PERIODIC REVEW REPORT

For

Monroe Oaks LLC P.O. Box 431 Fishers, New York

Location

Speedy's Cleaners Site Number C828109 3130 Monroe Avenue Rochester, New York

December 2021

Prepared by:

1667 Lake Avenue Building 59, Suite 101 Rochester, New York 14615 585-313-9683

Table of Contents

1.0	INTRODUCTION	1
2.0	INDOOR AIR SAMPLING	2
3.0	ANNUAL GROUNDWATER SAMPLING	3
4.0	DATA USABILITY SUMMARY REPORTS	5
5.0	SURFACE COVER CONDITIONS	6
6.0	BCP COMPLIANCE	7

Figures

Figure 1: Sub-Slab Depressurization System Figure 2: Groundwater Monitoring Wells

Appendices

Appendix A: Indoor Air Sampling Field Log Appendix B Indoor Air Laboratory Data Appendix C: Groundwater Laboratory Data Appendix D: Low Flow Sampling Data Logs Appendix E: Data Usability Summary Reports Appendix F: Institutional Control/ Engineering Control (IC/EC) Certification

Section 1

NEU-VELLE LLC

Introduction

December 2021

1.0 INTRODUCTION

The subject Site is the former Speedy's Cleaners located at 3130 Monroe Avenue in the Town of Pittsford, New York (the "Site"). 3130 Monroe Avenue Associates, LLC (MAA) entered into the Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) to develop and implement a remedial program at the Site on October 14, 2004. After completing the remedial program, NYSDEC issued a Certificate of Completion (COC) on December 31, 2012. MAA filed an Easement, and a Site Management Plan (SMP), was developed. The requirements of the SMP are incorporated into the Easement. The SMP, approved by the NYSDEC on December 31, 2012, requires the owner of the Site, to manage and maintain institutional and engineering controls which includes annual sampling of indoor air and groundwater. The current owner of the Site is Monroe Oaks, LLC.

This annual Periodic Review Report (PRR) is provided to certify that all institutional and engineering controls remain in place, are performing properly, and continue to be effective.

Section 2

NEU-VELLE LLC

Indoor Air Sampling

December 2021

2.0 INDOOR AIR SAMPLING

NEU-VELLE LLC (NEU-VELLE) performed annual indoor air sampling on December 1, 20201 to confirm the performance of the SSDS and evaluate indoor air conditions. Below is a summary of the results of the contaminants of concern (COC) trichloroethylene (TCE) and perchloroethylene (PCE).

Sample Date	Sample ID	TCE	PCE
NYSDOH Ambient Indo	or Guidelines	2	30
D 1 1 2021	Nail Scape	< 0.32	0.40
December 1, 2021	Vacant Tenant	<0.16	0.83

TCE & PCE Detections December 1, 2020

Note: Units are in $\mu g/m^3$

The air samples were collected using a Summa canisters for a two-hour duration and analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (EPA) Method Toxic Organics (TO)-15 with Category B deliverables in accordance with the approved Site Management Plan. Based on the analytical results, the contaminants of concern (TCE and PCE), were not detected above the NYSDEH Ambient Indoor Guidelines.

Indoor air sampling field logs are provided in Appendix A. The indoor air laboratory data are provided in Appendix B.

Section 3

NEU-VELLE LLC

Annual Groundwater Sampling

3.0 ANNUAL GROUNDWATER SAMPLING

Groundwater sampling was performed on December 7th through December 9th, 2021 from four existing groundwater monitoring wells (MW-1 to MW-4) using low-flow methodologies.

Previous groundwater sampling reported finding light non-aqueous phase liquid (LNAPL). Analytical data of the LNAPL indicated an off-site source due to no documented on-site use of "lube oil". As part of the December 2021 sampling event, LNAPL was encountered in MW-2 and removed before purging the well prior to sampling. Based level measurements, approximately one (1) foot of LNAPL was observed in the well.

Water quality indicators were monitored and were considered stabilized after three consecutive readings were achieved for the following indicators:

- pH (+/- 0.1 unit)
- specific conductance (+/ -3%)
- dissolved oxygen (+/- 10%)
- redox (+/- 10 mV)
- temperature (+/-10%)
- turbidity (+/- 10%).

Samples were submitted to an Environmental Laboratory Approval Program (ELAP)-certified laboratory for Target Compound List (TCL) volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260 by Analytical Services Protocols (ASP) with Category B deliverables.

	Sample ID	MW-1- 12-09-2020	MW-2- 12-08-2020	MW-3- 12-08-2020	MW-4- 12-07-2020
ANALYTE	TOGS 1.1.1				
Acetone	50	<10.0	<10.0	<10.0	<10.0
cis-1,1-Dichloroethene	5	<2.00	<2.00	< 2.00	<2.00
m,p-Xylene	5	<2.00	<2.00	<2.00	<2.00
o-Xylene	5	<2.00	<2.00	<2.00	<2.00
Trichloroethene	5	<2.00	<2.00	<2.00	<2.00
Tetrachloroethene	5	<2.00	<2.00	<2.00	<2.00
Total VOCs		ND	ND	ND	ND

December 7-9, 2021 Groundwater Data

Note: J = Analyte detected below quantitative limit

Based on the analytical results summarized above, the groundwater quality in MW-1 to MW-4 is in compliance with the applicable TOGS 1.1.1 Groundwater Standards. The groundwater laboratory analytical reports are included in Appendix C. Low Flow logs are included in Appendix D.

Section 4

NEU-VELLE LLC

Data Usability Summary Reports

4.0 DATA USABILITY SUMMARY REPORTS

Laboratory analyses were conducted in conformance with NYS Department of Health (DOH) Analytical Services Protocol (ASP) methodology with a Category B deliverable. The data packages were submitted to Environmental Data Usability (EDU) for the third-party data validation and preparation of Data Usability Summary Reports (DUSR). The validated data was submitted to the NYSDEC Electronic Information Management System using the NYSDEC's Electronic Data Deliverable (EDD) format.

Based upon the findings of the DUSR, although laboratory results for 1,4-dioxane were rejected, the remainder of the laboratory data were judged suitable for their intended purpose. The DUSR is included in Appendix E.

Section 5

NEU-VELLE LLC

Surface Cover Conditions

5.0 SURFACE COVER CONDITIONS

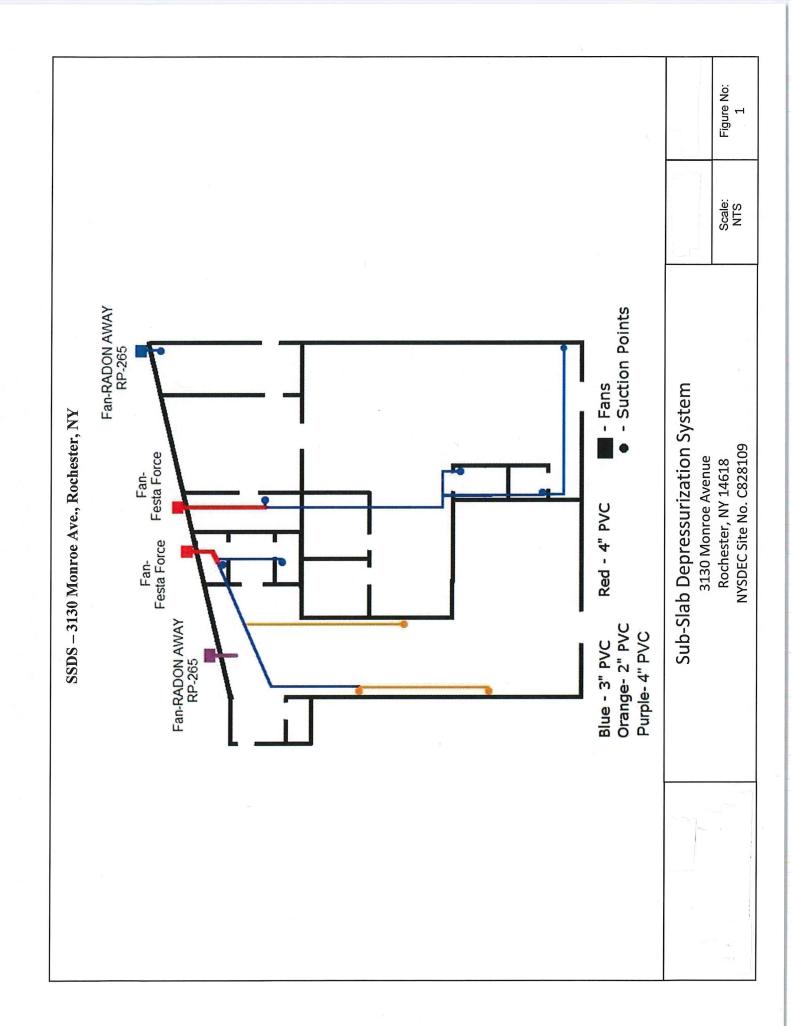
General maintenance of the parking lot surface is routinely performed by the Site owner as needed. Surficial cracks have been sealed with tar, and any minor potholes have been patched with asphalt.

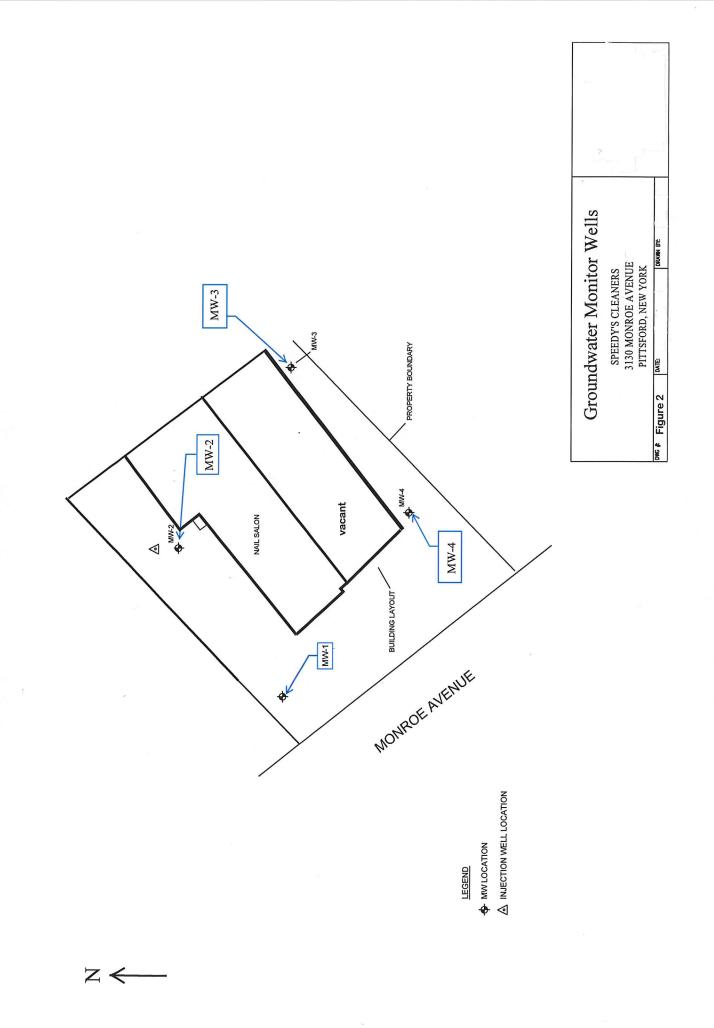
The parking lot was inspected on December 1, 2021, and no issues were observed at that time. Therefore, the Site cover is intact.

Section 6

NEU-VELLE LLC

BCP Compliance


6.0 BCP COMPLIANCE


The current status of the Site is as follows:

- Indoor air concentrations of PCE and TCE are below the below the NYSDOH Ambient Air Guideline.
- All groundwater analytes are below 6 NYCRR Part 703 groundwater standards.
- The Site is in compliance with the BCA, and as such, no further investigations or modifications are warranted.
- The Institutional Control/Engineering Control (IC/EC) certification included as Attachment E documents that the IC/EC controls remain in place and are functioning as designed.
- Groundwater and indoor air sampling will continue to be performed in compliance with the SMP. However, due to the levels detected during this annual sampling, it is requested that the schedule for sampling be modified to be conducted on a semi-annual basis. A Periodic Review Report (PRR) will be prepared to document future compliance with the BCA and SMP. The 2021 PRR is included as Appendix F.

NEU-VELLE LLC

Figures

Page 18 of 223

Appendix A

NEU-VELLE LLC

Indoor Air Sampling Field Log

	INDOOR AIR SA	AMPLING FIELD LO	D
Location: 3130 Monroe Avenue, Pittsford, NY		2021 ANNUAL AIR	SAMPLING EVENT
LABORATORY SAMPLE ID	L552999-1	L552999-2	NOTES
LOCATION	Nail Salon	Vacant Space	
Date/Time Start	12-01-2021 7:00 am	12-01-2021 7:05 am	
Date/Time Stop	12-01-2021 9:00 am	12-01-2021 9:05 am	
Confirm SSDS Fan Running at Start	yes	yes	
Confirm SSDS Fan Running at Stop	yes	yes	
Inspection of Manometer at Start	yes	yes	
Inspection of Manometer at Stop	yes	yes	
Outdoor Air Temperature at Start	34	34	
Outdoor Air Temperature at Stop	35	35	
Weather at Start	Partly Overcast	Partly Overcast	
Weather at Stop	Partly Overcast	Partly Overcast	
Windows/Doors Closed at Start	yes	yes	
Windows/Doors Closed at Stop	yes	yes	
Furnace Cycling On at Start	yes	yes	
Furnace Cycling On at Stop	yes	yes	

Appendix B

NEU-VELLE LLC

Indoor Air Laboratory Data

Ms. Danielle Bastian Neu-Velle, LLC 1667 Lake Avenue Building 59, Suite 101 Rochester, NY 14615

Account# 30223

December 08, 2021

Login# L552999

Dear Danielle Bastian:

Enclosed are the analytical results for the samples received by our laboratory on December 03, 2021. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

lisa Luab

Lisa Swab Laboratory Director

Enclosure(s)

10

ANALYTICAL REPORT

Terms and Conditions & General Disclaimers

GALSON

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention
 only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not
 exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized
 alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the
 fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of
 significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the
 final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the
 one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead,
			Environmental Microbiology
State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
New Jersey (NJDEP)	NELAC (TNI)	Lab ID: NY024	Air Analysis
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials

Legend

< - Less than	mg - Milligrams	MDL - Method Detection Limit	ppb - Parts per Billion
> - Greater than	ug - Micrograms	NA - Not Applicable	ppm - Parts per Million
I - Liters	m3 - Cubic Meters	NS - Not Specified	ppbv - ppb Volume
LOQ - Limit of Quantitation	kg - Kilograms	ND - Not Detected	ppmv - ppm Volume
ft2 - Square Feet	cm2 - Square Centimeters	in2 - Square Inches	ng - Nanograms

LELAP Lab ID #04083		30223 L552999 ррbv																	X	Supervisor: BLD		
		Account No.: Login No. : Units :																			/ : SAP	
LABORATORY ANALYSIS REPORT	: Neu-Velle, LLC : NS	: 01-DEC-21 : 03-DEC-21 : 07-DEC-21 - 08-DEC-21 : 1278172	L552999-2 VACANT SPACE	<0.50	0.36	0.41	<0.16	<0.16	<0.16	0.46	<0.16	<0.16	<0.50	<0.16	<0.16	750	0.18	110	<0.16	TO15; GC/MS	Approved by	Date
GALSON		Date Sampled Date Received Date Analyzed Report ID	L552999-1 NAIL SALON	<1.0	0.36	0.42	<0.32	<0.32	<0.32	0.56	<0.32	<0.32	<1.0	<0.32	<0.32	1800	<0.32	190	<0.32	OSHA PV2120/mod. EPA TO1.		
GAI			ГОД Ррbv	0.50	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.50	0.16	0.16	0.50	0.16	0.50	0.16	OSHA PV2	6L Canister	SAP
SSS	6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227	FAX: (315) 437-0571 WWW.Sgsgalson.com	Galson ID: Client ID:	Propylene	Freon-12	Chloromethane	Freon-114	Vinyl Chloride	1, 3-Butadiene	n-Butane	Bromomethane	Chloroethane	Acetonitrile	Vinyl Bromide	Acrolein	Acetone	Freon-11	Isopropyl Alcohol	Acrylonitrile	Analytical Method: mod.	Collection Media : 6L C	

Page 3 of 12 Report Reference:1 Generated:08-DEC-21 15:43

SSS	GAL	GALSON	LABORATORY ANALYSIS REPORT		LELAP LAb ID #04083
6601 Kirkville Road East Syracuse, NY 13057		Client Site	: Neu-Velle, LLC : NS		
- 01		Date Sampled Date Received Date Analyzed Report ID	: 01-DEC-21 d : 03-DEC-21 d : 07-DEC-21 - 08-DEC-21 : 1278172	Account No.: 30223 Login No. : L552999 Units : ppbv	
Galson ID: Client ID:	LOQ DDbv	L552999-1 NAIL SALON	L552999-2 VACANT SPACE		
Pentane	0.16	<0.32	0.33		
Ethyl Bromide	0.16	<0.32	<0.16		
1,1-Dichloroethene	0.16	<0.32	<0.16		
tert-Butyl Alcohol	0.50	<1.0	<0.50		
Methylene Chloride	0.16	0.35	0.17		
Freon-113	0.16	<0.32	<0.16		
Carbon Disulfide	0.50	<1.0	<0.50		
Allyl Chloride	0.	<0.32	<0.16		
trans-1,2-Dichloroethene	0.1	<0.32	<0.16		
1,1-Dichloroethane	ч.	<0.32	<0.16		
Methyl tert-Butyl Ether	ч.	<0.32	<0.16		
Vinyl Acetate		<0.32	<0.16		
Methyl Ethyl Ketone	Ч.	2.3	0.94		
cis-1,2-Dichloroethylene	0.1	<0.32	<0.16		
Hexane	0.16	<0.32	<0.16		
Ethyl Acetate	0.16	65	20		
Analytical Method: mod.	mod. OSHA PV2120/mod.	EPA	TO15; GC/MS	Superv	Supervisor: BLD
Collection Media : 6L Ca	6L Canister		Approved by	••	
Submitted by : AAP/SAP	SAP		Date	: 08-DEC-21	

Page 4 of 12 Report Reference:1 Generated:08-DEC-21 15:43

					2001/04 מד ליו מגומו
250	GAL	GALSON	LABORATORY ANALYSIS REPORT		Д Н
6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227		Client Site	: Neu-Velle, LLC : NS		
~ 0		Date Sampled Date Received Date Analyzed Report ID	: 01-DEC-21 d : 03-DEC-21 d : 07-DEC-21 - 08-DEC-21 : 1278172	Account No.: 30223 Login No. : L552999 Units : ppbv	
Galson ID: Client ID:	Dopv Dopv	L552999-1 NAIL SALON	L552999–2 VACANT SPACE		
Chloroform	0.16	<0.32	<0.16		1
Tetrahydrofuran	0.16	0.93	0.39		
1,2-Dichloroethane	0.16	<0.32	<0.16		
1,1,1-Trichloroethane	0.16	<0.32	<0.16		
Benzene	0.16	<0.32	<0.16		
Carbon Tetrachloride	0.16	<0.32	<0.16		
Cyclohexane	0.16	<0.32	<0.16		
1,2-Dichloropropane	0.16	<0.32	<0.16		
Bromodichloromethane	0.16	<0.32	<0.16		
1,4-Dioxane	0.16	<0.32	<0.16		
Trichloroethylene	0.16	<0.32	<0.16		
2,2,4-Trimethylpentane	0.16	<0.32	<0.16		
Methyl Methacrylate	0.16	150	79		
Heptane		<0.32	<0.16		
cis-1, 3-Dichloropropene		<0.32	<0.16		
trans-1,3-Dichloropropen	en 0.16	<0.32	<0.16		
Analytical Method: mod. OSHA PV2120/mod.	OSHA PV2	EPA	TO15; GC/MS	Supervisor:	isor: BLD
Collection Media : 6L Canister	anister		Approved by	: SAP	
Submitted by : AAP/SAP	SAP		Date	: 08-DEC-21	

Page 5 of 12 Report Reference:1 Generated:08-DEC-21 15:43

			LABORATORY ANALYSIS REPORT		LELAP Lab ID #04083
X 0		Client Site	: Neu-Velle, LLC : NS		
(315) 432-522/ FAX: (315) 437-0571 www.sgsgalson.com		Date Sampled Date Received Date Analyzed Report ID	<pre>d : 01-DEC-21 ed : 03-DEC-21 ed : 03-DEC-21 ed : 07-DEC-21 - 08-DEC-21 : 1278172</pre>	Account No.: 30223 Login No. : L552999 Units : ppbv	
Galson ID: Client ID:	год ррbv	L552999-1 NAIL SALON	L552999-2 VACANT SPACE		
1,1,2-Trichloroethane	0.16	<0.32	<0.16		
Methyl Isobutyl Ketone	0.16	<0.32	<0.16		
Toluene	0.16	3.8	2.0		
Methyl Butyl Ketone	0.16	<0.32	<0.16		
Dibromochloromethane	0.16	<0.32	<0.16		
1,2-Dibromoethane	0.16	<0.32	<0.16		
Tetrachloroethylene	0.16	0.40	0.83		
Chlorobenzene	0.16	<0.32	<0.16		
Ethylbenzene	0.16	<0.32	<0.16		
m & p-xylene	0.32	<0.64	<0.32		
Bromoform		<0.32	<0.16		
Styrene	т. О	<0.32	91.02		
1, 1, 2, 2-Tetrachloroethan	T.0	<0.32	91.0>		
o-Xylene	0.16	<0.32	<0.16		
Nonane	0.16	<0.32	<0.16		
Cumene	0.16	<0.32	<0.16		
Analytical Method: mod.	OSHA	PV2120/mod. EPA	TO15; GC/MS	Supervisor:	isor: BLD
	6L Canister		Approved by	Y : SAP	
Submitted by : AAP/SAP	SAP		Date	: 08-DEC-21	

-

Page 6 of 12 Report Reference:1 Generated:08-DEC-21 15:43

F

LELAP Lab ID #04083																
			Account No.: 30223 Login No. : L552999 Units : ppbv													
	LABORATORY ANALYSIS REPORT	: Neu-Velle, LLC : NS	: 01-DEC-21 : 03-DEC-21 : 07-DEC-21 - 08-DEC-21 : 1278172	L552999-2 VACANT SPACE	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	
	GALSON	Client Site	Date Sampled Date Received Date Analyzed Report ID	L552999-1 NAIL SALON	<0.32	<0.32	<0.32	<0.32	<0.32<0.32	<0.32	<0.32	<0.32	<0.32	<0.32	<0.32	
	GA			LOQ ppbv	0.16	0.16	0.16	0.16	0.16 0.16	0.16	0.16	0.16	0.16	0.16	0.16	
	っつつ	6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227	FAX: (315) 437-0571 www.sgsgalson.com	Galson ID: Client ID:	2-Chlorotoluene	n-Propylbenzene	4-Ethyltoluene	1, 3, 5-Trimethylbenzene	1,2,4-Trimethylbenzene Benzvl Chloride	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	1,2,4-Trichlorobenzene	Naphthalene	Hexachloro-1, 3-butadiene	

Page 7 of 12 Report Reference:1 Generated:08-DEC-21 15:43

Supervisor: BLD

Approved by : SAP Date : 08-DEC-21

Analytical Method: mod. OSHA PV2120/mod. EPA T015; GC/MS Collection Media : 6L Canister Submitted by : AAP/SAP

LABORATORY FOOTNOTE REPORT

GALSON

Client Name : Neu-Velle, LLC Site :

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Date Sampled : 01-DEC-21 Date Received: 03-DEC-21 Date Analyzed: 07-DEC-21 - 08-DEC-21

Account No.: 30223 Login No. : L552999

L552999 (Report ID: 1278172):

NYSDOH does not offer a certification for the following compounds: Propylene, Ethyl Acetate, Tetrahydrofuran, Methyl n-Butyl Ketone, 4-Ethyl Toluene, n-Butane, Pentane, Ethyl Bromide, Nonane, and n-Propylbenzene. SOPs: in-vocs(40)

L552999-1 (Report ID: 1278172): Elevated levels of guantitation resulting from analysis at a dilution. The dilution was necessary because Acetone concentration exceeded instrument capacity.

L552999 (Report ID: 1278172):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy values for the associated analyte

Parameter	Accuracy	Mean Recovery
1, 1, 2, 2-Tetrachloroethane	+/-14%	98.9%
1,1,2-Trichloroethane	+/-12.6%	97.6%
1,1-Dichloroethane	+/-15.4%	96.5%
1,1-Dichloroethene	+/-15.7%	98.2%
1,2,4-Trichlorobenzene	+/-16.6	111%
1,2,4-Trimethylbenzene	+/-15%	105%
1,2-Dibromoethane	+/-13.5%	99.8%
1,2-Dichlorobenzene	+/-12.4%	103%
1,2-Dichloroethane	+/-17.6%	98.6%
1,2-Dichloropropane	+/-14.8%	96.2%
1,3,5-Trimethylbenzene	+/-13.2%	103%
1,3-Dichlorobenzene	+/-12.6%	102%
1,4-Dichlorobenzene	+/-13.3%	102%
2,2,4-Trimethylpentane	+/-15.1%	97.9%
2-Chlorotoluene	+/-13.2%	104%
4-Ethyltoluene	+/-13.9%	104%
Acrolein	+/-21.8%	93.1%
Acrylonitrile	+/-16.4%	97.9%
Allyl Chloride	+/-18.7%	97.5%
Acetonitrile	+/-16%	96.7%
Acetone	+/-14.6%	97.4%
Bromodichloromethane	+/-12.9%	- 100%
Bromoform	+/-14.4%	103%
1,3-Butadiene	+/-16.9%	97.5%
n-Butane	+/-18.2%	95.9%
Benzene	+/-13.3%	97.3%

S	
G	
S	

LABORATORY FOOTNOTE REPORT

GALSON

Client Name : Neu-Velle, LLC Site :

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 WWW.sgsgalson.com

Date Sampled : 01-DEC-21 Date Received: 03-DEC-21 Date Analyzed: 07-DEC-21 - 08-DEC-21

Account No.: 30223 Login No. : L552999

Benzvl Chloride	+/-15%	109%
	-15.7	00
cis-1.2-Dichloroethvlene	+/-16%	98.6%
cis-1, 3-Dichloropropene	+/-14.6%	-
Chlorobenzene	+/-13.3%	97.5%
Dibromochloromethane	+/-13%	102%
Chloroform		97.7%
Cumene	+/-13.9%	101%
Cyclohexane	+/-15.1%	100%
1,4-Dioxane	+/-13.7%	101%
Ethyl Acetate		98.4%
Ethylbenzene	+/-14.7%	101%
Chloroethane	+/-16.7%	96.9%
Ethyl Bromide	+/-13%	4.
Freon-11	5	4.
Freon-113	+/-13.2%	96.7%
Freon-114	5	98.8%
Freon-12	3	99.2%
Heptane	-	99.1%
Hexachloro-1, 3-butadiene	.6	105%
Isopropyl Alcohol	+/-20.8%	96.3%
1,1,1-Trichloroethane	+/-15.1%	99.2%
Bromomethane	+/-13%	97%
Chloromethane	+/-17.9%	96.3%
Methylene Chloride	+/-14.4%	93.4%
Methyl Ethyl Ketone	+/-17.7%	97.8%
Methyl Methacrylate	+/-16%	102%
	2	99.4%
Methyl Butyl Ketone	+/-18.7%	105%
m & p-xylene	+/-14%	100%
Methyl tert-Butyl Ether	4.	100%
Naphthalene	2	-
Hexane	9.0	98.1%
Nonane	r.	103%
n-Propylbenzene	2	103%
o-Xylene	5	101%
Propylene	8	96.3%
Pentane	6.	97.1%
Styrene	+/-15.2%	104%
Trichloroethylene	+/-12.8%	98.8%
tert-Butyl Alcohol	+/-18.4%	101%
Tetrachloroethylene	+/-13.1°	98.9%
Tetrahydrofuran	19%	9.6
Toluene	+/-14.4%	99.6%

Page 9 of 12 Report Reference:1 Generated:08-DEC-21 15:43

LABORATORY FOOTNOTE REPORT

GALSON

Client Name : Neu-Velle, LLC Site :

East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571	Date Sampled : 01-DEC-21	01-DEC-21	
(315) 432-5227 FAX: (315) 437-0571	. borring oten		
FAX: (315) 437-0571	DALE RECEIVED.	03-DEC-ZI	
	Date Analyzed: 07-DEC-21 -	07-DEC-21 -	0
www.sgsgalson.com			
			- 1

	97 69
07-DEC-21 - 08-DEC-21	т/-15 88
6 1999 6 1999	

Account No.: 30223 Login No. : L552999

97.6%	103%	96.1%	97.7%	97.7%	
+/-15.8%	+/-14.8%	+/-22.4%	+/-13.8%	+/-15.6%	
trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	Vinyl Acetate	Vinyl Bromide	Vinyl Chloride	

	Γ	T						1			- 1	ا چ	for .	SHA		T	area :	nium díng, etc.)		÷				5				s.com	IS SA)	
4	_											nfo ine belov	he used		Concist Other		mpling a	Hexavalent Chromium Process (e.g., welding, plating, painting, etc.)				Time				:07 PM		.6s.www	Member of the SGS Group (SGS SA)	
	WILL COUL											dit card i on the I	data will	MSHA	er:	nade	ent in sa	fexavale rocess (olating, p				a	_	120	1 1	t No. : 30223 Draft : 11/23/2021 12:22:07 PM		s.com	e SGS G	
/ 0	N R					_					:	vide crec ive digits	(c) this				ces pres				-	Date	-	12	238311 PSY635	30223		jalsonlat	ber of th	
	X		Al Lyons	Neu-Velle, LLC	Lake Avenue	Building 59, Suite 101	Rochester, NY 14615	- 313 - 9683	Al@neu-velle.biz			☐ I will call SGS Galson to provide credit card info ☐ Card on File (enter the last five digits on the line below)	Please indicate which OFI (s) this data will be used for :		1.4	opecity cirrings	List description of industry or Process/interferences present in sampling area :	Method Reference A	mod. OSHA PV7120/mod FPA		b have us contact you.	ture		X	Ind	Account No. : 30223 Draft : 11/23/2021	s-and-Conditions.aspx	+1 315 432 5227 www.g	Memt	
99 CHAIN OF CUSTODY		Iurn Around Time (TAT): [Surcharsvi] You they edit and complete this COC electronically by logging in to your Client Portal account at https://portal.galsonlabs.com/ Standard 0%	Invoice To: Mr.	Company Name: Neu-	Address 1: 1667	Address 2: Buil	City, State Zip : Roch	Phone No.: 585	Email Address : Alen	Comments :	[Payment into.: Ca	State Samuled -				List description of indu	Analysis Requested	Volatile Organics (TO15)		we will substitute our routine/preferred methods. If this is not acceptable, check here to have us contact you.	Print Name / Signature		Ne Kraise Milade	marth	ness.	All services are rendered in accordance with the applicable SGS General Conditions of Service accessible via: http://www.sgs.com/en/Terms-and-Conditions.aspx	SGS North 6601 Kirkville Road E. Syracuse, NY 13057, USA t+1 888 432 5227 +1 315 432 5227 www.galsonlabs.com www.sgs.com America, Report Reference: 1 Generated: 08-DEC-21 15:43		
OF CU		Client Portal account at				-				N	12							Liters Minutes in², cm², ft² *	20	6 1	preferred methods. If th		Received By :	Received BY i Lhelle	* You must fill in these columns for any samples which you are submitting.	Samples received after 3pm will be considered as next day's business.	ns of Service accessible	GS North 6601 Kirkville Road E. Syracuse, NY 13057, USA t+1 88 America, Report Reference: 1 Generated: 08-DEC-21 15:43		ALC: A
HAIN		y logging in to your	Ms. Danielle Bastian	Neu-Velle, LLC	1667 Lake Avenue	Building 59, Suite 101	Rochester, NY 14615	313 - 4771		dbastian@neu-velle.biz			ä				Sampled By :	Sample Volume Sample Time Sample Area *		24	bstitute our routine	Time	1 guar		columns for any san	er 3pm will be consi	SS General Conditio	North 6601 Kirkvil nerica, epoitt Referenc		
9999 CH		onically b	is. Dan	leu-vel	.667 La	uildin	tochest	585 - 3		lbastia		ite.		3/21]						we will su	Date	12/1/21		in these	ceived aft	licable S0	sgs Ar Ar R		1.12
LSON		complete this COC electro	Керон То: Ж	Company Name : N	Address 1 :	Address 2 :	City, State Zip : R	Phone No.: 5	Cell No. :	 Email reports to : d 	Comments :			Per client, analyze for TO15 List profile. ZRK 12/3/21			ю	Collection Medium	L Canister		 If the method(s) indicated on the COC are not our routine/preferred method(s), v 	ure ,	4 D'Hand		* You must fill	Samples rec	l accordance with the app	Page 11 of		
		itery edit and (Client Acct No.:	в		Original Prep No.:	PSY635415		sp:	NECHETNO	Online COC No.:	TI II		ze for TO1			Project :	pled *		12	not our routi	Print Name / Signature	J 110				e rendered in			
		I LOU	Client	30223	Т	Origin	PSY6		CS Rep:	TNO	Onlin	238311	_	nt, analy				Date Sampled *		12/1/21	e COC are	Print N	Liensid				ervices an			
		Surchary 0%	35%	50%	75%	100%	2001	%nq1	200%	the	с с	rogram		Per clie							ed on the		16.				All se			
a si	E	Standard	Days	Days	Davs	und v	april 1	LIOON	Same Day	ted using	^M Prograr	adges ^{ra} P						ID * Characte	•	ron	(s) indicat	×	Albert						×	
NEU-VELLE Date:12/03/21 Shipper:PO Initials:MAK	ŀ	Sta	4 Business Days	3 Business Days	2 Business Davs	Next Dav hv fnm		Next Liay by Noon	Sam	Samples submitted using the	FreePumpLoan [™] Program	əamples suornucu using me FreeSamplingBadges™ Program		•			: 0	Sample ID * (Maximum of 20 Characters)		WAIL SALON	e method	Custody	shed By:	Relinquished By:				8		
Prep							ן יי כור	ž]		🛛 Sampl	FreePu		Commente				Site Name	(Maxin		LIRIL	□ ^ If th	Chain of Custody	Relinquished By :	Relinqui:				Page: 1/2		, -
1	L		. M	MM					L.			*																22.6225		

Page 32 of 223

i

Un PS

Comments :

P

GALSON

CHAIN OF CUSTODY

Samule ID	*				Sample Volume	Liters			Hexavalent Chromium
(Maximum of 20 Characters)	Characters)	Date Sampled *	I Collection Medium		Sample Time Sample Area *	Minutes in², cm², ft² *	Analysis Requested	Method Reference A	Process (e.g., welding, plating, painting, etc.)
VACANT SPACE	PACE	121, 21	6-L Canister		Zhr	79	Volatile Organics (T015) (specify)	mod. OSHA PV2120/mod. EPA T015; GC/MS	
	and horizont and fail		and motored mothed	A we will cubetitu		roforrod mothode		have its contact voit	
Chaia of Custody	(s) indicated of	Print Name	200 are itol our routing preterred menods Print Name / Signature				Print Name / Signature	hure	Date Time
Relinquished By :	Nhest 1. 1	Luens V	MIL H Taul	12/1/21	9.00 6-0	Received By :			
Relinquished By :			1 de - inner			Received By		21	3/21 1119
			* You must	fill in these colum	ins for any samp	les which you are	* You must fill in these columns for any samples which you are submitting.	elle toppondonio: 238	311 See 415
			Samples	received after 3pr	n will be conside	Samples received after 3pm will be considered as next day's business.	business.	Account No. : 30223 Draft : 11/23/	r No. : 731933415 rt No. : 30223 Draft : 11/23/2021 12:22:07 PM
	A	Il services are rer	All services are rendered in accordance with the a	pplicable SGS Ge	neral Conditions	s of Service accessi	applicable SGS General Conditions of Service accessible via: http://www.sgs.com/en/Terms-and-Conditions.aspx	s-and-Conditions.aspx	
Page: 2/2				SGS North America	n 6601 Kirkville	Road E. Syracuse	SGS North 6601 Kirkville Road E. Syracuse, NY 13057, USA t +1 888 432 5227 +1 315 432 5227 www.galsonlabs.com www.sgs.com	+1 315 432 5227 www.galsc	nlabs.com www.sgs.com
			Page 12 c	of 12 Report	t Reference	e:1 Generatec	Report Reference: 1 Generated: 08-DEC-21 15:43		

Page 33 of 223

Member of the SGS Group (SGS SA)

.

į

and a second second

Appendix C

NEU-VELLE LLC

Groundwater Laboratory Data

December 2021

Analytical Report Cover Page

Neu-Velle

For Lab Project # 215562 Issued Date: December 23, 2021 This report contains a total of 139 pages.

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the appendix for a list of frequently used data flags and their meaning.

LAB PROJECT NARRATIVE: 215562 PROJECT NAME: 3130 Monroe Avenue SDG: 5562-01 CLIENT: Neu-Velle

Four groundwater samples were collected by the client between December 07 and 09, 2021 and were received by the Paradigm laboratory on December 09, 2021. Samples were accompanied by a trip blank. Samples were received under the conditions as noted on the chain-of-custody supplement. The samples were submitted with the Chain-of-Custody requesting the TCL list for Volatiles. All analyses were performed using EPA SW-846 Methods and the associated holding times.

The items noted in this case narrative address compliance with the referenced methods, NYSDOH ELAP rules, and any project specific data quality requirements. These may be different from the usability criteria referenced in any "Functional Guidelines" or other data review standards used by data validators.

GENERAL NOTES

ALL ANALYSES

The initial and continuing calibration reports are only evaluated for compounds that are on the sample summary report.

Regarding results on QC summary forms versus included raw data, due to calculations made at the instrument where many significant figures may be used, there may be slight discrepancies between the summary report result and that recorded on the raw data. This does not affect data usability.

VOLATILES

Regarding initial calibrations, it should be noted that the Quantitation Report concentrations supplied for the initial calibration reflect the calibration prior to updating. The response factors and areas are correct.

Regarding Quantitation Reports, it should be noted that the "#" symbol that appears on some of the Quantitation Reports is a software artifact and should be disregarded.

Compounds flagged with an "*" on the summary table have been calibrated using a non-average Response Factor calibration curve. The supporting curves are located after the initial calibration table.

Holding times were met for the samples.

Surrogate recoveries for the samples and associated QC were within acceptance limits, with the following exception: Pentafluorobenzene recovered outside of acceptance limits (high) in MW1-20211209. This outlier has been flagged with an "*" on the summary form and the sample report.

Site specific QC was not requested on this SDG. The Laboratory Control Samples recovered within acceptance limits.

The Method Blanks were free from contamination within reportable ranges.

The instrument tunes passed all criteria and samples were within a 12-hour window.

The internal standards areas and retention times were within acceptance ranges for the samples and QC.

All data for the initial calibration was within acceptance limits for the reported analytes.

All continuing calibration data was within acceptance limits for the reported analytes, with the following exceptions: 1,2-Dichlorobenzene and 1,2,4-Trichlorobenzene were out low in the CCV analyzed on December 13, 2021. A single point 1ppb standard was analyzed to verify sensitivity at the reporting limit. This is usable for non-detects only. 2-Hexanone was out high in the CCV analyzed on December 14, 2021. This is usable for non-detects only. All samples were non-detect for these compounds.

Steven Del'ito (signed) Steven DeVito – Technical Director

(date) 12/23/2021

BATCH LOG

Lab Name:	Paradigm Environmental Services
Lab Project #:	<u>215562</u>
Client Name:	Neu-Velle
Client Project Name:	3130 Monroe Avenue
Client Project #:	<u>N/A</u>
SDG No.:	<u>5562-01</u>

Proto	ocol: <u>SW84</u>	6 Report D	Date: <u>12/16/2021</u>	Batch Due Date:	<u>1/8/2022</u>	
LAB	MATRIX	CLIENT	F	REQUESTED ANALYSIS	DATE	DATE
SAMPLE NO.		SAMPLE ID			SAMPLED	REC'D
	Groundwater	MW4-20211207	ÖAs		12/7/2021	12/9/2021
215562-02	Groundwater	MW3-20211208	OAs		12/8/2021	12/9/2021
	Groundwater	MW2-20211208	OAs		12/8/2021	12/9/2021
	Groundwater	MW1-20211209	ÓAs		12/9/2021	12/9/2021
215562-05	Water	Trip Blank T1084	OAs		12/6/2021	12/9/2021
						I
						1

	179 Lake Ave	Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311
		CHAIN OF CUSTODY
PARADIGM	CLIENT: Nen-Velle ADDRESS: 1667 Lake CITY: Rucheste STATE:/Y PHONE(585) 476 - 16 ATTN:	ADDRESS: ADDRES
PROJECT REFERENCE 3130 Monroe Avenue		WA - Water DW - Drinking Water SO - Soil SD - Solid WP - Wipe OL - Oil WG - Groundwater WW - Wastewater SL - Sludge PT - Paint CK - Caulk AR - Air
		SREQUESTED ANALYSIS
DATE COLLECTED TIME P COLLECTED COLLECTED S I T E	G R A B B	PRADIGM LAB SAMPLE NUMBER PRADIGM LAB SAMPLE NUMBER
12/7/21 13:45	X MW/4-2021124	207 WG 2 X 01
12/8/21 12:30	X MW3-202112	208 WG Z X U2
12/8/21 14:45	X Mh/2 - 2021/2	208 WGZX 03
12/91/21 13:15	X MW 1 - 202/12	209 WGZX 04
12/4/21	Trie Blankt	F1084 W/ I-X 05
	A	
		emi219/21
		6°C, 'and et 12/96/ 1530
Turnaround Time Availability contingent upon lat	Report Supplements b approval; additional fees may apply.	- Kyl- Miller & A. Roth firss 12/7-9/21 Unstady seal intact phi
Standard 5 day None Red		Sampled Br Total Cost: MAMM 12/9/21 15:30
10 day Batch QC		Relinquistred By Date/fime
Rush 3 day Category	A D NYSDEC EDD	Abo 12(9/2: 1530 Received By Date/Time P.I.F.
Rush 2 day Category	▶ 🖉	Mal W/ 1 19/21 1534
Rush 1 day	/	Received @ Lab By Date/Time
Date Needed Other please indicate date needed: please indicate date needed:	ate package needed: Other EDD	By signing this form, client agrees to Paradigm Terms and Conditions (reverse).

See additional page for sample conditions. Page 39 of 223

2

Chain of Custody Supplement

	01200000		an Dadiil					
Client:	Ney-velle	Completed by:	molylar					
Lab Project ID:	215562	Date:	12/9/2/					
Sample Condition Requirements Per NELAC/ELAP 210/241/242/243/244								
Condition	[~] NELAC compliance with the sample Yes	condition requirements No	upon receipt N/A					
Container Type								
Comments								
Transferred to method- compliant container								
Headspace (<1 mL) Comments	\square							
Preservation Comments								
Chlorine Absent (<0.10 ppm per test strip) Comments								
Holding Time Comments								
Temperature Comments	(o°cial							
Compliant Sample Quantity/T	_/							
18								

179 Lake Avenue, Rochester, NY 14608 Office: (585) 647-2530 Fax: (585) 647-3311

Lab Project #:

Client: Neu-Velle

of Samples: 5

215562

Internal Chain of Custody Sign-Out Log for Refrigerator:__ビ

Sample ID	Container Code	Initials	Purpose	Date/Time Out	Date/Time In /
05	VI	1315	VOA	12/13/21	12/13/21
05	K	L F	Ĺ	d d	13 11 101
Q 1 c c l	1				1 1
02-04	v2	BB	VOA	12/14/21	12/14/21
			_		, , , ,
					£1
-		1.1			
_				<u></u>	,
	20				
	12				
			3		
			V		
		<u>.</u>			

CALCULATION FORMULA AND EXAMPLES

The generalized formula for all calculations from instrument output to final reported result is as follows:

(Measured Result) x (Final volume/Initial weight or volume) x (dilution factor) x (1/decimal % solids) x (unit conversion factor if any) = Final Reported Result

Example calculations for each of the primary test categories are shown below.

