

March 20, 2021

Adam Morgan NYSDEC Region 8 6274 East Avon-Lima Road Avon, New York 14414

Re: Periodic Review Report

December 31, 2019 to December 31, 2020

Former Vogt Manufacturing Site

100 and 142 Fernwood Avenue, 31, 35, and 41 Rosemary Drive, and 25, 29, 33, 39, 43, 49, and

55 Ilex Place Rochester, New York 14621

LaBella Project #2190521

Dear Mr. Morgan,

LaBella Associates, D.P.C. ("LaBella") is pleased to submit this Periodic Review Report (PRR) for the Former Vogt Manufacturing Site located at 100 and 142 Fernwood Avenue, 31, 35, and 41 Rosemary Drive, and 25, 29, 33, 39, 43, 49, and 55 Ilex Place, City of Rochester, Monroe County, New York (Site). The Site is designated New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site #C828119. A Site Location Map is included as Figure 1.

LaBella was retained by the owner, Rochester Housing Authority, to assist in the monitoring and reporting requirements associated with the Site Management Plan (SMP) for the Site by Day Environmental dated December 18, 2009. In accordance with the requirements in the SMP and NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation dated May 2010, and the guidelines provided by NYSDEC, annual groundwater monitoring, monthly light non-aqueous phase liquid (LNAPL) monitoring, and a Sitewide inspection were completed in 2020. This PRR includes the time period from December 31, 2019 through December 31, 2020. The site-wide inspection was completed in December 2020. A summary of the institutional controls (ICs) and engineering controls (ECs) in place are summarized below. Refer to Appendix 1 for a Data Package for the 2020 Groundwater Monitoring Event.

Institutional Controls

ICs have been complied with during the 2020 certification period including compliance with the required monitoring and reporting procedures outlined in the SMP. Groundwater is not being used and there were no apparent ground disturbances. There were no buildings present or being constructed on the Site.

From January through March 2020 monitoring well MW-1 was not accessible as it was located behind a locked gate and beneath a metal plate. The area within the locked gate is being used as a construction yard. MW-1 was accessed and sampled in April during the annual monitoring, and remained accessible throughout 2020.

MW-7 could not be located during 2020. MW-7 is not required to be sampled per the SMP and LNAPL has not been detected in this well. Additional attempts were made to locate MW-7 using a metal detector and GPS.

The Annual Inspection Form is included as Appendix 2 of this report.

Engineering Controls

ECs are in compliance with the SMP. Engineering controls currently in place at the Site include the bioremediation system. The bioremediation system components that are visible (i.e., above grade) also appear to be intact. In addition, the Site is vegetated and does not appear to have been disturbed during the certification period. There are no buildings constructed on the Site.

Monitoring

Monthly LNAPL monitoring was completed from January through December. Approximately 1.54 gallons of LNAPL were removed in 2020. Approximately 21.11 gallons of LNAPL have been removed since 2010. The attached Table includes the cumulative volume of LNAPL removed overtime. In addition, the cumulative LNAPL removal for the past 3 years (in 6 month intervals) is shown as a graph with the attached Table. Wells in which LNAPL was observed in 2020 include MW-6, MW-8, MW-12, MW-16 and MWIRM-3 which is consistent with historic LNAPL monitoring at the Site. Refer to Figure 2 for well locations.

Annual groundwater monitoring was completed in accordance with the SMP. Wells in which compounds were detected above Groundwater Quality Standards include MW-3, MW-5, MW-8, MW-14, MWIRM-2 and MWIRM-3. Refer to Appendix 1 for details regarding the sampling.

General Site Assessment

ICs/ and ECs appear to be functioning as designed. No new assumptions or conclusions regarding site contamination have been made during this reporting period.

Recommended Changes to Monitoring Plan

The recoverable amount of LNAPL has been decreasing over the last 3 years of routine LNAPL removal. As shown in the attached Table and Graph, the volume of LNAPL recovered has decreased steadily. Based on the decreasing volume of LNAPL recovery LaBella recommends that monthly LNAPL monitoring/recovery be reduced to Quarterly monitoring/recovery.

If you have any questions, or require additional information, please do not hesitate to contact me at (585) 295-6611.

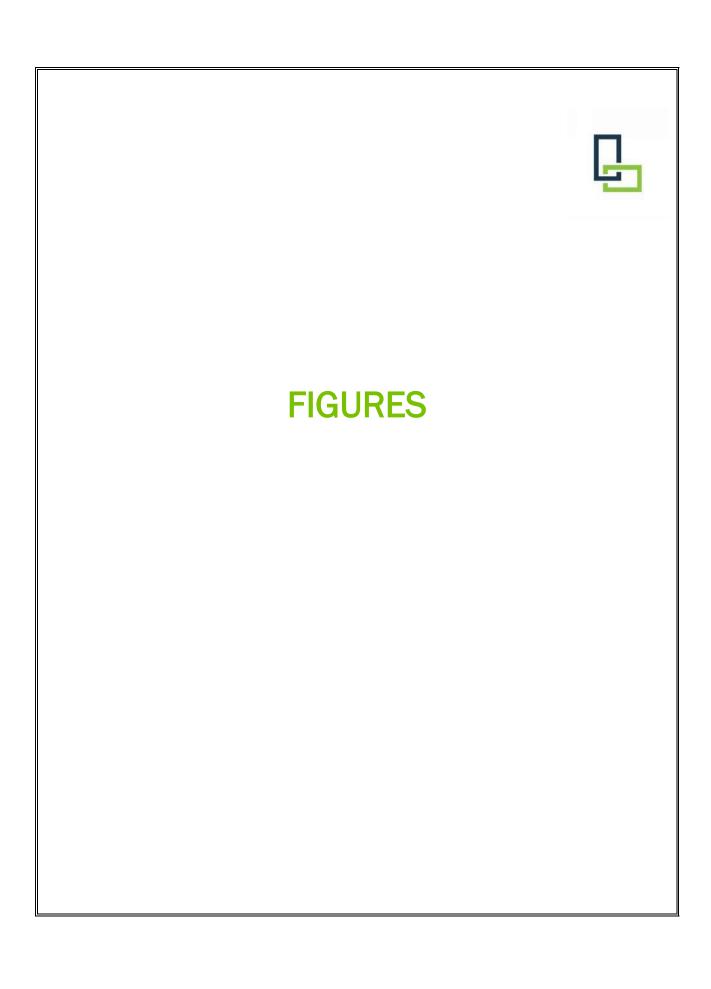
Sincerely,

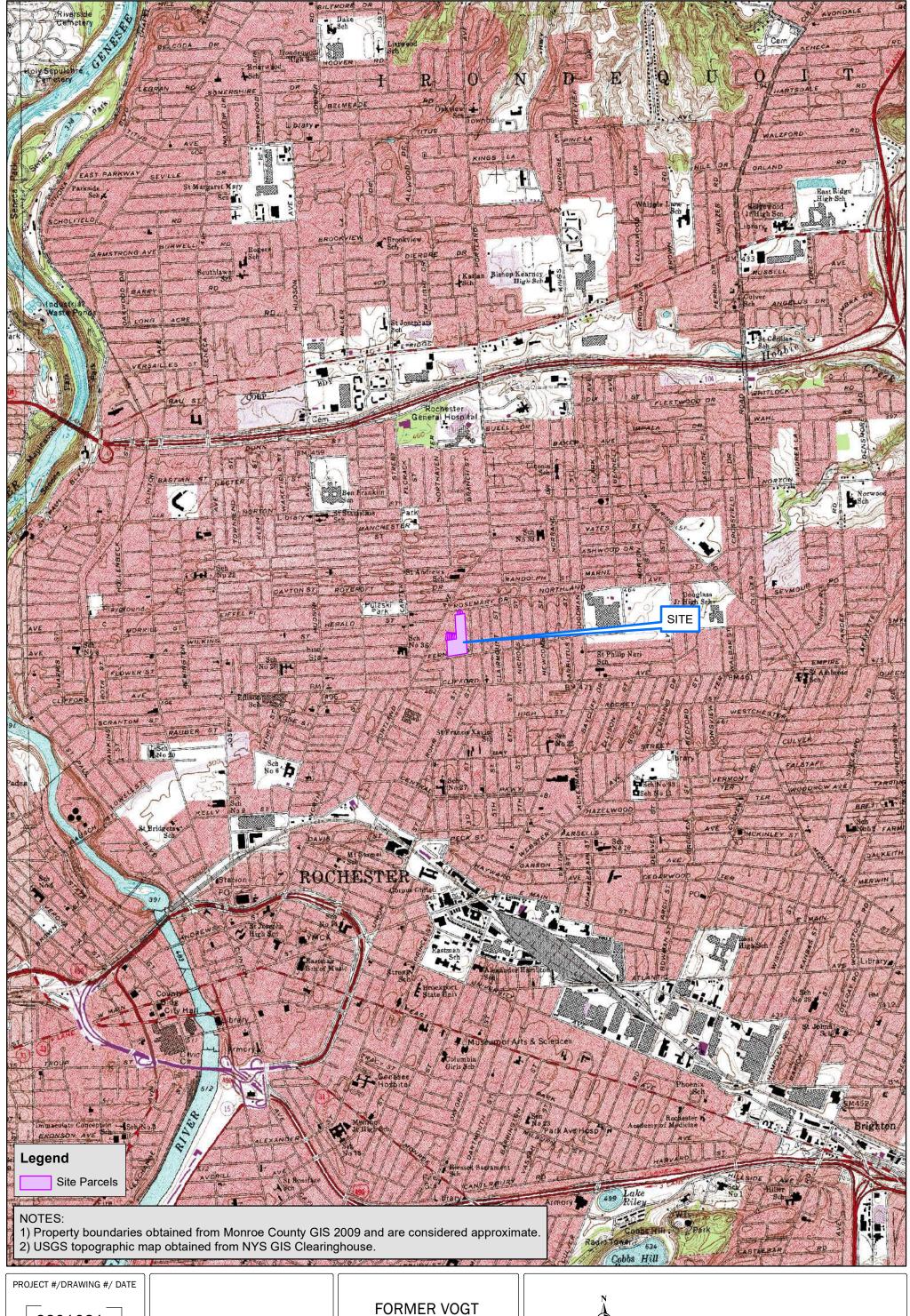
LABELLA ASSOCIATES, P.C.

Dan Noll, PE

VP, Environmental Technical Manager

Figures


Table/Graph


Appendix 1: Data Package – 2020 Groundwater Monitoring Event

Appendix 2: Annual Site-Wide Inspection Form

Appendix 3: Institutional and Engineering Controls Certification Form

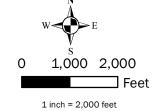

2201031

FIGURE 1

2/12/2021

SITE LOCATION MAP

MANUFACTURING NYSDEC BCP #C828119 100 FERNWOOD AVE ROCHESTER, NY

INTENDED TO PRINT AS: 11" X 17"

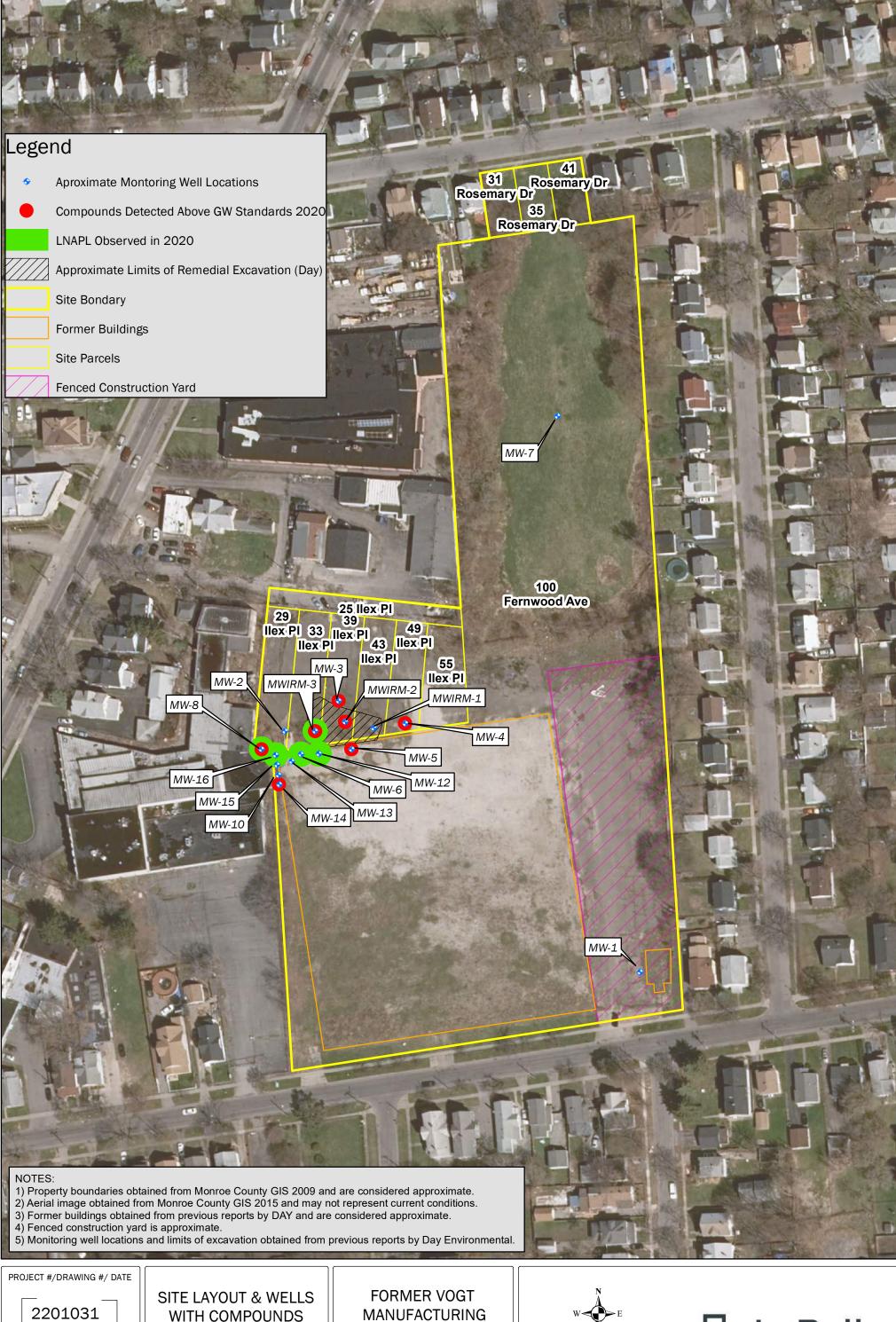
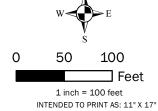
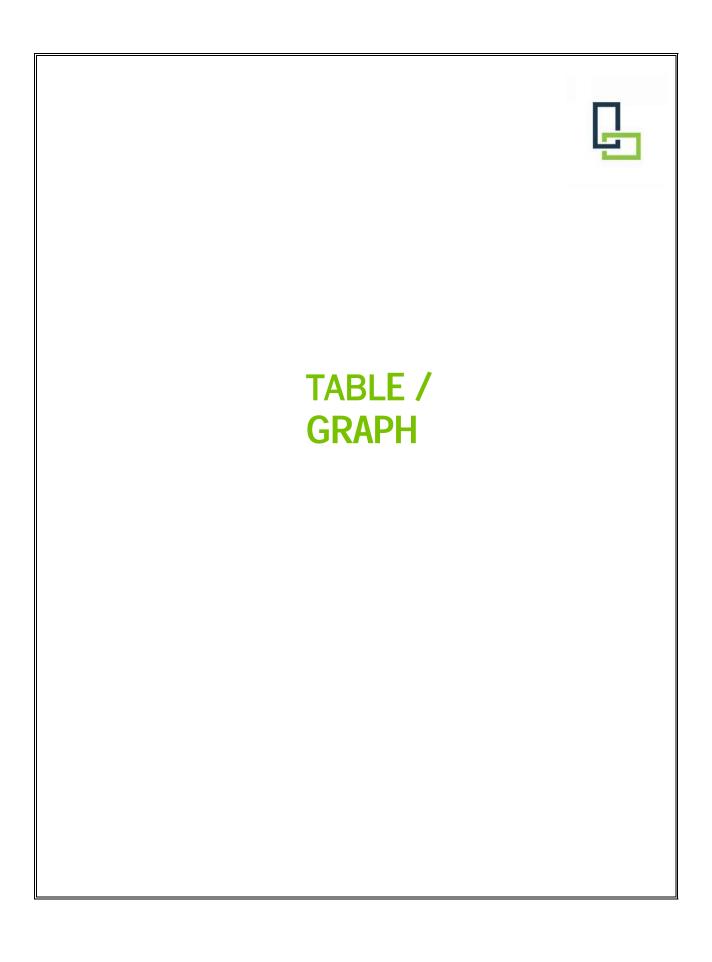
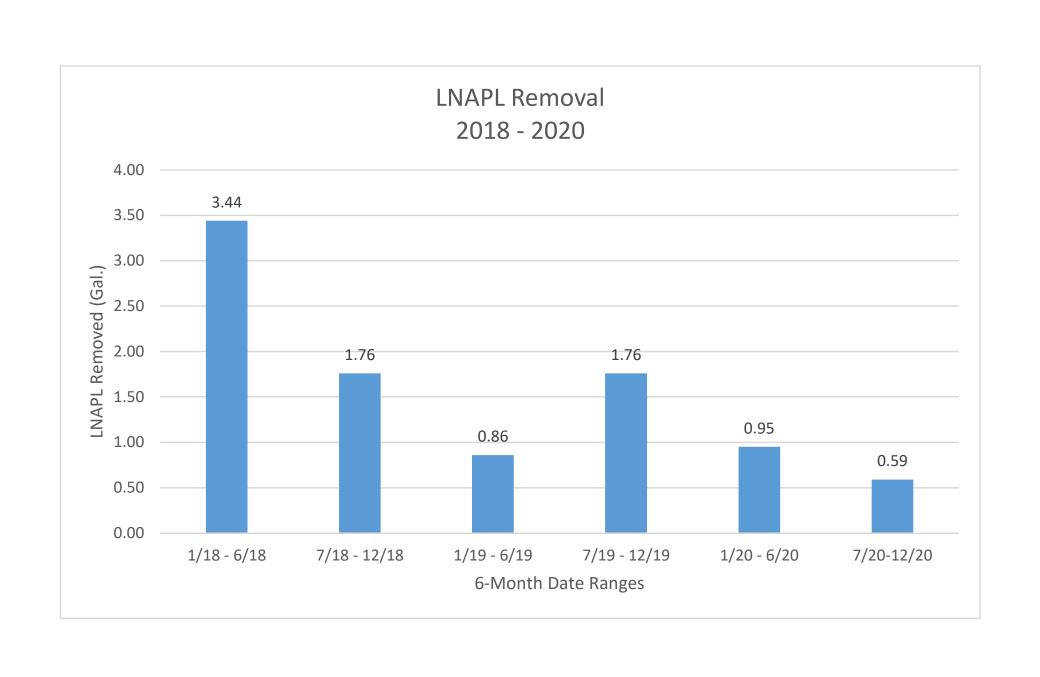



