2	ND	0	Q	ND	0	Q	10-80	NC		30
2,4-Dinitrophenol	ND	18.2	13.J	72		12.J	66		20-130	8		30
4,6-Dinitro-o-cresol	ND	18.2	10	55		9.1J	50		20-164	9		30
Phenol	ND	18.2	8.4	46		7.9	43		12-110	6		30
2-Methylphenol	ND	18.2	9.8	54		9.6	53		30-130	2		30
3-Methylphenol/4-Methylphenol	ND	18.2	10	55		10	55		30-130	0		30
2,4,5-Trichlorophenol	ND	18.2	12	66		12	66		30-130	0		30
Carbazole	ND	18.2	13	72		13	72		55-144	0		30
Atrazine	ND	18.2	1.4J	8	Q	1.7J	9	Q	40-140	19		30
Benzaldehyde	ND	18.2	14	77		12	66		40-140	15		30
Caprolactam	ND	18.2	9.8J	54		15	83		10-130	42	Q	30
2,3,4,6-Tetrachlorophenol	ND	18.2	12	66		11	61		40-140	9		30

Matrix Spike Analysis

Project Name:	ORP #2	Batch Quality Control	Lab Number:	L2241788
Project Number:	0370-016-001		Report Date:	08/19/22

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/N ID: W28	IS - Westbor	ough Lab	Associated sar	mple(s): 01-04	QC Batc	h ID: WG1	672732-6 WG	167273	2-7 QC Sa	ample: L	2241788	-03 Cliei	nt

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
2,4,6-Tribromophenol	71	69	10-120	
2-Fluorobiphenyl	61	55	15-120	
2-Fluorophenol	57	50	21-120	
4-Terphenyl-d14	70	69	41-149	
Nitrobenzene-d5	66	58	23-120	
Phenol-d6	52	49	10-120	

Matrix Spike Analysis

Project Name:	ORP #2	Batch Quality Control
Project Number:	0370-016-001	

0370-016-001

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qu	MSD al Found	MSD %Recovery	Qual	Recover Limits	y RPD	Qual	RPD Limits
Semivolatile Organics by Client ID: W28	GC/MS-SIM - We	stborough Lab	Associate	d sample(s): 01	-04	QC Batch ID:	WG1672733-6	WG16	72733-7	QC Sam	ole: L224	41788-03
Acenaphthene	ND	18.2	13	72		12	66		40-140	8		40
2-Chloronaphthalene	ND	18.2	13	72		12	66		40-140	8		40
Fluoranthene	ND	18.2	15	83		14	77		40-140	7		40
Hexachlorobutadiene	ND	18.2	14	77		12	66		40-140	15		40
Naphthalene	ND	18.2	12	66		11	61		40-140	9		40
Benzo(a)anthracene	0.05J	18.2	15	83		14	77		40-140	7		40
Benzo(a)pyrene	ND	18.2	14	77		13	72		40-140	7		40
Benzo(b)fluoranthene	ND	18.2	16	88		14	77		40-140	13		40
Benzo(k)fluoranthene	ND	18.2	14	77		15	83		40-140	7		40
Chrysene	0.08J	18.2	14	77		13	72		40-140	7		40
Acenaphthylene	ND	18.2	13	72		11	61		40-140	17		40
Anthracene	ND	18.2	13	72		12	66		40-140	8		40
Benzo(ghi)perylene	ND	18.2	15	83		14	77		40-140	7		40
Fluorene	ND	18.2	15	83		14	77		40-140	7		40
Phenanthrene	ND	18.2	13	72		12	66		40-140	8		40
Dibenzo(a,h)anthracene	ND	18.2	16	88		15	83		40-140	6		40
Indeno(1,2,3-cd)pyrene	ND	18.2	17	94		16	88		40-140	6		40
Pyrene	0.12	18.2	15	82		14	76		40-140	7		40
2-Methylnaphthalene	ND	18.2	12	66		11	61		40-140	9		40
Pentachlorophenol	ND	18.2	18	99		17	94		40-140	6		40
Hexachlorobenzene	ND	18.2	15	83		15	83		40-140	0		40
Hexachloroethane	ND	18.2	14	77		12	66		40-140	15		40

Project Name: Project Number:	ORP #2 0370-016-001				ix Spike Ana tch Quality Con		Lab Number: Report Date:	L2241788 08/19/22
	Native	MS	MS	MS	MSD	MSD	Recovery	RPD

Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits
Semivolatile Organics by GC/M Client ID: W28	IS-SIM - Wes	tborough Lab	Associate	d sample(s): 01·	-04 QC	Batch ID:	WG1672733-6	WG167	2733-7	QC Samp	le: L224	1788-03

	MS	5	MSD	Acceptance
Surrogate	% Recovery	Qualifier	% Recovery Qualifier	-
2,4,6-Tribromophenol	132	Q	119	10-120
2-Fluorobiphenyl	75		68	15-120
2-Fluorophenol	58		51	21-120
4-Terphenyl-d14	78		72	41-149
Nitrobenzene-d5	74		64	23-120
Phenol-d6	53		48	10-120

METALS

Serial	No:081	9221	4.43
Ochai_	110.001	0221	7.70

Project Name:	ORP #						Lab Nu		L2241		
Project Number:	0370-0	016-001		SAMPI	LE RES	ULTS	Report	Date:	08/19/	22	
Lab ID:	· ·	788-01						ollected:	00,01,1	2 11:30	
Client ID: Sample Location:	W13 OLEA	N, NY					Date Re Field Pr	eceived: rep:	08/03/2 Not Sp		
Sample Donth:								-	-		
Sample Depth: Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst

Total Metals - M	lansfield Lab								
Arsenic, Total	0.004	J	mg/l	0.005	0.002	1	08/05/22 09:44 08/17/22 12:15 EPA 3005A	1,6010D	JF
Lead, Total	ND		mg/l	0.010	0.003	1	08/05/22 09:44 08/17/22 12:15 EPA 3005A	1,6010D	JF

Serial	No:081	92214:43
oona.	140.001	02211.10

Project Name: Project Number:	ORP #	[£] 2)16-001					Lab Nu Report		L2241 08/19/		
Froject Number.	0370-0	10-001		SAMPL	ERES	ULTS	Kepon	Date.	00/19/.	22	
Lab ID: Client ID: Sample Location:	L22417 W17 OLEAN	788-02 N, NY				0110		ollected: eceived: rep:	08/02/2 08/03/2 Not Spe	—	
Sample Depth: Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst

Total Metals - M	lansfield Lab							
Arsenic, Total	ND	mg/l	0.005	0.002	1	08/05/22 09:44 08/17/22 12:19 EPA 3005A	1,6010D	JF
Lead, Total	ND	mg/l	0.010	0.003	1	08/05/22 09:44 08/17/22 12:19 EPA 3005A	1,6010D	JF