MERCURY (Water)

- Instrument Concentration = 42.6 ug/L
- Initial Volume = 20 mL
- Final Volume = 20 mL
- Dilution Factor = 10
- Conversion Factor (ug/L to mg/L) = 0.001

(42.6) x (20/20) x (10) x (0.001) = 0.426 mg/L

MERCURY (Soil)

- Instrument Concentration = 42.6 ug/L
- Initial Volume = 0.532 g
- Final Volume = 20 mL
- Dilution Factor = 10
- Decimal % Solids = 0.79
- Conversion Factor (ug/L to mg/L) = 0.001

(42.6) x (20/0.532) x (10) x (1/0.79) x (0.001) = 20.3 mg/kg

ICP METALS (Water)

- Instrument Concentration = 8.50 mg/L
- Initial Volume = 50 mL
- Final Volume = 50 mL
- Dilution Factor = 1

(8.50) x (50/50) x (1) = 8.50 mg/L

ICP METALS (Soil)

- Instrument Concentration = 8.50 mg/L
- Initial Volume = 1.23 g
- Final Volume = 50 mL
- Dilution Factor = 2
- Decimal % Solids = 0.840

(8.50) x (50/1.23) x (2) x (1/.840) = 823 mg/kg

ORGANICS EXTRACTABLES (PCB, Pest, ABN) Water

- Instrument Concentration = 0.52 ug/mL (average of 3 peaks for PCBs)
- Initial Volume = 1 L
- Final Volume = 10 mL
- Dilution Factor = 5

(0.52) x (10/1) x (5) = 26.0 ug/L

ORGANICS EXTRACTABLES (PCB, Pest, ABN) Soil

- Instrument Concentration =0.52 mg/L
- Initial Volume = 30.5 g
- Final Volume = 10 mL
- Dilution Factor = 10
- Decimal % Solids = 0.850
- Conversion Factor (mg/kg to ug/kg) = 1000

(0.52) x (10/30.5) x (10) x (1/0.85) x (1000) = 2010 ug/kg

VOLATILES (Water)

- Instrument Concentration = 7.36 ug/L
- Initial Volume = 1 mL
- Final Volume = 5 mL
- Dilution Factor = 1

(7.36) x (5/1) x (1) = 36.8 ug/L

VOLATILES (Soil - Low Level)

- Instrument Concentration = 7.36 ug/L
- Initial Weight = 2.45 g
- Final Volume = 5 mL
- Dilution Factor = 1
- Decimal % Solids = 0.76

(7.36) x (5/2.45) x (1) x (1/.76) = 19.7 ug/kg

VOLATILES (Soil – Medium Level methanol extraction)

- Instrument Concentration = 7.36 ug/L
- Initial Volume = 100 ul = 0.100 mL
- Final Volume = 5 mL
- Dilution Factor = (10 mL MeOH/ 1.28g) = 7.81
- Decimal % Solids = 0.76

(7.36) x (5/0.100) x (7.81 x (1/0.76)) = 3782 ug/kg

CYANIDE (Water)

- Instrument Concentration = 0.125 mg/L
- Initial Volume = 50 mL
- Final Volume = 25 mL
- Dilution Factor = 20 mL/10 mL = 2

(0.125) x (25/50) x (2) = 0.125 mg/L

CYANIDE (Soil)

- Instrument Concentration = 0.125 mg/L
- Initial Weight = 0.53 g
- Final Volume = 25mL
- Dilution Factor = 20 mL/10 mL = 2
- Decimal % Solids = 0.64

(0.125) x (25/0.53) x (2) x (1/0.64) = 18.4 mg/kg

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns. "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.

"*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted. "(1)" = Indicates data from primary column used for QC calculation.

"A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.

"F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.	Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.
Scope and Compensation.	LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order. Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.
Prices.	Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.
Limitations of Liability.	In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to re- perform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services. LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results. All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.
Hazard Disclosure.	Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.
Sample Handling.	Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on th final report. Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples. LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample of analysis.
Legal Responsibility.	LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.
Assignment.	LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.
Force Majeure.	LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.
Law.	This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

VOLATILE ORGANICS

QC SUMMARY

2 VOLATILE SURROGATE RECOVERY

Lab Name: Lab Project #: Client Name: Client Project M Client Project # SDG No.: Instrument ID: GC Column 1:	#: <u>N/A</u> <u>5562-01</u>			trix: Batch: <u>MSD</u>	<u>Groundwater</u> voaw211213	
LAB	CLIENT	PFB	12DCEd4	TD8	4BFB	Total
SAMPLE NO.	SAMPLE ID	%REC	%REC	%REC	%REC	Out
1 Blk 1	N/A	109	108	103	99.9	0
2 LCS 1	N/A	108	115	116	110	0
3 215562-01	MW4-20211207	110	104	99.0	101	0
4 215562-05	Trip Blank T1084	110	108	106	111	0
5						
6						
7						
8		-	-	-	_	
9		-	-	-	_	
10		-	-	-	_	
11		-				
12						
13 14						
14						
16			+			
17						
18			+	+		
18						
20	l					
20	1		1			
22	1		1			
23				1		
24				1		
25			1	1		
		1		I		

	<u>QC LIMITS %</u>
PFB = Pentafluorobenzene	(88.9 - 114)
12DCEd4 = 1,2-Dichloroethane-d4	(77.9 - 132)
TD8 = Toluene-d8	(75.6 - 117)
4BFB = 4-Bromofluorobenzene	(62.6 - 133)

* Values outside of current required QC limits

D Surrogate diluted out

2 VOLATILE SURROGATE RECOVERY

Lab Name: Lab Project #: Client Name: Client Project N Client Project # SDG No.: Instrument ID: GC Column 1:	t: <u>N/A</u> <u>5562-01</u>	<u>o.20</u>	Mat QC I Detector:	rix: Batch: <u>MSD</u>	<u>Groundwater</u> voaw211214	
LAB	CLIENT	PFB	12DCEd4	TD8	4BFB	Total
SAMPLE NO.	SAMPLE ID	%REC	%REC	%REC	%REC	Out
1 Blk 1	N/A	111	109	103	107	0
2 LCS 1	N/A	108	108	109	103	0
3 215562-02	MW3-20211208	113	117	107	115	0
4 215562-03	MW2-20211208	113	109	105	104	0
5 215562-04	MW1-20211209	115 *	111	103	105	1
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25						

	<u>QC LIMITS %</u>
PFB = Pentafluorobenzene	(88.9 - 114)
12DCEd4 = 1,2-Dichloroethane-d4	(77.9 - 132)
TD8 = Toluene-d8	(75.6 - 117)
4BFB = 4-Bromofluorobenzene	(62.6 - 133)

* Values outside of current required QC limits

D Surrogate diluted out

Client:	<u>Neu-Velle</u>
Project Reference:	3130 Monroe Avenue
Lab Project ID:	215562
SDG #:	5562-01
Matrix:	Groundwater

Volatile Organics

5	<u>Spike</u>	<u>Spike</u>	LCS	<u>LCS %</u>	<u>% Rec</u>	<u>LCS</u>	<u>Date</u>
Analyte	Added	<u>Units</u>	<u>Result</u>	<u>Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Analyzed
1,1,1-Trichloroethane	20.0	ug/L	21.4	107	83.7 - 129		12/13/2021
1,1,2,2-Tetrachloroethane	20.0	ug/L	16.9	84.5	22.4 - 207		12/13/2021
1,1,2-Trichloroethane	20.0	ug/L	20.1	101	64.1 - 133		12/13/2021
1,1-Dichloroethane	20.0	ug/L	20.6	103	85.5 - 117		12/13/2021
1,1-Dichloroethene	20.0	ug/L	19.1	95.7	68.1 - 110		12/13/2021
1,2-Dichlorobenzene	20.0	ug/L	14.9	74.6	74 - 121		12/13/2021
1,2-Dichloroethane	20.0	ug/L	20.3	101	79.4 - 120		12/13/2021
1,2-Dichloropropane	20.0	ug/L	19.7	98.7	81.6 - 104		12/13/2021
1,3-Dichlorobenzene	20.0	ug/L	16.2	81.0	71.2 - 106		12/13/2021
1,4-Dichlorobenzene	20.0	ug/L	15.9	79.5	72.8 - 107		12/13/2021
Benzene	20.0	ug/L	20.5	103	85.6 - 106		12/13/2021
Bromodichloromethane	20.0	ug/L	19.7	98.5	81.6 - 109		12/13/2021
Bromoform	20.0	ug/L	17.8	88.9	47.6 - 163		12/13/2021
Bromomethane	20.0	ug/L	25.8	129	36.5 - 164		12/13/2021
Carbon Tetrachloride	20.0	ug/L	20.8	104	79.7 - 122		12/13/2021
Chlorobenzene	20.0	ug/L	17.3	86.6	81.5 - 104		12/13/2021

Client:	<u>Neu-Velle</u>
Project Reference:	3130 Monroe Avenue
Lab Project ID:	215562
SDG #:	5562-01
Matrix:	Groundwater

Volatile Organics

C .	<u>Spike</u>	<u>Spike</u>	LCS	<u>LCS %</u>	<u>% Rec</u>	<u>LCS</u>	<u>Date</u>
Analyte	Added	<u>Units</u>	<u>Result</u>	Recovery	<u>Limits</u>	<u>Outliers</u>	Analyzed
Chloroethane	20.0	ug/L	21.9	110	65.6 - 131		12/13/2021
Chloroform	20.0	ug/L	21.3	106	86.3 - 116		12/13/2021
Chloromethane	20.0	ug/L	25.3	127	42.8 - 154		12/13/2021
cis-1,3-Dichloropropene	20.0	ug/L	19.1	95.4	73.7 - 111		12/13/2021
Dibromochloromethane	20.0	ug/L	20.6	103	71.5 - 120		12/13/2021
Ethylbenzene	20.0	ug/L	17.3	86.4	80.5 - 106		12/13/2021
Methylene chloride	20.0	ug/L	21.1	105	46.2 - 127		12/13/2021
Tetrachloroethene	20.0	ug/L	21.3	106	69.8 - 110		12/13/2021
Toluene	20.0	ug/L	20.4	102	72.9 - 107		12/13/2021
trans-1,2-Dichloroethene	20.0	ug/L	20.6	103	77.8 - 111		12/13/2021
trans-1,3-Dichloropropene	20.0	ug/L	18.5	92.7	53.4 - 130		12/13/2021
Trichloroethene	20.0	ug/L	20.0	99.8	81.6 - 108		12/13/2021
Trichlorofluoromethane	20.0	ug/L	22.3	112	74.6 - 129		12/13/2021
Vinyl chloride	20.0	ug/L	23.8	119	58.2 - 140		12/13/2021

Client:	<u>Neu-Velle</u>
Project Reference:	3130 Monroe Avenue
Lab Project ID:	215562
SDG #:	5562-01
Matrix:	Groundwater

Volatile Organics

			<u>Spike</u>	<u>Spike</u>	LCS	<u>LCS %</u>	<u>% Rec</u>	LCS	Date
<u>Analyte</u>			Added	<u>Units</u>	<u>Result</u>	Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Analyzed</u>
	Method Reference(s):	EPA 8260C							
		EPA 5030C							
	Data File:	z06015.D							
	QC Number:	LCS 1							
	QC Batch ID:	voaw211213							

Client:	<u>Neu-Velle</u>
Project Reference:	3130 Monroe Avenue
Lab Project ID:	215562
SDG #:	5562-01
Matrix:	Groundwater

Volatile Organics

0	<u>Spike</u>	<u>Spike</u>	LCS	<u>LCS %</u>	<u>% Rec</u>	<u>LCS</u>	<u>Date</u>
Analyte	<u>Added</u>	<u>Units</u>	<u>Result</u>	<u>Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Analyzed
1,1,1-Trichloroethane	20.0	ug/L	22.6	113	83.7 - 129		12/14/2021
1,1,2,2-Tetrachloroethane	20.0	ug/L	18.6	93.2	22.4 - 207		12/14/2021
1,1,2-Trichloroethane	20.0	ug/L	20.2	101	64.1 - 133		12/14/2021
1,1-Dichloroethane	20.0	ug/L	21.8	109	85.5 - 117		12/14/2021
1,1-Dichloroethene	20.0	ug/L	20.1	100	68.1 - 110		12/14/2021
1,2-Dichlorobenzene	20.0	ug/L	16.3	81.6	74 - 121		12/14/2021
1,2-Dichloroethane	20.0	ug/L	20.5	103	79.4 - 120		12/14/2021
1,2-Dichloropropane	20.0	ug/L	20.4	102	81.6 - 104		12/14/2021
1,3-Dichlorobenzene	20.0	ug/L	16.4	82.2	71.2 - 106		12/14/2021
1,4-Dichlorobenzene	20.0	ug/L	16.3	81.5	72.8 - 107		12/14/2021
Benzene	20.0	ug/L	21.0	105	85.6 - 106		12/14/2021
Bromodichloromethane	20.0	ug/L	20.0	100	81.6 - 109		12/14/2021
Bromoform	20.0	ug/L	18.7	93.4	47.6 - 163		12/14/2021
Bromomethane	20.0	ug/L	25.5	128	36.5 - 164		12/14/2021
Carbon Tetrachloride	20.0	ug/L	22.4	112	79.7 - 122		12/14/2021
Chlorobenzene	20.0	ug/L	17.7	88.3	81.5 - 104		12/14/2021

Client:	<u>Neu-Velle</u>
Project Reference:	3130 Monroe Avenue
Lab Project ID:	215562
SDG #:	5562-01
Matrix:	Groundwater

Volatile Organics

	<u>Spike</u>	<u>Spike</u>	<u>LCS</u>	<u>LCS %</u>	<u>% Rec</u>	LCS	<u>Date</u>
Analyte	Added	<u>Units</u>	<u>Result</u>	<u>Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Analyzed
Chloroethane	20.0	ug/L	23.7	118	65.6 - 131		12/14/2021
Chloroform	20.0	ug/L	22.4	112	86.3 - 116		12/14/2021
Chloromethane	20.0	ug/L	26.6	133	42.8 - 154		12/14/2021
cis-1,3-Dichloropropene	20.0	ug/L	19.4	97.1	73.7 - 111		12/14/2021
Dibromochloromethane	20.0	ug/L	20.4	102	71.5 - 120		12/14/2021
Ethylbenzene	20.0	ug/L	17.9	89.3	80.5 - 106		12/14/2021
Methylene chloride	20.0	ug/L	25.0	125	46.2 - 127		12/14/2021
Tetrachloroethene	20.0	ug/L	21.9	109	69.8 - 110		12/14/2021
Toluene	20.0	ug/L	20.6	103	72.9 - 107		12/14/2021
trans-1,2-Dichloroethene	20.0	ug/L	21.9	109	77.8 - 111		12/14/2021
trans-1,3-Dichloropropene	20.0	ug/L	18.8	94.2	53.4 - 130		12/14/2021
Trichloroethene	20.0	ug/L	21.1	105	81.6 - 108		12/14/2021
Trichlorofluoromethane	20.0	ug/L	24.0	120	74.6 - 129		12/14/2021
Vinyl chloride	20.0	ug/L	25.1	125	58.2 - 140		12/14/2021

Client:	<u>Neu-Velle</u>
Project Reference:	3130 Monroe Avenue
Lab Project ID:	215562
SDG #:	5562-01
Matrix:	Groundwater

Volatile Organics

			<u>Spike</u>	<u>Spike</u>	LCS	<u>LCS %</u>	<u>% Rec</u>	LCS	Date
<u>Analyte</u>			<u>Added</u>	<u>Units</u>	<u>Result</u>	Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Analyzed</u>
	Method Reference(s):	EPA 8260C							
		EPA 5030C							
	Data File:	z06040.D							
	QC Number:	LCS 1							
	QC Batch ID:	voaw211214							

4 VOLATILE METHOD BLANK SUMMARY

Lab Name:	Paradigm Environm	ental Service	<u>s</u>	Sample ID:	<u>Blk 1</u>
Lab Project #:	215562			Lab File ID:	z06016.D
Client Name:	Neu-Velle			Date Extracted:	<u>12/13/2021</u>
Client Project Name	: <u>3130 Monroe Aven</u>	ue		Date Analyzed:	<u>12/13/2021</u>
Client Project #:	<u>N/A</u>			Time Analyzed:	<u>13:29</u>
SDG No.:	<u>5562-01</u>			Matrix:	<u>Groundwater</u>
				QC Batch:	<u>voaw211213</u>
Instrument ID:	Instrument1				
GC Column 1:	<u>DB-624</u>	ID (mm):	<u>0.20</u>		

This Method Blank applies to the following Samples and QC

	LAB	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS 1	N/A	z06015.D	12/13/2021 13:10
02	215562-01	MW4-20211207	z06027.D	12/13/2021 17:02
03	215562-05	Trip Blank T1084	z06026.D	12/13/2021 16:43
04				
05				
06				
07				
08				
09				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19 20				
20 21				
21				
22				
23 24				
25				

4 VOLATILE METHOD BLANK SUMMARY

Lab Name:	Paradigm Environm	ental Service	<u>s</u>	Sample ID:	<u>Blk 1</u>
Lab Project #:	<u>215562</u>			Lab File ID:	z06041.D
Client Name:	Neu-Velle			Date Extracted:	<u>12/14/2021</u>
Client Project Name:	3130 Monroe Avenu	ue		Date Analyzed:	<u>12/14/2021</u>
Client Project #:	<u>N/A</u>			Time Analyzed:	<u>14:08</u>
SDG No.:	<u>5562-01</u>			Matrix:	<u>Groundwater</u>
				QC Batch:	<u>voaw211214</u>
Instrument ID:	Instrument1				
GC Column 1:	DB-624	ID (mm):	<u>0.20</u>		

This Method Blank applies to the following Samples and QC

	LAB	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS 1	N/A	z06040.D	
				12/14/2021 13:49
	215562-02	MW3-20211208	z06043.D	12/14/2021 14:47
	215562-03	MW2-20211208	z06044.D	12/14/2021 15:06
	215562-04	MW1-20211209	z06045.D	12/14/2021 15:26
05				
06				
07				
08				
09				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22		1		
23			1	
24				
25				
25				

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE(BFB)

Lab Name:	Paradigm Environmental Services	Sample ID:	<u>BFB</u>
Lab Project #:	<u>215562</u>	Lab File ID:	<u>z05908.D</u>
Client Name:	Neu-Velle		
Client Project Name:	3130 Monroe Avenue	Date Analyzed:	<u>12/8/2021</u>
Client Project #:	<u>N/A</u>	Time Analyzed:	<u>10:22</u>
SDG No.:	<u>5562-01</u>		

Instrument ID:	Instrument1				
GC Column 1:	<u>DB-624</u>	ID (mm):	<u>0.20</u>	Detector:	MSD

m/e	ION ABUNDANCE CRITERIA	,	ELATIVE NDANCE	
50	15.0-40.0% of mass 95		15.6	
75	30.0-60.0% of mass 95		48.4	
95	Base peak, 100% relative abundance	100.0		
96	5.0-9.0% of mass 95	7.4		
173	Less then 2.0% of mass 174	0.7	(1.0)	*1
174	50.0-100.0% of mass 95	99.4		
175	5.0-9.0% of mass 174	6.8	(6.8)	*1
176	95.0-101.0% of mass 174	94.4	(95.0)	*1
177	5.0-9.0% of mass176	5.9	(5.9)	*2

1: Value is % mass 174, 2: Value is % mass 176

This check applies to the following Samples, MS, MSD, Blanks & Standards

	LAB	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1	1 ppb iCal	N/A	z05909.D	12/8/2021 10:41
2	5 ppb iCal	N/A	z05910.D	12/8/2021 11:01
3	20 ppb iCal	N/A	z05911.D	12/8/2021 11:20
	50 ppb iCal	N/A	z05912.D	12/8/2021 11:39
	100 ppb iCal	N/A	z05913.D	12/8/2021 11:59
	150 ppb iCal	N/A	z05914.D	12/8/2021 12:18
7	200 ppb iCal	N/A	z05915.D	12/8/2021 12:37
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE(BFB)

Lab Name:	Paradigm Environmental Services	Sample ID:	<u>BFB</u>
Lab Project #:	<u>215562</u>	Lab File ID:	<u>z06007.D</u>
Client Name:	<u>Neu-Velle</u>		
Client Project Name:	3130 Monroe Avenue	Date Analyzed:	<u>12/13/2021</u>
Client Project #:	<u>N/A</u>	Time Analyzed:	<u>10:35</u>
SDG No.:	<u>5562-01</u>		
		QC Batch:	<u>voaw211213</u>

Instrument ID:	Instrument1				
GC Column 1:	<u>DB-624</u>	ID (mm):	<u>0.20</u>	Detector:	MSD

m/e	ION ABUNDANCE CRITERIA	,	ELATIVE NDANCE	
50	15.0-40.0% of mass 95		15.9	
75	30.0-60.0% of mass 95		44.4	
95	Base peak, 100% relative abundance	100.0		
96	5.0-9.0% of mass 95	6.6		
173	Less then 2.0% of mass 174	0.7	(1.0)	*1
174	50.0-100.0% of mass 95		99.3	
175	5.0-9.0% of mass 174	6.7	(6.7)	*1
176	95.0-101.0% of mass 174	97.0	(97.7)	*1
177	5.0-9.0% of mass176	6.5	(6.5)	*2

1: Value is % mass 174, 2: Value is % mass 176

This check applies to the following Samples, MS, MSD, Blanks & Standards

	LAB	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1	CCV	N/A	z06009.D	12/13/2021 11:14
2	Blk 1	N/A	z06016.D	12/13/2021 13:29
3	LCS 1	N/A	z06015.D	12/13/2021 13:10
	215562-01	MW4-20211207	z06027.D	12/13/2021 17:02
5	215562-05	Trip Blank T1084	z06026.D	12/13/2021 16:43
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE(BFB)

Lab Name:	Paradigm Environmental Services	Sample ID:	<u>BFB</u>
Lab Project #:	<u>215562</u>	Lab File ID:	<u>z06030.D</u>
Client Name:	<u>Neu-Velle</u>		
Client Project Name:	3130 Monroe Avenue	Date Analyzed:	<u>12/14/2021</u>
Client Project #:	<u>N/A</u>	Time Analyzed:	<u>10:36</u>
SDG No.:	<u>5562-01</u>		
		QC Batch:	<u>voaw211214</u>

Instrument ID:	Instrument1				
GC Column 1:	<u>DB-624</u>	ID (mm):	<u>0.20</u>	Detector:	MSD

m/e	ION ABUNDANCE CRITERIA	-	ELATIVE NDANCE	
50	15.0-40.0% of mass 95		15.4	
75	30.0-60.0% of mass 95		45.4	
95	Base peak, 100% relative abundance	100.0		
96	5.0-9.0% of mass 95		6.2	
173	Less then 2.0% of mass 174	0.2	(0.3)	*1
174	50.0-100.0% of mass 95		93.1	
175	5.0-9.0% of mass 174	7.4	(8.0)	*1
176	95.0-101.0% of mass 174	89.7	(96.3)	*1
177	5.0-9.0% of mass176	7.3	(7.8)	*2

1: Value is % mass 174, 2: Value is % mass 176

This check applies to the following Samples, MS, MSD, Blanks & Standards

	LAB	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1	CCV	N/A	z06030.D	12/14/2021 10:36
2	Blk 1	N/A	z06041.D	12/14/2021 14:08
3	LCS 1	N/A	z06040.D	12/14/2021 13:49
	215562-02	MW3-20211208	z06043.D	12/14/2021 14:47
5	215562-03	MW2-20211208	z06044.D	12/14/2021 15:06
6	215562-04	MW1-20211209	z06045.D	12/14/2021 15:26
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				

8

VOLATILE INTERNAL STANDARD AREA and RT SUMMARY

Lab Name:	Paradigm Environm	nental Service		Sample ID:	<u>CCV</u>	
Lab Project #:	<u>215562</u>				Lab File ID:	<u>z06009.D</u>
Client Name:	Neu-Velle					
Client Project Name	: <u>3130 Monroe Aven</u>	nue			Date Analyzed:	<u>12/13/2021</u>
Client Project #:	<u>N/A</u>				Time Analyzed:	<u>11:14</u>
SDG No.:	<u>5562-01</u>					
					QC Batch:	<u>voaw211213</u>
Instrument ID:	Instrument1					
GC Column 1:	<u>DV-624</u>	ID (mm):	0.20	Detector:	<u>MSD</u>	

CCV	IS1: FB		IS2: CB	d5	IS3: 14DCBd4		
	Area	RT	Area	RT	AREA	RT	
12 Hour Standard	898136	5.53	495750	8.71	138125	11.45	
Upper Limit	1796272	6.03	991500	9.21	276250	11.95	
Lower Limit	449068	5.03	247875	8.21	69063	10.95	

This CCV applies to the following Samples and QC

Lab	Client	IS1	L: FB	IS2:	CBd5	IS3: 1	4DCBd4
Sample	No. Sample ID	Area	RT	Area	RT	AREA	RT
1 Blk1	N/A	810111	5.53	382071	8.71	139596	11.45
2 LCS1	N/A	854010	5.53	475032	8.71	142021	11.45
3 215562-01	MW4-20211207	728754	5.53	355226	8.71	134951	11.45
4 215562-05	Trip Blank T1084	767221	5.53	380111	8.71	133040	11.45
5							
6							
7							
8							
9							
10							
11							
12							
13				_			
14							
15				-			
16				-			
17							
18							
19							
20							

IS1: FB = Fluorobenzene

IS2: CBd5 = Chlorobenzene-d5

IS3: 14DCBd4 = 1,4-Dichlorobenzene-d4

Notes: * Values outside of current required QC limits Area Limits = -50% to +100% of 12 Hour Standard area RT Limits = -0.50 to +0.50 minutes of 12 Hour Standard retention times 8

VOLATILE INTERNAL STANDARD AREA and RT SUMMARY

Lab Name:	Paradigm Environn	nental Service		Sample ID:	<u>CCV</u>	
Lab Project #:	<u>215562</u>				Lab File ID:	<u>z06032.D</u>
Client Name:	Neu-Velle					
Client Project Name	: <u>3130 Monroe Aven</u>	nue			Date Analyzed:	<u>12/14/2021</u>
Client Project #:	<u>N/A</u>				Time Analyzed:	<u>11:15</u>
SDG No.:	<u>5562-01</u>					
					QC Batch:	<u>voaw211214</u>
Instrument ID:	Instrument1					
GC Column 1:	<u>DV-624</u>	ID (mm):	0.20	Detector	MSD	

CCV	IS1: FB		IS2: CB	d5	IS3: 14DCBd4		
	Area	RT	Area	RT	AREA	RT	
12 Hour Standard	800638	5.53	444892	8.71	132147	11.45	
Upper Limit	1601276	6.03	889784	9.21	264294	11.95	
Lower Limit	400319	5.03	222446	8.21	66074	10.95	

This CCV applies to the following Samples and QC

	Lab	Client	IS1	: FB	IS2:	CBd5	IS3: 14	DCBd4
	Sample No.	Sample ID	Area	RT	Area	RT	AREA	RT
1 Blk1	L	N/A	662622	5.53	326654	8.71	137355	11.45
2 LCS	1	N/A	729148	5.53	396592	8.71	129013	11.45
3 215	562-02	MW3-20211208	634931	5.53	320149	8.71	140191	11.45
4 215	562-03	MW2-20211208	652249	5.53	337913	8.71	133837	11.45
5 215	562-04	MW1-20211209	670351	5.53	336288	8.71	141582	11.45
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								

IS1: FB = Fluorobenzene

IS2: CBd5 = Chlorobenzene-d5

IS3: 14DCBd4 = 1,4-Dichlorobenzene-d4

Notes: * Values outside of current required QC limits Area Limits = -50% to +100% of 12 Hour Standard area RT Limits = -0.50 to +0.50 minutes of 12 Hour Standard retention times Volatiles

Effiective Date: 03/12/2021

	Efficitive Date: 03/12/2021						I		
	• • • • •		8260C and 624.1			8260C			8260C
Volatiles	Aqueous EPA 503		(ug/L)		Matrix	0200C (ug/Kg)	TCLP Extra	ct EPA 5030C	8200C (ug/L)
					5A prep				
Compound	PQL	J	MDL	PQL	J	MDL	PQL	J	MDL
Dichlorodifluoromethane	2.00	1.00	0.458	2.00	1.00	0.600			
Chloromethane	2.00	1.00	0.318	2.00	1.00	0.721			
Vinyl chloride	2.00	1.00	0.290	2.00	1.00	0.463	2.00	1.00	0.46
Bromomethane	2.00	1.00	0.637	2.00	1.00	0.429			
Chloroethane	2.00	1.00	0.537	2.00	1.00	0.445			
Trichlorofluoromethane	2.00	1.00	0.238	2.00	1.00	0.280			
Ethyl ether	2.00	1.00	0.381	2.00	1.00	0.330			
Freon 113	2.00	1.00	0.191	2.00	1.00	0.247			
1,1-Dichloroethene	2.00	1.00	0.136	2.00	1.00	0.277	2.00	1.00	0.27
Acetone	10.0	5.00	2.680	10.0	5.00	3.14			
Carbon disulfide	2.00	1.00	0.731	2.00	1.00	0.937			
Methyl acetate	2.00	1.00	0.472	2.00	1.00	0.758			
Methylene chloride	5.00	2.84	0.453	5.00	2.50	1.77			
Acrylonitrile	2.00	1.00	0.610	2.00	1.00	0.668			
tert-Butyl alcohol	20.0	10.00	3.290	20.0	10.00	6.09			
Methyl tert-butyl Ether	2.00	1.00	0.199	2.00	1.00	0.170			
trans-1,2-Dichloroethene	2.00	1.00	0.343	2.00	1.00	0.182			
1,1-Dichloroethane	2.00	1.00	0.244	2.00	1.00	0.244			
Vinyl acetate	5.00	2.50	0.330	5.00	2.50	0.248			
2,2-Dichloropropane	2.00	1.00	0.540	2.00	1.00	0.437			
2-Butanone	10.0	5.00	0.701	10.0	5.00	4.97	10.0	5.00	0.60
cis-1,2-Dichloroethene	2.00	1.00	0.321	2.00	1.00	0.341			
Bromochloromethane	5.00	2.50	0.410	5.00	2.50	0.404			
Chloroform	2.00	1.00	0.326	2.00	1.00	0.481	2.00	1.00	0.32
Tetrahydrofuran	2.00	1.00	0.979	2.00	1.00	0.635			
1,1,1-Trichloroethane	2.00	1.00	0.375	2.00	1.00	0.214			
Cyclohexane	10.0	5.00	0.409	10.0	5.00	0.491			
Carbon Tetrachoride	2.00	1.00	0.288	2.00	1.00	0.297	2.00	1.00	0.27
Benzene	1.00	0.50	0.317	2.00	1.00	0.388	2.00	1.00	0.28
1,2-Dichloroethane	2.00	1.00	0.239	2.00	1.00	0.191	2.00	1.00	0.39
Trichloroethene	2.00	1.00	0.263	2.00	1.00	0.139	2.00	1.00	0.24
Methylcyclohexane	2.00	1.00	0.367	2.00	1.00	0.265			
1,4-Dioxane	10.0	5.00	0.716	10.0	5.0	1.14			
1,2-Dichloropropane	2.00	1.00	0.261	2.00	1.00	0.339			
Dibromomethane	2.00	1.00	0.258	2.00	1.00	0.394			
Bromodichloromethane	2.00	1.00	0.505	2.00	1.00	0.407			
2-Chloroethylvinyl ether	5.00	2.50	0.248	5.00	3.78	0.320			
1,1-Dichloropropene	2.00	1.00	0.267	2.00	1.00	0.213			
cis-1,3-Dichloropropene	2.00	1.00	0.203	2.00	1.00	0.261			
4-Methyl-2-pentanone	5.00	2.50	0.630	5.00	2.50	0.730			
Toluene	2.00	1.00	0.217	2.00	1.00	0.341			
trans-1,3-Dichloropropene	2.00	1.00	0.247	2.00	1.00	0.177			
1,1,2-Trichloroethane	2.00	1.00	0.242	2.00	1.00	0.404			
1,3-Dichloropropane	2.00	1.00	0.217	2.00	1.00	0.355			
Tetrachloroethene	2.00	1.00	0.514	2.00	1.00	0.365	2.00	1.00	0.73
2-Hexanone	5.00	2.50	0.279	5.00	2.50	0.373			
Dibromochloromethane	2.00	1.00	0.239	2.00	1.00	0.345			
1,2-Dibromoethane	2.00	1.00	0.254	2.00	1.00	0.302			
Chlorobenzene	2.00	1.00	0.339	2.00	1.00	0.468	2.00	1.00	0.39
1,1,1,2-Tetrachloroethane	2.00	1.00	0.369	2.00	1.00	0.345			
Ethylbenzene	2.00	1.00	0.283	2.00	1.00	0.416			
m,p-Xylene	2.00	1.00	0.896	2.00	1.00	0.868			

8260C and									
	Aqueous	s Matrix	624.1	Solid I	Matrix	8260C	TCLP Extrac	t EPA	8260C
Volatiles	EPA 503	0C prep	(ug/L)	EPA 5035A prep		(ug/Kg)	1311/5	030C	(ug/L)
o-Xylene	2.00	1.00	0.303	2.00	1.00	0.453			
Styrene	5.00	2.50	0.270	5.00	2.50	0.342			
Bromoform	5.00	2.50	0.232	5.00	2.50	0.335			
Isopropylbenzene	2.00	1.00	0.322	2.00	1.00	0.473			
1,2,3-Trochloropropane	2.00	1.00	0.230	2.00	1.00	0.498			
Bromobenzene	5.00	2.50	0.286	5.00	2.50	0.437			
1,1,2,2-Tetrachloroethane	2.00	1.00	0.663	2.00	1.00	0.561			
n-Propylbenzene	2.00	1.00	0.240	2.00	1.00	0.289			
2-Chlorotoluene	2.00	1.00	0.443	2.00	1.00	0.495			
4-Chlorotoluene	2.00	1.36	1.360	2.00	1.00	0.337			
1,3,5-Trimethylbenzene	2.00	1.00	0.389	2.00	1.00	0.422			
tert-Butylbenzene	2.00	1.00	0.514	2.00	1.00	0.369			
1,2,4-Trimethylbenzene	2.00	1.00	0.386	2.00	1.00	0.379			
sec-Butylbenzene	2.00	1.00	0.625	2.00	1.00	0.402			
p-Isopropyltoluene	2.00	1.00	0.174	2.00	1.00	0.316			
1,3-Dichlorobenzene	2.00	1.13	1.130	2.00	1.00	0.833			
1,4-Dichlorobenzene	2.00	1.00	0.410	2.00	1.00	0.740			
n-Butylbenzene	2.00	1.53	1.530	2.00	1.00	0.649			
1,2-Dichlorobenzene	2.00	1.00	0.780	2.00	1.00	0.903			
1,2-Dibromo-3-Chloropropane	10.0	5.00	0.731	10.0	5.00	1.01			
1,2,4-Trochlorobenzene	5.00	2.50	1.580	5.00	2.50	0.520			
1,2,3-Trichlorobenzene	5.00	2.50	1.300	5.00	2.50	0.695			
Hexachlorobutadiene	5.00	2.50	1.060	5.00	2.50	0.610			
Naphthalene	5.00	2.50	0.457	5.00	2.50	0.711			

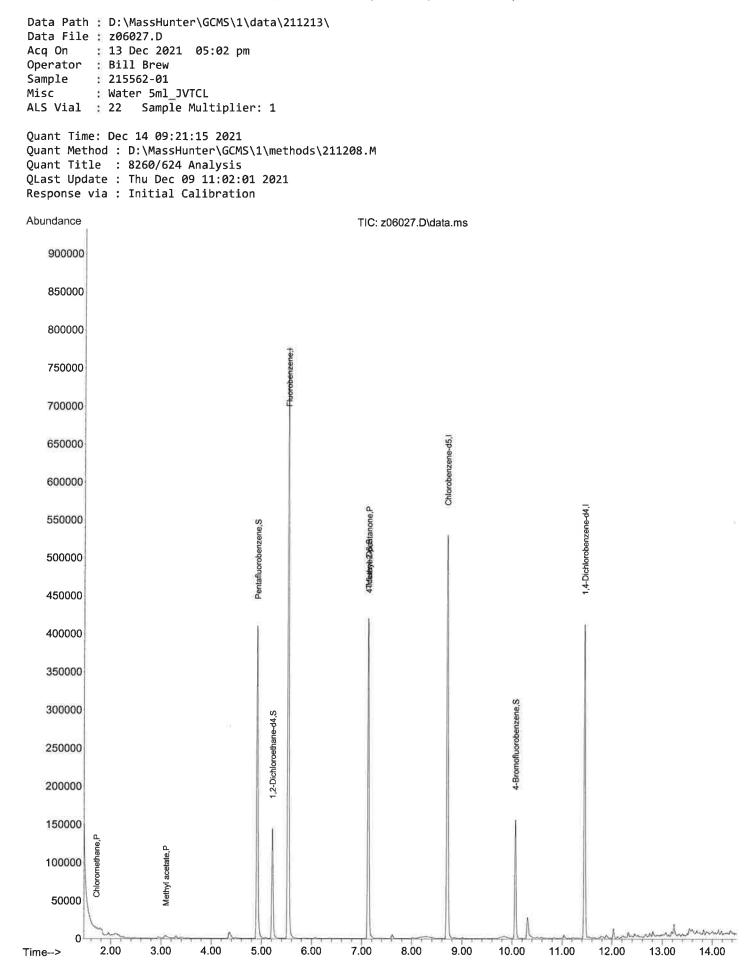
Soil Matrix: Assume 5.0g sample to a final volume of 5 ml.

VOLATILE ORGANICS

SAMPLE DATA

Client:	<u>Neu-Velle</u>		
Project Reference:	3130 Monroe Avenue		
Sample Identifier:	MW4-20211207		
Lab Sample ID:	215562-01	Date Sampled:	12/7/2021
Matrix:	Groundwater	Date Received:	12/9/2021
Volatile Organics	S		

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/13/2021 17:02
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/13/2021 17:02
1,1,2-Trichloroethane	< 2.00	ug/L		12/13/2021 17:02
1,1-Dichloroethane	< 2.00	ug/L		12/13/2021 17:02
1,1-Dichloroethene	< 2.00	ug/L		12/13/2021 17:02
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/13/2021 17:02
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/13/2021 17:02
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/13/2021 17:02
1,2-Dibromoethane	< 2.00	ug/L		12/13/2021 17:02
1,2-Dichlorobenzene	< 2.00	ug/L		12/13/2021 17:02
1,2-Dichloroethane	< 2.00	ug/L		12/13/2021 17:02
1,2-Dichloropropane	< 2.00	ug/L		12/13/2021 17:02
1,3-Dichlorobenzene	< 2.00	ug/L		12/13/2021 17:02
1,4-Dichlorobenzene	< 2.00	ug/L		12/13/2021 17:02
1,4-Dioxane	< 10.0	ug/L		12/13/2021 17:02
2-Butanone	< 10.0	ug/L		12/13/2021 17:02
2-Hexanone	< 5.00	ug/L		12/13/2021 17:02
4-Methyl-2-pentanone	< 5.00	ug/L		12/13/2021 17:02
Acetone	< 10.0	ug/L		12/13/2021 17:02
Benzene	< 1.00	ug/L		12/13/2021 17:02
Bromochloromethane	< 5.00	ug/L		12/13/2021 17:02
Bromodichloromethane	< 2.00	ug/L		12/13/2021 17:02
Bromoform	< 5.00	ug/L		12/13/2021 17:02


Client:	<u>Neu-Velle</u>				
Project Reference:	3130 Monroe Avenue				
Sample Identifier:	MW4-20211207				
Lab Sample ID:	215562-01		Date Sampled:	12/7/2021	
Matrix:	Groundwater		Date Received:	12/9/2021	
Bromomethane	< 2.00	ug/L		12/13/2021	17:02
Carbon disulfide	< 2.00	ug/L		12/13/2021	17:02
Carbon Tetrachloride	< 2.00	ug/L		12/13/2021	17:02
Chlorobenzene	< 2.00	ug/L		12/13/2021	17:02
Chloroethane	< 2.00	ug/L		12/13/2021	17:02
Chloroform	< 2.00	ug/L		12/13/2021	17:02
Chloromethane	< 2.00	ug/L		12/13/2021	17:02
cis-1,2-Dichloroethene	< 2.00	ug/L		12/13/2021	17:02
cis-1,3-Dichloropropen	e < 2.00	ug/L		12/13/2021	17:02
Cyclohexane	< 10.0	ug/L		12/13/2021	17:02
Dibromochloromethan	e < 2.00	ug/L		12/13/2021	17:02
Dichlorodifluorometha	ne < 2.00	ug/L		12/13/2021	17:02
Ethylbenzene	< 2.00	ug/L		12/13/2021	17:02
Freon 113	< 2.00	ug/L		12/13/2021	17:02
Isopropylbenzene	< 2.00	ug/L		12/13/2021	17:02
m,p-Xylene	< 2.00	ug/L		12/13/2021	17:02
Methyl acetate	< 2.00	ug/L		12/13/2021	17:02
Methyl tert-butyl Ether	< 2.00	ug/L		12/13/2021	17:02
Methylcyclohexane	< 2.00	ug/L		12/13/2021	17:02
Methylene chloride	< 5.00	ug/L		12/13/2021	17:02
o-Xylene	< 2.00	ug/L		12/13/2021	17:02
Styrene	< 5.00	ug/L		12/13/2021	17:02
Tetrachloroethene	< 2.00	ug/L		12/13/2021	17:02
Toluene	< 2.00	ug/L		12/13/2021	17:02
trans-1,2-Dichloroethe	ne < 2.00	ug/L		12/13/2021	17:02

Client:	<u>Neu-Velle</u>						
Project Reference:	3130 Monroe A	Avenue	9				
Sample Identifier:	MW4-202112	207					
Lab Sample ID:	215562-01			Date	e Sampled:	12/7/202	1
Matrix:	Groundwater	I		Date	e Received:	12/9/202	1
trans-1,3-Dichloropro	pene	< 2.00	ug/L			12/13/202	21 17:02
Trichloroethene		< 2.00	ug/L			12/13/202	21 17:02
Trichlorofluorometha	ne	< 2.00	ug/L			12/13/202	21 17:02
Vinyl chloride		< 2.00	ug/L			12/13/202	21 17:02
<u>Surrogate</u>		P	ercent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
1,2-Dichloroethane-d4	Ļ		104	77.9 - 132		12/13/2021	17:02
4-Bromofluorobenzen	e		101	62.6 - 133		12/13/2021	17:02
Pentafluorobenzene			110	88.9 - 114		12/13/2021	17:02
Toluene-D8			99.0	75.6 - 117		12/13/2021	17:02
Method Referen	ce(s): EPA 8260	C					
Data File:	EPA 5030 z06027.D	-					

Nen-Velle	Quantitat	ion Report	(Not Revie	wed)	
Data Path : D:\MassHunter\GCM Data File : z06027.D Acq On : 13 Dec 2021 05:0 Operator : Bill Brew Sample : 215562-01 Misc : Water 5ml_JVTCL ALS Vial : 22 Sample Multi	92 pm				
Quant Time: Dec 14 09:21:15 2 Quant Method : D:\MassHunter\ Quant Title : 8260/624 Analy QLast Update : Thu Dec 09 11: Response via : Initial Calibr	GCMS\1\methods\2: sis 02:01 2021	11208.M	1,	BDL	12/14/21 1513
Compound	R.T. QIon	Response C	onc Units Dev	v(Min)	
Internal Standards 1) Fluorobenzene 58) Chlorobenzene-d5 79) 1,4-Dichlorobenzene-d4	5.531 96 8.708 117 11.450 152	355226	/ 50.00 ug/L 50.00 ug/L 50.00 ug/L	0.00 0.00 0.00	
System Monitoring Compounds 27) Pentafluorobenzene Spiked Amount 30.000 31) 1,2-Dichloroethane-d4 Spiked Amount 30.000 49) Toluene-D8 Spiked Amount 30.000 68) 4-Bromofluorobenzene Spiked Amount 30.000	4.914 168 Range 89 - 114 5.216 65 Range 78 - 132 7.129 98 Range 76 - 117 10.068 95 Range 63 - 133	Recovery 100947 Recovery 321325 Recovery 55773	31.28 ug/L = 104.279 29.70 ug/L = 99.009 30.31 ug/L	0.00 0.00 0.00	
Target Compounds 3) Chloromethane 11) Acetone 14) Methyl acetate 48) 4-Methyl-2-pentanone	1.708 50 2.942 43 3.097 43 7.132 58	1258 3187 647 2382	0.58 ug/kc/# Below Cal <br 0.56 ug/kc# 1.61 ug/L #	^د 95	