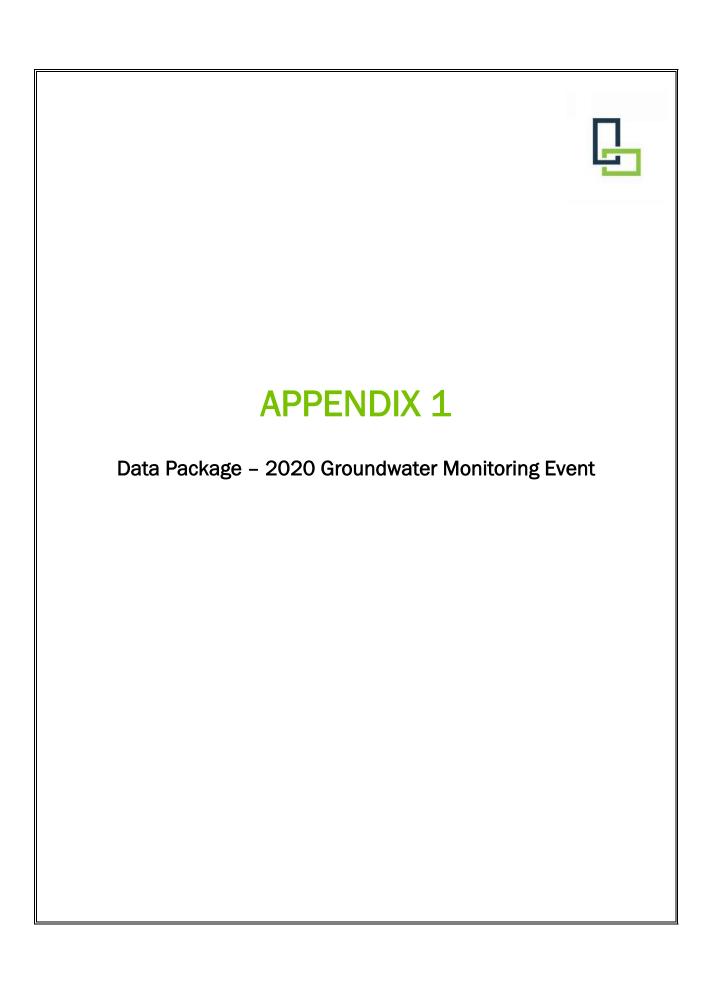
FIGURE 2


2/12/2021

WITH COMPOUNDS ABOVE GROUNDWATER **QUALITY STANDARDS**

MANUFACTURING **NYSDEC BCP #C828119** 100 FERNWOOD AVE ROCHESTER, NY




11/5/2008	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MWIRM-1	MWIRM-2	MWIRM-3	Cumulative LNAPL Removed (Gallons)
	0.00	0.00	0.00	0.00	0.00	0.13	0.00	0.00	0.00	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.46	0.76
11/21/2008	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.37	0.40
12/4/2008	0.00	0.00	0.00	0.00	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.37	0.53
12/18/2008	0.00	0.00	0.00	0.00	0.00	0.19	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.30
1/13/2009	0.00	0.00	0.00	0.00	0.00	0.29	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.32
2/26/2009	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.13
3/19/2009	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.05	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.15
4/23/2009 5/15/2009	0.00	0.00	0.00	0.00	0.00	0.05 0.27	0.00	0.02	0.00	0.02 0.00	0.00	0.00	0.00	0.00 0.01	0.02	0.12 0.00	0.00	0.00	0.12 0.00	0.35 0.29
6/29/2009	0.00	0.00	0.00	0.00	0.00	0.27	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.29
8/14/2009	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07
9/10/2009	0.00	0.00	0.00	0.00	0.00	0.09	0.00	0.04	0.00	0.04	0.00	0.00	0.00	0.00	0.09	0.00	0.00	0.00	0.00	0.26
11/20/2009	0.00	0.00	0.00	0.00	0.00	0.19	0.00	0.04	0.00	0.04	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.32
1/7/2010	0.00	0.00	0.00	0.00	0.00	0.13	0.00	0.03	0.00	0.02	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.21
2/25/2010	0.00	0.00	0.00	0.00	0.00	0.24	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.36
4/6/2010	0.00	0.00	0.00	0.00	0.00	0.11	0.00	0.05	NA NA	0.03	NA NA	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.23
10/27/2010	0.00	0.00	0.00	0.00	0.00	0.12	0.00	0.12	NA NA	0.12	NA NA	0.00	0.00	0.00	0.06	0.00	0.00	0.00	0.05	0.47
11/8/2010	0.00	0.00	0.00	0.00	0.00	0.47	0.00	0.11	NA	0.05	NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.63
12/3/2010	0.00	0.00	0.00	0.00	0.00	0.33	0.00	0.12	NA	0.12	NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.57
3/24/2011	0.00	0.00	0.00	0.00	0.00	0.63	0.00	0.20	NA	0.00	NA NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.83
4/21/2011	0.00	0.00	0.00	0.00	0.00	0.21	0.00	0.12	NA NA	0.01	NA NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.39
4/25/2011	0.00	0.00	0.00	0.00	0.00	0.09	0.00	0.00	NA	0.00	NA NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09
4/26/2011	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.14	NA	0.00	NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17
5/24/2011	0.00	0.00	0.00	0.00	0.00	0.18	0.00	0.05	NA	0.12	NA	0.00	0.00	0.00	0.00	0.00	NA	NA	NA	0.35
7/28/2011	0.00	0.00	0.00	0.00	0.00	0.29	0.00	0.16	NA	0.04	NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.49
8/26/2011	0.00	0.00	0.00	0.00	0.00	0.38	0.00	0.12	NA	0.13	NA	0.01	0.00	0.00	0.04	0.00	0.00	0.00	0.10	0.78
10/17/2011	0.00	0.00	0.00	0.00	0.00	0.12	0.00	0.00	NA	0.05	NA	0.07	0.00	0.00	0.03	0.00	0.00	0.00	0.10	0.37
10/18/2011	0.00	0.00	0.00	0.00	0.00	0.26	0.00	0.12	NA	0.00	NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.38
1/19/2012	0.00	0.00	0.00	0.00	0.00	0.32	0.00	0.00	NA	0.00	NA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.32
10/20/2017	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	NA	0.00	NA	0.09	0.00	0.00	0.00	0.03	0.00	0.00	0.05	0.23
11/7/2017	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.01	NA	0.00	NA	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.29
12/20/2017	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NA	0.00	NA	0.34	0.00	0.00	0.00	0.14	0.00	0.00	0.16	0.64
1/12/2018	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.66
2/27/2018	0.00	0.00	0.00	0.00	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.37	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.60
3/26/2018	0.00	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.54
4/20/2018	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.52
6/14/2018	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.75	1.12
7/18/2018	0.00	0.00	0.00	0.00	0.00	0.30	0.00	0.00	0.00	0.00	0.00	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.58
8/17/2018	0.00	0.00	0.00	0.00	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.48
9/26/2018	0.00	0.00	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.70
4/29/2019	0.00	0.00	0.00	0.00	0.00	0.01	NA	0.00	NA	0.00	NA	0.38	0.00	0.00	0.00	0.01	0.00	0.00	0.07	0.47
5/31/2019	NA	0.00	0.00	0.00	0.00	<0.01	NA	<0.01	NA	0.00	NA	0.16	0.00	0.00	0.00	<0.01	0.00	0.00	<0.01	0.16
7/1/2019	NA	0.00	0.00	0.00	0.00	0.02	NA	0.01	NA	0.00	NA	0.09	0.00	0.00	0.00	0.03	0.00	0.00	0.08	0.23
7/25/2019	NA	0.00	0.00	0.00	0.00	0.02	NA	0.01	NA	0.00	NA	0.08	0.00	0.00	0.00	0.01	0.00	0.00	0.23	0.35
8/23/2019	NA	0.00	0.00	0.00	0.00	0.04	NA	<0.01	NA	0.00	NA	<0.01	NA 2.22	0.00	0.00	0.03	0.00	0.00	0.01	0.08
9/27/2019	NA	0.00	0.00	0.00	0.00	<0.01	NA	<0.01	NA	0.00	NA	0.02	0.00	0.00	0.00	<0.01	0.00	0.00	0.42	0.44
10/28/2019	NA NA	0.00	0.00	0.00	0.00	0.02	NA NA	<0.01	NA NA	0.00	NA NA	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.41	0.48
11/26/2019 12/28/2019	NA NA	0.00	0.00	0.00	0.00	<0.01 0.01	NA NA	<0.01 <0.01	NA NA	0.00	NA NA	<0.01 0.03	0.00	0.00	0.00	<0.01 0.00	0.00	0.00	0.02	0.02
1/24/2020	NA NA	0.00	0.00	0.00	0.00	<0.01	NA NA	<0.01	NA NA	0.00	NA NA	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.33	0.39
3/10/2020	NA NA	0.00	0.00	0.00	0.00	<0.01	NA NA	<0.01	NA NA	0.00	NA NA	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.18	0.21
3/27/2020	NA NA	0.00	0.00	0.00	0.00	<0.01	NA NA	<0.01	NA NA	0.00	NA NA	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.16
4/6/2020	0.00	0.00	0.00	0.00	0.00	<0.01	NA NA	<0.01	NA NA	0.00	NA NA	<0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.25
5/27/2020	0.00	0.00	0.00	0.00	0.00	<0.01	NA NA	<0.01	NA NA	0.00	NA NA	<0.01	0.00	0.00	0.00	<0.01	0.00	0.00	0.10	0.10
6/15/2020	0.00	0.00	0.00	0.00	0.00	<0.01	NA NA	<0.01	NA NA	0.00	NA NA	<0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03
7/2/2020	0.00	0.00	0.00	0.00	0.00	<0.01	NA NA	<0.01	NA NA	0.00	NA NA	<0.01	0.00	0.00	0.00	<0.01	0.00	0.00	<0.01	0.00
8/5/2020	0.00	0.00	0.00	0.00	0.00	<0.01	NA NA	<0.01	NA NA	0.00	NA NA	<0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
	0.00	0.00	0.00	0.00	0.00	0.01	NA NA	<0.01	NA NA	0.00	NA NA	0.05	0.00	0.00	0.00	<0.01	0.00	0.00	0.13	0.19
9/10/2020	0.00	0.00	0.00	0.00	0.00	<0.01	NA	<0.01	NA	0.00	NA	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.13
· · ·	0.00					<0.01	NA	<0.01	NA	0.00	NA	<0.01	0.00	0.00	0.00	<0.01	0.00	0.00	0.02	
9/10/2020 10/12/2020 11/9/2020	0.00	0.00	0.00	0.00	0.00	~U.UI	INA	\ \O.O.	11/1					0.00				0.00	0.02	0.02
10/12/2020		0.00	0.00	0.00	0.00	<0.01	NA NA	<0.01	NA NA	0.00	NA NA	<0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02

NA indicates well not located

Volumes are approximate

Data prior to 2019 collected by Day Environmental, Inc.

Data Package

2020 Groundwater Monitoring Event

Location:

Former Vogt Manufacturing Site NYSDEC Site #C828119 100 and 142 Fernwood Avenue, 31, 35, and 41 Rosemary Drive, and 25, 29, 33, 39, 43, 49, and 55 Ilex Place Rochester, New York 14621

Prepared for:

Rochester Housing Authority 675 West Main Street Rochester, New York 14611

LaBella Project No. 2201031

March 20, 2021

Table of Contents

INTRODUCTION ______1

2.0 3.0	GROUNDWATER SAMPLING PROCEDURES	
Figures	Figure 1 – Site Location Map Figure 2 – Site Layout and Groundwater Elevation	Contours
Tables	Table 1 – Groundwater Elevation Data for April 6, 2 Table 2A to 2L –Groundwater Results	2020
Graphs	Total VOCs + TICs 2009-2020 Total SVOCs + TICs 2009-2020	
Appen Appen		

1.0

1.0 INTRODUCTION

This data package presents annual groundwater monitoring results for the property located at 100 and 142 Fernwood Avenue, 31, 35, and 41 Rosemary Drive, and 25, 29, 33, 39, 43, 49, and 55 Ilex Place, City of Rochester, Monroe County, New York (Site). The Site is designated New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site #C828119. A Site Location Map is included as Figure 1.

A Certificate of Completion was obtained in 2009 and a Site Management Plan (SMP) dated December 2009 by Day Environmental Inc. (Day) was developed which details engineering and institutional controls. In accordance with the SMP and with input from the NYSDEC Project Manager, a groundwater monitoring event was completed from April 6 through April 8, 2020.

2.0 GROUNDWATER SAMPLING PROCEDURES

Static water level measurements and light-non-aqueous phase liquid (LNAPL) measurements were collected from sixteen (16) monitoring wells on April 6, 2020. Monitoring well MW-7 could not be located and measurements from this well were not obtained. Groundwater appears to flow radially outwards from north of the former Site building. LNAPL was removed using dedicated bailers. Purge water and LNAPL are being accumulated in separate 55-gallon drums stored on Site. Refer to Table 1 for static water levels, LNAPL measurements, groundwater elevations, and modified groundwater elevations for wells containing LNAPL. Refer to Figure 2 for well locations and groundwater elevation contours collected on April 6, 2020. Refer to Tables 2A through 2K for a summary of compounds detected during this monitoring event and previous monitoring events conducted by others.

Groundwater samples were collected via low-flow techniques from monitoring wells MW-1, MW-2, MW-3, MW-5, MW-8, MW-14, MWIRM-2, and MWIRM-3 from April 6, 2020 through April 8, 2020. Prior to sampling, wells were purged using a bladder pump. During purging the following water quality parameters were collected from each well at five (5) minute intervals until stabilized for three (3) consecutive intervals within the rages listed for each parameter:

Water level drawdown (<0.3')

- pH (+/- 0.1)

Specific conductivity (+/- 3%)

Oxidation reduction potential (+/- 10 millivolts)

- Turbidity (+/- 10%, <50 NTU for metals)

- Temperature (+/- 3%)

- Dissolved Oxygen (+/- 10%)

Low-flow groundwater purging and sampling logs are included in Appendix 1.

Groundwater samples were delivered under chain-of-custody procedures to Alpha Analytical, Inc. (Alpha), located in Westborough, Massachusetts, a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified analytical laboratory. Samples were analyzed for the following parameters as specified in the SMP:

- Target compound list (TCL) volatile organic compounds (VOCs) including tentatively identified compounds (TICs) via method 8260C
- TCL semi-volatile organic compounds (SVOCs) including TICs via method 8270D/8270D-SIM
- Nitrate, ferrous iron, manganese, sulfate, methane, and chloride via method 4500N03/3500/3005A/9038/8260C/9251.

The following quality assurance/quality control (QA/QC) sampling was completed:

- A matrix spike/matrix spike duplicate (MS/MSD) and a blind duplicate was collected from sample MWIRM-2 and analyzed for the above listed parameters.
- A Trip Blank sample was submitted for analysis of VOCs.

The laboratory provided ASP Category B data deliverables, included as Appendix 2.

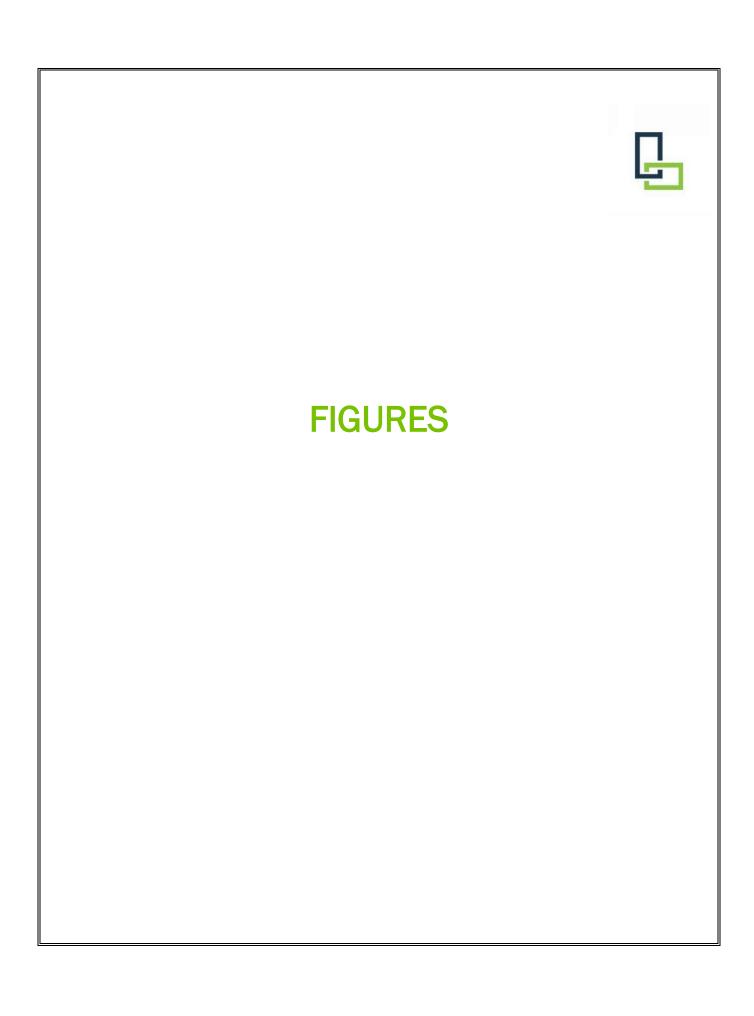
3.0 GROUNDWATER SAMPLING RESULTS

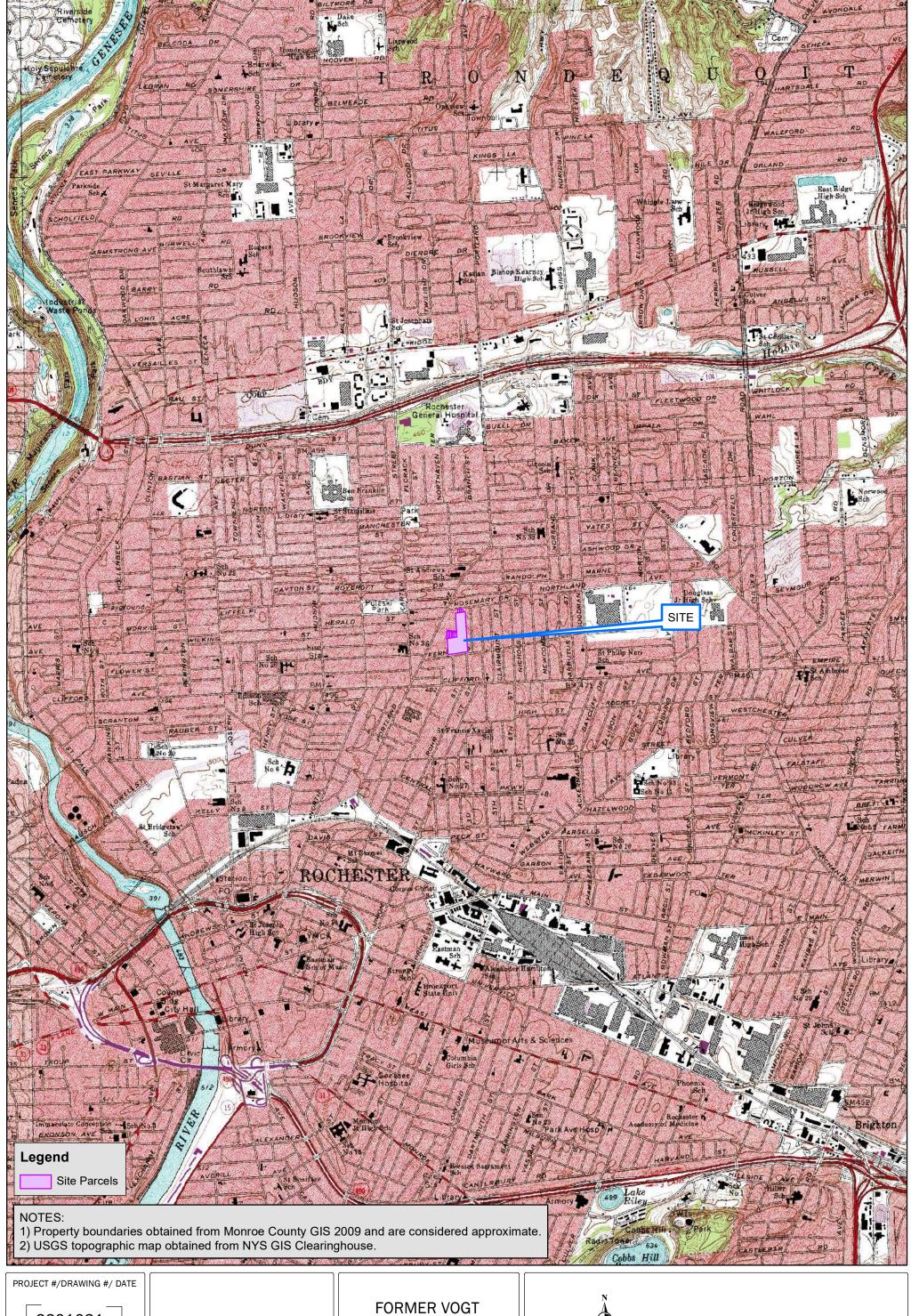
Static water level and NAPL monitoring results collected during this monitoring event are included in Table 1. LNAPL was encountered in MW-6, MW-8, MW-12, MW-16, and MWIRM-3 which is consistent with previous NAPL monitoring.