Serial	No:081	92214:43
oona.	140.001	02211.10

Parameter	Result	Qualifier	Units	RL	MDL	i actor	riepareu	Analyzeu	Method	institud	Analys
Damamatan	Desult	Qualifian	Unite			Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	A I
Matrix:	Water										
Sample Depth:											
Sample Location:	OLEA	N, NY					Field Pr	rep:	Not Spe	ecified	
Client ID:	W28						Date Re	eceived:	08/03/2	2	
Lab ID:	L2241	788-03					Date Co	ollected:	08/02/2	2 12:40	
				SAMPI	LE RES	ULTS					
Project Number:	0370-	016-001					Report	Date:	08/19/	22	
Project Name:	ORP #	#2					Lab Nu	mber:	L2241	788	

Arsenic, Total	0.004	J	mg/l	0.005	0.002	1	08/05/22 09:44 08/17/22 12:26 EPA 3005A	1,6010D	JF
Lead, Total	ND		mg/l	0.010	0.003	1	08/05/22 09:44 08/17/22 12:26 EPA 3005A	1,6010D	JF

Serial	No:081	9221	4.43
Ochai_	110.001	0221	7.70

1,6010D

JF

08/05/22 09:44 08/17/22 12:23 EPA 3005A

Project Name:	ORP #	#2					Lab Nu	mber:	L22417	88	
Project Number:	0370-	016-001					Report	Date:	08/19/2	2	
				SAMPL	E RES	ULTS					
Lab ID:	L2241	788-04					Date Co	ollected:	08/02/22	08:00	
Client ID:	BLIND	DUP					Date Re	eceived:	08/03/22		
Sample Location:	OLEA	N, NY					Field Pr	rep:	Not Spec	cified	
Sample Depth:											
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.003	J	mg/l	0.005	0.002	1	08/05/22 09:4	4 08/17/22 12:23	EPA 3005A	1,6010D	JF

0.003

1

0.010

mg/l

Lead, Total

ND

 Project Name:
 ORP #2

 Project Number:
 0370-016-001

 Lab Number:
 L2241788

 Report Date:
 08/19/22

Method Blank Analysis Batch Quality Control

	Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
	Total Metals - Mansfield	Lab for sample(s):	: 01-04 E	Batch: WO	G16715	58-1				
	Arsenic, Total	ND	mg/l	0.005	0.002	1	08/05/22 09:44	08/17/22 11:20	1,6010D	JF
Lead, I otal ND mg/l 0.010 0.003 1 08/05/22 09:44 08/17/22 11:20 1,6010D J	Lead, Total	ND	mg/l	0.010	0.003	1	08/05/22 09:44	08/17/22 11:20	1,6010D	JF

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L2241788

 Report Date:
 08/19/22

 Project Name:
 ORP #2

 Project Number:
 0370-016-001

LCS LCSD %Recovery %Recovery %Recovery Limits **RPD Limits** Parameter Qual RPD Qual Qual Total Metals - Mansfield Lab Associated sample(s): 01-04 Batch: WG1671558-2 Arsenic, Total 94 80-120 --Lead, Total 93 80-120 --

L2241788 08/19/22

Matrix Spike Analysis

Project Name:	ORP #2	Batch Quality Control	Lab Number:
Project Number:	0370-016-001		Report Date:

Parameter	Native Sample	MS Added	MS Found %	MS %Recovery	Qual	MSD Found	MSD %Recovery	Reco Qual Lim		RPD Qual Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-04	QC Batch	n ID: WG167	1558-3	WG167155	8-4 QC Sam	ple: L2241763	3-02 Clie	nt ID: MS Sample
Arsenic, Total	0.025	0.12	0.139	95		0.138	94	75-12	25 1	20
Lead, Total	0.057	0.53	0.545	92		0.545	92	75-12	25 0	20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-04	QC Batch	n ID: WG167	1558-7	WG167155	8-8 QC Sam	ple: L2241788	3-03 Clie	nt ID: W28
Arsenic, Total	0.004J	0.12	0.128	107		0.126	105	75-12	25 2	20
Lead, Total	ND	0.53	0.507	96		0.505	95	75-12	25 0	20

Project Name: ORP #2 Project Number: 0370-016-001

Serial_No:08192214:43 *Lab Number:* L2241788 *Report Date:* 08/19/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2241788-01A	Vial HCl preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-01B	Vial HCI preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-01C	Vial HCI preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-01D	Plastic 250ml HNO3 preserved	А	<2	<2	3.3	Y	Absent		AS-TI(180),PB-TI(180)
L2241788-01E	Amber 250ml unpreserved	А	7	7	3.3	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2241788-01F	Amber 250ml unpreserved	А	7	7	3.3	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2241788-02A	Vial HCI preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-02B	Vial HCI preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-02C	Vial HCI preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-02D	Plastic 250ml HNO3 preserved	А	<2	<2	3.3	Y	Absent		AS-TI(180),PB-TI(180)
L2241788-02E	Amber 250ml unpreserved	А	7	7	3.3	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2241788-02F	Amber 250ml unpreserved	А	7	7	3.3	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2241788-03A	Vial HCI preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-03A1	Vial HCI preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-03A2	Vial HCI preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-03B	Vial HCI preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-03B1	Vial HCI preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-03B2	Vial HCI preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-03C	Vial HCl preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-03C1	Vial HCI preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-03C2	Vial HCI preserved	А	NA		3.3	Y	Absent		NYTCL-8260-R2(14)
L2241788-03D	Plastic 250ml HNO3 preserved	А	<2	<2	3.3	Y	Absent		AS-TI(180),PB-TI(180)
L2241788-03D1	Plastic 250ml HNO3 preserved	А	<2	<2	3.3	Υ	Absent		AS-TI(180),PB-TI(180)

Project Name: ORP #2 Project Number: 0370-016-001

Serial_No:08192214:43 *Lab Number:* L2241788 *Report Date:* 08/19/22

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2241788-03D2	Plastic 250ml HNO3 preserved	А	<2	<2	3.3	Y	Absent		AS-TI(180),PB-TI(180)
	L2241788-03E	Amber 250ml unpreserved	А	7	7	3.3	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2241788-03E1	Amber 250ml unpreserved	A	7	7	3.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2241788-03E2	Amber 250ml unpreserved	А	7	7	3.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2241788-03F	Amber 250ml unpreserved	А	7	7	3.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2241788-03F1	Amber 250ml unpreserved	А	7	7	3.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2241788-03F2	Amber 250ml unpreserved	А	7	7	3.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2241788-04A	Vial HCI preserved	А	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
	L2241788-04B	Vial HCI preserved	А	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
	L2241788-04C	Vial HCI preserved	А	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
	L2241788-04D	Plastic 250ml HNO3 preserved	А	<2	<2	3.3	Y	Absent		AS-TI(180),PB-TI(180)
	L2241788-04E	Amber 250ml unpreserved	А	7	7	3.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2241788-04F	Amber 250ml unpreserved	А	7	7	3.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2241788-05A	Vial HCI preserved	А	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
	L2241788-05B	Vial HCI preserved	А	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)

Serial_No:08192214:43

Project Name: ORP #2

Project Number: 0370-016-001

Lab Number: L2241788

Report Date: 08/19/22

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	 Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:	ORP #2	Lab Number:	L2241788
Project Number:	0370-016-001	Report Date:	08/19/22

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Serial_No:08192214:43

Lab Number: L2241788

Report Date: 08/19/22

Data Qualifiers

Project Name:

Project Number:

Identified Compounds (TICs).