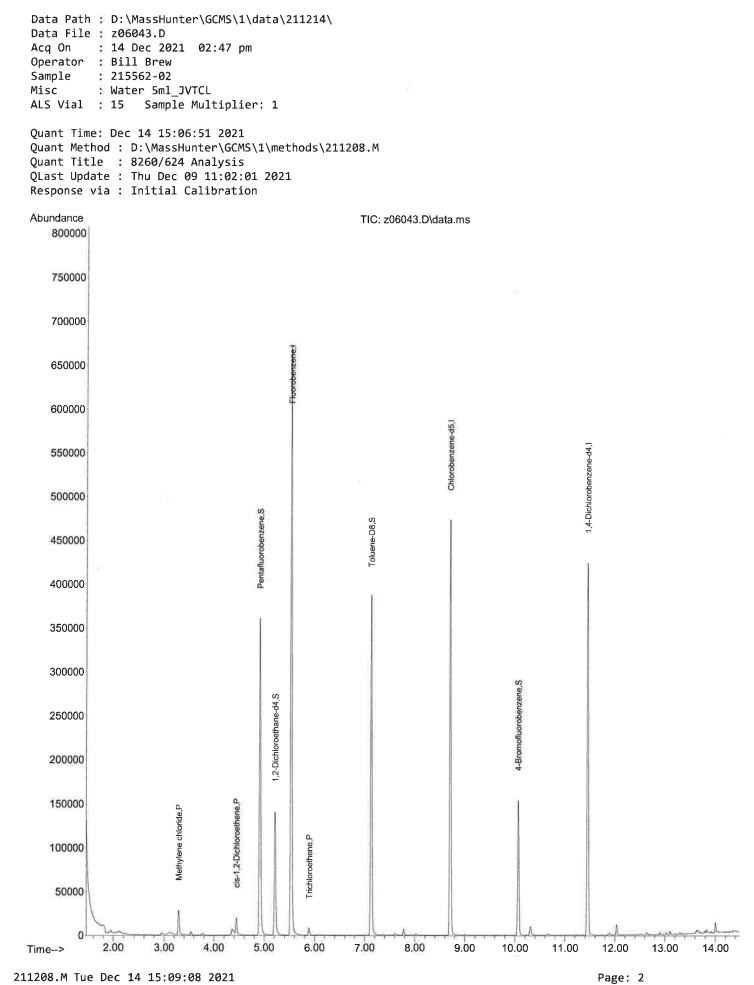
(#) = qualifier out of range (m) = manual integration (+) = signals summed

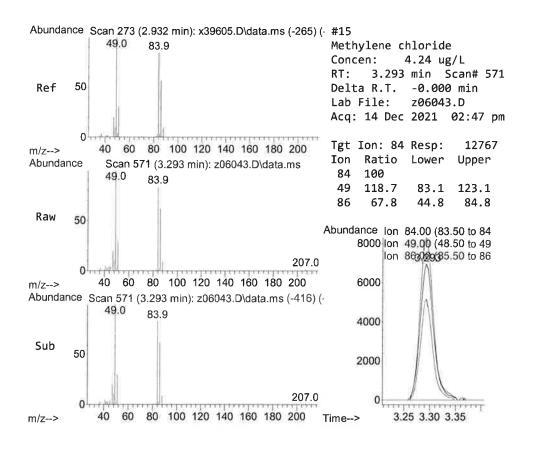
211208.M Tue Dec 14 09:21:17 2021

Page: 2

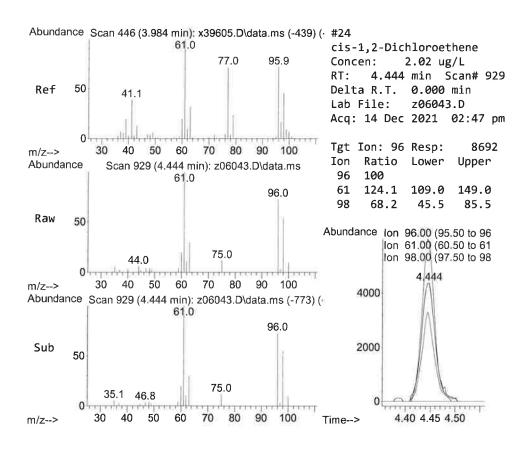
Client:	<u>Neu-Velle</u>			
Project Reference:	3130 Monroe Avenue			
Sample Identifier:	MW3-20211208			
Lab Sample ID:	215562-02		Date Sampled:	12/8/2021
Matrix:	Groundwater		Date Received:	12/9/2021
Volatile Organics	1			
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/14/2021 14:47
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/14/2021 14:47
1,1,2-Trichloroethane	< 2.00	ug/L		12/14/2021 14:47
1,1-Dichloroethane	< 2.00	ug/L		12/14/2021 14:47
1,1-Dichloroethene	< 2.00	ug/L		12/14/2021 14:47
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/14/2021 14:47
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/14/2021 14:47
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/14/2021 14:47
1,2-Dibromoethane	< 2.00	ug/L		12/14/2021 14:47
1,2-Dichlorobenzene	< 2.00	ug/L		12/14/2021 14:47
1,2-Dichloroethane	< 2.00	ug/L		12/14/2021 14:47
1,2-Dichloropropane	< 2.00	ug/L		12/14/2021 14:47
1,3-Dichlorobenzene	< 2.00	ug/L		12/14/2021 14:47
1,4-Dichlorobenzene	< 2.00	ug/L		12/14/2021 14:47
1,4-Dioxane	< 10.0	ug/L		12/14/2021 14:47
2-Butanone	< 10.0	ug/L		12/14/2021 14:47
2-Hexanone	< 5.00	ug/L		12/14/2021 14:47
4-Methyl-2-pentanone	< 5.00	ug/L		12/14/2021 14:47
Acetone	< 10.0	ug/L		12/14/2021 14:47
Benzene	< 1.00	ug/L		12/14/2021 14:47
Bromochloromethane	< 5.00	ug/L		12/14/2021 14:47
Bromodichloromethane	< 2.00	ug/L		12/14/2021 14:47
Bromoform	< 5.00	ug/L		12/14/2021 14:47


Client:	<u>Neu-Velle</u>			
Project Reference:	3130 Monroe Avenue			
Sample Identifier:	MW3-20211208			
Lab Sample ID:	215562-02		Date Sampled:	12/8/2021
Matrix:	Groundwater		Date Received:	12/9/2021
Bromomethane	< 2.00	ug/L		12/14/2021 14:47
Carbon disulfide	< 2.00	ug/L		12/14/2021 14:47
Carbon Tetrachloride	< 2.00	ug/L		12/14/2021 14:47
Chlorobenzene	< 2.00	ug/L		12/14/2021 14:47
Chloroethane	< 2.00	ug/L		12/14/2021 14:47
Chloroform	< 2.00	ug/L		12/14/2021 14:47
Chloromethane	< 2.00	ug/L		12/14/2021 14:47
cis-1,2-Dichloroethene	2.02	ug/L		12/14/2021 14:47
cis-1,3-Dichloroproper	ne < 2.00	ug/L		12/14/2021 14:47
Cyclohexane	< 10.0	ug/L		12/14/2021 14:47
Dibromochloromethan	e < 2.00	ug/L		12/14/2021 14:47
Dichlorodifluorometha	ne < 2.00	ug/L		12/14/2021 14:47
Ethylbenzene	< 2.00	ug/L		12/14/2021 14:47
Freon 113	< 2.00	ug/L		12/14/2021 14:47
Isopropylbenzene	< 2.00	ug/L		12/14/2021 14:47
m,p-Xylene	< 2.00	ug/L		12/14/2021 14:47
Methyl acetate	< 2.00	ug/L		12/14/2021 14:47
Methyl tert-butyl Ether	< 2.00	ug/L		12/14/2021 14:47
Methylcyclohexane	< 2.00	ug/L		12/14/2021 14:47
Methylene chloride	4.24	ug/L	J	12/14/2021 14:47
o-Xylene	< 2.00	ug/L		12/14/2021 14:47
Styrene	< 5.00	ug/L		12/14/2021 14:47
Tetrachloroethene	< 2.00	ug/L		12/14/2021 14:47
Toluene	< 2.00	ug/L		12/14/2021 14:47
trans-1,2-Dichloroethe	ene < 2.00	ug/L		12/14/2021 14:47


Client:	<u>Neu-Velle</u>						
Project Reference:	3130 Monroe Av	enue	!				
Sample Identifier:	MW3-20211208	3					
Lab Sample ID:	215562-02			Date	e Sampled:	12/8/202	1
Matrix:	Groundwater			Date	e Received	: 12/9/202	1
trans-1,3-Dichloropro	pene <	2.00	ug/L			12/14/202	21 14:47
Trichloroethene	< 2	2.00	ug/L			12/14/202	21 14:47
Trichlorofluorometha	ne < 2	2.00	ug/L			12/14/202	21 14:47
Vinyl chloride	< 2	2.00	ug/L			12/14/202	21 14:47
<u>Surrogate</u>		<u>P</u>	<u>ercent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Ana	lyzed
1,2-Dichloroethane-d4	Ļ		117	77.9 - 132		12/14/2021	14:47
4-Bromofluorobenzen	e		115	62.6 - 133		12/14/2021	14:47
Pentafluorobenzene			113	88.9 - 114		12/14/2021	14:47
Toluene-D8			107	75.6 - 117		12/14/2021	14:47
Method Referen							
Data File:	EPA 5030C z06043.D						

Neu-Velle	Quantitati	on Report (QT Reviewe	d)
Data Path : D:\MassHunter\GCMS\1 Data File : z06043.D Acq On : 14 Dec 2021 02:47 p Operator : Bill Brew Sample : 215562-02 Misc : Water 5ml_JVTCL ALS Vial : 15 Sample Multipli Quant Time: Dec 14 15:06:51 2021 Quant Method : D:\MassHunter\GCM Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02: Response via : Initial Calibrati	m er: 1 S\1\methods\21 01 2021	1208.M	12/14/21 1513
Compound	R.T. QIon	Response Conc Units Dev	(Min)
Internal Standards			
	5 531 06	624021 / FR 00 wa/l	0.00
1) Fluorobenzene	5.531 96	634931 50.00 ug/L	0.00
58) Chlorobenzene-d5	8.711 117	320149 50.00 ug/L	0.00
79) 1,4-Dichlorobenzene-d4	11.450 152	140191 50.00 ug/L	0.00
System Monitoring Compounds		\sim	
27) Pentafluorobenzene	4.913 168	272362 33.87 ug/L	Q.00
	nge 89 - 114	Recovery ≠ 112.90%	1
31) 1,2-Dichloroethane-d4	5.216 65	,	0,00
	nge 78 - 132	Recovery = 116.97%	
49) Toluene-D8	7.129 98	301343 31.97 ug/L	0.þ0
	nge 76 - 117 10.068 95		0.00
68) 4-Bromofluorobenzene	10.068 95 nge 63 - 133	57464 34.65 ug/L	0.00
Spiked Amount 30.000 Ra	uge 02 - 122	Recovery 115.50%	
Target Compounds		Ove	alue
11) Acetone	3.068 43	74 Below Cal 4/	
) 15) Methylene chloride	3.293 84	12767 4.24_ug/L	89
24) cis-1,2-Dichloroethene	4.444 96	8692 2.02 ug/L	96
35) Trichloroethene	5.891 130	2727 0.59 ug/L 2	
			ス


(#) = qualifier out of range (m) = manual integration (+) = signals summed

211208.M Tue Dec 14 15:09:08 2021

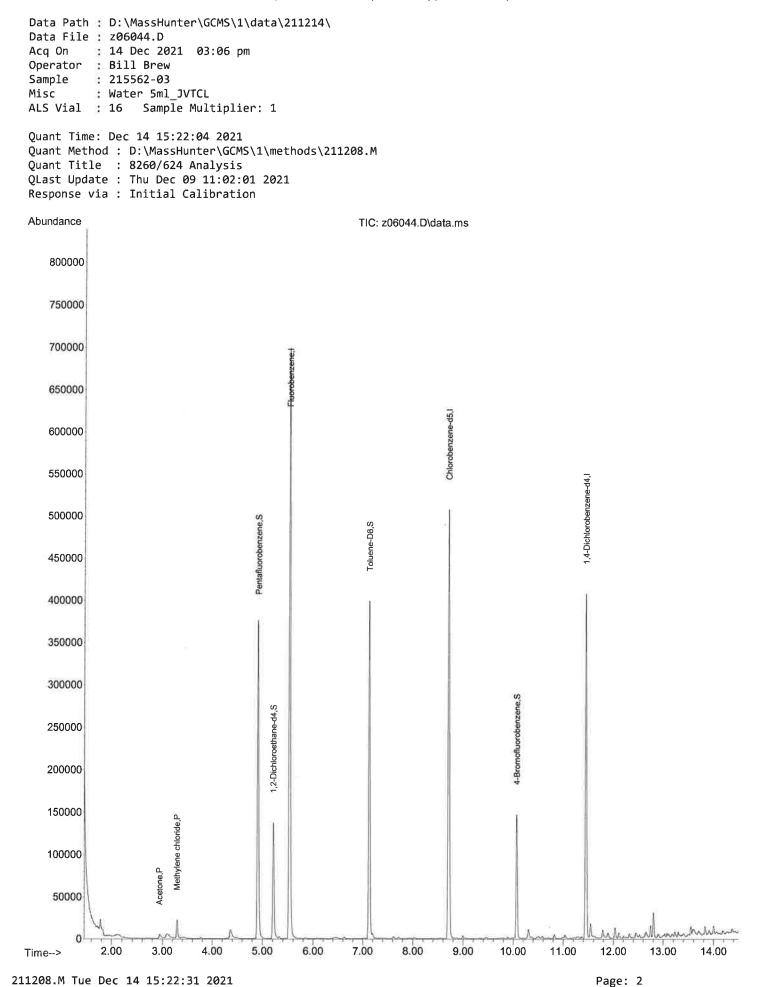
12/14/21 133

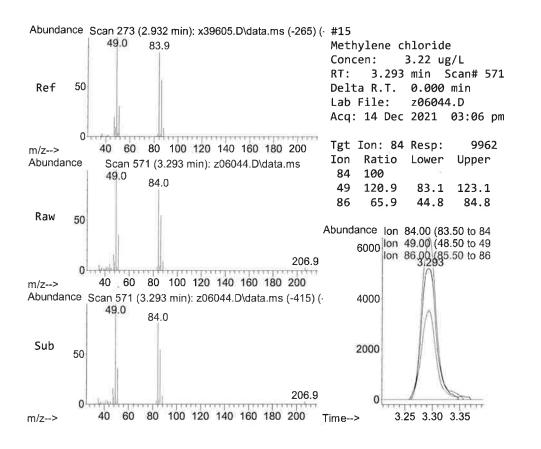
12/14/21 1313

Client:	<u>Neu-Velle</u>		
Project Reference:	3130 Monroe Avenue		
Sample Identifier:	MW2-20211208		
Lab Sample ID:	215562-03	Date Sampled:	12/8/2021
Matrix:	Groundwater	Date Received:	12/9/2021
Volatile Organice	e.		

<u>Volatile Organics</u>

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/14/2021 15:06
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/14/2021 15:06
1,1,2-Trichloroethane	< 2.00	ug/L		12/14/2021 15:06
1,1-Dichloroethane	< 2.00	ug/L		12/14/2021 15:06
1,1-Dichloroethene	< 2.00	ug/L		12/14/2021 15:06
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/14/2021 15:06
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/14/2021 15:06
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/14/2021 15:06
1,2-Dibromoethane	< 2.00	ug/L		12/14/2021 15:06
1,2-Dichlorobenzene	< 2.00	ug/L		12/14/2021 15:06
1,2-Dichloroethane	< 2.00	ug/L		12/14/2021 15:06
1,2-Dichloropropane	< 2.00	ug/L		12/14/2021 15:06
1,3-Dichlorobenzene	< 2.00	ug/L		12/14/2021 15:06
1,4-Dichlorobenzene	< 2.00	ug/L		12/14/2021 15:06
1,4-Dioxane	< 10.0	ug/L		12/14/2021 15:06
2-Butanone	< 10.0	ug/L		12/14/2021 15:06
2-Hexanone	< 5.00	ug/L		12/14/2021 15:06
4-Methyl-2-pentanone	< 5.00	ug/L		12/14/2021 15:06
Acetone	< 10.0	ug/L		12/14/2021 15:06
Benzene	< 1.00	ug/L		12/14/2021 15:06
Bromochloromethane	< 5.00	ug/L		12/14/2021 15:06
Bromodichloromethane	< 2.00	ug/L		12/14/2021 15:06
Bromoform	< 5.00	ug/L		12/14/2021 15:06


Client:	<u>Neu-Velle</u>				
Project Reference:	3130 Monroe Avenue				
Sample Identifier:	MW2-20211208				
Lab Sample ID:	215562-03		Date Sampled:	12/8/2021	
Matrix:	Groundwater		Date Received:	12/9/2021	
Bromomethane	< 2.00	ug/L		12/14/2021	15:06
Carbon disulfide	< 2.00	ug/L		12/14/2021	15:06
Carbon Tetrachloride	< 2.00	ug/L		12/14/2021	15:06
Chlorobenzene	< 2.00	ug/L		12/14/2021	15:06
Chloroethane	< 2.00	ug/L		12/14/2021	15:06
Chloroform	< 2.00	ug/L		12/14/2021	15:06
Chloromethane	< 2.00	ug/L		12/14/2021	15:06
cis-1,2-Dichloroethene	< 2.00	ug/L		12/14/2021	15:06
cis-1,3-Dichloropropen	e < 2.00	ug/L		12/14/2021	15:06
Cyclohexane	< 10.0	ug/L		12/14/2021	15:06
Dibromochloromethan	e < 2.00	ug/L		12/14/2021	15:06
Dichlorodifluorometha	ne < 2.00	ug/L		12/14/2021	15:06
Ethylbenzene	< 2.00	ug/L		12/14/2021	15:06
Freon 113	< 2.00	ug/L		12/14/2021	15:06
Isopropylbenzene	< 2.00	ug/L		12/14/2021	15:06
m,p-Xylene	< 2.00	ug/L		12/14/2021	15:06
Methyl acetate	< 2.00	ug/L		12/14/2021	15:06
Methyl tert-butyl Ether	< 2.00	ug/L		12/14/2021	15:06
Methylcyclohexane	< 2.00	ug/L		12/14/2021	15:06
Methylene chloride	3.22	ug/L	J	12/14/2021	15:06
o-Xylene	< 2.00	ug/L		12/14/2021	15:06
Styrene	< 5.00	ug/L		12/14/2021	15:06
Tetrachloroethene	< 2.00	ug/L		12/14/2021	15:06
Toluene	< 2.00	ug/L		12/14/2021	15:06
trans-1,2-Dichloroethe	ne < 2.00	ug/L		12/14/2021	15:06


Client:	<u>Neu-Velle</u>						
Project Reference:	3130 Monroe Ave	nue					
Sample Identifier:	MW2-20211208						
Lab Sample ID:	215562-03			Date	Sampled:	12/8/2021	-
Matrix:	Groundwater			Date	Received	: 12/9/2021	-
trans-1,3-Dichloropro	pene < 2	00 u	g/L			12/14/2021	15:06
Trichloroethene	< 2.	00 u	g/L			12/14/2021	15:06
Trichlorofluorometha	ne < 2.	00 u	g/L			12/14/2021	15:06
Vinyl chloride	< 2.	00 u	g/L			12/14/2021	15:06
<u>Surrogate</u>		Percent Red	covery L	Limits	<u>Outliers</u>	Date Anal	<u>yzed</u>
1,2-Dichloroethane-d4	Ļ	109	77.9	9 - 132		12/14/2021	15:06
4-Bromofluorobenzen	e	104	62.6	6 - 133		12/14/2021	15:06
Pentafluorobenzene		113	88.9	9 - 114		12/14/2021	15:06
Toluene-D8		105	75.6	6 - 117		12/14/2021	15:06
Method Referen							
Data File:	EPA 5030C z06044.D						

Data Path : D:\MassHunter\GCM Data File : 206044.D Acq On : 14 Dec 2021 03:0 Operator : Bill Brew Sample : 215562-03 Misc : Water 5ml_JVTCL ALS Vial : 16 Sample Multi Quant Time: Dec 14.15:22:04 2 Quant Method : D:\MassHunter	06 pm) plier: 1 2021		
Quant Title : 8260/624 Analy		S(211208.14	1 /
QLast Update : Thu Dec 09 11:	02:01 2021		12/14/21213
Response via : Initial Calibr	ation		מקדייייייי
Compound	R.T. QIO	on Response Conc Units Dev(Min)	
Internal Standards			
 Fluorobenzene 	5.531 9	96 652249 /50.00 ug/L 0.00	l i i i i i i i i i i i i i i i i i i i
58) Chlorobenzene-d5	8.708 11		I
79) 1,4-Dichlorobenzene-d4	11.450 15	52 133837 50.00 ug/L 0.00	
System Monitoring Compounds			
27) Pentafluorobenzene	4.914 16	8 279903 33.89 ug/L 0.00	
Spiked Amount 30.000	Range 89 - 1	.14 Recovery ≠ 112.97% \	
31) 1,2-Dichloroethane-d4		5 94647 32/.76 ug/L 0.00	
Spiked Amount 30.000	Range 78 - 1	.32 Recovery = 109.20%	
49) Toluene-D8		98 305258 31.53 ug/L 0.90	
Spiked Amount 30.000	-	.17 Recovery = 105.10%	
68) 4-Bromofluorobenzene		5 54846 31.33 ug/L 0.00	
Spiked Amount 30.000	Range 63 - 1	33 Recovery 104.43%	
Target Compounds		Qvalue	
11) Acetone	2.943 4	3 8785 1.94 ug/L 4 0 93	
ل (15) Methylene chloride	3.293 8	4 9962 3.22 ug/L 89	
**********************		\smile	

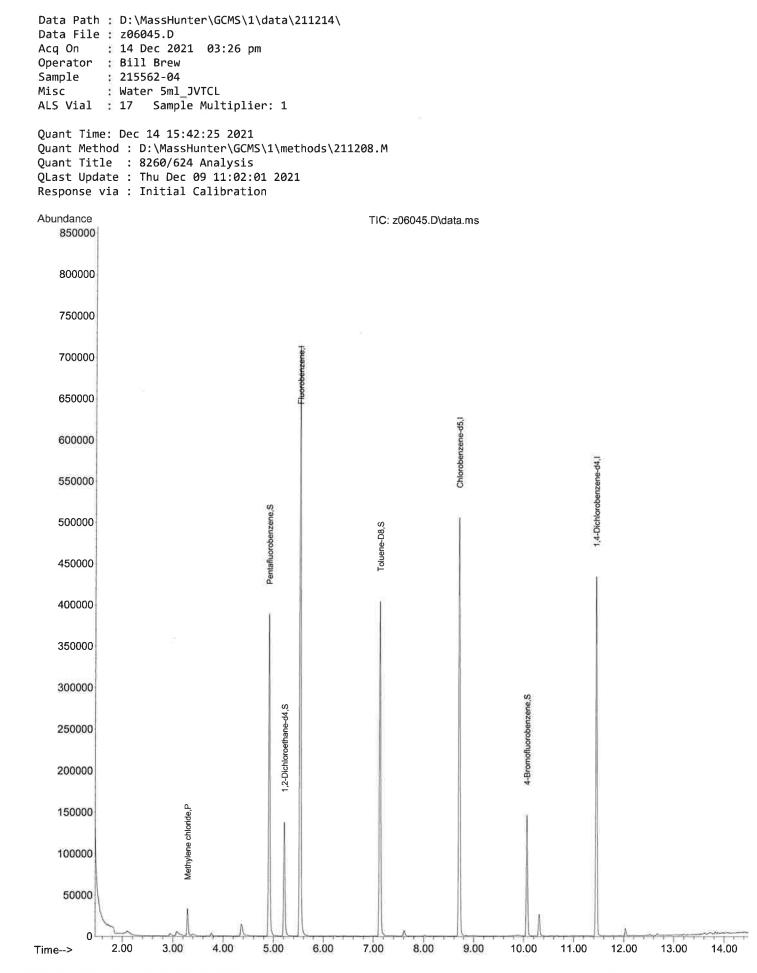
(#) = qualifier out of range (m) = manual integration (+) = signals summed

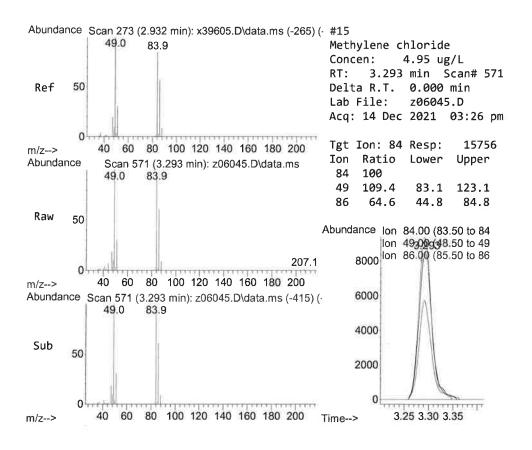
211208.M Tue Dec 14 15:22:31 2021

12/14/21 BIS

Client:	<u>Neu-Velle</u>		
Project Reference:	3130 Monroe Avenue		
Sample Identifier:	MW1-20211209		
Lab Sample ID:	215562-04	Date Sampled:	12/9/2021
Matrix:	Groundwater	Date Received:	12/9/2021
Volatile Organics	S		

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/14/2021 15:26
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/14/2021 15:26
1,1,2-Trichloroethane	< 2.00	ug/L		12/14/2021 15:26
1,1-Dichloroethane	< 2.00	ug/L		12/14/2021 15:26
1,1-Dichloroethene	< 2.00	ug/L		12/14/2021 15:26
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/14/2021 15:26
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/14/2021 15:26
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/14/2021 15:26
1,2-Dibromoethane	< 2.00	ug/L		12/14/2021 15:26
1,2-Dichlorobenzene	< 2.00	ug/L		12/14/2021 15:26
1,2-Dichloroethane	< 2.00	ug/L		12/14/2021 15:26
1,2-Dichloropropane	< 2.00	ug/L		12/14/2021 15:26
1,3-Dichlorobenzene	< 2.00	ug/L		12/14/2021 15:26
1,4-Dichlorobenzene	< 2.00	ug/L		12/14/2021 15:26
1,4-Dioxane	< 10.0	ug/L		12/14/2021 15:26
2-Butanone	< 10.0	ug/L		12/14/2021 15:26
2-Hexanone	< 5.00	ug/L		12/14/2021 15:26
4-Methyl-2-pentanone	< 5.00	ug/L		12/14/2021 15:26
Acetone	< 10.0	ug/L		12/14/2021 15:26
Benzene	< 1.00	ug/L		12/14/2021 15:26
Bromochloromethane	< 5.00	ug/L		12/14/2021 15:26
Bromodichloromethane	< 2.00	ug/L		12/14/2021 15:26
Bromoform	< 5.00	ug/L		12/14/2021 15:26


Client:	<u>Neu-Velle</u>				
Project Reference:	3130 Monroe Avenue				
Sample Identifier:	MW1-20211209				
Lab Sample ID:	215562-04		Date Sampled:	12/9/2021	
Matrix:	Groundwater		Date Received:	12/9/2021	
Bromomethane	< 2.00	ug/L		12/14/2021 15:2	26
Carbon disulfide	< 2.00	ug/L		12/14/2021 15:2	26
Carbon Tetrachloride	< 2.00	ug/L		12/14/2021 15:2	26
Chlorobenzene	< 2.00	ug/L		12/14/2021 15:2	26
Chloroethane	< 2.00	ug/L		12/14/2021 15:2	26
Chloroform	< 2.00	ug/L		12/14/2021 15:2	26
Chloromethane	< 2.00	ug/L		12/14/2021 15:2	26
cis-1,2-Dichloroethene	< 2.00	ug/L		12/14/2021 15:2	26
cis-1,3-Dichloropropen	ne < 2.00	ug/L		12/14/2021 15:2	26
Cyclohexane	< 10.0	ug/L		12/14/2021 15:2	26
Dibromochloromethan	e < 2.00	ug/L		12/14/2021 15:2	26
Dichlorodifluorometha	ne < 2.00	ug/L		12/14/2021 15:2	26
Ethylbenzene	< 2.00	ug/L		12/14/2021 15:2	26
Freon 113	< 2.00	ug/L		12/14/2021 15:2	26
Isopropylbenzene	< 2.00	ug/L		12/14/2021 15:2	26
m,p-Xylene	< 2.00	ug/L		12/14/2021 15:2	26
Methyl acetate	< 2.00	ug/L		12/14/2021 15:2	26
Methyl tert-butyl Ether	< 2.00	ug/L		12/14/2021 15:2	26
Methylcyclohexane	< 2.00	ug/L		12/14/2021 15:2	26
Methylene chloride	4.95	ug/L	J	12/14/2021 15:2	26
o-Xylene	< 2.00	ug/L		12/14/2021 15:2	26
Styrene	< 5.00	ug/L		12/14/2021 15:2	26
Tetrachloroethene	< 2.00	ug/L		12/14/2021 15:2	26
Toluene	< 2.00	ug/L		12/14/2021 15:2	26
trans-1,2-Dichloroethe	ne < 2.00	ug/L		12/14/2021 15:2	26



Client:	<u>Neu-Velle</u>						
Project Reference:	3130 Monroe Av	enue	!				
Sample Identifier:	MW1-20211209	9					
Lab Sample ID:	215562-04			Date	e Sampled	: 12/9/202	1
Matrix:	Groundwater			Dat	e Received	: 12/9/202	1
trans-1,3-Dichloropro	pene <	2.00	ug/L			12/14/202	21 15:26
Trichloroethene	<	2.00	ug/L			12/14/202	21 15:26
Trichlorofluorometha	ne <	2.00	ug/L			12/14/202	21 15:26
Vinyl chloride	<	2.00	ug/L			12/14/202	21 15:26
<u>Surrogate</u>		<u>P</u> (<u>ercent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
1,2-Dichloroethane-d4	Ļ		111	77.9 - 132		12/14/2021	15:26
4-Bromofluorobenzen	e		105	62.6 - 133		12/14/2021	15:26
Pentafluorobenzene			115	88.9 - 114	*	12/14/2021	15:26
Toluene-D8			103	75.6 - 117		12/14/2021	15:26
Method Referen							
Data File:	EPA 5030C z06045.D						

Data Path : D:\MassHunter\GCM Data File : z06045.D Acq On : 14 Dec 2021 03:2 Operator : Bill Brew Sample : 215562-04 Misc : Water 5ml_JVTCL ALS Vial : 17 Sample Multi Quant Time: Dec 14 15:42:25 2 Quant Method : D:\MassHunter\ Quant Title : 8260/624 Analy QLast Update : Thu Dec 09 11: Response via : Initial Calibr	26 pm iplier: 1 2021 \GCM5\1\methods\2 /sis :02:01 2021		12/14/21 BB
Compound	R.T. QION	Response Conc Units Dev(Min)	
Internal Standards			
1) Fluorobenzene	5.531 96	670351 / 50.00 ug/L 0.00	
58) Chlorobenzene-d5	8.708 117	0.	
79) 1,4-Dichlorobenzene-d4		•	
System Monitoring Compounds			
27) Pentafluorobenzene	4.910 168	293703 34.60 ug/L 0.00_	
Spiked Amount 30.000	Range 89 - 114	Recovery = 115.33%# 7	
31) 1,2-Dichloroethane-d4	5.216 65	99003 33.35 ug/L 0.00	
Spiked Amount 30.000	Range 78 - 132	Recovery = 111.17%	
49) Toluene-D8	7.129 98	0.	
Spiked Amount 30.000	Range 76 - 117		
68) 4-Bromofluorobenzene	10.068 95	54828 31.47 ug/L 0.00	
Spiked Amount 30.000	Range 63 - 133	Recovery = 104.90%	
Target Compounds		Qvalue	
11) Acetone	2,943 43	3602 Below Cal 2/0 74	
🜙 15) Methylene chloride	3.293 84	15756 4.95 ug/L 96	
•••••			

(#) = qualifier out of range (m) = manual integration (+) = signals summed

12/14/21 BB

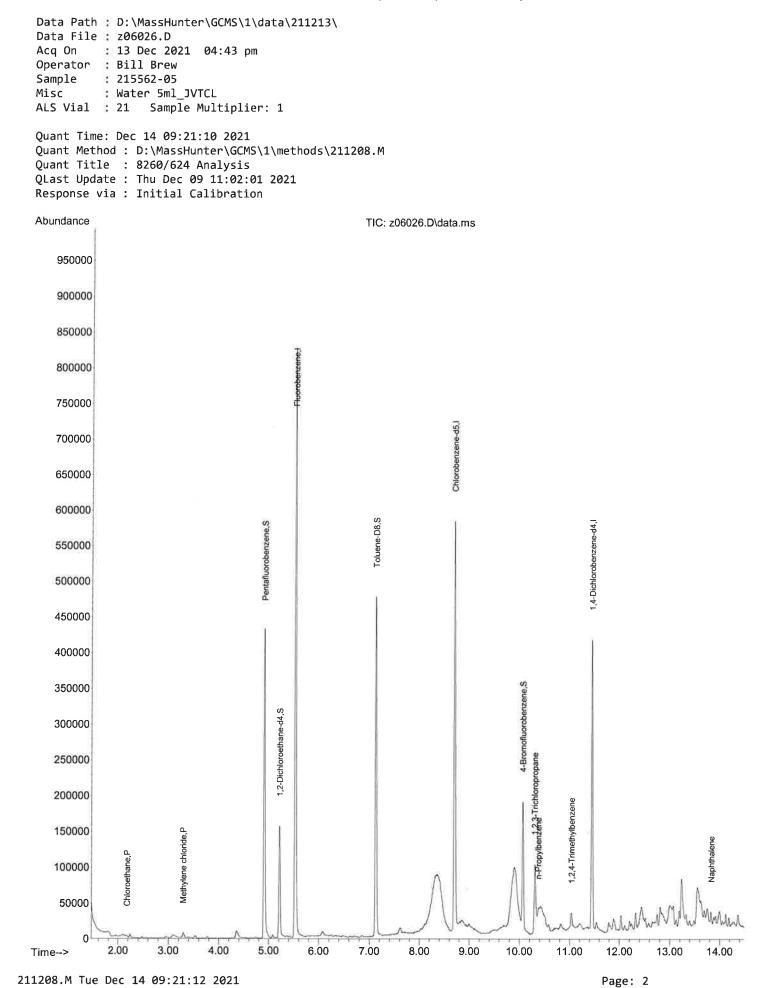
Client:	<u>Neu-Velle</u>		
Project Reference:	3130 Monroe Avenue		
Sample Identifier:	Trip Blank T1084		
Lab Sample ID:	215562-05	Date Sampled:	12/6/2021
Matrix:	Water	Date Received:	12/9/2021

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/13/2021 16:43
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/13/2021 16:43
1,1,2-Trichloroethane	< 2.00	ug/L		12/13/2021 16:43
1,1-Dichloroethane	< 2.00	ug/L		12/13/2021 16:43
1,1-Dichloroethene	< 2.00	ug/L		12/13/2021 16:43
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/13/2021 16:43
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/13/2021 16:43
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/13/2021 16:43
1,2-Dibromoethane	< 2.00	ug/L		12/13/2021 16:43
1,2-Dichlorobenzene	< 2.00	ug/L		12/13/2021 16:43
1,2-Dichloroethane	< 2.00	ug/L		12/13/2021 16:43
1,2-Dichloropropane	< 2.00	ug/L		12/13/2021 16:43
1,3-Dichlorobenzene	< 2.00	ug/L		12/13/2021 16:43
1,4-Dichlorobenzene	< 2.00	ug/L		12/13/2021 16:43
1,4-Dioxane	< 10.0	ug/L		12/13/2021 16:43
2-Butanone	< 10.0	ug/L		12/13/2021 16:43
2-Hexanone	< 5.00	ug/L		12/13/2021 16:43
4-Methyl-2-pentanone	< 5.00	ug/L		12/13/2021 16:43
Acetone	< 10.0	ug/L		12/13/2021 16:43
Benzene	< 1.00	ug/L		12/13/2021 16:43
Bromochloromethane	< 5.00	ug/L		12/13/2021 16:43
Bromodichloromethane	< 2.00	ug/L		12/13/2021 16:43
Bromoform	< 5.00	ug/L		12/13/2021 16:43

Client:	<u>Neu-Velle</u>					
Project Reference:	3130 Monroe	Avenue				
Sample Identifier: Lab Sample ID: Matrix:	Trip Blank T 215562-05 Water	1084		Date Sampled: Date Received:	12/6/2021 12/9/2021	
Bromomethane		< 2.00	ug/L		12/13/2021	16:43
Carbon disulfide		< 2.00	ug/L		12/13/2021	
Carbon Tetrachloride		< 2.00	ug/L		12/13/2021	
Chlorobenzene		< 2.00	ug/L		12/13/2021	16:43
Chloroethane		< 2.00	ug/L		12/13/2021	16:43
Chloroform		< 2.00	ug/L		12/13/2021	16:43
Chloromethane		< 2.00	ug/L		12/13/2021	16:43
cis-1,2-Dichloroethene		< 2.00	ug/L		12/13/2021	16:43
cis-1,3-Dichloropropen	e	< 2.00	ug/L		12/13/2021	16:43
Cyclohexane		< 10.0	ug/L		12/13/2021	16:43
Dibromochloromethan	e	< 2.00	ug/L		12/13/2021	16:43
Dichlorodifluorometha	ne	< 2.00	ug/L		12/13/2021	16:43
Ethylbenzene		< 2.00	ug/L		12/13/2021	16:43
Freon 113		< 2.00	ug/L		12/13/2021	16:43
Isopropylbenzene		< 2.00	ug/L		12/13/2021	16:43
m,p-Xylene		< 2.00	ug/L		12/13/2021	16:43
Methyl acetate		< 2.00	ug/L		12/13/2021	16:43
Methyl tert-butyl Ether		< 2.00	ug/L		12/13/2021	16:43
Methylcyclohexane		< 2.00	ug/L		12/13/2021	16:43
Methylene chloride		< 5.00	ug/L		12/13/2021	16:43
o-Xylene		< 2.00	ug/L		12/13/2021	16:43
Styrene		< 5.00	ug/L		12/13/2021	16:43
Tetrachloroethene		< 2.00	ug/L		12/13/2021	16:43
Toluene		< 2.00	ug/L		12/13/2021	16:43
trans-1,2-Dichloroethe	ne	< 2.00	ug/L		12/13/2021	16:43

Client:	<u>Neu-Velle</u>										
Project Reference:	3130 Monroe	3130 Monroe Avenue									
Sample Identifier:	Trip Blank	Г1084									
Lab Sample ID:	215562-05			Dat	e Sampled:	12/6/202	1				
Matrix:	Water			Dat	e Received	: 12/9/202	21				
trans-1,3-Dichloropro	pene	< 2.00	ug/L			12/13/202	21 16:43				
Trichloroethene		< 2.00	ug/L			12/13/202	21 16:43				
Trichlorofluorometha	ne	< 2.00	ug/L			12/13/202	21 16:43				
Vinyl chloride		< 2.00	ug/L			12/13/202	21 16:43				
<u>Surrogate</u>		<u>P</u>	ercent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed				
1,2-Dichloroethane-d4	ł		108	77.9 - 132		12/13/2021	16:43				
4-Bromofluorobenzen	e		111	62.6 - 133		12/13/2021	16:43				
Pentafluorobenzene			110	88.9 - 114		12/13/2021	16:43				
Toluene-D8			106	75.6 - 117		12/13/2021	16:43				
Method Referen											
Data File:	EPA 50 z06026										


Quantitation Report

(Not Reviewed)

Data Path : D:\MassHunter\GCMS\1\data\211213\ Data File : z06026.D Acq On : 13 Dec 2021 04:43 pm Operator : Bill Brew Sample : 215562-05 Misc : Water 5ml_JVTCL ALS Vial : 21 Sample Multiplier: 1 Quant Time: Dec 14 09:21:10 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration								
Compound R.T. QIon Response Conc Units Dev(Min)								
••••••								
Internal Standards								
1) Fluorobenzene 5.531 96 767221 / 50.00 ug/L 0.00								
58) Chlorobenzene-d5 8.708 117 380111 50.00 ug/L 0.00								
79) 1,4-Dichlorobenzene-d4 11.450 152 133040 50.00 ug/L 0.00								
System Monitoring Compounds 4.914 168 321653 33.11 ug/L 0.00 Spiked Amount 30.000 Range 89 - 114 Recovery = 110.37% 31) 1,2-Dichloroethane-d4 5.216 65 110512 32.52 ug/L 0.00 Spiked Amount 30.000 Range 78 - 132 Recovery = 108.40% 49) Toluene-D8 7.129 98 360897 31.69 ug/L 0.00 Spiked Amount 30.000 Range 76 - 117 Recovery = 105.63% 68) 4-Bromofluorobenzene 10.068 95 65459 33 24 ug/L 0.00 Spiked Amount 30.000 Range 63 - 133 Recovery = 110.80%								
Target Compounds Qvalue								
6) Chloroethane 2.184 64 1437 0.79 ug/K-M) 87								
11) Acetone 2.943 43 3010 Below Cal #C10 63								
15) Methylene chloride 3.293 84 2064 0.57 ug/L 4 5 92								
67) 1,2,3-Trichloropropane 10.306 110 429 0.57 ug/1/4#5 1								
71) n-Propylbenzene 10.373 91 7999 0.76 ug/L N 75								
76) 1,2,4-Trimethylbenzene 11.032 105 11750 1.37 ug/L / 85								
89) Naphthalene 13.823 128 11286 0.66 ug/L 🖌 93								

(#) = qualifier out of range (m) = manual integration (+) = signals summed

12/14/21 1315

VOLATILE ORGANICS

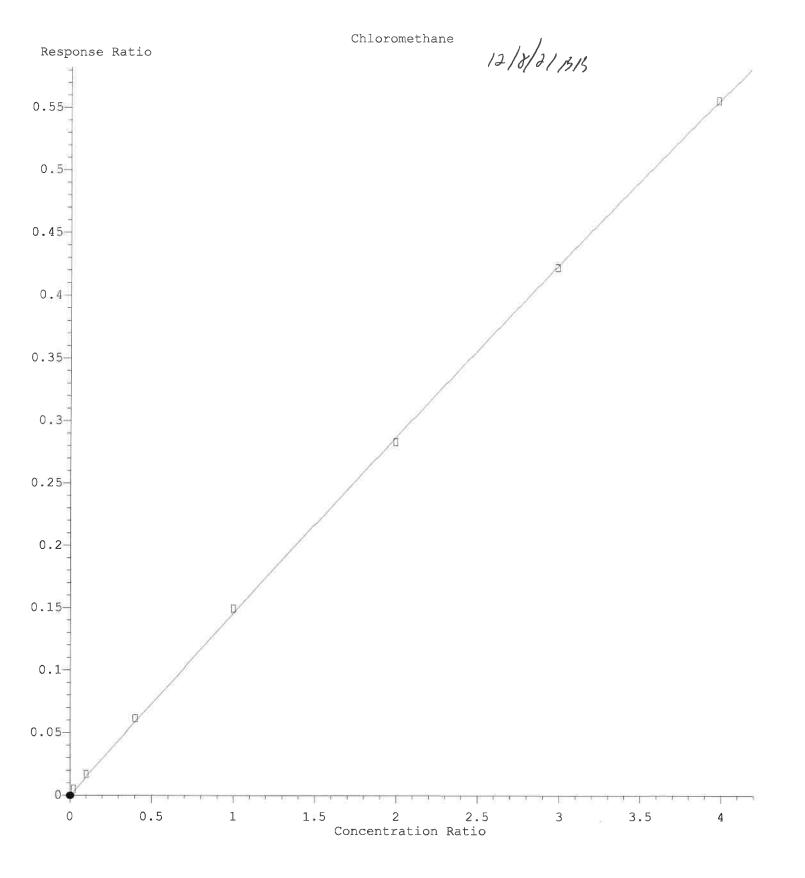
STANDARDS DATA

Meth Titl Last Resp	od Path : D:\MassHun od File : 211208.M e : 8260/624 Ana Update : Wed Dec 0 onse Via : Initial C	lysis 8 14:34:39	2021	2/									4
	bration Files =z05909.D 2 =z059	10.D 3	=z 0 5911.	D 4	=z059	12.D	5 =z	05913.D	6 =:	205914.D	7	=z05915.D	
	Compound								%RSI				
1) I	Fluorobenzene			тс т	D			_					
2) P		A 206 A 1	58 0 160	0 153	0 148	0 141	0 143	0 158	13.98				
3) P									25.51	¥			
4) P									9.77	-1			
5) P	-								24.95	¥			
6) P	Chloroethane	0.158 0.1							20.88				
7) P		0.490 0.4	60 0.444	0.464	0.439	0.440	0.433	0.453	4.40				
8)	Ethyl ether								8.89				
9) P	Freon 113	0.309 0.2	98 0.287	0.293	0.282	0.278	0.280	0.289	3.83				
10) P	1,1-Dichloroet	0.488 0.4	27 0.422	0.434	0.420	0.420	0.419	0.433	5.74				
11) P	Acetone	0.357 0.1	47 0.153	8 0.144	0.134	0.124	0.136	0.170	48.47	*			
12)	Isopropyl Alcohol							0.000	-1.00				
13) P	Carbon disulfide	1.140 0.8	89 0.843	0.849	0.781	0.785	0.760	0.864	15.05				
14) P									5.61				
15) P									11.08				
16)	Acrylonitrile								12.88				
17)	tert-Butyl Alc	0.034 0.0	27 0.026	5 0,024	0.025	0.026	0.025	0.027	12.15				
18) P									13.87				
19) P									1.58				
20) P								0.491	3.78				
21)	Vinyl acetate							0.195	12.40				
22)	2,2-Dichloropr								4.71	*			
23) P									27.16	*			
24) P									4.91				
25)	Bromochloromet								2.61				
26) P									5.52				
27) S									1.44				
28)	Tetrahydrofuran								14.03				
29) P									3.11				
30) P	Cyclohexane 1,2-Dichloroet								5.45 2.27				
31) S	Carbon Tetrach								2.60				
32) P 33) P	Benzene	1.240 1.0							4.24				
33) P 34) P	1,2-Dichloroet								4.24				
34) P		0.411 0.3							5.67				
36)	tert-Butyl Ace				5.551		2.202	0.000	-1.00				
37) P	Methylcyclohexane		98 0.514	0.543	0.528	0.531	0.540		3.97				
38)	1,4-Dioxane			0.003					2.04				
/	•												