Summaries of detected compounds in groundwater samples are provided in Tables 2A through 2K. The tables also include historical data collected by Day. Results were compared to NYSDEC Technical and Operational Guidance Series (TOGS 1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations ("Groundwater Quality Standards"). A cumulative summary of QA/QC sample results is provided in Table 2L. Graphs of total VOCs and SVOCs since 2009 are attached.

VOCs:

Concentrations of three (3) VOCs exceed Groundwater Quality Standards in MWIRM-3 (benzene, toluene, and xylenes). VOCs did not exceed Groundwater Quality Standards in the other seven (7) wells analyzed for VOCs.


SVOCs:


Concentrations of SVOCs did not exceed Groundwater Quality Standards in monitoring wells MW-1 and MW-2; however, SVOCs exceed Groundwater Quality Standards in the following wells:

WELL ID	SVOCS EXCEEDING GROUNDWATER QUALITY STANDARDS
MW-3	benzo(b)fluoranthene
MW-5	benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene
MW-8	phenol, naphthalene, acenaphthene, phenanthrene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and bis(2-ethylhex)phalate
MW-14	benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene
MWIRM-2	chrysene
MWIRM-3	phenol, naphthalene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, bis(2- ethylhex)phthalate, and indeno(1,2,3-cd)pyrene

Other MNA Parameters:

Concentrations of other MNA parameters exceed Groundwater Quality Standards in MW-5 (manganese), MW-8 (iron II, manganese), MW-14 (manganese), and MWIRM-3 (iron II, manganese).

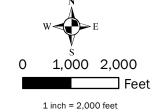

2201031

FIGURE 1

2/12/2021

SITE LOCATION MAP

MANUFACTURING NYSDEC BCP #C828119 100 FERNWOOD AVE ROCHESTER, NY

INTENDED TO PRINT AS: 11" X 17"

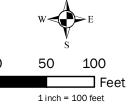
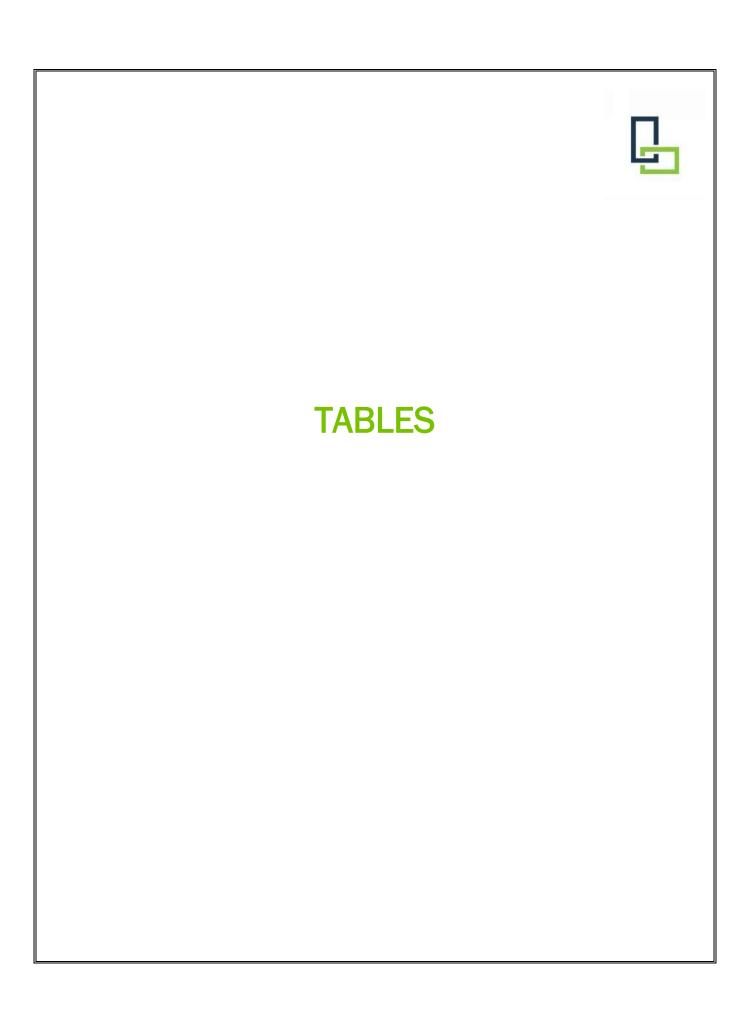

2201031

FIGURE 2

2/15/2021


GROUNDWATER ELEVATION CONTOURS

FORMER VOGT
MANUFACTURING
NYSDEC BCP #C828119
100 FERNWOOD AVE
ROCHESTER, NY

INTENDED TO PRINT AS: 11" X 17"

Table 1 Former Vogt Manufacturing Site 100 Fernwood Avenue, Rochester, New York NYSDEC Site #C828119

Groundwater Elevation Data for April 6, 2020

Well ID	Top of Casing Elevation (fmsl)	Static Water Level (ft)	Groundwater Elevation (fmsl)	Depth to Top of Free Product (ft)	Free Product Elevation (fmsl)	Free Product Thickness (ft)	Adjusted Groundwater Elevation (fmsl)
MW-1	486.41	7.10	479.31				
MW-2	484.42	2.91	481.51			-	
MW-3	486.09	4.80	481.29			-	
MW-4	488.49	5.78	482.71			-	
MW-5	488.48	6.91	481.57			-	
MW-6	488.27	6.76	481.51	6.42	481.85	0.34	481.82
MW-7	484.04	NA	NA	NA	NA	NA	NA
MW-8	484.61	4.72	479.89	4.65	479.96	0.07	479.95
MW-10	483.61	2.55	481.06			-	
MW-12	488.17	7.80	480.37	5.48	482.69	2.32	482.46
MW-13	488.11	6.44	481.67			-	
MW-14	483.81	3.16	480.65	-		-	
MW-15	483.19	2.13	481.06			-	
MW-16	483.25	2.13	481.12	2.05	481.2	0.08	481.19
MWIRM-1	491.93	10.10	481.83	-		_	
MWIRM-2	490.68	9.19	481.49			-	
MWIRM-3	490.58	9.41	481.17	9.31	481.27	0.1	481.26

Adjusted Groundwater Elevation due to the presence of Free Product = [Product Thickness * Density of Product (0.9)] + Groundwater Elevation

MW-7 could not be located

- indicates no product observed

FMSL = feet above mean sea level

Table 2A Former Vogt Manufacturing Site 100 Fernwood Avenue, Rochester, New York NYSDEC Site #C828119 Groundwater Samples from MW-1

Detected Compound	NYSDEC Groundwater Standard or Guidance	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1
Detected Compound	Value	9/27/2010	4/26/2011	10/19/2011	10/24/2017	4/23/2018	4/30/2019	4/6/2020
VOCs (μg/L)					İ			
Acetone	50	U	U	U	6.45 JB	U	U	U
1,1,1-Trichloroethane	5	U	U	U	U	0.5 J	U	U
Trichloroethene	5	U	U	U	U	U	U J	U
Total TCL VOCs	NA	U	U	U	6.45 J	0.5 J	U J	U
Total TICs	NA	U	U	8.5 J	U	U	18 J	U
Total TCL VOCs and TICs	NA	U	U	8.5 J	6.45 J	0.5 J	18 J	U
SVOCs (µg/L)								
Acenaphthene	NA	U	U	U	U	U	0.36	U
Acenaphthylene	NA	U	U	U	U	U	0.06 J	U
Anthracene	3.8	U	U	U	U	U	0.08 J	U
Bis(2-ethylhexyl) phthalate	5	U	U	U	0.653 J	0.776 J	2.6 J	U
Benzoic Acid	NA	U	U	U	U	1.57 J	U	U
Caprolactam	NA	U	U	U	U	U	96	U
Fluorene	0.54	U	U	U	U	U	0.3	U
Fluoranthene	50	U	U	U	U	U	U	0.03 J
Naphthalene	NA	U	U	U	U	U	0.12	U
2-Methylnaphthalene	10	U	U	U	U	U	1.7	U
Phenanthrene	1.5	U	U	U	U	U	0.46	0.03 J
Pyrene	4.6	U	U	U	U	U	0.04 J	0.02 J
Total TCL SVOCs	NA	U	U	U	0.653 J	2.346	101.72 J	0.08
Total TICs	NA	2 J	2.6 J	24.2 J	18 NJ	33 NJB	35.4 J	8.14 J
Total TCL SVOCs and TICs	NA	2 J	2.6 J	24.2 J	18.653 NJ	35.346 NJB	137.12 J	8.22 J
MNA Lab Parameters								
Nitrate (mg/L)	10	1.1 B	13	4.2 B	U	6.1	9.79 R	U
Iron II (mg/L)	0.3	U	U	U	U	U	0.09 J	0.09 J
Manganese (µg/L)	300	8.6 J	45.8	77.7	183	26.8	7.71 J	9.66
Sulfate (mg/L)	250	28	610	380	45.1	77.1	77	54
Methane (µg/L)	NA	U	U	U	U	U	U	U
Chloride (mg/L)	250	8.5 B	87	26	2.5	4.8	8.6	22
MNA Field Parameters								
Dissolved Oxygen (mg/L)	NA	8.04	7.31	4.78	3.17	8.64	11.75	8.09
Oxidation-Reduction Potential (mv)	NA	137	119	286	9.8	189.5	154.3	212.8
Turbidity (NTU)	NA	76.8	204	450	60.3	32.8	10.93	16.47
Conductivity (mS/cm)	NA	0.701	2.23	1.56	0.715	0.76	0.79	0.788
рН	NA	7.59	7.88	7.97	7.25	7.1	6.72	7.23
Temperature (°C)	NA	16.18	6.81	7.98	16.2	19.9	11.5	9.9

Data prior to 2019 obtained from previous reports by Day Environmental, Inc.

Yellow highlight indicated value exceeds applicable groundwater standard or guidance value

U = Not detected at concentration above reported analytical laboratory detection limit

N = Analyte passed identification criteria and is considered to be positively identified

 $\ensuremath{\mathsf{B}}$ = Compound also detected in associated method bland or field blank

TIC = Tentatively Identified Compound

J = Estimated Value

NA = Not Available

 $\ensuremath{\mathsf{R}}$ indicates result rejected in the DUSR

LaBella
Powered by partnership.

Table 2B Former Vogt Manufacturing Site 100 Fernwood Avenue, Rochester, New York NYSDEC Site #C828119 Groundwater Samples from MW-2

Detected Compound	NYSDEC Groundwater Standard or Guidance	MW-	2	MW-2	2	MW-	2	MW-2	2	MW-	2	MW-	2	MW-2	2
	Value	9/27/2	010	4/25/20	011	10/20/2	2011	10/23/2	2017	4/24/2	018	4/29/2	019	4/7/20	20
VOCs (µg/L)															
Acetone	50	U		U		U		3.09	JB	U		U		U	
Chloromethane	NA	U		U		U		0.4	J	U		U		U	
Cis-1,2 Dichloroethane	5	U		U		U		0.38	J	U		U		U	
1,1-Dichloroethane	5	U		U		U		U		U		1.2	J	U	
Trichloroethene	5	5.2	J	4.2	J	U		1.9		2.15		2.9	J	2.4	
Tetrachloroethene	5	2.2	J	U		U		0.74	J	1.1		1.0		0.8	
Total TCL VOCs	NA	7.4	J	4.2	J	U		6.51	J	3.25		5.1	J	3.2	
Total TICs	NA	U		U		U		U		U		1.37	J	2.24	J
Total TCL VOCs and TICs	NA	7.4	J	4.2	J	U		6.51	U	3.25		6.5	J	5.4	J
SVOCs (µg/L)															
Acenaphthene	NA	U		U		U		U		U		0.05	J	0.17	
Anthracene	3.8	U		U		U		U		U		0.03	J	0.06	J
Bis(2-ethylhexyl) phthalate	5	U		1.4	J	U		0.869	J	19.3		2.6	J	U	
Caprolactam	NA	U		U		U		U		U		11		U	
Di-n-butylphthalate	NA	U		U		U		U		U		U		1.9	J
Flourene	0.54	U		U		U		U		U		0.05	J	0.15	
2-Methylnaphthalene	10	U		U		U		2.68	J	U		0.19		0.42	
Naphthalene	NA	U		U		U		2.04	J	U		U		0.15	
1-Methylnaphthalene	NS	U		U		U		1.46	J	U		U		U	
Phenanthrene	1.5	U		U		U		U		U		0.08	J	0.2	
Pyrene	50	U		U		U		U		U		U		0.03	J
Total TCL SVOCs	NA	U		1.4	J	U		7.049	J	19.3		14	J	3.08	J
Total TICs	NA	U		12.6	NJ	16.2	J	66.7	NJ	11.7	NJB	177	J	3.53	J
Total TCL SVOCs and TICs	NA	U		14	NJ	16.2	J	73.749	NJ	31	NJB	191	J	6.61	J
MNA Lab Parameters															
Nitrate (mg/L)	10	2.6	В	0.9		2.5		U		U		0.04	R	0.098	J
Iron II (mg/L)	0.3	U		U		U		U		U		U	R	U	
Manganese (µg/L)	300	46.7		6.2		50.9		449		84.2		26.38	J	174.00	
Sulfate (mg/L)	250	87	В	81		78		67.6		40.6		43		53	
Methane (µg/L)	NA	U		U		30		U		U		6.65	J	402	
Chloride (mg/L)	250	19	В	34		40	В	7.2		5.3		5.4		44	
MNA Field Parameters															
Dissolved Oxygen (mg/L)	NA	4.8		2.67		2.65		0.27		7.65		2.3		0.72	
Oxidation-Reduction Potential (mv)	NA	127		108		93		90.7		134		166		120.4	
Turbidity (NTU)	NA	0		214		273		7.3		130		4.09		0.94	
Conductivity (mS/cm)	NA	7.22		0.84		1.28		0.9		0.5		0.66		0.646	
рН	NA	7.08		7.73		7.68		6.77		7.18		6.74		6.91	
Temperature (°C)	NA	22.47		5.24		7.68		19		9		9.2		8	

Data prior to 2019 obtained from previous reports by Day Environmental, Inc.

Yellow highlight indicated value exceeds applicable groundwater standard or guidance value

- U = Not detected at concentration above reported analytical laboratory detection limit
- N = Analyte passed identification criteria and is considered to be positively identified
- B = Compound also detected in associated method bland or field blank
- TCL = Target Compound List
- TIC = Tentatively Identified Compound
- J = Estimated Value
- NA = Not Available
- R indicates result rejected in the DUSR

Table 2C Former Vogt Manufacturing Site 100 Fernwood Avenue, Rochester, New York NYSDEC Site #C828119 Groundwater Samples from MW-3

Detected Compound	NYSDEC Groundwater Standard or Guidance	MW-	3	MW-	3	MW-	3	MW-	3	MW-	3	MW-	3	MW-	3	MW-3	3
Detected Compound	Value	11/23/2	2009	9/27/2	010	4/26/2	011	10/19/2	2011	10/23/2	2017	4/23/2	018	4/30/2	019	4/7/20	20
VOCs (μg/L)																	
Acetone	50	U		U		U		U		4.19		U		U		2.2	J
Chloromethane	NA	U		U		U		U		U		U		U		0.92	J
1,1-Dichloroethane	5	U		U		U		U		U		U		0.91	J	U	
Trichloroethene	5	U		U		U		U		1.35		U		0.18	J	U	
Tetrachloroethene	5	4.3	J	5.1	J	2.5	J	5.5		6.0		3.2		1.9		3.7	
Total TCL VOCs	NA	4.3	J	5.1	J	2.5	J	5.5		11.5	J	3.2		2.99	J	6.82	
Total TICs	NA	U		U		U		10	J	U		U		30.6	J	7.82	J
Total TCL VOCs and TICs	NA	4.3	J	5.1	J	2.5	J	15.5	J	11.5	J	3.2		33.59	J	14.64	J
SVOCs (µg/L)																	
Acenaphthylene	NA	U		U		U		U		U		U		0.12		U	
Anthracene	3.8	U		U		U		U		U		U		0.15		0.06	J
Acenaphthene	NA	U		U		U		U		U		U		0.73		0.09	J
Caprolactam	NA	U		1.4	J	U		U		NR		NR		90		U	
Bis(2-ethylhexyl) phthalate	50	U		U		U		U		1.21	J	0.621	J	1.9	J	U	
Benzo(b)fluoranthene	0.002	U		U		U		U		U		U		U		0.01	J
Benzoic Acid	NA	U		U		U		U		U		1.46	J	U		U	
Di-n-butylphthalate	NA	U		U		U		U		U		U		U		1.8	J
Fluorene	0.54	U		U		U		U		U		U		0.56		0.1	
Fluoranthene	50	U		U		U		U		U		U		0.02	J	0.04	J
Naphthalene	NA	U		U		U		U		U		U		1		0.08	J
Phenanthrene	NA	U		U		U		U		U		U		0.77		0.23	
Pyrene	4.6	U		U		U		U		U		U		0.08	J	0.04	J
Pentachlorophenol	NA	U		U		U		U		U		U		U		0.06	J
2-Methylnaphthalene	10	U		U		U		U		U		U		5		0.25	
Total TCL SVOCs	NA	U		1.4	J	U		U		1.21	J	2.08	J	100.33	J	0.96	J
Total TICs	NA	U		29.6	J	10.4	NJ	19.6	J	20	NJ	36	JNB	76.1	J	3.06	J
Total TCL SVOCs and TICs	NA	U		31	J	10.4	NJ	19.6	J	21.21	NJ	38.08	JNB	176.43	J	4.02	J
MNA Lab Parameters																	
Nitrate (mg/L)	10	2.6	В	1.8	В	2.2		1.8	В	1.9		1.7		1.04	R	1.85	
Iron II (mg/L)	0.3	U		U		U		U		U		U		U	R	U	
Manganese (μg/L)	300	1150		35.8		304		39.7		141		13.6		5.28	J	42.44	
Sulfate (mg/L)	250	210		190		170		180		75.9		57.9		66		51	
Methane (μg/L)	NA	U		U		U		U		U		U		U		U	
Chloride (mg/L)	250	190		96	В	73		86		6.2		4.7		3.4		4	
MNA Field Parameters																	
Dissolved Oxygen (mg/L)	NA	1.98		0.44		1.23		0.62		0.04		40.4		4.72		0.71	
Oxidation-Reduction Potential (mv)	NA	93		115		49		271		160		135		171.8		183.2	
Turbidity (NTU)	NA	88.1		36.2		156		305		30		61.3		2.39		4.19	
Conductivity (mS/cm)	NA	2.16		1.74		1.67		1.69		0.91		0.84		0.83		0.819	
рН	NA	5.84		7.29		7.67		7.94		7.01		6.85		6.84		7.02	
Temperature (°C)	NA	14.78		16.78		6.36		11.08		18.3		10		9.1		11	

Data prior to 2019 obtained from previous reports by Day Environmental, Inc.