ORP #2

0370-016-001

M - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

ND - Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 ORP #2

 Project Number:
 0370-016-001

 Lab Number:
 L2241788

 Report Date:
 08/19/22

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

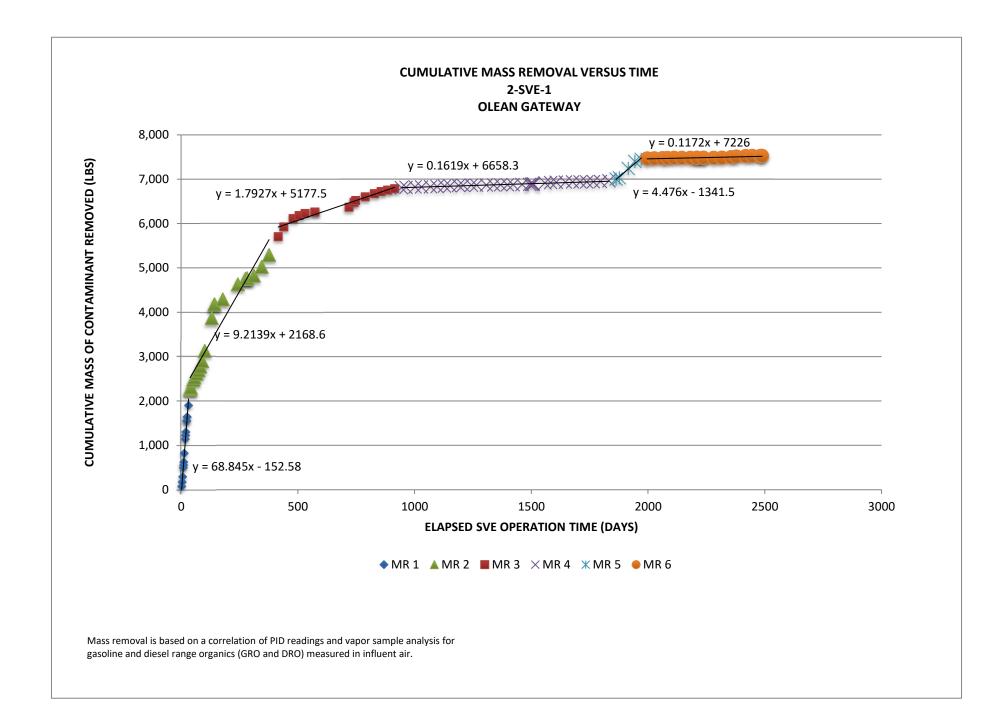
EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:08192214:43


Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Albany, NY 12205: 14 Walker V	Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105							1 8	14	Serie Contraction	ALPHA JOB#188			
8 Walkup Dr.	320 Forbes Blvd	Project Information					Deliv	verable							Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: ORP						ASP	A			ASP-			Same as Client Info	
Construction Solds, 2015-14		Project Location: 0) eq	A, NY		_			EQui	IS (1 F	ile)		EQui	S (4 F	ile)	PO#	
Client Information		Project # 0370-01	6-001				Other									
Client: Benchman	-10	(Use Project name as Pr									nt		Disposal Site Information			
Address: 2.558 Ho	mburg Turnpike	Project Manager:						NY TO	OGS			NY Pa	art 375		Please identify below location of	
Buffalo, NY		ALPHAQuote #:						AWQ	Standa	rds		NY CP	P-51		applicable disposal facilities.	
Phone: 716-856-	0599	Turn-Around Time			Utents	L ING STR		NY Re	estricted	t Use		Other			Disposal Facility:	
Fax:		Standard	X	Due Date	:			NY U	nrestrict	ed Use	,				NJ NY	
Email: Lriker@br	n-tk.com	Rush (only if pre approved		# of Days				NYC	Sewer D	Dischar	ge				Other:	
These samples have b	been previously analyze	ed by Alpha					ANA	LYSIS	1						Sample Filtration	Т
	c requirements/comm									8 - 2			1		Done	0
Please specify Metal	s or TAL.						ESDON 12-93	cP-51 Svocs+	c stead						Lab to do Preservation Lab to do (Please Specify below)	a I B o t
ALPHA Lab ID		ere can i	ollection Sample Sampler			+ 5		Seni						t		
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	171	77	Ars					Sample Specific Comments	1	
41788-01	w13)	8-2-22	1130	water	CEH	×	×	X	-	-	-	-	-		
202	w17		8-2-22	1430	water	CEA	X	×	X					\vdash		-
-03	W 28		8-2-22	1240			×	×	x				-	$ \rightarrow $		
-04	Blind Du		8-2-22	0300	water	CEH	x	X	X					\vdash		-
-03	MS/MS		8-2-22	1240	water	CEH	×		ma	-		_		\vdash		
15			0.0.00	1040	water	CEH	~	-701	spe-	-		-				
~~>	Trip Blo	CAR						-		-	_			$ \rightarrow $		
Contraction of the second								<u> </u>		-	_	-				
											_			\square		
Preservative Code:	Container Code															
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification No Mansfield: Certification No Temp 4:4	o: MA015			tainer Type reservative	v B	A	PC	_					Please print clearly, legibly and completely. Samples of not be logged in and turnaround time clock will r	can not
F = MeOH C = Cube Relinquis G = NaHSO4 O = Other Relinquis H = Na2S2O3 E = Encore Chatter Hord K/E = Zn Ac/NaOH D = BOD Bottle Face Define D = Other Balance Relinquis			By:	Date/ 8-2-2: 8/03/2 8/03/2	2/1600 L 12'20	11600 AM		ceived By: Kow (Mo/b ABL			Date/Time 8/3/22/300 8/03/22/16:20 8/4/22 0010			120	start until any ambiguities a resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPH/ TERMS & CONDITIONS. (See reverse side.)	5
Form No: 01-25 HC (rev. 3	0-Sept-2013)														(