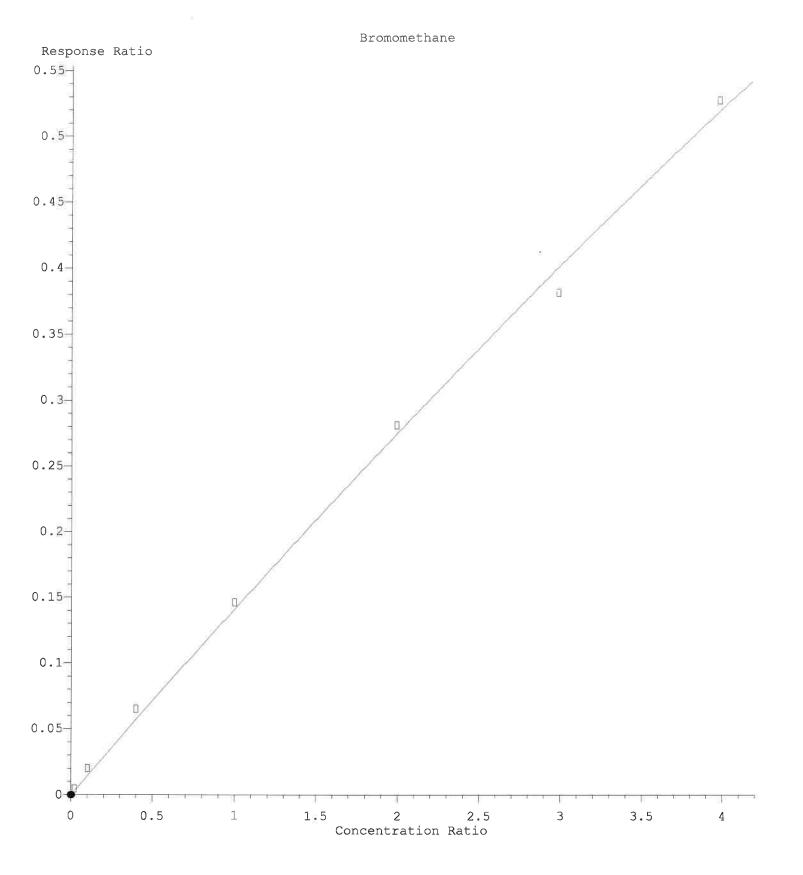
211208. M Wed Dec 08 15:21:21 2021 * curve is not avg. of response factors

Page: 1

12/8/21 BB

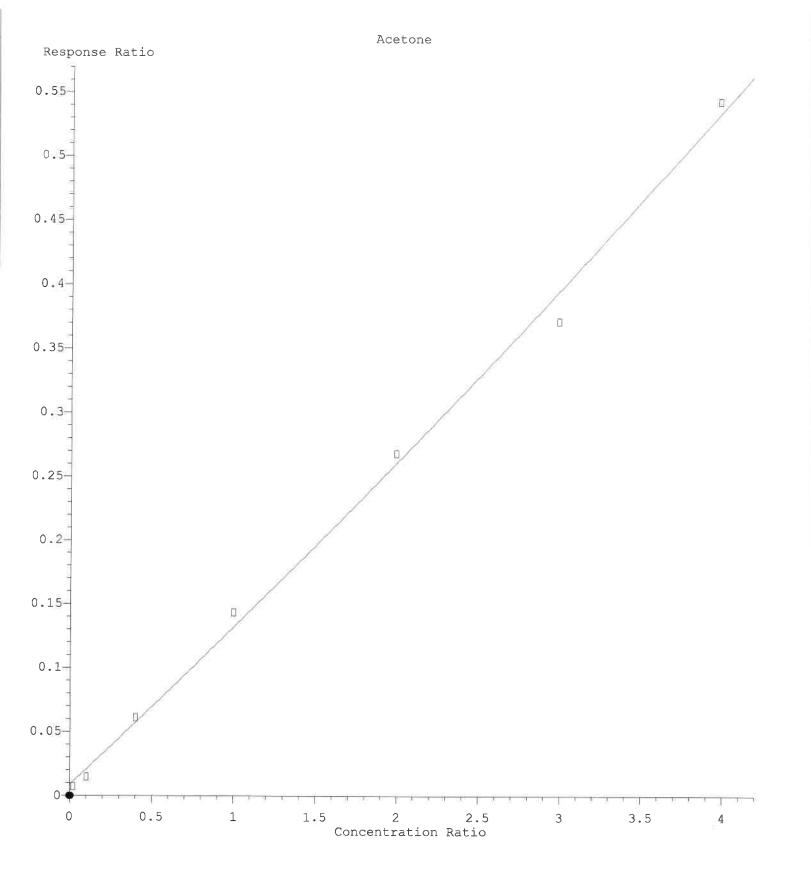

Method Path : D:\MassHunter\GCMS\1\methods\ Method File : 211208.M 39) UN Ethvl acetate 0.000 -1.0040) P 1,2-Dichloropr... 0.296 0.261 0.278 0.285 0.286 0.294 0.303 0.286 4.91 41) UN Isobutyl alcohol 0.000 -1.00 42) Dibromomethane 0.158 0.144 0.151 0.154 0.156 0.161 0.160 0.155 3.72 43) P Bromodichlorom... 0.392 0.346 0.360 0.365 0.368 0.371 0.374 0.368 3.78 44) 2-Chloroethyl ... 0.001 0.001 0.001 0.001 0.002 0.002 0.001 ⊁ 52.35 45) UN Isopropyl acetate 0.000 -1.00 1,1-Dichloropr... 0.442 0.401 0.398 0.411 0.400 0.404 0.408 0.409 46) 3.71 47) P cis-1,3-Dichlo... 0.404 0.348 0.379 0.403 0.417 0.432 0.449 0.405 8.25 48) P 4-Methyl-2-pen... 0.117 0.084 0.087 0.085 0.082 0.077 0.062 0.085# 19.59 🗡 49) S Toluene-D8 0.701 0.723 0.697 0.752 0.760 0.745 0.817 0.742 5.54 50) P Toluene 1.011 0.925 0.992 1.052 1.037 1.053 1.079 1.021 5.02 51) P trans-1,3-Dich... 0.273 0.262 0.288 0.310 0.327 0.345 0.363 0.310 12.14 52) P 1,1,2-Trichlor... 0.215 0.197 0.203 0.206 0.213 0.217 0.215 0.209 3.59 53) 1,3-Dichloropr... 0.283 0.253 0.280 0.291 0.300 0.310 0.317 0.291 7.37 54) P Tetrachloroethene 0.404 0.376 0.388 0.383 0.372 0.376 0.376 0.382 2.86 55) P 2-Hexanone 0.290 0.211 0.221 0.226 0.220 0.195 0.179 0.220 15.78 56) P Dibromochlorom... 0.235 0.224 0.249 0.256 0.262 0.269 0.264 0.251 6.52 1,2-Dibromoethane 0.168 0.161 0.173 0.178 0.189 0.194 0.193 0.179 7.20 57) P 58) I Chlorobenzene-d5 -----ISTD-----5.77 59) P Chlorobenzene 1.374 1.131 1.226 1.235 1.240 1.252 1.221 1.240 1,1,1,2-Tetrac... 0.496 0.459 0.505 0.511 0.511 0.526 0.512 0.503 4.22 60) 61) P Ethylbenzene 6.48 1.729 1.436 1.636 1.733 1.698 1.730 1.722 1.669 62) P m,p-Xylene 0.588 0.507 0.577 0.604 0.593 0.596 0.594 0.580 5.72 63) P o-Xylene 7.48 0.570 0.441 0.520 0.533 0.513 0.515 0.528 0.517 64) P Styrene 0.814 0.671 0.749 0.778 0.769 0.768 0.840 0.770 6.94 65) P Bromoform 0.319 0.264 0.284 0.282 0.297 0.299 0.287 0.290 5.93 66) P Isopropylbenzene 1.352 1.173 1.289 1.339 1.236 1.227 1.293 1.273 5.05 13.70 67) 1,2,3-Trichlor... 0.125 0.100 0.092 0.087 0.088 0.092 0.106 0.099 68) S 4-Bromofluorob... 0.279 0.279 0.255 0.265 0.242 0.231 0.262 0.259 6.97 69) Bromobenzene 0.467 0.368 0.410 0.406 0.385 0.378 0.402 0.402 8.05 70) P 7.07 1,1,2,2-Tetrac... 0.404 0.345 0.362 0.346 0.346 0.367 0.403 0.368 71) n-Propylbenzene 1.750 1.341 1.364 1.321 1.199 1.218 1.473 1.381 13.54 72) 2-Chlorotoluene 0.381 0.309 0.341 0.329 0.294 0.290 0.330 0.325 9.70 9.72 73) 4-Chlorotoluene 0.363 0.309 0.317 0.315 0.279 0.288 0.351 0.317 74) 1,3,5-Trimethy... 1.265 0.983 1.026 1.037 0.905 0.972 1.270 1.065 13.56 17.92 75) tert-Butylbenzene 0.304 0.227 0.208 0.207 0.187 0.204 0.263 0.229 16.52 1,2,4-Trimethy... 1.401 1.074 1.056 1.003 0.936 1.045 1.386 1.129 76) 77) sec-Butylbenzene 1.608 1.205 1.165 1.067 0.994 1.128 1.506 1.239 18.52 78) p-Isopropyltol... 1.553 1.247 1.154 1.073 1.066 1.227 1.601 1.275 17.14 79) I 1.4-Dichlorobenzen... -----ISTD-----ISTD-----6.78 80) P 1,3-Dichlorobe... 2.475 2.003 2.316 2.292 2.280 2.269 2.458 2.299 8.66 81) P 1,4-Dichlorobe... 2.601 1.997 2.307 2.264 2.303 2.353 2.569 2.342 5.020 4.265 4.517 4.387 4.988 4.756 4.719 4.665 6.19 82) n-Butylbenzene 83) P 1,2-Dichlorobe... 2.446 2.001 2.210 2.139 2.318 2.490 2.649 2.322 9.63 -1.00 0.000 84) UN Tetraethyllead

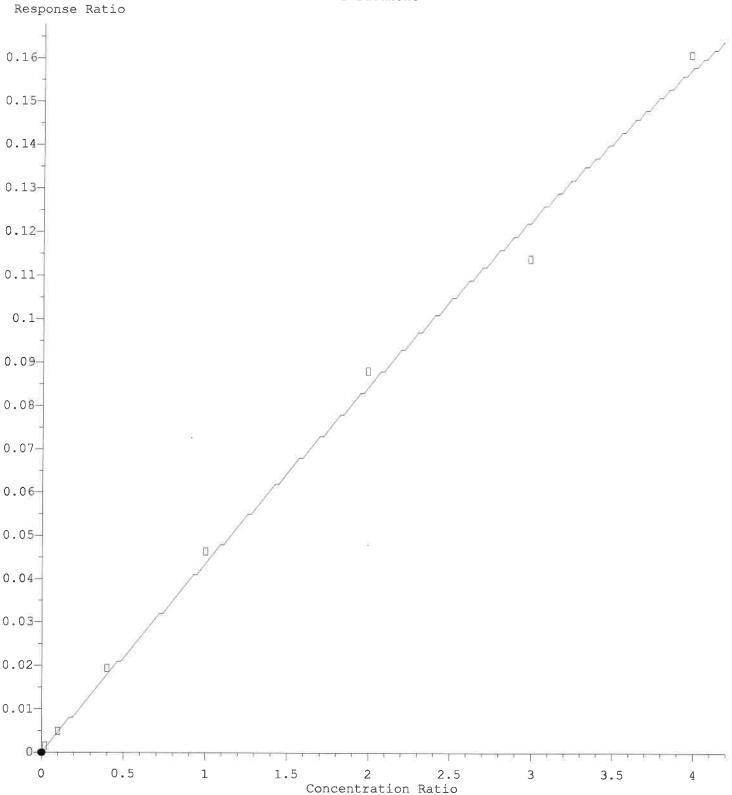
211208.M Wed Dec 08 15:21:21 2021


Page: 2

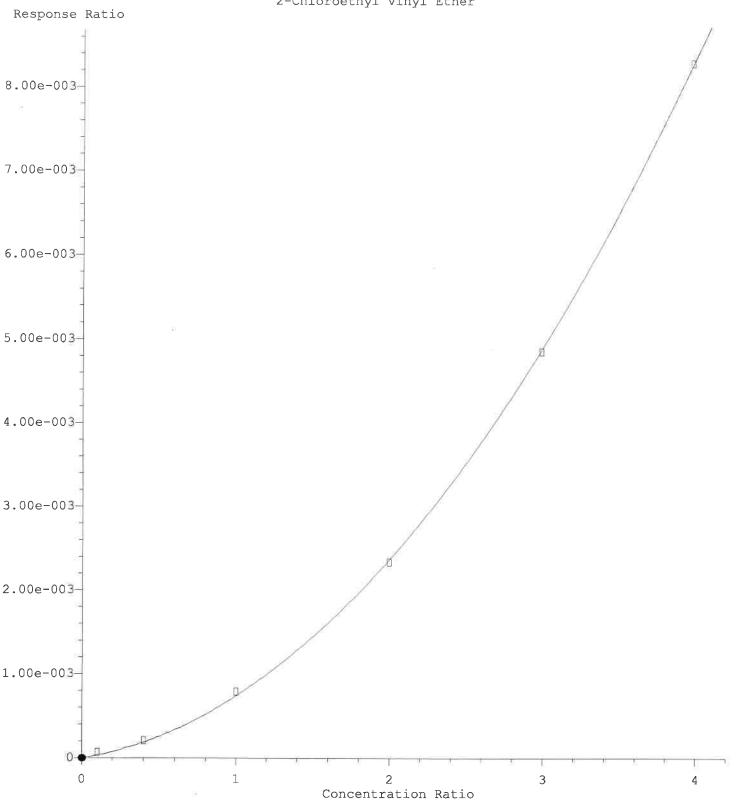
	Path : D:\MassHun File : 211208.M	ter\GCM	1S\1\me	ethods	١					
85) P	1,2-Dibromo-3	0.419	0.383	0.421	0.440	0.535	0.505	0.451	0.451	11.66
86) P	1,2,4-Trichlor	2.769	2.213	2.452	2.411	3.111	2.788	2.606	2.621	11.34
87)	1,2,3-Trichlor	2.824	2.296	2.577	2.641	3.212	2.830	2.523	2.701	10.77
88)	Hexachlorobuta	1.482	1.254	1.276	1.258	1.745	1.585	1.465	1.438	13.05
89)	Naphthalene	6.457	5.077	6.245	6.587	7.816	6.854	5.878	6.416	13.19
										-

(#) = Out of Range

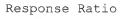

R = -2.336e-003 A*A + 1.480e-001 A + 0.000e+000 Coef of Det (r^2) = 0.999897 Curve Fit: Quad/(0,0) Method Name: D:\MassHunter\GCMS\1\methods\211208.M Calibration Table Last Updated: Wed Dec 08 14:34:39 2021

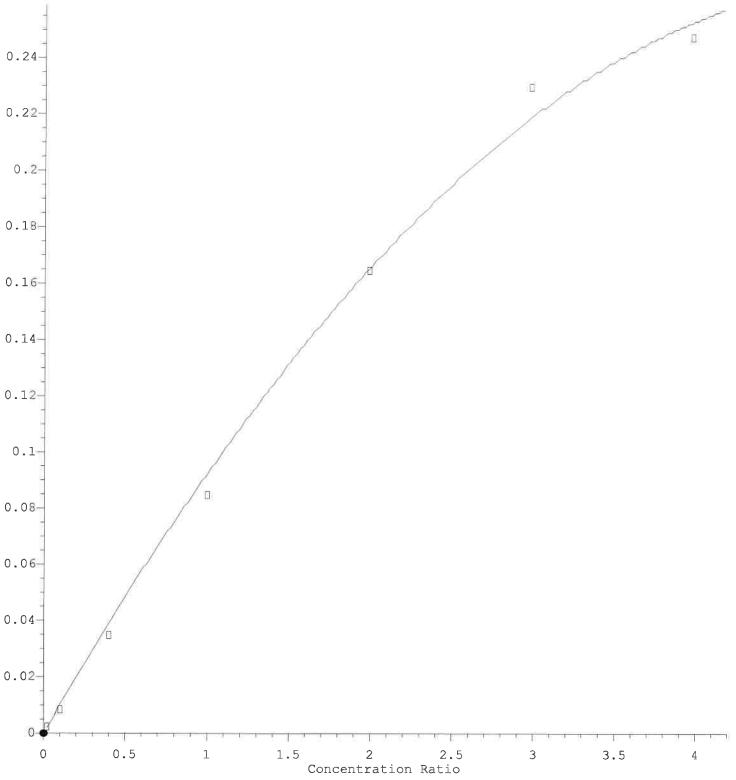


R = -3.723e-003 A*A + 1.447e-001 A + 0.000e+000 Coef of Det (r^2) = 0.997877 Curve Fit: Quad/(0,0) Method Name: D:\MassHunter\GCMS\1\methods\211208.M Calibration Table Last Updated: Wed Dec 08 14:34:39 2021



R = -7.721e-003 A*A + 1.181e-001 A + 0.000e+000 Coef of Det (r^2) = 0.999870 Curve Fit: Quad/(0,0) Method Name: D:\MassHunter\GCMS\1\methods\211208.M Calibration Table Last Updated: Wed Dec 08 14:34:39 2021





R = -1.470e-003 A*A + 4.519e-002 A + 0.000e+000 Coef of Det (r^2) = 0.995341 Curve Fit: Quad/(0,0) Method Name: D:\MassHunter\GCMS\1\methods\211208.M Calibration Table Last Updated: Wed Dec 08 14:34:39 2021

R = 4.414e-004 A*A + 3.011e-004 A + 0.000e+000 Coef of Det (r^2) = 0.999915 Curve Fit: Quad/(0,0) Method Name: D:\MassHunter\GCMS\1\methods\211208.M Calibration Table Last Updated: Wed Dec 08 14:34:39 2021

R = -9.729e-003 A*A + 1.021e-001 A + 0.000e+000 Coef of Det (r^2) = 0.996850 Curve Fit: Quad/(0,0) Method Name: D:\MassHunter\GCMS\1\methods\211208.M Calibration Table Last Updated: Wed Dec 08 14:34:39 2021

Data Path : D:\MassHunter\GCM Data File : z05909.D Acq On : 08 Dec 2021 10:4 Operator : Bill Brew Sample : 1ppb maga Cal Misc : ALS Vial : 4 Sample Multip	1 am	.1208\					
Quant Time: Dec 08 16:15:41 2 Quant Method : D:\MassHunter\ Quant Title : 8260/624 Analy QLast Update : Wed Dec 08 14: Response via : Initial Calibr	GCMS\1\meth sis 34:39 2021	ods\21	1208.M				12/8/21 1515
Compound			Response				
Internal Standards							
	5.531	96	881989	50.00	ug/L	0.00	
 Fluorobenzene Chlorobenzene-d5 	8.711	117	375446	50.00	ug/L	0.00	
79) 1,4-Dichlorobenzene-d4	11.450	152	133607	50.00	ug/L	0.00	
System Monitoring Compounds							
27) Pentafluorobenzene	4.914	168	341650	30.59	ug/1	0.00	
Spiked Amount 30.000	Range 89			ry =		0.00	
31) 1,2-Dichloroethane-d4	5.216			-		0.00	
Spiked Amount 30.000	Range 78			ry =			
49) Toluene-D8 Spiked Amount 30.000	7.129		371000			0.00	
Spiked Amount 30.000 68) 4-Bromofluorobenzene	Range 76 10.068	- 11/	Recove 62858	ry = 32.32		0.00	
Spiked Amount 30.000	Range 63				107.73%	0.00	
-	0			2			
Target Compounds	4 550	0.5			-	alue	
 2) Dichlorodifluoromethane 3) Chloromethane 	1.550 1.708		3628 4522			94	
4) Vinyl chloride	1.801	50 62	4522			93 95	
5) Bromomethane	2.094	94				98	
6) Chloroethane	2.180	64	4193 2795	1.34	•	95	
		101	8644			96	
8) Ethyl ether	2.663		2741		ug/L #		
9) Freon 113 10) 1,1-Dichloroethene	2.856 2.865	101 61	5443 8611	1.07 1.13	-	98 91	
11) Acetone	2.805	43	6290	Below	-	98	
13) Carbon disulfide	3.068	76	20103	1.32		96	
14) Methyl acetate	3.222	43	1523	1.09	ug/L #	55	
15) Methylene chloride	3.293	84	5154	1.23		90	
16) Acrylonitrile 17) tert-Butyl Alcohol	3.537 3.422	53 59	807 5993	0.91		91 65	
18) Methyl tert-butyl Ether	3.534	73	9313	0.99	ug/L #	97	
19) trans-1,2-Dichloroethen		61	7166	1.02	-	96	
20) 1,1-Dichloroethane	3.914	63	9366	1.08	ug/L	95	
21) Vinyl acetate	3.965	43	3209	0.93	•	81	
22) 2,2-Dichloropropane 23) 2-Butanone	4.447 4.476	77 72	6614 1377	1.05	-	93 51	
24) cis-1,2-Dichloroethene	4.444	96	6593	1.10	ug/L # ug/l	96	
25) Bromochloromethane	4.666	128	2854		ug/L #	84	
26) Chloroform	4.733	83	10107	1.12	-	94	
28) Tetrahydrofuran	4.737	42	859		ug/L #	65	
29) 1,1,1-Trichloroethane	4.910	97 56	8259		ug/L #	1	
30) Cyclohexane 32) Carbon Tetrachloride	4.968 5.071	56 117	9451 7593		ug/L # ug/L #	82 72	
33) Benzene	5.270	78	21870	1.09		97	
34) 1,2-Dichloroethane	5.290	62	6166	1.08	-	93	
35) Trichloroethene	5.888	130	7254	1.13		96	
37) Methylcyclohexane	6.077	83	9936	1.06		93	
40) 1,2-Dichloropropane 42) Dibromomethane	6.119 6.241	63 93	5220 2785	1.03 1.02	-	97 93	
ay elle shoke chance	V. 271		2,00	1.04	- 19/		

Data Path : D:\MassHunter\GCMS\1\data\211208\

Data File : z05909.D Acq On : 08 Dec 2021 10:41 am Operator : Bill Brew Sample : 1ppb maga Cal Misc : ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 08 16:15:41 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis

QLast Update : Wed Dec 08 14:34:39 2021 Response via : Initial Calibration

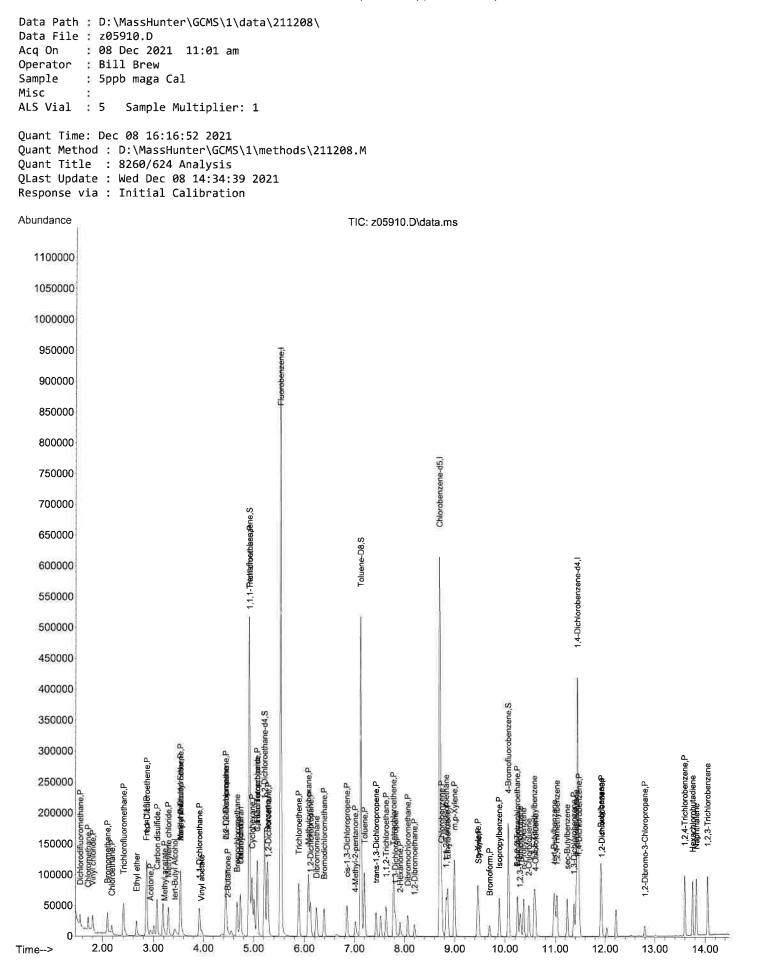
Compound	R.T.	QIon	Response	Conc Units Dev(Min)
43) Bromodichloromethane	6.389	83	6910	1.06 ug/L	99
46) 1,1-Dichloropropene	5.065	75	7793	1.08 ug/L	93
47) cis-1,3-Dichloropropene	6.849	75	7122	1.00 ug/L	97
48) 4-Methyl-2-pentanone	7.013	58	2066	1.15 ug/L #	80
50) Toluene	7.200	91	17838	0.99 ug/L	98
51) trans-1,3-Dichloropropene	7.428	75	4823	0.88 ug/L	87
52) 1,1,2-Trichloroethane	7.634	97	3799	1.03 ug/L	93
53) 1,3-Dichloropropane	7.817	76	4988	0.97 ug/L	100
54) Tetrachloroethene	7.782	166	7125	1.06 ug/L	94
55) 2-Hexanone	7.913	43	5109	1.31 ug/L	87
56) Dibromochloromethane	8.065	129	4148	0.94 ug/L #	92
57) 1,2-Dibromoethane	8.196	107	2961	0.94 ug/L #	94
59) Chlorobenzene	8.743	112	10321	1.11 ug/L #	72
60) 1,1,1,2-Tetrachloroethane	8.833	131	3726	0.99 ug/L	91
61) Ethylbenzene	8.862	91	12984	1.04 ug/L	100
62) m,p-Xylene	8.994	106	8827	2.03 ug/L	97
63) o-Xylene	9.454	106	4280	1.10 ug/L	91
64) Styrene	9.473	104	6110	1.06 ug/L	98
65) Bromoform	9.692	173	2398	1.10 ug/L	95
66) Isopropylbenzene	9.884	105	10153	1.06 ug/L	98
67) 1,2,3-Trichloropropane	10.293	110	941	1.27 ug/L #	88
69) Bromobenzene	10.248	156	3504	1.16 ug/L	87
70) 1,1,2,2-Tetrachloroethane	10.245	83	3031	1.10 ug/L	97
71) n-Propylbenzene	10.373	91	13140	1.27 ug/L	92
72) 2-Chlorotoluene	10.479	126	2864	1.17 ug/L	94
73) 4-Chlorotoluene	10.608	126	2727	1.14 ug/L #	84
74) 1,3,5-Trimethylbenzene	10.582	105	9498	1.19 ug/L	98
75) tert-Butylbenzene	10.971	134	2283	1.33 ug/L #	82
76) 1,2,4-Trimethylbenzene	11.032	105	10518	2.49 ug/L	96
77) sec-Butylbenzene	11.238	105	12077	1.30 ug/L	93
78) p-Isopropyltoluene	11.415	119	11665	1.22 ug/L	97
80) 1,3-Dichlorobenzene	11.373	146	6613	1.08 ug/L	94
81) 1,4-Dichlorobenzene	11.479	146	6951	1 11 ug/L #	75
82) n-Butylbenzene	11.913	91	13415	1.08 ug/L	96
83) 1,2-Dichlorobenzene	11.929	146	6535	1.05 ug/L	98
<pre>85) 1,2-Dibromo-3-Chloropr</pre>	12.798	157	1120	0.93 ug/L	90
86) 1,2,4-Trichlorobenzene	13.598	180	7400	1.06 ug/L	99
87) 1,2,3-Trichlorobenzene	14.052	180	7547	1.05 ug/L	97
88) Hexachlorobutadiene	13.753	225	3960	1.03 ug/L	95
89) Naphthalene	13.826	128	17255	1.01 ug/L	99

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : D:\MassHunter\GCMS\1\data\211208\ Data File : z05909.D Acq On : 08 Dec 2021 10:41 am Operator : Bill Brew Sample : 1ppb maga Cal Misc ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 08 16:15:41 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Wed Dec 08 14:34:39 2021 Response via : Initial Calibration Abundance TIC: z05909.D\data.ms 1100000 1050000 1000000 950000 900000 850000 800000 750000 Chlorobenzene-d5,1 700000 650000 Rehthflinitheoethner6,P 600000 Toluene-D8,S 1,4-Dichlorobenzene-d4,1 550000 500000 450000 400000 350000 1,2-Dichloroethane-d4,S Bromofluorobenzene,S 300000 250000 ,2-Dibromo-3-Chloropropane,F 2,4-Trichlorobenzene,P 200000 ,2,3-Trichlorobenzene ផ្លៃព្រ<mark>ទ្រទ្រព្រ</mark>ុរtadien holeopolethane, P septerconnethan propylbenzene 150000 loroethene yclohexane memethane Nethane hlorofluoror 3-Dichle 8m8 100000 plar 50000 0 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 Time-->

Data Path : D:\MassHunter\GCM Data File : z05910.D Acq On : 08 Dec 2021 11:0 Operator : Bill Brew Sample : 5ppb maga Cal Misc : ALS Vial : 5 Sample Multip	1 am	11208\					
Quant Time: Dec 08 16:16:52 2 Quant Method : D:\MassHunter\ Quant Title : 8260/624 Analy QLast Update : Wed Dec 08 14: Response via : Initial Calibr	GCMS\1\metH sis 34:39 2021	nods\2:	11208.M				12/8/21,513
Compound			Response				4
Internal Standards							
1) Fluorobenzene	5.531		888478		ug/L	0.00	
58) Chlorobenzene-d5						0.00	
79) 1,4-Dichlorobenzene-d4	11.450	152	136600	50.00	ug/L	0.00	
System Monitoring Compounds							
27) Pentafluorobenzene		168			-	0.00	
Spiked Amount 30.000	Range 89				100.93%		
31) 1,2-Dichloroethane-d4 Spiked Amount 30.000	5.213		121352 Recove	30.84 ry =		, 0.00	
Spiked Amount 30.000 49) Toluene-D8	Range 78 7,129	- 152		29.23		, 0.00	
Spiked Amount 30.000	Range 76				-		
68) 4-Bromofluorobenzene	10.068		68349			0.00	
Spiked Amount 30.000	Range 63	- 133	Recove	ry =	107.77%	6	
Target Compounds					0	value	
2) Dichlorodifluoromethane	1.550	85	14032	4.99	-	99	
3) Chloromethane	1.708	50	15034	5.73	0	97	
4) Vinyl chloride	1.801	62	19911	5,22		95	
5) Bromomethane	2.094	94	17864	6.97	-	91	
6) Chloroethane	2.181	64	9395	4.50		92	
7) Trichlorofluoromethane8) Ethyl ether	2.406 2.663	101 59	40837 14229	5.07 4.72		99 93	
9) Freon 113	2.856		26459	5.15		98	
10) 1,1-Dichloroethene	2.865	61	37895	4.92	-	97	
11) Acetone	2.939	43	13027	2.43		93	
13) Carbon disulfide	3.068	76	78971	5.15		99	
14) Methyl acetate	3.216	43	7037	5.00	-	89	
15) Methylene chloride 16) Acrylonitrile	3.293	84 53	21813	5.18		95	
17) tert-Butyl Alcohol	3.534 3.418	55	4309 24423	4.85 51.05	ug/L #	98 80	
18) Methyl tert-butyl Ether	3.534	73	39317	4.15		89	
19) trans-1,2-Dichloroethen		61	34452	4.87		94	
20) 1,1-Dichloroethane	3.917	63	42193	4.84		98	
21) Vinyl acetate	3.959	43	14745	4.26		91	
22) 2,2-Dichloropropane	4.444	77 77	29829	4.69		98	
23) 2-Butanone 24) cis-1,2-Dichloroethene	4.480 4.444	72 96	4396 28735	5.49 4.78	ug/L #	80 98	
25) Bromochloromethane	4.669	128	13331		ug/L #	87	
26) Chloroform	4.737	83	43401	4.79		98	
28) Tetrahydrofuran	4.737	42	9472	9.88		80	
29) 1,1,1-Trichloroethane	4,917	97 56	38335		ug/L #	1	
30) Cyclohexane 32) Carbon Tetrachloride	4.968 5.071	56 117	41621	4.89		85	
33) Benzene	5.071	78	35535 96523	4.87 4.77	ug/L # ug/L	70 98	
34) 1,2-Dichloroethane	5.287	62	27118	4.71		98	
35) Trichloroethene	5.888	130	31361	4.83		95	
37) Methylcyclohexane	6.078	83	44218	4.69	ug/L	92	
40) 1,2-Dichloropropane	6.119	63	23152	4.56	-	97	
42) Dibromomethane	6.238	93	12822	4.66	ug/L	94	

Data Path	:	D:\MassHunter\GCMS\1\data\211208\
Data File	•	z05910.D
Acq On	2	08 Dec 2021 11:01 am
Operator	:	Bill Brew
Sample	÷	5ppb maga Cal
Misc	•	

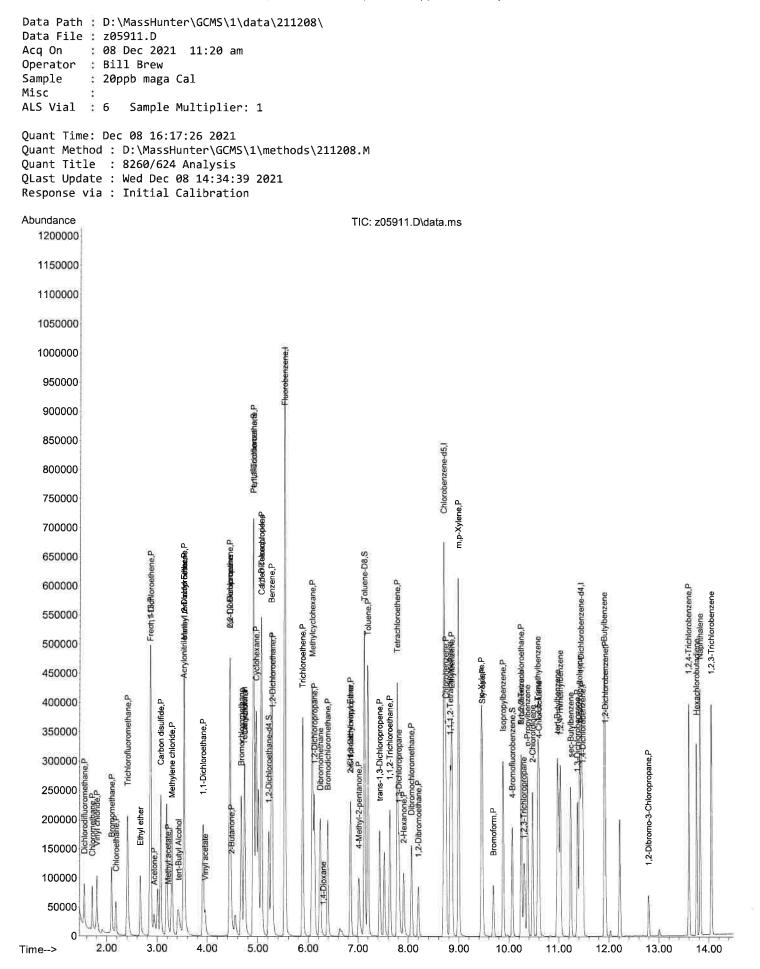

ALS Vial : 5 Sample Multiplier: 1 Quant Time: Dec 08 16:16:52 2021

Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Wed Dec 08 14:34:39 2021 Response via : Initial Calibration

