

May 9, 2023

Joshua Ramsey New York Department of Environmental Conservation 6274 East Avon-Lima Road Avon, New York 14414

RE: RAOC #1 Quarterly Groundwater Monitoring – Q1 2023

1777 East Henrietta Road, Henrietta, New York

NYSDEC Site No. C828192 LaBella Project #2160339

Dear Mr. Ramsey,

LaBella Associates, D.P.C. ("LaBella") is pleased to submit this letter summarizing the first quarterly groundwater monitoring event conducted at RAOC #1 in 2023 for the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site C828192 located at 1777 East Henrietta Road, in the Town of Henrietta, Monroe County, New York, hereinafter referred to as the "Site."

BACKGROUND

The 34.90-acre property at 1777 East Henrietta Road entered into a Brownfield Cleanup Agreement with the NYSDEC in June 2016, to investigate and remediate the property. The Site had been utilized for the manufacture and distribution of medical supplies and equipment from at least 1955 to the early 2010s and is currently utilized as warehouse and office space. Historical manufacturing operations reportedly included metal plating.

Past data identified contaminants of concern (COC). A "contaminant of concern" is a contaminant that is sufficiently present in frequency and concentration in the environment to require evaluation for remedial action. Not all contaminants identified on the property are contaminants of concern. The nature and extent of contamination and environmental media requiring action are summarized below. The contaminant(s) of concern previously identified at this site are:

- Soil: CVOCs, specifically TCE and associated breakdown compounds (former plating area and stormwater pond) and metals including cadmium, copper and nickel (former plating area).
- o Groundwater: CVOCs, specifically TCE and associated breakdown compounds (former plating area and stormwater pond).
- O Surface Soil: Benzo(a)pyrene (one (1) surface soil sample location at 0-2-inches bgs).
- Soil Vapor: CVOCs in sub-slab soil vapor and indoor air of the Main Building.

Interim Remedial Measures (IRMs) were implemented to address a DNAPL plume and TCE in groundwater in RAOC #1, and TCE in groundwater in RAOC #2. RAOC #1 IRMs consisted of a combination of In-Situ Thermal Remediation (ISTR) using Electrical Resistive Heating (ERH) to remediate the DNAPL plume, followed by an injection of Geoform™ Extended Release within the ERH treatment area to promote microbial degradation of residual CVOCs. RAOC #2 IRMs consist of in-situ chemical injections via permanent injection wells to treat TCE in groundwater and prevent off-Site contaminant migration.

The Site Management Plan (SMP) was approved by the NYSDEC on December 17, 2020, and includes the quarterly monitoring of six (6) groundwater monitoring wells located at RAOC #1. A detailed summary of the 2023 Q1 quarterly groundwater monitoring for RAOC #1 is discussed herein.

RAOC #1 GROUNDWATER SAMPLING

Quarterly Groundwater Monitoring

LaBella performed the Q1 groundwater monitoring on March 22th, 2023, in accordance with the methodologies described in the NYSDEC-approved SMP. This quarterly monitoring event targeted the following six (6) monitoring wells at the Site:

- SBMW2015-22-R
- MW-10-R
- MW-11-R
- MW-06-R
- SBMW2019-01
- SBMW2019-02

Groundwater monitoring well locations are shown on Figure 2. It should be noted that of the six (6) monitoring wells listed above, SBMW2015-22-R, SBMW-2019-01, SBMW-2019-02, and LBA-MW-06-R were the only monitoring wells with measurable groundwater. As such, the Q1 groundwater monitoring event was limited to the sampling of these wells.

In accordance with the SMP, low-flow groundwater sampling methodologies were implemented using a bladder pump in order to obtain a representative sample of current groundwater conditions at the Site. In order to accomplish this task, the following steps were taken:

- Initially, static water levels (SWLs) were collected using a Heron Oil/Water Interface Probe capable of measuring to 0.01 foot accuracy for evaluating the groundwater contours at the Site. It should be noted non-aqueous phase liquids (NAPL) were not observed during this sampling event.
- Subsequent to collecting groundwater SWLs, a bladder pump was utilized to purge groundwater at a rate between 60 and 150-mL per minute. Additionally, a YSI ProDSS water quality meter was utilized to collect water parameters recorded at 5-minute intervals during the purging of each well. The water quality indicator parameters collected were as followed:
 - Water Level Drawdown
 - Temperature
 - pH
 - Dissolved Oxygen
 - Specific Conductivity
 - Oxidation Reduction Potential
 - Turbidity
- Groundwater sampling was commenced once the groundwater quality indicator parameters stabilized for at least three (3) consecutive readings for the following parameters:

- Water Level Drawdown: <0.3'

- Temperature: +/- 3%

- pH: +/- 0.1 unit

- Dissolved Oxygen: +/-10%

- Specific Conductance: +/-3%

- Oxidation Reduction Potential: +/-10 millivolts

- Turbidity: +/-10% for values greater than 1 NTU

- Any reusable low flow groundwater sampling equipment was decontaminated after sampling.
- The groundwater samples were submitted to Alpha Analytical Laboratories located in Westborough, MA, which is a NYSDOH Environmental Laboratory Accreditation Program (ELAP) certified laboratory. Groundwater samples were analyzed for United States Environmental Protection Agency (USEPA) Target Compound List (TCL) and NYSDEC Commissioner Policy 51 (CP-51) volatile organic compounds (VOCs) using USEPA Method 8260.
- Quality assurance/quality control (QA/QC) samples that were collected include one (1) duplicate, one (1) matrix spike and one (1) matrix spike duplicate. The groundwater results were provided in an ASP Category B deliverables data package. Additionally, a Data Usability Summary Report (DUSR) was completed to evaluate the usability of the data in accordance with DER-10 Appendix 2B.
- Purge water generated during the low flow sampling was containerized in a 55-gallon drum which is labeled and stored in the Main Building at the Site.

Monitoring well locations are shown on Figure 2. Low flow groundwater sampling logs are included in Appendix 1.

Groundwater Analytical Results

On March 22nd, 2023, groundwater samples were collected from SBMW2015-22-R, SBMW-2019-01, SBMW-2019-02, and LBA-MW-06-R using low-flow groundwater sampling methodologies. Groundwater samples were analyzed for USEPA TCL and NYSDEC CP-51 VOCs using USEPA Method 8260. Results were compared to NYCRR Part 703 Groundwater Quality Standards and NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Guidance Values. The analytical results are summarized below:

SBMW2015-22-R:

Two (2) VOCs were detected in SBMW2015-22-R exceeding TOGs 1.1.1 Guidance Values as follows:

- Cis-1,2-Dichloroethene (5 ug/L guidance value) 300 ug/L (230 ug/L in duplicate sample)
- Trichloroethene (5 ug/L guidance value) 32 ug/L (28 ug/L in duplicate sample)

The Q1 2023 concentrations of TCE and cis-1,2-dichloroethene detected remain at a similar order of magnitude to the post-remediation confirmatory groundwater sampling results collected in 2020, as well as the post-COC quarterly groundwater monitoring completed in 2021 and 2022. It should be

noted that pre-remediation groundwater sampling completed in 2019 detected TCE at concentrations of 890,000 ug/L and 830,000 ug/L, respectively. Please refer to Table 1 for a detailed summary of the groundwater sampling results of SBMW2015-22-R and a comparison to historical groundwater data.

SBMW2019-01:

One (1) groundwater sample was collected from SBMW2019-01 for analysis of VOCs. Two (2) VOCs were detected in SBMW2019-02 exceeding NYCRR Part 703 Groundwater Quality Standards as follows:

- Cis-1,2-Dichloroethene (5 ug/L guidance value) 130 ug/L
- Trichloroethene (5 ug/L guidance value) 19 ug/L

The Q1 2023 concentrations of TCE and cis-1,2-dichloroethene were detected at lower concentrations compared to the post-remediation confirmatory groundwater sampling results collected in 2020 and remain at a similar order of magnitude as the post-COC quarterly groundwater monitoring completed in 2021 and 2022. Please refer to Table 2 for a detailed summary of the groundwater sampling results of SBMW2019-01 and a comparison to historical groundwater data.

SBMW2019-02

One (1) groundwater sample was collected from SBMW2019-02 for analysis of VOCs. One (1) VOC was detected in SBMW2019-02 exceeding NYCRR Part 703 Groundwater Quality Standards as follows:

• Trichloroethene (5 ug/L guidance value) - 24 ug/L

The Q1 2023 concentration of TCE was detected at lower concentrations compared to the baseline groundwater sampling results collected in 2019 and remain at a similar order of magnitude as the post-COC quarterly groundwater monitoring completed in 2021 and 2022. Please refer to Table 3 for a detailed summary of the groundwater sampling results of LBA-SBMW2019-02 and a comparison to historical groundwater data.

LBA-MW-06-R:

One (1) groundwater sample was collected from LBA-MW-06-R for analysis of VOCs. Two (2) VOCs were detected in LBA-MW-06-R exceeding NYCRR Part 703 Groundwater Quality Standards as follows:

- Cis-1,2-Dichloroethene (5 ug/L guidance value) 48 ug/L
- Trichloroethene (5 ug/L guidance value) 150 ug/L
- Benzene (1 ug/L guidance value) 1.2 ug/L

The Q1 2023 concentrations of TCE and cis-1,2-dichloroethene were detected at lower concentrations compared to the post-remediation confirmatory groundwater sampling results collected in 2020 and remain at a similar order of magnitude as the post-COC quarterly groundwater monitoring completed in 2021 and 2022. Benzene was also detected at a concentration slightly above the Part 703 Groundwater Quality Standard. Please refer to Table 4 for a detailed summary of the groundwater sampling results of LBA-MW-06-R and a comparison to historical groundwater data.

The table below summarizes from which AOC #1 monitoring wells groundwater samples were obtained, as well as TCE concentrations and percent changes from baseline concentrations. Data continues to indicate substantial decreases (99.9% from baseline) in TCE concentrations since remediation was completed in 2020. In addition, DNAPL has not been observed during the quarterly monitoring events.

			TCE C	oncentration (u	g/L) and Percent	Change from B	aseline			
Well	Baseline (date)	3/16/2021	6/24/2021	9/27/2021	12/14/2021	3/28/2022	7/14/2022	11/7/2022	12/20/2022	3/22/2023
SBMW2015- 22-R	930,000 (8/19/2019)	37 (-99.9%)	61 (-99.9%)	110 (- 99.9%)	180 (-99.9%)	170 (- 99.9%)	130 (-99.9%)	200 (-99.9%)	99 (-99.9%)	32 (-99.9%)
MW-10-R	1,200 (10/14/2019)	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-11-R	110,000 (08/27/2019)	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-06-R	920,000 (10/15/2019)	NS	NS	NS	NS	200 (- 99.9%)	160 (-99.9%)	160 (-99.9%)	120 (-99.9%)	150 (-99.9%)
SBMW2019- 01	760,000 (10/15/2019)	NS	NS	NS	NS	80 (-99.9%)	6.8 (-99.9%)	17 (-99.9%)	16 (-99.9%)	19 (-99.9%)
SBMW2019- 02	340,000 (10/14/2019)	NS	3.5 (-99.9%)	NS	21 (-99.9%)	NS	NS	NS	30 (-99.9%)	24 (-99.9%)

[&]quot;NS" indicates there was not enough groundwater within the well for sampling

Data Usability Summary Report

A Data Usability Summary Report (DUSR) was prepared by a third-party data validator following the receipt of the analytical results for SBMW2015-22-R, SBMW-2019-01, SBMW-2019-02, and LBA-MW-06-R. The DUSR stated that all results are technically defensible and usable as reported, or usable with minor data qualifications.

We appreciate the opportunity to serve your professional environmental engineering needs and look forward to working with you toward a successful completion of this project. If you have any questions please do not hesitate to contact us at 585-454-6110.

Respectfully submitted,

LABELLA ASSOCIATES, D.P.C.

Jennifer Gillen

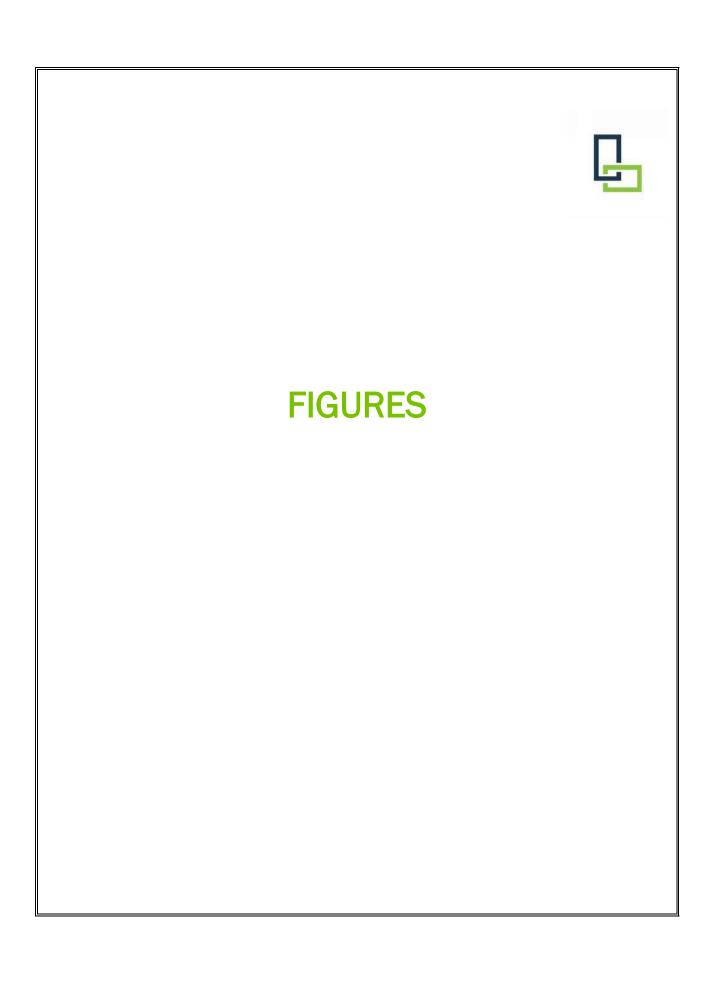
VP, Environmental Operations Manager

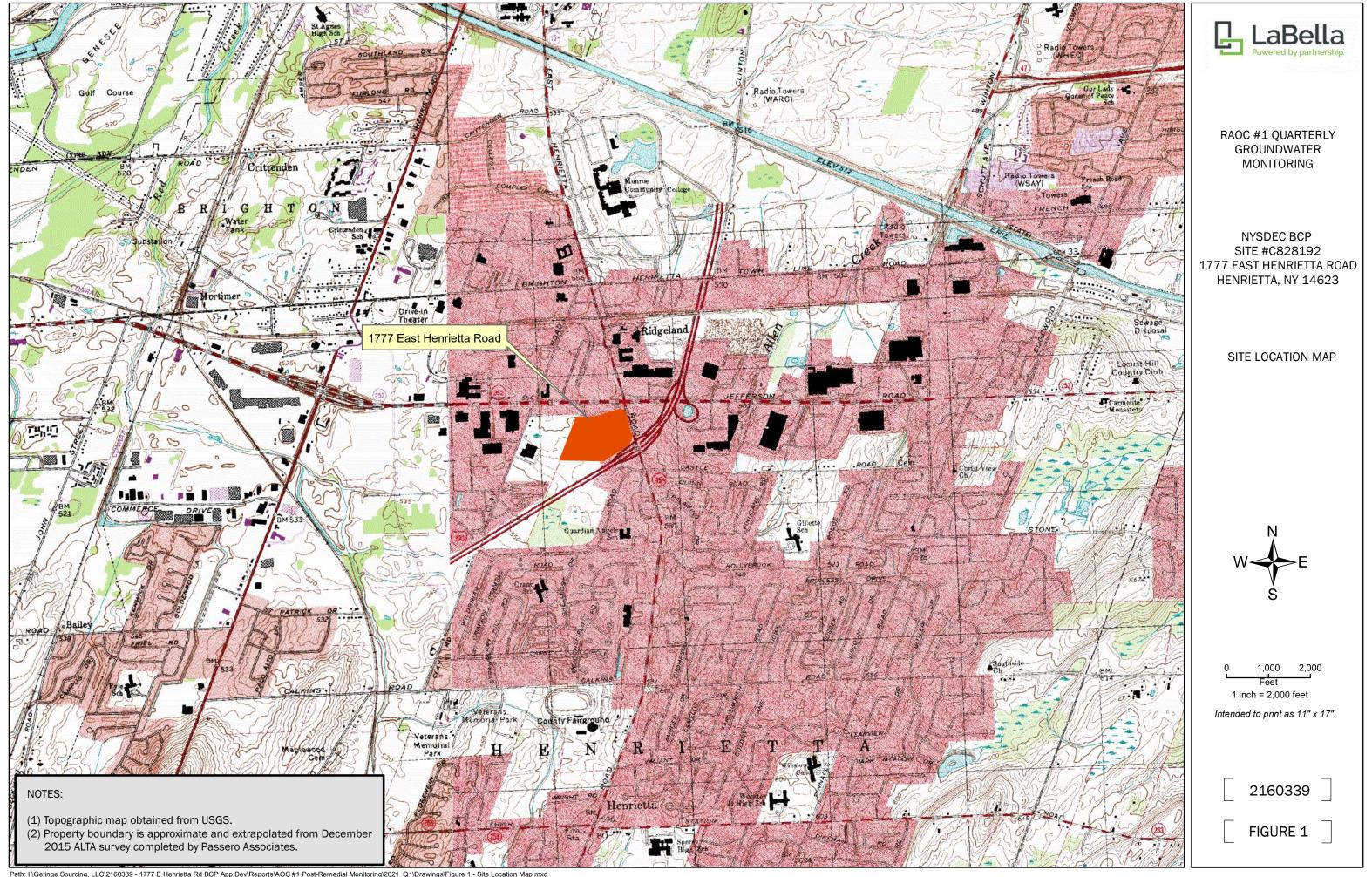
Figures

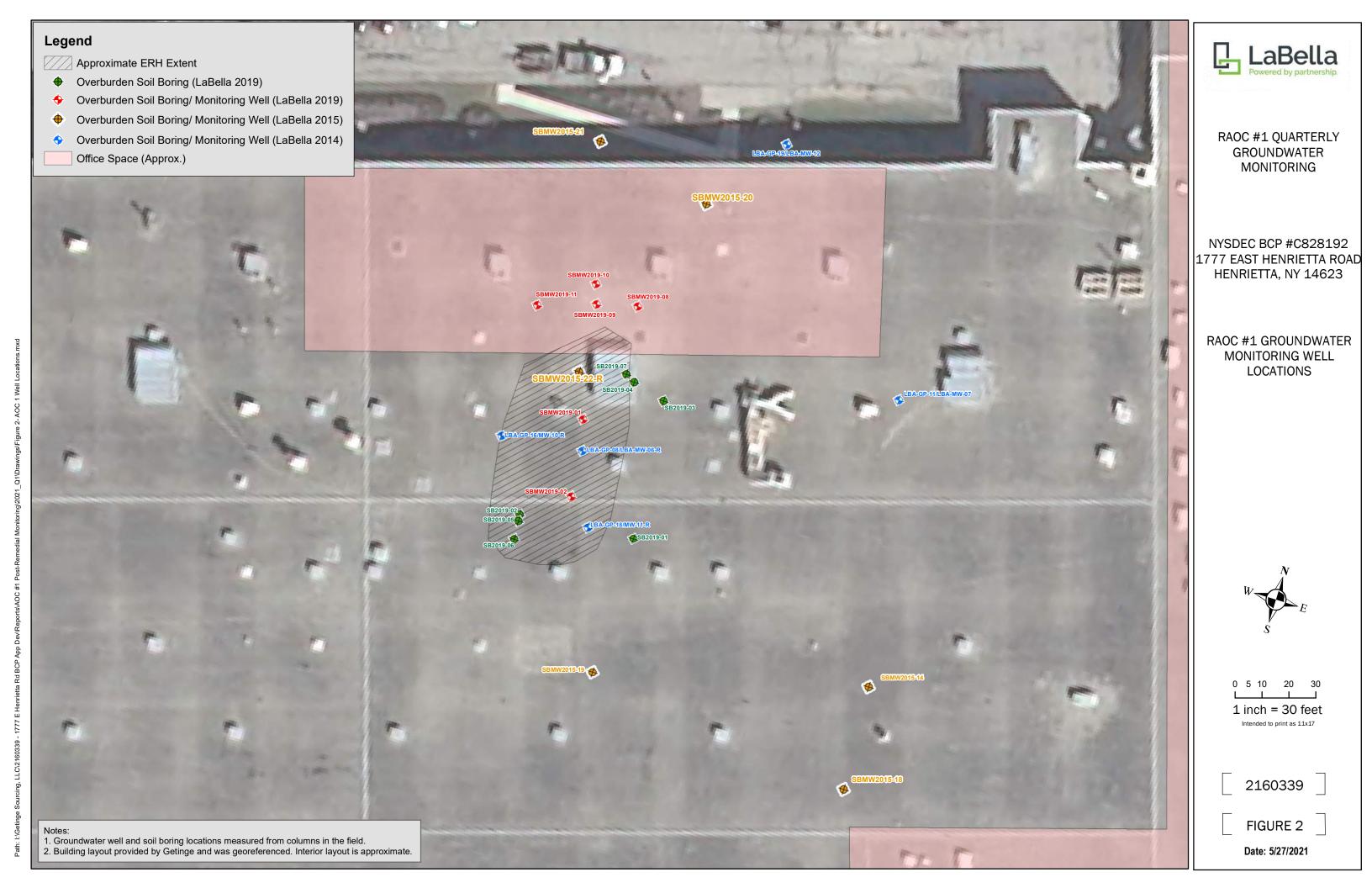
Figure 1 – Site Location Map

Figure 2 - RAOC #1 Groundwater Monitoring Well Locations

Tables


Table 1 – Summary of Detected Volatile Organic Compounds in Groundwater


Appendices


Appendix 1 - Field Logs

Appendix 2 – Laboratory Summary Report

Appendix 3 - Data Usability Summary Report

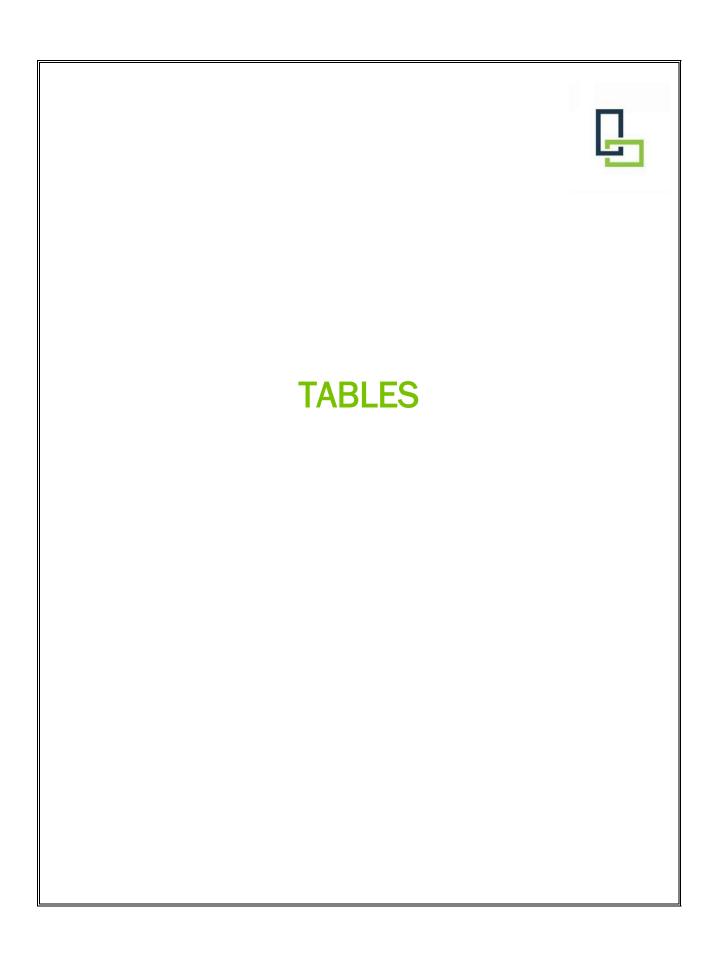


Table 1 (Page 1 of 6)
Remedial Area of Concern (RAOC) #1
Summary of Detected Volatile Organic Compounds in Groundwater
NYSDEC BCP Site #C828192
1777 East Henrietta Road, Henrietta, New York

LaBella
Powered by partnership.