Page 88 of 88

APPENDIX D

SVE PERIODIC INSPECTION LOGS

TABLE D-1 SUMMARY OF SVE SYSTEM 2-SVE-1 VOC MASS REMOVAL

OLEAN REDEVELOPMENT PARCEL 2 NYSDEC BCP SITE NO. C905032 OLEAN, NEW YORK

ProcessingProces	Date	Elapsed Time	SVE Operation	Influent (Untreated)	Effluent (Post- Biofilter) PID	Corrected Influent	Vacuum	Air Velocity	Pipe Diameter	Air Flow Rate		Volume of Air Processed Since	Rate of VOC	VOCs Removed Since Last	Total VOC Removal	Notes
	Date			PID Reading			(in of H ₂ O)	(ft/min)		(ACFM)	(SCFM)	Previous Reading		Period	to Date (lb)	NULES
	3-Nov-14	10	10	388	21	953	47.8	9800	4	855	797	3419636	68.3	205.2	496	
Index J 1 1 1 1 1 1 1 1 J J J J J J J J J J J J J J J J J J																
Disso Disso <t< td=""><td>13-Nov-14</td><td>19</td><td>19</td><td>460</td><td>30</td><td>1129</td><td>47.8</td><td>9800</td><td>4</td><td>855</td><td>797</td><td>1482639</td><td>80.9</td><td>89.7</td><td>1,226</td><td></td></t<>	13-Nov-14	19	19	460	30	1129	47.8	9800	4	855	797	1482639	80.9	89.7	1,226	
Shew Sin Sin </td <td></td>																
symbol																
Sabesjj <td></td> <td>-</td> <td>· ·</td>															-	· ·
Babe 91 98 96 9 238 93 9	1-Dec-14	38	26	385	30	945	47.8	8900	4	777	724	0	0.0	0.0	1,640	System Restart
Share540640640640640740640640640750770740740740740Share55767751001002007409001490014900149001490014900149001490014900170973207207Share60777070707070700 <td></td>																
Suber644646797970970970497064096064098000000000000000000000000000000000000																System reactivated
bb.14 99 97 75 96 144 471 400 44 941 944 943 944	-															
Babble 30060060606161064061064070006306306306406400<	6-Jul-15	255	53	95	10	233	47.8	10500	4	916	854	13220771	17.9	172.3	2,477	
Shulf 277 44 947 940 940 941 941 944 940 <td></td>																
ShayB2010															-	
ShaleShaleShaleShaleShaleShaleShaleShaleShaleShaleShaleShaleShaleSouchSanLanSanLanSanLanSanLanSanLanSanLanSanLanSanLanSanLanSanLanSanLanSanLan																
Same is 34134135240150150150446401646446441642441706.00<	13-Aug-15	293	90	180	10	442	47.8	6200	4	541	504	5781789	20.0	119.7	2,897	
Soule Main Lane Main Main <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
TANDE 399 143 60 5 147 633 6200 4 644 50 0.0 4.40 500 64.00 500 60.00 4.40 50.00 4.40 500 64.00 500 64.00 500 64.00 65.00 64.00 64.00 65.00 64.00 64.00 65.00 64.00 64.00 65.00 64.00 64.00 65.00 65.00 64.00 64.00 65.00 65.00 65.00 65.00																Blower shut down for maintenance
Hate 446 243 440 5 960 960 960 44 961 960 467 960 460 860 960 460 960 921 970 920 470 4700 Stap-16 687 233 20 30 400 50 0 0.0 10 4700 4700 Stap-16 587 233 20 30 400 50 60.0 110 4700 Stap-16 680 342 57 533 29774 74 201.1 5024 Stap-16 670 346 615 650 4 572 533 297747 74 201.1 5024 Stap-16 610 100 55 615 615 615 615 410 572 533 308043 118 4152 5.01 600 Stap-16 714 440 55 101 554 650 44																
Like-16 478 275 30 5 74 54.6 5900 4 515 480 2211 4.72 Parter down: high water levels 22F-det.16 485 283 - - - 4 0 0 0.0 11.9 4.764 System down: high water levels 1-Jun-16 586 312 35 3 49 5.66 650 4 572 533 2234465 41 964 483 5.Jul-16 630 346 66 100 152 650 4 572 533 234467 7.8 2345 5.24 5.Jul-16 640 410 55 246 5.55 4 572 533 158 6.15 155 6.15 6.50 4 572 533 158 6.15 157 6.15 155 6.15 577 5.33 158 6.53 155 6.14 572 533 158 6.53 155	23-Dec-15	425	179	55	5	135	61.5	6200	4	541	504	26097479	6.1	110.0	4,290	
22-Fe-16 485 283 Image: Constraint of the state															-	
ShAme 597 283 20 3 499 54.6 650 4 572 533 0 0 0 119 4,784 System cont, tight valar levels 1.undie 666 032 36 661 010 162 650 4 572 533 2927421 7.8 201 5.04 4.823 5.ungie 601 377 600 4.4 615 650 4 572 533 2927421 7.8 201 5.04 5.04 5.04 5.05 4.0572 533 29280451 18.1 5.04 5.05 4.0572 533 1933345 2.4 6.50 4.0572 533 1933455 1.2 4.84 6.113 1.0 1.0 1.0 4.0 6.00 4.0 572 533 1933455 1.2 4.84 6.26 1.0 1.0 4.0 6.00 4.0 520 4.03 4.0 6.00 4.0 520 1.0				30	5	74	54.6	5900								