Yellow highlight indicated value exceeds applicable groundwater standard or guidance value

U = Not detected at concentration above reported analytical laboratory detection limit
N = Analyte passed identification criteria and is considered to be positively identified

B = Compound also detected in associated method bland or field blank

TIC = Tentatively Identified Compound

J = Estimated Value

NA = Not Available

R indicates result rejected in the DUSR

LaBella
Powered by partnership

Table 2D Former Vogt Manufacturing Site 100 Fernwood Avenue, Rochester, New York NYSDEC Site #C828119 Groundwater Samples from MW-5

Detected Compound	NYSDEC Groundwater Standard or Guidance	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5
	Value	11/24/2009	9/23/2010	4/25/2011	10/18/2011	10/23/2017	4/23/2018	4/30/2019	4/7/2020
VOCs (µg/L)									
Acetone	50	U	U	U	6.5 J	3.08 JB	U	U	U
1,1-Dichloroethane	5	U	U	U	U	U	U	0.83 J	U
Trichloroethene	5	U	U	U	U	U	U	υJ	U
Tetrachloroethene	5	U	U	U	U	0.6 J	0.52 J	0.30 J	0.31 J
Total TCL VOCs	NA	U	U	U	6.5 J	3.71 J	0.52 J	1.13 J	0.31 J
Total TICs	NA	6.5 NJ	U	42.9 NJ	19 J	U	U	41.2 J	U
Total TCL VOCs and TICs	NA	6.5 NJ	U	42.9 NJ	25.5 J	3.71 J	0.52 J	42.33 J	0.31 J
SVOCs (µg/L)				ŀ					
Acenaphthylene	NA	U	U	U	U	U	U	0.07 J	0.05 J
Anthracene	3.8	U	U	U	U	U	U	0.11	0.04 J
Acenaphthene	NA	U	U	U	U	U	U	0.37	U
Caprolactam	NA	1.7 J	U	U	U	NR	NR	130	U
Bis(2-ethylhexyl) phthalate	50	3.2 J	2.2 J	U	1.1 J	U	55.9	2.4 J	9.8
Benzoic Acid	NA	U	U	U	U	U	U	U	U
Benzo(a)anthracene	0.002	U	U	U	U	U	U	U	0.09 J
Benzo(a)pyrene	0.0012	U	U	U	U	U	U	U	0.07 J
Benzo(b)fluoranthene	0.002	U	U	U	U	U	U	U	0.13
Benzo(k)fluoranthene	0.002	U	U	U	U	U	U	U	0.05 J
Chrysene	0.002	U	U	U	U	U	U	U	0.09
Fluorene	0.54	U	U	U	U	U	U	0.32	0.04 J
Indeno(1,2,3-cd)pyrene	NA	U	U	U	U	U	U	U	0.06 J
Fluoranthene	50	U	U	U	U	U	U	0.06 J	0.2
Naphthalene	NA	U	U	U	U	U	U	0.24	0.1
Phenanthrene	NA	U	U	U	U	U	U	0.47	0.18
Pyrene	4.6	U	U	U	U	U	U	0.07 J	0.16
2-Methylnaphthalene	10	U	U	U	U	U	U	2.1	0.14
Total TCL SVOCs	NA	4.9 J	2.2 J	U	U	U	U	136.21 J	1.45 J
Total TICs	NA	91.3 NJ	8.6 J	6.5 J	34.2 NJ	46.7 NJ	6.1 NJ	81.2 J	1.53 J
Total TCL SVOCs and TICs	NA	96.2 NJ	10.8 J	6.5 J	35.3 NJ	46.7 NJ	62 NJ	217.41 J	2.98 J
MNA Lab Parameters		ł		i	i	i			
Nitrate (mg/L)	10	22	57 B	35	16 B	U	U	0.138 R	0.188
Iron II (mg/L)	0.3	U	U	U	U	U	U	U R	U
Manganese (μg/L)	300	209	52.9	U	42.2	9.9	1560	1.97 J	342.6
Sulfate (mg/L)	250	150 B	190 B	160	140	69.7	46.7	42	39
Methane (μg/L)	NA	U	U	U	U	U	U	U	U
Chloride (mg/L)	250	240	150 B	21	8.1	5.3	2.7	2.9	2.8
MNA Field Parameters									
Dissolved Oxygen (mg/L)	NA	0	3.94	7.43	2.2	0.98	4.18	10.35	8.4
Oxidation-Reduction Potential (mv)	NA	113	199	131	168	131.4	135.7	174.3	209.6
Turbidity (NTU)	NA	57.8	0	17.3	306	4.1	300	6.68	24.24
Conductivity (mS/cm)	NA	2.1	1.8	0.973	1.3	0.443	0.727	0.676	0.723
рН	NA	7.89	7.32	5.86	7.65	8.1	7.08	6.79	6.89
Temperature (°C)	NA	10.8	18.5	9.2	10.32	17.7	17.3	9.4	11.6

Data prior to 2019 obtained from previous reports by Day Environmental, Inc.

Yellow highlight indicated value exceeds applicable groundwater standard or guidance value
U = Not detected at concentration above reported analytical laboratory detection limit

N = Analyte passed identification criteria and is considered to be positively identified

B = Compound also detected in associated method bland or field blank

D = Compound concentrations was obtained from a diluted analysis

TIC = Tentatively Identified Compound

J = Estimated Value

NA = Not Available

R indicates result rejected in the DUSR

LaBella
Powered by nardnarchin

Table 2E Former Vogt Manufacturing Site 100 Fernwood Avenue, Rochester, New York NYSDEC Site #C828119 Groundwater Samples from MW-8

Detected Compound Standar	C Groundwater rd or Guidance Value 50 5 5 1 50 5 5 NA 5 5 5 NA 5 5 5 NA 5 5 5 NA 1 1 1 NA	MW- 11/24/2 U U U U U U U U U U U U U U U U U U	2009	MW- 9/23/2 U U U U U U U U U U U U U U U U U U	NJ NJ	MW- 4/25/2 U U U 2.1 2.9 U U U U U U U U U U U U U U U U U U U	011 J J NJ NJ	9.1 9.1 11 8.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	J	7.56 U 12.2 4.05 3.49 1.43 1.01 0.39 U U 0.83 0.9 0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	2017 JB B J J J J NJ	MW- 4/24/2 U 1.95 0.62 U 0.62 0.57 U 0.64 0.53 0.51 0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	018	MW-4/30/2 U 0.74 3.4 0.87 U U 0.56 0.68 0.43 U U U 0.66 U U U 1.6 8.4 17.3 757 774.3)]]	4/7/20 2.2 U U U U 0.992 U 3.7 U U U U 0.91 U 0.92 U 0.92 U 0.92 U 0.92 U 0.92 U 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	J J
VOCs (µg/L) Acetone 1,1-Dichloroethane cis-1,2-Dichloroethene Benzene 2-Butanone (MEK) n-Butylbenzene Sec-Butylbenzene Chloromethane Cyclohexane Trichloroethene Tetrachloroethene Isopropylbenzene 4-Isopropyltoluene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	50 5 5 1 50 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 14 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0		U U U U U U U U U U U U U U U U U U U		U U U U U U U U U U U U U U U U U U U	ΓΑ Γ Γ Γ Γ	9.1 U 11 8.4 U U U U U U U U U U U U U U U U U U U	Γ Σ 3 1	7.56 U 12.2 4.05 3.49 1.43 1.01 0.39 U U U 0.83 0.9 0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	JB B J J J J J J J J J J J J J J J J J	U U 1.95 0.62 U 0.62 0.57 U 0.64 0.53 0.51 0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	N	U 0.74 3.4 0.87 U U U U 0.56 0.68 0.43 U U U 0.66 U U 1.6 8.4 17.3 757 774.3]]]]	2.2 U U U U 0.92 U 3.7 U U U U U U U U U U U U U 0.92	J
Acetone 1,1-Dichloroethane cis-1,2-Dichloroethene Benzene 2-Butanone (MEK) n-Butylbenzene Sec-Butylbenzene Chloromethane Cyclohexane Trichloroethene Tetrachloroethene Toluene Isopropylbenzene 4-Isopropyltoluene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 1,1-Biphenyl Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 5 1 50 5 5 5 NA 5 5 5 5 NA 5 5 5 NA NA 1 NA	U 10 14 U U U U U U U U U U U U U U U U U U U		U U U U U U U U U U U U U U U U U U U		U 2.1 2.9 U U U U U U U U U U U U U U U U U U U	ΓΑ ΓΑ Γ Γ Γ	U 11 8.4 U U U U U 19 U U U U U 19 U U U U U U 33222	r r	U 12.2 4.05 3.49 1.43 1.01 0.39 U U 0.83 0.9 0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	B J J J J J J J J J J J J J J J J J J J	U 1.95 0.62 U 0.62 0.57 U 0.64 0.53 0.51 0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	N) N) N) N) N) N)	0.74 3.4 0.87 U U U 0.56 0.68 0.43 U U 0.66 U U 1.6 8.4 17.3 757 774.3]]]]	U U U U U U U U U U U U U C 6.8 213 219.8	j
1,1-Dichloroethane cis-1,2-Dichloroethene Benzene 2-Butanone (MEK) n-Butylbenzene Sec-Butylbenzene Chloromethane Cyclohexane Trichloroethene Tetrachloroethene Toluene Isopropylbenzene 4-Isopropyltoluene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 1,1-Biphenyl Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 5 1 50 5 5 5 NA 5 5 5 5 NA 5 5 5 NA NA 1 NA	U 10 14 U U U U U U U U U U U U U U U U U U U		U U U U U U U U U U U U U U U U U U U		U 2.1 2.9 U U U U U U U U U U U U U U U U U U U	ΓΑ ΓΑ Γ Γ Γ	U 11 8.4 U U U U U 19 U U U U U 19 U U U U U U 33222	r r	U 12.2 4.05 3.49 1.43 1.01 0.39 U U 0.83 0.9 0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	B J J J J J J J J J J J J J J J J J J J	U 1.95 0.62 U 0.62 0.57 U 0.64 0.53 0.51 0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	N) N) N) N) N) N)	0.74 3.4 0.87 U U U 0.56 0.68 0.43 U U 0.66 U U 1.6 8.4 17.3 757 774.3]]]]	U U U U U U U U U U U U U C 6.8 213 219.8	j
cis-1,2-Dichloroethene Benzene 2-Butanone (MEK) n-Butylbenzene Sec-Butylbenzene Chloromethane Cyclohexane Trichloroethene Tetrachloroethene Toluene Isopropylbenzene 4-Isopropyltoluene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 1 50 5 5 5 NA 5 5 5 NA 5 5 5 NA 7 5 5 NA	10 14 U U U U U 8.2 U 3.9 U U U U U U U U U U U U U U U U U U U	K K K K K K K K K K	U U U U U U U U U U U U U U U U U U U		2.1 2.9 U U U U U U C C C C C C C C C C C C C	K	11 8.4 U U U U U U U U U U U U U U U U U U U	7	12.2 4.05 3.49 1.43 1.01 0.39 U U 0.83 0.9 0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	B	1.95 0.62 U 0.62 0.57 U 0.64 0.53 0.51 0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	XJ XJ XJ XJ XJ XJ XJ XJ	3.4 0.87 U U U U 0.56 0.68 0.43 U U 0.66 U U 1.6 8.4 17.3 757 774.3]]]]	U U U U U U U U G.88 213 219.8	j
Benzene 2-Butanone (MEK) n-Butylbenzene Sec-Butylbenzene Chloromethane Cyclohexane Trichloroethene Tetrachloroethene Toluene Isopropylbenzene 4-Isopropyltoluene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	1 50 5 5 5 NA 5 5 5 NA 5 5 5 NA 7 5 7 NA 7 1 na NA 10 NA NA	14	K K K K K K K K K K	U U U U U U U U U U U U U U U U U U U	Z Z Z	2.9 U U U U U 2.6 U U U U U U T U U U U U U U U U U U U	ΓΑ Γ Γ Γ	8.4 U U U U U U U U U U U U U U U U U U	2 -	4.05 3.49 1.43 1.01 0.39 U U 0.83 0.9 0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	B	0.62 U 0.62 0.57 U 0.64 0.53 0.51 0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	, N	0.87 U U U 0.56 0.68 0.43 U U 0.66 U U 1.6 8.4 17.3 757 774.3)]]]	U U U U U U U U U U U U U U U U U C 6.8 213 219.8	J
n-Butylbenzene Sec-Butylbenzene Chloromethane Cyclohexane Trichloroethene Tetrachloroethene Toluene Isopropylbenzene 4-Isopropyltoluene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	50 5 5 5 NA 5 5 5 5 NA 5 5 5 NA 7 5 7 NA	U U U U U U U U U U U U U U U U U U U	Z Z	U U U U U U U U U U U U U U U U U U U	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	U U U U U U U U U U U U U U U T T T T T	ارا ا ا ا	U U U U U U U U U U U U U U U U U 33222	, L	3.49 1.43 1.01 0.39 U U 0.83 0.9 0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	B J J J NJ	U 0.62 0.57 U 0.64 0.53 0.51 0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	N) N) N) N) N) N)	U U U U U U U U U U U U U U U U U U U]]]	U U U U U U U U U U G.83 219.8	j
Sec-Butylbenzene Chloromethane Cyclohexane Trichloroethene Tetrachloroethene Toluene Isopropylbenzene 4-Isopropylbenzene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene Ethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 5 NA 5 5 5 NA 5 5 5 NA NA 5 1 na NA 10 NA NA	U U U U U U U U U U U U U U U U U U U	K K K K K K K K K K	U U U U U U U U U U U U U U U U U U U	K	U U U U U U U U T1.8	را ا ا ا	U U U U U U U U U U U U U U 3222 3222	rN r	1.01 0.39 U U U 0.83 0.9 0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	J J	0.57 U 0.64 0.53 0.51 0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	N) N) N) N) N) N)	U U 0.56 0.68 0.43 U U U 0.66 U U U 1.6 8.4 17.3 757 774.3]]]]	U 0.92 U U U U U U U C6.8 213 219.8	j
Chloromethane Cyclohexane Trichloroethene Tetrachloroethene Toluene Isopropylbenzene 4-Isopropyltoluene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 NA 5 5 5 5 NA 5 5 NA 5 5 NA	U U U U U U U U U U U U U U U U U U U	K K K K K K K K K K	U U U U U U U U U U U U U U U U U U U	K K K K K K K K K K	U U U U U U U U U U U U T T T T T T T T	ارا ا ا ا	U U U 19 U U U U 73 120.5 3102	7	0.39 U U U 0.83 0.9 0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	NJ J J	U U 0.64 0.53 0.51 0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	, Z3 , X3 , X1 , X1 , X1 , X1	U 0.56 0.68 0.43 U U U 0.66 U U U 1.6 8.4 17.3 757 774.3)]]	0.92 U 3.7 U U U U U U 0 6.8 213 219.8	j
Cyclohexane Trichloroethene Tetrachloroethene Toluene Isopropylbenzene 4-Isopropyltoluene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	NA 5 5 5 5 NA 5 5 5 NA 7 5 7 NA	U 8.2 U 3.9 U U U U U U U U U U U U U U U U U U U	S S S S S S S S S S	U U U U U U U U U U U U U U U U U U U	Z 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	U U U U U U U U T T T T T T T T T T T T	ارا ا ا ا	U U 19 U U U U 73 120.5 3102	, S	U U U U U O.83 O.9 O.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	NJ J	U 0.64 0.53 0.51 0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	N N N N N N N N N N N N N N N N N N N	0.56 0.68 0.43 U U 0.66 U 1.6 8.4 17.3 757 774.3]]]]	U 3.7 U U U U U U 6.8 213 219.8	j
Trichloroethene Tetrachloroethene Toluene Isopropylbenzene 4-Isopropyltoluene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 5 5 NA 5 5 5 NA	8.2 U 3.9 U U U U U U 16 52.1 339.7 391.8 U U U U U U U U U U U U U U U U U U	Z Z Z	U U U U U U U U U U U U U U U U U U U	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	U U U U U U U U C C C C C C C C C C C C	ΓΑ Γ Γ Γ	U 19 U U U U U 73 120.5 3102	Ŋ	U U 0.83 0.9 0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	J J	0.64 0.53 0.51 0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	N) N) N) N) N	0.68 0.43 U U U 0.66 U U 1.6 8.4 17.3 757 774.3]]]	U 3.7 U U U U U 0 6.8 213 219.8	j
Tetrachloroethene Toluene Isopropylbenzene 4-Isopropyltoluene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 5 5 NA 5 5 5 NA	3.9 U U U U U 16 52.1 339.7 391.8 U U	LZ Z Z L	U U U U U U U U U U U U U U U U U U U	LZ ZJ	U 2.6 U U U U U C 6.8 14.4 71.8 U U	۲۵ ۲ ۲ ۱	U 19 U U U U U 73 120.5 3102	LN L	0.83 0.9 0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	NJ J	0.53 0.51 0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	N) N) N) N) N) N	0.43 U U U 0.66 U U 1.6 8.4 17.3 757 774.3]]]	3.7 U U U U U U 0 6.8 213 219.8	j
Toluene Isopropylbenzene 4-Isopropyltoluene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 5 NA 5 5 5 NA	3.9 U U U U U 16 52.1 339.7 391.8 U U	K K K K K K K K K K	U U U U U U U 32.6 32.6 U U U	- K2 - K3	2.6 U U U U U 6.8 14.4 57.4 71.8	ارا ا ا ا	19 U U U U U 73 120.5 3102	N)	0.83 0.9 0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	N)	0.51 0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	, Z3 , Z3 , Z3 , Z3 , Z4 , Z4 , Z4 , Z4 , Z4 , Z4 , Z4 , Z4	U U 0.66 U U 1.6 8.4 17.3 757 774.3)]]	U U U U U U 6.8 213 219.8	j
Isopropylbenzene 4-Isopropyltoluene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 5 NA 5 5 5 5 NA NA NA NA 1 na NA 10 NA NA	U U U U U 16 52.1 339.7 391.8 U U	K	U U U U U U U U U U U U U U U U U U U	K3	U U U U U 6.8 14.4 57.4 71.8	ارا ا ا	U U U U U 73 120.5 3102	7	0.9 0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	J J	0.65 0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	N) N) N)	U 0.66 U U 1.6 8.4 17.3 757 774.3	J J	U U U U U 6.8 213 219.8	j
A-Isopropyltoluene Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 NA 5 5 5 5 NA	U U U U U 16 52.1 339.7 391.8 U U	Z	U U U U U 32.6 32.6 U U U	L'A	U U U U U 6.8 14.4 57.4 71.8	رم رم ۱	U U U U U 73 120.5 3102 3222	ر2 1	0.79 U 1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	J J	0.71 U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	N) N) 1	U 0.66 U U 1.6 8.4 17.3 757 774.3	J J	U U U U U 6.8 213 219.8	j
Methyl cyclohexane n-Propylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	NA 5 5 5 5 5 NA NA NA NA 10 NA NA NA NA	U U U U 16 52.1 339.7 391.8 U U	K2 K2 K3 K3 K3 K3 K3 K3	U U U U U 32.6 32.6 U U U	K2 K3	U U U U 6.8 14.4 57.4 71.8	23 7 1	U U U U 73 120.5 3102	2 .	1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	Ŋ	U 0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	У.) Л	0.66 U U U 1.6 8.4 17.3 757 774.3	J J	U U U U 0 6.8 213 219.8	j
n-Propylbenzene 1,2,4-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 5 5 5 NA	U U U 16 52.1 339.7 391.8 U U U	LN EN L	U U U U U 32.6 32.6 U U U	LN LN	U U U 6.8 14.4 57.4 71.8 U	ИЛ КЛ Л	U U U 73 120.5 3102 3222	7	1.28 16.6 3.2 1.89 7.81 63.43 281 344.4	J	0.64 11.8 2.88 1.45 6.13 29.7 273 302.7	N) N) I	U U 1.6 8.4 17.3 757 774.3	J J	U U U U 6.8 213 219.8	j
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 5 NA NA NA NA 1 na NA 10 NA NA	U U 16 52.1 339.7 391.8 U U U	КЛ ГА Г	U U U 32.6 32.6 U U	N1 N1	U U 6.8 14.4 57.4 71.8	ИЛ ИЛ 1	U U 73 120.5 3102 3222	Л	16.6 3.2 1.89 7.81 63.43 281 344.4	ΓN	11.8 2.88 1.45 6.13 29.7 273 302.7	K3 K3 7	U 1.6 8.4 17.3 757 774.3	J J	U U U 6.8 213 219.8	j
Ethylbenzene Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 NA NA NA 1 na NA 10 NA	U 16 52.1 339.7 391.8 U U U	רא רא רא ר	U U 32.6 32.6 U U	LN LN	0 6.8 14.4 57.4 71.8 U	ИЛ Л	120.5 3102 3222	NJ J	1.89 7.81 63.43 281 344.4	J	1.45 6.13 29.7 273 302.7	K2	1.6 8.4 17.3 757 774.3) J	U 6.8 213 219.8	j
Xylene (total) Total TCL VOCs Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	5 NA NA NA 1 na NA 10 NA NA	16 52.1 339.7 391.8 U U U U	S C	U 32.6 32.6 U U	N1 N1	6.8 14.4 57.4 71.8 U	ИЛ ИЛ 1	73 120.5 3102 3222	Ŋ	7.81 63.43 281 344.4	ŊJ	6.13 29.7 273 302.7	[2] [2] [3]	8.4 17.3 757 774.3	J J	0 6.8 213 219.8	j J
Total TCL VOCs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	NA NA NA 1 na NA 10 NA	52.1 339.7 391.8 U U U 41	ГИ ГИ	U 32.6 32.6 U U	ИЛ КИ	14.4 57.4 71.8 U	N1 N1	120.5 3102 3222	Ŋ	63.43 281 344.4	ŊJ	29.7 273 302.7	ГИ ГИ	17.3 757 774.3 U	J	6.8 213 219.8	j J
Total TICs Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	NA NA 1 na NA 10 NA NA	339.7 391.8 U U U 41	NI	32.6 32.6 U	NJ NJ	57.4 71.8 U	NJ NJ	3102 3222	NJ	281 344.4	NJ	273 302.7	ГИ ГИ	757 774.3 U	J	213 219.8	J
Total TCL VOCs and TICs SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	NA 1 na NA 10 NA NA	391.8 U U U 41	N	32.6 U U	NJ	71.8 U U	NJ	3222		344.4		302.7	NJ	774.3 U	J	219.8	
SVOCs (µg/L) Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	1 na NA 10 NA	U U U 41		U U		U			ſИJ		INJ			U			J
Phenol 2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	na NA 10 NA NA	U U 41 U		U		U		1.7							R	1.5	
2-Methylphenol 3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	na NA 10 NA NA	U U 41 U		U		U		1./	J	U	i	U	. '		17	1.5	
3 and/or 4-Methylphenol Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	NA 10 NA NA	U 41 U		U				U		U		U		U		2.5	!
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	10 NA NA	41 U				5.5		1.7		U		U		1.1		2.5	
2-Methylnaphthalene 1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	NA NA	U			D	400	,	130	D	69.9		51.1		46		110	
1-Methylnaphthalene 1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam	NA			750		1500	D	180		15		7.83		64		160	
1,1-Biphenyl Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam				U		U		U		46.7	D	20.4	JD	U		190	
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Carbazole Caprolactam		U	į –	U		27		U		U		U		1.8		11	<u> </u>
Fluorene Phenanthrene Anthracene Carbazole Caprolactam	NA	4.1	J	24		U		U		U		U		2.5		9.1	<u> </u>
Phenanthrene Anthracene Carbazole Caprolactam	20	2.3	J	48		96		17		4	DJ	U		16		35	
Anthracene Carbazole Caprolactam	50	U		100	DJ	120		12		3.75		U		11		36	
Carbazole Caprolactam	50	U		200	D	260		32		5.7	DJ	4.65	JD	20		120	i
Caprolactam	50	17		44		57		8.3		U		U		6.6		32	İ
	NA	U		29		40		16		U		U		4.9		21	
Fluoranthene	NA	U		U		U		U		U		U		71		U	Ĺ
i idoratititiciic	50	U		7.6	J	5.2	J	1.4	J	U		U		1.4	J	5	<u> </u>
Pyrene	50	U		30		47		4.2	J	U		U		8.7		28	<u> </u>
Benzo(a)anthracene	0.002	U		4.8	J	7.2		1.3	J	U		U		U		3.9	<u> </u>
	0.0012	U		U	-	U		U		U		U		0.45		1.6	
	0.002	U		U		U		U		U		U		U		0.85	<u> </u>
•	0.002	U		U		U		U		U		U		U		0.14	
Benzo(ghi)perylene	NA	U		U	ļ —	U		U		U		U		U		0.75	<u> </u>
Dibenzo(a,h)anthracene	NA NA	U U		U		U U		U U		U		U		U U		0.31 0.29	
Indeno(1,2,3-cd)pyrene Chrysene	0.002	U		5.8		8.6		2		U		U		1.1		0.29 4.8	
Bis(2-ethylhex)phalate	5	U		120		340	J	4.5		4.6		4.24		1.1		4.8 82	
Total TCL SVOCs	NA NA	112.5		1653	נם	2913.5	J	412.1	JD	149.65		88.22		268.55		858.24	i —
Total TICs	NA NA	558.7	NJ	3724	NJ	8605	NJ	451.8	NJ	150	1	188	NJD	1320	J	2060	1
Total TCL SVOCs and TICs	NA	701.2	_	5377	NJD	11518.5		863.9		299.65		276.22		1588.55	_	2918.24	
MNA Lab Parameters																	l I
Nitrate (mg/L)	10	0.0066	J	0.13	BJ	34		0.96		U		U		U		U	
Iron II (mg/L)	0.3	U		2.7		U		6		3.5		U		1.2		2.3	
Manganese (µg/L)	300	2930		2410		2620		12000		4180		1560		1473	J	2237	
Sulfate (mg/L)	250	16	В	37	В	87		150		7.4		42.4		69		23	
Methane (µg/L)	NA	17		2700		5500	D	5500	D	19		U		1330	J	2420	
Chloride (mg/L)	250	170		100	В	86		50	В	14.2		8.1		12		10	i
MNA Field Parameters																	
Dissolved Oxygen (mg/L)	NA	0		0.31		0.76		0.59		0.1		0.9		0.66		3.8	
Oxidation-Reduction Potential (mv)	NA	-63		-101		-66		-108		-49.5		-112.5		-65.4		-160	<u> </u>
Turbidity (NTU)	NA	711		184		99.6		371		6.8		46.2		12.81		8.09	
Conductivity (mS/cm)		1.35		1.39		1.25		1.7		0.938		0.686		0.87		0.891	
pH	NA	6.89		7.27		8.83		7.56		6.8	•	6.82		6.62		6.79	i
Temperature (°C) Data prior to 2019 obtained from previous reports b	NA NA NA	12.5		16.67		8.55		7.52		16.2	<u> </u>			7.67		7.5	