Well ID	NYSDEC Part 703 Groundwater Standards and Guidance Values									SBMW2015	5-22-R										
Sample Collection Date	and dalidance values	8/19/2019	10/4/2019	6/4/2020	7/24/2020	9/29/2020	3/16/2021	6/24/2021	9/27/2021	Blind Dupe	12/14/2021	Blind Dupe	3/28/2022	Blind Dupe	7/14/2022	11/7/2022	Blind Dupe	12/20/2022	Blind Dupe	3/22/2023	Blind Dupe
Screened Interval (ft bgs)		11.33 - 20	11.33 - 20	11.33 - 20	11.33 - 20	11.33 - 20	11.33 - 20	11.33 - 20	11.33 - 20	11.33 - 20	11.33-20	11.33-20	11.33-20	11.33-20	11.33-21	11.33-21	11.33-21	11.33-21	11.33-21	11.33-21	11.33-21
Sample Type		Baseline 1 (pre-ERH)	Baseline 2 (pre-ERH)	Confir	matory (post-Injection	ons)	2021 Q1	2021 Q2	2021 Q3	2021 Q3	2021 Q4	2021 Q4	2022 Q1	2022 Q1	2022 Q2	2022 Q3	2022 Q3	2022 Q4	2022 Q4	2023 Q1	2023 Q1
Volatile Organic Compounds																					
1,1-Dichloroethene	5	<1,700	<840	0.72 J	<0.58	0.36 J	<0.16	<1.2	0.97	0.77	1.4 J	1.2 J	1.4	1.5	1.1	2.2	1.8	1	1.3	1.6	1.5
1,2-Dichloropropane	1	<1,400	<680	<0.27 R	<1.4	<0.14	<0.14	<2.9	<0.14	<0.14	<0.14 U	<0.14 U	<0.27 U	<0.14 U	<0.14 U	<0.14 U	<0.27 U	<0.14 U	<0.14 U	<0.34 U	<0.27 U
2-Butanone	50*	<19,000	<9,700	43 J	<2.6	3.1 J	<1.9	<5.3	<1.9	U	<1.9 U	<1.9 U	<3.9 U	<1.9 U	<1.9 U	<1.9 U	<3.9 U	<1.9 U	<1.9 U	<4.8 U	<3.9 U
Acetone	50	<15,000	<7,300	190 J	57	16	5 UJ	<12	<1.5	<1.5	2.6 J	6.3 J	<2.9 U	<1.5 U	<1.5 U	<1.5 U	<2.9 U	<1.5 U	<1.5 U	<3.6 U	<2.9 U
Benzene	5	<1,600	NA	<0.32 U	NA	<0.16 U	<0.16 UJ	<1.6 U	<0.32 U		<0.21 U		<0.32 U		0.24 J	0.34 J		0.23 J		<0.4 U	1
Carbon disulfide	60*	<10,000	<5,000	6.1 J	1.5 J	<1	<1	<0.76	<1	<1.0	<1.0 U	<1.0 U	<2 U	<1 U	<1 U	<1 U	<2 U	<1 U	<1 U	<2.5 U	<2 U
cis-1,2-Dichloroethene	5	<7,000	<3,500	33 J	22	18	16	22	32 J	29	39 J	32	41 J	43	45	55	47	120	130	300	230
Methylene chloride	5	<7000	<3500	<1.4 R	<0.88	<0.7	<0.7	3.7 J	<0.7	<0.7	<0.7 U	<0.7 U	<1.4 U	<0.7 U	<0.7 U	<0.7	<1.4 U	<0.7 U	<0.7 U	<1.8 U	<1.4 U
p/m-Xylene	5	<7,000	<3,500	1.4 R	<1.3	<0.7	<0.7	<2.6	<0.7	<0.7	<0.7 U	<0.7 U	<1.4 U	<0.7 U	<0.7	<0.7	<1.4 U	<0.7 U	<0.7 U	<1.8 U	<1.4 U
Trichloroethene	5	890,000 J	830,000 J	190 J	91 J	50	37 J	61	110 J	95 J	180 J	130	170 J	1 70 J	130	200	160	99 J	110 J	32	28
Vinyl Chloride	2	<710	<360	0.15 J	<1.8	0.22 J	0.24 UJ	<3.6	1	0.99 J	0.91 J	1.0 J	0.84 J	0.83 J	0.58 J	0.98 J	0.74 J	0.38 J	0.49 J	0.9 U	0.51 J
Total TICs	NL	None found	None found	6.86 J	None found	1.86	None found	None found	None found	None found	6.39 J	28.9 J	None found	None found	-	<0 U	None found	None found	None found	None found	6.36 J
Total VOCs + TICs	NL	890,000	830,000	471.23	171.5	89.54	58.24	86.7	144	126	230	199	213.24	215	177.65	260.62	210	220.38	242	334.5	266

Notes

Results in micrograms per liter (ug/l) or parts per billion (ppb)

VOC analysis by United States Environmental Protection Agency (USEPA) Method 8260

"<" - Indicates compound was not detected above the indicated laboratory method detection limits (MDLs)

bgs - below ground surface

J - Estimated value

D - indicates concentration following dilution

LaBella Project No. 2160339

R - indicates rejected values from the DUSR.

NA / NL = Not Applicable / Not Listed

Yellow highlight indicates that the compound was detected at a concentration above its respective 6 NYCRR Part 703 Groundwater Quality Standard or Guidance Value

TICs = tentatively identified compounds

Total VOCs is the sum of all detected VOCs including TICs

* indicates no Part 703 Standard, Guidance Value is listed

ND - Indicates compound was not detected above the reported laboratory method detection limit (MDL).

Table 1 (Page 2 of 6)
Remedial Area of Concern (RAOC) #1
Summary of Detected Volatile Organic Compounds in Groundwater
NYSDEC BCP Site #C828192
1777 East Henrietta Road, Henrietta, New York
LaBella Project No. 2160339

Well ID	NYSDEC Part 703					SE	BMW20	19-01					
Sample Collection Date	Groundwater Standards	2/21/2020)	3/28/202	2	7/14/2022		11/7/2022		12/20/2022		3/22/2023	
Screened Interval (ft bgs)	and Guidance Values	11.36-23		11.36-23		11.36-2	24	11.36-24	ļ.	11.36-24	1	11.36-2	24
Sample Type]	Confirmator	у	2022 Q1		2022 Q	2	2022 Q3	3	2022 Q4		2023 (21
Volatile Organic Compounds													
1,1-Dichloroethene	5	<84		0.25	J	0.61		0.56		0.37	J	0.45	J
1,2-Dichloropropane	1	<68		<0.14	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U
2-Butanone	50*	1000	J	<0.19	U	<1.9	U	<1.9	U	<1.9	U	<1.9	U
Acetone	50	2200	J	<1.5	U	<1.5	U	<1.5	U	<1.5	U	<1.5	U
Carbon disulfide	60*	<500		<1	U	<1	U	<1	U	<1	U	<1	U
Chloroform	7	<350		1.3	J	1.5	J	1.1	J	1.1	J	0.88	J
cis-1,2-Dichloroethene	5	7900		15		190		150		160		130	
Methylene chloride	5	<350		<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
p/m-Xylene	5	450	J	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
trans-1,2-Dichloroethene	5	<350		<0.7	U	1.1	J	1	J	1.1	J	0.95	J
Trichloroethene	5	56,000	J	80	J	6.8		17		16	J	19	
Vinyl Chloride	2	<36		<0.07	U	0.17		0.23	J	0.22	J	0.31	J
Total TICs	NL	None found		None found		-		None found		None found		3.17	J
Total VOCs + TICs	NL	67,550		95.25		197.41		223.85		176.59		152.93	

Notes:

Results in micrograms per liter (ug/l) or parts per billion (ppb)

VOC analysis by United States Environmental Protection Agency (USEPA) Method 8260

"<" - Indicates compound was not detected above the indicated laboratory method detection limits (MDLs)

bgs - below ground surface

J - Estimated value

D - indicates concentration following dilution

R - indicates rejected values from the DUSR.

NA / NL = Not Applicable / Not Listed

Yellow highlight indicates that the compound was detected at a concentration above its respective 6 NYCRR Part 703 Groundwater Quality Standard or Guidance Value

TICs = tentatively identified compounds

Total VOCs is the sum of all detected VOCs including TICs

* indicates no Part 703 Standard, Guidance Value is listed

ND - Indicates compound was not detected above the reported laboratory method detection limit (MDL).

Table 1 (Page 3 of 6)
Remedial Area of Concern (RAOC) #1
Summary of Detected Volatile Organic Compounds in Groundwater
NYSDEC BCP Site #C828192
1777 East Henrietta Road, Henrietta, New York
LaBella Project No. 2160339

Well ID	NYSDEC Part 703				SBMW2019	-02				
Sample Collection Date	Groundwater Standards	10/14/2019	6/24/2021		12/14/20)21	12/20/202	22	3/22/202	23
Screened Interval (ft bgs)	and Guidance Values	11.24 - 23	11.24 - 23		11.24-2	:3	11.24-23	3	11.24-23	3
Sample Type		Baseline	2021 Q2		2021 Q	4	2021 Q4		2023 Q1	•
Volatile Organic Compounds										
1,1-Dichloroethene	5	2,400	<0.29	UJ	<0.17	U	<0.17	U	<0.17	U
1,2-Dichloropropane	1	<340	<0.72	UJ	<0.14	U	<0.14	U	<0.14	U
2-Butanone	50*	<4800	<1.3	UJ	<1.9	U	<1.9	U	<1.9	U
Acetone	50	<3600	17	J	2.3	J	<1.5	U	<1.5	U
Carbon disulfide	60*	<2500	1.4		<1.0	U	<1	U	<1	U
cis-1,2-Dichloroethene	5	<1800	<0.81	UJ	1.5	J	1.9	J	1.9	J
Methylene chloride	5	<1800	0.97	J	<0.7	U	<0.7	U	<0.7	U
p/m-Xylene	5	<1800	<0.66	UJ	<0.7	U	<0.7	U	<0.7	U
Trichloroethene	5	340,000 J	3.5	J	21	J	30	J	24	
Vinyl Chloride	2	<180	<0.90	UJ	<0.07	U	<0.07	U	<0.7	U
Total TICs	NL	None found	None found		12.4	J	None found		None found	
Total VOCs + TICs	NL	342,400	22.87		24.8		31.9		25.9	

Notes:

Results in micrograms per liter (ug/l) or parts per billion (ppb)

VOC analysis by United States Environmental Protection Agency (USEPA) Method 8260

"<" - Indicates compound was not detected above the indicated laboratory method detection limits (MDLs)

bgs - below ground surface

J - Estimated value

D - indicates concentration following dilution

R - indicates rejected values from the DUSR.

NA / NL = Not Applicable / Not Listed

Yellow highlight indicates that the compound was detected at a concentration above its respective 6 NYCRR Part 703 Groundwater Quality Standard or Guidance Value

TICs = tentatively identified compounds

Total VOCs is the sum of all detected VOCs including TICs

* indicates no Part 703 Standard, Guidance Value is listed

ND - Indicates compound was not detected above the reported laboratory method detection limit (MDL).

Table 1 (Page 4 of 6)
Remedial Area of Concern (RAOC) #1
Summary of Detected Volatile Organic Compounds in Groundwater
NYSDEC BCP Site #C828192
1777 East Henrietta Road, Henrietta, New York
LaBella Project No. 2160339

Well ID	NYSDEC Part 703					L	BA-MW	-06-R					
Sample Collection Date	Groundwater Standards	3/3/2020	0	3/28/202	2	7/14/2022		11/7/2022		12/20/2022		3/22/2023	
Screened Interval (ft bgs)	and Guidance Values	10.94-23	3	10.94-23		10.94-2	4	10.94-24		10.94-2	4	10.94-2	24
Sample Type]	Confirmato	ory	2022 Q1		2022 Q	2	2022 Q3		2022 Q4	1	2023 Q	<u>1</u>
Volatile Organic Compounds													
1,1-Dichloroethene	5	<100		1.8		2.1		2		0.99		2.1	
1,2-Dichloropropane	1	<200		<1.4	U	<0.14		<0.14	U	<0.14	U	<0.14	U
2-Butanone	50*	2200	J	<1.9	U	5.7		<1.9	U	<1.9	U	<1.9	U
Acetone	50	9,400	J	5.3	J	17		<1.5	U	7.1	J	<1.5	U
Benzene	1	<100		1.7		1.4		1.6		0.99		1.2	
Carbon disulfide	60*	<1000		1.3	J	<1	U	<1	U	<1	U	<1	U
cis-1,2-Dichloroethene	5	4,000		48		52		58		40		48	
Methylene chloride	5	<500		<0.7	U	<0.7		<0.7	U	<0.7	U	<0.7	U
p/m-Xylene	5	<500		<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
trans-1,2-Dichloroethene	5	<500		1.1	J	1.1	J	1.3	J	0.74	J	0.81	J
Trichloroethene	5	26,000	J	200	J	160		160		120	J	150	
Vinyl Chloride	2	<200	_	0.51	J	0.66	J	0.95	J	0.42	J	0.99	J
Total TICs	NL	1520	J	None found		17.3	J	None found		5.64	J	None found	
Total VOCs + TICs	NL	43,120		250.31		257.26		223.85		168.51		201.09	

Notes:

Results in micrograms per liter (ug/l) or parts per billion (ppb)

VOC analysis by United States Environmental Protection Agency (USEPA) Method 8260

"<" - Indicates compound was not detected above the indicated laboratory method detection limits (MDLs)

bgs - below ground surface

J - Estimated value

D - indicates concentration following dilution

R - indicates rejected values from the DUSR.

NA / NL = Not Applicable / Not Listed

Yellow highlight indicates that the compound was detected at a concentration above its respective 6 NYCRR Part 703 Groundwater Quality Standard or Guidance Value

TICs = tentatively identified compounds

Total VOCs is the sum of all detected VOCs including TICs

* indicates no Part 703 Standard, Guidance Value is listed

ND - Indicates compound was not detected above the reported laboratory method detection limit (MDL).

Table 1 (Page 5 of 6)
Remedial Area of Concern (RAOC) #1
Summary of Detected Volatile Organic Compounds in Groundwater
NYSDEC BCP Site #C828192
1777 East Henrietta Road, Henrietta, New York
LaBella Project No. 2160339

Well ID	NYSDEC Part 703	LBA-MW-10-R
Sample Collection Date	Groundwater Standards	10/14/2019
Screened Interval (ft bgs)	and Guidance Values	6.46 - 15
Sample Type]	Baseline
1,1-Dichloroethane	5	<7
1,2-Dichloroethane	0.6	<1.3
1,4-Dioxane	NL	<610 J
4-Methyl-2-pentanone	NL	<10
Bromomethane	5	<7 J
Chloromethane	NL	<7
Methyl tert butyl ether	10*	<7
o-Xylene	5	<7
trans-1,3-Dichloropropene	NL	<1.6
Trichloroethene	5	1,200 J
Vinyl Chloride	2	<0.71
Total TICs	NL	None found
Total VOCs + TICs	NL	1205.7

Notes:

Results in micrograms per liter (ug/l) or parts per billion (ppb)

VOC analysis by United States Environmental Protection Agency (USEPA) Method 8260

"<" - Indicates compound was not detected above the indicated laboratory method detection limits (MDLs)

bgs - below ground surface

J - Estimated value

D - indicates concentration following dilution

R - indicates rejected values from the DUSR.

NA / NL = Not Applicable / Not Listed

Yellow highlight indicates that the compound was detected at a concentration above its respective 6 NYCRR Part 703 Groundwater Quality Standard or Guidance Value

TICs = tentatively identified compounds

Total VOCs is the sum of all detected VOCs including TICs

* indicates no Part 703 Standard, Guidance Value is listed

ND - Indicates compound was not detected above the reported laboratory method detection limit (MDL).

Table 1 (Page 6 of 6)
Remedial Area of Concern (RAOC) #1
Summary of Detected Volatile Organic Compounds in Groundwater
NYSDEC BCP Site #C828192
1777 East Henrietta Road, Henrietta, New York
LaBella Project No. 2160339

Well ID	NYSDEC Part 703	LBA-MW-11-R	
Sample Collection Date	Groundwater Standards	2/21/2020	
Screened Interval (ft bgs)	and Guidance Values	6.2-12	
Sample Type		Confirmatory	
1,1-Dichloroethane	5	<35	
1,2-Dichloroethane	0.6	<6.6	
1,4-Dioxane	NL	<3000	J
4-Methyl-2-pentanone	NL	<50	
Bromomethane	5	<35	J
Chloromethane	NL	<35	
Methyl tert butyl ether	10*	<35	
o-Xylene	5	<35	
trans-1,3-Dichloropropene	NL	<8.2	
Trichloroethene	5	5,700	J
Vinyl Chloride	2	<3.6	
Total TICs	NL	180	
Total VOCs + TICs	NL	6,555	

Notes:

Results in micrograms per liter (ug/l) or parts per billion (ppb)

VOC analysis by United States Environmental Protection Agency (USEPA) Method 8260

"<" - Indicates compound was not detected above the indicated laboratory method detection limits (MDLs)

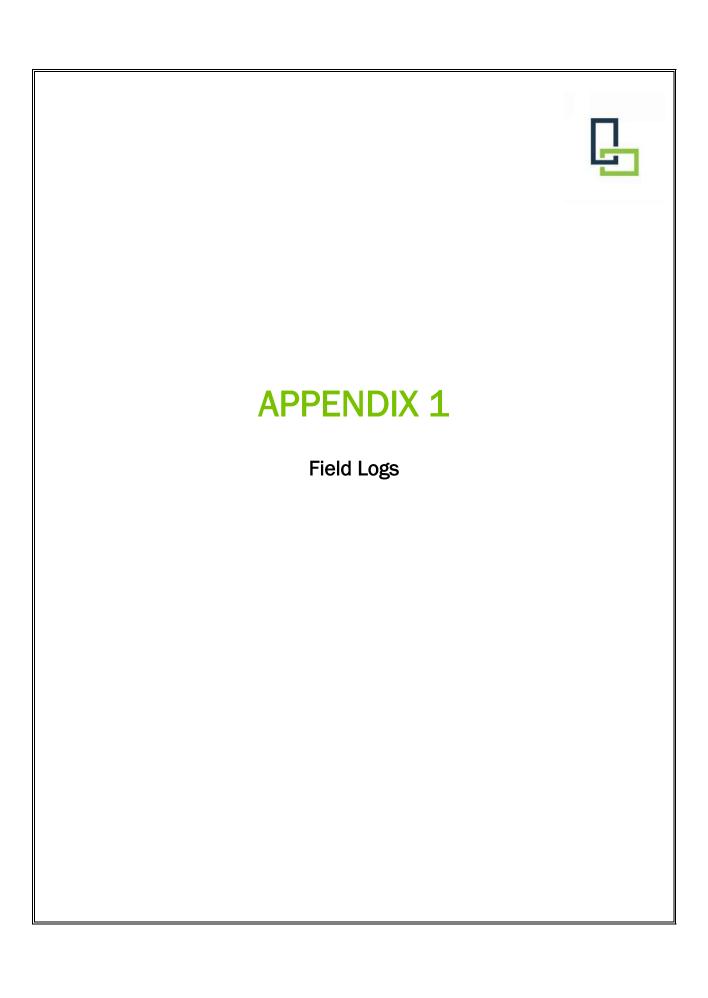
bgs - below ground surface

J - Estimated value

D - indicates concentration following dilution

R - indicates rejected values from the DUSR.