Liu-10 620 346 66 100 1122 615 6500 4 572 533 229421 7.8 2011 5.04 5.04 Shugh 600 44 196 615 6500 4 572 533 2264679 0.4 2620 5.291 T-Outl 744 440 55 246 550 4 572 553 3006043 1.8 4152 5.707 T-Outl 440 55 51 611 4100 6550 4 572 533 1033433 2.4 68.4 6.181 120-16 780 566 20 5 440 6550 4 572 533 1033465 1.2 44.8 6.181 120-17 737 38 1 9 40.8 6000 4 524 4488 1030448 1.2 44.9 6.260 21-40-17 101 44.8 60000 4				20	3	49	54.6	6550								System down; high water levels
S.Aug-16 651 377 80 4 118 615 650 4 572 533 2384877 9.4 286.9 5.291 113.8ep-16 600 416 100 5 246 605 6550 4 672 533 5006403 11.8 415.2 5.791 10.Nov-16 744 440 555 5 115 615.0 4 572 533 1033345 2.4 68.4 6.181 12.0ex-15 780 568 2.0 5 449 552.4 6550 4 572 553 1033495 2.4 68.4 6.181 12.0ex-15 780 533 1.3 1 9 40.8 6000 4 524 488 1284468 0 0 0.0 1.3 6.200 System down-ingly water levels 14.Aup-17 94 720 13.7 1 40.8 6000 4 524 488 1033															-	
13.8ap-16 690 446 100 5 246 50.5 650 4 572 533 13006043 11.8 4152 5.077 International and the second se																
7.40 4.40 55 5 135 61.5 6650 4 572 633 1832534 6.5 217.8 6.924 16Nov.16 754 480 25 5 61 41.0 6550 4 672 633 3075147 2.9 188.6 6.11 12-ber-16 700 506 20 5 49 54.4 6550 4 572 533 1933483 2.4 66.4 6.161 17-ber-17 847 573 3.8 1 9 40.8 6000 4 524 488 0.0 1.3 6.260 System down, high water levels 23-bar 17 94 720 1.3 1 34 40.8 6000 4 524 488 1030648 1.5 10.3 5.60 23-bar 17 103 741 8.7 1 40.8 6000 4 524 488 1479712 92 113.6 6.60																
12-Dac-16 780 500 20 5 49 544 650 4 572 533 1983483 2.4 66.4 6.181 17-Feb-17 807 573 3.8 1 9 40.8 6500 4 572 533 1933465 1.2 44.9 6.226 17-Feb-17 847 573 3.8 1 9 40.8 6000 4 524 488 2934048 0.4 6.286 System down; high water levels 14-Jul-7 94 720 13.7 1 34 40.8 6000 4 524 488 10330488 1.5 100.3 6.399 14-Jul-7 74 857 1.2 40.8 6000 4 524 488 10330488 1.5 100.3 6.399 21-Sep-17 1063 729 19.1 1 47 54.6 6000 4 524 488 293782 2.1 8.67 1.2															-	
6-Jan-17 805 531 10.3 1 25 54.4 6550 4 572 533 19339465 1.2 44.9 6.226 17-Feb-17 847 573 3.8 1 9 40.8 6000 4 524 488 293448 0.4 33.8 6.260 23-Jun-17 973 573 4.5 1 11 40.8 6000 4 524 488 1030648 1.5 10.3 6.260 System down; high water levels 4-Aug-17 1015 741 85 1 209 40.8 6000 4 524 488 14797112 9.2 111.9 6,481 11-Aug-17 1022 748 18.7 1 46 40.8 6000 4 524 488 2937822 2.1 8.8 6,004 21-Sep-17 102 28 15.7 1.2 39 54.6 6000 4 524 488 2934499	16-Nov-16	754	480	25	5	61	41.0	6550	4	572	533	30751347	2.9	188.6	6,113	
17-Feb-17 847 573 3.8 1 9 40.8 6000 4 524 488 29340448 0.4 33.8 6.200 System down; high water levels 14-Jul-17 973 573 4.5 1 11 40.8 6000 4 524 488 0 0.0 1.3 6.200 System down; high water levels 14-Jul-17 994 720 13.7 1 34 40.8 6000 4 524 488 13306488 1.5 109.3 6.309 4-Aug-17 1015 741 85 1 209 40.8 6000 4 524 488 14797112 9.2 111.9 6.401 21-Sep-17 1063 789 19.1 1 47 54.6 6000 4 524 488 2737319 1.7 7.2 6.677 28-Nov-17 1131 857 13.4 4.9 33 54.6 6000 4 524 488 2019614 0.9 33.4 6.766 22 28-Jan-18																
23-Jun-17 973 573 4.5 1 11 40.8 6000 4 524 488 0 0.0 1.3 6.260 System down; high water levels 14-Jul-17 994 720 13.7 1 34 40.8 6000 4 524 488 103306488 1.5 109.3 6.369 4-Aug-17 1015 741 856 1 209 40.8 6000 4 524 488 1496161 2.0 39.1 6.520 21-Sep-17 1063 789 19.1 1 47 54.6 6000 4 524 488 2893782 2.1 83.8 6.604 1 2.1 39.4 6.501 4 524 488 2893782 2.1 83.8 6.604 1 4.4 5.4 488 2803782 2.1 83.8 6.604 2.0 39.4 6.756 1 2.2 1.7 1.7 1.5 4.4 5.24 4.88 2070384 0.3 2.07 6.677 1 2.2 2.0 1.7															-	
4-Aug-17 1015 741 85 1 209 40.8 6000 4 524 488 14797112 9.2 111.9 6.481 11-Aug-17 1022 748 18.7 1 46 40.8 6000 4 524 488 4916916 2.0 39.1 6,520 21-Sep.17 1063 789 19.1 1 47 54.6 6000 4 524 488 2937822 2.1 83.8 6,604 30-Och17 1012 828 15.7 1.2 39 54.6 6000 4 524 488 2034849 1.4 45.4 6,677 28-Nov17 113 857 1.4 4.9 3.3 54.6 6000 4 524 488 19709148 0.9 3.3.4 6,756 25-Jane1 1189 915 10.4 3.4 26 54.6 6000 4 524 488 1270584 0.3 20.7 <td></td> <td>System down; high water levels</td>																System down; high water levels