Yellow highlight indicated value exceeds applicable groundwater standard or guidance value
U = Not detected at concentration above reported analytical laboratory detection limit

N = Analyte passed identification criteria and is considered to be positively identified

B = Compound also detected in associated method bland or field blank

 $\ensuremath{\mathsf{D}}$ = Compound concentrations was obtained from a diluted analysis

TIC = Tentatively Identified Compound

J = Estimated Value NA = Not Available

R indicates result rejected in the DUSR

Table 2F Former Vogt Manufacturing Site 100 Fernwood Avenue, Rochester, New York NYSDEC Site #C828119

Groundwater Samples from MW-9

Detected Compound	NYSDEC Groundwater Standard or Guidance	MW-9	9
Detected dompound	Value Value	11/23/2	2009
VOCs (µg/L)			
Total TCL VOCs	NA	U	
Total TICs	NA	U	
Total TCL VOCs and TICs	NA	U	
SVOCs (µg/L)			
Total TCL SVOCs	NA	U	
Total TICs	NA	U	
Total TCL SVOCs and TICs	NA	U	
MNA Lab Parameters			
Nitrate (mg/L)	10	18	
Iron II (mg/L)	0.3	U	
Manganese (μg/L)	300	15.5	
Sulfate (mg/L)	250	83	В
Methane (μg/L)	NA	U	
Chloride (mg/L)	250	47	
MNA Field Parameters			
Dissolved Oxygen (mg/L)	NA	4.78	
Oxidation-Reduction Potential (mv)	NA	100	
Turbidity (NTU)	NA	70.6	
Conductivity (mS/cm)	NA	1.87	
рН	NA	6.56	
Temperature (°C)	NA	12.21	

Data prior to 2019 obtained from previous reports by Day Environmental, Inc.

Yellow highlight indicated value exceeds applicable groundwater standard or guidance value U = Not detected at concentration above reported analytical laboratory detection limit

- N = Analyte passed identification criteria and is considered to be positively identified
- B = Compound also detected in associated method bland or field blank
- D = Compound concentrations was obtained from a diluted analysis
- TIC = Tentatively Identified Compound
- J = Estimated Value
- NA = Not Available

Table 2G

Former Vogt Manufacturing Site 100 Fernwood Avenue, Rochester, New York NYSDEC Site #C828119

Groundwater Samples from MW-11

Detected Compound	NYSDEC Groundwater Standard or Guidance Value	MW-11 11/23/2009
VOCs (µg/L)		11, 23, 2000
Total TCL VOCs	NA	U
Total TICs	NA	U
Total TCL VOCs and TICs	NA	U
SVOCs (µg/L)		
Caprolactam	NA	1.6 J
Total TCL SVOCs	NA	1.6 J
Total TICs	NA	U
Total TCL SVOCs and TICs	NA	1.6 J
MNA Lab Parameters		
Nitrate (mg/L)	10	3.9
Iron II (mg/L)	0.3	U
Manganese (µg/L)	300	9.9 J
Sulfate (mg/L)	250	96 B
Methane (μg/L)	NA	U
Chloride (mg/L)	250	64
MNA Field Parameters		
Dissolved Oxygen (mg/L)	NA	0.0
Oxidation-Reduction Potential (mv)	NA	97
Turbidity (NTU)	NA	148
Conductivity (mS/cm)	NA	1.2
рН	NA	8.16
Temperature (°C)	NA	11.9

Data prior to 2019 obtained from previous reports by Day Environmental, Inc.

Yellow highlight indicated value exceeds applicable groundwater standard or guidance value

U = Not detected at concentration above reported analytical laboratory detection limit

 $\mbox{\bf N}$ = Analyte passed identification criteria and is considered to be positively identified

B = Compound also detected in associated method bland or field blank

TIC = Tentatively Identified Compound

J = Estimated Value

NA = Not Available

Table 2H

Former Vogt Manufacturing Site 100 Fernwood Avenue, Rochester, New York NYSDEC Site #C828119

Groundwater Samples from MW-13

Detected Compound	NYSDEC Groundwater Standard or Guidance Value	MW-1		MW-		MW-		MW-	
V00a (us/l)	value	11/24/2	2009	9/23/2	2010	4/25/2	2011	10/18/	2011
VOCs (µg/L) Acetone	50	U		U		U		5.5	JB
	5	U		10		U		5.5 U	JD
cis-1,2-Dichloroethene Benzene	1		J		J	U		U	
	5	2.6		5.3	J			U	
Trichloroethene Toluene	5	U		4 4.6	J	U		U	
	5	6.8	J	30	J	U		2.6	J
Xylene (total) Total TCL VOCs		9.4	J	58.2		U			J
	NA NA				NII			8.1	-
Total TICs Total TCL VOCs and TICs	NA NA	115.8 125.2	NJ	1000	NJ	U		216.5 224.6	NJ
	NA	125.2	NJ	1058	NJ	U		224.6	NJ
SVOCs (µg/L)	40								
Naphthalene	10	22		3	J	U		6.8	
2-Methylnaphthalene	NA .	13		U		U		1.2	J
Acenaphthene	20	2.5		1.4	J	U		1.6	
Fluorene	50	1.6		U		U		U	
Phenanthrene	50	1.4		U		U		U	
Carbazole	NA	2.4	J	1.8	J	U		2.2	J
Fluoranthene	50	2.5	J	1.6	J	1.9	J	U	
Pyrene	50	2.4	J	1.6	J	1.3	J	U	
Benzo(a)anthracene	0.002	U		U		1	J	U	
Chrysene	0.002	U		U		1.2	J	U	
Bis(2-ethylhex)phalate	5	U		U		1.3	J	U	
Benzo(b)fluoranthene	0.002	1	J	U		1.1	J	U	
Total TCL SVOCs	NA	48.8	J	9.4	J	7.8	J	11.8	J
Total TICs	NA	327.4	NJ	166.9	J	13.8	NJ	144.4	NJ
Total TCL SVOCs and TICs	NA	376.2	NJ	179.2	J	21.6	NJ	156.2	NJ
MNA Lab Parameters									
Nitrate (mg/L)	10	72	BD	110	В	22		47	В
Iron II (mg/L)	0.3	U		U		U		U	
Manganese (µg/L)	300	1200		1060		706		775	
Sulfate (mg/L)	250	180	BD	220	В	190		250	
Methane (µg/L)	NA	20		23		U		15	
Chloride (mg/L)	250	120	D	150	В	210		100	
MNA Field Parameters									
Dissolved Oxygen (mg/L)	NA	0		4.73		1.47		0.51	
Oxidation-Reduction Potential (mv)	NA	120		168		113		316	
Turbidity (NTU)	NA	3.3		0		13.1		267	
Conductivity (mS/cm)	NA	2.05		2.07		1.99		1.81	
рН	NA	6.8		7.37		6.14		7.56	
Temperature (°C)	NA	12.46		17.96		9.02		9.18	

Data prior to 2019 obtained from previous reports by Day Environmental, Inc.

Yellow highlight indicated value exceeds applicable groundwater standard or guidance value

- U = Not detected at concentration above reported analytical laboratory detection limit
- $\mbox{\bf N}$ = Analyte passed identification criteria and is considered to be positively identified
- B = Compound also detected in associated method bland or field blank
- TIC = Tentatively Identified Compound
- J = Estimated Value
- NA = Not Available

Table 2I Former Vogt Manufacturing Site 100 Fernwood Avenue, Rochester, New York NYSDEC Site #C828119 Groundwater Samples from MW-14

	NYSDEC Groundwater	MW-14		MW-1	.4	MW-1	.4	MW-1	.4	MW-1	4	MW-1	.4	MW-1	.4	MW-1	L4
Detected Compound	Standard or Guidance Value	11/24/20	009	9/23/2	010	4/25/2	011	10/19/2	2011	10/24/2	2017	4/23/2	018	5/1/20	019	4/8/20	020
VOCs (µg/L)				-, -,		, ,		., .,		-, ,		, ,		-,,		, -,	
Acetone	50	U		U		U		U		5.08	JB	U		U		U	
Tetrachloroethene	5	U		U		U		U		U		0.55	J	U	J	0.22	J
1,2-Dichloroethane	0.6	U		U		U		U		U		U		U		0.42	J
Dichlorodifluoromethane	5	U		U		U		U		U		U		U	J	U	
Total TCL VOCs	NA	U		U		U		U		5.08	J	0.55	J	U	J	0.64	J
Total TICs	NA	U		U		U		10	J	U		U		24.6	J	U	
Total TCL VOCs and TICs	NA	U		U		U		10	J	5.08	J	0.55	J	24.6	J	0.6	J
SVOCs (µg/L)																	
Anthracene	3.8	U		U		U		U		U		U		0.03	J	0.05	J
Acenaphthene	NA	U		U		U		U		U		U		0.06	J	0.09	J
Acenaphthylene	NA	U		U		U		U		U		U		U		0.02	J
Benzo(a)pyrene	0.0012	U		U		U		U		U		U		0.02	J	U	
Benzo(a)anthracene	0.002	U		U		U		U		U		U		U		0.02	J
Benzo(b)fluoranthene	0.002	U		U		U		U		U		U		0.03	J	0.02	J
Benzo(k)fluoranthene	0.002	U		U		U		U		U		U		0.01	J	U	
Benzo(ghi)perylene	NA	U		U		U		U		U		U		0.03	J	U	
Chrysene	0.002	U		U		U		U		U		U		U		0.02	J
Caprolactam	NA	U		1.6	J	U		U		NR		NR		10		U	
Bis-2(ethylhexyl)phthalate	50	U		U		U		U		0.779	J	U		U		6.4	
Indeno(1,2,3-cd)pyrene	0.002	U		U		U		U		U		U		0.03	J	0.01	J
Fluorene	0.54	U		U		U		U		U		U		0.06	J	0.09	J
Naphthalene	10	U		U		U		U		U		U		U		0.09	J
Phenanthrene	NA	U		U		U		U		U		U		0.11		0.17	
Pyrene	50	U		U		U		U		U		U		U		0.05	J
2-Methylnaphthalene	10	U		U		U		U		U		U		0.18		0.89	
Total TCL SVOCs	NA	U		1.6	J	U		U		0.779	J	U		10.56	J	7.92	J
Total TICs	NA	99.2	NJ	261.8	NJ	3	NJ	24.3	J	18	NJ	4.9	NJ	29.5	J	14.3	J
Total TCL SVOCs and TICs	NA	99.2	NJ	263.4	NJ	3	NJ	24.3	J	18.779	NJ	4.9	NJ	40.06	J	22.22	J
MNA Lab Parameters																	
Nitrate (mg/L)	10	34		54	В	110		72		1.5		1.5		0.156	R	0.192	
Iron II (mg/L)	0.3	U		U		U		U		0		0		0.08	J	U	
Manganese (µg/L)	300	325		87.7		50.9		24		311		62.1		262.2	J	993.5	
Sulfate (mg/L)	250	84	В	96	В	200		200		131		91.5		77		90	
Methane (μg/L)	NA	U		U		U		U		U		U		1.33		1.49	
Chloride (mg/L)	250	17		14	В	17		14		4.7		3.1		3.8		3.8	
MNA Field Parameters																	
Dissolved Oxygen (mg/L)	NA	0		3.74		5.05		0.76		0.1		0.39		0.62		29.8	
Oxidation-Reduction Potential (mv)	NA	107		95		112		303		195.9		166.4		-21.7		-93.1	
Turbidity (NTU)	NA	77.1		427		147		280		6.7		6.3		5.21		11.9	
Conductivity (mS/cm)	NA	0.84		1.24		2.01		1.83		0.89		0.855		0.92		0.965	
рН	NA	8.07		7.59		7.69		7.76		6.93		6.66		6.66		6.27	
Temperature (°C)	NA	12.2		14.9		4.57		7.63		14.7		9.1		7.72		7.7	

Data prior to 2019 obtained from previous reports by Day Environmental, Inc.

Yellow highlight indicated value exceeds applicable groundwater standard or guidance value U = Not detected at concentration above reported analytical laboratory detection limit

N = Analyte passed identification criteria and is considered to be positively identified

B = Compound also detected in associated method bland or field blank

TIC = Tentatively Identified Compound

J = Estimated Value

NA = Not Available

NR = Not Reported

R indicates result rejected in the DUSR

LaBella
Powered by partnership.

Table 2J

Former Vogt Manufacturing Site 100 Fernwood Avenue, Rochester, New York NYSDEC Site #C828119

Groundwater Samples from MWIRM-2

D	NYSDEC Groundwater Detected Compound				/IRM-2	MWIRI	M-2	MWIR	MWIRM-2		
Detected Compound	Standard or Guidance Value	10/23/20	17	4/24	1/2018	5/1/20	019	4/7/2	.020		
VOCs (µg/L)											
Acetone	50	1.98	JB	U		U		1.8	J		
Total TCL VOCs	NA	1.98	J	U		U		1.8	J		
Total TICs	NA	U		U		3.8	J	U			
Total TCL VOCs and TICs	NA	1.98	J	U		3.8	J	1.8	J		
SVOCs (µg/L)											
Anthracene	50	U		U		U		0.03	J		
Caprolactam	NA	U		U		25		U			
Chrysene	0.002	U		U		U		0.04	J		
Fluorene	0.54	U		U		0.08	J	U			
Phenanthrene	50	U		U				0.02			
2-Methylnaphthalene	10	U		U		0.16	J	0.04	J		
Total TCL SVOCs	NA	U		U		25.24	J	0.13			
Total TICs	NA	55.3	NJ	5.8	NJ	81.5	J	U			
Total TCL SVOCs and TICs	NA	55.3	NJ	5.8	NJ	106.74	J	0.13	J		
MNA Lab Parameters											
Nitrate (mg/L)	10	U		U		0.562	R	0.461			
Iron II (mg/L)	0.3	0		0		U	R	U			
Manganese (µg/L)	300	60.5		29.6		13.88	J	9.9			
Sulfate (mg/L)	250	136		112		89		96			
Methane (µg/L)	NA	U		U		11.1		1.82			
Chloride (mg/L)	250	14.5		19.3		26		22			
MNA Field Parameters											
Dissolved Oxygen (mg/L)	NA	0.18		2.54		1.99		3.7			
Oxidation-Reduction Potential (mv)	NA	178.3		129		47.6		13.2			
Turbidity (NTU)	NA	2.7		4.8		2.14		2.2			
Conductivity (mS/cm)	NA	1.088		1		1.02		1.054			
рН	NA	6.83		7.25		7.15		7.08			
Temperature (°C)	NA	17.7		12.8		9.4		11.3			

Data prior to 2019 obtained from previous reports by Day Environmental, Inc.