NA / NL = Not Applicable / Not Listed


Yellow highlight indicates that the compound was detected at a concentration above its respective 6 NYCRR Part 703 Groundwater Quality Standard or Guidance Value

TICs = tentatively identified compounds

Total VOCs is the sum of all detected VOCs including TICs

* indicates no Part 703 Standard, Guidance Value is listed

ND - Indicates compound was not detected above the reported laboratory method detection limit (MDL).

Project Name: Getinge AOC #1 Q1 Sampling

1777 East Henrietta Road, Henrietta NY Location:

Project No.: 2160339 Sampled By: E. Spirito

3/22/2023 Date:

WELL I.D.: SBMW2019-02 Weather: 40° F

WELL SAMPLING INFORMATION

2" Static Water Level: 14.54 Well Diameter: Depth of Well: 22.32 Length of Well Screen: 11.64 20 Measuring Point: TOC Depth to Top of Pump: LDPE Pump Type: Bladder Tubing Type:

Sample Analysis: VOCs Method 8260 Sample Time: 10:10

Purge Start Time: Purge End Time: 10:10 09:37

FIELD PAR	RAMETER MEA	ASUREMENT									
Time	Pump Rate	Static Water Level	рН	Temp °C	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved O ₂ (mg/l)	Redox (mV)	Alkalinity (mg/l)	Iron (II) (mg/I)	Comments
		<0.3 ft	+/- 0.1	<0.3	+/- 3%	< 50	+ 10%	+/- 10 mV	Hach test kit	Hach test kit	
09:40	60PSI	14.54	6.51	21.7	8.237	18.42	1.86	93.8			
09:45			6.83	22.4	8.237	26.41	1.62	55.6			
09:50			6.82	22.4	8.193	23.89	0.71	39.1			
09:55			6.82	22.4	8.281	4.97	0.40	29.0			
10:00			6.86	22.3	8.336	26.87	2.71	23.5			
10:05			6.87	22.3	8.336	6.59	2.82	33.2			
10:10			6.89	22.1	8.369	4.03	3.18	33.6			

2.5 Gallons Purged Total

Clear/ tan color			

Project Name:	Getinge AOC #1 Q1 Sampling

Location: 1777 East Henrietta Road, Henrietta NY

Project No.: 2160339
Sampled By: E. Spirito

Date: 3/22/2023

WELL I.D.: MW-06R Weather: 40° F

WELL SAMPLING INFORMATION

13.42 Well Diameter: 2" Static Water Level: Depth of Well: 23 Length of Well Screen: 12 TOC 21 Measuring Point: Depth to Top of Pump: Bladder Tubing Type: LDPE Pump Type: Sample Analysis: VOCs Method 8260 Sample Time: 11:10

Purge Start Time: 10:40 Purge End Time: 11:10

FIELD PAR	RAMETER MEA	SUREMENT									
Time	Pump Rate	Static Water Level	рН	Temp °C	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved O ₂ (mg/l)	Redox (mV)	Alkalinity (mg/l)	Iron (II) (mg/I)	Comments
		<0.3 ft	+/- 0.1	<0.3	+/- 3%	< 50	+ 10%	+/- 10 mV	Hach test kit	Hach test kit	
10:40	60 PSI	13.42	6.77	22.4	10.958	40.61	1.92	-42.2			
10:45			6.81	22.4	10.654	14.08	3.15	-34.8			
10:50			6.78	22.4	10.627	15.22	3.78	-47.6			
10:55			6.76	22.2	10.842	14.09	4.19	-62.5			
10:00			6.76	22.4	10.959	8.22	3.89	-61.9			
11:05			6.76	22.5	10.999	9.17	2.01	-65.3			
11:10			6.75	22.5	11.056	12.80	1.22	-69.1			

Total 3 Gallons Purged

Project Name: 0	Getinge AOC #1	Q1 Sampling
-----------------	----------------	-------------

Location: 1777 East Henrietta Road, Henrietta NY

Project No.: 2160339
Sampled By: E. Spirito

Date: 3/22/2023

WELL I.D.: SBMW2019-01 Weather: 40° F

WELL SAMPLING INFORMATION

Well Diameter:2"Static Water Level:12.90Depth of Well:21.97Length of Well Screen:11.76Measuring Point:TOCDepth to Top of Pump:19

Pump Type: Bladder Tubing Type: LDPE

Sample Analysis:VOCs Method 8260Sample Time:12:05Purge Start Time:11:35Purge End Time:12:05

FIELD PAR	RAMETER MEA	ASUREMENT									
Time	Pump Rate	Static Water Level	рН	Temp °C	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved O ₂ (mg/l)	Redox (mV)	Alkalinity (mg/l)	Iron (II) (mg/I)	Comments
		<0.3 ft	+/- 0.1	<0.3	+/- 3%	< 50	+ 10%	+/- 10 mV	Hach test kit	Hach test kit	
11:35	60 PSI	12.90	7.00	22.2	5.441	106.20	2.01	-21.2			
11:40			6.91	22.3	5.437	96.02	1.75	-2.4			
11:45			6.91	22.3	5.472	29.46	2.03	-12.2			
11:50			6.91	22.3	5.490	14.82	1.43	-18.5			
11:55			6.90	22.3	5.501	21.39	3.15	-19.4			
12:00			6.90	22.3	5.495	17.88	4.57	-20.9			
12:05			6.90	22.3	5.502	21.45	2.89	-22.9			

Total ~3 Gallons Purged

Clear		

Project Name: Getinge AOC #1 Q1 Sampling

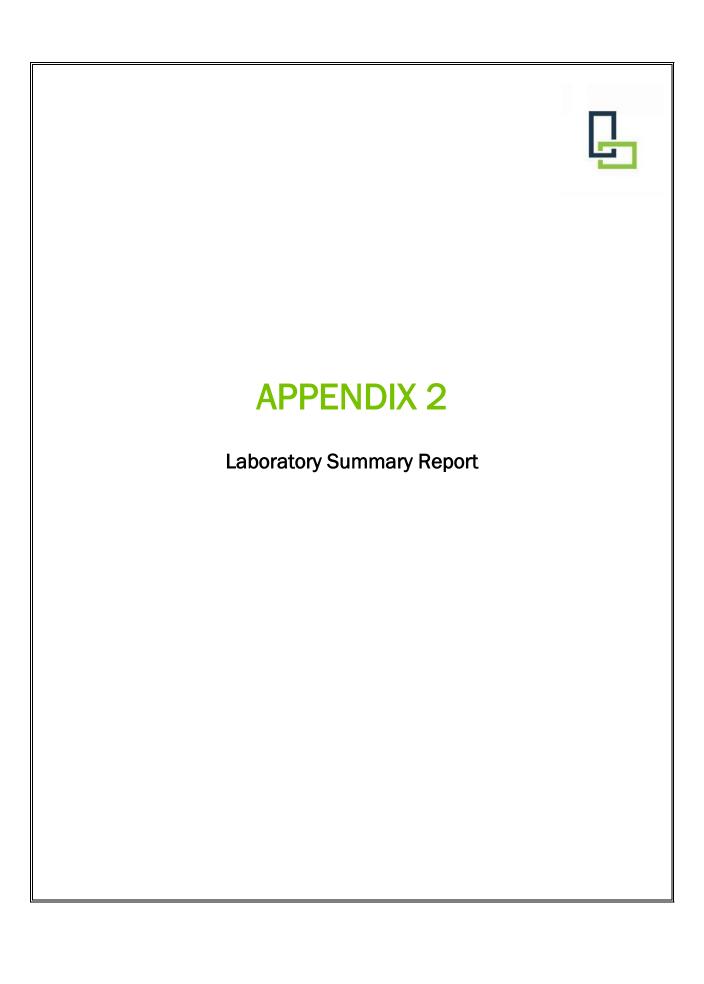
Location: 1777 East Henrietta Road, Henrietta NY

Project No.: 2160339
Sampled By: E. Spirito

Date: 12/20/2022

WELL I.D.: SBMW2015-22-R Weather: 45° F

WELL SAMPLING INFORMATION


Well Diameter: 2" Static Water Level: 10.01 Depth of Well: 19 Length of Well Screen: 10 Measuring Point: TOC Depth to Top of Pump: 16 LDPE Pump Type: Bladder Tubing Type: Sample Analysis: VOCs Method 8260 Sample Time: 13:10

Purge Start Time: 12:40 Purge End Time: 13:10

FIELD PAR	RAMETER MEA	SUREMENT									
Time	Pump Rate	Static Water Level	рН	Temp °C	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved O ₂ (mg/l)	Redox (mV)	Alkalinity (mg/l)	Iron (II) (mg/I)	Comments
		<0.3 ft	+/- 0.1	<0.3	+/- 3%	< 50	+ 10%	+/- 10 mV	Hach test kit	Hach test kit	
12:40	60PSI	10.01	7.06	21.5	6.522	35.54	0.47	-49.9			
12:45			7.05	21.5	6.521	27.11	0.37	-53.9			
12:50			7.05	21.5	6.488	22.57	0.33	-51.3			
12:55			7.05	21.5	6.486	22.88	0.33	-51.2			
13:00			7.04	21.5	6.450	17.08	0.31	-47.2			
13:05			7.04	21.5	6.422	14.65	0.32	-44.4			
13:10			7.04	21.5	6.391	14.70	0.33	-42.8			

Total 3.5 Gallons Purged

MS/MSD/BD-2	20230322	COLLE	CIED

ANALYTICAL REPORT

Lab Number: L2315278

Client: LaBella Associates, P.C.

300 State Street

Suite 201

Rochester, NY 14614

ATTN: Jennifer Gillen
Phone: (585) 454-6110

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339 Report Date: 03/29/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

 Lab Number:
 L2315278

 Report Date:
 03/29/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2315278-01	SBMW-2019-02-20230322	WATER	Not Specified	03/22/23 10:10	03/23/23
L2315278-02	MW-06-R-20230322	WATER	Not Specified	03/22/23 11:10	03/23/23
L2315278-03	SBMW-2019-01-20230322	WATER	Not Specified	03/22/23 12:05	03/23/23
L2315278-04	SBMW201S-22-R-20230322	WATER	Not Specified	03/22/23 13:10	03/23/23
L2315278-05	BD-20230322	WATER	Not Specified	03/22/23 13:20	03/23/23

L2315278

Project Name: AOC #1 Q1 GETINGE Lab Number:

Project Number: 2160339 Report Date: 03/29/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

Lab Number:

L2315278

Report Date:

03/29/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

The WG1759817-6/-7 MS/MSD recoveries, performed on L2315278-04, are outside the acceptance criteria for cis-1,2-dichloroethene (0%/0%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 03/29/23

ORGANICS

VOLATILES

L2315278

03/29/23

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

SAMPLE RESULTS

Date Collected: 03/22/23 10:10

Lab ID: L2315278-01 D

Client ID: SBMW-2019-02-20230322

Sample Location: Not Specified

Date Received: 03/23/23
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/27/23 14:43

Analyst: MJV

Volatile Organics by GC/MS - Westborough Methylene chloride 1,1-Dichloroethane	ND ND ND ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	-	2.5	0.70	1
					I
	ND	ug/l	2.5	0.70	1
Chloroform		ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	24	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1

Project Name: Lab Number: AOC #1 Q1 GETINGE L2315278

Project Number: Report Date: 2160339 03/29/23

SAMPLE RESULTS

Lab ID: L2315278-01 Date Collected: 03/22/23 10:10

Date Received: Client ID: SBMW-2019-02-20230322 03/23/23 Field Prep: Not Specified

Sample Location: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.9	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

Project Name: Lab Number: AOC #1 Q1 GETINGE L2315278

Project Number: Report Date: 2160339 03/29/23

SAMPLE RESULTS

Lab ID: Date Collected: L2315278-01 03/22/23 10:10

Date Received: Client ID: 03/23/23 SBMW-2019-02-20230322 Sample Location: Field Prep: Not Specified Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	105	70-130	

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

SAMPLE RESULTS

Lab Number: L2315278

Report Date: 03/29/23

Lab ID: L2315278-02 Client ID: MW-06-R-20230322

Sample Location: Not Specified

Field Prep:

Date Collected:

03/22/23 11:10 03/23/23

Date Received: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/27/23 15:05

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	1.2		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.99	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	2.1		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	0.81	J	ug/l	2.5	0.70	1
Trichloroethene	150		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: AOC #1 Q1 GETINGE Lab Number: L2315278

Project Number: 2160339 **Report Date:** 03/29/23

SAMPLE RESULTS

Lab ID: L2315278-02 Date Collected: 03/22/23 11:10

Client ID: MW-06-R-20230322 Date Received: 03/23/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	48		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

Project Name: AOC #1 Q1 GETINGE Lab Number: L2315278

Project Number: 2160339 Report Date: 03/29/23

SAMPLE RESULTS

Lab ID: L2315278-02 Date Collected: 03/22/23 11:10

Client ID: MW-06-R-20230322 Date Received: 03/23/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	109	70-130	

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

SAMPLE RESULTS

Lab Number: L2315278

Report Date: 03/29/23

Lab ID: L2315278-03 Date Collected: 03/22/23 12:05

Client ID: Date Received: 03/23/23 SBMW-2019-01-20230322 Not Specified

Field Prep: Sample Location: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/28/23 17:06

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	0.88	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.31	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.45	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	0.95	J	ug/l	2.5	0.70	1
Trichloroethene	19		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: AOC #1 Q1 GETINGE Lab Number: L2315278

Project Number: 2160339 Report Date: 03/29/23

SAMPLE RESULTS

Lab ID: L2315278-03 Date Collected: 03/22/23 12:05

Client ID: SBMW-2019-01-20230322 Date Received: 03/23/23 Sample Location: Not Specified Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1	
p/m-Xylene	ND	ug/l	2.5	0.70	1	
o-Xylene	ND	ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	130	ug/l	2.5	0.70	1	
Styrene	ND	ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1	
Acetone	ND	ug/l	5.0	1.5	1	
Carbon disulfide	ND	ug/l	5.0	1.0	1	
2-Butanone	ND	ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1	
2-Hexanone	ND	ug/l	5.0	1.0	1	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1	
n-Butylbenzene	ND	ug/l	2.5	0.70	1	
sec-Butylbenzene	ND	ug/l	2.5	0.70	1	
tert-Butylbenzene	ND	ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1	
Isopropylbenzene	ND	ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1	
Naphthalene	ND	ug/l	2.5	0.70	1	
n-Propylbenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
Methyl Acetate	ND	ug/l	2.0	0.23	1	
Cyclohexane	ND	ug/l	10	0.27	1	
Freon-113	ND	ug/l	2.5	0.70	1	
Methyl cyclohexane	ND	ug/l	10	0.40	1	

Tentatively Identified Compounds				
Total TIC Compounds	3.17	J	ug/l	1
Unknown	3.17	J	ug/l	1

Project Name: AOC #1 Q1 GETINGE Lab Number: L2315278

Project Number: 2160339 Report Date: 03/29/23

SAMPLE RESULTS

Lab ID: L2315278-03 Date Collected: 03/22/23 12:05

Client ID: SBMW-2019-01-20230322 Date Received: 03/23/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	104	70-130	

03/22/23 13:10

Not Specified

03/23/23

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

SAMPLE RESULTS

Lab Number: L2315278

Date Collected:

Date Received:

Field Prep:

Report Date: 03/29/23

SAMPLE RESUL

Lab ID: L2315278-04 D

Client ID: SBMW201S-22-R-20230322

Sample Location: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/27/23 15:27

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	6.2	1.8	2.5	
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5	
Chloroform	ND		ug/l	6.2	1.8	2.5	
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5	
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5	
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5	
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5	
Tetrachloroethene	ND		ug/l	1.2	0.45	2.5	
Chlorobenzene	ND		ug/l	6.2	1.8	2.5	
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5	
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5	
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5	
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5	
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5	
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5	
Bromoform	ND		ug/l	5.0	1.6	2.5	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5	
Benzene	ND		ug/l	1.2	0.40	2.5	
Toluene	ND		ug/l	6.2	1.8	2.5	
Ethylbenzene	ND		ug/l	6.2	1.8	2.5	
Chloromethane	ND		ug/l	6.2	1.8	2.5	
Bromomethane	ND		ug/l	6.2	1.8	2.5	
Vinyl chloride	0.90	J	ug/l	2.5	0.18	2.5	
Chloroethane	ND		ug/l	6.2	1.8	2.5	
1,1-Dichloroethene	1.6		ug/l	1.2	0.42	2.5	
trans-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5	
Trichloroethene	32		ug/l	1.2	0.44	2.5	
1,2-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	

Project Name: AOC #1 Q1 GETINGE Lab Number: L2315278

Project Number: 2160339 **Report Date:** 03/29/23

SAMPLE RESULTS

Lab ID: L2315278-04 D Date Collected: 03/22/23 13:10

Client ID: SBMW201S-22-R-20230322 Date Received: 03/23/23

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Volatile Organics by GC/MS - Westborough Lab 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND Methyl tert butyl ether ND p/m-Xylene ND o-Xylene ND cis-1,2-Dichloroethene 300 Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 1,2-Dibromoethane ND n-Butylbenzene ND				
1,4-DichlorobenzeneNDMethyl tert butyl etherNDp/m-XyleneNDo-XyleneNDcis-1,2-Dichloroethene300StyreneNDDichlorodifluoromethaneNDAcetoneNDCarbon disulfideND2-ButanoneND4-Methyl-2-pentanoneND2-HexanoneND1,2-DibromoethaneND				
Methyl tert butyl ether ND p/m-Xylene ND o-Xylene ND cis-1,2-Dichloroethene 300 Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND 1,2-Dibromoethane ND	ug/l	6.2	1.8	2.5
p/m-Xylene ND o-Xylene ND cis-1,2-Dichloroethene 300 Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 1,2-Dibromoethane ND	ug/l	6.2	1.8	2.5
o-Xylene ND cis-1,2-Dichloroethene 300 Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND 1,2-Dibromoethane ND	ug/l	6.2	1.8	2.5
cis-1,2-Dichloroethene 300 Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND 1,2-Dibromoethane ND	ug/l	6.2	1.8	2.5
Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND 1,2-Dibromoethane ND	ug/l	6.2	1.8	2.5
Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND 1,2-Dibromoethane ND	ug/l	6.2	1.8	2.5
Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND 1,2-Dibromoethane ND	ug/l	6.2	1.8	2.5
Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND 1,2-Dibromoethane ND	ug/l	12	2.5	2.5
2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND 1,2-Dibromoethane ND	ug/l	12	3.6	2.5
4-Methyl-2-pentanone ND 2-Hexanone ND 1,2-Dibromoethane ND	ug/l	12	2.5	2.5
2-Hexanone ND 1,2-Dibromoethane ND	ug/l	12	4.8	2.5
1,2-Dibromoethane ND	ug/l	12	2.5	2.5
	ug/l	12	2.5	2.5
n-Butylbenzene ND	ug/l	5.0	1.6	2.5
	ug/l	6.2	1.8	2.5
sec-Butylbenzene ND	ug/l	6.2	1.8	2.5
tert-Butylbenzene ND	ug/l	6.2	1.8	2.5
1,2-Dibromo-3-chloropropane ND	ug/l	6.2	1.8	2.5
Isopropylbenzene ND	ug/l	6.2	1.8	2.5
p-Isopropyltoluene ND	ug/l	6.2	1.8	2.5
Naphthalene ND	ug/l	6.2	1.8	2.5
n-Propylbenzene ND	ug/l	6.2	1.8	2.5
1,2,4-Trichlorobenzene ND	ug/l	6.2	1.8	2.5
1,3,5-Trimethylbenzene ND	ug/l	6.2	1.8	2.5
1,2,4-Trimethylbenzene ND	ug/l	6.2	1.8	2.5
Methyl Acetate ND	ug/l	5.0	0.58	2.5
Cyclohexane	ug/l	25	0.68	2.5
Freon-113 ND	ug/l	6.2	1.8	2.5
Methyl cyclohexane ND	ug/l	25	0.99	2.5

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	2.5

Project Name: AOC #1 Q1 GETINGE Lab Number: L2315278

Project Number: 2160339 Report Date: 03/29/23

SAMPLE RESULTS

Lab ID: L2315278-04 D Date Collected: 03/22/23 13:10

Client ID: SBMW201S-22-R-20230322 Date Received: 03/23/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	108	70-130	

03/22/23 13:20

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

SAMPLE RESULTS

Lab Number: L2315278

Report Date: 03/29/23

Lab ID: L2315278-05 D

Client ID: BD-20230322 Sample Location: Not Specified

Date Received: 03/23/23 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/28/23 17:29