11-Aug-17 1022 748 18.7 1 46 40.8 6000 4 524 488 4916916 2.0 39.1 6.520 21-Sep-17 063 789 19.1 1 47 54.6 6000 4 524 488 28337822 2.1 83.8 6.604 30-Oct/1 1102 828 15.7 1.2 39 54.6 6000 4 524 488 20348469 1.4 45.4 6.677 28-Nov.17 1131 857 13.4 4.9 33 54.6 6000 4 524 488 19709148 0.9 33.4 6.756 23-Dec-17 1199 885 8.7 1.8 21 54.6 6000 4 524 488 19709148 0.9 6.787 23-Feb-18 1218 944 2.9 NA 7 45.0 6000 4 524 488 13725883 0.5 7.5 6.815 23-Apr-18 1276 1002 0.9 0.2 2 40.0	14-Jul-17	994	720	13.7	1	34	40.8	6000	4	524	488	103306488	1.5	109.3	6,369	
21-Sep-1 1063 789 19.1 1 47 54.6 6000 4 524 488 2893782 2.1 83.8 6.604 30-Och17 1102 828 15.7 1.2 39 54.6 6000 4 524 488 27327319 1.7 72.9 6.677 28-Nov17 1131 857 13.4 4.9 33 54.6 6000 4 524 488 2034869 1.4 45.4 6.722 26-Dec.17 1159 885 8.7 1.8 21 54.6 6000 4 524 488 2034869 1.4 45.4 6.722 25-Jan-18 1199 915 10.4 3.4 26 54.6 6000 4 524 488 211559 1.1 30.9 6.787 23-Jen-18 1278 944 2.9 NA 7 45.0 6000 4 524 488 13725883 0.5 7.5 6.815 23-Jen-18 1276 1002 0.9 0.2 2																
30-Oct-17 1102 828 15.7 1.2 39 54.6 6000 4 524 488 27327319 1.7 72.9 6.677 28-Nov-17 1131 857 13.4 4.9 33 54.6 6000 4 524 488 20348469 1.4 45.4 6.722 28-Dec17 1199 885 8.7 1.8 21 54.6 6000 4 524 488 20348469 1.4 45.4 6.722 25-Jan-18 1189 915 10.4 3.4 26 54.6 6000 4 524 488 21119559 1.1 30.9 6.787 25-Jan-18 1189 915 10.4 3.4 26 54.6 6000 4 524 488 2070384 0.3 20.7 6.807 15-Mar-18 1276 1002 0.9 0.2 2 40.0 6000 4 524 488 1972583 0.5 7.5 6.815 21-Mar-18 1304 1030 0.3 0 1															-	
26-Dec-17 1159 885 8.7 1.8 21 54.6 6000 4 524 488 19709148 0.9 33.4 6,766 25-Jan-18 1189 915 10.4 3.4 26 54.6 6000 4 524 488 21119559 1.1 30.9 6,787 23-Feb-18 1218 944 2.9 NA 7 45.0 6000 4 524 488 2027034 0.3 20.7 6,807 15-Mar-18 1237 963 4.2 1.7 10 42 6000 4 524 488 1972588 0.5 7.5 6,815 21-May-18 104 1030 0.3 0 1 50.0 6000 4 524 488 1977426 0.0 1.8 6,827 Bio-filter raked 5/11/18 & 5/25/18 28-Jun-18 1342 1068 1.4 0.2 3 44.0 6000 4 524 488 19677																
25-Jan-18 1189 915 10.4 3.4 26 54.6 6000 4 524 488 2119559 1.1 30.9 6,767 23-Feb-18 1218 944 2.9 NA 7 45.0 6000 4 524 488 20270384 0.3 20.7 6,807 15Mar-18 1237 963 4.2 1.7 10 42 6000 4 524 488 13725883 0.5 7.5 6,815 23-Apr.18 1276 1002 0.9 0.2 2 40.0 6000 4 524 488 13725883 0.5 7.5 6,815 21-May-18 1030 0.3 0 1 50.0 6000 4 524 488 26705079 0.2 3.5 6,818 66,811 86-filter raked 5/818 & 8/22/18 28-Jun-18 1370 1096 1.2 0.1 3 46.0 6000 4 524 488 19677	28-Nov-17															
23-Feb-18 1218 944 2.9 NA 7 45.0 6000 4 524 488 20270384 0.3 20.7 6,807 15-Mar-18 1237 963 4.2 1.7 10 42 6000 4 524 488 13725883 0.5 7.5 6,815 23-Apr.16 1276 1002 0.9 0.2 2 40.0 6000 4 524 488 13725883 0.5 7.5 6,815 21-May-18 1030 0.3 0 1 50.0 6000 4 524 488 19677426 0.0 1.8 6,827 Bio-filter raked 5/11/18 & 5/25/18 28-Jur-18 1342 1068 1.4 0.2 3 44.0 6000 4 524 488 19677426 0.0 1.8 6,831 Bio-filter raked 5//218 26-Jul-18 1370 1096 1.2 0.1 3 46.0 6000 4 524 488 <td></td>																
15-Mar-18 1237 963 4.2 1.7 10 4.2 6000 4 524 488 13725883 0.5 7.5 6.815 23-Apr-18 1276 1002 0.9 0.2 2 40.0 6000 4 524 488 13725883 0.5 7.5 6.815 21-May-18 1030 0.3 0 1 50.0 6000 4 524 488 19677426 0.0 1.8 6.827 Bio-filter raked 5/11/18 & 5/25/18 28-Jun-18 1342 1068 1.4 0.2 3 44.0 6000 4 524 488 19677426 0.0 1.8 6.827 Bio-filter raked 5/11/18 & 5/25/18 28-Jun-18 1342 1096 1.2 0.1 3 46.0 6000 4 524 488 19677426 0.1 3.9 6.835 Bio-filter raked 5/8/18 & 6/22/18 26-Jul-18 1402 1128 3.7 1 9 44.0 6000 4 524 488 19677426 0.1 3.9 6.851 Bio-filt																