43) Bromodichloromethane 6.389 83 30741 4.70 ug/L 99 45) 1,1-Dichloropropene 5.068 75 35607 4.90 ug/L 96 47) cis-1,3-Dichloropropene 6.846 75 30952 4.31 ug/L 96 48) 4-Methyl-2-pentanone 7.016 58 7451 4.14 ug/L 99 51) trans-1,3-Dichloropropene 7.203 91 82198 4.53 ug/L 99 51) trans-1,2-Trichloroethane 7.634 97 17505 4.70 ug/L 99 52) 1-Hexanone 7.816 66 31425 4.92 ug/L 99 50) Dibromochloromethane 8.068 129 19877 4.45 ug/L 99 51) 1,2-Dibromocthane 8.200 107 14277 4.48 ug/L 99 51) 1,2-Dibromocthane 8.209 107 14277 4.48 ug/L 97 61) thylbenzene 8.209 107 14214		Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
46) 1,1-Dichloropropene 5.068 75 35607 4.90 ug/L 96 47) cis-1,3-Dichloropropene 6.846 75 30952 4.31 ug/L 96 48) 4-Methyl-2-pentanone 7.016 58 7451 4.14 ug/L 96 50) Toluene 7.023 91 82198 4.53 ug/L 99 51) trans-1,3-Dichloropropene 7.634 97 17505 4.70 ug/L 99 51) 1,3-Dichloropropane 7.820 76 22452 4.35 ug/L 99 53) 1,3-Dichloropropane 7.820 76 22452 4.35 ug/L 99 50) Dibromochloromethane 8.068 129 19877 4.45 ug/L 98 50) Dibromochloromethane 8.861 112 46147 4.56 ug/L 97 61) 1,1,2-Tetrachloroethane 8.331 118744 4.56 ug/L 96 62) m,p-Xylene 9.497 1064 1378 8.75	43) Br	omodichloromethane	6 389	83	30741	4. 70 μσ/Ι	99
47)cis-1,3-Dichloropropene6.84675309524.31ug/L9648)4-Methyl-2-pentanone7.0165874514.14ug/L9650)Toluene7.20391821984.53ug/L9951)trans-1,3-Dichloropropene7.43475232404.22ug/L9951)1,1,2-Trichloroethane7.63497175054.70ug/L9952)1,1,2-Trichloroethane7.63497175054.70ug/L9954)Tetrachloropthene7.82076224524.35ug/L9955)2-Hexanone7.91443187794.80ug/L9956)Dibromochloromethane8.068129198774.45ug/L9957)1,2-Dibromochane8.740112461474.56ug/L9460)1,1,1,2-Tetrachloroethane8.833131187444.57ug/L9761)Ethylbenzene8.86291586104.30ug/L9962)m,p-Xylene9.457106180014.26ug/L9264)Styrene9.470104273844.36ug/L9665)Bromoform9.692173107714.54ug/L9566)Isopropylbenzene10.27611040975.09ug/L9571,2,3-Trichloropropane10.24515614996 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
48) 4-Methyl-2-pentanone 7.016 58 7451 4.14 ug/L # 68 50) Toluene 7.203 91 82198 4.53 ug/L 99 51) trans-1,3-Dichloropropene 7.434 75 32240 4.22 ug/L 99 51) trans-1,3-Dichloroptopane 7.634 97 17505 4.70 ug/L 99 53) 1,3-Dichloroptopane 7.820 76 22452 4.35 ug/L 99 54) Tetrachloroethane 7.914 43 18779 4.80 ug/L 98 55) 2-Hexanone 7.914 43 18779 4.45 ug/L 98 56) Dibromochloromethane 8.068 129 19877 4.45 ug/L 98 57) 1,2-Dibromoethane 8.833 131 18744 4.57 ug/L 99 60) 1,1,1,2-Tetrachloroethane 8.862 91 58610 4.30 ug/L 92 61) bernoform 9.692 173 10771 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
50) Toluene 7.203 91 82198 4.53 ug/L 99 51) trans-1,3-Dichloropropene 7.434 75 23240 4.22 ug/L 97 52) 1,1,2-Trichloroethane 7.634 97 17505 4.70 ug/L 99 53) 1,3-Dichloropropane 7.820 76 22452 4.35 ug/L 99 54) Tetrachloroethene 7.914 43 18779 4.80 ug/L 99 55) 2-Hexanone 7.914 43 18779 4.80 ug/L 99 56) Dibromochloromethane 8.068 129 19877 4.45 ug/L 98 59) Chlorobenzene 8.740 112 46147 4.56 ug/L 97 60) 1,1,2-Dibromoethane 8.833 131 18744 4.57 ug/L 97 61) Ethylbenzene 8.740 112 46147 4.56 ug/L 92 63) o-Xylene 9.457 106 18001 4.26 ug/L 92 64) Styrene 9.457 106 18001 4.26 ug/L							
51) trans-1,3-Dichloropropene 7.434 75 23240 4.22 ug/L 97 52) 1,1,2-Trichloroethane 7.634 97 17505 4.70 ug/L 99 53) 1,3-Dichloropropane 7.820 76 22452 4.35 ug/L 99 54) Tetrachloroethene 7.785 166 33425 4.92 ug/L 99 55) 2-Hexanone 7.914 43 18779 4.48 ug/L 99 57) 1,2-Dibromoethane 8.068 129 19877 4.45 ug/L 99 57) 1,2-Dibromoethane 8.200 107 14277 4.48 ug/L 94 60) 1,1,1,2-Tetrachloroethane 8.833 131 18744 4.57 ug/L 97 61) Ethylbenzene 8.862 91 58610 4.36 ug/L 92 63) o-Xylene 9.457 106 18801 4.26 ug/L 92 64) Styrene 9.457 106 18001 4.26 ug/L 95 65) Bromoform 9.692 173 10771 4.54 ug/L 95 66) Isopropylbenzene 10.245 83 14095 4.70 ug/L							
52) 1,1,2-Trichloroethane 7.634 97 17505 4.70 ug/L 99 53) 1,3-Dichloropropane 7.820 76 22452 4.35 ug/L 99 54) Tetrachloroethene 7.785 166 33425 4.92 ug/L 99 55) 2-Hexanone 7.914 43 1877 4.48 ug/L 98 56) Dibromochloromethane 8.068 129 19877 4.45 ug/L 99 57) 1,2-Dibromoethane 8.200 107 14277 4.48 ug/L 98 59) Chlorobenzene 8.740 112 46147 4.56 ug/L 97 61) Ethylbenzene 8.833 131 1874 4.57 ug/L 98 62) m,p-Xylene 8.997 106 41378 8.75 ug/L 98 63) o-Xylene 9.470 104 27384 4.36 ug/L 96 65) Bromoform 9.692 173 10771 4.54 ug/L 95 70) 1,2,2-Tetrachloroethane 10.245 165 14996 4.57 u							
53) 1,3-Dichloropropane 7.820 76 22452 4.35 ug/L 99 54) Tetrachloroethene 7.785 166 33425 4.92 ug/L 99 55) 2-Hexanone 7.914 43 18779 4.80 ug/L 99 56) Dibromochloromethane 8.068 129 19877 4.45 ug/L 99 57) 1,2-Dibromoethane 8.068 129 19877 4.45 ug/L 99 59) Chlorobenzene 8.740 112 46147 4.56 ug/L 94 60) 1,1,1,2-Tetrachloroethane 8.833 131 18744 4.57 ug/L 97 61) Ethylbenzene 8.862 91 58610 4.36 ug/L 92 62) m,p-Xylene 9.457 106 18001 4.26 ug/L 92 64) Styrene 9.470 104 27384 4.61 ug/L 95 65) Bromoberzene 10.296 110 4097 5.09 ug/L			7.634	97			
54) Tetrachloroethene 7.785 166 33425 4.92 ug/L 99 55) 2-Hexanone 7.914 43 18779 4.80 ug/L 99 56) Dibromochloromethane 8.068 129 19877 4.45 ug/L 98 57) 1,2-Dibromoethane 8.200 107 14277 4.48 ug/L 98 59) Chlorobenzene 8.740 112 46147 4.56 ug/L 94 60) 1,1,1,2-Tetrachloroethane 8.833 131 18744 4.57 ug/L 97 61) Ethylbenzene 8.997 106 41378 8.75 ug/L 98 63) o-Xylene 9.457 106 18001 4.26 ug/L 92 64) Styrene 9.477 104 27384 4.36 ug/L 95 65) Bromoform 9.692 173 10771 4.54 ug/L 95 66) Isopropylbenzene 10.245 156 14996 4.57 ug/L 91 70) 1,2,2-Tetrachloroethane 10.245 151 1496 4.57			7.820		22452		99
55) 2-Hexanone 7.914 43 18779 4.80 ug/L 99 56) Dibromochloromethane 8.068 129 19877 4.45 ug/L 99 57) 1,2-Dibromoethane 8.200 107 14277 4.48 ug/L 98 59) Chlorobenzene 8.740 112 46147 4.56 ug/L 94 60) 1,1,1,2-Tetrachloroethane 8.833 131 18744 4.57 ug/L 97 61) Ethylbenzene 8.862 91 58610 4.30 ug/L 99 62) m,p-Xylene 8.997 106 41378 8.75 ug/L 98 63) o-Xylene 9.470 104 27384 4.36 ug/L 96 65) Bromoform 9.692 173 10771 4.54 ug/L 97 66) Isopropylbenzene 10.245 136 14997 5.09 ug/L # 87 69) Bromobenzene 10.245 83 14095 4.70 ug/L 95 71) n-Propylbenzene 10.370 91 54726 4.86 ug/L <td>54) Te</td> <td>trachloroethene</td> <td>7.785</td> <td>166</td> <td>33425</td> <td></td> <td>99</td>	54) Te	trachloroethene	7.785	166	33425		99
56)Dibromochloromethane8.068129198774.45 ug/L9957)1,2-Dibromoethane8.200107142774.48 ug/L9859)Chlorobenzene8.740112461474.56 ug/L9460)1,1,2-Tetrachloroethane8.833131187444.57 ug/L9761)Ethylbenzene8.86291586104.30 ug/L9962)m,p-Xylene8.997106413788.75 ug/L9863)o-Xylene9.457106180014.26 ug/L9264)Styrene9.470104273844.36 ug/L9565)Bromoform9.692173107714.54 ug/L9766)Isopropylbenzene9.885105478744.61 ug/L9767)1,2,3-Trichloropropane10.24513140975.09 ug/L#8769)Bromobenzene10.245156149964.57 ug/L9170)1,1,2,2-Tetrachloroethane10.37091547264.86 ug/L9171)n-Propylbenzene10.608126125944.86 ug/L9872)2-Chlorotoluene10.97813492614.96 ug/L9875)tert-Butylbenzene11.032105438089.13 ug/L9875)tert-Butylbenzene11.23810549174.86 ug/L9678)p-Isopropyltoluene11.479146273844.36 u	55) 2-1	Hexanone	7.914	43	18779		99
59)Chlorobenzene8.740112461474.56ug/L9460)1,1,1,2-Tetrachloroethane8.833131187444.57ug/L9761)Ethylbenzene8.86291586104.30ug/L9962)m,p-Xylene8.997106413788.75ug/L9863)o-Xylene9.457106180014.26ug/L9264)Styrene9.457106180014.26ug/L9665)Bromoform9.692173107714.54ug/L9566)Isopropylbenzene9.885105478744.61ug/L9767)1,2,3-Trichloropropane10.29611040975.09ug/L#8769)Bromobenzene10.245156149964.57ug/L9170)1,1,2,2-Tetrachloroethane10.37091547264.86ug/L9872)2-Chlorotoluene10.608126125944.86ug/L9873)4-Chlorotoluene10.608126125944.86ug/L9474)1,3,5-Trimethylbenzene11.032105438089.13ug/L9875)tert-Butylbenzene11.238105491764.86ug/L9877)sec-Butylbenzene11.238105491764.86ug/L9878)p-Isopropyltoluene11.479146 </td <td>56) Di</td> <td>bromochloromethane</td> <td>8.068</td> <td>129</td> <td>19877</td> <td></td> <td>99</td>	56) Di	bromochloromethane	8.068	129	19877		99
601,1,1,2-Tetrachloroethane8.833131187444.57ug/L9761)Ethylbenzene8.86291586104.30ug/L9962)m, p-Xylene8.997106413788.75ug/L9863)o-Xylene9.457106180014.26ug/L9264)Styrene9.470104273844.36ug/L9665)Bromoform9.692173107714.54ug/L9766)Isopropylbenzene9.885105478744.61ug/L9767)1,2,3-Trichloropropane10.245156149964.57ug/L9170)1,1,2,2-Tetrachloroethane10.24583140954.70ug/L9571)n-Propylbenzene10.37091547264.86ug/L9872)2-Chlorotoluene10.608126125944.86ug/L9873)4-Chlorotoluene10.586105401214.61ug/L9875)tert-Butylbenzene11.032105438089.13ug/L9877)sec-Butylbenzene11.238105491764.86ug/L9877)sec-Butylbenzene11.373146273554.36ug/L9880)1,3-Dichlorobenzene11.373146273284.31ug/L9582)n-Butylbenzene11.933146273	57) 1,3	2-Dibromoethane	8.200	107	14277	4.48 ug/L	98
61)Ethylbenzene8.86291586104.30ug/L9962)m,p-Xylene8.997106413788.75ug/L9863)o-Xylene9.457106180014.26ug/L9264)Styrene9.470104273844.36ug/L9665)Bromoform9.692173107114.54ug/L9566)Isopropylbenzene9.885105478744.61ug/L9767)1,2,3-Trichloropropane10.245156149964.57ug/L9170)1,1,2,2-Tetrachloroethane10.24583140954.70ug/L9571)n-Propylbenzene10.37091547264.86ug/L9872)2-Chlorotoluene10.608126125944.86ug/L9174)1,3,5-Trimethylbenzene10.97813492614.96ug/L9875)tert-Butylbenzene11.032105438089.13ug/L9877)sec-Butylbenzene11.238105491764.86ug/L9878)p-Isopropyltoluene11.418119508894.89ug/L9880)1,3-Dichlorobenzene11.373146273554.36ug/L9581)1,4-Dichlorobenzene11.91791582624.57ug/L9582)n-Butylbenzene11.9331462	59) Chi	lorobenzene	8.740	112	46147	4.56 ug/L	94
62)m,p-Xylene8.997106413788.75ug/L9863)o-Xylene9.457106180014.26ug/L9264)Styrene9.470104273844.36ug/L9665)Bromoform9.692173107714.54ug/L9566)Isopropylbenzene9.885105478744.61ug/L9767)1,2,3-Trichloropropane10.29611040975.09ug/L#70)1,1,2,2-Tetrachloroethane10.245156149964.57ug/L9571)n-Propylbenzene10.37091547264.86ug/L9872)2-Chlorotoluene10.608126125944.86ug/L9873)4-Chlorotoluene10.608126125944.86ug/L9875)tert-Butylbenzene10.97813492614.96ug/L9476)1,2,4-Trimethylbenzene11.032105438089.13ug/L9877)sec-Butylbenzene11.238105491764.86ug/L9678)p-Isopropyltoluene11.418119508894.89ug/L9880)1,3-Dichlorobenzene11.373146273284.31ug/L9581)1,4-Dichlorobenzene11.933146273284.31ug/L9782)n-Butylbenzene11.933146			8.833	131	18744	4.57 ug/L	97
63) o-Xylene9.457106180014.26 ug/L9264) Styrene9.470104273844.36 ug/L9665) Bromoform9.692173107714.54 ug/L9566) Isopropylbenzene9.885105478744.61 ug/L9767) 1,2,3-Trichloropropane10.29611040975.09 ug/L #8769) Bromobenzene10.245156149964.57 ug/L9170) 1,1,2,2-Tetrachloroethane10.24583140954.70 ug/L9571) n-Propylbenzene10.37091547264.86 ug/L9872) 2-Chlorotoluene10.608126125944.86 ug/L9174) 1,3,5-Trimethylbenzene10.97813492614.96 ug/L9476) 1,2,4-Trimethylbenzene11.032105438089.13 ug/L9877) sec-Butylbenzene11.238105491764.86 ug/L9678) p-Isopropyltoluene11.418119508894.89 ug/L9880) 1,3-Dichlorobenzene11.373146273284.36 ug/L9081) 1,4-Dichlorobenzene11.91791582624.57 ug/L9583) 1,2-Dichlorobenzene11.933146273284.31 ug/L9785) 1,2-Dibromo-3-Chloropr12.79415752284.25 ug/L9286) 1,2,4-Trichlorobenzene13.598180302294.22 ug/L9987) 1,2,3-Trichlorobenzene13.59818030229 <td></td> <td></td> <td>8.862</td> <td>91</td> <td>58610</td> <td>4.30 ug/L</td> <td>99</td>			8.862	91	58610	4.30 ug/L	99
64) Styrene9.470104273844.36 ug/L9665) Bromoform9.692173107714.54 ug/L9566) Isopropylbenzene9.885105478744.61 ug/L9767) 1,2,3-Trichloropropane10.29611040975.09 ug/L#8769) Bromobenzene10.245156149964.57 ug/L9170) 1,1,2,2-Tetrachloroethane10.24583140954.70 ug/L9571) n-Propylbenzene10.37091547264.86 ug/L9872) 2-Chlorotoluene10.473126126034.75 ug/L9673) 4-Chlorotoluene10.608126125944.86 ug/L9174) 1,3,5-Trimethylbenzene10.97813492614.96 ug/L9875) tert-Butylbenzene11.032105438089.13 ug/L9877) sec-Butylbenzene11.238105491764.86 ug/L9678) p-Isopropyltoluene11.418119508894.89 ug/L9880) 1,3-Dichlorobenzene11.373146273284.36 ug/L9582) n-Butylbenzene11.91791582624.57 ug/L9583) 1,2-Dichlorobenzene11.933146273284.31 ug/L9785) 1,2-Dibromo-3-Chloropr12.79415752284.25 ug/L9286) 1,2,4-Trichlorobenzene13.598180302294.22 ug/L9987) 1,2,3-Trichlorobenzene13.598180313			8.997	1 0 6	41378	8.75 ug/L	98
65)Bromoform9.692173107714.54ug/L9566)Isopropylbenzene9.885105478744.61ug/L9767)1,2,3-Trichloropropane10.29611040975.09ug/L#69)Bromobenzene10.245156149964.57ug/L9170)1,1,2,2-Tetrachloroethane10.24583140954.70ug/L9571)n-Propylbenzene10.37091547264.86ug/L9872)2-Chlorotoluene10.473126126034.75ug/L9673)4-Chlorotoluene10.608126125944.86ug/L9174)1,3,5-Trimethylbenzene10.97813492614.96ug/L9875)tert-Butylbenzene11.032105438089.13ug/L9877)sec-Butylbenzene11.238105491764.86ug/L9678)p-Isopropyltoluene11.418119508894.89ug/L9880)1,3-Dichlorobenzene11.373146272804.26ug/L9581)1,2-Dibromo-3-Chloropr12.79415752284.25ug/L9583)1,2-Dibromo-3-Chloropr12.79415752284.25ug/L9987)1,2,3-Trichlorobenzene13.598180302294.22ug/L9988)Hexach				106	18001	4.26 ug/L	92
66)Isopropylbenzene9.885105478744.61 ug/L9767)1,2,3-Trichloropropane10.29611040975.09 ug/L #8769)Bromobenzene10.245156149964.57 ug/L9170)1,1,2,2-Tetrachloroethane10.24583140954.70 ug/L9571)n-Propylbenzene10.37091547264.86 ug/L9872)2-Chlorotoluene10.473126126034.75 ug/L9673)4-Chlorotoluene10.608126125944.86 ug/L9174)1,3,5-Trimethylbenzene10.97813492614.96 ug/L9476)1,2,4-Trimethylbenzene11.032105438089.13 ug/L9877)sec-Butylbenzene11.238105491764.86 ug/L9678)p-Isopropyltoluene11.418119508894.89 ug/L9880)1,3-Dichlorobenzene11.373146273554.36 ug/L10081)1,4-Dichlorobenzene11.91791582624.57 ug/L9582)n-Butylbenzene11.933146273284.31 ug/L9785)1,2-Dibromo-3-Chloropr12.79415752284.25 ug/L9286)1,2,4-Trichlorobenzene13.598180302294.22 ug/L9987)1,2,3-Trichlorobenzene13.753225171364.36 ug/L99					27384		96
67)1,2,3-Trichloropropane10.29611040975.09ug/L#8769)Bromobenzene10.245156149964.57ug/L9170)1,1,2,2-Tetrachloroethane10.24583140954.70ug/L9571)n-Propylbenzene10.37091547264.86ug/L9872)2-Chlorotoluene10.473126126034.75ug/L9673)4-Chlorotoluene10.608126125944.86ug/L9174)1,3,5-Trimethylbenzene10.586105401214.61ug/L9875)tert-Butylbenzene10.97813492614.96ug/L9476)1,2,4-Trimethylbenzene11.032105438089.13ug/L9877)sec-Butylbenzene11.238105491764.86ug/L9678)p-Isopropyltoluene11.418119508894.89ug/L9880)1,3-Dichlorobenzene11.373146273554.36ug/L9582)n-Butylbenzene11.91791582624.57ug/L9583)1,2-Dichlorobenzene11.933146273284.31ug/L9785)1,2,4-Trichlorobenzene13.598180302294.22ug/L9987)1,2,3-Trichlorobenzene13.753225171364.36ug/L99 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
69)Bromobenzene10.245156149964.57ug/L9170)1,1,2,2-Tetrachloroethane10.24583140954.70ug/L9571)n-Propylbenzene10.37091547264.86ug/L9872)2-Chlorotoluene10.473126126034.75ug/L9673)4-Chlorotoluene10.608126125944.86ug/L9174)1,3,5-Trimethylbenzene10.586105401214.61ug/L9875)tert-Butylbenzene10.97813492614.96ug/L9476)1,2,4-Trimethylbenzene11.032105438089.13ug/L9877)sec-Butylbenzene11.238105491764.86ug/L9678)p-Isopropyltoluene11.418119508894.89ug/L9880)1,3-Dichlorobenzene11.373146273554.36ug/L9581)1,4-Dichlorobenzene11.91791582624.57ug/L9583)1,2-Dichlorobenzene11.933146273284.31ug/L9785)1,2,4-Trichlorobenzene13.598180302294.22ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25ug/L9888)Hexachlorobutadiene13.753225171364.36ug/L99							97
70)1,1,2,2-Tetrachloroethane10.24583140954.70ug/L9571)n-Propylbenzene10.37091547264.86ug/L9872)2-Chlorotoluene10.473126126034.75ug/L9673)4-Chlorotoluene10.608126125944.86ug/L9174)1,3,5-Trimethylbenzene10.586105401214.61ug/L9875)tert-Butylbenzene10.97813492614.96ug/L9476)1,2,4-Trimethylbenzene11.032105438089.13ug/L9877)sec-Butylbenzene11.238105491764.86ug/L9678)p-Isopropyltoluene11.418119508894.89ug/L9880)1,3-Dichlorobenzene11.373146273554.36ug/L9581)1,4-Dichlorobenzene11.91791582624.57ug/L9583)1,2-Dichlorobenzene11.933146273284.31ug/L9785)1,2,4-Trichlorobenzene13.598180302294.22ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25ug/L9888)Hexachlorobutadiene13.753225171364.36ug/L99							
71)n-Propylbenzene10.37091547264.86 ug/L9872)2-Chlorotoluene10.473126126034.75 ug/L9673)4-Chlorotoluene10.608126125944.86 ug/L9174)1,3,5-Trimethylbenzene10.586105401214.61 ug/L9875)tert-Butylbenzene10.97813492614.96 ug/L9476)1,2,4-Trimethylbenzene11.032105438089.13 ug/L9877)sec-Butylbenzene11.238105491764.86 ug/L9678)p-Isopropyltoluene11.418119508894.89 ug/L9880)1,3-Dichlorobenzene11.373146273554.36 ug/L9581)1,4-Dichlorobenzene11.91791582624.57 ug/L9583)1,2-Dichlorobenzene11.933146273284.31 ug/L9785)1,2,4-Trichlorobenzene13.598180302294.22 ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25 ug/L9888)Hexachlorobutadiene13.753225171364.36 ug/L99							
72)2-Chlorotoluene10.473126126034.75 ug/L9673)4-Chlorotoluene10.608126125944.86 ug/L9174)1,3,5-Trimethylbenzene10.586105401214.61 ug/L9875)tert-Butylbenzene10.97813492614.96 ug/L9476)1,2,4-Trimethylbenzene11.032105438089.13 ug/L9877)sec-Butylbenzene11.238105491764.86 ug/L9678)p-Isopropyltoluene11.418119508894.89 ug/L9880)1,3-Dichlorobenzene11.373146273554.36 ug/L10081)1,4-Dichlorobenzene11.91791582624.57 ug/L9582)n-Butylbenzene11.933146273284.31 ug/L9785)1,2-Dichlorobenzene13.598180302294.22 ug/L9986)1,2,4-Trichlorobenzene13.598180313674.25 ug/L9888)Hexachlorobutadiene13.753225171364.36 ug/L99							-
73)4-Chlorotoluene10.608126125944.86ug/L9174)1,3,5-Trimethylbenzene10.586105401214.61ug/L9875)tert-Butylbenzene10.97813492614.96ug/L9476)1,2,4-Trimethylbenzene11.032105438089.13ug/L9877)sec-Butylbenzene11.238105491764.86ug/L9678)p-Isopropyltoluene11.418119508894.89ug/L9880)1,3-Dichlorobenzene11.373146273554.36ug/L9681)1,4-Dichlorobenzene11.91791582624.57ug/L9582)n-Butylbenzene11.933146273284.31ug/L9785)1,2-Dichlorobenzene13.598180302294.22ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25ug/L9888)Hexachlorobutadiene13.753225171364.36ug/L99							
74)1,3,5-Trimethylbenzene10.586105401214.61ug/L9875)tert-Butylbenzene10.97813492614.96ug/L9476)1,2,4-Trimethylbenzene11.032105438089.13ug/L9877)sec-Butylbenzene11.238105491764.86ug/L9678)p-Isopropyltoluene11.418119508894.89ug/L9880)1,3-Dichlorobenzene11.373146273554.36ug/L10081)1,4-Dichlorobenzene11.91791582624.57ug/L9582)n-Butylbenzene11.933146273284.31ug/L9783)1,2-Dichlorobenzene11.933146273284.25ug/L9286)1,2,4-Trichlorobenzene13.598180302294.22ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25ug/L9888)Hexachlorobutadiene13.753225171364.36ug/L99							-
75)tert-Butylbenzene10.97813492614.96ug/L9476)1,2,4-Trimethylbenzene11.032105438089.13ug/L9877)sec-Butylbenzene11.238105491764.86ug/L9678)p-Isopropyltoluene11.418119508894.89ug/L9880)1,3-Dichlorobenzene11.373146273554.36ug/L10081)1,4-Dichlorobenzene11.91791582624.57ug/L9582)n-Butylbenzene11.933146273284.31ug/L9783)1,2-Dichlorobenzene11.933146273284.25ug/L9286)1,2,4-Trichlorobenzene13.598180302294.22ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25ug/L9888)Hexachlorobutadiene13.753225171364.36ug/L99							
76)1,2,4-Trimethylbenzene11.032105438089.13ug/L9877)sec-Butylbenzene11.238105491764.86ug/L9678)p-Isopropyltoluene11.418119508894.89ug/L9880)1,3-Dichlorobenzene11.373146273554.36ug/L10081)1,4-Dichlorobenzene11.479146272804.26ug/L9582)n-Butylbenzene11.91791582624.57ug/L9583)1,2-Dichlorobenzene11.933146273284.31ug/L9785)1,2-Dibromo-3-Chloropr12.79415752284.25ug/L9286)1,2,4-Trichlorobenzene13.598180302294.22ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25ug/L9888)Hexachlorobutadiene13.753225171364.36ug/L99							-
77)sec-Butylbenzene11.238105491764.86ug/L9678)p-Isopropyltoluene11.418119508894.89ug/L9880)1,3-Dichlorobenzene11.373146273554.36ug/L10081)1,4-Dichlorobenzene11.479146272804.26ug/L9582)n-Butylbenzene11.91791582624.57ug/L9583)1,2-Dichlorobenzene11.933146273284.31ug/L9785)1,2-Dibromo-3-Chloropr12.79415752284.25ug/L9286)1,2,4-Trichlorobenzene13.598180302294.22ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25ug/L9888)Hexachlorobutadiene13.753225171364.36ug/L99							
78)p-Isopropyltoluene11.418119508894.89ug/L9880)1,3-Dichlorobenzene11.373146273554.36ug/L10081)1,4-Dichlorobenzene11.479146272804.26ug/L9582)n-Butylbenzene11.91791582624.57ug/L9583)1,2-Dichlorobenzene11.933146273284.31ug/L9785)1,2-Dibromo-3-Chloropr12.79415752284.25ug/L9286)1,2,4-Trichlorobenzene13.598180302294.22ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25ug/L9888)Hexachlorobutadiene13.753225171364.36ug/L99							-
80)1,3-Dichlorobenzene11.373146273554.36 ug/L10081)1,4-Dichlorobenzene11.479146272804.26 ug/L9582)n-Butylbenzene11.91791582624.57 ug/L9583)1,2-Dichlorobenzene11.933146273284.31 ug/L9785)1,2-Dibromo-3-Chloropr12.79415752284.25 ug/L9286)1,2,4-Trichlorobenzene13.598180302294.22 ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25 ug/L9888)Hexachlorobutadiene13.753225171364.36 ug/L99							
81)1,4-Dichlorobenzene11.479146272804.26 ug/L9582)n-Butylbenzene11.91791582624.57 ug/L9583)1,2-Dichlorobenzene11.933146273284.31 ug/L9785)1,2-Dibromo-3-Chloropr12.79415752284.25 ug/L9286)1,2,4-Trichlorobenzene13.598180302294.22 ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25 ug/L9888)Hexachlorobutadiene13.753225171364.36 ug/L99							
82) n-Butylbenzene11.91791582624.57 ug/L9583) 1,2-Dichlorobenzene11.933146273284.31 ug/L9785) 1,2-Dibromo-3-Chloropr12.79415752284.25 ug/L9286) 1,2,4-Trichlorobenzene13.598180302294.22 ug/L9987) 1,2,3-Trichlorobenzene14.048180313674.25 ug/L9888) Hexachlorobutadiene13.753225171364.36 ug/L99							
83)1,2-Dichlorobenzene11.933146273284.31ug/L9785)1,2-Dibromo-3-Chloropr12.79415752284.25ug/L9286)1,2,4-Trichlorobenzene13.598180302294.22ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25ug/L9888)Hexachlorobutadiene13.753225171364.36ug/L99							
85)1,2-Dibromo-3-Chloropr12.79415752284.25 ug/L9286)1,2,4-Trichlorobenzene13.598180302294.22 ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25 ug/L9888)Hexachlorobutadiene13.753225171364.36 ug/L99							
86)1,2,4-Trichlorobenzene13.598180302294.22 ug/L9987)1,2,3-Trichlorobenzene14.048180313674.25 ug/L9888)Hexachlorobutadiene13.753225171364.36 ug/L99							
87) 1,2,3-Trichlorobenzene14.048180313674.25 ug/L9888) Hexachlorobutadiene13.753225171364.36 ug/L99							
88) Hexachlorobutadiene 13.753 225 17136 4.36 ug/L 99							
15,027 120 05555 5.50 ug/L 99							
						uB/L	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

4

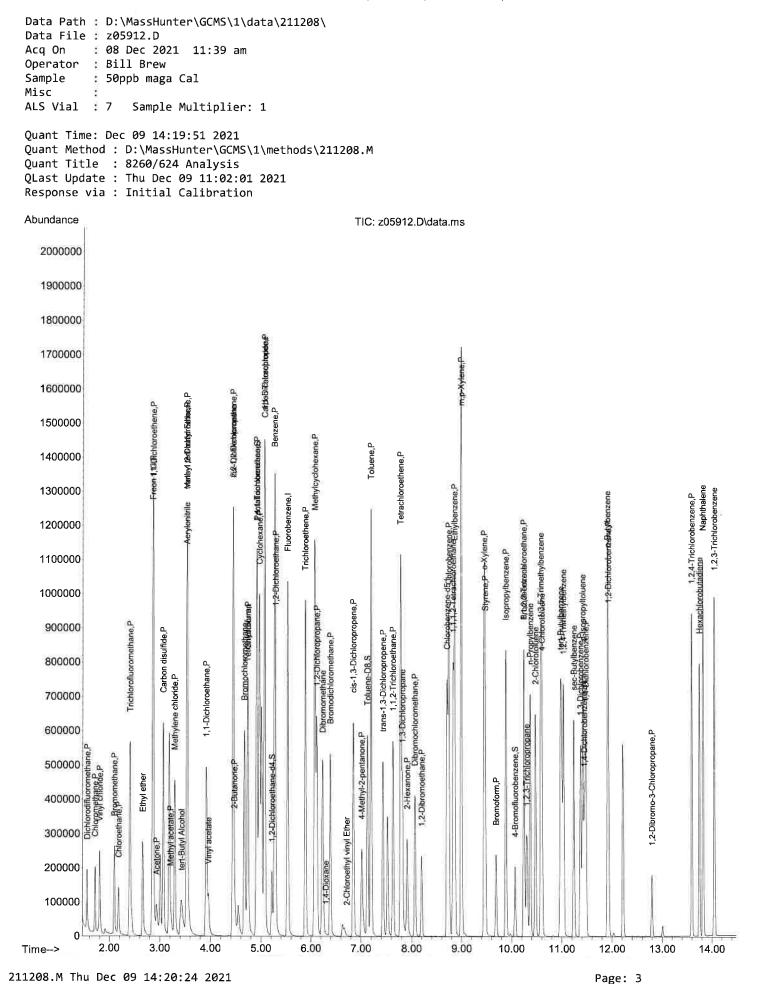


Page: 3

Data Path : D:\MassHunter\GCM Data File : z05911.D Acq On : 08 Dec 2021 11:20 Operator : Bill Brew Sample : 20ppb maga Cal Misc : ALS Vial : 6 Sample Multip	ð am lier: 1	1208\					
Quant Time: Dec 08 16:17:26 20 Quant Method : D:\MassHunter\(Quant Title : 8260/624 Analys QLast Update : Wed Dec 08 14:3 Response via : Initial Calibra	GCMS\1\meth sis 34:39 2021	ods\2:	L1208.M				12/8/21 13
Compound			Response				
Internal Standards							
	5.531	96	939724	50.00	ug/L	0.00	
58) Chlorobenzene-d5	8.708	117	440571	50.00	ug/L	0.00	
79) 1,4-Dichlorobenzene-d4	11.450	152	126711	50.00	ug/L	0.00	
Contan Maritania - Company							
System Monitoring Compounds 27) Pentafluorobenzene	4 010	160	358867	20 16	ug (1	0.00	
Spiked Amount 30.000	Range 89			ry =	-	0.00	
31) 1,2-Dichloroethane-d4	5.213			-		0.00	
Spiked Amount 30.000	Range 78				96.67%		
49) Toluene-D8			392909			0.00	
Spiked Amount 30.000	Range 76						
,	10.068		67487		-	0.00	
Spiked Amount 30.000	Range 63	- 133	Recove	ry =	98.57%		
Target Compounds					Ova	alue	
2) Dichlorodifluoromethane	1.550	85	60089	20.21		99	
3) Chloromethane	1.708	50	57763	20.90	ug/L	97	
4) Vinyl chloride	1.801	62	81361			99	
5) Bromomethane	2.094	94	61132	22.74	-	99	
6) Chloroethane	2.181	64	42263	19.54		97	
7) Trichlorofluoromethane8) Ethyl ether	2.406 2.660	101 59	167 0 43 59704			99 92	
9) Freon 113	2.856	101	107766		-	99	
10) 1,1-Dichloroethene	2.865	61	158789	19.51	-	95	
11) Acetone	2.936	43	57399	21.48		97	
13) Carbon disulfide	3.068	76	316697	19.51		99	
14) Methyl acetate	3.213	43	28338	19.02	-	96	
15) Methylene chloride	3.293	84	88943	19.95		93	
16) Acrylonitrile 17) tert-Butyl Alcohol	3.528 3.425	53 59	18422 98912	19.60 195.48		98 95	
18) Methyl tert-butyl Ether	3.534	73	178489	17.83	-	98	
19) trans-1,2-Dichloroethene		61	149057	19.90		93	
20) 1,1-Dichloroethane	3.917	63	181082	19.63	-	98	
21) Vinyl acetate	3.955	43	69302	18.92		95	
22) 2,2-Dichloropropane	4.444	77	126751	18.85		96 76	
23) 2-Butanone 24) cis-1,2-Dichloroethene	4.473 4.444	72 96	18260 124100	21.81 19.52	ug/L #	76 96	
25) Bromochloromethane	4.669	128	58552		ug/L #	89	
26) Chloroform	4.737	83	188197	19.62	-	99	
28) Tetrahydrofuran	4.730	42	42620	42.02		90	
29) 1,1,1-Trichloroethane	4.914	97	159824		ug/L #	55	
30) Cyclohexane	4.965	56	174568		ug/L #	85	
32) Carbon Tetrachloride 33) Benzene	5.071 5.271	117 79	149555		ug/L #	68	
33) Benzene 34) 1,2-Dichloroethane	5.271	78 62	419412 120507	19.60 19.80	-	98 99	
35) Trichloroethene	5.888	130	132259	19.80		99 97	
37) Methylcyclohexane	6.081	83	193215	19.36	-	94	
38) 1,4-Dioxane	6.296	88	581		ug/L #	11	
40) 1,2-Dichloropropane	6.119	63	104417	19.43	ug/L	95	

Data Path : D:\MassHunter\GCMS\1 Data File : z05911.D Acq On : 08 Dec 2021 11:20 ar Operator : Bill Brew Sample : 20ppb maga Cal Misc : ALS Vial : 6 Sample Multiplier	n	1208\			
Quant Time: Dec 08 16:17:26 2021					
Quant Method : D:\MassHunter\GCMS	>\1\meth	ods\2	11208.M		
Quant Title : 8260/624 Analysis QLast Update : Wed Dec 08 14:34:3	20 2021				
Response via : Initial Calibratic					
Compound	R.T.	QIon	Response	Conc Units Dev((Min)
42) Dibromomethane					
43) Bromodichloromethane	6.389	83	135483	19.59 ug/L	98
44) 2-Chloroethyl vinyl Ether	6.846	63	614	46.13 ug/L #	
				19.43 ug/L	98
47) cis-1,3-Dichloropropene	6.849	75	142421	18.73 ug/L	98
48) 4-Methyl-2-pentanone	7.016	58	32704	17.64 ug/L #	75
50) Toluene	7.200		372874	19.42 ug/L	99
51) trans-1,3-Dichloropropene					
52) 1,1,2-Trichloroethane			76321	19.39 ug/L	97
53) 1,3-Dichloropropane		76	105435	U .	99
54) Tetrachloroethene		166		0.	99
55) 2-Hexanone	7.910	43	83122		
56) Dibromochloromethane					
	8.200		65069	•	
59) Chlorobenzene	8.743	112	216046	19.78 ug/L	97

21)	crans is bichioropropene	/	/ 5	100440	10.02 ug/L	50
	1,1,2-Trichloroethane	7.634	97	76321	19.39 ug/L	97
53)	1,3-Dichloropropane	7.817	76	105435	19.31 ug/L	99
	Tetrachloroethene	7.785	166	145829	20.30 ug/L	99
	2-Hexanone	7.910	43	83122	20.07 ug/L	98
	Dibromochloromethane	8.065	129	93582	19.83 ug/L	100
57)	1,2-Dibromoethane	8.200	107	65069	19.30 ug/L	100
59)	Chlorobenzene	8.743	112	216046	19.78 ug/L	97
60)	1,1,1,2-Tetrachloroethane	8.833	131	89031	20.09 ug/L	97
61)	Ethylbenzene	8.862	91	288357	19.60 ug/L	98
62)	m,p-Xylene	8.997	106	203233	39.78 ug/L	98
63)	o-Xylene	9.454	106	91634	20.11 ug/L	99
64)	Styrene	9.470	104	131911	19.44 ug/L	99
65)	Bromoform	9.688	173	50000	19.54 ug/L	98
66)	Isopropylbenzene	9.885	105	227233	20.26 ug/L	98
67)	1,2,3-Trichloropropane	10.296	110	16156	18.58 ug/L	99
69)	Bromobenzene	10.245	156	72303	20.40 ug/L	92
70)	1,1,2,2-Tetrachloroethane	10.245	83	63728	19.67 ug/L	97
71)	n-Propylbenzene	10.373	91	240330	19.75 ug/L	97
72)	2-Chlorotoluene	10.476	126	60160	21.01 ug/L	98
73)	4-Chlorotoluene	10.605	126	55790	19.96 ug/L #	89
74)	1,3,5-Trimethylbenzene	10.582	105	180787	19.26 ug/L	99
75)	tert-Butylbenzene	10.975	134	36704	18.21 ug/L #	94
76)	1,2,4-Trimethylbenzene	11.032	105	186046	31.24 ug/L	99
77)	<pre>sec-Butylbenzene</pre>	11.241	105	205258	18.80 ug/L	97
78)	p-Isopropyltoluene	11.418	119	203374	18.11 ug/L	98
80)	1,3-Dichlorobenzene	11.373	146	117370	20.15 ug/L	99
81)	1,4-Dichlorobenzene	11.483	146	116904	19.70 ug/L	99
82)	n-Butylbenzene	11.913	91	228955	19.37 ug/L	98
83)	1,2-Dichlorobenzene	11.933	146	112022	19.04 ug/L	98
85)	1,2-Dibromo-3-Chloropr	12.794	157	21350	18.70 ug/L	96
86)	1,2,4-Trichlorobenzene	13.598	180	124271	18.71 ug/L	100
87)	1,2,3-Trichlorobenzene	14.052	180	130631	19.09 ug/L	98
	Hexachlorobutadiene	13.753	225	64689	17.75 ug/L	98
89)	Naphthalene	13.827	128	316545	19.47 ug/L	99
					+	

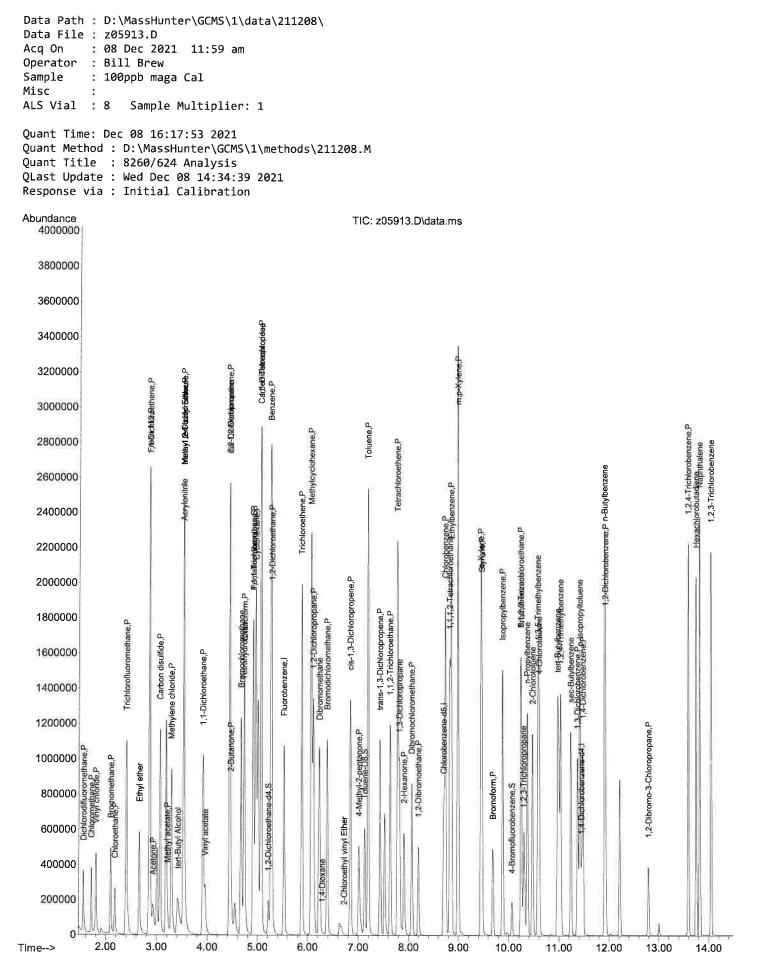

Page: 3

Data Path : D:\MassHunter\GCM Data File : z05912.D Acq On : 08 Dec 2021 11:3 Operator : Bill Brew Sample : 50ppb maga Cal Misc : ALS Vial : 7 Sample Multip	9 am	1208\					Ы
Quant Time: Dec 09 14:19:51 2 Quant Method : D:\MassHunter\ Quant Title : 8260/624 Analy QLast Update : Thu Dec 09 11: Response via : Initial Calibr	GCMS\1\meth sis 02:01 2021	nods\2	11208.M				12/9/2/ 13/3
Compound			Response				
Internal Standards							
1) Fluorobenzene	5.531	96	965158	50.00	ug/L	0.00	
58) Chlorobenzene-d5 79) 1,4-Dichlorobenzene-d4	8.711	117	472198	50.00	ug/L	0.00	
79) 1,4-Dichlorobenzene-d4	11.450	152	125031	50.00	ug/L	0.00	
System Monitoring Compounds	4 014	1.60	262022	20 77		0.00	
27) Pentafluorobenzene Spiked Amount 30.000	4.914 Range 89					0.00	
31) 1,2-Dichloroethane-d4	5.216					° 0.00	
Spiked Amount 30.000	Range 78						
49) Toluene-D8	7.129	98	435716	30.41	ug/L	0.00	
Spiked Amount 30.000	Range 76 10.068	- 117	Recove	ery =	101.37%	6	
68) 4-Bromofluorobenzene							
Spiked Amount 30.000	Range 63	- 133	Recove	ery =	102.33	6	
Target Compounds					0	value	
2) Dichlorodifluoromethane	1.550	85	147439	48.27	-	98	
3) Chloromethane	1.708	50	144408	51.37		97	
 4) Vinyl chloride 	1.801	62	202830	48.98		98	
5) Bromomethane	2.094	94	141122			97	
6) Chloroethane	2.180	64	103897		-	98	
7) Trichlorofluoromethane	2.406 2.660	101 59	448016			99 93	
8) Ethyl ether 9) Freon 113	2.856	101	159520 282690			99	
10) 1,1-Dichloroethene	2.865	61	419328	50.01	-	96	
11) Acetone	2.933		138536	54.57		97	
13) Carbon disulfide	3.068	76	819330	49.15		99	
14) Methyl acetate	3.209	43	80539	52.64	-	96	
15) Methylene chloride	3.293	84	219642	47.97		95	
16) Acrylonitrile 17) tert-Butyl Alcohol	3.528	53	48803	50.56	-	98	
18) Methyl tert-butyl Ether	3.425 3.534	59 73	235395 486783	452.95 47.36		95 94	
19) trans-1,2-Dichloroethen		61	387447	50.37	-	94	
20) 1,1-Dichloroethane	3.917	63	467228	49.32	-	[°] 98	
21) Vinyl acetate	3.955	43	187166	49.74		94	
22) 2,2-Dichloropropane	4.444	77	347023	50.24		97	
23) 2-Butanone	4.470	72	44817		ug/L #	80 05	
<pre>24) cis-1,2-Dichloroethene 25) Bromochloromethane</pre>	4.444 4.669	96 128	319713 144839	48.95	ug/L #	95 87	
26) Chloroform	4.737	83	484515	49.19		99	
28) Tetrahydrofuran	4.730	42	105089	100.89		92	
29) 1,1,1-Trichloroethane	4.914	97	430152	50.40	ug/L	99	
30) Cyclohexane	4.965	56	468312		ug/L #		
32) Carbon Tetrachloride	5.071	117	398759		ug/L #		
33) Benzene	5.270	78	1088475	49.52	-	98	
34) 1,2-Dichloroethane 35) Trichloroethene	5.287 5.888	62 130	304967 349073	48.80	-	99 98	
37) Methylcyclohexane	5.888 6.077	130 83	349073 523880	49.51 51.12		98 94	
38) 1,4-Dioxane	6.299	88	2467	48.24		94 94	
40) 1,2-Dichloropropane	6.119	63	274613	49.75		96	
, ,					·····-		

Data Dath	20	
Data Path	÷	D:\MassHunter\GCMS\1\data\211208\
Data File	:	z05912.D
		08 Dec 2021 11:39 am
Operator	•	Bill Brew
Sample	•	50ppb maga Cal
Misc	•	
ALS Vial	:	7 Sample Multiplier: 1

Quant Time: Dec 09 14:19:51 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
42) Dibromomethane	6.238	93	148397	49.62 ug/L	 95
43) Bromodichloromethane	6.389	83	352015	49.56 ug/L	99
44) 2-Chloroethyl vinyl Ether	6.714	63	631	46.14 ug/L #	43
46) 1,1-Dichloropropene	5.068	75	397066	50.28 ug/L	97
47) cis-1,3-Dichloropropene	6.849	75	389130	49.83 ug/L	97
48) 4-Methyl-2-pentanone	7.016	58	81762	45.43 ug/L #	72
50) Toluene	7.200	91	1015527	51.51 ug/L	100
51) trans-1,3-Dichloropropene	7.434	75	299605	50.08 ug/L	97
52) 1,1,2-Trichloroethane	7.634	97	198552	49.12 ug/L	97
53) 1,3-Dichloropropane	7.817	76	281313	50.16 ug/L	100
54) Tetrachloroethene	7.785	166	369872	50.13 ug/L	99
55) 2-Hexanone	7.910	43	218062	51.26 ug/L	99
56) Dibromochloromethane	8.065	129	246974	50.95 ug/L	100
57) 1,2-Dibromoethane	8.200	107	172241	49.74 ug/L	98
59) Chlorobenzene	8.743	112	583356	49.82 ug/L	98
60) 1,1,1,2-Tetrachloroethane	8.833	131	241336	50.81 ug/L	98
61) Ethylbenzene	8.862	91	818474	51.92 ug/L	98
62) m,p-Xylene	8.994	106	570169	104.13 ug/L	100
63) o-Xylene	9.454	106	251715	51.53 ug/L	99
64) Styrene	9.473	104	367544	50.55 ug/L	100
65) Bromoform	9.692	173	133365	48.63 ug/L	99
66) Isopropylbenzene	9.884	105	632235	52.60 ug/L	97
67) 1,2,3-Trichloropropane	10.299	110	41133	44.13 ug/L	96
69) Bromobenzene	10.245	156	191610	50.43 ug/L	92
70) 1,1,2,2-Tetrachloroethane	10.245	83	163276	47.03 ug/L	98
71) n-Propylbenzene	10.373	91	623997	47.84 ug/L	98
72) 2-Chlorotoluene	10.476	126	155392	50.63 ug/L	95
73) 4-Chlorotoluene	10.605	126	148684	49.63 ug/L	96
74) 1,3,5-Trimethylbenzene	10.582	105	489887	48.69 ug/L	99
75) tert-Butylbenzene	10.978	134	97663	45.22 ug/L	95
76) 1,2,4-Trimethylbenzene	11.032	105	473843	44.46 ug/L	99
77) sec-Butylbenzene	11.241	105	503833	43.06 ug/L	97
78) p-Isopropyltoluene	11.418	119	506528	42.08 ug/L	98
80) 1,3-Dichlorobenzene	11.373	146	286515	49.84 ug/L	99
81) 1,4-Dichlorobenzene	11.479	146	283083	48.34 ug/L	100
82) n-Butylbenzene	11.913	91	548523	47.02 ug/L	98
83) 1,2-Dichlorobenzene	11.929	146	267482	46.07 ug/L	100
85) 1,2-Dibromo-3-Chloropr	12.794	157	55030	48.84 ug/L	97
86) 1,2,4-Trichlorobenzene	13.598	180	301402	45.98 ug/L	100
87) 1,2,3-Trichlorobenzene 88) Hexachlorobutadiene	14.052	180	330254	48.90 ug/L	99
89) Naphthalene	13.753 13.823	225 128	157242	43.73 ug/L	99 100
obj Napirchatene	12.023	179	823583	51.33 ug/L	100