Analyst: MJV

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 5.0 1.4 2 1,1-Dichloroethane ND ug/l 5.0 1.4 2 Chloroform ND ug/l 5.0 1.4 2 Chloroform ND ug/l 1.0 0.27 2 Lip-Dichloropropane ND ug/l 1.0 0.27 2 Dibromochloromethane ND ug/l 1.0 0.30 2 Dibromochloromethane ND ug/l 1.0 0.30 2 Tetrachloroethane ND ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Chlorobenzene ND ug/l 5.0 1.4 2 Chlorobenzene ND ug/l 5.0 1.4 2 Lip-Dichloroethane ND ug/l	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/l 5.0 1.4 2	Volatile Organics by GC/MS - Westbo	rough Lab					
Chloroform ND ug/l 5.0 1.4 2 Carbon tetrachloride ND ug/l 1.0 0.27 2 1,2-Dichloropropane ND ug/l 2.0 0.27 2 Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Chlorobenzene ND ug/l 5.0 1.4 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloropethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 1.0 0.38 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 Bromodichloromethane ND ug/l 1.0 0.33	Methylene chloride	ND		ug/l	5.0	1.4	2
Carbon tetrachloride ND ug/l 1,0 0,27 2 1,2-Dichloropropane ND ug/l 2,0 0,27 2 Dibromochloromethane ND ug/l 1,0 0,30 2 1,1,2-Trichloroethane ND ug/l 3,0 1,0 2 Tetrachloroethene ND ug/l 1,0 0,36 2 Chlorobenzene ND ug/l 5,0 1,4 2 Trichlorotluoromethane ND ug/l 5,0 1,4 2 1,2-Dichloroethane ND ug/l 1,0 0,26 2 1,1,1-Trichloroethane ND ug/l 1,0 0,26 2 1,1,1-Trichloroethane ND ug/l 1,0 0,38 2 trans-1,3-Dichloropropene ND ug/l 1,0 0,33 2 is-1,3-Dichloropropene ND ug/l 1,0 0,33 2 Benzene 0,33 J ug/l 1,0 <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.4</td> <td>2</td>	1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
1,2-Dichloropropane ND ug/l 2.0 0.27 2	Chloroform	ND		ug/l	5.0	1.4	2
Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethene ND ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 5.0 1.4 2 1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 1.0 0.33 2 Benzene 0.33 J ug/l 1.0 0.33 2 Ethylbenzene ND ug/l 5.0 1.4 <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.0</td> <td>0.27</td> <td>2</td>	Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethene ND ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 Bromoform ND ug/l 4.0 1.3 2 Bromoform ND ug/l 4.0 1.3 2 Benzene 0.33 J ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4	1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Tetrachloroethene ND ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichloroftuoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.33 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene 0.33 J ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4	Dibromochloromethane	ND		ug/l	1.0	0.30	2
Chlorobenzene ND ug/l 5.0 1.4 2 Trichloroftuoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 is-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene 0.33 J ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4	1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 Bromoform ND ug/l 4.0 1.3 2 Bromoform ND ug/l 4.0 1.3 2 Bromoform ND ug/l 1.0 0.33 2 Benzene 0.33 J ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2	Tetrachloroethene	ND		ug/l	1.0	0.36	2
1,2-Dichloroethane ND	Chlorobenzene	ND		ug/l	5.0	1.4	2
1,1,1-Trichloroethane ND	Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene 0.33 J ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 0.51 J ug/l 5.0 1.4 2 Chloroethane 1.5 ug/l 5.0 1.4 2 Trichloroethene 1.5 ug/l 5.0 1.4 <t< td=""><td>1,2-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>1.0</td><td>0.26</td><td>2</td></t<>	1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene 0.33 J ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Vinyl chloride 0.51 J ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.5 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4	1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene 0.33 J ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Vinyl chloride 0.51 J ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 Chloroethene ND ug/l 5.0 1.4 2 Trichloroethene 1.5 ug/l 1.0 0.34 2 Trichloroethene 28 ug/l 1.0 0.35 2	Bromodichloromethane	ND		ug/l	1.0	0.38	2
Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene 0.33 J ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 0.51 J ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.5 ug/l 5.0 1.4 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 28 ug/l 1.0 0.35 2	trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene 0.33 J ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 0.51 J ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.5 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 28 ug/l 1.0 0.35 2	cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
Benzene 0.33 J ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 0.51 J ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.5 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 28 ug/l 1.0 0.35 2	Bromoform	ND		ug/l	4.0	1.3	2
Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 0.51 J ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.5 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 28 ug/l 1.0 0.35 2	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 0.51 J ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.5 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 28 ug/l 1.0 0.35 2	Benzene	0.33	J	ug/l	1.0	0.32	2
Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 0.51 J ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.5 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 28 ug/l 1.0 0.35 2	Toluene	ND		ug/l	5.0	1.4	2
Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 0.51 J ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.5 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 28 ug/l 1.0 0.35 2	Ethylbenzene	ND		ug/l	5.0	1.4	2
Vinyl chloride 0.51 J ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.5 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 28 ug/l 1.0 0.35 2	Chloromethane	ND		ug/l	5.0	1.4	2
Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.5 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 28 ug/l 1.0 0.35 2	Bromomethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene 1.5 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 28 ug/l 1.0 0.35 2	Vinyl chloride	0.51	J	ug/l	2.0	0.14	2
trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 28 ug/l 1.0 0.35 2	Chloroethane	ND		ug/l	5.0	1.4	2
Trichloroethene 28 ug/l 1.0 0.35 2	1,1-Dichloroethene	1.5		ug/l	1.0	0.34	2
-9-	trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2
	Trichloroethene	28		ug/l	1.0	0.35	2
1,2-Dichlorobenzene ND ug/l 5.0 1.4 2	1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2

Project Name: AOC #1 Q1 GETINGE Lab Number: L2315278

Project Number: 2160339 Report Date: 03/29/23

SAMPLE RESULTS

Lab ID: L2315278-05 D Date Collected: 03/22/23 13:20

Client ID: BD-20230322 Date Received: 03/23/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	230		ug/l	5.0	1.4	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	ND		ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
n-Butylbenzene	ND		ug/l	5.0	1.4	2
sec-Butylbenzene	ND		ug/l	5.0	1.4	2
tert-Butylbenzene	ND		ug/l	5.0	1.4	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2
Naphthalene	ND		ug/l	5.0	1.4	2
n-Propylbenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,3,5-Trimethylbenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trimethylbenzene	ND		ug/l	5.0	1.4	2
Methyl Acetate	ND		ug/l	4.0	0.47	2
Cyclohexane	ND		ug/l	20	0.54	2
Freon-113	ND		ug/l	5.0	1.4	2
Methyl cyclohexane	ND		ug/l	20	0.79	2

Tentatively Identified Compounds				
Total TIC Compounds	6.36	J	ug/l	2
Unknown	6.36	J	ug/l	2

Project Name: AOC #1 Q1 GETINGE Lab Number: L2315278

Project Number: 2160339 Report Date: 03/29/23

SAMPLE RESULTS

Lab ID: L2315278-05 D Date Collected: 03/22/23 13:20

Client ID: BD-20230322 Date Received: 03/23/23 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	107	70-130
4-Bromofluorobenzene	106	70-130
Dibromofluoromethane	105	70-130

Project Number: 2160339 Report Date: 03/29/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/27/23 09:25

Parameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS - We	estborough Lab	for sample(s):	01-02,04 Batch	: WG1759817-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: 2160339 Report Date: 03/29/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/27/23 09:25

arameter	Result	Qualifier Units	RL		MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	01-02,04	Batch: \	WG1759817-5
1,4-Dichlorobenzene	ND	ug/l	2.5		0.70
Methyl tert butyl ether	ND	ug/l	2.5		0.70
p/m-Xylene	ND	ug/l	2.5		0.70
o-Xylene	ND	ug/l	2.5		0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5		0.70
Styrene	ND	ug/l	2.5		0.70
Dichlorodifluoromethane	ND	ug/l	5.0		1.0
Acetone	ND	ug/l	5.0		1.5
Carbon disulfide	ND	ug/l	5.0		1.0
2-Butanone	ND	ug/l	5.0		1.9
4-Methyl-2-pentanone	ND	ug/l	5.0		1.0
2-Hexanone	ND	ug/l	5.0		1.0
1,2-Dibromoethane	ND	ug/l	2.0		0.65
n-Butylbenzene	ND	ug/l	2.5		0.70
sec-Butylbenzene	ND	ug/l	2.5		0.70
tert-Butylbenzene	ND	ug/l	2.5		0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5		0.70
Isopropylbenzene	ND	ug/l	2.5		0.70
p-Isopropyltoluene	ND	ug/l	2.5		0.70
Naphthalene	ND	ug/l	2.5		0.70
n-Propylbenzene	ND	ug/l	2.5		0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5		0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5		0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5		0.70
Methyl Acetate	ND	ug/l	2.0	l	0.23
Cyclohexane	ND	ug/l	10		0.27
Freon-113	ND	ug/l	2.5		0.70
Methyl cyclohexane	ND	ug/l	10		0.40

Project Number: 2160339 Report Date: 03/29/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/27/23 09:25

No Tentatively Identified Compounds

Analyst: PID

Parameter	Result	Qualifier	Units	RL	:	MDL	
Volatile Organics by GC/MS - Wes	tborough La	b for sample	e(s): (01-02,04	Batch:	WG1759817-5	
Tentatively Identified Compounds							

ug/l

Acceptance Criteria Surrogate %Recovery Qualifier 107 70-130 1,2-Dichloroethane-d4 Toluene-d8 70-130 101 4-Bromofluorobenzene 70-130 99 Dibromofluoromethane 111 70-130

ND

Project Number: 2160339 Report Date: 03/29/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/23 10:52

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	03,05 Batch:	WG1759832-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2315278

Project Name: AOC #1 Q1 GETINGE Lab Number:

Project Number: 2160339 Report Date: 03/29/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/23 10:52

arameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	03,05 Batch:	WG1759832-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Number: 2160339 Report Date: 03/29/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/23 10:52

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS -	Westborough La	b for sample	e(s): 03,05	Batch:	WG1759832-5	
Tentatively Identified Compounds						
Total TIC Compounds	3.81	J	ug/l			
Unknown	3.81	J	ua/l			

		Acceptance
Surrogate	%Recovery Qu	alifier Criteria
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	108	70-130
Dibromofluoromethane	103	70-130

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

Lab Number: L2315278

Parameter	LCS %Recovery	Qual %	LCSD Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - W	estborough Lab Associated	sample(s): 01-02	2,04 Batch:	WG1759817-3 WG1759817	-4	
Methylene chloride	100		100	70-130	0	20
1,1-Dichloroethane	110		110	70-130	0	20
Chloroform	110		100	70-130	10	20
Carbon tetrachloride	110		110	63-132	0	20
1,2-Dichloropropane	99		100	70-130	1	20
Dibromochloromethane	97		96	63-130	1	20
1,1,2-Trichloroethane	96		100	70-130	4	20
Tetrachloroethene	100		100	70-130	0	20
Chlorobenzene	100		100	75-130	0	20
Trichlorofluoromethane	110		120	62-150	9	20
1,2-Dichloroethane	100		100	70-130	0	20
1,1,1-Trichloroethane	110		110	67-130	0	20
Bromodichloromethane	100		100	67-130	0	20
trans-1,3-Dichloropropene	100		96	70-130	4	20
cis-1,3-Dichloropropene	100		100	70-130	0	20
Bromoform	94		96	54-136	2	20
1,1,2,2-Tetrachloroethane	100		100	67-130	0	20
Benzene	110		110	70-130	0	20
Toluene	100		100	70-130	0	20
Ethylbenzene	110		110	70-130	0	20
Chloromethane	110		110	64-130	0	20
Bromomethane	76		79	39-139	4	20
Vinyl chloride	120		120	55-140	0	20

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

Lab Number: L2315278

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02,04 Batch:	WG1759817-3 WG1759817	7-4		
Chloroethane	120		110	55-138	9	20	
1,1-Dichloroethene	120		110	61-145	9	20	
trans-1,2-Dichloroethene	110		110	70-130	0	20	
Trichloroethene	100		100	70-130	0	20	
1,2-Dichlorobenzene	110		110	70-130	0	20	
1,3-Dichlorobenzene	110		110	70-130	0	20	
1,4-Dichlorobenzene	100		100	70-130	0	20	
Methyl tert butyl ether	94		98	63-130	4	20	
p/m-Xylene	105		110	70-130	5	20	
o-Xylene	105		105	70-130	0	20	
cis-1,2-Dichloroethene	110		110	70-130	0	20	
Styrene	110		110	70-130	0	20	
Dichlorodifluoromethane	120		120	36-147	0	20	
Acetone	85		69	58-148	21	Q 20	
Carbon disulfide	120		110	51-130	9	20	
2-Butanone	72		66	63-138	9	20	
4-Methyl-2-pentanone	80		86	59-130	7	20	
2-Hexanone	81		82	57-130	1	20	
1,2-Dibromoethane	95		96	70-130	1	20	
n-Butylbenzene	110		110	53-136	0	20	
sec-Butylbenzene	110		110	70-130	0	20	
tert-Butylbenzene	110		110	70-130	0	20	
1,2-Dibromo-3-chloropropane	87		90	41-144	3	20	

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

Lab Number: L2315278

arameter	LCS %Recovery	Qual	LCSD %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough La	b Associated	sample(s): (01-02,04 E	Batch:	WG17598	17-3 WG175981	7-4		
Isopropylbenzene	110		110			70-130	0		20
p-Isopropyltoluene	110		110			70-130	0		20
Naphthalene	97		100			70-130	3		20
n-Propylbenzene	110		110			69-130	0		20
1,2,4-Trichlorobenzene	100		100			70-130	0		20
1,3,5-Trimethylbenzene	100		110			64-130	10		20
1,2,4-Trimethylbenzene	100		100			70-130	0		20
Methyl Acetate	87		90			70-130	3		20
Cyclohexane	110		120			70-130	9		20
Freon-113	110		120			70-130	9		20
Methyl cyclohexane	100		100			70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Q	Acceptance Qual Criteria
1,2-Dichloroethane-d4	106	100	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	100	102	70-130
Dibromofluoromethane	101	103	70-130

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

Lab Number: L2315278

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	03,05 Batch:	WG1759832-3	WG1759832-4			
Methylene chloride	91		90		70-130	1	20	
1,1-Dichloroethane	92		93		70-130	1	20	
Chloroform	98		93		70-130	5	20	
Carbon tetrachloride	100		100		63-132	0	20	
1,2-Dichloropropane	90		89		70-130	1	20	
Dibromochloromethane	97		100		63-130	3	20	
1,1,2-Trichloroethane	93		88		70-130	6	20	
Tetrachloroethene	98		98		70-130	0	20	
Chlorobenzene	98		99		75-130	1	20	
Trichlorofluoromethane	110		110		62-150	0	20	
1,2-Dichloroethane	97		93		70-130	4	20	
1,1,1-Trichloroethane	100		99		67-130	1	20	
Bromodichloromethane	97		95		67-130	2	20	
trans-1,3-Dichloropropene	91		89		70-130	2	20	
cis-1,3-Dichloropropene	92		90		70-130	2	20	
Bromoform	92		87		54-136	6	20	
1,1,2,2-Tetrachloroethane	97		95		67-130	2	20	
Benzene	98		97		70-130	1	20	
Toluene	95		95		70-130	0	20	
Ethylbenzene	96		97		70-130	1	20	
Chloromethane	78		76		64-130	3	20	
Bromomethane	120		120		39-139	0	20	
Vinyl chloride	96		95		55-140	1	20	

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

Lab Number: L2315278

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	03,05 Batch:	WG1759832-3	WG1759832-4			
Chloroethane	180	Q	170	Q	55-138	6	20	
1,1-Dichloroethene	96		88		61-145	9	20	
trans-1,2-Dichloroethene	94		90		70-130	4	20	
Trichloroethene	94		94		70-130	0	20	
1,2-Dichlorobenzene	100		100		70-130	0	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	89		88		63-130	1	20	
p/m-Xylene	95		95		70-130	0	20	
o-Xylene	95		95		70-130	0	20	
cis-1,2-Dichloroethene	95		91		70-130	4	20	
Styrene	95		95		70-130	0	20	
Dichlorodifluoromethane	100		97		36-147	3	20	
Acetone	94		87		58-148	8	20	
Carbon disulfide	89		88		51-130	1	20	
2-Butanone	82		72		63-138	13	20	
4-Methyl-2-pentanone	76		77		59-130	1	20	
2-Hexanone	73		74		57-130	1	20	
1,2-Dibromoethane	98		97		70-130	1	20	
n-Butylbenzene	100		96		53-136	4	20	
sec-Butylbenzene	110		100		70-130	10	20	
tert-Butylbenzene	110		110		70-130	0	20	
1,2-Dibromo-3-chloropropane	98		92		41-144	6	20	

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

Lab Number: L2315278

arameter	LCS %Recovery	Qual		LCSD Recovery		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough La	b Associated	sample(s):	03,05	Batch:	WG1759832-3	WG1759832-4			
Isopropylbenzene	100			100		70-130	0		20
p-Isopropyltoluene	100			100		70-130	0		20
Naphthalene	83			80		70-130	4		20
n-Propylbenzene	100			100		69-130	0		20
1,2,4-Trichlorobenzene	86			84		70-130	2		20
1,3,5-Trimethylbenzene	100			99		64-130	1		20
1,2,4-Trimethylbenzene	96			98		70-130	2		20
Methyl Acetate	77			73		70-130	5		20
Cyclohexane	85			86		70-130	1		20
Freon-113	100			98		70-130	2		20
Methyl cyclohexane	94			91		70-130	3		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	107	105	70-130
Toluene-d8	103	104	70-130
4-Bromofluorobenzene	100	102	70-130
Dibromofluoromethane	101	101	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

Lab Number: L2315278

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - SBMW201S-22-R-20230322		Lab Asso	ciated sample(s): 01-02,04	QC Batch ID: WG17	59817-6 WG1	1759817-7 QC Sam	ple: L2	2315278-04 Client ID:
Methylene chloride	ND	25	26	104	28	112	70-130	7	20
1,1-Dichloroethane	ND	25	28	112	30	120	70-130	7	20
Chloroform	ND	25	28	112	27	108	70-130	4	20
Carbon tetrachloride	ND	25	25	100	25	100	63-132	0	20
1,2-Dichloropropane	ND	25	26	104	27	108	70-130	4	20
Dibromochloromethane	ND	25	22	88	24	96	63-130	9	20
1,1,2-Trichloroethane	ND	25	24	96	26	104	70-130	8	20
Tetrachloroethene	ND	25	24	96	26	104	70-130	8	20
Chlorobenzene	ND	25	24	96	26	104	75-130	8	20
Trichlorofluoromethane	ND	25	29	116	31	124	62-150	7	20
1,2-Dichloroethane	ND	25	26	104	27	108	70-130	4	20
1,1,1-Trichloroethane	ND	25	26	104	29	116	67-130	11	20
Bromodichloromethane	ND	25	24	96	26	104	67-130	8	20
trans-1,3-Dichloropropene	ND	25	22	88	24	96	70-130	9	20
cis-1,3-Dichloropropene	ND	25	23	92	25	100	70-130	8	20
Bromoform	ND	25	20	80	22	88	54-136	10	20
1,1,2,2-Tetrachloroethane	ND	25	25	100	26	104	67-130	4	20
Benzene	ND	25	28	112	30	120	70-130	7	20
Toluene	ND	25	25	100	26	104	70-130	4	20
Ethylbenzene	ND	25	25	100	26	104	70-130	4	20
Chloromethane	ND	25	28	112	30	120	64-130	7	20
Bromomethane	ND	25	20	80	22	88	39-139	10	20
Vinyl chloride	0.90J	25	32	128	34	136	55-140	6	20

Matrix Spike Analysis Batch Quality Control

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

Lab Number: L2315278

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS SBMW201S-22-R-20230322		ab Asso	ciated sample(s): 01-02,04	QC Batch ID: WG17	59817-6 WG1	759817-7 QC Sam	ple: L23	315278-04 Client ID:
Chloroethane	ND	25	30	120	32	128	55-138	6	20
1,1-Dichloroethene	1.6	25	29	110	32	122	61-145	10	20
trans-1,2-Dichloroethene	ND	25	28	112	29	116	70-130	4	20
Trichloroethene	32	25	54	88	58	104	70-130	7	20
1,2-Dichlorobenzene	ND	25	24	96	25	100	70-130	4	20
1,3-Dichlorobenzene	ND	25	24	96	26	104	70-130	8	20
1,4-Dichlorobenzene	ND	25	24	96	25	100	70-130	4	20
Methyl tert butyl ether	ND	25	24	96	25	100	63-130	4	20
p/m-Xylene	ND	50	50	100	53	106	70-130	6	20
o-Xylene	ND	50	49	98	53	106	70-130	8	20
cis-1,2-Dichloroethene	300	25	280	0	Q 300	0	Q 70-130	7	20
Styrene	ND	50	49	98	52	104	70-130	6	20
Dichlorodifluoromethane	ND	25	28	112	29	116	36-147	4	20
Acetone	ND	25	19	76	21	84	58-148	10	20
Carbon disulfide	ND	25	28	112	30	120	51-130	7	20
2-Butanone	ND	25	18	72	18	72	63-138	0	20
4-Methyl-2-pentanone	ND	25	22	88	23	92	59-130	4	20
2-Hexanone	ND	25	19	76	22	88	57-130	15	20
1,2-Dibromoethane	ND	25	24	96	25	100	70-130	4	20
n-Butylbenzene	ND	25	24	96	26	104	53-136	8	20
sec-Butylbenzene	ND	25	24	96	25	100	70-130	4	20
tert-Butylbenzene	ND	25	24	96	25	100	70-130	4	20
1,2-Dibromo-3-chloropropane	ND	25	19	76	20	80	41-144	5	20