Yellow highlight indicated value exceeds applicable groundwater standard or guidance value

 $\mbox{\bf U} = \mbox{\bf Not detected at concentration above reported analytical laboratory detection limit}$

 $\mbox{\bf N}$ = Analyte passed identification criteria and is considered to be positively identified

B = Compound also detected in associated method bland or field blank

TIC = Tentatively Identified Compound

J = Estimated Value

NA = Not Available

R indicates result rejected in the DUSR

Table 2K Former Vogt Manufacturing Site 100 Fernwood Avenue, Rochester, New York NYSDEC Site #C828119 Groundwater Samples from MWIRM-3

Detected Compound	NYSDEC Groundwater Standard or Guidance Value	MWIRI 11/23/2		MWIRI 9/23/2		MWIRI 4/25/2		MWIRI 10/19/2		MWIRM 10/24/2		MWIRI 4/23/2		MWIRM 4/30/2		MWIRM-:	
VOCs (µg/L)																i	
Acetone	50	U		U		U		6.3	J	20.2	В	U		U		5.5	
Benzene	1	U		U		2.3	J	2.4	J	1.98		4.6	JD	2.7		2.7	
2-Butanone (MEK)	50	U		U		U		U		340	DB	20.4	D	7.1	J	10	
n-Butylbenzene	5	U		U		U		U		1.27		2.35		U		U	
Sec-Butylbenzene	5	U		U		U		U		0.95		1.9		U		U	
Carbon Disulfide	NA	U		U		U		U		1.05		U		U		U	_
cis-1,2-Dichloroethene	5	U		U		U		U		0.66	J	U	-	U		0.82	J
Ethylbenzene	5	U		U		U		U		1.65 0.66	J	3.3 U	_	3.0 U		3.0 U	
Isopropylbenzene n-Propylbenzene	5	U		U		U		U		0.66	J	2.35		U		U	
4-Isopropyltoluene	5	U	<u> </u>	U		U		U		0.94	J	2.33 U	i —	U		U	
Styrene	5	U		U		U		U		0.7		U		U		U	
Toluene	5	U		U		U		5.1		3.13		7.05	D	5.1		5.5	
1,2,4-Trimethylbenzene	5	U		U		U		U		22.7		23.8	D	U		U	
1,3,5-Trimethylbenzene	5	U		U		U		U		7.28		7.55	D	U		U	_
Xylene (total)	5	5.4		12		15.3		26		18.99		35.5	D	37		33	_
Tetrahydrofuran	50	U		U		U		U		81		209	D	U		U	
Tetrachloroethene	5	U		U		U		U		U		U		0.67		0.74	
Trichloroethene	5	U		U		U		U		U		U		0.19	J	0.42	J
Cyclohexane	NA	U		U		U		U		U		U		0.27	J		J
Methyl cyclohexane	NA	U		U		U		U		U		U		0.62		0.62	J
Vinyl Chloride	2	U		U		U		U		U		U		U		0.32	J
Total TCL VOCs	NA	5.4	-	12		17.6		39.8		504.1		317.8		56.7	J	62.9	J
Total TICs	NA NA	463		840		360.7	NJ	861	NJ	688	NJ	503		1050	J	239	J
Total TCL VOCs and TICs	NA	468.4	NJ	852	NJ	378.3	NJ	902.8	NJ	1192	NJ	820.8	JD	1106.7	J	301.9	J
SVOCs (µg/L)	4			0.7				40		0.0				0		0.0	_
Phenol 2 Methylphonol	1	U		2.7		U		16		6.3		U		2	J	3.9	J
2-Methylphenol	NA NA	U	i	2		U		2		U		U		U		7.8	_
3 and/or 4-Methylphenol	NA 10	U		1.4	J	U		1.7		21		U	-	9.3		30	_
Naphthalene	10	15		23		14		75		148	D	93.8		5.6		13	
2-Methylnaphthalene	NA	78		130		45		320		13.9	J	18		94		130	
1-Methylnaphthalene	NA OO	U		U		U		U		138		48		U		U	
Acenaphthene	20	12		8.9		5.7		22		18.2		5.38	i —	28		3.5	
Acenaphthylene	NA	U		U		U		U		U		U	<u> </u>	5.4		19	_
Dibenzofuran	NA 50	U		2.5		U		U		U		U		U		2.7	_
Fluorene	50	6.7		9.5		3.6		17		16.7	J	4.1		25		17	_
Phenanthrene	50	13		29		U		51		28.8		6.29		51		38	_
Anthracene	50	3.1	i -	6.8		U		15		9.22		U		16		14	_
Carbazole	NA	U	į –	2.7		U		U	į	U		U	į –	U		5.4	
Fluoranthene	50	U		U		U		2.6		U		U		3.6		2.2	
Pyrene	50	3.1	-		J	U		9.9		10.5		U		18		13	_
Benzo(a)anthracene	0.002	U		U		U		2.4		U		U		2.9		1.7	_
Benzo(a)pyrene	0.0012	U	i	U		U		U		U		U	i -	0.86		0.72	<u> </u>
Benzo(b)fluoranthene	0.002	U		U		U		U		U		U	—	0.46	J	0.31	J
Benzo(k)fluoranthene	0.002	U	<u> </u>	U		U		U		U		U	!	0.08	J	0.07	J
Chrysene	0.002	U		U		U		2.9		U		U		2.9		2	
Bis(2-ethylhexyl)phalate	5	8.9		5.7		U		27		18.6		5.33		28		33	<u> </u>
Benzo(g,h,i)perylene	NA .	U		U		U		1.5		U		U	i	0.38	J	0.31	J
Biphenyl Dibanza(a b)anthrasana	5	U	i	U		U		U		U		U		U 0.16	,	2.5	—
Dibenzo(a,h)anthracene	NA 0.003	U	!	U		U		U	-	U		U	<u> </u>	0.16		0.1	<u> </u>
Ideno(1,2,3-cd)pyrene	0.002	U		U		U		U		U		U		0.2	J	0.1	J
2,4-Dimethylphenol	50	120.8				_		U				180.0		U 202.84		244.24	J
Total TCL SVOCs	NA NA	139.8	J	229.1		68.3		566 622.8		429 1428		180.9	i —	293.84	J	344.21 463	J
Total TICs	NA NA	1019.6	NJ NJ	1966		388.7	NJ NJ	622.8		1428	NJ NJ	313		1197 94	_	463 807 21	J
Total TCL SVOCs and TICs	NA	1159.4	NJ	2195.1	NJD	457	NJ	1189	NJ	1857	NJ	493.9	NJD	1187.84	J	807.21	J
MNA Lab Parameters	10	4.4	Р	0.000	DI	A =		0.044	DТ	1.1		U		0.024	D	4.00	
Nitrate (mg/L)	10	1.4		0.089		4.7		0.014		U 2.5				0.034	R	4.02	—
Iron II (mr/l)	^ ^	U		1200		619		774		2.5		1400		0.91	J	1.3	—
Iron II (mg/L)	0.3	200		1200		618		774 44		2430		1490		1134	J	1039	—
Manganese (μg/L)	300	393	ר	24	Г	4 40		- 44		67.2						32	
Manganese (µg/L) Sulfate (mg/L)	300 250	98		21		140			7			72.2		72			
Manganese (µg/L) Sulfate (mg/L) Methane (µg/L)	300 250 NA	98 48		940		2300		4100		U 54.6		U		3890		U	_
Manganese (µg/L) Sulfate (mg/L) Methane (µg/L) Chloride (mg/L)	300 250	98								U 51.6				-		U 46	
Manganese (µg/L) Sulfate (mg/L) Methane (µg/L) Chloride (mg/L) MNA Field Parameters	300 250 NA 250	98 48 89		940 86	В	2300 160	D	4100 63		51.6		90.3		3890 49		46	
Manganese (µg/L) Sulfate (mg/L) Methane (µg/L) Chloride (mg/L) MNA Field Parameters Dissolved Oxygen (mg/L)	300 250 NA 250	98 48 89		940 86 0.25	В	2300 160 0.31	D	4100 63 0.37		51.6 -0.15		90.3 0.24		3890 49 2.29		46 0.87	
Manganese (µg/L) Sulfate (mg/L) Methane (µg/L) Chloride (mg/L) MNA Field Parameters Dissolved Oxygen (mg/L) Oxidation-Reduction Potential (mv)	300 250 NA 250 NA NA	98 48 89 0		940 86 0.25 -144	В	2300 160 0.31	D	4100 63 0.37 -182		51.6 -0.15 -216.3		U 90.3 0.24 154.9		3890 49 2.29 -92.5		0.87 -132.6	
Manganese (µg/L) Sulfate (mg/L) Methane (µg/L) Chloride (mg/L) MNA Field Parameters Dissolved Oxygen (mg/L) Oxidation-Reduction Potential (mv) Turbidity (NTU)	300 250 NA 250 NA NA NA	98 48 89 0 -33 49.5		940 86 0.25 -144 49.1	В	2300 160 0.31 -27 152	D	4100 63 0.37 -182 289		-0.15 -216.3 17.6		0.24 154.9		3890 49 2.29 -92.5 15.9		0.87 -132.6 2.2	
Manganese (µg/L) Sulfate (mg/L) Methane (µg/L) Chloride (mg/L) MNA Field Parameters Dissolved Oxygen (mg/L) Oxidation-Reduction Potential (mv) Turbidity (NTU) Conductivity (mS/cm)	300 250 NA 250 NA NA NA	98 48 89 0 -33 49.5		940 86 0.25 -144 49.1 1.62	В	2300 160 0.31 -27 152 2.11	D	4100 63 0.37 -182 289 1.98		51.6 -0.15 -216.3 17.6 1.353		0.24 154.9 1.519		3890 49 2.29 -92.5 15.9 1.19		0.87 -132.6 2.2 1.48	
Manganese (µg/L) Sulfate (mg/L) Methane (µg/L) Chloride (mg/L) MNA Field Parameters Dissolved Oxygen (mg/L) Oxidation-Reduction Potential (mv) Turbidity (NTU)	300 250 NA 250 NA NA NA	98 48 89 0 -33 49.5		940 86 0.25 -144 49.1	В	2300 160 0.31 -27 152	D	4100 63 0.37 -182 289		-0.15 -216.3 17.6		0.24 154.9		3890 49 2.29 -92.5 15.9		0.87 -132.6 2.2	

Data prior to 2019 obtained from previous reports by Day Environmental, Inc.

Yellow highlight indicated value exceeds applicable groundwater standard or guidance value

U = Not detected at concentration above reported analytical laboratory detection limit

- N = Analyte passed identification criteria and is considered to be positively identified
- $\ensuremath{\mathsf{B}}$ = Compound also detected in associated method bland or field blank
- D = Compound concentrations was obtained from a diluted analysis
- TIC = Tentatively Identified Compound
- J = Estimated Value
- NA = Not Available
 R indicates result rejected in the DUSR

Table 2L Former Vogt Manufacturing Site 100 Fernwood Avenue, Rochester, New York NYSDEC Site #C828119 QA/QC Samples

Detected Compound	TB112309	FB112409	FB092310	TB092310	TB092710	FB042511	TB042511	TB042611	FB101811	TB101811	TB101911	TB102011	FB102317	TB042418	FB042418	QA/QC (MW-14)	Trip Blank	QA/QC (MW-14)	Trip Blank
Detected Compound	11/23/2009	11/24/2009	9/23/2010	9/23/2010	9/27/2010	4/25/2011	4/25/2011	4/26/2011	10/18/2011	10/18/2011	10/19/2011	10/20/2011	10/24/2017	10/23/2017	4/24/2018	5/1/2019	5/1/2019	5/1/2019	5/1/2019
VOCs (µg/L)																			
Acetone	U	U	U	U	U	U	U	U	5.2 J	5.2 J	U	U	U	15.2	U	U	2.2 J	1.8 J	1.7 J
2-Butanone (MEK)	U	U	U	U	U	U	U	U	U	U	U	U	U	2.1	U	U	U	3 J	U
Carbon Disulfide	U	U	U	U	U	U	U	U	U	U	U	U	U	0.65 J	U	U	U	U	U
Trichloroethene	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U J	U J	U	U
Methylene Chloride	U	U	U	U	U	U	U	U	U	U	U	U	U	2.17	U	3	U	U	U
Total TCL VOCs	U	U	U	U	U	U	U	U	5.2 J	5.2 J	U	U	U	20.12 J	U	3	2.2	4.8 J	1.7 J
Total TICs	U	U	U	U	U	U	U	U	12 J	9.9 J	U	U	U	U	U	53.9 J	9.27	U	U
Total TCL VOCs and TICs	U	U	U	U	U	U	U	U	17.2 J	15.1 J	U	U	U	20.12 J	U	56.9 J	11.47	4.8 J	1.7 J
SVOCs (µg/L)	ļ	ļ		İ		į	į	ļ		ļ	İ		ļ	į	İ	ļ	İ	İ	
2-Methylnaphthalene	NT	U	U	NT	NT	U	NT	NT	U	NT	NT	NT	NT	U	NT	0.26	NT	0.06 J	NT
Acenaphthene	NT	U	U	NT	NT	U	NT	NT	U	NT	NT	NT	NT	U	NT	0.10 J	NT	0.01 J	NT
Acenapthylene	NT	U	U	NT	NT	U	NT	NT	U	NT	NT	NT	NT	U	NT	0.02	NT	0.02 J	NT
Caprolactam	NT	U	U	NT	NT	U	NT	NT	U	NT	NT	NT	NT	U	NT	13	NT	U	NT
Fluorene	NT	U	U	NT	NT	U	NT	NT	U	NT	NT	NT	NT	U	NT	0.09	NT	0.02 J	NT
Phenanthrene	NT	U	U	NT	NT	U	NT	NT	U	NT	NT	NT	NT	U	NT	0.17	NT	0.04 J	NT
Anthracene	NT	U	U	NT	NT	U	NT	NT	U	NT	NT	NT	NT	U	NT	0.06	NT	0.03 J	NT
Pyrene	NT	U	U	NT	NT	U	NT	NT	U	NT	NT	NT	NT	U	NT	0.02	NT	U	NT
Bis(2-ethylhex)phalate	NT	U	U	NT	NT	U	NT	NT	U	NT	NT	NT	NT	U	NT	3.2 J	NT	U	NT
Total TCL SVOCs	NT	U	U	NT	NT	U	NT	NT	U	NT	NT	NT	NT	U	NT	16.92 J	NT	0.18 J	NT
Total TICs	NT	47.1 NJ	2.1 J	NT	NT	10.7 NJ	NT	NT	11.8 J	NT	NT	NT	NT	31.5 NJ	NT	145 J	NT	463 J	NT
Total TCL SVOCs and TICs	NT	47.1 NJ	2.1 J	NT	NT	10.7 NJ	NT	NT	11.8 J	NT	NT	NT	NT	31.5 NJ	NT	161.92 J	NT	463.18 J	NT
MNA Lab Parameters																			
Nitrate (mg/L)	NT	0.16	0.18 B	NT	NT	0.068 J	NT	NT	U	NT	NT	NT	U	NT	NT	U R	NT	4.02	NT
Iron II (mg/L)	NT	U	U	NT	NT	U	NT	NT	U	NT	NT	NT	0.0	NT	NT	0.08 J	NT	1.3	NT
Manganese (µg/L)	NT	15.4	15	NT	NT	U	NT	NT	0.083 J	NT	NT	NT	U	NT	NT	230.8 J	NT	1039	NT
Sulfate (mg/L)	NT	0.082	0.41 BJ	NT	NT	U	NT	NT	U	NT	NT	NT	U	NT	NT	78	NT	32	NT
Methane (μg/L)	NT	U	U	NT	NT	U	NT	NT	U	NT	NT	NT	U	NT	NT	U	NT	2.2	NT
Chloride (mg/L)	NT	0.092	0.34 B	NT	NT	0.86 J	NT	NT	U	NT	NT	NT	U	NT	NT	3.8	NT	46	NT

Data prior to 2019 obtained from previous reports by Day Environmental, Inc.

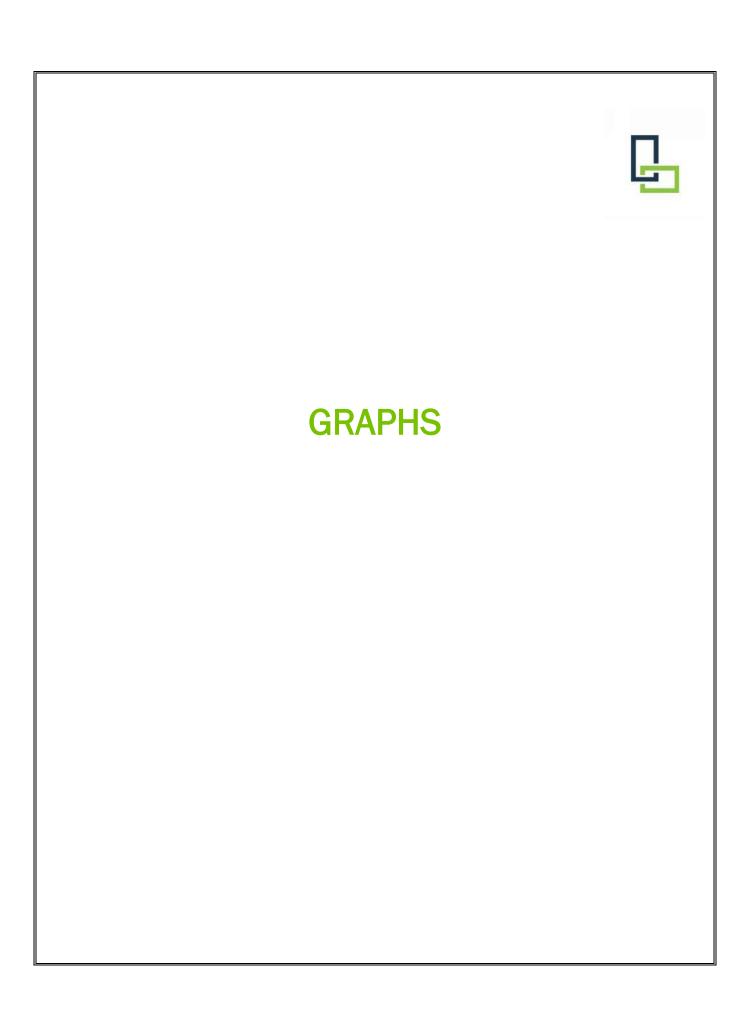
Yellow highlight indicated value exceeds applicable groundwater standard or guidance value

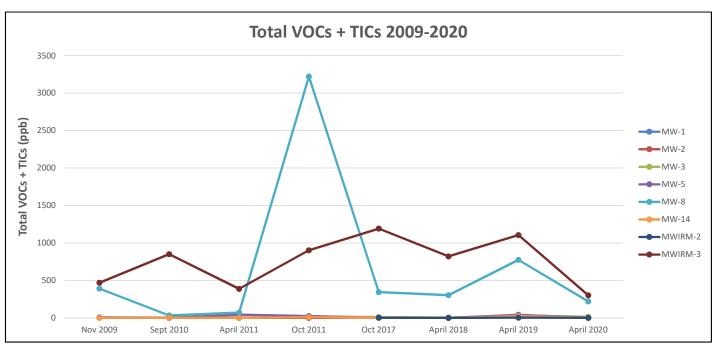
U = Not detected at concentration above reported analytical laboratory detection limit

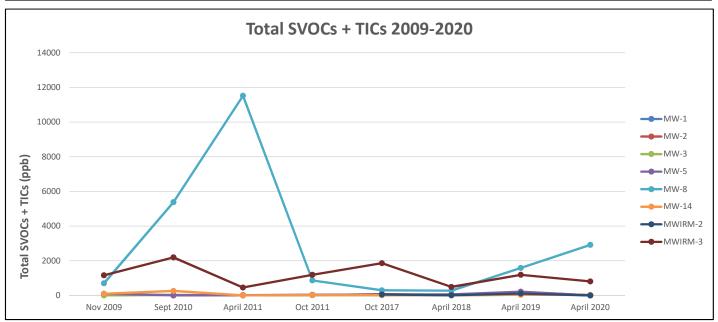
 $\ensuremath{\mathsf{N}}$ = Analyte passed identification criteria and is considered to be positively identified