Data Path : D:\MassHunter\GCMS Data File : z05913.D Acq On : 08 Dec 2021 11:59 Operator : Bill Brew Sample : 100ppb maga Cal Misc : ALS Vial : 8 Sample Multipl Quant Time: Dec 08 16:17:53 20 Quant Method : D:\MassHunter\(Quant Title : 8260/624 Analys QLast Update : Wed Dec 08 14:3 Response via : Initial Calibra	9 am lier: 1 021 5CMS\1\met¦ 5is 34:39 2021					,	12/8/21 313
Compound			Response				
Internal Standards							
1) Fluorobenzene	5.531 8.708	96	992933	50.00	ug/L	0.00	
58) Chlorobenzene-d5 79) 1,4-Dichlorobenzene-d4	8.708	117	468634 113420	50.00	ug/L	0.00 0.00	
79) 1,4-Dichlorobenzene-d4	11.450	152	113420	50.00	ug/L	0.00	
Sustam Manitaning Compounds							
System Monitoring Compounds	4 014	100	271007	20 51		0 00	
27) Pentafluorobenzene Spiked Amount 30.000	4.914 Range 89			29.51		0.00	
Spiked Amount 30.000 31) 1,2-Dichloroethane-d4	5.213			ery =			
Spiked Amount 30.000				30.03	-	0.00 v	
49) Toluene-D8	Range 78 7.129			ery =			
Spiked Amount 30.000	Range 76				-	0.00 ″	
68) 4-Bromofluorobenzene	10.065			-		<i>•</i> 0.00	
Spiked Amount 30.000	Range 63						
	Runge 05	100	Recove		55.50	/0	
Target Compounds					0	value	
2) Dichlorodifluoromethane	1.550	85	293438	93.39	-	98	
3) Chloromethane	1.708	50	281186			98	
4) Vinyl chloride	1.801	62	411284			97	
5) Bromomethane	2.097	94	279457			99	
6) Chloroethane	2.180	64	206173	101.36	-	98	
Trichlorofluoromethane	2.406	101	872532	97.01		100	
8) Ethyl ether	2.660	59		99.58		93	
9) Freon 113	2.859	10 1	559364		ug/L	99	
10) 1,1-Dichloroethene	2.865	61	834779	97.06	ug/L	97	
11) Acetone	2.930	43	266298	102.94		97	
13) Carbon disulfide	3.068	76	1550503	90.40		99	
14) Methyl acetate	3.209	43	159086	101.07		97	
15) Methylene chloride	3.293	84	443132	94.08		95	
16) Acrylonitrile	3.528	53	95055	95.72		99	
17) tert-Butyl Alcohol	3.415	59	498174	931.78		96	
18) Methyl tert-butyl Ether	3.534	73	1049724	99.26		94	
19) trans-1,2-Dichloroethene		61	784744	99.17		94	
20) 1,1-Dichloroethane	3.917	63	958783	98.38		98	
21) Vinyl acetate 22) 2,2-Dichloropropane	3.955	43 77	413665	106.85		94	
23) 2-Butanone	4.444 4.467	72	703058 87560	98.94		97 86	
24) cis-1,2-Dichloroethene	4.447	96	658447	104.69 97.99		96	
25) Bromochloromethane	4.669	128	306536		ug/L #		
26) Chloroform	4.737	83	992054	97.90		99	
28) Tetrahydrofuran	4.727	42	199767	186.41	-	96	
29) 1,1,1-Trichloroethane	4.914	97	866753	98.72	-	86	
30) Cyclohexane	4.968	56	914568	96.09		85	
32) Carbon Tetrachloride	5.071	117	810781		ug/L #		
33) Benzene	5.270	78	2227076	98.50		98	
34) 1,2-Dichloroethane	5.287	62	637283	99.12		100	
35) Trichloroethene	5.888	130	709321	97.79		98	
37) Methylcyclohexane	6.077	83	1048380	99.44		94	
38) 1,4-Dioxane	6.290	88	5345	101.59	ug/L	88	
40) 1,2-Dichloropropane	6.119	63	5674 70	99.92		96	

Data Path	ŝ	D:\MassHunter\GCMS\1\data\211208\
Data File	\$	z05913.D
Acq On	•	08 Dec 2021 11:59 am
Operator		Bill Brew
Sample	\$	100ppb maga Cal
Misc		
ALS Vial	:	8 Sample Multiplier: 1

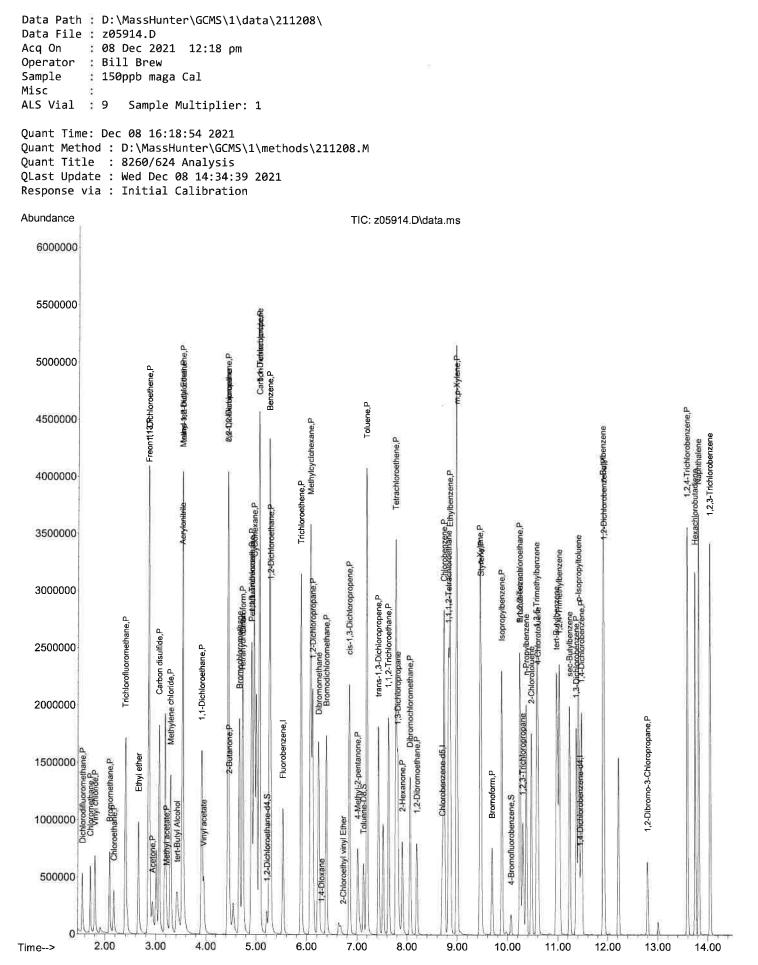
Quant Time: Dec 08 16:17:53 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Wed Dec 08 14:34:39 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
42) Dibromomethane	6.238	93	310768	101.00 ug/L	96
43) Bromodichloromethane	6.389	83	730043	99.90 ug/L	99
44) 2-Chloroethyl vinyl Ether	6.721	63	2321	99.27 ug/L #	43
46) 1,1-Dichloropropene	5.068	75	794756	97.82 ug/L	97
47) cis-1,3-Dichloropropene	6.849	75	828027	103.07 ug/L	97
48) 4-Methyl-2-pentanone	7.016	58	163458	99.50 ug/L #	74
50) Toluene	7.200	91	2058831	101.51 ug/L	99
51) trans-1,3-Dichloropropene	7.431	75	650196	105.65 ug/L	97
52) 1,1,2-Trichloroethane	7.634	97	423059	101.74 ug/L	97
53) 1,3-Dichloropropane	7.820	76	594810	103.08 ug/L	99
54) Tetrachloroethene	7.785	166	739139	97.37 ug/L	99
55) 2-Hexanone	7.910	43	437364	99.94 ug/L	99
56) Dibromochloromethane	8.065	129	519953	104.27 ug/L	100
57) 1,2-Dibromoethane	8.196	107	376215	105.60 ug/L	100
59) Chlorobenzene	8.740	112	1161994	99.99 ug/L	98
60) 1,1,1,2-Tetrachloroethane	8.833	131	478872	101.58 ug/L	98
61) Ethylbenzene	8.862	91	1591474	101.72 ug/L	98
62) m,p-Xylene	8.997	106	1111425	204.53 ug/L	100
63) o-Xylene	9.454	106	480732	99.16 ug/L	99
64) Styrene	9.470	104	721105	99.93 ug/L	100
65) Bromoform	9.688	173	278335	102.26 ug/L	99
66) Isopropylbenzene	9.884	105	1158088	97.08 ug/L	98
67) 1,2,3-Trichloropropane	10.296	110	82720	89.41 ug/L	99
69) Bromobenzene	10.245	156	361106	95.76 ug/L	93
70) 1,1,2,2-Tetrachloroethane	10.245	83	324271	94.11 ug/L	98
71) n-Propylbenzene	10.370	91	1124021	86.84 ug/L	98
72) 2-Chlorotoluene	10.476	126	275294	90.38 ug/L	95
73) 4-Chlorotoluene	10.605	126	261086	87.82 ug/L	93
74) 1,3,5-Trimethylbenzene	10.582	105	847913	84.92 ug/L	100
75) tert-Butylbenzene	10.974	134	175711	81.97 ug/L	94
76) 1,2,4-Trimethylbenzene	11.032	105	876849	99.02 ug/L	99
77) sec-Butylbenzene	11.238	105	931974	80.25 ug/L	98
78) p-Isopropyltoluene	11.418	119	999056	83.63 ug/L	97
80) 1,3-Dichlorobenzene	11.373	146	517185	99.18 ug/L	99
81) 1,4-Dichlorobenzene	11.479	146	522478	98.34 ug/L	100
82) n-Butylbenzene	11.913	91	1131537	106.93 ug/L	98
83) 1,2-Dichlorobenzene	11.929	146	525863	99.84 ug/L	100
85) 1,2-Dibromo-3-Chloropr	12.794	157	121283	118.67 ug/L	96
86) 1,2,4-Trichlorobenzene	13.598	180	705800	118.69 ug/L	100
87) 1,2,3-Trichlorobenzene 88) Hexachlorobutadiene	14.048	180	728624	118.94 ug/L	99
88) Hexachiorodutadiene 89) Naphthalene	13.753		395924	121.37 ug/L	100
89) Naphinalene	13.826	128	1773023	121.81 ug/L	100

211208.M Wed Dec 08 16:18:07 2021

(QT Reviewed)
(gr nertenew)

Data Path : D:\MassHunter\GCMS Data File : z05914.D Acq On : 08 Dec 2021 12:18 Operator : Bill Brew Sample : 150ppb maga Cal Misc : ALS Vial : 9 Sample Multip]	3 pm	L1208\					
Quant Time: Dec 08 16:18:54 20 Quant Method : D:\MassHunter\@ Quant Title : 8260/624 Analys QLast Update : Wed Dec 08 14:3 Response via : Initial Calibra	GCMS\1\meth sis 34:39 2021	nods\2	11208.M				12/2/21 1813
Compound			Response			• /	
Internal Standards 1) Fluorobenzene 58) Chlorobenzene-d5 79) 1,4-Dichlorobenzene-d4	5.531	96	1031709	50.00	ug/L	0.00	
System Monitoring Compounds 27) Pentafluorobenzene Spiked Amount 30.000 31) 1,2-Dichloroethane-d4 Spiked Amount 30.000	4.910 Range 89 5.216 Range 78	- 114 65 - 132	Recov 135267 Recov		98.13% ug/L 98.67%	0.00	
68) 4-Bromofluorobenzene	7.129 Range 76 10.068 Range 63	- 117 95	Recov 66537	26.70	100.40% ug/L	0.00	
 Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) Vinyl chloride 5) Bromomethane 6) Chloroethane 7) Trichlorofluoromethane 	1.550 1.708 1.801 2.094 2.177 2.402	85 50 62 94 64 101	435752 435691 604137 394016 293977 1360911	149.71 136.47 142.35 150.13	ug/L ug/L ug/L ug/L ug/L	alue 98 98 98 98 98 98 100	
 8) Ethyl ether 9) Freon 113 10) 1,1-Dichloroethene 11) Acetone 13) Carbon disulfide 14) Methyl acetate 	3.068 3.209	101 61 43 76 43	383284 2429980 229620	143.99 145.61 141.66 136.36 140.40	ug/L ug/L ug/L ug/L ug/L	93 99 97 99 99 99	
 Methylene chloride Acrylonitrile tert-Butyl Alcohol Methyl tert-butyl Ether trans-1,2-Dichloroethene 1,1-Dichloroethane 	3.293 3.525 3.418 3.531 3.534 3.914	84 53 59 73 61 63	675472 136577 807607 1804082 1230199 1513722	138.01 132.37 1453.78 164.18 149.63 149.48	ug/L ug/L ug/L ug/L	95 99 96 95 94 99	
 21) Vinyl acetate 22) 2,2-Dichloropropane 23) 2-Butanone 24) cis-1,2-Dichloroethene 25) Bromochloromethane 	3.952 4.444 4.467 4.444 4.669	43 77 72 96 128	727925 1128263 117511 1042429 483426	180.96 152.82 138.49 149.31 151.57	ug/L ug/L ug/L # ug/L	94 97 82 96 88	
 26) Chloroform 28) Tetrahydrofuran 29) 1,1,1-Trichloroethane 30) Cyclohexane 32) Carbon Tetrachloride 	4.734 4.727 4.914 4.965 5.071	83 42 97 56 117	1553586 294949 1371486 1448326 1270523	147.55 264.89 150.34 146.45 150.06	ug/L ug/L ug/L # ug/L # ug/L #	99 95 81 84 68	
 33) Benzene 34) 1,2-Dichloroethane 35) Trichloroethene 37) Methylcyclohexane 38) 1,4-Dioxane 40) 1,2-Dichloropropane 	5.271 5.287 5.888 6.078 6.293 6.119	78 62 130 83 88 63	3508646 1007445 1109997 1643462 8211 909375	149.34 150.81 147.27 150.02 150.20 154.11	ug/L ug/L ug/L ug/L #	98 100 98 95 44 95	


211208.M Wed Dec 08 16:19:03 2021

Data Path	2	D:\MassHunter\GCMS\1\data\211208\
Data File		z05914.D
Acq On	:	08 Dec 2021 12:18 pm
Operator	3	Bill Brew
Sample	:	150ppb maga Cal
Misc	÷	
ALS Vial		9 Sample Multiplier: 1

Quant Time: Dec 08 16:18:54 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Wed Dec 08 14:34:39 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev	/(Min)
42) Dibromomethane	6.238	93	497962	155.76 ug/L	95
43) Bromodichloromethane	6.389	83	1149305	151.36 ug/L	100
44) 2-Chloroethyl vinyl Ether	6.721	63	3645	125.43 ug/L #	47
46) 1,1-Dichloropropene	5.068	75	1250668	148.14 ug/L	97
47) cis-1,3-Dichloropropene	6.849	75	1336661	160.13 ug/L	97
48) 4-Methyl-2-pentanone	7.013	58	236810	163.18 ug/L #	72
50) Toluene	7,200	91	3259390	154.66 ug/L	98
51) trans-1,3-Dichloropropene	7.431	75	1067521	166.94 ug/L	97
52) 1,1,2-Trichloroethane	7.634	97	670187	155.11 ug/L	97
53) 1,3-Dichloropropane	7.820	76	959262	160.00 ug/L	100
54) Tetrachloroethene	7.785	166	1165106	147.72 ug/L	99
55) 2-Hexanone	7.910	43	604713	132.99 ug/L	99
56) Dibromochloromethane	8.065	129	831082	160.39 ug/L	100
57) 1,2-Dibromoethane	8.200	107	599011	161.82 ug/L	99
59) Chlorobenzene	8.743	112	1805975	151.41 ug/L	98
60) 1,1,1,2-Tetrachloroethane	8.833	131	759171	156.90 ug/L	99
61) Ethylbenzene	8.862	91	2495728	155.41 ug/L	99
62) m,p-Xylene	8.997	106	1720487	308.47 ug/L	99
63) o-Xylene	9.454	106	743454	149.41 ug/L	100
64) Styrene	9.470	104	1108722	149.70 ug/L	100
65) Bromoform	9.688	173	432029	154.64 ug/L	99
66) Isopropylbenzene	9.885	105	1770336	144.59 ug/L	98
67) 1,2,3-Trichloropropane	10.299	1 10	133195	140.27 ug/L	99
69) Bromobenzene	10.245	156	545823	141.03 ug/L	93
70) 1,1,2,2-Tetrachloroethane	10.245	83	530154	149.91 ug/L	98
71) n-Propylbenzene	10.373	91	1756924	132.25 ug/L	98
72) 2-Chlorotoluene	10.476	126	418255	133.79 ug/L	96
73) 4-Chlorotoluene	10.605	126	415098	136.03 ug/L	94
74) 1,3,5-Trimethylbenzene	10.582	105	1401968	136.80 ug/L	99
75) tert-Butylbenzene 76) 1,2,4-Trimethylbenzene	10.975	134	294470	133.84 ug/L	97
77) sec-Butylbenzene	11.032 11.238	105 105	1507558 1627906	141.01 ug/L	100 98
78) p-Isopropyltoluene	11.418	119	1770838	136.57 ug/L 144.43 ug/L	98 98
80) 1,3-Dichlorobenzene	11.373	146	908714	148.03 ug/L	100
81) 1,4-Dichlorobenzene	11.479	146	942503	150.70 ug/L	100
82) n-Butylbenzene	11.913	91	1905195	152.94 ug/L	98
83) 1,2-Dichlorobenzene	11.930	146	997465	160.87 ug/L	100
85) 1,2-Dibromo-3-Chloropr	12.794	157	202196	168.06 ug/L	98
86) 1,2,4-Trichlorobenzene	13.598	180	1116920	159.55 ug/L	100
87) 1,2,3-Trichlorobenzene	14.052	180	1133540	157.18 ug/L	99
88) Hexachlorobutadiene	13.753	225	635014	165.36 ug/L	99
89) Naphthalene	13.823	128	2745615	160.24 ug/L	100

Data Path : D:\MassHunter\GCM Data File : z05915.D Acq On : 08 Dec 2021 12:3 Operator : Bill Brew Sample : 200ppb maga Cal Misc : ALS Vial : 10 Sample Multi	7 pm	1208\					
Quant Time: Dec 08 16:19:12 20 Quant Method : D:\MassHunter\ Quant Title : 8260/624 Analy QLast Update : Wed Dec 08 14: Response via : Initial Calibra	GCMS\1\meth sis 34:39 2021	ods\2	11208.M				12/8/2/15/5
Compound		QIon	Response	Conc Ur	nits [Dev(Min)	
Internal Standards							
1) Fluorobenzene	5.531	96	1009646	50.00	u a /1	0.00	
58) Chlorobenzene-d5	8,708	117	468852	50.00	ug/L	0.00	
79) 1,4-Dichlorobenzene-d4			183024	50.00			
					_		
System Monitoring Compounds 27) Pentafluorobenzene	4.910	100	206067	20.20		0.00	
Spiked Amount 30.000	4.910 Range 89			30.26 ery =	-	0.00 27%	
31) 1,2-Dichloroethane-d4	-	65		30.76		0.00	
Spiked Amount 30.000	Range 78			ery =			
49) Toluene-D8	7.129	98	494997	33.03	ug/L	0.00	
Spiked Amount 30.000	Range 76						
				30.33	-	0.00	
Spiked Amount 30.000	Range 63	- 133	Recov	ery =	101.1	L0%	
Target Compounds						Qvalue	
2) Dichlorodifluoromethane	1.550	85	576803	180.53	ug/L	99	
3) Chloromethane	1.708	50	561198	200.41	-	98	
4) Vinyl chloride	1.801	62	781962	180.49		98	
5) Bromomethane	2.091		532983	203.69			
6) Chloroethane 7) Trichlorofluoromethane	2.177 2.396		351639	199.54 191.21	ug/L	99	
8) Ethyl ether	2.596		1748637 800612	233.77	ug/L	100 93	
9) Freon 113			1131514	193.65	-	99	
10) 1,1-Dichloroethene	2.859	61	1692818	193.58		97	
11) Acetone	2.933	43	548413	203.55	ug/L	97	
13) Carbon disulfide	3.065	76	3068174	175.93		99	
14) Methyl acetate	3.210	43	307582	192.17		98	
15) Methylene chloride 16) Acrylonitrile	3.290 3.525	84 53	876786 186338	183.06 184.54	-	95 98	
17) tert-Butyl Alcohol	3.435	59	1014188	1865.54	-	98 97	
18) Methyl tert-butyl Ether	3.531	73	2691725	250.32		93	
19) trans-1,2-Dichloroethene	e 3.531	61	1633874	203.07		93	
20) 1,1-Dichloroethane	3.914	63	1986116	200.42		99	
21) Vinyl acetate	3.952	43	1319160	335.11		95	
22) 2,2-Dichloropropane 23) 2-Butanone	4.444 4.467	77 72	1529407 162454	211.67 205.48		97 # 83	
24) cis-1,2-Dichloroethene	4.444	96	1379309	203.48	-	# 85 96	
25) Bromochloromethane	4.666	128	621050	198.97			
26) Chloroform	4.734	83	2044991	198.46	-	99	
28) Tetrahydrofuran	4.727	42	374762	343.92		95	
29) 1,1,1-Trichloroethane	4.914	97 56	1795965	201.17			
30) Cyclohexane 32) Carbon Tetrachloride	4.965 5.068	56 117	1908790 1664017	197.23 200.83			
33) Benzene	5.271	78	4625440	200.83		# 08 97	
34) 1,2-Dichloroethane	5.287	62	1326776	202.95		100	
35) Trichloroethene	5.888	130	1467332	198.94	-	98	
37) Methylcyclohexane	6.078	83	2179664	203.31	ug/L	95	
38) 1,4-Dioxane	6.296	88	10816	202.17			
40) 1,2-Dichloropropane	6.119	63	1225617	212.24	ug/L	95	

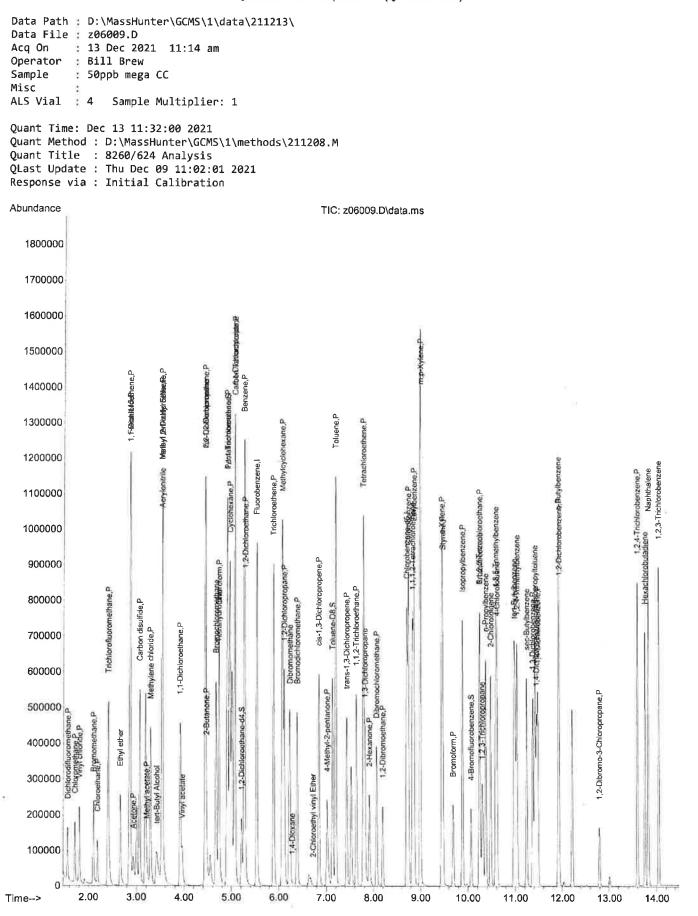
Data Path	•	D:\MassHunter\GCMS\1\data\211208\
Data File	•	z05915.D
Acq On	÷	08 Dec 2021 12:37 pm
Operator		Bill Brew
Sample	ŧ,	200ppb maga Cal
Misc		
ALS Vial	:	10 Sample Multiplier: 1

Quant Time: Dec 08 16:19:12 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Wed Dec 08 14:34:39 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
42) Dibromomethane	6.238	93	646107	206.51 ug/L	95
43) Bromodichloromethane	6.390	83	1510888	203.33 ug/L	99
44) 2-Chloroethyl vinyl Ether	6.695	63	5235	155.17 ug/L	77
46) 1,1-Dichloropropene	5.068	75	1648435	199.53 ug/L	97
47) cis-1,3-Dichloropropene	6.846	75	1812542	221.88 ug/L	97
48) 4-Methyl-2-pentanone	7.013	58	249635	189.68 ug/L #	64
50) Toluene	7.200	91	4358284	211.32 ug/L	98
51) trans-1,3-Dichloropropene	7.431	75	1466654	234.36 ug/L	97
52) 1,1,2-Trichloroethane	7.634	97	868453	205.39 ug/L	97
53) 1,3-Dichloropropane	7.817	76	1280520	218.24 ug/L	100
54) Tetrachloroethene	7.785	166	1517505	196.60 ug/L	99
55) 2-Hexanone	7.907	43	722334	162.33 ug/L	99
56) Dibromochloromethane	8.065	129	1065180	210.06 ug/L	100
57) 1,2-Dibromoethane	8.200	107	778151	214.81 ug/L	100
59) Chlorobenzene	8.740	112	2289766	196.95 ug/L	98
60) 1,1,1,2-Tetrachloroethane	8.833	131	960128	203.57 ug/L	98
61) Ethylbenzene	8.862	91	3230189	206.36 ug/L	99
62) m,p-Xylene	8.994	106	2228887	409.98 ug/L	98
63) o-Xylene	9.454	106	990840	204.29 ug/L	100
64) Styrene	9.470	104	1575092	218.18 ug/L	100
65) Bromoform	9.688	173	538240	197.65 ug/L	99
66) Isopropylbenzene	9.885	105	2425018	203.19 ug/L	99
67) 1,2,3-Trichloropropane	10.299	110	198567	214.53 ug/L	93
69) Bromobenzene	10.245	156	754839	200.09 ug/L	94
70) 1,1,2,2-Tetrachloroethane	10.245	83	756614	219.49 ug/L	99
71) n-Propylbenzene	10.373	91	2763385	213.39 ug/L	98
72) 2-Chlorotoluene	10.476	126	619527	203.31 ug/L	96
73) 4-Chlorotoluene	10.605	126	658262	221.30 ug/L	92
74) 1,3,5-Trimethylbenzene	10.582	105	2381285	238.37 ug/L	100
<pre>75) tert-Butylbenzene</pre>	10.975	134	493767	230.24 ug/L	98
76) 1,2,4-Trimethylbenzene	11.032	105	2598952	203.75 ug/L	100
77) sec-Butylbenzene	11.241	105	2823660	243.03 ug/L	98
78) p-Isopropyltoluene	11.418	- 119	3003463	251.30 ug/L	99
80) 1,3-Dichlorobenzene	11.373	146	1569293	186.50 ug/L	99
81) 1,4-Dichlorobenzene	11.479	146	1640248	191.33 ug/L	100
82) n-Butylbenzene	11.914	91	3012675	176.43 ug/L	98
83) 1,2-Dichlorobenzene	11.930	146	1691296	198.99 ug/L	100
85) 1,2-Dibromo-3-Chloropr	12.794	157	288015	174.64 ug/L	96
86) 1,2,4-Trichlorobenzene	13.598	180	1663444	173.35 ug/L	100
87) 1,2,3-Trichlorobenzene	14.048	180	1610815	162.95 ug/L	100
88) Hexachlorobutadiene	13.753	225	935514	177.72 ug/L	100
89) Naphthalene	13.827	128	3752430	159.76 ug/L	100

211208.M Wed Dec 08 16:19:27 2021

Page: 3


Data Path : D:\MassHunter\GCM Data File : z06009.D Acq On : 13 Dec 2021 11:1 Operator : Bill Brew Sample : 50ppb mega CC Misc : ALS Vial : 4 Sample Multip	4 am lier: 1	1213\					
Quant Time: Dec 13 11:32:00 2 Quant Method : D:\MassHunter\ Quant Title : 8260/624 Analy QLast Update : Thu Dec 09 11: Response via : Initial Calibr	GCMS\1\metH sis 02:01 2021	nods\2	11208.M				12/13/21 13/5
Compound	Ŕ.T.	QIon	Response	Conc Ur	nits De	v(Min)	
Internal Standards							
1) Fluorobenzene	5.531	96	898136	50.00	ug/L	0.00	
58) Chlorobenzene-d5	8.708					0.00	
79) 1,4-Dichlorobenzene-d4	11,450			T 50.00		0.00	
System Monitoring Compounds				3.3	-	-	
27) Pentafluorobenzene	4.914			32.42		0.00	
Spiked Amount 30.000 31) 1,2-Dichloroethane-d4	Range 89 5.213				108.03		
Spiked Amount 30.000	Range 78	65 - 132		32/.12	107.07	0.00	
49) Toluene-D8	7,129			32.78		0.00	
Spiked Amount 30.000	Range 76				109.27		
68) 4-Bromofluorobenzene	10.068	95		31 82		0.00	
Spiked Amount 30.000	Range 63				106.07		
	0						
Target Compounds					Q	value	
Dichlorodifluoromethane	1.550	85	126389			99	
Chloromethane	1.708	50	127777	48.80	ug/L	99	
4) Vinyl chloride	1.801	62	187382	48.62	ug/L	96	
5) Bromomethane	2.094	94	132337	52.31	-	98	
6) Chloroethane	2.180	64	94419	47.46		99	
7) Trichlorofluoromethane	2.406	101	405824	49.88	-	100	
8) Ethyl ether	2.660	59	147646	48.46		94	
9) Freon 113	2.859		258269	49.69		99	
10) 1,1-Dichloroethene 11) Acetone	2.865 2.933	61 43	377109	48.48	-	97 94	
13) Carbon disulfide	3.068	76	130747 735205	55.38 47.39	-	94 99	
14) Methyl acetate	3.209	43	78155	54.89		93	
15) Methylene chloride	3.293	84	206759	48.53		93	
16) Acrylonitrile	3.528	53	46127	51.35		98	
17) tert-Butyl Alcohol	3,418	59	231020	477.71		96	
18) Methyl tert-butyl Ether	3.534	73	455337	47.60	ug/L	94	
19) trans-1,2-Dichloroethen	e 3.534	61	353875	49.44		94	
20) 1,1-Dichloroethane	3.914	63	430525	48,84	-	98	
21) Vinyl acetate	3.955	43	167547	47.85		96	
22) 2,2-Dichloropropane	4.444	77	314893	48.99		97	
23) 2-Butanone 24) cis-1,2-Dichloroethene	4.467 4.444	72	42957 293631		ug/L #		
25) Bromochloromethane	4.444	96 128	140719	48.31	ug/L #	95 89	
26) Chloroform	4.733	83	452387	49.35		. 85 99	
28) Tetrahydrofuran	4.727	42	99374	102.52	-	95	
29) 1,1,1-Trichloroethane	4.914	97	397303	50.03	-	97	
30) Cyclohexane	4.965	56	427923		ug/L #		
32) Carbon Tetrachloride	5.071	117	373406		ug/L #		
33) Benzene	5.270	78	1011991	49.48		99	
34) 1,2-Dichloroethane	5.287	62	290628	49.97		99	
35) Trichloroethene	5.888	130	323241	49.27	ug/L	98	
37) Methylcyclohexane	6.077	83	468946	49.17	ug/L	95	
38) 1,4-Dioxane	6.286	88	2210	46.44		95	
40) 1,2-Dichloropropane	6.119	63	256658	49.96	ug/L	95	

211208.M Mon Dec 13 11:33:49 2021

Data Path : D:\MassHunter\GCMS\1\data\211213\ Data File : z06009.D Acq On : 13 Dec 2021 11:14 am Operator : Bill Brew Sample : 50ppb mega CC Misc : ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 13 11:32:00 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M

Quant Method : D:\MassHunter\GCMS\1\methods\2112 Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev((Min)
42) Dibromomethane	6 220		140074	FQ (2)	
43) Bromodichloromethane	6.238 6.389	93 83	140874 331197	50.62 ug/L	95
44) 2-Chloroethyl vinyl Ether		63		50.10 ug/L	99
46) 1,1-Dichloropropene	5.068	75	698 363827	51.45 ug/L #	43
47) cis-1,3-Dichloropropene	6.846	75	-	49.51 ug/L	97
48) 4-Methyl-2-pentanone		58	360291	49.58 ug/L	97
50) Toluene	7.016		79174	47.47 ug/L #	79
51) trans-1,3-Dichloropropene	7.200	91 75	930000 278409	50.69 ug/L 50.01 ug/L	100 98
52) 1,1,2-Trichloroethane	7.634	75 97			
53) 1,3-Dichloropropane	7.817	76	190957 267349	50.77 ug/L 51.22 ug/L	97 99
54) Tetrachloroethene	7.785	166	347326	50.59 ug/L	
55) 2-Hexanone	7.910	43	194011	49.01 ug/L	98 98
56) Dibromochloromethane	8.065	129	237324	52.61 ug/L	98 100
57) 1,2-Dibromoethane	8.196	107	167186	52.81 ug/L 51.88 ug/L	99
59) Chlorobenzene	8.740	112	533290	43.38 ug/L	99
60) 1,1,1,2-Tetrachloroethane		131	222710	43.58 ug/L 44.66 ug/L	98
61) Ethylbenzene	8.862	91	730020	44.11 ug/L	99
62) m,p-Xylene	8.997	106	515821	89.73 ug/L	100
63) o-Xylene	9,454	106	228818	44.62 ug/L	98
64) Styrene	9.470	104	336723	44.11 ug/L	99
65) Bromoform	9,688	173	129073	44.83 ug/L	99
66) Isopropylbenzene	9.884	105	561631	44.51 ug/L	98
67) 1,2,3-Trichloropropane	10.296	110	40557	41.44 ug/L	94
69) Bromobenzene	10.245	156	179061	44.89 ug/L	94
70) 1,1,2,2-Tetrachloroethane		83	156586	42.96 ug/L	99
71) n-Propylbenzene	10.370	91	563476	41.15 ug/L	98
72) 2-Chlorotoluene	10.476	126	143097	44.41 ug/L	98
73) 4-Chlorotoluene	10.605	126	134507	42.77 ug/L	92
74) 1,3,5-Trimethylbenzene	10.582	105	431899	40.89 ug/L	100
75) tert-Butylbenzene	10,974	134	90066	39.72 ug/L #	96
76) 1,2,4-Trimethylbenzene	11.032	105	430530	38.48 ug/L	99
77) sec-Butylbenzene	11.238	105	464948	37.85 ug/L	98
78) p-Isopropyltoluene	11.418	119	460069	36.41 ug/L	99
80) 1,3-Dichlorobenzene	11.370	146	268297	42.25 ug/L	99
81) 1,4-Dichlorobenzene	11.479	146	263904	40.79 ug/L	99
82) n-Butylbenzene	11.913	91	496682	38.54 ug/L	98
83) 1,2-Dichlorobenzene	11.929	146	248378	38.72 ug/L	99
85) 1,2-Dibromo-3-Chloropr	12,794	157	50850	40.86 ug/L	96
86) 1,2,4-Trichlorobenzene	13.598	180	274759	37.94 ug/L	100
87) 1,2,3-Trichlorobenzene	14.048	180	302422	40.54 ug/L	99
88) Hexachlorobutadiene	13.753	225	139551	35.13 ug/L	99
89) Naphthalene	13.826	128	741714	41.84 ug/L	99

211208.M Mon Dec 13 11:33:50 2021

Page: 3

Data Path : D:\MassHunter\GCMS\1\data\211213\ Data File : z06009.D Acq On : 13 Dec 2021 11:14 am Operator : Bill Brew Sample : 50ppb mega CC Misc : ALS Vial : 4 Sample Multiplier: 1

Quant Time: Dec 13 11:32:00 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

Compound Amount Calc. %Dev Area% Dev(min) 1 T Fluorobenzene 50.000 50.000 0.0 (93 0.00 2 P Dichlorodifluoromethane 50,000 44,469 11.1 86 0.00 Chloromethane 3 P 50,000 48,803 2.4 88 0.00 4 P Vinyl chloride 50.000 48.622 2.8 92 0.00 5 P Bromomethane 50.000 52.305 -4.6 94 0.00 6 P Chloroethane 50.000 47.461 91 5.1 0.00 7 P Trichlorofluoromethane 50.000 49.884 0.2 91 0.00 8 Ethyl ether 50,000 48,463 3.1 93 0.00 9 P 50.000 49.688 91 Freon 113 0.6 0.00 10 P 1,1-Dichloroethene 50.000 48.477 3.0 90 0.00 11 P Acetone 50.000 55.380 -10.8 94 0.00 12 Isopropyl Alcohol 500.000 0.000 100.0# 0 0.01 13 P 50.000 47.392 Carbon disulfide 5.2 0.00 90 14 P Methyl acetate 50.000 54.893 -9.8 97 0.00 15 P Methylene chloride 50.000 48.527 2.9 94 0.00 16 Acrylonitrile 50.000 51.353 -2.7 95 0.00 500.000 477.707 17 tert-Butyl Alcohol 4.5 98 0.00 18 P Methyl tert-butyl Ether 50.000 47.602 4.8 94 0.00 19 P trans-1,2-Dichloroethene 50.000 49.442 1.1 91 0.00 20 P 1,1-Dichloroethane 50.000 48.838 2.3 92 0.00 21 Vinyl acetate 50.000 47.847 4.3 90 0.00 22 2,2-Dichloropropane 50.000 48.993 2.0 91 0.00 23 P 2-Butanone 50.000 54.875 -9.8 96 0.00 24 P cis-1,2-Dichloroethene 50.000 48.312 3.4 92 0.00 25 Bromochloromethane 50.000 50.682 -1.4 97 0.00 26 P Chloroform 50.000 49.354 1.3 93 0.00 27 S Pentafluorobenzene 30.000 32.412 -8.0 101 0.00 28 Tetrahydrofuran 100.000 102,518 -2.5 95 0.00 29 P 1,1,1-Trichloroethane 92 50.000 50.028 -0.1 0.00 30 P 50.000 49.705 Cyclohexane 0.6 91 0.00 31 S 1.2-Dichloroethane-d4 30,000 32.124 -7.1 101 0.00 32 P Carbon Tetrachloride 50.000 50,663 -1.3 94 0.00 33 P Benzene 50.000 49.481 93 1.0 0.00 34 P 1,2-Dichloroethane 50.000 49.975 95 0.00 0.0 35 P Trichloroethene 50.000 49.266 1.5 93 0.00 36 tert-Butyl Acetate 100.0# 50.000 0.000 0 0.20 37 P Methylcyclohexane 50.000 49.173 1.7 90 0.00 38 1,4-Dioxane 50.000 46.438 7.1 90 -0.01 39 UN Ethyl acetate -1.000 0.000 0.0 0 0.00 40 P 1,2-Dichloropropane 50.000 49.963 0.1 93 0.00 41 UN Isobutyl alcohol -1.000 0.000 0.0 0 0.00 Dibromomethane 42 50.000 50.617 -1.2 95 0.00 Bromodichloromethane 43 P 50.000 50.104 -0.2 94 0.00 44 2-Chloroethyl vinyl Ether 50.000 51.450 -2.9 91 0.00 45 UN Isopropyl acetate -1.000 0.000 0.0 a -0.06 46 1,1-Dichloropropene 50.000 49.506 1.0 0.00 92

12/13/21 1515

211208.M Mon Dec 13 11:33:54 2021

Page 1

Data Path : D:\MassHunter\GCMS\1\data\211213\ Data File : 206009.D Acq On : 13 Dec 2021 11:14 am Operator : Bill Brew Sample : 50ppb mega CC Misc : ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 13 11:32:00 2021

Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

 Min. RRF
 :
 0.000
 Min. Rel. Area
 :
 50%
 Max. R.T. Dev
 0.50min

 Max. RRF Dev
 :
 20%
 Max. Rel. Area
 :
 20%

AT P cis-1,3-Dichloropropene 50.000 49.581 0.8 93 0.00 48 P 4-Methyl-2-pentanone 50.000 47.473 5.1 97 0.00 49 S Toluene-D8 30.000 32.782 -9.3 100 0.00 51 P trans-1,3-Dichloropropene 50.000 50.651 -1.4 92 0.00 51 P trans-1,3-Dichloroptopene 50.000 50.651 -1.5 96 0.00 52 P 1,1,2-Trichloropthane 50.000 50.586 -1.2 94 0.00 55 P 2-Hexanone 50.000 50.800 51.882 -3.8 97 0.00 58 I Chlorobenzene 50.000 50.000 0.00 118 99 0.00 58 I Chlorobenzene 50.000 44.652 10.7 92 0.00 61 P Ethylbenzene 50.000 44.652 10.7 92 0.00 59 P Chlorobenzene 50.000 44.652 10.7 92 0.00 61 P Ethylbenzene 50.000		Compound	Amount	Calc.	%	Dev A	Area%	Dev(min)	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	47.0								
49 SToluene-D830.00032.782-9.31000.0050 PToluene50.00050.691-1.4920.0051 Ptrans-1,3-Dichloropropene50.00050.691-1.4920.0052 P1,1,2-Trichloroethane50.00050.759-1.5960.0054 PTetrachloroethane50.00050.223-2.4950.0055 P2-Hexanone50.00050.286-1.2940.0056 PDibromochloromethane50.00050.086-1.2940.0057 P1,2-Dibromoethane50.00050.086-1.8970.0058 IChlorobenzene-d550.00050.0004.338113.2910.00601,1,1,2-Tetrachloroethane50.00044.65810.7920.0061 PEthylbenzene50.00044.65810.7920.0062 Pm,p-Xylene100.00089.73110.3900.0063 Po-Xylene50.00044.61810.8910.0064 PStyrene50.00044.11111.8920.0065 PBromofour50.00044.61810.8910.0067 I,2,3-Trichloroppane50.00044.12111.2910.0068 S4-Bromofluorobenzene50.00044.58910.2930.0070 P1,1,2,2-Tetrachloroethane50.00041.4407.1990.00									
50PToluene50.00050.691 -1.4 920.0051Ptrans-1,3-Dichloropropene50.00050.012 -0.6 90.0052P1,1,2-Trichloroethane50.00050.780 -1.5 96 0.00 531,3-Dichloropropane50.00050.586 -1.2 94 0.00 54PTetrachloroethane50.00050.586 -1.2 94 0.00 55P2-Hexanone50.00052.613 -5.2 96 0.00 57P1,2-Dibromochlaromethane50.00051.882 -3.8 97 0.00 58IChoroberzene50.00050.000 0.00 0.00 0.00 59PChloroberzene50.00044.658 10.7 92 0.00 61PEthylbenzene50.00044.658 10.7 92 0.00 62Pn.y-Xylene100.00089.731 10.3 90 0.00 63Po-Xylene50.00044.618 11.8 89 0.00 64PIstyrene50.00044.827 10.3 97 0.00 65PBromoform50.00044.827 10.3 97 0.00 66PIsopropylbenzene50.00044.827 10.3 97 0.00 671,2,2-Tetrachloroethane50.00044.820 10.2 93 0.00 684-Bromofluorobenzene50.00042.960 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
51 Ptrans-1,3-Dichloropropene50.00050.012-0.0930.0052 P1,1,2-Trichloroethane50.00051.23-2.4950.0054 PTetrachloroethene50.00051.23-2.4950.0055 P2-Hexanone50.00051.23-2.4950.0056 PDibromochloromethane50.00051.882-3.8970.0057 P1,2-Dibromoethane50.00050.0000.01050.0058 IChlorobenzene50.00050.0000.01050.0060 1,1,1,2-Tetrachloroethane50.00044.05111.8890.0061 PEthylbenzene50.00044.10711.8890.0062 Pm,p-Xylene100.00089.73110.3900.0063 Po-Xylene50.00044.11111.8920.0064 PStyrene50.00044.12111.8900.0065 PBromoform50.00044.12111.8900.0066 PIsopropylbenzene50.00044.12111.8900.0067 1,2,3-Trichloropropane50.00041.44017.1990.0068 54-Bromoflucrobenzene50.00044.12217.7900.0070 n-Propylbenzene50.00037.84642.38810.2930.0071 n,1,2,2-Tetrachloroethane50.00037.714.23.06810.0010.00<									
52 P 1,1,2-Trichloroethane 50.000 50.769 -1.5 96 0.00 53 I .3-Dichloropropane 50.000 51.223 -2.4 95 0.00 55 P 2-Hexanone 50.000 50.886 -1.2 94 0.00 55 P 2-Hexanone 50.000 50.613 -5.2 96 0.00 56 P Dibromochloromethane 50.000 51.822 -3.8 97 0.00 58 I Chlorobenzene 50.000 43.81 13.2 91 0.00 60 1,1,1,2-Tetrachloroethane 50.000 44.658 10.7 92 0.00 61 P Ethylbenzene 50.000 44.618 10.3 90 0.00 62 P n,p.Xylene 100.002 89.731 10.3 90 0.00 63 P orsomoform 50.000 44.111 11.8 92 0.00 64 P Styrene 50.000 44.827 10.3 90 0.00 67 1,2,3-Trichloropropane 50.000 41.40 17.1 99 <									
531,3-Dichloropropane50.00051.223-2.4950.0054PTetrachloroethene50.00050.586-1.2940.0055P2.4Hexanone50.00050.586-1.2940.0056PDibromochloromethane50.00052.613-5.2960.0057P1,2-Dibromoethane50.00051.882-3.8970.0058IChlorobenzene-d550.00043.38113.2100.00601,1,1,2-Tetrachloroethane50.00044.65810.7920.0061PEthylbenzene50.00044.65810.8910.0062Pm,p-Xylene50.00044.61810.8910.0063Po-Xylene50.00044.61810.8910.0064PStyrene50.00044.58611.0890.0065PBromoform50.00044.82710.3970.0066P1,2,3-Trichloropropane50.00044.88910.2930.00671,2,2-Tetrachloroethane50.00044.88910.2930.0070P1,1,2,2-Tetrachloroethane50.00044.88910.2930.00711,2,3-Trichloropenzene50.00044.88910.2930.00722.chlorotluene50.00044.88910.2900.00									
54 PTetrachloroethene50.00050.586-1.2940.0055 P2-Hexanone50.00049.0142.0890.0057 P1,2-Dibromochloromethane50.00051.882-3.8970.0058 IChlorobenzene-d550.00050.0000.0 (105) 0.0059 PChlorobenzene50.00043.38113.2910.00601,1,1,2-Tetrachloroethane50.00044.65810.7920.0061 PEthylbenzene50.00044.65810.7920.0062 Pm,p-Xylene100.00089.73110.3900.0063 Po-Xylene50.00044.61810.8910.0065 PBromoform50.00044.82710.3970.0065 PBromoform50.00044.82710.3970.0066 PIsopropylbenzene50.00044.82710.3970.0067 1,2,3-Trinbloropopane50.00044.82710.3970.0068 S4-Bromofluorobenzene50.00044.82710.90.0069 Bromobenzene50.00044.82711.2930.0070 P1,1,2,2-Tetrachloroethane50.00044.82910.2930.0071 n.Propylbenzene50.00044.82910.2930.0072 2-Chlorotoluene50.00037.86442.3#910.0073 4-Chlorotoluene50.000 <td></td> <td></td> <td>50.000</td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td></td>			50.000					0.00	
55 P2-Hexanone50.00049.0142.0890.0056 PDibromochloromethane50.00052.613-5.2960.0057 P1,2-Dibromoethane50.00051.882-3.8970.0058 IChlorobenzene50.00043.38113.2910.00601,1,1,2-Tetrachloroethane50.00044.65810.7920.0061 PEthylbenzene50.00044.61810.8910.0062 Pm,p-Xylene100.00089.73110.3900.0063 Po-Xylene50.00044.61810.8910.0064 PStyrene50.00044.61811.8890.0065 PBromoform50.00044.82710.3970.0066 PIsopropylbenzene50.00044.82710.3970.0067 1,2,3-Trichloropropane50.00041.44017.1990.0068 S4-Bromofluorobenzene50.00042.96014.1960.0070 P1,1,2,2-Tetrachloroethane50.00042.96014.1960.0071 n-Propylbenzene50.00042.96014.1960.0072 2-Chlorotoluene50.00037.84624.3#920.0073 4-Chlorotoluene50.00037.84624.3#920.0074 1,2,4-Trimethylbenzene50.00037.84624.3#920.0075 tert-Butylbenzene50.0							95	0.00	
56 P Dibromochloromethane 50.000 52.613 -5.2 96 0.00 57 P 1,2-Dibromoethane 50.000 51.882 -3.8 97 0.00 58 I Chlorobenzene 50.000 50.000 0.0 105 0.00 59 P Chlorobenzene 50.000 44.658 106.7 92 0.00 61 P Ethylbenzene 50.000 44.658 106.7 92 0.00 62 P m,p-Xylene 100.000 89.731 10.3 90 0.00 63 P o-Xylene 50.000 44.618 108.8 91 0.00 64 P Styrene 50.000 44.827 10.3 97 0.00 67 1,2,3-Trichloroppane 50.000 44.827 10.3 97 0.00 68 S 4-Bromofluorobenzene 50.000 44.829 10.2 93 0.00 67 1,2,2-Tetrachloroethane 50.000 44.889 10.2 93 0.00 20.60 70 P 1,1,2,2-Tetrachloroethane 50.000 34.75 14.2 92			50.000	50.586			94	0.00	
57 P1,2-Dibromoethane50.00051.882-3.8970.0058 IChlorobenzene-d550.00043.38113.2910.00601,1,1,2-Tetrachloroethane50.00044.65810.7920.0061 PEthylbenzene50.00044.10711.8890.0062 Pm,p-Xylene100.00089.73110.3900.0063 Po-Xylene50.00044.11111.8910.0064 PStyrene50.00044.11111.8920.0065 PBromoform50.00044.50611.0890.00671,2,3-Trichloropropane50.00044.50611.0890.0068 S4-Bromofluorobenzene30.00044.82910.2930.0069 Bromobenzene50.00044.88910.2930.0071n-Propylbenzene50.00044.81217.7900.00722-Chlorotoluene50.00044.81211.2920.00734-Chlorotoluene50.00044.81217.7900.00741,3,5-Trimethylbenzene50.00038.77423.8#910.0075tert-Butylbenzene50.00038.477423.8#910.00761,2,4-Trimethylbenzene50.00038.477423.8#910.0078p-Isopropyltoluene50.00038.483422.9#			50.000	49.014			89	0.00	
58 IChlorobenzene-d550.00050.0000.00.0059 PChlorobenzene50.00043.38113.2910.00601,1,1,2-Tetrachloroethane50.00044.55810.7920.0061 PEthylbenzene50.00044.10711.8890.0062 Pm,p-Xylene100.00089.73110.3900.0063 P0-Xylene50.00044.11111.8910.0064 PStyrene50.00044.11111.8920.0065 PBromoform50.00044.50611.0890.0066 PIsopropylbenzene50.00044.50611.0890.0067 1,2,3-Trichloroopnane50.00044.88910.2930.0068 S4-Bromofluorobenzene50.00044.81211.2920.0069 Bromobenzene50.00044.41211.2920.0070 P1,1,2,2-Tetrachloroethane50.00044.41211.2920.0071 n-Propylbenzene50.00044.41211.2920.0072 2-Chlorotluene50.00038.47723.0# 910.0073 4-Chlorotluene50.00038.47723.0# 910.0075 tert-Butylbenzene50.00037.84624.3# 920.0076 1,2,4-Trimethylbenzene50.00038.47723.0# 910.0077 sec-Butylbenzene50.00038.47723.0# 910.0078	56 P	Dibromochloromethane	50.000	52.613		-5.2	96	0.00	
59 PChlorobenzene50.00043.38113.2910.00601,1,1,2-Tetrachloroethane50.00044.65810.7920.0061 PEthylbenzene50.00044.10711.8890.0062 Pm,p-Xylene100.00089.73110.3900.0063 Po-Xylene50.00044.11111.8920.0064 PStyrene50.00044.11111.8920.0065 PBromoform50.00044.82710.3970.00671,2,3-Trichloropropane50.00044.82611.0890.0068 S4-Bromofluorobenzene30.00031.824-6.11090.0069Bromobenzene50.00044.88910.2930.0070 P1,1,2,2-Tetrachloroethane50.00044.82910.2930.0071n-Propylbenzene50.00044.41211.2920.00722-Chlorotoluene50.00044.41211.2920.00734-Chlorotoluene50.00039.71920.66#920.00741,3,5-Trimethylbenzene50.00037.84624.3#920.0075tert-Butylbenzene50.00037.84624.3#920.00761,2,4-Trimethylbenzene50.00037.84624.3#930.0075tert-Butylbenzene50.00038.72322.9#910.00 <td>57 P</td> <td>1,2-Dibromoethane</td> <td>50.000</td> <td>51.882</td> <td></td> <td>-3.8</td> <td>97</td> <td>0.00</td> <td></td>	57 P	1,2-Dibromoethane	50.000	51.882		-3.8	97	0.00	
601,1,1,2-Tetrachloroethame50.00044.65810.7920.0061 PEthylbenzene50.00044.05711.8890.0062 Pm,p-Xylene100.00089.73110.3900.0063 Po-Xylene50.00044.11111.8890.0065 PBromoform50.00044.50611.0890.0066 PIsopropylbenzene50.00044.50611.0890.00671,2,3-Trichloropropane50.00044.82710.3970.0068 S4-Bromofluorobenzene30.00031.824-6.11090.0069Bromobenzene50.00042.96014.1960.0070 P1,1,2,2-Tetrachloroethane50.00042.96014.1960.0071n-Propylbenzene50.00042.76614.5900.00734-Chlorotoluene50.00042.76614.5900.00741,3,5-Trimethylbenzene50.00039.71920.6#920.00 $\mathcal{Ase} Rl S Rl$ 75tert-Butylbenzene50.00037.846424.3#920.00761,2,4-Trimethylbenzene50.00036.405427.2#910.0078p-Isopropyltoluene50.00036.405427.2#910.0078p-Isopropyltoluene50.00038.543422.9#910.007911,4-	58 I	Chlorobenzene-d5	50.000	50.000		0.0	(105	0.00	
61 PEthylbenzene50.00044.10711.8890.0062 Pm,p-Xylene100.00089.73110.3900.0063 Po-Xylene50.00044.61810.8910.0064 PStyrene50.00044.82710.3970.0065 PBromoform50.00044.82710.3970.0066 PIsopropylbenzene50.00044.82710.3970.00671,2,3-Trichloropropane50.00041.44017.1990.0068 S4-Bromofluorobenzene30.00044.88910.2930.0069Bromobenzene50.00042.96014.1960.0070 P1,1,2,2-Tetrachloroethane50.00042.96014.1960.0071n-Propylbenzene50.00042.76614.5900.00734-Chlorotoluene50.00040.88818.2880.00741,3,5-Trimethylbenzene50.00039.71920.6#920.0075tert-Butylbenzene50.00036.40527.2#910.00761,2,4-Trimethylbenzene50.00036.40527.2#910.0078p-Isopropyltoluene50.00036.40542.3#920.0078p-Isopropyltoluene50.00038.54322.9#910.007911,4-Dichlorobenzene50.00038.543422.9#910.	59 P	Chlorobenzene	50.000	43.381		13.2	91	0.00	
61 PEthylbenzene50.00044.10711.8890.0062 Pm,p-Xylene100.00089.73110.3900.0063 Po-Xylene50.00044.61810.8910.0064 PStyrene50.00044.82710.3970.0065 PBromoform50.00044.82710.3970.0066 PIsopropylbenzene50.00044.82710.3970.00671,2,3-Trichloropropane50.00041.44017.1990.0068 S4-Bromofluorobenzene30.00044.88910.2930.0069Bromobenzene50.00042.96014.1960.0070 P1,1,2,2-Tetrachloroethane50.00042.96014.1960.0071n-Propylbenzene50.00042.76614.5900.00734-Chlorotoluene50.00040.88818.2880.00741,3,5-Trimethylbenzene50.00039.71920.6#920.0075tert-Butylbenzene50.00036.40527.2#910.00761,2,4-Trimethylbenzene50.00036.40527.2#910.0078p-Isopropyltoluene50.00036.40542.3#920.0078p-Isopropyltoluene50.00038.54322.9#910.007911,4-Dichlorobenzene50.00038.543422.9#910.	60	1,1,1,2-Tetrachloroethane	50.000	44.658		10.7	92	0.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61 P		50.000	44.107			89		
	62 P	m,p-Xylene	100.000	89.731		10.3	90	0.00	
64 PStyrene50.00044.11111.8920.0065 PBromoform50.00044.82710.3970.0066 PIsopropylbenzene50.00044.82710.3970.00671,2,3-Trichloropropane50.00041.44017.1990.0068 S4-BromofIuorobenzene30.00041.824-6.11090.0069Bromobenzene50.00044.88910.2930.0070 P1,1,2,2-Tetrachloroethane50.00042.96014.1960.0071n-Propylbenzene50.00044.41211.2920.00722-Chlorotoluene50.00044.41211.2920.00734-Chlorotoluene50.00044.88818.2880.00741,3,5-Trimethylbenzene50.00038.477423.0#910.0075tert-Butylbenzene50.00036.405424.3#920.0044.54761,2,4-Trimethylbenzene50.00036.405427.2#910.0044.5478p-Isopropyltoluene50.00038.543422.9#910.0044.5479I1,4-Dichlorobenzene50.00038.543422.9#910.0044.5482P1,2-Dichlorobenzene50.00038.723422.6#930.0044.5479I1,4-Dichlorobenzene50.0							91		
65 PBromoform50.00044.82710.3970.0066 PIsopropylbenzene50.00044.50611.0890.00671,2,3-Trichloropropane50.00041.44017.1990.0068 S4-Bromofluorobenzene30.00031.824-6.11090.0069Bromobenzene50.00044.88910.2930.0070 P1,1,2,2-Tetrachloroethane50.00042.96014.1960.0071n-Propylbenzene50.00044.41211.2920.00722-Chlorotoluene50.00044.41211.2920.00734-Chlorotoluene50.00044.88318.2880.00741,3,5-Trimethylbenzene50.00039.71920.6#920.001.82 Hl75tert-Butylbenzene50.00038.47723.0#910.001.82 Hl761,2,4-Trimethylbenzene50.00037.84624.3#920.001.82 Hl77sec-Butylbenzene50.00040.78918.4930.0078p-Isopropyltoluene50.00040.78918.4930.0080 P1,3-Dichlorobenzene50.00038.54322.9#910.0081 P1,4-Dichlorobenzene50.00038.72322.6#930.0082n-Butylbenzene50.00038.72322.6#930.0083 P1,2-Dichlorobenzene </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-							
66 PIsopropylbenzene50.00044.56611.0890.00671,2,3-Trichloropropane50.00041.44017.1990.0068 S4-Bromofluorobenzene30.00031.824-6.11090.0069Bromobenzene50.00044.88910.2930.0070 P1,1,2,2-Tetrachloroethane50.00042.96014.1960.0071n-Propylbenzene50.00044.81211.2920.00722-Chlorotoluene50.00044.41211.2920.00734-Chlorotoluene50.00044.76614.5900.00741,3,5-Trimethylbenzene50.00038.477423.0#910.0075tert-Butylbenzene50.00038.774423.0#910.00761,2,4-Trimethylbenzene50.00036.405424.3#920.0078p-Isopropyltoluene50.00036.405424.3#920.0080 P1,3-Dichlorobenzene50.00040.78918.4930.0081 P1,4-Dichlorobenzene50.00038.723422.9#910.0082 n-Butylbenzene50.00038.723422.9#910.00483 P1,2-Dichlorobenzene50.00038.723422.9#910.0084 UNTetraethyllead-1.0000.0080.312.312.0#14.5 </td <td>65 P</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	65 P								
671,2,3-Trichloropropane50.00041.44017.1990.0068S4-Bromofluorobenzene30.00031.824-6.11090.0069Bromobenzene50.00044.88910.2930.0070P1,1,2,2-Tetrachloroethane50.00042.96014.1960.0071n-Propylbenzene50.00044.41211.2920.00722-Chlorotoluene50.00044.41211.2920.00734-Chlorotoluene50.00042.76614.5900.00741,3,5-Trimethylbenzene50.00039.719120.6#920.0075tert-Butylbenzene50.00038.47723.0#910.00761,2,4-Trimethylbenzene50.00036.405427.2#910.0078p-Isopropyltoluene50.00040.78918.4930.0080P1,3-Dichlorobenzene50.00038.54322.9#910.0081P1,4-Dichlorobenzene50.00038.54322.9#910.0082n-Butylbenzene50.00038.72322.6#930.0083P1,2-Dichlorobenzene50.00038.72322.6#930.0084UNTetraethyllead-1.0000.0000.00.0185P1,2-Dichlorobenzene50.00037.941424.1#910.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
68 S4-BromofIuorobenzene30.00031.824-6.11090.0069Bromobenzene50.00044.88910.2930.0070 P1,1,2,2-Tetrachloroethane50.00042.96014.1960.0071n-Propylbenzene50.00041.15217.7900.00722-Chlorotoluene50.00044.41211.2920.00734-Chlorotoluene50.00042.76614.5900.00741,3,5-Trimethylbenzene50.00039.719120.6#920.0075tert-Butylbenzene50.00038.477123.0#910.00761,2,4-Trimethylbenzene50.00037.846124.3#920.0078p-Isopropyltoluene50.00036.40527.2#910.0080 P1,3-Dichlorobenzene-d450.00050.0000.01100.0081 P1,4-Dichlorobenzene50.00040.78918.4930.0082n-Butylbenzene50.00038.54322.9#910.00183 P1,2-Dichlorobenzene50.00038.72322.6#930.00184 UNTetraethyllead-1.0000.006.00.001185 P1,2,4-Trichlorobenzene50.00040.55718.3920.0086 P1,2,4-Trichlorobenzene50.00040.55718.9920.0088 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
69Bromobenzene50.00044.88910.2930.0070P1,1,2,2-Tetrachloroethane50.00042.96014.1960.0071n-Propylbenzene50.00041.15217.7900.00722-Chlorotoluene50.00044.41211.2920.00734-Chlorotoluene50.00042.76614.5900.00741,3,5-Trimethylbenzene50.00040.88818.2880.0075tert-Butylbenzene50.00038.47723.0#910.00761,2,4-Trimethylbenzene50.00037.84624.3#920.0077sec-Butylbenzene50.00036.40527.2#910.0078p-Isopropyltoluene50.00040.78918.4930.0080P1,3-Dichlorobenzene50.00038.54322.9#910.0081P1,4-Dichlorobenzene50.00038.72322.6#930.0082n-Butylbenzene50.00038.72322.6#930.00183P1,2-Dichlorobenzene50.00038.72322.6#930.0084UNTetraethyllead-1.0000.008.3920.0085P1,2,3-Trichlorobenzene50.00037.94124.1#910.0086P1,2,4-Trichlorobenzene50.00037.94124.1#910.0088 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
70 P1,1,2,2-Tetrachloroethane50.00042.96014.1960.0071n-Propylbenzene50.00041.15217.7900.00722-Chlorotoluene50.00044.41211.2920.00734-Chlorotoluene50.00042.76614.5900.00741,3,5-Trimethylbenzene50.00040.88818.2880.0075tert-Butylbenzene50.00039.71920.6#920.00ree RL 5 + d761,2,4-Trimethylbenzene50.00038.47723.0#910.00dee77sec-Butylbenzene50.00036.40527.2#910.00dee78p-Isopropyltoluene50.00050.0000.01100.00dee80 P1,3-Dichlorobenzene50.00040.78918.4930.0081 P1,4-Dichlorobenzene50.00038.54322.9#910.00ref82n-Butylbenzene50.00038.543422.9#910.00ref83 P1,2-Dichlorobenzene50.00038.723422.6#930.00ref84 UNTetraethyllead-1.0000.000.00.000.00ref85 P1,2-Oibromo-3-Chloropropane50.00037.941424.1#910.00ref86 P1,2,3-Trichlorobenzene50.00037.941424.1#910.00ref88<									
71n-Propylbenzene50.00041.15217.7900.00722-Chlorotoluene50.00044.41211.2920.00734-Chlorotoluene50.00042.76614.5900.00741,3,5-Trimethylbenzene50.00040.88818.2880.0075tert-Butylbenzene50.00039.719120.6#920.00761,2,4-Trimethylbenzene50.00038.47723.0#910.0077sec-Butylbenzene50.00036.40527.2#910.0078p-Isopropyltoluene50.00050.0000.01100.0080P1,3-Dichlorobenzene50.00042.24915.5940.0081P1,4-Dichlorobenzene50.00038.54322.9#910.00k82n-Butylbenzene50.00038.72322.6#930.00k83P1,2-Dichlorobenzene50.00040.85618.3920.0084UNTetraethyllead-1.0000.000.00.0kk85P1,2-Dibromo-3-Chloropropane50.00037.94124.1#910.00k86P1,2,3-Trichlorobenzene50.00037.94124.1#910.00kk88Hexachlorobutadiene50.00035.12829.7#890.00M									
722-Chlorotoluene50.00044.41211.2920.00734-Chlorotoluene50.00042.76614.5900.00741,3,5-Trimethylbenzene50.00040.88818.2880.0075tert-Butylbenzene50.00039.719120.6#920.00761,2,4-Trimethylbenzene50.00038.477123.0#910.0077sec-Butylbenzene50.00036.40527.2#910.00178p-Isopropyltoluene50.00050.0000.01100.0080P1,3-Dichlorobenzene50.00040.78918.4930.0081P1,4-Dichlorobenzene50.00038.723122.6#930.0082n-Butylbenzene50.00038.723122.6#930.00183P1,2-Dichlorobenzene50.00040.85618.3920.0084UNTetraethyllead-1.0000.000.00.001185P1,2,4-Trichlorobenzene50.00037.941424.1#910.00186P1,2,4-Trichlorobenzene50.00037.941424.1#910.00188Hexachlorobutadiene50.00037.941424.1#910.001									
734-Chlorotoluene50.00042.76614.5900.00741,3,5-Trimethylbenzene50.00040.88818.2880.0075tert-Butylbenzene50.00039.719120.6#920.00 $ee Rl \leq Hl$ 761,2,4-Trimethylbenzene50.00038.477123.0#910.0077sec-Butylbenzene50.00036.405424.3#920.0078p-Isopropyltoluene50.00036.405427.2#910.0079I1,4-Dichlorobenzene-d450.00050.0000.01100.0080P1,3-Dichlorobenzene50.00040.78918.4930.0081P1,4-Dichlorobenzene50.00038.543422.9#910.0082n-Butylbenzene50.00038.723422.6#930.0083P1,2-Dichlorobenzene50.00040.85618.3920.0084UNTetraethyllead-1.0000.0000.00.001685P1,2,4-Trichlorobenzene50.00037.941424.1#910.0086P1,2,3-Trichlorobenzene50.00038.73718.9920.0088Hexachlorobutadiene50.00035.128429.7#890.00									
741,3,5-Trimethylbenzene50.00040.88818.2880.0075tert-Butylbenzene50.000 39.719 4 $20.6\#$ 92 0.00 ee $kl \leq td$ 761,2,4-Trimethylbenzene 50.000 38.477 k $23.0\#$ 91 0.00 77sec-Butylbenzene 50.000 37.846 k $24.3\#$ 92 0.00 78p-Isopropyltoluene 50.000 36.405 k $27.2\#$ 91 0.00 78p.Isopropyltoluene 50.000 50.000 0.0 110 0.00 80P1,3-Dichlorobenzene-d4 50.000 40.789 18.4 93 0.00 81P1,4-Dichlorobenzene 50.000 40.789 18.4 93 0.00 82n-Butylbenzene 50.000 38.543 4 $22.9#$ 91 0.00 $kl \leq fel$ 83P1,2-Dichlorobenzene 50.000 40.789 18.4 93 0.00 $kl \leq fel$ 84UNTetraethyllead -1.000 0.000 0.0 0.00 $kl \leq fel$ 85P1,2-Dibromo-3-Chloropropane 50.000 40.856 18.3 92 0.00 86P1,2,4-Trichlorobenzene 50.000 40.537 18.9 92 0.00 88Hexachlorobutadiene 50.000 35.128 4 $29.7#$ 89 0.00	-								
75tert-Butylbenzene50.000 39.719 1 $20.6\#$ 92 0.00 xee $Rl 5 + d$ 76 $1,2,4$ -Trimethylbenzene 50.000 38.477 $23.0\#$ 91 0.00 77sec-Butylbenzene 50.000 37.846 $24.3\#$ 92 0.00 78p-Isopropyltoluene 50.000 36.405 $27.2\#$ 91 0.00 79I $1,4$ -Dichlorobenzene-d4 50.000 50.000 0.0 110 0.00 80P $1,3$ -Dichlorobenzene 50.000 42.249 15.5 94 0.00 81P $1,4$ -Dichlorobenzene 50.000 40.789 18.4 93 0.00 82n-Butylbenzene 50.000 38.543 4 $22.9#$ 91 0.00 Me 83P $1,2$ -Dichlorobenzene 50.000 38.723 4 $22.6#$ 93 0.00 84UNTetraethyllead -1.000 0.000 0.0 0.00 $4e$ 85P $1,2,4$ -Trichlorobenzene 50.000 37.941 4 $24.1#$ 91 0.00 86P $1,2,3$ -Trichlorobenzene 50.000 40.537 18.9 92 0.00 88Hexachlorobutadiene 50.000 35.128 4 $29.7#$ 89 0.00									
761,2,4-Trimethylbenzene50.000 38.477 $23.0#$ 91 0.00 77 sec-Butylbenzene 50.000 37.846 $24.3#$ 92 0.00 78 p-Isopropyltoluene 50.000 36.405 $27.2#$ 91 0.00 79 1,4-Dichlorobenzene-d4 50.000 50.000 0.0 110 0.00 80 P1,3-Dichlorobenzene 50.000 42.249 15.5 94 0.00 81 P1,4-Dichlorobenzene 50.000 40.789 18.4 93 0.00 82 n-Butylbenzene 50.000 38.543 4 $22.9#$ 91 0.00 82 n-Butylbenzene 50.000 38.723 4 $22.6#$ 93 0.00 84 UNTetraethyllead -1.000 0.000 0.0 0.00 85 P1,2-Dibromo-3-Chloropropane 50.000 37.941 4 $24.1#$ 91 0.00 86 P1,2,3-Trichlorobenzene 50.000 40.537 18.9 92 0.00 88 Hexachlorobutadiene 50.000 35.128 4 $29.7#$ 89 0.00		· · · ·			1			0.00	and RIStol
77sec-Butylbenzene p-Isopropyltoluene50.00037.846 4 24.3#920.0078p-Isopropyltoluene50.00036.405 4 27.2#910.0079I1,4-Dichlorobenzene-d450.00050.000 0.0 110 0.00 80P1,3-Dichlorobenzene50.000 42.249 15.5 94 0.00 81P1,4-Dichlorobenzene 50.000 40.789 18.4 93 0.00 82n-Butylbenzene 50.000 38.543 4 $22.9#$ 91 0.00 k 83P1,2-Dichlorobenzene 50.000 38.723 4 $22.6#$ 93 0.00 84UNTetraethyllead -1.000 0.000 0.0 0.00 85P1,2-Dibromo-3-Chloropropane 50.000 40.856 18.3 92 0.00 86P1,2,4-Trichlorobenzene 50.000 40.537 18.9 92 0.00 88Hexachlorobutadiene 50.000 35.128 4 $29.7#$ 89 0.00		-							
78p-Isopropyltoluene50.000 36.405 4 $27.2\#$ 91 0.00 d 79I1,4-Dichlorobenzene-d4 50.000 50.000 0.0 110 0.00 80P1,3-Dichlorobenzene 50.000 42.249 15.5 94 0.00 81P1,4-Dichlorobenzene 50.000 40.789 18.4 93 0.00 82n-Butylbenzene 50.000 38.543 4 $22.9#$ 91 0.00 $M \times M \times$									/
79 I1,4-Dichlorobenzene-d450.00050.0000.01100.0080 P1,3-Dichlorobenzene50.00042.24915.5940.0081 P1,4-Dichlorobenzene50.00040.78918.4930.0082 n-Butylbenzene50.00038.543 \downarrow 22.9#910.00 \mathcal{M} 83 P1,2-Dichlorobenzene50.00038.723 \downarrow 22.6#930.00 ι 84 UNTetraethyllead-1.0000.0000.000.00 ι ι 85 P1,2-Dibromo-3-Chloropropane50.00037.941 \downarrow 24.1#910.00 ι ι 86 P1,2,4-Trichlorobenzene50.00040.53718.9920.0088Hexachlorobutadiene50.00035.128 \downarrow 29.7#890.00					1				X
80 P1,3-Dichlorobenzene50.00042.24915.5940.0081 P1,4-Dichlorobenzene50.00040.78918.4930.0082n-Butylbenzene50.00038.543 \checkmark 22.9#910.00 Me 83 P1,2-Dichlorobenzene50.00038.723 \checkmark 22.6#930.00 \checkmark 84 UNTetraethyllead-1.0000.0000.000.0085 P1,2-Dibromo-3-Chloropropane50.00040.85618.3920.0086 P1,2,4-Trichlorobenzene50.00037.941 \checkmark 24.1#910.00 Me 871,2,3-Trichlorobenzene50.00040.53718.9920.0088Hexachlorobutadiene50.00035.128 \checkmark 29.7#890.00	10	p-isopropyicoidene	50.000	50,405	•	27.21	+ 91	0.00	-
81 P1,4-Dichlorobenzene50.00040.78918.4930.0082n-Butylbenzene50.00038.543 \checkmark 22.9#910.00 Me $KLSFel$ 83 P1,2-Dichlorobenzene50.00038.723 \checkmark 22.6#930.00 k 84 UNTetraethyllead-1.0000.0000.000.0085 P1,2-Dibromo-3-Chloropropane50.00040.85618.3920.0086 P1,2,4-Trichlorobenzene50.00037.941 \checkmark 24.1#910.00 $Me \in KLSFel$ 871,2,3-Trichlorobenzene50.00040.53718.9920.0088Hexachlorobutadiene50.00035.128 \checkmark 29.7#890.00	79 I	1,4-Dichlorobenzene-d4	50.000	50.000		0.0	(110	/ 0.00	
81 P1,4-Dichlorobenzene50.00040.78918.4930.0082n-Butylbenzene50.00038.543 \checkmark 22.9#910.00 Me $KLSFel$ 83 P1,2-Dichlorobenzene50.00038.723 \checkmark 22.6#930.00 k 84 UNTetraethyllead-1.0000.0000.000.0085 P1,2-Dibromo-3-Chloropropane50.00040.85618.3920.0086 P1,2,4-Trichlorobenzene50.00037.941 \checkmark 24.1#910.00 $Me \in KLSFel$ 871,2,3-Trichlorobenzene50.00040.53718.9920.0088Hexachlorobutadiene50.00035.128 \checkmark 29.7#890.00	80 P	1,3-Dichlorobenzene	50.000	42.249		15.5	94	0.00	
82n-Butylbenzene50.000 38.543 4 $22.9#$ 91 0.00 $M2.22572$ 83 P1,2-Dichlorobenzene 50.000 38.723 4 $22.6#$ 93 0.00 4 84 UNTetraethyllead -1.000 0.000 0.0 0.00 4 85 P1,2-Dibromo-3-Chloropropane 50.000 40.856 18.3 92 0.00 86 P1,2,4-Trichlorobenzene 50.000 37.941 4 $24.1#$ 91 0.00 Aee 871,2,3-Trichlorobenzene 50.000 40.537 18.9 92 0.00 88Hexachlorobutadiene 50.000 35.128 4 $29.7#$ 89 0.00	81 P		50,000	40.789		18.4	93	0.00	
83 P 1,2-Dichlorobenzene 50.000 38.723 22.6# 93 0.00 6 84 UN Tetraethyllead -1.000 0.000 0.0 0 0.00 85 P 1,2-Dibromo-3-Chloropropane 50.000 40.856 18.3 92 0.00 86 P 1,2,4-Trichlorobenzene 50.000 37.941 24.1# 91 0.00 1ee Ric Stell 87 1,2,3-Trichlorobenzene 50.000 40.537 18.9 92 0.00 88 Hexachlorobutadiene 50.000 35.128 29.7# 89 0.00 WT	82			38.543				0.00 1	ie LLSTO
84 UN Tetraethyllead -1.000 0.000 0.0 0.00 85 P 1,2-Dibromo-3-Chloropropane 50.000 40.856 18.3 92 0.00 86 P 1,2,4-Trichlorobenzene 50.000 37.941 24.1# 91 0.00 100 100 87 1,2,3-Trichlorobenzene 50.000 40.537 18.9 92 0.00 88 Hexachlorobutadiene 50.000 35.128 29.7# 89 0.00 WT	83 P							0.00	4
85 P1,2-Dibromo-3-Chloropropane50.00040.85618.3920.0086 P1,2,4-Trichlorobenzene50.00037.941 \downarrow 24.1#910.00see $Ric Stef$ 871,2,3-Trichlorobenzene50.00040.53718.9920.0088Hexachlorobutadiene50.00035.128 \downarrow 29.7#890.00					•				
86 P1,2,4-Trichlorobenzene50.000 37.941 \checkmark $24.1\#$ 91 0.00 see $lt S + cl$ 871,2,3-Trichlorobenzene50.000 40.537 18.992 0.00 88Hexachlorobutadiene 50.000 35.128 $429.7\#$ 89 0.00									
87 1,2,3-Trichlorobenzene 50.000 40.537 18.9 92 0.00 88 Hexachlorobutadiene 50.000 35.128 29.7# 89 0.00 0////		• •			1				ee Kistof
88 Hexachlorobutadiene 50.000 35.128 ↓ 29.7# 89 0.00 NT									,
									NT
89 Naphthalene 50.000 41.845 16.3 90 0.00	89	Naphthalene				16.3			- /

211208.M Mon Dec 13 11:33:54 2021

Data Path : D:\MassHunter\GCMS\1\data\211213\ Data File 🗄 z06009.D Acq On : 13 Dec 2021 11:14 am Operator : Bill Brew Sample : 50ppb mega CC Misc 1 ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 13 11:32:00 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200% Compound Amount Calc. %Dev Area% Dev(min) (#) = Out of Range SPCC's out = 0 CCC's out = 0

Data Path # D:\MassHunter\GCMS\1\data\211213\ Data File : z06009.D Acq On : 13 Dec 2021 11:14 am Operator : Bill Brew Sample : 50ppb mega CC Misc 2 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Dec 13 11:32:00 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

		Compound	AvgRF	CCRE	%Dev Ar	rea% [)ev(min)
1	I	Fluorobenzene	1.000	1.000	0.0	93	0.00
2	Р	Dichlorodifluoromethane	0.158	0.141	10.8	86	0.00
-	Ρ	Chloromethane	0.164	0.142	13.4	88	0.00
4	Р	Vinyl chloride	0.215	0.209	2.8	92	0.00
5	Р	Bromomethane	0.164	0.147	10.4	94	0.00
6		Chloroethane	0.110	0.105	4.5	91	0.00
7	Р	Trichlorofluoromethane	0.453	0.452	0.2	91	0.00
8		Ethyl ether	0.170	0.164	3.5	93	0.00
9		Freon 113	0.289	0.288	0.3	91	0.00
10		1,1-Dichloroethene	0.433	0.420	3.0	90	0.00
11	Р	Acetone	0.170	0.146	14.1	94	0.00
12		Isopropyl Alcohol	0.000	0.000	0.0	0#	0.01
13	-	Carbon disulfide	0.864	0.819	5.2	90	0.00
14		Methyl acetate	0.079	0.087#	-10.1	97	0.00
15	P	Methylene chloride	0.237	0.230	3.0	94	0.00
16		Acrylonitrile	0.050	0.051	-2.0	95	0.00
17		tert-Butyl Alcohol	0.027	0.026	3.7	98	0.00
18		Methyl tert-butyl Ether	0.533	0,507	4.9	94	0.00
19		trans-1,2-Dichloroethene	0.398	0.394	1.0	91	0.00
20	Ρ	1,1-Dichloroethane	0.491	0.479	2.4	92	0.00
21		Vinyl acetate	0.195	0.187	4.1	90	0.00
22		2,2-Dichloropropane	0.358	0.351	2.0	91	0.00
23		2-Butanone	0.049	0.048#	2.0	96	0.00
24	Р	cis-1,2-Dichloroethene	0.338	0.327	3.3	92	0.00
25		Bromochloromethane	0.155	0.157	-1.3	97	0.00
26		Chloroform	0.510	0.504	1.2	93	0.00
27	S	Pentafluorobenzene	0.633	0.684	-8.1	101	0.00
28		Tetrahydrofuran	0.054	0.055	-1.9	95	0.00
29		1,1,1-Trichloroethane	0.442	0.442	0.0	92	0.00
30		Cyclohexane	0.479	0.476	0.6	91	0.00
31		1,2-Dichloroethane-d4	0,221	0.237	-7.2	101	0.00
32		Carbon Tetrachloride	0.410	0.416	-1.5	94	0.00
33	•	Benzene	1.139	1.127	1.1	93	0.00
34		1,2-Dichloroethane	0.324	0.324	0.0	95	0.00
35	Р	Trichloroethene	0.365	0.360	1.4	93	0.00
36		tert-Butyl Acetate	0.000	0.018	0.0	0#	0.20
37	Р	Methylcyclohexane	0.531	0.522	1.7	90	0.00
38		1,4-Dioxane	0.003	0.002	33.3#	90	-0.01
39		Ethyl acetate	0.000	0.000	0.0	0#	0.00
40		1,2-Dichloropropane	0.286	0.286	0.0	93	0.00
41	UN	Isobutyl alcohol	0.000	0.000	0.0	0#	0.00
42		Dibromomethane	0.155	0.157	-1.3	95	0.00
43	Р	Bromodichloromethane	0.368	0.369	-0.3	94	0.00
44		2-Chloroethyl vinyl Ether	0.001	0.001	0.0	91	0.00
45	UN	Isopropyl acetate	0.000	0.000	0.0		-0.06
46		1,1-Dichloropropene	0.409	0.405	1.0	92	0.00

12/13/21 BB

211208.M Mon Dec 13 11:34:01 2021

Page 1

Data Path : D:\MassHunter\GCMS\1\data\211213\ Data File : z06009.D Acq On : 13 Dec 2021 11:14 am Operator : Bill Brew Sample : 50ppb mega CC Misc : ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 13 11:32:00 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M

Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

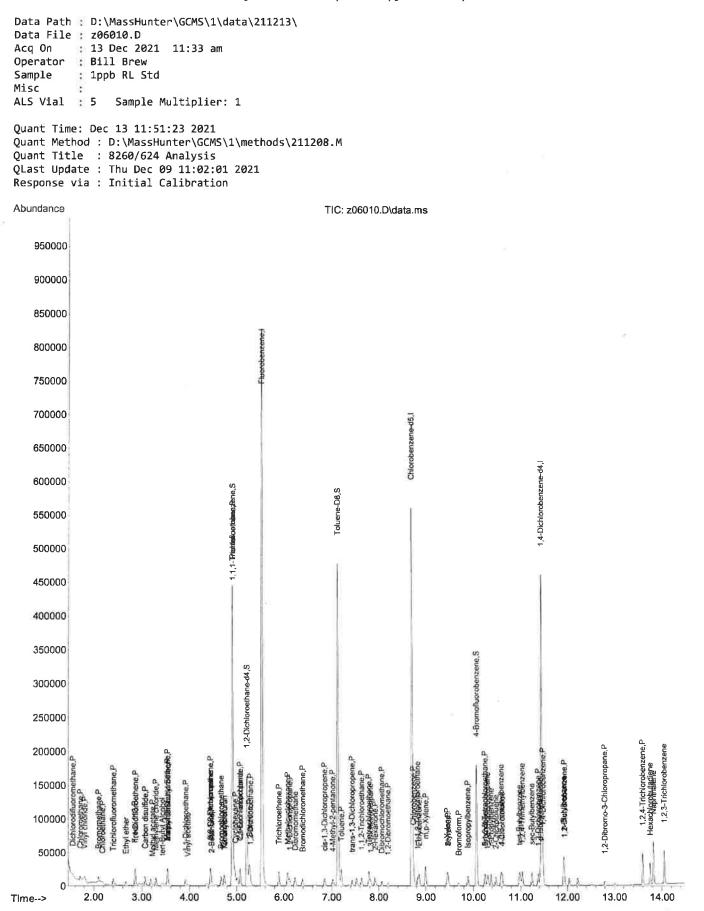
		Compound	AvgRF	CCRF	%Dev Ar	ea%	Dev(min)
47	Ρ	cis-1,3-Dichloropropene	0.405	0.401	1.0	93	0.00
48	Ρ	4-Methyl-2-pentanone	0.085	0.088#	-3.5	97	0.00
49	S	Toluene-D8	0.742	0.811	-9.3	100	0.00
50	Ρ	Toluene	1.021	1.035	-1.4	92	0.00
51	Ρ	trans-1,3-Dichloropropene	0.310	0.310	0.0	93	0.00
52	Р	1,1,2-Trichloroethane	0.209	0,213	-1.9	96	0.00
53		1,3-Dichloropropane	0.291	0.298	-2.4	95	0.00
54	Ρ	Tetrachloroethene	0.382	0.387	-1.3	94	0.00
55	Ρ	2-Hexanone	0.220	0.216	1.8	89	0.00
56	Ρ	Dibromochloromethane	0.251	0.264	-5.2	96	0.00
57	Ρ	1,2-Dibromoethane	0.179	0.186	-3.9	97	0.00
58		Chlorobenzene-d5	1.000	1.000	0.0	105	0.00
59	Р	Chlorobenzene	1.240	1,076	13.2	91	0.00
60		1,1,1,2-Tetrachloroethane	0.503	0.449	10.7	92	0,00
61		Ethylbenzene	1.669	1.473	11.7	89	0.00
62		m,p-Xylene	0.580	0.520	10.3	90	0.00
63		o-Xylene	0.517	0.462	10.6	91	0.00
64		Styrene	0.770	0.679	11.8	92	0.00
65	Р	Bromoform	0.290	0.260	10.3	97	0.00
66	Р	Isopropylbenzene	1.273	1.133	11.0	89	0.00
67		1,2,3-Trichloropropane	0.099	0.082	17.2	99	0.00
68	S	4-Bromofluorobenzene	0.259	0.275	-6.2	109	0,00
69		Bromobenzene	0.402	0.361	10.2	93	0.00
70	Ρ	1,1,2,2-Tetrachloroethane	0.368	0.316	14.1	96	0.00
71		n-Propylbenzene	1.381	1.137	17.7	90	0.00
72		2-Chlorotoluene	0.325	0.289	11.1	92	0.00
73		4-Chlorotoluene	0.317	0.271	14.5	90	0.00
74		1,3,5-Trimethylbenzene	1.065	0.871	18.2	88	0.00
75		tert-Butylbenzene	0.229	0.182	20.5#	92	0.00
76		1,2,4-Trimethylbenzene	1.129	0.868	23.1#	91	0.00
77		sec-Butylbenzene	1.239	0.938	24.3#	92	0.00
78		p-Isopropyltoluene	1.275	0.928	27.2#	91	0.00
79	I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0	110	0.00
80		1,3-Dichlorobenzene	2.299	1.942	15.5	94	0.00
81	Ρ	1,4-Dichlorobenzene	2.342	1.911	18.4	93	0.00
82		n-Butylbenzene	4.665	3.596	22.9#	91	0.00
83	Ρ	1,2-Dichlorobenzene	2.322	1.798	22.6#	93	0.00
84	UN	Tetraethyllead	0.000	0.000	0.0	0#	0.00
85	Ρ	1,2-Dibromo-3-Chloropropane	0.451	0.368	18.4	92	0.00
86	Р	1,2,4-Trichlorobenzene	2.621	1.989	24.1#	91	0.00
87		1,2,3-Trichlorobenzene	2.701	2.189	19.0	92	0.00
88		Hexachlorobutadiene	1.438	1.010	29.8#	89	0.00
89		Naphthalene	6.416	5.370	16.3	90	0.00
88		Hexachlorobutadiene	1.438 6.416	1.010 5.370	29.8#		89

211208.M Mon Dec 13 11:34:01 2021

Page 2

Data Path : D:\MassHunter\GCMS\1\data\211213\ Data File : z06009.D Acq On : 13 Dec 2021 11:14 am Operator : Bill Brew Sample : 50ppb mega CC Misc . ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 13 11:32:00 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200% AvgRF CCRF %Dev Area% Dev(min) Compound (#) = Out of Range SPCC's out = 3 CCC's out = 0