Matrix Spike Analysis Batch Quality Control

Project Name: AOC #1 Q1 GETINGE

Project Number: 2160339

Lab Number:

L2315278

Report Date:

03/29/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RF Qual Lin	
Volatile Organics by GC/MS - SBMW201S-22-R-20230322	_	Lab Assoc	iated sample(s): 01-02,04	QC Batch	ID: WG17	59817-6 WG1	759817-7 QC Sam	ple: L2	2315278-04	Client ID:
Isopropylbenzene	ND	25	24	96		25	100	70-130	4	2	0
p-Isopropyltoluene	ND	25	24	96		25	100	70-130	4	2	0
Naphthalene	ND	25	23	92		25	100	70-130	8	2	0
n-Propylbenzene	ND	25	24	96		26	104	69-130	8	2	0
1,2,4-Trichlorobenzene	ND	25	24	96		24	96	70-130	0	2	0
1,3,5-Trimethylbenzene	ND	25	23	92		24	96	64-130	4	2	0
1,2,4-Trimethylbenzene	ND	25	24	96		24	96	70-130	0	2	0
Methyl Acetate	ND	25	23	92		25	100	70-130	8	2	0
Cyclohexane	ND	25	26	104		27	108	70-130	4	2	0
Freon-113	ND	25	27	108		29	116	70-130	7	2	0
Methyl cyclohexane	ND	25	24J	96		25	100	70-130	4	2	0

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	99	97	70-130
4-Bromofluorobenzene	96	98	70-130
Dibromofluoromethane	106	105	70-130
Toluene-d8	101	102	70-130

Project Name: AOC #1 Q1 GETINGE

Lab Number: L2315278 Project Number: 2160339 **Report Date:** 03/29/23

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Information			Initial	Final	Temp			Frozen	
Container IL	O Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L2315278-01A	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-01B	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-01C	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-02A	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-02B	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-02C	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-03A	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-03B	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-03C	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-04A	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-04A1	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-04A2	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-04B	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-04B1	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-04B2	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-04C	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-04C1	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-04C2	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-05A	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-05B	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2315278-05C	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)

Project Number: 2160339 Report Date: 03/29/23

GLOSSARY

Acronyms

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:AOC #1 Q1 GETINGELab Number:L2315278Project Number:2160339Report Date:03/29/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyle ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:AOC #1 Q1 GETINGELab Number:L2315278Project Number:2160339Report Date:03/29/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:AOC #1 Q1 GETINGELab Number:L2315278Project Number:2160339Report Date:03/29/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

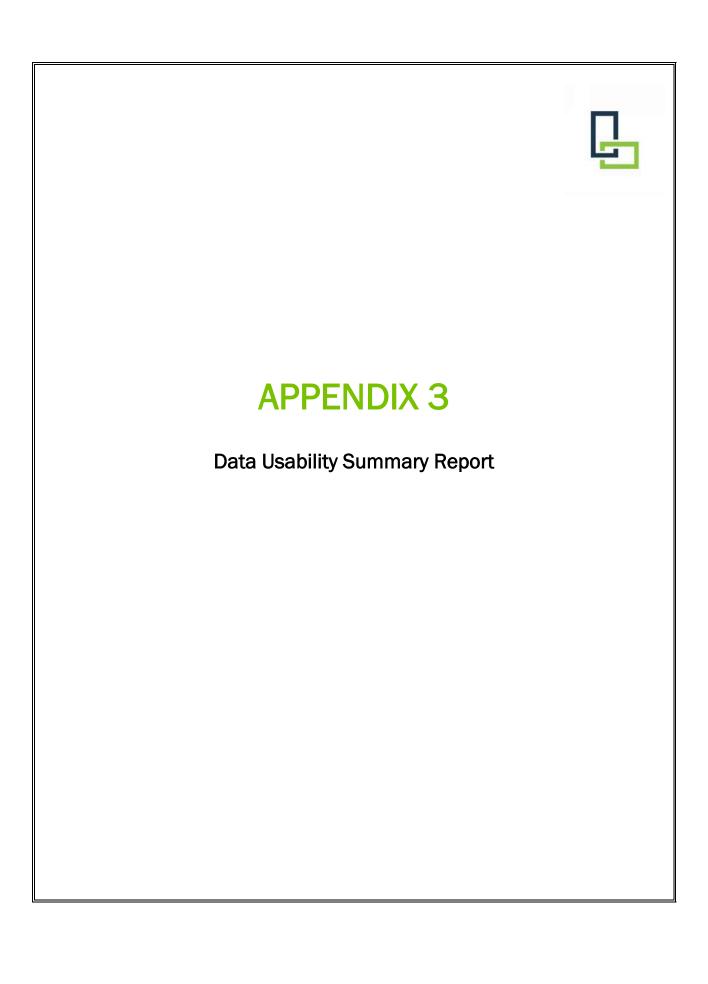
Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.


EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

The Gillen Property of Contains and Contains	1565 Jeffe	Chain c	of Custody / Ana	alytical Requ	est F	orm		L23	152	78	3	716	02	SR#:		
Company Comp			D AKENS INIOSI BE CO	OIMPLETED BY TH	11:00			8 53	380 •	alse	globa	l.com		Page	1	of
SSITUATOR TO PROVIDE TO SO	Phone: 585-454-6110 Address: State of Suite Ruchestex, Ny 14 Lab ID	Project Name: ACCH Project Name: Project Na	Q1 Cetinge 339 Sel Smile Colonclape. (CT, Other:	GW WW SW DW S L NA	of Containers	S20X18-02+72	8260 624 524	270 • 625	• 608	rbicides - 8151 • TCLP	tals, Total - Select Below	Dissolved - Field / In-Lab			2. HNO3 3. H2SO4 4. NAOH 5. Zn Acet 6. MeOH 7. NaHSO4
SBMW-7019-01-70230382 3/2723 363 SMMS SBMW-2019-01-70230382 3/2723 3/272	SBMW-201	9-02-702203-22		AND REAL PROPERTY.	_		MS	GC	GC,	PC PC	Her	Me	Me			Notes:
SOMW20 S 72 - R-2023 0322 3 22 23 10 0 GMP X	MW-Ma-R-2	M3 (633	THE RESERVE THE PARTY NAMED IN											MEM B		Notes.
SD-20730322 312123 370 GW3 X SD-20730322 3172(23 370 GW3	SBMW-2019	-01-20220222	2000	1110			X				1					
## SD-20730332 ## SECONDERING STEELED	SBMW201S-	27-R-20230304	-21-1				-	5								
P) COSE INCINCINC TICS * Turnaround Requirements Rush (Surcharges Apply) "Subject to Availability" "Please Check with your PM* X Standard (10 Business Days) Date Required: Report Requirements Report Requirements Report Requirements Metals: RCRA 8-PP 13-TAL 23-TCLP-Other (List) "OA/SVOA Report List: TCLP BEEX - TCLP - OP-51/5th's "THM + Other: Invoice To: ** Same as Report To) PO #: Company: Signature ** Metals: RCRA 8-PP 13-TAL 23-TCLP-Other (List) ** Please Check with your PM* X Standard (10 Business Days) Date Required: EDD: ** Yes No PO #: Company: Company: Signature ** Metals: RCRA 8-PP 13-TAL 23-TCLP-Other (List) Tirricat A - Results/QC ** Tier IV/Cat A - Results/QC ** Tier IV/Cat B - Data Validation Report W. Data Invoice To: ** Same as Report To) PO #: Company: Address:	BD-2023	5322	1-66	10			XX									
Turnaround Requirements Rush (Surcharges Apply) *Subject to Availability *Please Check with your PM* X Standard (10 Business Days) Date Required: Report Requirements Rush (Surcharges Apply) *Subject to Availability *Please Check with your PM* X Standard (10 Business Days) Date Required: Received By: Re			21600	10).010	GW	2										
Turnaround Requirements _Rush (Surcharges Apply) *Subject to Availability *Please Check with your PM* _X Standard (10 Business Days) Date Required: Report Requirements _Rush (Surcharges Apply) *Subject to Availability *Please Check with your PM* _X Standard (10 Business Days) Date Required: Received By: Receiv		A Track and the second														
Turnaround Requirements _Rush (Surcharges Apply) *Subject to Availability *Please Check with your PM* _X Standard (10 Business Days) Date Required: Report Requirements _Rush (Surcharges Apply) *Subject to Availability *Please Check with your PM* _X Standard (10 Business Days) Date Required: Received By: Receiv	18 DES 19 19 19 19 19 19 19 19 19 19 19 19 19								1199		08					
Turnaround Requirements Rush (Surcharges Apply) *Subject to Availability *Please Check with your PM* X Standard (10 Business Days) Date Required: Report Requirements Rush (Surcharges Apply) *Subject to Availability *Please Check with your PM* X Standard (10 Business Days) Date Required: Received By: Re	The state of the s															
Rush (Surcharges Apply) "Subject to Availability" "Please Check with your PM" X Standard (10 Business Days) Date Required: Received By:	ecial Instructions / Comments		SHIE HORACA USE	Town	12											
Received By: Secure Solation Secure Secure Solation Secure Secure Solation Secure Se	Please include -	TICS *		Rush (Surch *Subject to Availa *Please Check wit	harges A ability* th your I	Apply)		X	Tier	IV/Cat IV/Cat Report	A -Resu B - Dat w/. Da	ilts/QC a ta	VOA/SI OP-51/Sta	VOA Report L	List: rcL	BTEX • TCLP •
Signature may landle Secret stotal Carl Secret stot	Relinguished	Ruy . Decalued D	entropy of the		MARK			EDD	Type:				Company	r:		
Company [aBella Address:					_		elinquish	ned By	<i>j</i> :				ACTED WENT			D. West TW
Company [ABe 10 10 10 10 10 10 10 1	rinted Name Fmma Coin	ta l	-	JECURA STORA	68 41	14										
Date/Time 3/23/23 ID: CC 3/23/31/44	The state of the s	ale:			+								100000000			
	Date/Time 3/23/23	0:05 3/28/23 10:40		3 /m /28 18	·u					2/.	1000	((1)	- Partition and the second			

DATA USABILITY SUMMARY REPORT

for

LABELLA ASSOCIATES, P.C.

300 State Street

Rochester, NY 14614

GETINGE SOURCING
Project 2160339
SDG: L2315278
Sampled March 22, 2023

VOLAVILE ORGANICS

SBMW-2019-02-20230322	(L2315278-01)
MW-06-R-20230322	(L2315278-02)
SBMW-2019-01-20230322	(L2315278-03)
SBMW2015-22-R-20230322	(L2315278-04)
BD-20230322	(L2315278-05)

DATA ASSESSMENT

An ASP Category B data package containing analytical results for five aqueous samples was received from Labella Associates, P.C. on 26Apr23. The deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the Getinge Sourcing site, were identified by Chain of Custody documents and traceable through the work of Alpha Analytical, the laboratory contracted for analysis. Analyses, performed according to SW-846 Method 8260, determinations of volatile organics. Laboratory data evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP NO. HW-33, Rev. #3, March 2013, Low/Medium Volatile Data Validation) was used as a technical reference.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Results presenting a usable estimation of the conditions at the time of sampling have been flagged "J" or "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed strict QC testing, can be guaranteed to be accurate. Strict QC serves to increase confiin data, but any value potentially contains error. DATAVAL, Inc. guarantees the quality of this data Secondly. assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

James B. Baldwin

 $v_{ exttt{DATAVAL}}$ inc.

_Date: 05 May 23

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the time of sample collection. must remain chilled to 4°C between the time of collection and the time of analysis. Acid preserved VOC samples must be analyzed within 14 days, unpreserved VOC samples within 7 days. The holding time for VOC soils is 14 days. Aqueous semivolatile organics, pesticide and PCB samples must be extracted within seven days of collection. Soils and PFAS samples must be extracted within 14 The extracts must then be analyzed within forty days of extraction. The holding times for cyanide and mercury samples are 14 and 28 days, respectively. Metals samples must be analyzed within six months.

This delivery group contained five aqueous samples that were collected on 22Mar23. The samples were transferred to a laboratory courier and delivered to the laboratory the next day. The samples were maintained in secure storage between the time of collection and the time of laboratory receipt. At the time of receipt, the samples were found to be intact and properly chilled. A cooler temperature of 3.1°C was recorded at that time. Proper sample preservation was documented in the field custody chain and verified in the laboratory at the time of analysis. These checks verified that each program sample was properly stabilized at a pH<2.

VOLATILE ORGANICS

This group of samples was analyzed for VOC between 27Mar23 and 28Mar23. The program holding time limitation was satisfied.

Blanks

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks and trip blanks monitor sampling, sample transport, and sample storage activities. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

Three method blanks were analyzed with this group of samples. Although each of these blanks produced acceptable chromatography, one contained traces of an unidentified TIC eluting at 2.39 minutes. Similar artifacts were found and removed from the reports for SBMW-2019-01-20230322 and BD-20230322.

MS Tuning

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

An Instrument Performance Check Standard of BFB was analyzed prior to each analytical sequence that contained samples from this program. An Instrument Performance Check Form is present for each BFB evaluation. The BFB tunes associated with this delivery group satisfied the program acceptance criteria.

Calibrations

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability.

Initial instrument calibrations for VOC were performed on 10 Mar 23 and 23 Mar 23. Standards of 0.19, 0.50, 2.0, 10, 30, 80, 120 and 200 µg/l were included. With the exception of trichloroethene and 1,4-dioxane, each analyte targeted by this program produced the required levels of instrument response and demonstrated an acceptable degree of linearity during these calibrations. It is noted that trichloroethene standards failed to produce the required levels of instrument response during both calibrations. The trichloroethene results from this group of samples have been qualified as estimations based on this performance.

Calibration verification standards were analyzed on 27Mar23, 28Mar23 (System VG) and 28Mar23 (System VE), prior to the 12-hour periods of instrument operation that included samples from this program. When compared to the initial calibrations, an unacceptable shift was observed in the instrument response of chloroethane on System VG. Based on this performance the chloroethane results from SBMW-2019-01-20230322 and BD-20230322 have been qualified as estimations. It is noted that the response of trichloroethene remained low during these checks.

It is noted that although a shift was also observed in the response of acetone, this result was not directly associated with samples from this program.

Surrogates

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Surrogate Summary Sheets were properly prepared, based on the laboratory's in-house acceptance criteria. When compared to the ASP requirements, however, an acceptable recovery was reported for each surrogate addition to this group of samples.

Internal Standards

Internal standards are added to each sample, blank and calibration standard just prior to injection. Analyte concentrations are

calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than a factor of 2. When compared to the preceding calibration check, retention times may not vary by more than 30 seconds.

The laboratory correctly calculated control limits for internal standard response and retention times. When compared to these limits, acceptable performance was indicated for the internal standard additions to each program sample.

Matrix Spikes

Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of measurement accuracy. A duplicate spiked aliquot provides a measurement of precision.

SBMW201S-22-R-20230322 was selected for matrix spiking. The entire list of targeted VOC analytes was added to two portions of this sample. The recoveries reported for these spikes included a high result for vinyl chloride (136%). The vinyl chloride concentration found in SBMW201S-22-R-20230322 has been qualified as an estimation based on this indication of positive bias.

Two pairs of spiked blanks (LCS/LCSD) were also analyzed with this group of samples. The entire list of targeted analytes was added to each of these LCS samples. The recoveries reported for these spikes included high results for chloroethane (180%,170%) and a low recovery of acetone (69%). Based on these indications of bias, the acetone results from SBMW-2019-02-20230322, MW-06-R-20230322 and SBMW201S-22-R-20230322, and the chloroethane results from SBMW-2019-01-20230322 and BD-20230322 have been qualified as estimations.

Duplicates

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. The results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Field split duplicate samples of SBMW2015-22-R-20230322 were included in this delivery group. This pair of samples produced concentrations that agreed within 26% The program acceptance criteria was satisfied.

Reported Analytes

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument print outs. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples. Tentatively Identified Compounds (TIC) were reported.

It is noted that the presence of vinyl chloride in SBMW-2019-01-20230322 could not be verified based on the mass spectra references included in the raw data. Vinyl chloride should be interpreted as undetected in this sample and a detection limit equaling the laboratory's reporting limit should be assumed.

SUMMARY OF QUALIFIED DATA

AOC#1 Q1 GETINGE

SAMPLED: March 2023

SPIKES		2.500	5.005
SPIKE	5.005	1205	
SPIKES VIN CL		0.905	
CALIBRATE CLEANE		2.500	5.0UJ
CALIBRATE TCE	240	190 320	28J
BLANK		KEOECI.	REJECT
	(L2315278-01)	(L23152/8-03) (L2315278-04)	(L2315278-05)
	SBMW-2019-02-20230322 MW-06-R-20230322	SBMW-2019-01-20230322 SBMW2015-22-R-20230322	BD-20230322

SPECTRA ID VIN CL

SBMW-2019-02-20230322 (L2315278-01) MW-06-R-20230322 (L2315278-02) SBMW-2019-01-20230322 (L2315278-03) 1.0U SBMW2015-22-R-20230322 (L2315278-04) BD-20230322 (L2315278-04)

Client : LaBella Associates, P.C.
Project Name : AOC #1 Q1 GETINGE

Lab ID : L2315278-01

Client ID : SBMW-2019-02-20230322

Sample Location

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : VE230327A20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278 Project Number : 2160339

Date Collected : 03/22/23 10:10

Date Received : 03/23/23 Date Analyzed : 03/27/23 14:43

Dilution Factor : 1
Analyst : MJV
Instrument ID : ELAINE
GC Column : RTX-502.2
%Solids : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
0061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
0061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
'5-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
'1-43-2	Benzene	ND	0.50	0.16	U
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
4-87-3	Chloromethane	ND	2.5	0.70	U
'4-83-9	Bromomethane	ND	2.5	0.70	U
'5-01-4	Vinyl chloride	ND	1.0	0.07	U
5-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : LaBella Associates, P.C.
Project Name : AOC #1 Q1 GETINGE

Lab ID : L2315278-01

Client ID : SBMW-2019-02-20230322

Sample Location

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : VE230327A20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278 Project Number : 2160339

Date Collected : 03/22/23 10:10

Date Received : 03/23/23 Date Analyzed : 03/27/23 14:43

Dilution Factor : 1
Analyst : MJV
Instrument ID : ELAINE
GC Column : RTX-502.2

		×	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene -	24]	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene -	1.9	2.5	0.70	J
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	NO UJ	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
04-51-8	n-Butylbenzene	ND	2.5	0.70	U
35-98-8	sec-Butylbenzene	ND	2.5	0.70	U
8-06-6	tert-Butylbenzene	ND	2.5	0.70	U
6-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
8-82-8	Isopropylbenzene	ND	2.5	0.70	Ü
9-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
1-20-3	Naphthalene	ND	2.5	0.70	U
03-65-1	n-Propylbenzene	ND	2.5	0.70	U

 Client
 : LaBella Associates, P.C.
 Lab Number
 : L2315278

 Project Name
 : AOC #1 Q1 GETINGE
 Project Number
 : 2160339

 Lab ID
 : L2315278-01
 Date Collected
 : 03/22/23 10:10

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : 1,8260D Analyst : MJV Lab File ID : VE230327A20 Instrument ID : ELAINE Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

		ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	1000
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Tentatively Identified Compounds Form 1 Volatile Organics by GC/MS

Client **Project Name** : LaBella Associates, P.C. : AOC #1 Q1 GETINGE

Lab ID

: L2315278-01

Client ID

: SBMW-2019-02-20230322

Sample Location

Sample Matrix : WATER **Analytical Method** : 1,8260D Lab File ID : VE230327A20

Sample Amount

: 10 ml

Level Extract Volume (MeOH): N/A Lab Number

: L2315278

Project Number : 2160339

Date Collected : 03/22/23 10:10

Date Received : 03/23/23

Dilution Factor

Date Analyzed : 03/27/23 14:43

Analyst

: 1 : MJV

Instrument ID GC Column

: ELAINE : RTX-502.2

%Solids

: N/A

Injection Volume: N/A

Number TICS found: 0

Concentration Units: ug/L

CAS Number

Compound Name

RT

EST. CONC.