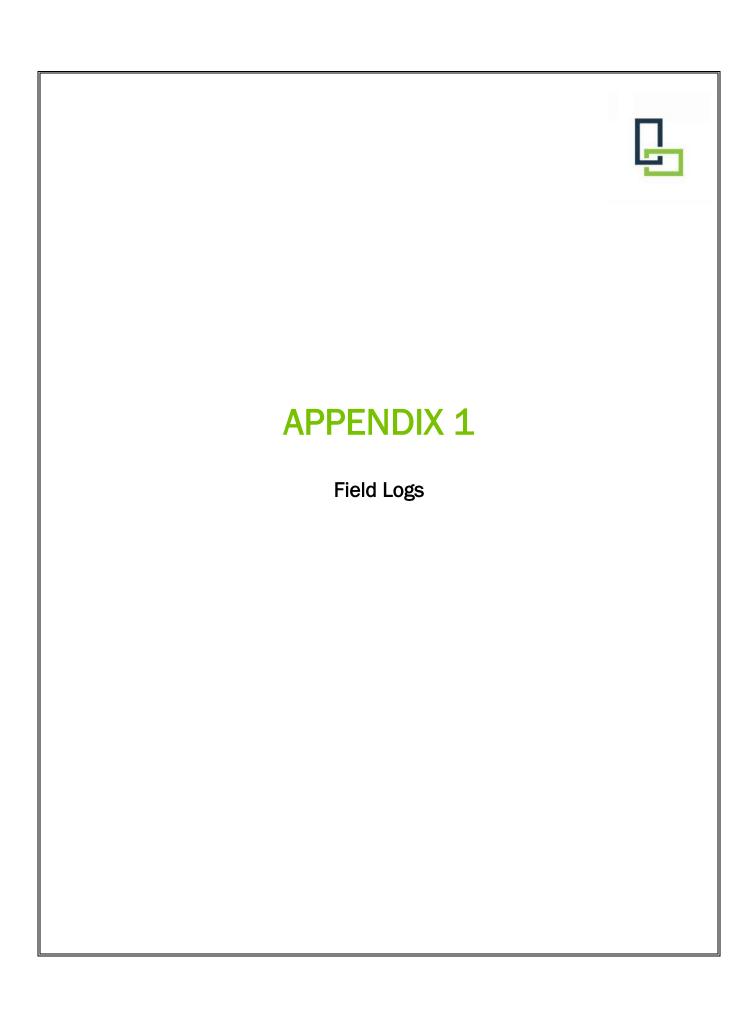
B = Compound also detected in associated method bland or field blank
D = Compound concentrations was obtained from a diluted analysis

TIC = Tentatively Identified Compound


J = Estimated Value


NA = Not Available


NT = Not Tested


R indicates result rejected in the DUSR

LaBella

300 State Street

Rochester, New York 14614
Telephone: (585) 454-6110
Facsimile: (585) 454-3066
WELL I.D.: MW-01

Project Name: 100 Fernwood

Location: Rochester, NY

Project No.: 2201031

Sampled By: J. Folger

Date: 4/6/2020

Weather: 45°F, sunny, calm

WFII	SAMPI	ING	INFOR	MATION
**		-1111		

Well Diameter:1"Static Water Level:7.72Depth of Well:12.80Length of Well Screen:unknownMeasuring Point:TOCDepth to Top of Pump:10'Pump Type:bladderTubing Type:LDPE

FIELD PARAMETER MEASUREMENT

Time	Pump Rate	Gallons	рН	Temp	Conductivity	Turbidity	Dissolved O ₂	Redox	Comments
		Purged		٥C	(mS/cm)	(NTU)	(mg/L)	(mV)	
			+/- 0.1		+/- 3%		+ 10%	+/- 10 mV	
0945	40mL/min		7.23	9.5	0.745	319.17	7.77	203.9	
0950	40mL/min		7.24	9.6	0.747	248.78	7.78	204.6	
0955	40mL/min		7.24	9.8	0.756	175.55	7.80	205.8	
1000	40mL/min		7.24	9.8	0.767	116.53	7.92	207.6	
1005	40mL/min		7.24	10.0	0.772	74.93	7.94	209.3	
1010	40mL/min		7.23	9.9	0.778	52.48	8.02	210.3	
1015	40mL/min		7.24	9.9	0.780	38.64	8.01	211.1	
1020	40mL/min		7.23	10.0	0.783	23.60	8.04	211.7	
1025	40mL/min		7.23	10.0	0.786	20.17	8.05	212.3	
1030	40mL/min	0.5	7.23	9.9	0.788	16.47	8.09	212.8	Sample @ 1030

Total	0.5	Gallons Purge

Purge Time Start: 0945 Purge Time End: 1030 Final Static Water Level: 7.80

OBSERVATIONS

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		,
Sample MW-1 collected at 1030		

300 State Street

Project Name: 100 Fernwood Location: Rochester, NY

Project No.: 2201031

Sampled By: I Folger

	lew York 14614			Sampled	л Бу: <u>J.</u>	Folger						
	(585) 454-6110 585) 454-3066			Date:	4	/7/2020						
WELL I.C		00				-	•					
WELL I.L).: <u>MW</u> -	-02		Weather	: 50	0°F, sunny, ca	ım					
WELL SAM	IPLING INFOR	RMATION										
Well Diam	otor:	1"				S+	atic Water Lev	el: 3.8	30			
Depth of V	-						ength of Well S		known			
Measuring	_	TOC					epth to Top of					
Pump Type	_	bladder					ibing Type:	LD				
	RAMETER MEA		ı									
	1	1		T _			5				•	
Time	Pump Rate	Gallons	pН	Temp	Conductivit		Dissolved O ₂	Redox			Comments	
		Purged	1/01	°C	(mS/cm)	(NTU)	(mg/L)	(mV)	_			
0005	401 /		+/- 0.1	0.4	+/- 3%	00.00	+ 10%	+/- 10 mV				
0805	40mL/min		6.89	8.1	0.614	23.83	2.38	22.5				
0810	40mL/min		6.90	7.9	0.611	16.27	1.90	47.9				
0815 0820	40mL/min	+	6.92 6.93	7.8 7.8	0.607 0.612	8.18	1.75 0.63	78.1 90.5				
0825	40mL/min 40mL/min		6.93	7.8	0.612	6.60 3.51	1.41	104.6				
0830	40mL/min		6.92	7.9	0.632	2.88	1.41	111.3				
0835	40mL/min	+	6.91	7.9	0.635	2.57	1.18	114.6				
0840	40mL/min		6.90	8.0	0.641	2.17	1.03	117.6				
0845	40mL/min		6.90	8.0	0.643	1.34	0.89	118.6				
0850	40mL/min		6.90	8.0	0.645	1.10	0.79	119.9				
0855	40mL/min	0.53	6.91	8.0	0.646	0.94	0.75	120.4			Sample @855	
		0.00	0.02	0.0	0.0.0	0.0 .	01.0				Campio Coco	
	Total	0.53	Gallons	Purged								
Purge Time	Start: 080	5		Purge Tin	ne End:	0855		Final Sta	tic Water Level:	3.74		
OBSERVAT	TIONS											
Carranta M	W O -+ O FF											
Sample M	W-2 at 8.55											

Project Name: 100 Fernwood

Location: Rochester, NY

Project No.: 2201031

300 State St	root			•						
300 State St Rochester, N	lew York 14614			Sample	d By: J. F	olger				
	(585) 454-6110 585) 454-3066			Date:	4/7	7/2020				
WELL I.C).: MW-:	3		Weather	: 50°	F, sunny, ca	lm			
WELL CAN	1PLING INFOR	MATION								
WELL SAIV	IFLING INFOR	IVIATION								
Well Diam	_	1"					tatic Water Lev		75	
Depth of V	Vell:					Le	ength of Well S	Screen: un	known	
Measuring	g Point:	TOC				D	epth to Top of	Pump: 10)'	
Pump Type	e: _	bladder				Tu	ubing Type:	LD	PE	
FIELD PAR	RAMETER MEA	SUREMENT	•							
Time	Pump Rate	Gallons	рН	Temp	Conductivity	Turbidity	Dissolved O ₂	Redox		Comments
		Purged		°C	(mS/cm)	(NTU)	(mg/L)	(mV)		
			+/- 0.1		+/- 3%		+ 10%	+/- 10 mV		
1025	40mL/min		6.91	12.7	0.849	67.65	3.49	171.9		
1030	40mL/min		6.98	11.7	0.828	32.40	1.86	179.9		
1035	40mL/min		7.00	11.6	0.824	16.90	1.29	183.9		
1040	40mL/min		7.01	10.9	0.820	10.58	0.98	184.8		
1045	40mL/min		70.2	10.9	0.817	8.19	0.85	184.7		
1050	40mL/min		7.02	10.9	0.817	5.88	0.80	184.3		
1055	40mL/min		7.02	11.0	0.819	4.19	0.71	183.2		Sample @ 1055
	Total	0.3	Gallons	Purged	<u> </u>		<u> </u>			
Purge Time	Start: 102	 5	_	Purge Tir	ne End:	1055		Final Stat	tic Water Level: 5.72	
OBSERVAT	LIUNG				_					
Sample M	W-3 at 1055									

Sample MW-3 at 1055		

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066

WELL I.D.: MW-5

Project Name:	100 Fernwood
---------------	--------------

Location: Rochester, NY

Project No.: 2201031

Sampled By: H. Geoghehan

Date: 4/7/2020

Weather: 45°F, sunny, calm

WELL SAMPLING INFORMATION									
1"	Static Water Level:	6.71'							
	Length of Well Screen:	unknown							
TOC	Depth to Top of Pump:	10'							
bladder	Tubing Type:	LDPE							
	TOC	1" Static Water Level: Length of Well Screen: TOC Depth to Top of Pump:							

FIELD PA	FIELD PARAMETER MEASUREMENT										
Time	Pump Rate	Gallons	рН	Temp	Conductivity	Turbidity	Dissolved O ₂	Redox			Comments
		Purged		٥C	(mS/cm)	(NTU)	(mg/L)	(mV)			
			+/- 0.1		+/- 3%		+ 10%	+/- 10 mV			
1325	40mL/min		7.09	17.7	0.638	294.60	9.20	182.4			
1330	40mL/min		6.91	12.9	0.716	466.80	9.51	190.4			
1335	40mL/min		6.90	11.8	0.725	429.30	9.40	193.4			
1340	40mL/min		6.90	11.8	0.727	379.11	9.24	195.7			
1345	40mL/min		6.90	11.6	0.727	143.60	9.10	200.2			
1350	40mL/min		6.89	11.5	0.726	59.07	8.10	203.0			
1355	40mL/min		6.89	11.4	0.724	44.49	8.76	205.2			
1400	40mL/min		6.89	11.4	0.723	35.27	8.66	206.9			
1405	40mL/min		6.89	11.4	0.724	28.87	8.54	20.8.1			
1410	40mL/min	0.5	6.89	11.6	0.723	24.24	8.40	209.6			Sample @ 1410
											_

Total 0.5 Gallons Purged

Purge Time Start: 1325 Purge Time End: 1410 Final Static Water Level: 6.64

OBSERVATIONS

Sample MW-05 at 1410		
Sample ww-05 at 1410		
1		

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066 Project Name: 100 Fernwood

Location: Rochester, NY

2201031

Sampled By: J. Folger

Project No.:

Date: 4/6/2020

	,				, ,	,					
WELL I.C	.L I.D.: MW-08			Weather: 45°F, sunny, calm							
WELL SAM	IPLING INFO	RMATION									
Well Diameter: 1"						S	tatic Water Lev	el:	5.31		
Depth of W	Vell:					Le	ength of Well S	creen:	unknown		
Measuring	Point:	TOC				D	epth to Top of	Pump:			
Pump Type	e:	bladder				T	ubing Type:		LDPE		
FIELD PARAMETER MEASUREMENT											
Time	Pump Rate	Gallons	рН	Temp	Conductivity	Turbidity	Dissolved O ₂	Redox			Comments
		Purged		٥C	(mS/cm)	(NTU)	(mg/L)	(mV)			
			+/- 0.1		+/- 3%		+ 10%	+/- 10 m	V		
1155	40mL/min		6.68	8.6	0.904	24.28	2.57	-113.8			
1200	40mL/min		6.73	7.9	0.904	10.66	7.0	-142.5			
1205	40mL/min		6.74	7.6	0.903	10.67	4.6	-149.7			
1210	40mL/min		6.75	7.5	0.902	9.45	5.8	-152.4			
1215	40mL/min		6.76	7.5	0.900	8.22	5.6	-155.8			
1220	40mL/min		6.77	7.6	0.897	8.21	5.0	-156.9			
1225	40mL/min		6.78	7.6	0.894	8.26	4.4	-158.1			

3.8

-160.0

Sample @1230

Total 0.3 Gallons Purged

0.3

6.79

7.5

Purge Time Start: 1155 Purge Time End: 1230 Final Static Water Level: 5.32

0.981

8.09

OBSERVATIONS

1230

40mL/min

Sample MW-8 at 1230

Sheen on purge water. Some NAPL stuck to inside of tubing and flow cell.

Project	Name:	100	Fernwood

Location: Rochester, NY

Project No.: 2201031

Rochester, N	ew York 14614			Sample	d By: J. F	J. Folger						
Telephone: (585) 454-6110 Facsimile: (585) 454-3066			Date:	4/8	4/8/2020							
WELL I.D).: <u>MW</u> -:	14		Weather	: 45°	F, overcast,	calm					
WELL SAM	IPLING INFOR	MATION										
Well Diameter: 2" Depth of Well: Measuring Point: TOC					Static Water Level: 3.90 Length of Well Screen: unknown Depth to Top of Pump: 10'							
Pump Type	·	bladder					ubing Type:	LDI				
FIFI D PAR	AMETER MEA	SURFMENT	1			_	- J.					
Time	Pump Rate	Gallons Purged	pH +/- 0.1	Temp °C	Conductivity (mS/cm) +/- 3%	Turbidity (NTU)	Dissolved O ₂ (mg/L) + 10%	Redox (mV) +/- 10 mV			Comments	
0815	80mL/min		6.57	8.0	0.981	290.3	37.4	-17.8				
0820	80mL/min		6.45	7.8	0.980	109.5	31.4	-35.2				
0825	80mL/min		6.34	7.7	0.977	54.0	30.7	-48.0				
0830	80mL/min		6.31	7.7	0.976	54.7	30.6	-59.8				
0835	80mL/min		6.29	7.7	0.975	33.6	30.4	-69.4				
0840	80mL/min		6.28	7.7	0.974	31.3	30.3	-72.0				
0845	80mL/min		6.27	7.7	0.971	21.0	30.1	-80.2				
0850	80mL/min		6.27	7.7	0.969	16.1	30.0	-83.9				
0855	80mL/min		6.27	7.7	0.967	13.5	29.8	-89.0				
0900	80mL/min	1.0	6.27	7.7	0.965	11.9	29.8	-93.1			Sample @ 0900	
	Total	1	Gallons	Purged					•	•		
Purge Time	Start:0815	5	- 	Purge Tin	ne End:	0900		Final Stat	ic Water Level:	4.03		
OBSERVAT	TIONS											
Sample M\	Sample MW-14 at 0900											

OBSERVATIONS
Sample MW-14 at 0900
Sample MW-14 at 0900

Rochester, New York 14614 Telephone: (585) 454-6110

Facsimile: (585) 454-3066

WELL I.D.: MWIRM-2

Project Name: 10	0 Fernwood
------------------	------------

Location: Rochester, NY

Project No.: 2201031 Sampled By:

J. Folger

Date: 4/7/2020

Weather: 55°F, sunny, calm

WELL SAMPLING INFORMATION								
Well Diameter:	4"	Static Water Level:	9.97					
Depth of Well:		Length of Well Screen:	unknown					
Measuring Point:	TOC	Depth to Top of Pump:	15'					
Pump Type:	bladder	Tubing Type:	LDPE					

Time	Pump Rate	Gallons	рН	Temp	Conductivity	Turbidity	Dissolved O ₂	Redox	Comments
		Purged		οС	(mS/cm)	(NTU)	(mg/L)	(mV)	
			+/- 0.1		+/- 3%		+ 10%	+/- 10 mV	
1045	100mL/min		7.24	11.2	1.065	1.8	5.00	30.3	
1050	100mL/min		7.13	10.4	1.058	-1.1	4.46	11.8	
1055	100mL/min		7.03	10.6	1.058	-1.5	3.99	16.4	
1100	100mL/min		7.00	9.7	1.055	-1.4	3.74	13.0	
1105	100mL/min		9.96	9.7	1.054	-1.4	3.68	14.1	
1110	100mL/min		6.95	9.6	1.053	-1.4	3.64	13.5	
1115	100mL/min		6.99	10.3	1.052	-2.0	3.77	9.5	
1120	100mL/min		7.08	10.3	1.054	-2.2	3.70	13.2	Sample @ 1120

Total Gallons Purged

Purge Time Start: 1045 Purge Time End: 1020 Final Static Water Level: 9.88

OBSERVATIONS

Sample MWIRM-2 at 1120 MS/MSD collected at this location Duplicate collected at this location

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066

Facsimile: (585) 454-3066

WELL I.D.: MWIRM-3

Project Name:	100 Fernwood

Location: Rochester, NY

Project No.: 2201031

Sampled By: J. Folger

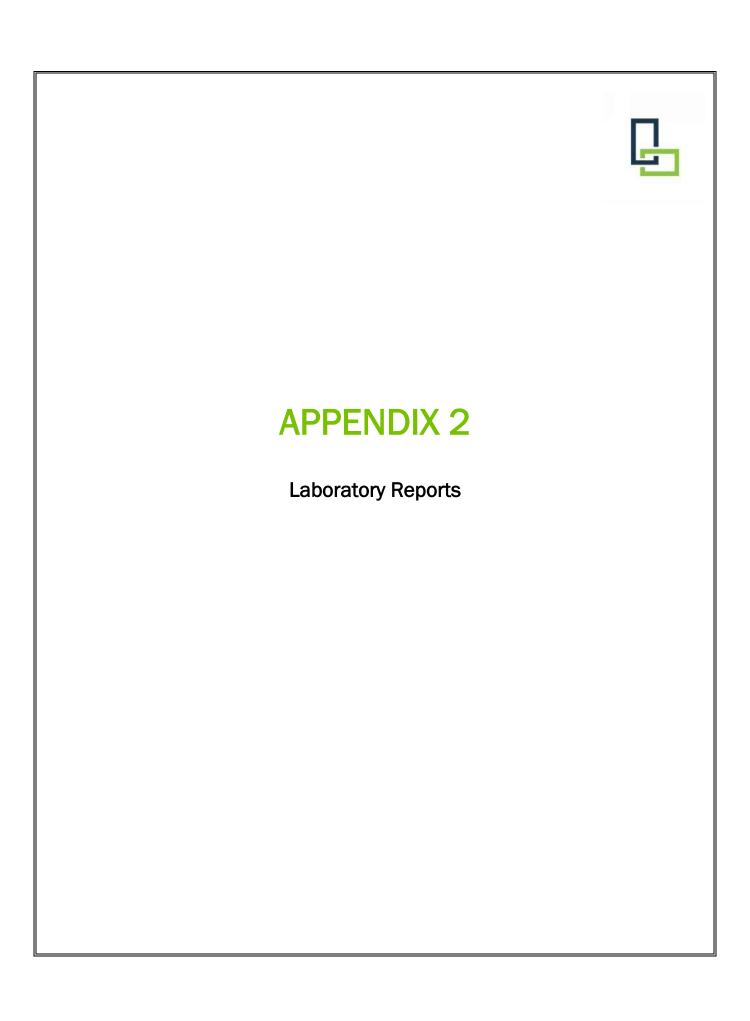
Date: 4/7/2020

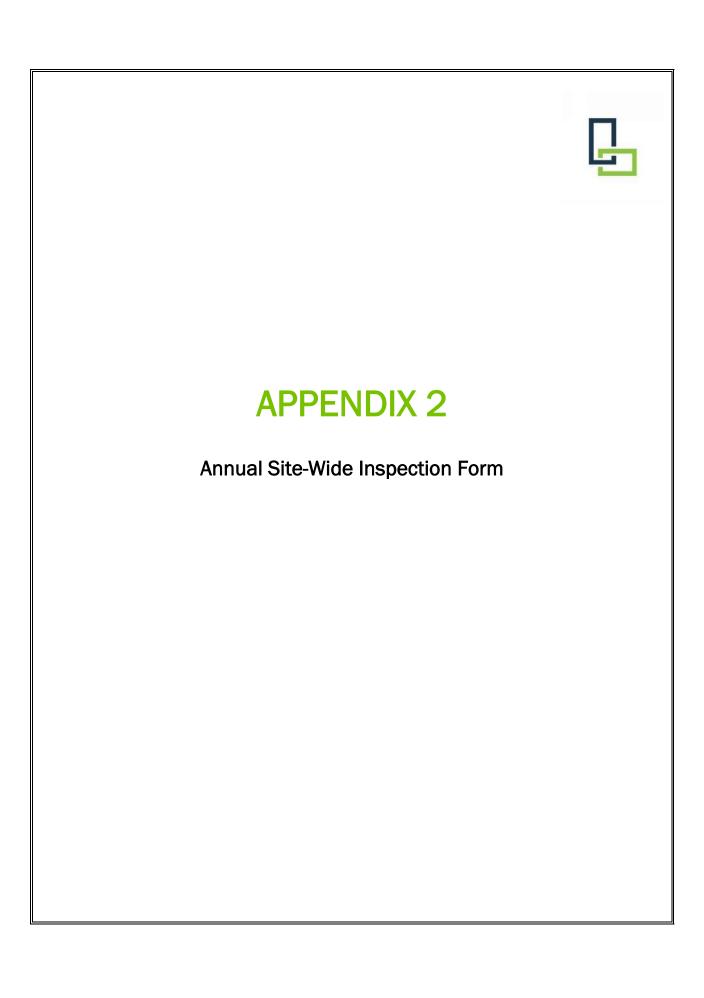
Weather: 55°F, sunny, calm

WELL SAMPLING INFORMATION						
Well Diameter:	4"	Static Water Level:	10.61			
Depth of Well:		Length of Well Screen:	unknown			
Measuring Point:	TOC	Depth to Top of Pump:	15'			
Pump Type:	bladder	Tubing Type:	LDPE			