21-May-18 1304 1030 0.3 0 1 50.0 6000 4 524 488 19677426 0.0 1.8 6.827 Bio-filter raked 5/11/18 & 5/25/18 28-Jun-18 1342 1068 1.4 0.2 3 44.0 6000 4 524 488 26705079 0.2 3.5 6.831 Bio-filter raked 5/11/18 & 5/25/18 26-Jul-18 1370 1096 1.2 0.1 3 46.0 6000 4 524 488 19677426 0.1 3.9 6.835 Bio-filter raked 5/11/18 & 5/22/18 27-Aug-18 1402 1128 3.7 1 9 44.0 6000 4 524 488 19677426 0.1 3.9 6.835 Bio-filter raked 5/2018 & 7/2018 8.7/2018 20-Sep18 1426 1152 2.5 0.3 6 48.0 6000 4 524 488 12686365 0.3 8.0 6.851 Bio-filter raked 9/24/18 & 9/26/18 26-Oct-18																
28-Jun-18 1342 1068 1.4 0.2 3 44.0 6000 4 524 488 26705079 0.2 3.5 6.831 Bio-filter raked 6/8/18 & 6/22/18 26-Jul-18 1370 1096 1.2 0.1 3 46.0 6000 4 524 488 19677426 0.1 3.9 6.835 Bio-filter raked 6/8/18 & 6/22/18 27-Aug-18 1402 1128 3.7 1 9 44.0 6000 4 524 488 19677426 0.1 3.9 6.835 Bio-filter raked 6/8/18 & 6/22/18 20-Sep18 1426 1122 2.5 0.3 6 48.0 6000 4 524 488 126855 0.3 8.0 6.851 Bio-filter raked 9/8/2018, 8/17/18, & 8/37/18 26-Oct-18 1462 1188 1.6 0.2 4 46.0 6000 4 524 488 12695304 0.1 3.1 6.857 Bio-filter raked 19/2/18 & 10/26/18 15-40015304 0.1																
26-Jul-18 1370 1096 1.2 0.1 3 46.0 6000 4 524 488 1967742 0.1 3.9 6,835 Bio-filter raked 7/6/2018 & 7/20/18 27-Aug-18 1402 1128 3.7 1 9 44.0 6000 4 524 488 1967742 0.1 8.4 6,843 Bio-filter raked 7/6/2018 & 7/20/18 20-Sep.18 1426 1152 2.5 0.3 6 48.0 6000 4 524 488 16866355 0.3 8.0 6,851 Bio-filter raked 9/14/18 & 9/28/18 26-Och:18 1462 1188 1.8 0.2 4 46.0 6000 4 524 488 16866355 0.3 8.0 6,859 Bio-filter raked 9/14/18 & 9/28/18 26-Och:18 1462 1188 1.8 0.2 4 6000 4 524 488 14055304 0.1 3.1 6,859 Bio-filter raked 9/14/18 & 9/28/18 15-Nov-18 1482 120															-	
27-Aug-18 1402 1128 3.7 1 9 44.0 6000 4 524 488 2248847 0.4 8.4 6.843 Bio-filter raked 8/3/2018, 8/17/18, & 8/31/18 20-Sep-18 1426 1152 2.5 0.3 6 48.0 6000 4 524 488 16866365 0.3 8.0 6.851 Bio-filter raked 8/3/2018, 8/17/18, & 8/31/18 26-Oct-18 1462 1188 1.6 0.2 4 46.0 6000 4 524 488 2529548 0.2 8.0 6.851 Bio-filter raked 9/14/18 & 9/28/18 1462 1188 1.6 0.2 4 46.0 6000 4 524 488 1405530 0.1 3.1 6.862 Bio-filter raked 10/12/18 & 10/26/18 15-Nov-18 1482 1208 1.3 0.1 3 44.0 6000 4 524 488 1405530 0.1 3.1 6.867 Bio-filter raked 10/12/18, 11/30/18 20-Dec-18 1517																
26-Oct-18 1462 1188 1.6 0.2 4 46.0 6000 4 524 488 2529548 0.2 8.0 6.859 Bio-filter raked 10/12/18 & 10/26/18 15-Nov-18 1482 1208 1.3 0.1 3 44.0 6000 4 524 488 14055304 0.1 3.1 6.859 Bio-filter raked 10/12/18 & 10/26/18 20-Dec-18 1517 1243 1 0.2 2 44.0 6000 4 524 488 14055304 0.1 3.1 6.867 Bio-filter raked 10/12/18 & 11/30/18 20-Dec-18 1517 1243 1 0.2 2 44.0 6000 4 524 488 24596783 0.1 4.3 6.867 Bio-filter raked 12/14/2018 & 12/26/18 11-Jan-19 1539 1265 0.2 0 0 42.0 6000 4 524 488 1540835 0.0 1.4 6.868 Bio-filter raked 11/11/19 & 1/25/19															.,	
15-Nov-18 1482 1208 1.3 0.1 3 44.0 6000 4 524 488 14055304 0.1 3.1 6,862 Bio-filter raked 11/2/16, 11/16/18, & 11/30/18 20-Dec-18 1517 1243 1 0.2 2 44.0 6000 4 524 488 14055304 0.1 3.1 6,862 Bio-filter raked 11/2/16, 11/16/18, & 11/30/18 11-Jan-19 1539 1265 0.2 0 0 42.0 6000 4 524 488 15460835 0.0 1.4 6,867 Bio-filter raked 11/11/9 & 1/25/19 11-Jan-19 1539 1265 0.2 0 0 42.0 6000 4 524 488 15460835 0.0 1.4 6,868 Bio-filter raked 11/11/19 & 1/25/19		1426			0.3			6000			488					
20-Dec-18 1517 1243 1 0.2 2 44.0 6000 4 524 488 24596783 0.1 4.3 6.867 Bio-filter raked 12/14/2018 & 12/28/18 11-Jan-19 1539 1265 0.2 0 0 42.0 6000 4 524 488 15460835 0.0 1.4 6.868 Bio-filter raked 1/11/19 & 1/25/19																
11-Jan-19 1539 1265 0.2 0 0 42.0 6000 4 524 488 15460835 0.0 1.4 6,868 Bio-filter raked 1/11/19 & 1/25/19																
															-	
2 10.0 0000 1 021 1001 0.1 2.0 0,010 pituline land 2/0/19 & 2/2/19	22-Feb-19	1581	1307	0.7	0	2	40.0	6000	4	524	488	29516139	0.1	2.0	6,870	Bio-filter raked 2/8/19 & 2/22/19