Qualifier

NO TENTATIVELY IDENTIFIED COMPOUNDS

Client : LaBella Associates, P.C.
Project Name : AOC #1 Q1 GETINGE

Lab ID : L2315278-02

Client ID : MW-06-R-20230322

Sample Location

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : VE230327A21

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278

Project Number : 2160339

Date Collected : 03/22/23 11:10

Date Received : 03/23/23

Date Analyzed : 03/27/23 15:05
Dilution Factor : 1
Analyst : MJV
Instrument ID : ELAINE
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
0061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
1-43-2	Benzene 🥌	1.2	0.50	0.16	
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
'4-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	U
5-01-4	Vinyl chloride —	0.99	1.0	0.07	J
5-00-3	Chloroethane	ND	2.5	0.70	U
5-35-4	1,1-Dichloroethene —	2.1	0.50	0.17	

Client : LaBella Associates, P.C.
Project Name : AOC #1 Q1 GETINGE

Lab ID : L2315278-02

Client ID : MW-06-R-20230322

Sample Location

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : VE230327A21

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278 Project Number : 2160339

Date Collected : 03/22/23 11:10 Date Received : 03/23/23

Date Analyzed : 03/27/23 15:05

Dilution Factor : 1
Analyst : MJV
Instrument ID : ELAINE
GC Column : RTX-502.2

		×	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene ~	0.81	2.5	0.70	J
79-01-6	Trichloroethene —	150 ブ	0.50	0.18	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene -	48	2.5	0.70	
100-42-5	Styrene	ND	2.5	0.70	U
7 5-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
67-64-1	Acetone	LUON	5.0	1.5	U
′ 5-15-0	Carbon disulfide	ND	5.0	1.0	U
' 8-93-3	2-Butanone	ND	5.0	1.9	U
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
91-78-6	2-Hexanone	ND	5.0	1.0	U
06-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
04-51-8	n-Butylbenzene	ND	2.5	0.70	U
35-98-8	sec-Butylbenzene	ND	2.5	0.70	U
8-06-6	tert-Butylbenzene	ND	2.5	0.70	U
6-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
8-82-8	Isopropylbenzene	ND	2.5	0.70	U
9-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
1-20-3	Naphthalene	ND	2.5	0.70	U
03-65-1	n-Propylbenzene	ND	2.5	0.70	U
			0100010010101010101010101010		

Client : LaBella Associates, P.C.
Project Name : AOC #1 Q1 GETINGE

Lab ID : L2315278-02

Client ID : MW-06-R-20230322

Sample Location

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : VE230327A21

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278 Project Number : 2160339

Date Collected : 03/22/23 11:10

Date Received : 03/23/23 Date Analyzed : 03/27/23 15:05

Dilution Factor : 1
Analyst : MJV
Instrument ID : ELAINE
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
79-20-9	Methyl Acetate	ND	2.0	0.23	U
110-82-7	Cyclohexane	ND	10	0.27	U
76-13-1	Freon-113	ND	2.5	0.70	U
108-87-2	Methyl cyclohexane	ND	10	0.40	Ü
		7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Tentatively Identified Compounds Form 1 Volatile Organics by GC/MS

Client **Project Name** : LaBella Associates, P.C. : AOC #1 Q1 GETINGE

Lab ID

: L2315278-02

: VE230327A21

Client ID

: MW-06-R-20230322

Sample Location Sample Matrix

: WATER **Analytical Method** : 1,8260D

Lab File ID Sample Amount

: 10 ml

Level

Extract Volume (MeOH): N/A

Lab Number

: L2315278

Project Number : 2160339

Date Collected : 03/22/23 11:10

Date Received : 03/23/23

Date Analyzed : 03/27/23 15:05

Dilution Factor : 1 Analyst

: MJV

Instrument ID GC Column

: ELAINE : RTX-502.2

%Solids

: N/A

Injection Volume: N/A

Number TICS found: 0

Concentration Units: ug/L.

CAS Number

Compound Name

RT

EST. CONC.

Qualifier

NO TENTATIVELY IDENTIFIED COMPOUNDS

Client : LaBella Associates, P.C.
Project Name : AOC #1 Q1 GETINGE

Lab ID : L2315278-03

Client ID : SBMW-2019-01-20230322

Sample Location : Sample Matrix : WATER

Analytical Method : 1,8260D Lab File ID : VG230328A20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278 Project Number : 2160339

Date Collected : 03/22/23 12:05 Date Received : 03/23/23

Date Analyzed : 03/23/23

Dilution Factor : 1
Analyst : MJV
Instrument ID : GONZO
GC Column : RTX-502.2

440 440 100 100 100 100 100 100 100 100			ug/L				
CAS NO.	Parameter		Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride		ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	F 211	ND	2.5	0.70	U	
67-66-3	Chloroform —		0.88	2.5	0.70	J	
56-23-5	Carbon tetrachloride		ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	1010-1-11	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane		ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane		ND	1.5	0.50	U	
127-18-4	Tetrachloroethene		ND	0.50	0.18	U	
108-90-7	Chlorobenzene		ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane		ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane		ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane		ND	2.5	0.70	U	***************************************
75-27-4	Bromodichloromethane		ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene		ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene		ND	0.50	0.14	U	
75-25-2	Bromoform		ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane		ND	0.50	0.17	U	
71-43-2	Benzene		ND	0.50	0.16	U	-
108-88-3	Toluene		ND	2.5	0.70	U	
100-41-4	Ethylbenzene		ND	2.5	0.70	Ū	***************************************
74-87-3	Chloromethane		ND	2.5	0.70	U	
74-83-9	Bromomethane		ND	2.5	0.70	U	
75-01-4	Vinyl chloride	1,0	.0.31 /	1.0	0.07	J	
75-00-3	Chloroethane		NEUJ	2.5	0.70	U	
75-35-4	1,1-Dichloroethene —		0.45	0.50	0.17	J	

Client : LaBella Associates, P.C.
Project Name : AOC #1 Q1 GETINGE

Lab ID : L2315278-03

Client ID : SBMW-2019-01-20230322

Sample Location

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : VG230328A20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278 Project Number : 2160339

Date Collected : 03/22/23 12:05 Date Received : 03/23/23

Date Received : 03/23/23 Date Analyzed : 03/28/23 17:06

Dilution Factor : 1
Analyst : MJV
Instrument ID : GONZO
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene -	0.95	2.5	0.70	J	
79-01-6	Trichloroethene •				J	
			0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene -	130	2.5	0.70	· · · · · · · · · · · · · · · · · · ·	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	
/*************************************						

Client : LaBella Associates, P.C. Lab Number : L2315278

Project Name : AOC #1 Q1 GETINGE Project Number : 2160339

Lab ID : L2315278-03 Date Collected : 03/22/23 1

Sample Location : Date Analyzed : 03/28/23 17:06

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : 1,8260D Analyst : MJV Lab File ID : VG230328A20 Instrument ID : GONZO Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

		ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Tentatively Identified Compounds Form 1 Volatile Organics by GC/MS

Client : LaBella Associates, P.C. Lab Number : L2315278
Project Name : AOC #1 Q1 GETINGE Project Number : 2160339
Lab ID : L2315278-03 Date Collected : 03/22/23 12

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260D Analyst : MJV
Lab File ID : VG230328A20 Instrument ID : GONZO
Sample Amount : 10 ml GC Column : RTX-502.2

Level : %Solids : N/A
Extract Volume (MeOH) : N/A Injection Volume : N/A

Number TICS found: 2

Concentration Units: ug/L

CAS Number	Compound Name	RT	EST. CONC.	Qualifier	
	-Unknown	2.39	3.17	JD	
	Total TIC Compounds		3.17J	J	

Client : LaBella Associates, P.C. Project Name : AOC #1 Q1 GETINGE

Lab ID : L2315278-04D

Client ID : SBMW201S-22-R-20230322

Sample Location

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : VE230327A22

Sample Amount : 4 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278 Project Number : 2160339

Date Collected : 03/22/23 13:10

Date Received : 03/23/23 Date Analyzed : 03/27/23 15:27

Dilution Factor : 2.5
Analyst : MJV
Instrument ID : ELAINE
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
E2000 S						
75-09-2	Methylene chloride	ND	6.2	1.8	U	
75-34-3	1,1-Dichloroethane	ND	6.2	1.8	U	
67-66-3	Chloroform	ND	6.2	1.8	U	
56-23-5	Carbon tetrachloride	ND	1.2	0.34	U	
78-87-5	1,2-Dichloropropane	ND	2.5	0.34	U	
124-48-1	Dibromochloromethane	ND	1.2	0.37	U	
79-00-5	1,1,2-Trichloroethane	ND	3.8	1.2	U	
127-18-4	Tetrachloroethene	ND	1.2	0.45	U	Hamadan ++++
108-90-7	Chlorobenzene	ND	6.2	1.8	U	
75-69-4	Trichlorofluoromethane	ND	6.2	1.8	U	
107-06-2	1,2-Dichloroethane	ND	1.2	0.33	U	
71-55-6	1,1,1-Trichloroethane	ND	6.2	1.8	U	
75-27-4	Bromodichloromethane	ND	1.2	0.48	U	
10061-02-6	trans-1,3-Dichloropropene	ND	1.2	0.41	U	
10061-01-5	cis-1,3-Dichloropropene	ND	1.2	0.36	U	
75-25-2	Bromoform	ND	5,0	1.6	U	***************************************
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.2	0.42	U	
71-43-2	Benzene	ND	1.2	0.40	U	
108-88-3	Toluene	ND	6.2	1.8	U	
100-41-4	Ethylbenzene	ND	6.2	1.8	U	
74-87-3	Chloromethane	ND	6.2	1.8	Ü	
74-83-9	Bromomethane	ND	6.2	1.8	U	
75-01-4	Vinyl chloride	0.90 丁	2.5	0.18	J	
75-00-3	Chloroethane	ND	6.2	1.8	U	
75-35-4	1,1-Dichloroethene -	1.6	1.2	0.42		

Client : LaBella Associates, P.C. Project Name : AOC #1 Q1 GETINGE

Lab ID : L2315278-04D

Client ID : SBMW201S-22-R-20230322 Sample Location :

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : VE230327A22

Sample Amount : 4 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278
Project Number : 2160339
Date Collected : 03/22/23 13:10

Date Received : 03/23/23 Date Analyzed : 03/27/23 15:27

Dilution Factor : 2.5
Analyst : MJV
Instrument ID : ELAINE
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	6.0	4.0	115
***************************************			6.2	1.8	U
79-01-6	Trichloroethene _	32 🧻	1.2	0.44	
95-50-1	1,2-Dichlorobenzene	ND	6.2	1.8	U
541-73-1	1,3-Dichlorobenzene	ND	6.2	1.8	U
106-46-7	1,4-Dichlorobenzene	ND	6.2	1.8	U
1634-04-4	Methyl tert butyl ether	ND	6.2	1.8	U
179601-23-1	p/m-Xylene	ND	6.2	1.8	U
95-47-6	o-Xylene	ND	6.2	1.8	U
156-59-2	cis-1,2-Dichloroethene	300	6.2	1.8	
100-42-5	Styrene	ND	6.2	1.8	U
75-71-8	Dichlorodifluoromethane	ND	12	2.5	U
67-64-1	Acetone	NB UJ	12	3.6	U
75-15-0	Carbon disulfide	ND	12	2.5	U
78-93-3	2-Butanone	ND	12	4.8	U
108-10-1	4-Methyl-2-pentanone	ND	12	2.5	U
591-78-6	2-Hexanone	ND	12	2.5	U
106-93-4	1,2-Dibromoethane	ND	5.0	1.6	U
104-51-8	n-Butylbenzene	ND	6.2	1.8	U
135-98-8	sec-Butylbenzene	ND	6.2	1.8	U
98-06-6	tert-Butylbenzene	ND	6.2	1.8	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	6.2	1.8	U
98-82-8	Isopropylbenzene	ND	6.2	1.8	U
99-87-6	p-Isopropyltoluene	ND	6.2	1.8	U
91-20-3	Naphthalene	ND	6.2	1.8	U
103-65-1	n-Propylbenzene	ND	6.2	1.8	U

Client : LaBella Associates, P.C. **Project Name** : AOC #1 Q1 GETINGE

Lab ID : L2315278-04D : SBMW201S-22-R-20230322

Client ID

Sample Location Sample Matrix : WATER

Analytical Method : 1,8260D Lab File ID : VE230327A22

Sample Amount : 4 ml Level : LOW Extract Volume (MeOH): N/A

Lab Number : L2315278 Project Number : 2160339

Date Collected : 03/22/23 13:10

Date Received : 03/23/23

Date Analyzed : 03/27/23 15:27 Dilution Factor : 2.5

Analyst : MJV Instrument ID : ELAINE GC Column : RTX-502.2

CAS NO.	Parameter		ug/L			
		Results	RL	MDL	Qualifier	·····
120-82-1	1,2,4-Trichlorobenzene	ND	6.2	1.8	U	
108-67-8	1,3,5-Trimethylbenzene	ND	6.2	1.8	U	
95-63-6	1,2,4-Trimethylbenzene	ND	6.2	1.8	Ü	
79-20-9	Methyl Acetate	ND	5.0	0.58	U	
110-82-7	Cyclohexane	ND	25	0.68	U	
76-13-1	Freon-113	ND	6.2	1.8	U	
108-87-2	Methyl cyclohexane	ND	25	0.99	U	

Tentatively Identified Compounds Form 1 Volatile Organics by GC/MS

Client **Project Name** : LaBella Associates, P.C. : AOC #1 Q1 GETINGE

Lab ID

: L2315278-04D

Client ID

: SBMW201S-22-R-20230322

Sample Location

Sample Matrix : WATER **Analytical Method** : 1,8260D Lab File ID : VE230327A22

Sample Amount

Level

: 4 ml

Extract Volume (MeOH): N/A

Lab Number

: L2315278

Project Number : 2160339 Date Collected : 03/22/23 13:10

Date Received : 03/23/23

Date Analyzed : 03/27/23 15:27

Dilution Factor : 2.5 Analyst Instrument ID

: MJV : ELAINE : RTX-502.2

GC Column : N/A %Solids Injection Volume: N/A

Number TICS found: 0

Concentration Units: ug/L

CAS Number

Compound Name

RT

EST. CONC.

Qualifier

NO TENTATIVELY IDENTIFIED COMPOUNDS

Client : LaBella Associates, P.C.
Project Name : AOC #1 Q1 GETINGE

Lab ID : L2315278-05D Client ID : BD-20230322

Sample Location

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : VG230328A21

Sample Amount : 5 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278 Project Number : 2160339

Date Collected : 03/22/23 13:20

Date Received : 03/23/23 Date Analyzed : 03/28/23 17:29

Dilution Factor : 2
Analyst : MJV
Instrument ID : GONZO
GC Column : RTX-502.2

CAS NO.	Parameter		ug/L		
		Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	5.0	1.4	U
75-34-3	1,1-Dichloroethane	ND	5.0	1.4	U
67-66-3	Chloroform	ND	5.0	1.4	U
56-23-5	Carbon tetrachloride	ND	1.0	0.27	U
78-87-5	1,2-Dichloropropane	ND	2.0	0.27	U
124-48-1	Dibromochloromethane	ND	1.0	0.30	U
79-00-5	1,1,2-Trichloroethane	ND	3.0	1.0	U
127-18-4	Tetrachloroethene	ND	1.0	0.36	U
108-90-7	Chlorobenzene	ND	5.0	1.4	U
75-69-4	Trichlorofluoromethane	ND	5.0	1.4	U
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	U
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.4	U
75-27-4	Bromodichloromethane	ND	1.0	0.38	U
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.33	U
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	U
75-25-2	Bromoform	ND	4.0	1.3	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	U
71-43-2	Benzene 🚤	0.33	1.0	0.32	J
108-88-3	Toluene	ND	5.0	1.4	U
100-41-4	Ethylbenzene	ND	5.0	1.4	U
74-87-3	Chloromethane	ND	5.0	1.4	U
74-83-9	Bromomethane	ND	5.0	1.4	U
75-01-4	Vinyl chloride 🥿	0.51	2.0	0.14	J
75-00-3	Chloroethane	, NE (J)	5.0	1.4	U
75-35-4	1,1-Dichloroethene	1.5	1.0	0.34	

Client : LaBella Associates, P.C.
Project Name : AOC #1 Q1 GETINGE

Lab ID : L2315278-05D Client ID : BD-20230322

Sample Location

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : VG230328A21

Sample Amount : 5 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278 Project Number : 2160339

Date Collected : 03/22/23 13:20 Date Received : 03/23/23

Date Analyzed : 03/28/23 17:29 Dilution Factor : 2

Analyst : MJV Instrument ID : GONZO GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	5.0	1.4	U
79-01-6	Trichloroethene -	28]	1.0	0.35	
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.4	U
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.4	U
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.4	U
1634-04-4	Methyl tert butyl ether	ND	5.0	1.4	U
179601-23-1	p/m-Xylene	ND	5.0	1.4	U
95-47-6	o-Xylene	ND	5.0	1.4	U
156-59-2	cis-1,2-Dichloroethene 🥆	230	5.0	1.4	
100-42-5	Styrene	ND	5.0	1.4	U
75-71-8	Dichlorodifluoromethane	ND	10	2.0	U
67-64-1	Acetone	ND	10	2.9	U
75-15-0	Carbon disulfide	ND	10	2.0	U
78-93-3	2-Butanone	ND	10	3.9	U
108-10-1	4-Methyl-2-pentanone	ND	10	2.0	U
591-78-6	2-Hexanone	ND	10	2.0	U
106-93-4	1,2-Dibromoethane	ND	4.0	1.3	U
104-51-8	n-Butylbenzene	ND	5.0	1.4	U
135-98-8	sec-Butylbenzene	ND	5.0	1.4	U
98-06-6	tert-Butylbenzene	ND	5.0	1.4	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.4	U
98-82-8	Isopropylbenzene	ND	5.0	1.4	U
99-87-6	p-Isopropyltoluene	ND	5.0	1.4	U
91-20-3	Naphthalene	ND	5.0	1.4	U
03-65-1	n-Propylbenzene	ND	5.0	1.4	U

Client : LaBella Associates, P.C. Lab Number : L2315278

Project Name : AOC #1 Q1 GETINGE Project Number : 2160339

Lab ID : L2315278-05D Date Collected : 03/22/23 13:20

Client ID : BD-20230322 Date Received : 03/23/23

Sample Location : Date Analyzed : 03/28/23 17:29

Sample Matrix : WATER **Dilution Factor** : 2 **Analytical Method** Analyst : 1,8260D : MJV Lab File ID : VG230328A21 Instrument ID : GONZO Sample Amount : 5 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

CAS NO.	Parameter		ug/L			
		Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.4	U	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.4	U	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.4	U	
79-20-9	Methyl Acetate	ND	4.0	0.47	U	
110-82-7	Cyclohexane	ND	20	0.54	U	980004BE000000000000000000000000000000000
76-13-1	Freon-113	ND	5.0	1.4	U	
108-87-2	Methyl cyclohexane	ND	20	0.79	U	

Tentatively Identified Compounds Form 1 Volatile Organics by GC/MS

Client : LaBella Associates, P.C. Lab Number : L2315278
Project Name : AOC #1 Q1 GETINGE Project Number : 2160339
Lab ID : L2315278-05D Date Collected : 03/22/23 13:20

Sample Location : Date Analyzed : 03/28/23 17:29 Sample Matrix : WATER Dilution Factor : 2

Analytical Method : 1,8260D Analyst : MJV
Lab File ID : VG230328A21 Instrument ID : GONZO
Sample Amount : 5 ml GC Column : RTX-502.2

Level : %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

Number TICS found: 2

Concentration Units: ug/L

CAS Number	Compound Name	RT /	EST. CONC.	Qualifier	
	Unknown	2.39	6.36	R	
	Total TIC Compounds		6.36J	J	Activities of the second secon

Surrogate Recovery Summary Form 2 Volatiles

Client: LaBella Associates, P.C. Project Name: AOC #1 Q1 GETINGE Lab Number: L2315278 Project Number: 2160339

Matrix: Water

CLIENT ID	SMC1	SMC2	SMC3	SMC4	тот	
(LAB SAMPLE NO.)	DCA	∕ TOL	BFB	DBFM	OUT	
	/	/	/			
SBMW-2019-02-20230322 (L2315278-01)	109 🗸	99 🗸	99	105	0	
MW-06-R-20230322 (L2315278-02)	113	100	98	109	0	
SBMW-2019-01-20230322 (L2315278-03)	102	107	106	104	0	
SBMW201S-22-R-20230322 (L2315278-	111	102	98	108	0	
04D)						
BD-20230322 (L2315278-05D)	104	107	106	105	0	
WG1759817-10LCS	96	101	101	101	0	
WG1759817-11LCSD	99	99	98	98	0	
WG1759817-12BLANK	108	100	102	108	0	
WG1759817-3LCS	106	100	100	101	0	
WG1759817-4LCSD	100	100	102	103	0	
WG1759817-5BLANK	107	101	99	111	0	
SBMW201S-22-R-20230322MS	99	101	96	106	0	
SBMW201S-22-R-20230322MSD	97	102	98	105	0	
WG1759832-3LCS	107	103	100	101	0	
WG1759832-4LCSD	105	104	102	101	0	
WG1759832-5BLANK	104	105	108	103	0	

QC LIMITS

(70-130) DCA = 1,2-DICHLOROETHANE-D4

(70-130) TOL = TOLUENE-D8

(70-130) BFB = 4-BROMOFLUOROBENZENE (70-130) DBFM = DIBROMOFLUOROMETHANE

ALPHA

^{*} Values outside of QC limits

Method Blank Summary Form 4 Volatiles

Client Project Name : LaBella Associates, P.C.