FIELD PARAMETER MEASUREMENT

Time	Pump Rate	Gallons	рН	Temp	Conductivity	Turbidity	Dissolved O ₂	Redox		Comments
		Purged		°C	(mS/cm)	(NTU)	(mg/L)	(mV)		
			+/- 0.1		+/- 3%		+ 10%	+/- 10 mV		
1310	100mL/min		7.11	10.3	1.245	4.0	3.96	-112.9		
1315	100mL/min		7.33	9.6	1.220	3.8	2.01	-132.4		
1320	100mL/min		7.28	9.5	1.203	3.7	1.87	-130.8		
1325	100mL/min		7.12	9.5	1.189	3.4	1.15	-129.5		
1330	100mL/min		7.19	9.7	1.177	3.2	0.99	-132.6		
1335	100mL/min		7.25	9.9	1.168	2.7	0.89	-133.6		
1340	100mL/min		7.30	9.9	1.163	2.5	0.89	-128.9		
1345	100mL/min		7.27	9.8	1.157	2.4	0.88	-132.7		
1350	100mL/min		7.28	9.8	1.148	2.2	0.87	-132.6		Sample @ 1350
1										

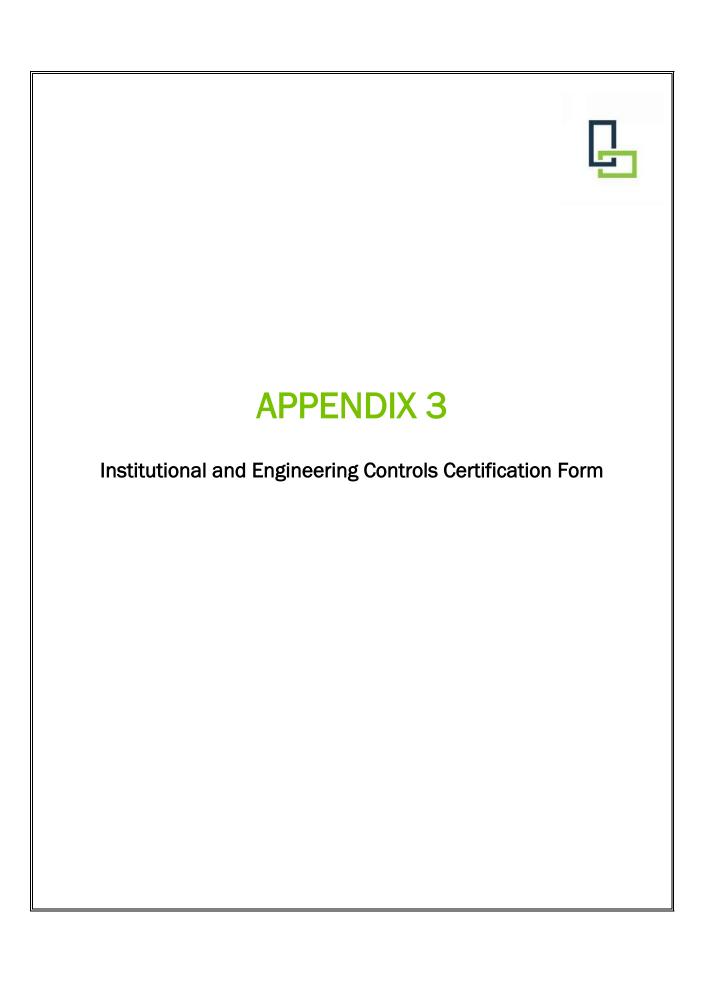

Total 1 Gallons Purged


Purge Time Start: 1310 Purge Time End: 1350 Final Static Water Level: 10.63

OBSERVATIONS

Sample MWIRM-3 at 1350

Some NAPL stuck to sides of tubing and flow call



ANNUAL SITE-WIDE INSPECTION FORM FORMER VOGT MANUFACTURING FACILITY 100 FERNWOOD AVENUE ROCHESTER, NEW YORK NYSDEC SITE NUMBER: C828119

Date of Inspection:	12/28/2020
Inspected By:	Jeffrey Folger
	Environmental Geologist
	LaBella Associates
	(Include: name, company, and position of person(s) conducting inspection)
General condition of a	above ground portions of the in-situ bioremediation system:
All items appear to	be in good condition.
air effluent wind turbi	
Describe damage or b	lockage if observed: NA
Evidence of damage o	r blockage of monitoring wells: Yes X No
Describe damage or b	lockage if observed: NA

Additional Comments:	MW-7 Could not be located. All other wells appear to be in
	good condition.
######################################	
2/2	
Action Item(s) Require	d (attach photographs and/or sketches showing the approximate
location of any problem	s or incidents): None
200.00	
Action Item(s) complete	ed since last inspection: None
(S (14 (Kr)) 97 (Kr) 95 (Kr) - (14 (Kr)) 17 (Kr) 17 (
a: M	"Ola-
Signatures:	
-	·····

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	Site Details Site No. C828119						
Site	Site Name Former Vogt Manufacturing Site						
City Co	Site Address: 100 Fernwood Ave. Zip Code: 14623- City/Town: Rochester County: Monroe Site Acreage: 8.095						
Re	porting Period: December 31, 2019 to December 31, 2020						
		YES	NO				
1.	Is the information above correct?	X					
	If NO, include handwritten above or on a separate sheet.						
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?	a	X				
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X				
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X				
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form						
5.	Is the site currently undergoing development?		X				
		Box 2					
		YES	NO				
6.	Is the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial	X					
7.	Are all ICs in place and functioning as designed?	X					
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.						
A C	A Corrective Measures Work Plan must be submitted along with this form to address these issues.						
Sic	nature of Owner Remedial Party or Designated Representative Date						

		Box 2	A
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITE	E NO. C828119	Box	c 3
	Description of Institutional Controls		

Parcel	<u>Owner</u>	Institutional Control
106.27-1-5	Rochester Housing Authority	
	•	Ground Water Use Restriction
		Soil Management Plan
		Landuse Restriction
		Building Use Restriction
		Monitoring Plan
		Site Management Plan
		O&M Plan
		IC/EC Plan

The Controlled Property may be used for restricted residential, commercial or industrial use with the exception of Area "A" marked on the survey map where no occupied building can be constructed until the remedy in this area is completed to the DEC's satisfaction as long as the following long-term engineering controls are employed:

- (i) any future activities, including building renovation/expansion, subgrade utility line repair/relocation, and new construction, which will cause a disturbance of the remaining contaminated soil under the top two feet of surface soil must be conducted in accordance with the Department approved Site Management Plan (SMP);
- (ii) vegetable gardens and farming on the Controlled Property is prohibited;
- (iii) The use of groundwater underlying the Controlled Property is prohibited. The City of Rochester Code prohibits the use of groundwater as a potable source;
- (iv) The potential for vapor intrusion must be evaluated for any buildings developed on the Controlled Property, and any potential impacts that are identified must be monitored or mitigated in accordance with the SMP and applicable guidance in effect at the time of the investigation;
- (v) monitor, maintain and replace as necessary groundwater monitoring wells required to be monitored as set forth in the SMP.

106.27-1-87

Rochester Housing Authority

Ground Water Use Restriction
Soil Management Plan
Landuse Restriction
Building Use Restriction
Monitoring Plan
Site Management Plan
O&M Plan
IC/EC Plan

- (i) any future activities, including building renovation/expansion, subgrade utility line repair/relocation, and new construction, which will cause a disturbance of the remaining contaminated soil under the top two feet of surface soil must be conducted in accordance with the Department approved Site Management Plan (SMP);
- (ii) vegetable gardens and farming on the Controlled Property is prohibited;
- (iii) The use of groundwater underlying the Controlled Property is prohibited. The City of Rochester Code prohibits the use of groundwater as a potable source;
- (iv) The potential for vapor intrusion must be evaluated for any buildings developed on the Controlled Property, and any potential impacts that are identified must be monitored or mitigated in accordance with

the SMP and applicable guidance in effect at the time of the investigation;

(v) monitor, maintain and replace as necessary groundwater monitoring wells required to be monitored as set forth in the SMP.

106.27-1-88

100 Fernwood Avenue Associates

Ground Water Use Restriction
Soil Management Plan
Landuse Restriction
Building Use Restriction
Monitoring Plan
Site Management Plan
O&M Plan
IC/EC Plan

The Controlled Property may be used for restricted residential, commercial or industrial use with the exception of Area "A" marked on the survey map where no occupied building can be constructed until the remedy in this area is completed to the DEC's satisfaction as long as the following long-term engineering controls are employed:

- (i) any future activities, including building renovation/expansion, subgrade utility line repair/relocation, and new construction, which will cause a disturbance of the remaining contaminated soil under the top two feet of surface soil must be conducted in accordance with the Department approved Site Management Plan (SMP):
- (ii) vegetable gardens and farming on the Controlled Property is prohibited;
- (iii) The use of groundwater underlying the Controlled Property is prohibited. The City of Rochester Code prohibits the use of groundwater as a potable source;
- (iv) The potential for vapor intrusion must be evaluated for any buildings developed on the Controlled Property, and any potential impacts that are identified must be monitored or mitigated in accordance with the SMP and applicable guidance in effect at the time of the investigation;
- (v) monitor, maintain and replace as necessary groundwater monitoring wells required to be monitored as set forth in the SMP.

106.27-1-89

100 Fernwood Avenue Associates

Ground Water Use Restriction
Soil Management Plan
Landuse Restriction
Building Use Restriction
Monitoring Plan
Site Management Plan
O&M Plan
IC/EC Plan

- (i) any future activities, including building renovation/expansion, subgrade utility line repair/relocation, and new construction, which will cause a disturbance of the remaining contaminated soil under the top two feet of surface soil must be conducted in accordance with the Department approved Site Management Plan (SMP);
- (ii) vegetable gardens and farming on the Controlled Property is prohibited;
- (iii) The use of groundwater underlying the Controlled Property is prohibited. The City of Rochester Code prohibits the use of groundwater as a potable source;

- (iv) The potential for vapor intrusion must be evaluated for any buildings developed on the Controlled Property, and any potential impacts that are identified must be monitored or mitigated in accordance with the SMP and applicable guidance in effect at the time of the investigation;
- (v) monitor, maintain and replace as necessary groundwater monitoring wells required to be monitored as set forth in the SMP.

106.27-1-90

100 Fernwood Avenue Associates

Ground Water Use Restriction Soil Management Plan Landuse Restriction Building Use Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

The Controlled Property may be used for restricted residential, commercial or industrial use with the exception of Area "A" marked on the survey map where no occupied building can be constructed until the remedy in this area is completed to the DEC's satisfaction as long as the following long-term engineering controls are employed:

- (i) any future activities, including building renovation/expansion, subgrade utility line repair/relocation, and new construction, which will cause a disturbance of the remaining contaminated soil under the top two feet of surface soil must be conducted in accordance with the Department approved Site Management Plan (SMP);
- (ii) vegetable gardens and farming on the Controlled Property is prohibited;
- (iii) The use of groundwater underlying the Controlled Property is prohibited. The City of Rochester Code prohibits the use of groundwater as a potable source;
- (iv) The potential for vapor intrusion must be evaluated for any buildings developed on the Controlled Property, and any potential impacts that are identified must be monitored or mitigated in accordance with the SMP and applicable guidance in effect at the time of the investigation:
- (v) monitor, maintain and replace as necessary groundwater monitoring wells required to be monitored as set forth in the SMP.

106.27-1-91

100 Fernwood Avenue Associates

Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

Soil Management Plan

- (i) any future activities, including building renovation/expansion, subgrade utility line repair/relocation, and new construction, which will cause a disturbance of the remaining contaminated soil under the top two feet of surface soil must be conducted in accordance with the Department approved Site Management Plan (SMP);
- (ii) vegetable gardens and farming on the Controlled Property is prohibited;

- (iii) The use of groundwater underlying the Controlled Property is prohibited. The City of Rochester Code prohibits the use of groundwater as a potable source;
- (iv) The potential for vapor intrusion must be evaluated for any buildings developed on the Controlled Property, and any potential impacts that are identified must be monitored or mitigated in accordance with the SMP and applicable guidance in effect at the time of the investigation;
- (v) monitor, maintain and replace as necessary groundwater monitoring wells required to be monitored as set forth in the SMP.

106.27-1-92

100 Fernwood Avenue Associates

Soil Management Plan
Ground Water Use Restriction
Landuse Restriction
Monitoring Plan
Site Management Plan
O&M Plan
IC/EC Plan

The Controlled Property may be used for restricted residential, commercial or industrial use with the exception of Area "A" marked on the survey map where no occupied building can be constructed until the remedy in this area is completed to the DEC's satisfaction as long as the following long-term engineering controls are employed:

- (i) any future activities, including building renovation/expansion, subgrade utility line repair/relocation, and new construction, which will cause a disturbance of the remaining contaminated soil under the top two feet of surface soil must be conducted in accordance with the Department approved Site Management Plan (SMP);
- (ii) vegetable gardens and farming on the Controlled Property is prohibited;
- (iii) The use of groundwater underlying the Controlled Property is prohibited. The City of Rochester Code prohibits the use of groundwater as a potable source;
- (iv) The potential for vapor intrusion must be evaluated for any buildings developed on the Controlled Property, and any potential impacts that are identified must be monitored or mitigated in accordance with the SMP and applicable guidance in effect at the time of the investigation:
- (v) monitor, maintain and replace as necessary groundwater monitoring wells required to be monitored as set forth in the SMP.

106.27-1-93

100 Fernwood Avenue Associates

Ground Water Use Restriction Landuse Restriction Site Management Plan IC/EC Plan Soil Management Plan

- (i) any future activities, including building renovation/expansion, subgrade utility line repair/relocation, and new construction, which will cause a disturbance of the remaining contaminated soil under the top two feet of surface soil must be conducted in accordance with the Department approved Site Management Plan (SMP);
- (ii) vegetable gardens and farming on the Controlled Property is prohibited;
- (iii) The use of groundwater underlying the Controlled Property is prohibited. The City of Rochester Code prohibits the use of groundwater as a potable source;

- (iv) The potential for vapor intrusion must be evaluated for any buildings developed on the Controlled Property, and any potential impacts that are identified must be monitored or mitigated in accordance with the SMP and applicable guidance in effect at the time of the investigation;
- (v) monitor, maintain and replace as necessary groundwater monitoring wells required to be monitored as set forth in the SMP.

91.83-3-19

Rochester Housing Authority

Soil Management Plan
Ground Water Use Restriction
Landuse Restriction
Site Management Plan
IC/EC Plan

The Controlled Property may be used for restricted residential, commercial or industrial use with the exception of Area "A" marked on the survey map where no occupied building can be constructed until the remedy in this area is completed to the DEC's satisfaction as long as the following long-term engineering controls are employed:

- (i) any future activities, including building renovation/expansion, subgrade utility line repair/relocation, and new construction, which will cause a disturbance of the remaining contaminated soil under the top two feet of surface soil must be conducted in accordance with the Department approved Site Management Plan (SMP);
- (ii) vegetable gardens and farming on the Controlled Property is prohibited;
- (iii) The use of groundwater underlying the Controlled Property is prohibited. The City of Rochester Code prohibits the use of groundwater as a potable source;
- (iv) The potential for vapor intrusion must be evaluated for any buildings developed on the Controlled Property, and any potential impacts that are identified must be monitored or mitigated in accordance with the SMP and applicable guidance in effect at the time of the investigation;
- (v) monitor, maintain and replace as necessary groundwater monitoring wells required to be monitored as set forth in the SMP.

91.83-3-20

Rochester Housing Authority

Ground Water Use Restriction Landuse Restriction Site Management Plan IC/EC Plan

Soil Management Plan

- (i) any future activities, including building renovation/expansion, subgrade utility line repair/relocation, and new construction, which will cause a disturbance of the remaining contaminated soil under the top two feet of surface soil must be conducted in accordance with the Department approved Site Management Plan (SMP);
- (ii) vegetable gardens and farming on the Controlled Property is prohibited;
- (iii) The use of groundwater underlying the Controlled Property is prohibited. The City of Rochester Code prohibits the use of groundwater as a potable source;
- (iv) The potential for vapor intrusion must be evaluated for any buildings developed on the Controlled Property, and any potential impacts that are identified must be monitored or mitigated in accordance with

the SMP and applicable guidance in effect at the time of the investigation;

(v) monitor, maintain and replace as necessary groundwater monitoring wells required to be monitored as set forth in the SMP.

91.83-3-21 Rochester Housing Authority

> Soil Management Plan **Ground Water Use Restriction** Landuse Restriction Site Management Plan IC/EC Plan

- (i) any future activities, including building renovation/expansion, subgrade utility line repair/relocation, and new construction, which will cause a disturbance of the remaining contaminated soil under the top two feet of surface soil must be conducted in accordance with the Department approved Site Management Plan (SMP);
- (ii) vegetable gardens and farming on the Controlled Property is prohibited;
- (iii) The use of groundwater underlying the Controlled Property is prohibited. The City of Rochester Code prohibits the use of groundwater as a potable source;
- (iv) The potential for vapor intrusion must be evaluated for any buildings developed on the Controlled Property, and any potential impacts that are identified must be monitored or mitigated in accordance with the SMP and applicable guidance in effect at the time of the investigation:
- (v) monitor, maintain and replace as necessary groundwater monitoring wells required to be monitored as set forth in the SMP.

		Box 4
Description of Engineering Co	ontrols	
<u>Parcel</u>	Engineering Control	
106.27-1-5	Vapor Mitigation	
106.27-1-87	Vapor Mitigation	
106.27-1-88	Vapor Mitigation	
106.27-1-89	Vapor Mitigation	
106.27-1-90	Vapor Mitigation	
106.27-1-91	Vapor Mitigation	
106.27-1-92	Vapor Mitigation	

Parcel	Engineering Control
91.83-3-19	Vapor Mitigation
91.83-3-20	Vapor Mitigation
91.83-3-21	Vapor Mitigation

	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;	
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. 	
	YES NO	
	$raket{X}$	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
	\mathbf{X}	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.	
	Signature of Owner, Remedial Party or Designated Representative Date	

IC CERTIFICATIONS SITE NO. C828119

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I SHAWN print n			MANN ST.	ROCH. MY	14611
am certifying as				_(Owner or Re	emedial Party)
for the Site named	in the Site Details Sec	ion of this form.			
Signature of Owner Rendering Certification	er, Remedial Party, or D	esignated Represen	ntative	3/24/25U Date	

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Daniel Noll	LaBella Associates, D.P.C. 300 State Street, Rochester, NY 14	610
print name	print business address	
am certifying as a Qualified Environmen	tal Professional for the	

(Owner or Remedial Party)

DJ 7. 7111

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification

ESTATE OF NEW POOR

3/20/2021

Stamp (Required for PE)

Date