TABLE D-1 SUMMARY OF SVE SYSTEM 2-SVE-1 VOC MASS REMOVAL

OLEAN REDEVELOPMENT PARCEL 2 NYSDEC BCP SITE NO. C905032 OLEAN, NEW YORK

Date	Elapsed	SVE Operation	Influent	Effluent (Post-	Corrected Influent	Vacuum	Air Velocity	Pipe	Air Flo	Air Flow Rate Pr		Air Flow Rate		Pate of	VOCs Removed Since Last	Total VOC Removal	
Date	Time (days)	Time (days)	(Untreated) PID Reading	Biofilter) PID Reading (ppm)	Concentration ¹	(in of H ₂ O)	(ft/min)	Diameter (in)	(ACFM)	(SCFM)	Since Previous Reading (CF)	Removal (lb/day)	Monitoring Period (lb)	Period (lb)	Notes		
26-Mar-19	1613	1339	0.2	0	0	40.0	6000	4	524	488	22488487	0.0	1.6	6,872	Bio-filter raked 3/8/19 & 3/22/19		
24-Apr-19	1642	1368	0.4	0.1	1	42.0	6000	4	524	488	20380192	0.0	0.9	6,873	Bio-filter raked 4/5/19 & 4/19/19		
24-May-19	1672	1398	0.5	0	1	40.0	6000	4	524	488	21082957	0.1	1.5	6,874	Bio-filter raked 5/3/19, 5/17/19 & 5/31/19		
17-Jun-19	1696	1422	1	0	2	38.0	6000	4	524	488	16866365	0.1	1.9	6,876	Bio-filter raked 6/14/19 & 6/28/19		
25-Jul-19	1734	1460	1.3	0	3	40.0	6000	4	524	488	26705079	0.1	4.7	6,881	Bio-filter raked 7/12/19 & 7/26/19		
27-Aug-19	1767	1493	1.6	0	4	34.2	6000	4	524	488	23191252	0.2	5.2	6,886			
4-Sep-19	1775	1501	1.3	0	3	68.3	6000	4	524	488	5622122	0.1	1.2	6,887			
9-Sep-19	1780	1506	7.7	0.1	19	54.6	6000	4	524	488	3513826	0.8	2.4	6,890			
12-Sep-19	1783	1509	8.5	0.1	21	57.4	6000	4	524	488	2108296	0.9	2.6	6,892			
31-Oct-19	1832	1558	1.3	0	3	57.4	6000	4	524	488	34435496	0.1	25.9	6,918			
25-Nov-19	1857	1583	2.9	0	9	61.5	6000	4	524	488	17569131	0.4	6.5	6,925			
19-Dec-19	1881	1607	1.1	0	3	61.5	6000	4	524	488	16866365	0.1	6.2	6,931			
27-Jan-20	1920	1646	0.6	0	2	79.2	6000	4	524	488	27407844	0.1	4.3	6,935			
27-Feb-20	1951	1677	0.4	0	1	61.5	6000	4	524	488	21785722	0.1	2.0	6,937			
30-Mar-20	1983	1709	0.3	0	1	68.3	6000	4	524	488	22488487	0.0	1.5	6,939			
27-Apr-20	2011	1737	0.5	0	1	82.0	6000	4	524	488	19677426	0.1	1.5	6,940	Wells 2-SVE-2, -7, -9, and -12 turned off for optimization		
26-May-20	2040	1766	0.6	0	2	83.3	6000	4	524	488	20380192	0.1	2.1	6,942			
, 25-Jun-20	2070	1796	3.1	0	9	83.3	6000	4	524	488	21082957	0.4	7.2	6.949			
31-Jul-20	2106	1832	3.2	0	9	86.1	6000	4	524	488	25299548	0.4	14.7	6.964			
31-Aug-20	2137	1863	17.1	0.4	51	83.3	6000	4	524	488	21785722	2.2	40.9	7,005	Bio-filter raked		
14-Sep-20	2151	1877	14.4	0.9	43	82.0	6000	4	524	488	9838713	1.9	28.7	7,034			
22-Oct-20	2189	1915	70.6	0.2	209	95.6	6000	4	524	488	26705079	9.2	209.9	7,243			
19-Nov-20	2217	1943	15.9	0.2	47	83.3	6000	4	524	488	19677426	2.1	157.4	7,401			
17-Dec-20	2245	1971	9.5	0.3	28	51.2	6000	4	524	488	19677426	1.2	46.2	7,447			
11-Jan-21	2270	1996	0.9	0	3	75.1	6000	4	524	488	17569131	0.1	16.9	7,464			
11-Feb-21	2301	2027	1.1	0	3	69.7	6000	4	524	488	21785722	0.1	4.0	7,468			
18-Mar-21	2336	2062	1.7	0	5	82.0	6000	4	524	488	24596783	0.2	6.4	7,474			
8-Apr-21	2357	2083	0.4	0	1	71.0	6000	4	524	488	14758070	0.1	2.9	7,477			
6-May-21	2385	2003	0.4	0	1	69.7	6000	4	524	488	19677426	0.0	1.3	7,478			
9-Jun-21	2303	2145	0.5	0	0	61.5	6000	4	524	488	23894018	0.0	0.7	7,479			
9-Jun-21	2419	2145	0	0	0	88.8	6000	4	524	400	25299548	0.0	0.7	7,479			
12-Aug-21	2455	2181	0.5	0	1	00.0 97.0	6000	4	524	400	19677426	0.0	0.0	7,479			
-	2463			0				4	524	400		0.0	0.9		Sustam rastarted on 11/10/21 (off on 9/20 model of the		
22-Nov-21		2209	0.5	0	1	75.1	6000				0			7,480	System restarted on 11/19/21 (off on 8/30 motor failure)		
20-Dec-21	2613	2237	0.3		1	110.6	6000	4	524	488	19677426	0.0	0.5	7,481	System was turned off for winter on 1/13/22		
3-May-22	2747	2237	0.2	0	1	88.8	6000	4	524	488	0	0.0	0.0	7,481	Restart system on 5/3/22 and opened well 2-SVE-2		
16-Jun-22	2791	2281	0.2	0	1	94.3	6000	4	524	488	30921670	0.0	0.6	7,481			
21-Jul-22	2826	2316	1.3	0	4	80.6	6000	4	524	488	24596783	0.2	3.4	7,485			
29-Aug-22	2865	2355	2.9	0	9	69.7	6000	4	524	488	27407844	0.4	10.6	7,495			
21-Sep-22	2888	2378	4.9	0	15	82.0	6000	4	524	488	16163600	0.6	11.7	7,507			
31-Oct-22	2928	2418	0.6	0	2	57.4	6000	4	524	488	28110609	0.1	14.3	7,521			
28-Nov-22	2956	2446	0	0	0	61.5	6000	4	524	488	19677426	0.0	1.1	7,522			
3-Jan-23	2992	2482	0	0	0	75.1	6000	4	524	488	25299548	0.0	0.0	7,522			
9-Jan-23	2998	2488	0	0	0	71.0	6000	4	524	488	4216591	0.0	0.0	7,522	System was turned off for winter on 1/9/23		

Notes:
1. The estimated mass of contamination recovered is based on ratio of the sum of the gasoline and diesel range organics (GRO and DRO) as measured by a vapor sample collected with a summa canister to the contemporaneous PID reading. The ratio 2.46 milligram per cubic meter for each 1 ppm on the PID was used for 10/24/2014 through 11/7/2019 The ratio 2.96 milligram per cubic meter for each 1 ppm on the PID was used for 11/7/2019 to present

TABLE D-2

Summary of SVE System 2-1 Periodic Review Report Olean Redevelopment Parcel 2 Olean, New York

Date	Well	PID	System PID (ppm)	Notes				
	2-SVE-1	0.4						
	2-SVE-2	0.6						
	2-SVE-3	0.9						
	2-SVE-4	0.9						
	2-SVE-5	0.1						
	2-SVE-6	2.1	Influent: 0.2	SVE System 2-1 Vacuum:				
6/16/22	2-SVE-7	off	Effluent: 0	94.3 inches H ₂ O				
	2-SVE-8	off	Lindent. 0	54.5 mones H ₂ O				
	2-SVE-9	off						
	2-SVE-10	0.1						
	2-SVE-11	off						
	2-SVE-12	off						
	2-SVE-13	off						
	2-SVE-1	6.1						
	2-SVE-2	2.9						
	2-SVE-3	82.2						
	2-SVE-4	6.1						
	2-SVE-5	10.4						
	2-SVE-6	2.5	Influent: 4.9	SVE System 2-1 Vacuum:				
9/21/22	2-SVE-7	off	Effluent: 0	66.9 inches H ₂ O				
	2-SVE-8	off	Elliuent. U					
	2-SVE-9	off						
	2-SVE-10	8.1						
	2-SVE-11	off						
	2-SVE-12	off						
	2-SVE-13	off						
	2-SVE-1	0.0						
	2-SVE-2	0.0						
	2-SVE-3	0.0						
	2-SVE-4	0.0						
	2-SVE-5	4.6						
1/3/2023	2-SVE-6	0.7	Influent: 0.0	SVE System 2-1 Vacuum:				
(for 4th Q '22)	2-SVE-7	off	Effluent: 0	75.1 inches H_2O				
	2-SVE-8	off		70.1 monos H ₂ O				
	2-SVE-9	off						
	2-SVE-10	0.0						
	2-SVE-11	off						
	2-SVE-12	off						
	2-SVE-13	off						