Lab Sample ID

: AOC #1 Q1 GETINGE : WG1759817-5

Instrument ID

: ELAINE

Matrix

: ELAINE : WATER Lab Number Project Number : L2315278 : 2160339

Lab File ID

: VE230327A05

Analysis Date

: 03/27/23 09:25

Client Sample No.	Lab Sample ID	Analysis Date
WG1759817-3LCS	WG1759817-3	03/27/23 08:02
WG1759817-4LCSD	WG1759817-4	03/27/23 08:22
SBMW-2019-02-20230322	L2315278-01	03/27/23 14:43
MW-06-R-20230322	L2315278-02	03/27/23 15:05
SBMW201S-22-R-20230322	L2315278-04D	03/27/23 15:27

Client : LaBella Associates, P.C.
Project Name : AOC #1 Q1 GETINGE

Lab ID : WG1759817-5

Client ID : WG1759817-5BLANK

Sample Location

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : VE230327A05

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278 Project Number : 2160339

Date Collected : NA
Date Received : NA

Date Analyzed : 03/27/23 09:25

Dilution Factor : 1
Analyst : PID
Instrument ID : ELAINE
GC Column : RTX-502.2

CAS NO.	Parameter		ug/L		
		Results	RL	MDL	Qualifier
		/			
75-09-2	Methylene chloride	ND ¥	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
//////////////////////////////////////					

Client : LaBella Associates, P.C.
Project Name : AOC #1 Q1 GETINGE

Lab ID : WG1759817-5

Client ID :

: WG1759817-5BLANK

Sample Location

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : VE230327A05

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278
Project Number : 2160339
Date Collected : NA
Date Received : NA

Date Received : NA
Date Analyzed : 03/27/23 09:25

Dilution Factor : 1
Analyst : PID
Instrument ID : ELAINE
GC Column : RTX-502.2

CACNO			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5					
	trans-1,2-Dichloroethene	ND 🗸	2.5	0.70	U
'9-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
41-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
06-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
79601-23-1	p/m-Xylene	ND	2.5	0.70	U
5-47-6	o-Xylene	ND	2.5	0.70	U
56-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
00-42-5	Styrene	ND	2.5	0.70	U
5-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
7-64-1	Acetone	ND	5.0	1.5	U
5-15-0	Carbon disulfide	ND	5.0	1.0	U
8-93-3	2-Butanone	ND	5.0	1.9	U
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
91-78-6	2-Hexanone	ND	5.0	1.0	U
06-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
04-51-8	n-Butylbenzene	ND	2.5	0.70	U
35-98-8	sec-Butylbenzene	ND	2.5	0.70	U
3-06-6	tert-Butylbenzene	ND	2.5	0.70	U
6-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
3-82-8	Isopropylbenzene	ND	2.5	0.70	U
9-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
-20-3	Naphthalene	ND	2.5	0.70	U
03-65-1	n-Propylbenzene	ND	2.5	0.70	U
*1				0.70	U

Client **Project Name**

: LaBella Associates, P.C. : AOC #1 Q1 GETINGE

Lab ID

: WG1759817-5

Client ID

: WG1759817-5BLANK

Sample Location Sample Matrix

: WATER : 1,8260D

Analytical Method Lab File ID

: VE230327A05

Sample Amount

: 10 ml

Level

: LOW

Extract Volume (MeOH): N/A

Lab Number

: L2315278

Project Number : 2160339

: NA

Date Collected Date Received

: NA

Date Analyzed

: 03/27/23 09:25

Dilution Factor

: 1

Analyst Instrument ID

: PID : ELAINE

GC Column

: RTX-502.2

%Solids

: N/A

Injection Volume: N/A

CAS NO.	Parameter		ug/L		
h	raiameter	Results	RL	MDL	Qualifier
120-82-1	1,2,4-Trichlorobenzene	ND V	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5		U
79-20-9	Methyl Acetate			0.70	U
110-82-7	Cyclohexane	ND	2.0	0.23	U
76-13-1	The state of the s	ND	10	0.27	U
70-13-1	Freon-113	ND	2.5	0.70	U
108-87-2	Methyl cyclohexane	ND			
		ND	10	0.40	U

Tentatively Identified Compounds Form 1 Volatile Organics by GC/MS

Client Project Name

: LaBella Associates, P.C.

Lab ID

: AOC #1 Q1 GETINGE

: WG1759817-5

Client ID

: WG1759817-5BLANK

Sample Location

Sample Matrix **Analytical Method**

: WATER : 1,8260D

Lab File ID Sample Amount

: VE230327A05

Level

: 10 ml

Extract Volume (MeOH): N/A

Lab Number

: L2315278

Project Number : 2160339

Date Collected : NA Date Received : NA

Date Analyzed : 03/27/23 09:25

Dilution Factor

: 1 : PID

Analyst Instrument ID

: ELAINE

GC Column

: RTX-502.2

%Solids

: N/A

Injection Volume: N/A

Number TICS found: 0

Concentration Units: ug/L

CAS Number

Compound Name NO TENTATIVELY IDENTIFIED COMPOUNDS

EST. CONC.

Qualifier

Method Blank Summary Form 4 **Volatiles**

Client

: LaBella Associates, P.C.

Project Name

: AOC #1 Q1 GETINGE

Lab Sample ID

: WG1759832-5

Instrument ID

: GONZO

Matrix

: LIQUID

Lab Number

Project Number

: L2315278 : 2160339

Lab File ID

: VG230328A05

Analysis Date

: 03/28/23 10:52

Client Sample No.

WG1759832-3LCS

WG1759832-4LCSD SBMW-2019-01-20230322

BD-20230322

Lab Sample ID

WG1759832-3

WG1759832-4

L2315278-03

L2315278-05D

Analysis Date

03/28/23 09:41

03/28/23 10:05

03/28/23 17:06

03/28/23 17:29

Client : LaBella Associates, P.C.
Project Name : AOC #1 Q1 GETINGE

Lab ID : WG1759832-5
Client ID : WG1759832-5BLANK

Sample Location

Sample Matrix : LIQUID
Analytical Method : 1,8260D
Lab File ID : VG230328A05

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2315278
Project Number : 2160339
Date Collected : NA
Date Received : NA

Date Analyzed : 03/28/23 10:52

Dilution Factor : 1
Analyst : PID
Instrument ID : GONZO
GC Column : RTX-502.2

CAS NO.	Parameter		ug/L		
	The state of the s	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND /	2.5	0.70	CONTRACTOR OF THE PROPERTY OF
75-34-3	1,1-Dichloroethane	ND			U
67-66-3	Chloroform		2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	2.5	0.70	U
78-87-5	1,2-Dichloropropane	ND	0.50	0.13	U
124-48-1		ND	1.0	0.14	U
79-00-5	Dibromochloromethane	ND	0.50	0.15	U
	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50		
108-90-7	Chlorobenzene	ND		0.18	U
75-69-4	Trichlorofluoromethane	-	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	2.5	0.70	U
71-55-6	1,1,1-Trichloroethane	ND	0.50	0.13	U
75-27-4		ND	2.5	0.70	U
10061-02-6	Bromodichloromethane	ND	0.50	0.19	U
	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50		
'5-25-2	Bromoform	ND		0.14	U
9-34-5	1,1,2,2-Tetrachloroethane		2.0	0.65	U
1-43-2	Benzene	ND	0.50	0.17	U
08-88-3	Toluene	ND	0.50	0.16	U
00-41-4		ND	2.5	0.70	U
4-87-3	Ethylbenzene	ND	2.5	0.70	U
	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	U
5-01-4	Vinyl chloride	ND	1.0	0.07	U
5-00-3	Chloroethane	ND	2.5		
i-35-4	1,1-Dichloroethene	ND		0.70	U
		NU	0.50	0.17	U

Client **Project Name**

: LaBella Associates, P.C. : AOC #1 Q1 GETINGE

Lab ID

: WG1759832-5

Client ID

70 1000

: WG1759832-5BLANK

Sample Location Sample Matrix

: LIQUID

Analytical Method Lab File ID

: 1,8260D : VG230328A05

Sample Amount Level

: 10 ml : LOW

Extract Volume (MeOH): N/A

Lab Number

: L2315278 Project Number : 2160339

Date Collected

: NA **Date Received** : NA

Date Analyzed **Dilution Factor**

: 03/28/23 10:52 : 1

Analyst Instrument ID : PID : GONZO

GC Column

: RTX-502.2

%Solids : N/A Injection Volume: N/A

CAS NO. ug/L Parameter Results RL MDL Qualifier 156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 U 79-01-6 Trichloroethene ND 0.50 0.18 U 95-50-1 1,2-Dichlorobenzene ND 2.5 0.70 U 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 U 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 Methyl tert butyl ether ND 2.5 0.70 U 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 o-Xylene ND 2.5 0.70 U 156-59-2 cis-1,2-Dichloroethene ND 2.5 0.70 U 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U 67-64-1 Acetone ND 5.0 1.5 U 75-15-0 Carbon disulfide ND 5.0 1.0 U 78-93-3 2-Butanone ND 5.0 1.9 U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 591-78-6 2-Hexanone ND 5.0 1.0 U 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 104-51-8 n-Butylbenzene ND 2.5 0.70 U 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 tert-Butylbenzene ND 2.5 0.70 U 96-12-8 1,2-Dibromo-3-chloropropane ND 2.5 0.70 U 98-82-8 Isopropylbenzene ND 2.5 0.70 U 99-87-6 p-Isopropyltoluene ND 2.5 0.70 U 91-20-3 Naphthalene ND 2.5 0.70 U 103-65-1 n-Propylbenzene ND 2.5 0.70 U

Client : LaBella Associates, P.C. **Project Name** : AOC #1 Q1 GETINGE

Lab ID : WG1759832-5 : WG1759832-5BLANK

Client ID Sample Location

Sample Matrix : LIQUID **Analytical Method** : 1,8260D Lab File ID

: VG230328A05 Sample Amount : 10 ml Level : LOW Extract Volume (MeOH): N/A

Dilution Factor Analyst

Instrument ID GC Column %Solids

Injection Volume: N/A

Project Number : 2160339

Lab Number

Date Collected

Date Received

Date Analyzed

: L2315278

: 03/28/23 10:52

: NA

: NA

: 1

: PID

: N/A

: GONZO

: RTX-502.2

CAS NO. Parameter	-			
	Results	RL	MDL	Qualifier
1,2,4-Trichlorobenzene	ND V	2.5	0.70	U
1,3,5-Trimethylbenzene	ND	2.5		U
1,2,4-Trimethylbenzene	ND			U
Methyl Acetate	ND			U
Cyclohexane	ND		······································	U
Freon-113				
Methyl cyclohexane	ND	10	0.70	U
	1,2,4-Trichlorobenzene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Methyl Acetate Cyclohexane Freon-113	1,2,4-Trichlorobenzene 1,3,5-Trimethylbenzene ND 1,2,4-Trimethylbenzene ND Methyl Acetate ND Cyclohexane ND Freon-113 ND	1,2,4-Trichlorobenzene ND 2.5 1,3,5-Trimethylbenzene ND 2.5 1,2,4-Trimethylbenzene ND 2.5 Methyl Acetate ND 2.0 Cyclohexane ND 10 Freon-113 ND 2.5 Methyl cyclohexane	Parameter Results RL MDL 1,2,4-Trichlorobenzene ND 2.5 0.70 1,3,5-Trimethylbenzene ND 2.5 0.70 1,2,4-Trimethylbenzene ND 2.5 0.70 Methyl Acetate ND 2.0 0.23 Cyclohexane ND 10 0.27 Freon-113 ND 2.5 0.70 Methyl cyclohexane ND 2.5 0.70

Tentatively Identified Compounds Form 1 Volatile Organics by GC/MS

Client **Project Name**

: LaBella Associates, P.C.

Lab ID

: AOC #1 Q1 GETINGE : WG1759832-5

Client ID

: WG1759832-5BLANK

Sample Location

Sample Matrix **Analytical Method** : WATER : 1,8260D

Lab File ID

: VG230328A05

Sample Amount

: 10 ml

Level

Extract Volume (MeOH): N/A

Lab Number

: L2315278

Project Number : 2160339 Date Collected

: NA

Date Received

: NA

Date Analyzed

: 03/28/23 10:52

Dilution Factor : 1 Analyst

: PID

Instrument ID GC Column

: GONZO : RTX-502.2

%Solids

: N/A

Injection Volume: N/A

Number TICS found: 2

Concentration Units: ug/L

CAS Number	Compound Name	BT	EST, CONC.	Qualifier	
	Unknown	2.39	3.81	Qualifier	
er controller controller controller	Total TIC Compounds		Water the Control of	J	
	1		3.81J	J	

Client

: LaBella Associates, P.C.

Lab Number : L2315278

Project Name

AOC #1 Q1 GETINGE

Project Number: 2160339

Matrix LCS Sample ID LCSD Sample ID WATER

: WG1759817-4

: WG1759817-3

Analysis Date: 03/27/23 08:02 / Analysis Date: 03/27/23 08:22

File ID : VE230327A01 File ID : VE230327A02

Laboratory Control Sample Laboratory Control Duplicate True Found %R True Found RPD %R Recovery RPD Parameter (ug/I) (ug/l) (ug/l) (ug/l) Limits Limit Methylene chloride 70-130 1,1-Dichloroethane 70-130 Chloroform 70-130 Carbon tetrachloride 63-132 1,2-Dichloropropane 9.9 70-130 Dibromochloromethane 9.7 9.6 63-130 1,1,2-Trichloroethane 9.6 70-130 Tetrachloroethene 70-130 Chlorobenzene 100: 75-130 Trichlorofluoromethane 62-150 1,2-Dichloroethane 70-130 1,1,1-Trichloroethane 67-130 Bromodichloromethane 67-130 trans-1,3-Dichloropropene 9.6 70-130 cis-1,3-Dichloropropene 70-130 Bromoform 9.4 9.6 54-136 1,1,2,2-Tetrachloroethane 67-130 Benzene 70-130 Toluene 70-130 Ethylbenzene 70-130 Chloromethane 64-130 Bromomethane 7.6 7.9 39-139 Vinyl chloride 55-140 Chloroethane 55-138 1,1-Dichloroethene 110 🗸 61-145 trans-1,2-Dichloroethene

70-130

Client

: LaBella Associates, P.C.

Lab Number : L2315278

Project Name Matrix

: AOC #1 Q1 GETINGE

: WATER

Project Number: 2160339

LCS Sample ID

: WG1759817-3 Analysis Date : 03/27/23 08:02

LCSD Sample ID : WG1759817-4 Analysis Date : 03/27/23 08:22

File ID : VE230327A01 File ID : VE230327A02

	Laboratory Control Sample			Laborato					
Parameter	True (ug/l)	Found (ug/l)	%R	True	Found	%R	RPD	Recovery Limits	RPD Limit
				(ug/l)	(ug/l)				
Trichloroethene	10	10	100	10	10	100 //	0	70.120	
1,2-Dichlorobenzene	10	11	110	10	11	110	0	70-130	20
1,3-Dichlorobenzene	10	11	110	10	11	110	***************************************	70-130	20
1,4-Dichlorobenzene	10	10	100	10	10	100	0	70-130	20
Methyl tert butyl ether	10	9.4	94	10	9.8	98	0	70-130	20
p/m-Xylene	20	21	105	20	22		4	63-130	20
o-Xylene	20	21	105	20	21	110	5	70-130	20
cis-1,2-Dichloroethene	10	11	110	10	11	105	0	70-130	20
Styrene	20	22	110	20		110	0	70-130	20
Dichlorodifluoromethane	10	12	120		22	110	0	70-130	20
Acetone	10	8.5	85	10	12	120	0	36-147	20
Carbon disulfide	10	12		10	6.9	(69)	21 Q	58-148	20
2-Butanone	10	7.2	120	10	11	110	9	51-130	20
4-Methyl-2-pentanone	10	· · · · · · · · · · · · · · · · · · ·	72	10	6.6	66	9	63-138	20
2-Hexanone		8.0	80	10	8.6	86	7	59-130	20
1,2-Dibromoethane	10	8.1	81	10	8.2	82	1	57-130	20
	10	9.5	95	10	9.6	96	1	70-130	20
n-Butylbenzene	10	11	110	10	11	110	0	53-136	20
sec-Butylbenzene	10	11	110	10	11	110	0	70-130	20
ert-Butylbenzene	10	11	110	10	11	110	0	70-130	20
,2-Dibromo-3-chloropropane	10	8.7	87	10	9.0	90	3	41-144	20
sopropylbenzene	10	11	110	10	11	110	0	70-130	20
o-Isopropyltoluene	10	11	110	10	11	110	0	70-130	20
laphthalene	10	9.7	97	10	10	100	3	70-130	20
-Propylbenzene	10	11	110	10	11	110	0	69-130	20
,2,4-Trichlorobenzene	10	10	100	10	10	100	0	70-130	20
,3,5-Trimethylbenzene	10	10	100	10	11	110	10	64-130	20

Client

: LaBella Associates, P.C.

Lab Number

: L2315278

100

0

70-130

20

Project Name

LCS Sample ID

LCSD Sample ID

: AOC #1 Q1 GETINGE

10

Project Number: 2160339

10

Matrix

Methyl cyclohexane

: WATER

10

: WG1759817-3

: WG1759817-4

Analysis Date: 03/27/23 08:02 Analysis Date: 03/27/23 08:22

File ID : VE230327A01 File ID : VE230327A02

Laboratory Control Sample Laboratory Control Duplicate True Found %R True Found %R **RPD** Recovery RPD Parameter (ug/l) (ug/l) (ug/l) (ug/l) Limits Limit 1,2,4-Trimethylbenzene 10 10 100 10 10 0 100 70-130 20 Methyl Acetate 10 8.7 87 10 9.0 90 3 70-130 20 Cyclohexane 10 11 110 10 12 120 9 70-130 20 Freon-113 10 11 110 10 12 120 9 70-130 20

10

100

Client

: LaBella Associates, P.C.

Lab Number : L2315278

Project Name Matrix

: AOC #1 Q1 GETINGE : WATER

Project Number: 2160339

LCS Sample ID

: WG1759832-3 Analysis Date : 03/28/23 09:41 LCSD Sample ID : WG1759832-4 Analysis Date : 03/28/23 10:05

File ID : VG230328A02 File ID : VG230328A03

	Laboratory Control Sample			Laboratory Control Duplicate					
Parameter	True (ug/l)	Found (ug/l)	%R	True (ug/l)	Found	%R	RPD	Recovery Limits	RPD Limit
					(ug/l)				
Methylene chloride	10	9.1	91	10	9.0	90	1	70.120	•
1,1-Dichloroethane	10	9.2	92	10	9.3	93	1	70-130	20
Chloroform	10	9.8	98	10	9.3	93	5	70-130	20
Carbon tetrachloride	10	10	100	10	10	100		70-130	20
1,2-Dichloropropane	10	9.0	90	10	8.9	89	0	63-132	20
Dibromochloromethane	10	9.7	97	10	10	100	1	70-130	20
1,1,2-Trichloroethane	10	9.3	93	10	8.8	88	3	63-130	20
Tetrachloroethene	10	9.8	98	10	9.8	98	6	70-130	20
Chlorobenzene	10	9.8	98	10	9.9	99 /		70-130	20
Trichlorofluoromethane	10	11	110	10	11		1	75-130	20
1,2-Dichloroethane	10	9.7	97	10	9.3	110	0	62-150	20
1,1,1-Trichloroethane	10	10	100	10	***************************************	93	4	70-130	20
Bromodichloromethane	10	9.7	97	10	9.9	99	1	67-130	20
trans-1,3-Dichloropropene	10	9.1	91	10	9.5	95	2	67-130	20
cis-1,3-Dichloropropene	10	9.2	92	10	8.9	89	2	70-130	20
Bromoform	10	9.2	92		9.0	90	2	70-130	20
1,1,2,2-Tetrachloroethane	10	9.7	97	10	8.7	87	6	54-136	20
Benzene	10	9.8	98	10	9.5	95	2	67-130	20
Toluene	10	9.5	95	10	9.7	97	1	70-130	20
Ethylbenzene	10	9.6	96	10	9.5	95	0	70-130	20
Chloromethane	10	7.8	78	10	9.7	97	1	70-130	20
Bromomethane	10	12	120	10	7.6	76	3	64-130	20
/inyl chloride	10	9.6		10	12	120	0	39-139	20
Chloroethane	10	18	96	10	9.5	95	1	55-140	20
,1-Dichloroethene	10	9.6	180 0	10	17	170 0	6	55-138	20
ans-1,2-Dichloroethene	10		96	10	8.8	88	9	61-145	20
		9.4	94	10	9.0	90	4	70-130	20

Laboratory Control Sample Summary Form 3 **Volatiles**

Client **Project Name**

: LaBella Associates, P.C. : AOC #1 Q1 GETINGE

Lab Number : L2315278

Matrix

: WATER

Project Number: 2160339

LCS Sample ID

: WG1759832-3 Analysis Date : 03/28/23 09:41

File ID : VG230328A02

LCSD Sample ID : WG1759832-4 Analysis Date : 03/28/23 10:05

File ID : VG230328A03

	Laborate	ory Control Sar	nple	Laborate	ory Control Du	alla a ta			
5	True	Found	%R	True					
Parameter	(ug/l)	(ug/l)		(ug/l)	Found (ug/l)	%R	RPD	Recovery	RPD
				***************************************	(ug/i)	· · · · · · · · · · · · · · · · · · ·		Limits	Limi
Trichloroethene	10	9.4	94	10	9.4	941			
1,2-Dichlorobenzene	10	10	100	10			0	70-130	20
1,3-Dichlorobenzene	10	10	100		10	100	0	70-130	20
1,4-Dichlorobenzene	10	10	100	10	10	100	0	70-130	20
Methyl tert butyl ether	10	8.9	89	10	10	100	0	70-130	20
p/m-Xylene	20	19		10	8.8	88	1	63-130	20
o-Xylene	20		95	20	19	95	0	70-130	20
cis-1,2-Dichloroethene		19	95	20	19	95	0	70-130	20
Styrene	10	9.5	95	10	9.1	91	4	70-130	20
	20	19	95	20	19	95	0	70-130	20
Dichlorodifluoromethane	10	10	100	10	9.7	97	3	36-147	
Acetone	10	9.4	94	10	8.7	87	8		20
Carbon disulfide	10	8.9	89	10	8.8	88		58-148	20
2-Butanone	10	8.2	82	10	7.2		1	51-130	20
-Methyl-2-pentanone	10	7.6	76	10		72	13	63-138	20
-Hexanone	10	7.3	73	The state of the s	7.7	77	1	59-130	20
,2-Dibromoethane	10	9.8		10	7.4	74	1	57-130	20
-Butylbenzene	10	10	98	10	9.7	97	1	70-130	20
ec-Butylbenzene	10		100	10	9.6	96	4	53-136	20
rt-Butylbenzene		11	110	10	10	100	10	70-130	20
2-Dibromo-3-chloropropane	10	11	110	10	11	110	0	70-130	20
opropylbenzene	10	9.8	98	10	9.2	92	6		20
	10	10	100	10	10	100	0		20
Isopropyltoluene	10	10	100	10	10	100	0		
aphthalene	10	8.3	83	10	8.0	80	4		20
Propylbenzene	10	10	100	10	10	100	0		20
2,4-Trichlorobenzene	10	8.6	86	10	8.4				20
3,5-Trimethylbenzene	10	10	100	10	9.9	84	2	70-130 2	20
		***************************************			3.3	99	1	64-130 2	20

Laboratory Control Sample Summary Form 3 **Volatiles**

Client

: LaBella Associates, P.C.

Lab Number : L2315278

Project Name Matrix

: AOC #1 Q1 GETINGE

: WATER

Project Number: 2160339

LCS Sample ID : WG1759832-3 Analysis Date : 03/28/23 09:41 LCSD Sample ID : WG1759832-4 Analysis Date: 03/28/23 10:05

File ID : VG230328A02 File ID : VG230328A03

Laboratory Control Sample			Laborato	Laboratory Control Duplicate				
True (ug/l)	Found (ug/l)	%R	True (ug/l)	Found (ug/l)	%R	RPD	Recovery Limits	RPD Limit
10	9.6	96	10	9.8	98	2	70-130	20
10	7.7	77	10	7.3	73	5		20
10	8.5	85	10	8.6	86	1		20
10	10	100	10	9.8	98	2		20
10	9.4	94	10	9.1	91	3		20
	True (ug/l) 10 10 10	True Found (ug/l) (ug/l) 10 9.6 10 7.7 10 8.5 10 10	True (ug/l) %R (ug/l) 10 9.6 96 10 7.7 77 10 8.5 85 10 10 100	True (ug/l) Found (ug/l) %R (ug/l) True (ug/l) 10 9.6 96 10 10 7.7 77 10 10 8.5 85 10 10 10 100 10	True (ug/l) Found (ug/l) %R True (ug/l) Found (ug/l) 10 9.6 96 10 9.8 10 7.7 77 10 7.3 10 8.5 85 10 8.6 10 10 100 10 9.8	True (ug/l) Found (ug/l) %R (ug/l) True (ug/l) Found (ug/l) %R (ug/l) 10 9.6 96 10 9.8 98 10 7.7 77 10 7.3 73 10 8.5 85 10 8.6 86 10 10 10 9.8 98	True (ug/l) Found (ug/l) %R True (ug/l) Found (ug/l) %R RPD 10 9.6 96 10 9.8 98 2 10 7.7 77 10 7.3 73 5 10 8.5 85 10 8.6 86 1 10 10 100 10 9.8 98 2	True (ug/l) Found (ug/l) %R True (ug/l) Found (ug/l) %R RPD (ug/l) Recovery Limits 10 9.6 96 10 9.8 98 2 70-130 10 7.7 77 10 7.3 73 5 70-130 10 8.5 85 10 8.6 86 1 70-130 10 10 10 9.8 98 2 70-130

Matrix Spike Sample Summary Form 3 **Volatiles**

Client

: LaBella Associates, P.C.

Project Name

: AOC #1 Q1 GETINGE

Client Sample ID

: SBMW201S-22-R-20230322

Lab Sample ID Matrix Spike Matrix Spike Dup

: L2315278-04 : WG1759817-6 : WG1759817-7

Lab Number

: L2315278

Project Number

Matrix

WATER

Analysis Date

: 03/27/23 15:27

MS Analysis Date : 03/29/23 01:09

MSD Analysis Date: 03/29/23 01:30

Matrix Spike Sample Matrix Spike Duplicate Sample Spike Spike Spike Spike Conc. Added Conc. %R Added Conc. Parameter %R RPD Recovery RPD (ug/l) (ug/l) (ug/l) (ug/l) (ug/l) Limits Limit Methylene chloride ND 70-130 1,1-Dichloroethane ND 70-130 Chloroform ND 70-130 Carbon tetrachloride ND 63-132 1,2-Dichloropropane ND 70-130 Dibromochloromethane ND 63-130 1,1,2-Trichloroethane ND 70-130 Tetrachloroethene ND 70-130 Chlorobenzene ND 75-130 Trichlorofluoromethane ND 62-150 1,2-Dichloroethane ND 70-130 1,1,1-Trichloroethane ND 67-130 Bromodichloromethane ND 67-130 trans-1,3-Dichloropropene ND 70-130 cis-1,3-Dichloropropene ND 70-130 Bromoform ИD 54-136 1,1,2,2-Tetrachloroethane ND 67-130 Benzene ND 70-130 Toluene ND 70-130 Ethylbenzene ND 70-130 Chloromethane ND 64-130 Bromomethane ND

39-139

Matrix Spike Sample Summary Form 3 Volatiles

Client **Project Name** : LaBella Associates, P.C. : AOC #1 Q1 GETINGE

Client Sample ID : SBMW201S-22-R-20230322

Lab Sample ID Matrix Spike

: L2315278-04 : WG1759817-6 Matrix Spike Dup : WG1759817-7 Lab Number

: L2315278

Project Number

: 2160339 : WATER

Matrix Analysis Date

: 03/27/23 15:27

MS Analysis Date : 03/29/23 01:09

MSD Analysis Date: 03/29/23 01:30

	RP Lim
Limits 55-140	Lin
55-140	
120000000000000000000000000000000000000	20
55-138	
and the second second	20
61-145	20
70-130	20
70-130	20
70-130	20
70-130	20
70-130	20
63-130	20
70-130	20
70-130	20
70-130	20
70-130	20
36-147	20
58-148	20
51-130	20
63-138	20
	20
	20
	20
	20
	20
7 3 5 5; 5; 5; 5;	70-130 70-130 66-147 8-148 1-130 3-138 9-130 7-130 3-136

Matrix Spike Sample Summary Form 3 Volatiles

Client

: LaBella Associates, P.C.

Project Name

: AOC #1 Q1 GETINGE

Client Sample ID Lab Sample ID

: SBMW201S-22-R-20230322

Matrix Spike

: L2315278-04 : WG1759817-6

Matrix Spike Dup : WG1759817-7

Lab Number

: L2315278

Project Number

: 2160339

Matrix

: WATER

Analysis Date

: 03/27/23 15:27

MS Analysis Date : 03/29/23 01:09

MSD Analysis Date: 03/29/23 01:30

		Matrix Sp	ike Sample		Matrix Sn	ike Duplicate				
Parameter	Sample Conc. (ug/l)	Spike Added (ug/l)	Spike Conc. (ug/l)	%R	Spike Added (ug/l)	Spike Conc. (ug/l)	%R	RPD	Recovery Limits	
tert-Butylbenzene	ND	25	24	96	25	25	/		NAMES - 100-	Limit
1,2-Dibromo-3-chloropropane	ND	25	19	76	25	20	100 V	4	70-130	20
Isopropylbenzene	ND	25	24	96	25	25	80	5	41-144	20
p-Isopropyltoluene	ND	25	24	96	25	25	100	4	70-130	20
Naphthalene	ND	25	23	92	25	25	100	4	70-130	20
n-Propylbenzene	ND	25	24	96	25	26	100	8	70-130	20
1,2,4-Trichlorobenzene	ND	25	24	96	25	24	104	8	69-130	20
1,3,5-Trimethylbenzene	ND	25	23	92	25		96	0	70-130	20
1,2,4-Trimethylbenzene	ND	25	24	96	25	24	96	4	64-130	20
Methyl Acetate	ND	25	23	92	25	24	96	0	70-130	20
Cyclohexane	ND	25	26	104	25	25	100	8	70-130	20
reon-113	ND	25	27	108		27	108	4	70-130	20
Methyl cyclohexane	ND	25	24J	96	25	29	116	7	70-130	20
West and the second sec	and the second second	***************************************		30	25	25	100	4	70-130	20

Client

Project Name

: LaBella Associates, P.C. : AOC #1 Q1 GETINGE

Lab Number

: L2315278

Instrument ID

: GONZO

Project Number

: 2160339

Tune Standard

Analysis Date

: 03/10/23 12:35

: WG1753905-1

Tune File ID

: VG230310ABF1_tune

m/e	Ion Abundance Criteria	%Relative Abundance
50	15.0 - 40.0% of mass 95	20.6
75	30.0 - 80.0% of mass 95	1
95	Base Peak, 100% relative abundance	50 100
96	5.0 - 9.0% of mass 95	and the same of th
173	Less than 2.0% of mass 174	6.5 0.9 (1)1
174	Greater than 50.0% of mass 95	1. /.
175	5.0 - 9.0% of mass 174	94.3
176	Greater than 95.0% but less than 101% of mass	6.9 (7.3)1
177	5.0 - 9.0% of mass 176	95 (100.)1
	1-Value is % of mass 174 2-Value is % of mass 174	5.9 (6.2)2

1-Value is % of mass 174 2-Value is % of mass 176

This Check Applies to the following Samples, MS, MSD, Blank

Client Sample ID	Lab Sample ID	File ID	
STD0.19PPB	R1671861-1		Analysis Date/Time
STD0.5PPB		VG230310A03	03/10/23 13:36
STD2PPB	R1671861-3	VG230310A05	03/10/23 14:24
STD10PPB	R1671861-2	VG230310A07	03/10/23 15:11
ACCESS OF THE POST OF THE CO.	R1671861-4	VG230310A08	03/10/23 15:35
STD30PPB	R1671861-5	VG230310A09	
STD80PPB	R1671861-8	VG230310A10	03/10/23 15:59
STD120PPB	R1671861-6		03/10/23 16:23
STD200PPB		VG230310A11	03/10/23 16:47
Correlation Data Summary	R1671861-7	VG230310A12	03/10/23 17:10
	R1671861-9	VG230310A18	03/10/23 19:33
ICV Quant Report	R1671861-9	VG230310A18	03/10/23 19:33

Client

Tune Standard

: LaBella Associates, P.C.

Project Name Instrument ID

: AOC #1 Q1 GETINGE

: GONZO

: WG1759832-1

Lab Number

: L2315278

Project Number Analysis Date

: 2160339

Tune File ID

: 03/28/23 08:59 : VG230328ABF1_tune

m/e	Ion Abundance Criteria	%Relative Abundance	
50	15.0 - 40.0% of mass 95		е
75	30.0 - 80.0% of mass 95	20.9	
95	Base Peak, 100% relative abundance	52.7	V
96	5.0 - 9.0% of mass 95	100	
173	Less than 2.0% of mass 174	7.3	
174	Greater than 50.0% of mass 95	0.6 (.7)1 94.7	
175	5.0 - 9.0% of mass 174	22.020 ASSESSOR	
176	Greater than 95.0% but less than 101% of mass	(/-	
177	5.0 - 9.0% of mass 176	(20,2).	
	1-Value is % of mass 174 . a V. L. L. a.	5.8 (6.2)2	

1-Value is % of mass 174 2-Value is % of mass 176

This Check Applies to the following Samples, MS, MSD, Bla

Client Sample ID	Lab O		nd Standards:
WG1759832-2CCAL	Lab Sample ID	File ID	Analysis Date/Time
WG1759832-2CCAL WG1759832-3LCS	WG1759832-2	VG230328A02	03/28/23 09:41
	WG1759832-3	VG230328A02	03/28/23 09:41
WG1759832-4LCSD	WG1759832-4	VG230328A03	03/28/23 10:05
WG1759832-5BLANK	WG1759832-5	VG230328A05	03/28/23 10:52
SBMW-2019-01-20230322	L2315278-03	VG230328A20	
BD-20230322	L2315278-05D	VG230328A21	03/28/23 17:06
		- GEOOGEOMET	03/28/23 17:29

Client **Project Name**

: LaBella Associates, P.C.

: AOC #1 Q1 GETINGE

Lab Number Project Number : L2315278

Instrument ID

: ELAINE

Analysis Date

: 2160339 : 03/23/23 16:24

Tune Standard

: WG1758545-1

Tune File ID

: VE230323NBFB3_tune

m/e	Ion Abundance Criteria	%Relative Abundance
50	15.0 - 40.0% of mass 95	
75	30.0 - 80.0% of mass 95	19.3
95	Base Peak, 100% relative abundance	53.6
96	5.0 - 9.0% of mass 95	100
173	Less than 2.0% of mass 174	6.6
174	Greater than 50.0% of mass 95	0 (0)1
175	5.0 - 9.0% of mass 174	79.6
176	Greater than 95.0% but less than 101% of mass	5.4 (6.8)1
177	5.0 - 9.0% of mass 176	76.2 (95.7)1
-	I-Value is % of mose 474 and the	5.1 (6.7)2

1-Value is % of mass 174 2-Value is % of mass 176

This Check Applies to the following Samples, MS, MSD, Bla

Client Sample ID	Lab Sample ID	File ID	
STD0.19PPB	R1676245-1		Analysis Date/Time
STD0.5PPB	R1676245-2	VE230323N03	03/23/23 17:24
STD2.0PPB		VE230323N04	03/23/23 17:45
STD10PPB	R1676245-4	VE230323N07	03/23/23 18:49
	R1676245-3	VE230323N10	03/23/23 19:53
STD30PPB	R1676245-5	VE230323N11	
STD80PPB	R1676245-6	VE230323N12	03/23/23 20:15
STD120PPB	R1676245-8		03/23/23 20:36
STD200PPB	R1676245-7	VE230323N13	03/23/23 20:57
Correlation Data Summary		VE230323N14	03/23/23 21:19
ICV Quant Report	R1676245-9	VE230323N19	03/23/23 23:05
assir report	R1676245-9	VE230323N19	03/22/22 22:05

Client

: LaBella Associates, P.C.

: L2315278

Project Name

: AOC #1 Q1 GETINGE

Lab Number **Project Number**

: 2160339

Instrument ID

: ELAINE

Analysis Date

: 03/27/23 07:47

Tune Standard

: WG1759817-1

Tune File ID

: VE230327ABF1_tune

m/e	Ion Abundance Criteria	%Relative Abundance
50	15.0 - 40.0% of mass 95	19.9
75	30.0 - 80.0% of mass 95	53.4
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0 (0)1
174	Greater than 50.0% of mass 95	76.7
175	5.0 - 9.0% of mass 174	5.7 (7.5)1
176	Greater than 95.0% but less than 101% of mass	74.7 (97.4)1
177	5.0 - 9.0% of mass 176	4.8 (6.4)2
1		

¹⁻Value is % of mass 174 2-Value is % of mass 176

This Check Applies to the following Samples, MS, MSD, Bla

Client Sample ID	Lab Sample ID	es, MS, MSD, Blanks, a File ID	Analysis Date/Time
WG1759817-2CCAL	WG1759817-2	VE230327A01	03/27/23 08:02
WG1759817-3LCS	WG1759817-3	VE230327A01	03/27/23 08:02
WG1759817-4LCSD	WG1759817-4	VE230327A02	03/27/23 08:02
WG1759817-5BLANK	WG1759817-5	VE230327A05	
SBMW-2019-02-20230322	L2315278-01	VE230327A20	03/27/23 09:25
MW-06-R-20230322	L2315278-02	VE230327A21	03/27/23 14:43
SBMW201S-22-R-20230322	L2315278-04D	VE230327A21	03/27/23 15:05 03/27/23 15:27

Instrument Performance Check (Tune) Summary Form 5 **Volatiles**

Bromofluorobenzene (BFB)

Client

: LaBella Associates, P.C.

: L2315278

Project Name Instrument ID

: AOC #1 Q1 GETINGE

Lab Number Project Number : 2160339

Tune Standard

: ELAINE : WG1759817-8 **Analysis Date** : 03/28/23 15:33

Tune File ID

: VE230328NBF1_tune

m/e	Ion Abundance Criteria	%Relative Abundance
50	15.0 - 40.0% of mass 95	20.5
75	30.0 - 80.0% of mass 95	52.5
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.3
173	Less than 2.0% of mass 174	0 (0)1
174	Greater than 50.0% of mass 95	77.7
175	5.0 - 9.0% of mass 174	5.7 (7.4)1
176	Greater than 95.0% but less than 101% of mass	74.2 (95.5)1
177	5.0 - 9.0% of mass 176	5 (6.7)2
		- (v./)z

1-Value is % of mass 174 2-Value is % of mass 176

This Check Applies to the following Samples, MS, MSD, Blanks, and Standards:

Client Sample ID	Lab Sample ID	File ID	Analysis Date/Time		
WG1759817-10LCS	WG1759817-10	VE230328N01			
WG1759817-9CCAL	WG1759817-9	VE230328N01	03/28/23 15:52		
WG1759817-11LCSD	WG1759817-11		03/28/23 15:52		
WG1759817-12BLANK	WG1759817-11	VE230328N02	03/28/23 16:13		
WG1759817-6MS		VE230328N05	03/28/23 17:15		
	WG1759817-6	VE230328N28	03/29/23 01:09		
WG1759817-7MSD	WG1759817-7	VE230328N29	03/29/23 01:30		

Internal Standard Area and RT Summary Form 8a Volatiles

Client

: LaBella Associates, P.C.

Project Name

: AOC #1 Q1 GETINGE

Instrument ID

: ELAINE

Sample No

: WG1759817-2

Lab Number

: L2315278

Project Number

: 2160339

Analysis Date

: 03/27/23 08:02:00

Lab File ID

: VE230327A01

	Fluorobenzene (IS)		Chlorobenzene-d5		1,4-Dichlorobenzene-D4	
	Area	RT	Area	RT	Area	RT
WG1759817-2	461416	5.10	368682	8.24	196475	9.77
Upper Limit	922832	5.60	737364	8.74	392950	10.27
Lower Limit	230708	4.60	184341	7.74	98238	9.27
Sample ID		/				/
WG1759817-3 LCS	461416	5.10	368682	8.24	196475	9.77
WG1759817-4 LCSD	469595	5.10	376727	8.25	200972	9.77
WG1759817-5 BLANK	430943	5.10	348743	8.25	193958	9.77
SBMW-2019-02-20230322	414431	5.10	337541	8.25	190165	9.77
MW-06-R-20230322	416714	5.10	337652	8.25	190622	9.77
SBMW201S-22-R-20230322	405608	5.10	333457	8.25	187266	
WG1759817-8 BFB	*		-		107200	9.77

Area Upper Limit = +100% of internal standard area Area Lower Limit = - 50% of internal standard area

* Values outside of QC limits

RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

Internal Standard Area and RT Summary Form 8a **Volatiles**

Client

: LaBella Associates, P.C.

Project Name Instrument ID : AOC #1 Q1 GETINGE

Sample No

: GONZO

: WG1759832-2

Lab Number

: L2315278

Project Number

: 2160339

Analysis Date

: 03/28/23 09:41:00

Lab File ID

: VG230328A02

	Fluorobenzene (IS)		Chlorobenzene-d5		1,4-Dichlorobenzene-D4	
	Area	RT	Area	RT	Area	RT
WG1759832-2	385756	6.14	322601	9.70	192878	12.37
Upper Limit	771512	6.64	645202	10.20	385756	12.87
Lower Limit	192878	5.64	161301	9.20	96439	11.87
Sample ID	······································	/				/
WG1759832-3 LCS	385756	6.14	322601 V	9.70	192878	12.37
WG1759832-4 LCSD	392702	6.15	324908	9.70	193289	12.37
WG1759832-5 BLANK	347839	6.15	287678	9.70	151541	12.37
SBMW-2019-01-20230322	332507	6.15	259818	9.69	135961	12.37
3D-20230322	314343	6.15	247144	9.70	130022	12.37

Area Upper Limit = +100% of internal standard area Area Lower Limit = - 50% of internal standard area

* Values outside of QC limits

RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

Internal Standard Area and RT Summary Form 8a Volatiles

Client

: LaBella Associates, P.C.

Project Name

: AOC #1 Q1 GETINGE

Instrument ID

: ELAINE

Sample No

: WG1759817-9

Lab Number

: L2315278

Project Number

: 2160339

Analysis Date

: 03/28/23 15:52:00

Lab File ID

: VE230328N01

Fluorobenzene (IS)		Chlorobenzene-d5		1,4-Dichlorobenzene-D4	
Area	RT	Area	RT	Area	RT
426820	5.10	329402	8.24	177298	9.77
853640	5.60	658804	8.74	11.5041.01 (73.7507)	10.27
213410	4.60	164701			9.27
	/		/	00043	3.21
426820	5.10	329402 V	8.24	177208	9.77
428 260	5.10	335853	55775	V.	(0.00.0.5)
396419	5.10	Anna service and a	\$34K		9.77
411542	W. S. F. G. S.	294.22772.0297229427		State British	9.77
405910	5.10	329904	8.25	182614 178411	9.77 9.77
	426820 853640 213410 426820 428260 396419 411542	Area RT 426820 5.10 853640 5.60 213410 4.60 426820 5.10 428260 5.10 396419 5.10 411542 5.10	Area RT Area 426820 5.10 329402 853640 5.60 658804 213410 4.60 164701 426820 5.10 329402 428260 5.10 335853 396419 5.10 318834 411542 5.10 329904	Area RT Area RT 426820 5.10 329402 8.24 853640 5.60 658804 8.74 213410 4.60 164701 7.74 426820 5.10 329402 8.24 428260 5.10 335853 8.25 396419 5.10 318834 8.25 411542 5.10 329904 8.24	Area RT Area RT Area 426820 5.10 329402 8.24 177298 853640 5.60 658804 8.74 354596 213410 4.60 164701 7.74 88649 426820 5.10 329402 8.24 177298 ✓ 428260 5.10 335853 8.25 181852 396419 5.10 318834 8.25 171271 411542 5.10 329904 8.24 182614

Area Upper Limit = +100% of internal standard area Area Lower Limit = - 50% of internal standard area

* Values outside of QC limits

RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