Data Path : D:\MassHunter\GCM Data File : z06010.D Acq On : 13 Dec 2021 11:3 Operator : Bill Brew Sample : 1ppb RL Std Misc ALS Vial : 5 Sample Multip	3 am	.213\					
Quant Time: Dec 13 11:51:23 2 Quant Method : D:\MassHunter\ Quant Title : 8260/624 Analy QLast Update : Thu Dec 09 11: Response via : Initial Calibr	GCMS\1\methc sis 02:01 2021	ods\2:	11208.M				12/13/21 613
Compound	R.T. ()Ion	Response	Conc Un	its Dev	(Min)	and the second second
Internal Standards							
1) Fluorobenzene	5.531		780007	50.00	-	0.00	
58) Chlorobenzene-d5						0.00	
79) 1,4-Dichlorobenzene-d4	11.450	152	150599	50.00	ug/L	0.00	
System Monitoring Compounds							
27) Pentafluorobenzene	4.914				0.	0.00	
Spiked Amount 30.000	Range 89 -			ry =		0 00	
31) 1,2-Dichloroethane-d4 Spiked Amount 30.000	5.213 Range 78 -	65		33.02 ry =		0.00	
49) Toluene-D8	7.129					0.00	
Spiked Amount 30.000	Range 76 -				104.60%		
68) 4-Bromofluorobenzene	10.068	95		-		0.00	
Spiked Amount 30.000	Range 63 -	133	Recove	ry =	111.10%		
Target Compounds					0v	alue	
2) Dichlorodifluoromethane	1.550	85	2515	1.02	_	91	
3) Chloromethane	1.708		3798	1.65		97	
 Vinyl chloride 	1.801	62	3982	1.19		95	
5) Bromomethane	2.094	94	4391	1.95		96	
6) Chloroethane	2.181	64	2486		-	97	
7) Trichlorofluoromethane 8) Ethyl athon		101	7887	1.12	-	99 70	
8) Ethyl ether 9) Freon 113	2.663 2.856	59 101	3265 5079	1.23 1.13	-	79 96	
10) 1,1-Dichloroethene	2.855		8079		-	97	
11) Acetone	2.943	43	5340			87	
13) Carbon disulfide	3.068	76	16939	1.26	ug/L	99	
14) Methyl acetate	3.219	43	3086		ug/L #	79	
15) Methylene chloride	3.290	84	4788	1.29		89	
16) Acrylonitrile	3.531	53	1236		ug/L #	40	
17) tert-Butyl Alcohol 18) Methyl tert-butyl Ether	3.422 3.537	59 73	8314 8717	19.80	ug/L #	65 98	
19) trans-1,2-Dichloroethen		61	8699	1.40	-	95	
20) 1,1-Dichloroethane	3.914	63	9026	1.18	-	95	
21) Vinyl acetate	3.962	43	3023	0.99		73	
22) 2,2-Dichloropropane	4.444	77	6251	1.12		96	
23) 2-Butanone	4.470	72	447		ug/L #	1	
<pre>24) cis-1,2-Dichloroethene 25) Bromochloromethane</pre>	4.444	96	7517	1.42	-	91	
26) Chloroform	4.669 4.734	128 83	3036 9727	1.20	ug/L #	81 97	
28) Tetrahydrofuran	4.746	42	3372		ug/L #	57	
29) 1,1,1-Trichloroethane	4,917	97	7250		ug/L #	1	
30) Cyclohexane	4.968	56	7750	1.04	-	88	
32) Carbon Tetrachloride	5.071	117	7103		ug/L #	76	
33) Benzene	5.271	78	23731	1.34		97	
34) 1,2-Dichloroethane	5.287	62	6338	1.25	-	97	
35) Trichloroethene	5.891	130	7965	1.40	-	97	
37) Methylcyclohexane 40) 1,2-Dichloropropane	6.078 6.123	83 63	8534 5020	1.03 1.13	-	92 95	
42) Dibromomethane	6.238	93	3121	1.13		95 95	
,	2.250				~ 0 , 0		


211208.M Mon Dec 13 11:51:43 2021

Page 136 of 223

Data Path	:	D:\MassHunter\GCMS\1\data\211213\
Data File	:	z06010.D
Acq On	1	13 Dec 2021 11:33 am
Operator	ŝ	Bill Brew
Sample	:	1ppb RL Std
Misc	:	
ALS Vial		5 Sample Multiplier: 1
Quant Time	::	Dec 13 11:51:23 2021

Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units Dev(Min)	
43)	Bromodichloromethane	6.393	83	6731	1.17 ug/L	95	
46)	1,1-Dichloropropene	5.068	75	7596	1.19 ug/L	92	
47)	cis-1,3-Dichloropropene	6.849	75	6771	1.07 ug/L	98	
48)	4-Methyl-2-pentanone	7.020	58	3147	1.98 ug/L #	70	
50)	Toluene	7.200	91	19088	1.20 ug/L	98	
51)	trans-1,3-Dichloropropene	7.431	75	4863	1.01 ug/L	88	
52)	1,1,2-Trichloroethane	7.631	97	3776	1.16 ug/L	97	
53)	1,3-Dichloropropane	7.824	76	5142	1.13 ug/L	95	
54)	Tetrachloroethene	7.785	166	7593	1.27 ug/L	96	
55)	2-Hexanone	7.917	43	10081	2.93 ug/L	97	
56)	Dibromochloromethane	8,065	129	4403	1.12 ug/L #	95	
57)	1,2-Dibromoethane	8,196	107	3173	1.13 ug/L	92	
59)	Chlorobenzene	8.740	112	11514	1.22 ug/L	95	
60)	1,1,1,2-Tetrachloroethane	8,830	131	4037	1.06 ug/L	96	
61)	Ethylbenzene	8,862	91	13458	1.06 ug/L	100	
62)	m,p-Xylene	8,997	106	8901	2.02 ug/L	92	
63)	o-Xylene	9,457	106	4398	1.12 ug/L	93	
64)	Styrene	9.470	104	7249	1.24 ug/L	96	
65)	Bromoform	9,692	173	2597	1.18 ug/L	91	
66)	Isopropylbenzene	9,885	105	10827	1.12 ug/L	93	
67)	1,2,3-Trichloropropane	10.296	110	1194	1.59 ug/L	95	
69) I	Bromobenzene	10.248	156	4540	1.49 ug/L	98	
70) :	1,1,2,2-Tetrachloroethane	10.248	83	3769	1.35 ug/L	98	
71) 1	n-Propylbenzene	10.373	91	16005	1.53 ug/L	97	
	2-Chlorotoluene	10,473	126	3203	1.30 ug/L	92	
73)	4-Chlorotoluene	10.605	126	3760	1.56 ug/L	93	
74)	1,3,5-Trimethylbenzene	10,586	105	10850	1.34 ug/L	99	
75) 1	tert-Butylbenzene	10.971	134	2638	1.52 ug/L	97	OKIFND
76) :	1,2,4-Trimethylbenzene	11.032	105	13080	1.53 ug/L	99	1
77) :	sec-Butylbenzene	11.238	105	15147	1.61 ug/L	99	~
78)	p-Isopropyltoluene	11.415	119	14559	1.50 ug/L	97	~
80)	1,3-Dichlorobenzene	11.376	146	9905	1.43 ug/L	95	
81) :	1,4-Dichlorobenzene	11.479	146	10501	1.49 ug/L #	76	16 17
82) 1	n-Butylbenzene	11.917	91	20285	1.44 ug/L	97	OKiFND
83) :	1,2-Dichlorobenzene	11.933	146	11121	1.59 ug/L	93	4
	1,2-Dibromo-3-Chloropr	12.798	157	1923	1.42 ug/L #	82	
	1,2,4-Trichlorobenzene	13.598	180	14372	1.82 ug/L	97	OKIEND
	1,2,3-Trichlorobenzene	14.052	180	16540	2.03 ug/L	97	
88) I	Hexachlorobutadiene	13.753	225	6552	1.51 ug/L .	97	
	Naphthalene	13.827	128	48650	2.52 ug/L	99	

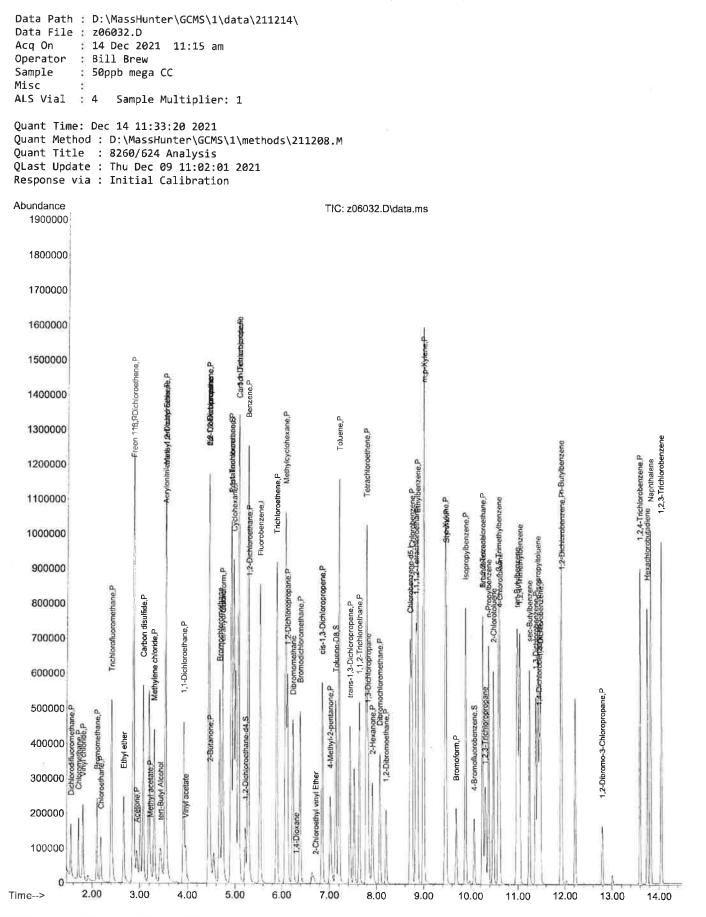
211208.M Mon Dec 13 11:51:44 2021

Page: 3

Data Acq O	itor : Bill Brew)21 11: 1!		11214\					
ALS V	/ial 4 Sampl	e Multip	lier: 1						
Quant Quant QLast	Time: Dec 14 11 Method : D:\Mas Title : 8260/6 Update : Thu De nse via : Initia	sHunter\0 24 Analys c 09 11:0	GCMS\1\met sis 02:01 2021		11208.M				12/14/21 151
	Compound				Response			• •	
	rnal Standards								
	Fluorobenzene	_	5.531		800638	50.00		0.00	
	Chlorobenzene-d		8.708		444892	50.00		0.00	
/9)	1,4-Dichloroben	zene-a4	11.450	152	132147	50.00	ug/L	0.00	
Syste	em Monitoring Co	mpounds						22	
	Pentafluorobenzo	ene	4.914	168	329067	32.45	ug/L	0.00	
		30.000	Range 89				108.1		
	1,2-Dichloroeth		5.213		107759	39.39		0.00	
	iked Amount : Toluene-D8	30.000	Range 78 7.129	- 132	Recov 390048	32.82	101.3	0.00	
		30,000	Range 76				109.4		
	4-Bromofluorobe		10.065		68533	29 73		0/00	
			Range 63				99.1		
Ŧ									
	et Compounds Dichlorodifluoro	amathana	1 550	0.5	124062	40.00		Qvalue	
	Chloromethane	omechane	1.550 1.708	85 50	124862	49.28		98	
	Vinyl chloride		1.801	62	130144 187652	55.89 54.62		99 96	
	Bromomethane		2.094		133278	59.31		98	
6)	Chloroethane		2.181	64	96860	55.21		99	
	Trichlorofluorom	nethane	2.402	101	414816	57.20		99	
	Ethyl ether		2.660	59	145096	53.43	U .	93	
	Freon 113		2.856	101	263121	56.79	-	98	
	1,1-Dichloroethe	ene	2.862	61	383621	55.32	-	97	
	Carbon disulfide	2	2.933 3.068	43 76	748611		-	99	
	Methyl acetate	-	3.209	43	73505	57.91		97	
	Methylene chlori	ide	3.290	84	207401	54.61		95	
16)	Acrylonitrile		3.528	53	48230	60.23		97	
	tert-Butyl Alcoh		3.425	59	223751	519.02	ug/L	96	
	Methyl tert-buty		3.534	73	446458	52.36		95	
	trans-1,2-Dichlo			61	362022	56.74		94	
	1,1-Dichloroetha Vinyl acetate	me	3.914 3.955	63 43	436764 160856	55.58 51.53		98	
	2,2-Dichloroprop	bane	4.444	43 77	326345	56.96		93 96	
	2-Butanone		4.470	72		T 55.88		20	
	cis-1,2-Dichlord		4.444	96	297848	54.97		95	
	Bromochlorometha	ane	4.669	128	136678	55.22			
	Chloroform		4.734	83	452554	55.38		100	
	Tetrahydrofuran	than	4.727	42	98039	113.46		96	
•	1,1,1-Trichloroe Cyclohexane	ernane	4.914	97 56	401578	56.72		98 # 92	
	Carbon Tetrachlo	oride	4.965 5.071	56 117	435225 377799	56.71 57.50			
	Benzene		5.271	78	1022110	56.06		# 68 98	
	1,2-Dichloroetha	ine	5.287	62	279932	54.00		90 99	
	Trichloroethene		5.888	130	329668	56.36		98	
55,				83	483614	56.89		95	
	Methylcyclohexan	e	6.078	65	403014	20.03	ugy L		
37) 38)	Methylcyclohexan 1,4-Dioxane 1,2-Dichloroprop		6.306	88		τ 53.60	ug/L		

211208.M Tue Dec 14 11:35:24 2021

Page 1


Data Path : D:\MassHunter\GCMS\1\data\211214\ Data File : z06032.D Acq On : 14 Dec 2021 11:15 am Operator : Bill Brew Sample : 50ppb mega CC Misc : ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 14 11:33:20 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M

Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
42) Dibromomethane	6.238	93	136673	55.09 ug/L	96
Bromodichloromethane	6.389	83	325728	55.28 ug/L	99
44) 2-Chloroethyl vinyl Ether	6.711	63	622	51.44 ug/L #	43
46) 1,1-Dichloropropene	5.068	75	372653	56.88 ug/L	97
47) cis-1,3-Dichloropropene	6.846	75	359583	55.51 ug/L	96
48) 4-Methyl-2-pentanone	7.016	58	81143	55.51 ug/L #	77
50) Toluene	7.200	91	944461	57.75 ug/L	100
51) trans-1,3-Dichloropropene	7.431	75	272477	54.91 ug/L	97
52) 1,1,2-Trichloroethane	7.634	97	183769	54.81 ug/L	98
53) 1,3-Dichloropropane	7.817	76	256637	55.16 ug/L	99
54) Tetrachloroethene	7.785	166	352668	57.62 ug/L	99
55) 2-Hexanone	7.910	43	219359	62.17 ug/L	99
56) Dibromochloromethane	8.065	129	227147	56.49 ug/L	99
57) 1,2-Dibromoethane	8.196	107	160767	55.97 ug/L	100
59) Chlorobenzene	8.740	112	536192	48.60 ug/L	97
60) 1,1,1,2-Tetrachloroethane	8.833	131	225023	50.28 ug/L	98
61) Ethylbenzene	8.862	91	753391	50.72 ug/L	98
62) m,p-Xylene	8.997	106	535582	103.82 ug/L	100
63) o-Xylene	9.454	106	232002	50.41 ug/L	97
64) Styrene	9.470	104	345686	50.46 ug/L	99
65) Bromoform	9.688	173	122984	47.59 ug/L	99
66) Isopropylbenzene	9.885	105	591750	52.25 ug/L	99
67) 1,2,3-Trichloropropane	10.296	110	39794	45.31 ug/L	93
69) Bromobenzene	10.245	156	180525	50.43 ug/L	93
70) 1,1,2,2-Tetrachloroethane	10.245	83	150817	46.11 ug/L	99
71) n-Propylbenzene	10.370	91	594986	48.42 ug/L	97
72) 2-Chlorotoluene	10.476	126	148061	51.21 ug/L	97
73) 4-Chlorotoluene	10.605	126	141288	50.06 ug/L	95
74) 1,3,5-Trimethylbenzene	10.582	105	462167	48.76 ug/L	99
75) tert-Butylbenzene	10.975	134	94974	46.67 ug/L	95
76) 1,2,4-Trimethylbenzene	11.032	105	455553	45.37 ug/L	99
77) sec-Butylbenzene	11.238	105	492568	44.68 ug/L	98
78) p-Isopropyltoluene	11.418	119	489475	43.16 ug/L	98
80) 1,3-Dichlorobenzene	11.373	146	274576	45.19 ug/L	98
81) 1,4-Dichlorobenzene	11.479	146	274385	44.33 ug/L	98
82) n-Butylbenzene	11.913	91	535309	43.42 ug/L	98
83) 1,2-Dichlorobenzene	11.930	146	259504	42.29 ug/L	99
85) 1,2-Dibromo-3-Chloropr	12.794	157	54633	45.88 ug/L	98
86) 1,2,4-Trichlorobenzene	13.598	180	292666	42.24 ug/L	99
87) 1,2,3-Trichlorobenzene	14,048	180	319466	44.76 ug/L	99
88) Hexachlorobutadiene	13.749	225	154781	40.72 ug/L	99
89) Naphthalene	13.823	128	773740	45.63 ug/L	99
•••••					

(#) = qualifier out of range (m) = manual integration (+) = signals summed

 $\widetilde{\mathbf{x}}$

211208.M Tue Dec 14 11:35:25 2021

Page: 3

Data Path : D:\MassHunter\GCMS\1\data\211214\ Data File : 206032.D Acq On : 14 Dec 2021 11:15 am Operator : Bill Brew Sample : 50ppb mega CC Misc : ALS Vial : 4 Sample Multiplier: 1

Quant Time: Dec 14 11:33:20 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

12/14/21 83

22	2020202010	Compound	Amount	calc.	%Dev Area	% Dev(min)
1	. I	Fluorobenzene	50.000	50.000	0.0 (8	3 0.00
2	P	Dichlorodifluoromethane	50.000	49.281		5 0.00
3	Р	Chloromethane	50.000	55.887		0 0.00
4	Р	Vinyl chloride	50.000	54,621	-	3 0.00
5	Р	Bromomethane	50.000	59.312		4 0.00
6	Р	Chloroethane	50.000	55.213		3 0.00
7	Р	Trichlorofluoromethane	50.000	57.199	-14.4 9	
8		Ethyl ether	50.000	53.425	-6,8 9	
9	Р	Freon 113	50.000	56.785	-13.6 9	
10	Р	1,1-Dichloroethene	50.000	55.319	-10.6 9	
11	Р	Acetone	50.000	58.807	-17.6 8	
12		Isopropyl Alcohol	500.000	0.000	100.0#	0 0.00
13		Carbon disulfide	50.000	54.132	-8.3 9	1 0.00
14		Methyl acetate	50.000	57.914	-15.8 9	1 0.00
15		Methylene chloride	50.000	54.606	-9.2 9	4 0.00
16		Acrylonitrile	50.000	60.233	T -20.5# 9	9 0.00 NT
17		tert-Butyl Alcohol	500.000	519.019	-3.8 9	5 0.00
18		Methyl tert-butyl Ether	50.000	52.357	-4.7 9	2 0.00
19		trans-1,2-Dichloroethene	50.000	56.740	-13.5 9	3 0.00
20	Ρ	1,1-Dichloroethane	50.000	55.579	-11.2 9	3 0.00
21		Vinyl acetate	50.000	51.530	-3.1 8	6 0.00
22	_	2,2-Dichloropropane	50,000	56.958	-13.9 9	4 0.00
23		2-Butanone	50.000	55.879	-11.8 8	
24	Ρ	cis-1,2-Dichloroethene	50.000	54,974	-9.9 9	
25		Bromochloromethane	50,000	55.221	-10.4 9	
26		Chloroform	50.000	55.385	-10.8 9	
27	2	Pentafluorobenzene	30.000	32.455	-8.2 9	
28		Tetrahydrofuran	100,000		-13.5 9	
29		1,1,1-Trichloroethane	50.000	56.724	-13.4 9	
30 31		Cyclohexane	50.000	56.710	-13.4 9	
32	-	1,2-Dichloroethane-d4	30,000	30.389	-1.3 8	
33		Carbon Tetrachloride Benzene	50.000	57.501	-15.0 9	
34		1,2-Dichloroethane	50,000	56.061	-12.1 9	
35		Trichloroethene	50.000	53.997	-8.0 9	
36	τ.	tert-Butyl Acetate	50,000	56.364	-12.7 94	
37	D	Methylcyclohexane	50,000	0.000		0.20
38	•	1,4-Dioxane	50.000	56.887	-13.8 92	
	UN	Ethyl acetate	50.000 -1.000	53.602	-7.2 9	
40		1,2-Dichloropropane	50.000	0.000 55.763		0.00
41		Isobutyl alcohol	-1.000		-11.5 9	
42		Dibromomethane	50.000	0.000 55.088	0.0 (-10.2 9)	0.00
43	Р	Bromodichloromethane	50.000	55.278	-10.2 9	
44	•	2-Chloroethyl vinyl Ether	50.000	55.278	-10.6 9	
45	UN	Isopropyl acetate	-1.000	0.000		0.05 0 -0.05
46		1,1-Dichloropropene	50.000	56.881	-13.8 94	
		,, opene	50.000	20.001	-10.0	

211208.M Tue Dec 14 11:35:28 2021

Data Path : D:\MassHunter\GCMS\1\data\211214\ Data File : z06032.D Acq On : 14 Dec 2021 11:15 am Operator : Bill Brew Sample : 50ppb mega CC Misc ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 14 11:33:20 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound		t Calc.	%Dev	Area%	Dev(min)
47 P		50.000					
47 P 48 P	cis-1,3-Dichloropropene 4-Methyl-2-pentanone	50.000		-11.6		0.00	
40 P 49 S	Toluene-D8	50.000 30.000		-11.6		0.00	
49 3 50 P	Toluene	50.000	32.818 57.748	-9.4 -15.5		0.00	
50 P	trans-1,3-Dichloropropene	50.000		-15.5		0.00	
51 P	1,1,2-Trichloroethane	50.000		-9.6		0.00 0.00	
52 1	1,3-Dichloropropane	50.000		-10.3		0.00	
54 P	Tetrachloroethene	50.000		-10.2			
55 P	2-Hexanone	50.000		-	3# 101	0.00	OKIFND
56 P	Dibromochloromethane	50.000		-13.0		0.00	
57 P	1,2-Dibromoethane	50.000	55.965	-11.9		0.00	
57 1	192 Dibionoc change	50,000	33.905	-11.3	~ ~	0.00	
58 I	Chlorobenzene-d5	50.000	50.000	0.0	(94	0.00	
59 P	Chlorobenzene	50.000	48.603	2.8	92	0.00	
60	1,1,1,2-Tetrachloroethane	50.000	50.280	-0.6	5 93	0.00	
61 P	Ethylbenzene	50.000	50.723	-1.4	92	0.00	
62 P	m,p-Xylene	100.000	103.819	-3.8	3 94	0.00	
63 P	o-Xylene	50.000	50.410	-0.8	92	0.00	
64 P	Styrene	50.000	50.462	-0.9	94	0.00	
65 P	Bromoform	50.000	47.595	4.8	3 9 2	0.00	
66 P	Isopropylbenzene	50.000	52.253	-4.5	5 94	0.00	
67	1,2,3-Trichloropropane	50.000	45.309	9.4	97	0.00	
68 S	4-Bromofluorobenzene	30.000	29.734	0.9	91	0.00	
69	Bromobenzene	50.000	50.429	-0.9	94	0.00	
70 P	1,1,2,2-Tetrachloroethane	50.000	46.108	7.8	92	0.00	
71	n-Propylbenzene	50.000	48.420	3.2	95	0.00	
72	2-Chlorotoluene	50.000	51.205	-2.4	95	0.00	
73	4-Chlorotoluene	50.000	50.058	-0.1	95	0.00	
74	1,3,5-Trimethylbenzene	50.000	48.755	2.5	5 94	0.00	
75	tert-Butylbenzene	50.000	46.671	6.7	97	0.00	
76	1,2,4-Trimethylbenzene	50.000	45.368	9.3	96	0.00	
77	sec-Butylbenzene	50.000	44.678	10.6	5 98	0.00	
78	p-Isopropyltoluene	50.000	43.160	13.7	97	0.00	
70 7					<u> </u>)	
79 I	1,4-Dichlorobenzene-d4	50.000	50.000	0.0	\sim		
80 P	1,3-Dichlorobenzene	50.000	45.194	9.6		0.00	
81 P	1,4-Dichlorobenzene	50.000	44.328	11.3		0.00	
82	n-Butylbenzene	50.000	43.420	13.2		0.00	
83 P	1,2-Dichlorobenzene	50.000	42.288	15.4		0.00	
84 UN	Tetraethyllead	-1.000	0.000	0.0		0.00	
85 P	1,2-Dibromo-3-Chloropropane		45.881	8.2		0.00	
86 P	1,2,4-Trichlorobenzene	50.000	42.242	15.5		0.00	
87	1,2,3-Trichlorobenzene	50.000	44.758	10.5		0.00	
88	Hexachlorobutadiene	50.000	40.724	18.6		0.00	
89	Naphthalene	50.000	45.626	8.7		0.00	

211208.M Tue Dec 14 11:35:28 2021

Page 2

Data Path : D:\MassHunter\GCMS\1\data\211214\ Data File : z06032.D Acq On : 14 Dec 2021 11:15 am Operator : Bill Brew Sample : 50ppb mega CC Misc : ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 14 11:33:20 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200% Compound Amount Calc. %Dev Area% Dev(min) (#) = Out of Range SPCC's out = 0 CCC's out = 0

Data Path : D:\MassHunter\GCMS\1\data\211214\ Data File : z06032.D Acq On : 14 Dec 2021 11:15 am Operator : Bill Brew Sample : 50ppb mega CC Misc 12 ALS Vial : 4 Sample Multiplier: 1

Quant Time: Dec 14 11:33:20 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

Min. RRF Max. RRF Dev : 20%

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. Rel. Area : 200%

47 16/11/51

::4		Compound	AvgRF	CCRF	%Dev Ar	rea% [Dev(min)
	I	Fluorobenzene	1.000	1.000	0.0	83	0.00
_	Р	Dichlorodifluoromethane	0.158	0.156	1.3	85	0.00
-	Р	Chloromethane	0.164	0.163	0.6	90	0.00
	Р	Vinyl chloride	0.215	0.234	-8.8	93	0.00
	Ρ	Bromomethane	0.164	0.166	-1.2	94	0.00
	Ρ	Chloroethane	0.110	0.121	-10.0	93	0.00
	Р	Trichlorofluoromethane	0.453	0.518	-14.3	93	0.00
8		Ethyl ether	0.170	0.181	-6.5	91	0.00
	Ρ	Freon 113	0.289	0.329	-13.8	93	0.00
	Ρ	1,1-Dichloroethene	0.433	0.479	-10.6	91	0.00
	Р	Acetone	0.170	0.154	9.4	89	0.00
12		Isopropyl Alcohol	0.000	0.000	0.0	0#	0.00
	Р	Carbon disulfide	0.864	0.935	-8.2	91	0.00
	Р	Methyl acetate	0.079	0.092#	-16.5	91	0.00
	Ρ	Methylene chloride	0.237	0.259	-9.3	94	0.00
16		Acrylonitrile	0.050	0.060	-20.0	99	0.00
17		tert-Butyl Alcohol	0.027	0.028	-3.7	95	0.00
18		Methyl tert-butyl Ether	0.533	0.558	-4.7	92	0.00
19 20		trans-1,2-Dichloroethene	0.398	0.452	-13.6	93	0.00
20	۲	1,1-Dichloroethane	0.491	0.546	-11.2	93	0.00
21		Vinyl acetate	0.195	0.201	-3.1	86	0.00
22	D	2,2-Dichloropropane 2-Butanone	0.358	0.408	-14.0	94	0.00
24		cis-1,2-Dichloroethene	0.049 0.338	0.049#	0.0	87	0.00
25	F	Bromochloromethane	0.155	0.372	-10.1	93	0.00
26	Þ	Chloroform	0.510	0.171 0.565	-10.3 -10.8	94 93	0.00
27		Pentafluorobenzene	0.633	0.685	-10.8	93 90	0.00
28	2	Tetrahydrofuran	0.054	0.061	-8.2	90 93	0.00 0.00
29	Р	1,1,1-Trichloroethane	0.442	0.502	-13.0	93 93	0.00
30		Cyclohexane	0.479	0.544	-13.6	93	0.00
31		1,2-Dichloroethane-d4	0.221	0.224	-13.6	95 85	0.00
32		Carbon Tetrachloride	0.410	0.472	-15.1	95	0.00
33		Benzene	1.139	1.277	-12.1	94	0.00
34		1,2-Dichloroethane	0.324	0.350	-8.0	92	0.00
35		Trichloroethene	0.365	0.412	-12.9	94	0.00
36		tert-Butyl Acetate	0.000	0.021	0.0	0#	0.20
37	Ρ	Methylcyclohexane	0.531	0.604	-13.7	92	0.00
38		1,4-Dioxane	0.003	0.003	0.0	92	0.00
39	UN	Ethyl acetate	0.000	0.000	0.0	0#	0.00
40	Ρ	1,2-Dichloropropane	0.286	0.319	-11.5	93	0.00
41	UN	Isobutyl alcohol	0.000	0.000	0.0	0#	0.00
42		Dibromomethane	0.155	0.171	-10.3	92	0.00
43	Р	Bromodichloromethane	0.368	0.407	-10.6	93	0.00
44		2-Chloroethyl vinyl Ether	0.001	0.001	0.0	81	0.00
45	UN	Isopropyl acetate	0.000	0.000	0.0		-0.06
46		1,1-Dichloropropene	0.409	0.465	-13.7	94	0.00

211208.M Tue Dec 14 11:35:35 2021

Page 1

Data Path : D:\MassHunter\GCMS\1\data\211214\ Data File : z06032.D Acq On : 14 Dec 2021 11:15 am Operator : Bill Brew Sample : 50ppb mega CC Misc : ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 14 11:33:20 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M

Quant Method : D:\MassHunter\GCMS\1\methods\211208. Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

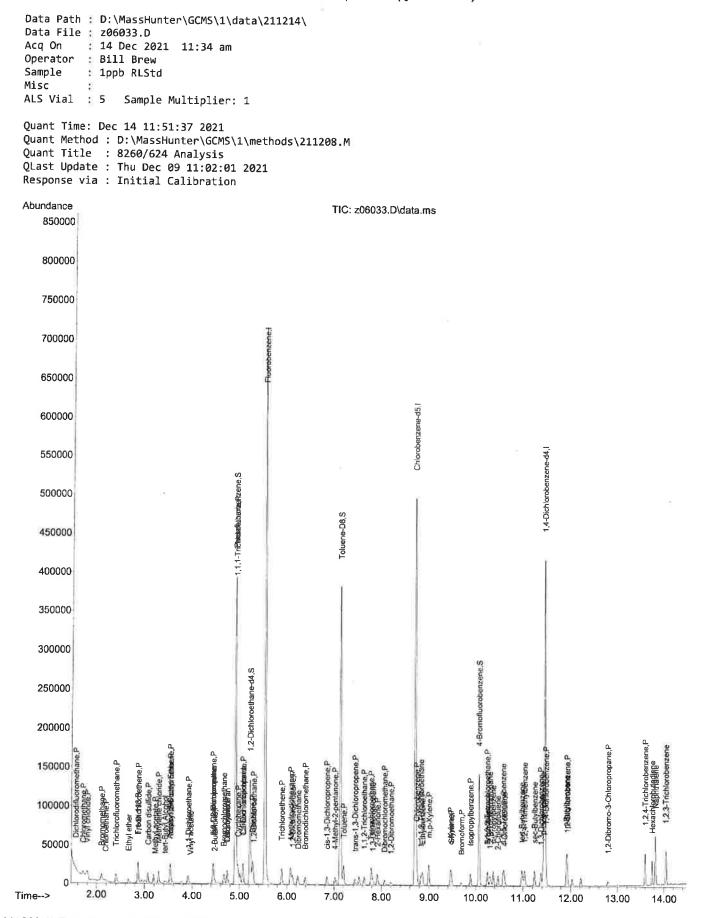
Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

	-					
	Compound	AvgRF (CCRF	%Dev A	rea%	Dev(min
47 P	cis-1,3-Dichloropropene	0.405	0.449	-10.9	92	0.00
48 P	4-Methyl-2-pentanone	0.085	0.101	-18.8	99	0.00
49 S	Toluene-D8	0.742	0.812	-9.4	90	0.00
50 P	Toluene	1.021	1,180	-15.6	93	0.00
51 P	trans-1,3-Dichloropropene	0.310	0.340	-9.7	91	0.00
52 P	1,1,2-Trichloroethane	0.209	0.230	-10.0	93	0.00
53	1,3-Dichloropropane	0.291	0.321	-10.3	91	0.00
54 P	Tetrachloroethene	0.382	0.440	-15.2	95	0.00
55 P	2-Hexanone	0.220	0.274	-24.5#	101	0.00
56 P	Dibromochloromethane	0.251	0.284	-13.1	92	0.00
57 P	1,2-Dibromoethane	0.179	0.201	-12.3	93	0.00
58 I	Chlorobenzene-d5	1.000	1.000	0.0	94	0.00
59 P	Chlorobenzene	1.240	1.205	2.8	92	0.00
50	1,1,1,2-Tetrachloroethane	0.503	0.506	-0.6	93	0.00
51 P	Ethylbenzene	1.669	1,693	-1.4	92	0.00
52 P	m,p-Xylene	0.580	0,602	-3.8	94	0.00
53 P	o-Xylene	0.517	0.521	-0.8	92	0.00
54 P	Styrene	0.770	0.777	-0.9	94	0.00
55 P	Bromoform	0.290	0.276	4.8	92	0.00
56 P	Isopropylbenzene	1.273	1.330	-4.5	94	0.00
57	1,2,3-Trichloropropane	0.099	0.089	10.1	97	0.00
58 S	4-Bromofluorobenzene	0.259	0.257	0.8	91	0.00
59	Bromobenzene	0.402	0.406	-1.0	94	0.00
70 P	1,1,2,2-Tetrachloroethane	0.368	0.339	7.9	92	0.00
/1	n-Propylbenzene	1.381	1.337	3.2	95	0.00
2	2-Chlorotoluene	0.325	0.333	-2.5	95	0.00
'3	4-Chlorotoluene	0.317	0.318	-0.3	95	0.00
4	1,3,5-Trimethylbenzene	1.065	1.039	2.4	94	0.00
'5	tert-Butylbenzene	0.229	0.213	7.0	97	0.00
6	1,2,4-Trimethylbenzene	1.129	1.024	9.3	96	0.00
7	sec-Butylbenzene	1.239	1.107	10.7	98	0.00
8	p-Isopropyltoluene	1.275	1.100	13.7	97	0.00
9 I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0	106	0.00
0 P	1,3-Dichlorobenzene	2.299	2.078	9.6	96	0.00
1 P	1,4-Dichlorobenzene	2.342	2.076	11.4	97	0.00
2	n-Butylbenzene	4.665	4.051	13.2	98	0.00
3 P	1,2-Dichlorobenzene	2.322	1.964	15.4	97	0.00
4 UN	Tetraethyllead	0.000	0.000	0.0	0#	0.00
5 P	1,2-Dibromo-3-Chloropropane	0.451	0.413	8.4	99	0.00
6 P	1,2,4-Trichlorobenzene	2.621	2.215	15.5	97	0.00
7	1,2,3-Trichlorobenzene	2.701	2.418	10.5	97 97	0.00
8	Hexachlorobutadiene	1.438	1.171	18.6	98	0.00
9	Naphthalene	6.416	5.855	8.7	98	0.00
-						0.00

211208.M Tue Dec 14 11:35:35 2021

Data Path 🗄 D:\MassHunter\GCMS\1\data\211214\ Data File : z06032.D Acq On : 14 Dec 2021 11:15 am Operator : Bill Brew Sample : 50ppb mega CC Misc : ALS Vial : 4 Sample Multiplier: 1 Quant Time: Dec 14 11:33:20 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200% Compound AvgRF CCRF %Dev Area% Dev(min) (#) = Out of Range SPCC's out = 2 CCC's out = 0

Data Path : D:\MassHunter\GCM Data File : z06033.D Acq On : 14 Dec 2021 11:3 Operator : Bill Brew Sample : 1ppb RLStd Misc ALS Vial : 5 Sample Multip	4 am	1214\					
Quant Time: Dec 14 11:51:37 2 Quant Method : D:\MassHunter\ Quant Title : 8260/624 Analy QLast Update : Thu Dec 09 11: Response via : Initial Calibr	GCMS\1\metho sis 02:01 2021	ods\2:	11208.M				12/14/21 1513
Compound			Response				
Internal Standards							
1) Fluorobenzene	5.531	96	674305	50.00	ug/L	0.00	
58) Chlorobenzene-d5		117	333481	50.00	ug/L	0.00	
79) 1,4-Dichlorobenzene-d4	11.450	152	135797	50.00	ug/L	0.00	
System Monitoring Compounds	4 010	100	205225	22.40			
27) Pentafluorobenzene Spiked Amount 30.000	4.910 Range 89 -		285225			0.00	
31) 1,2-Dichloroethane-d4	5.216	65			111.33%		
Spiked Amount 30.000	Range 78 -				105.67%	0.00	
49) Toluene-D8	7.132	98				0.00	
Spiked Amount 30.000	Range 76 -				98.13%		
68) 4-Bromofluorobenzene	10.068	95				0.00	
Spiked Amount 30.000	Range 63 -	133			102.40%		
Target Compounds					-	alue	
 2) Dichlorodifluoromethane 3) Chloromethane 	1.550	85	2783		ug/L	90	
 Chloromethane Vinyl chloride 	1.708	50	3952	1.98		99	
5) Bromomethane	1.801 2.097	62 94	4538 4585	1.57		97	
6) Chloroethane	2.184	64	2571	1.62	ug/L	95 93	
7) Trichlorofluoromethane		101	8820	1.44		99	
8) Ethyl ether	2.663	59	2906		ug/L	89	
9) Freon 113	2.859	101	5887	1.51		95	
10) 1,1-Dichloroethene	2.865	61	9430	1.61		92	
13) Carbon disulfide	3.071	76	17238	1.48		98	
14) Methyl acetate	3.216	43	2674		ug/L #	77	
15) Methylene chloride	3.290	84	7418	2.32		96	
16) Acrylonitrile	3.528	53	861		ug/L #	48	
<pre>17) tert-Butyl Alcohol 18) Methyl tert-butyl Ether</pre>	3.418	59	4645m	12.79			
19) trans-1,2-Dichloroethen	3.534 e 3.534	73 61	8511 8941	1.19		91 97	
20) 1,1-Dichloroethane	3.917	63	9120	1.66 1.38		97 95	
21) Vinyl acetate	3.962	43	2875	1.09	-	76	
22) 2,2-Dichloropropane	4.444	77	6217	1.29		78	
23) 2-Butanone	4.473	72	1180		ug/L #	1	
24) cis-1,2-Dichloroethene	4.444	96	7959	1.74	ug/L	99	
25) Bromochloromethane		128	2944	1.41		86	
26) Chloroform	4.737	83	10606	1.54		93	
28) Tetrahydrofuran 29) 1,1,1-Trichloroethane	4.737	42	3128		ug/L #	76	
30) Cyclohexane	4.917	97	7980		ug/L #	1	
32) Carbon Tetrachloride	4.965 5.071	56 117	9111 7465	1.41		88	
33) Benzene	5.071	78	23065	1.35	ug/L #	74 96	
34) 1,2-Dichloroethane	5.271	62	5872	1.30		98	
35) Trichloroethene		130	7301	1.48		95 97	
37) Methylcyclohexane	6,081	83	9261	1.48		89	
40) 1,2-Dichloropropane	6.119	63	5114	1.33		94	
42) Dibromomethane	6.242	93	2881	1.38		99	
43) Bromodichloromethane	6.389	83	6675	1.35	-	99	

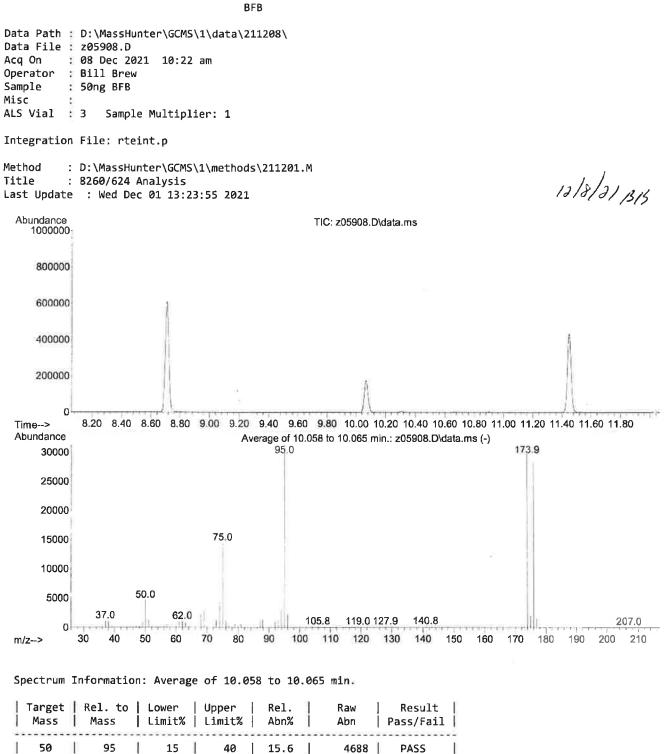

211208.M Tue Dec 14 11:52:12 2021

Page 1

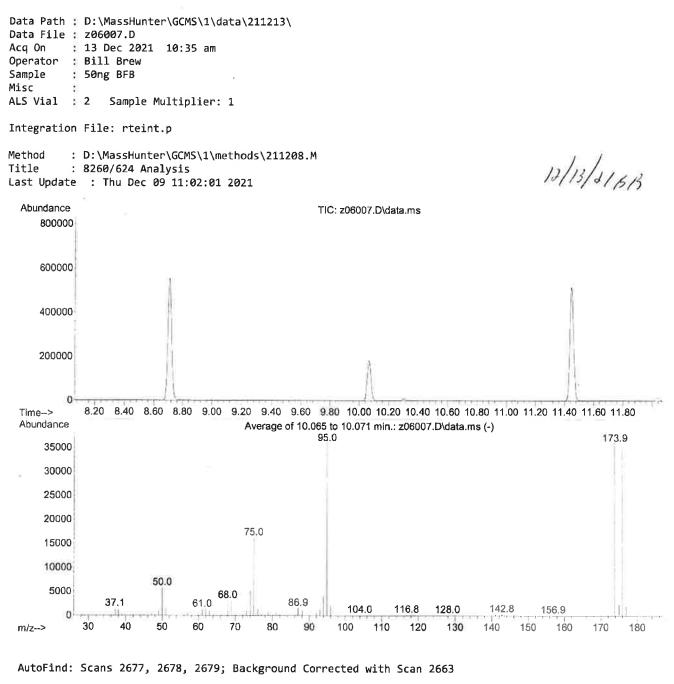
Data Path : D:\MassHunter\GCMS\1\data\211214\ Data File : z06033.D Acq On : 14 Dec 2021 11:34 am Operator : Bill Brew Sample : 1ppb RLStd Misc : ALS Vial : 5 Sample Multiplier: 1 Quant Time: Dec 14 11:51:37 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev(Min)
46) 1,1-Dichloropropene	5.071	75	8025	1.45 ug/L	91
<pre>47) cis-1,3-Dichloropropene</pre>	6.846	75	6564	1.20 ug/L	98
48) 4-Methyl-2-pentanone	7.020	58	2998	2.19 ug/L #	62
50) Toluene	7.203	91	18886	1.37 ug/L	100
51) trans-1,3-Dichloropropene	7.438	75	4908	1.17 ug/L	94
52) 1,1,2-Trichloroethane	7.634	97	3749	1.33 ug/L	90
53) 1,3-Dichloropropane	7.820	76	4913	1.25 ug/L	98
54) Tetrachloroethene	7.785	166	7655	1.48 ug/L	95
55) 2-Hexanone	7.914	43	11354	3.82 ug/L	98
56) Dibromochloromethane	8.065	129	4280	1.26 ug/L #	99
57) 1,2-Dibromoethane	8.200	107	3188	1.32 ug/L #	93
59) Chlorobenzene	8.740	112	10907	1.32 ug/L #	74
60) 1,1,1,2-Tetrachloroethane	8.830	131	4248	1.27 ug/L	93
61) Ethylbenzene	8.862	91	13456	1.21 ug/L	98
62) m,p-Xylene	9.000	106	9066	2.34 ug/L	94
63) o-Xylene	9.454	106	4415	1.28 ug/L	95
64) Styrene	9.470	104	7693	1.50 ug/L	94
65) Bromoform	9.692	173	2312	1.19 ug/L #	92
66) Isopropylbenzene	9.885	105	11802	1.39 ug/L	91
67) 1,2,3-Trichloropropane	10.299	110	1220	1.85 ug/L #	80
69) Bromobenzene	10.245	156	4616	1.72 ug/L	90
70) 1,1,2,2-Tetrachloroethane	10.245	83	3360	1.37 ug/L	87
71) n-Propylbenzene	10.370	91	16056	1.74 ug/L	98
72) 2-Chlorotoluene	10.467	126	1573	0.73 ug/L #	1
73) 4-Chlorotoluene	10.608	126	3597	1.70 ug/L	98
74) 1,3,5-Trimethylbenzene	10.582	105	11242	1.58 ug/L	96
75) tert-Butylbenzene	10.975	134	2626	1.72 ug/L	98
76) 1,2,4-Trimethylbenzene	11.032	105	13446	1.79 ug/L	93
77) sec-Butylbenzene	11.241	105	15891	1.92 ug/L	96
78) p-Isopropyltoluene	11.418	119	15508	1.82 ug/L	99
80) 1,3-Dichlorobenzene	11.373	146	9116	1.46 ug/L	97
<pre>81) 1,4-Dichlorobenzene</pre>	11.479	146	10028	1.58 ug/L #	85
82) n-Butylbenzene	11.913	91	20019	1.58 ug/L	98
83) 1,2-Dichlorobenzene	11.930	146	10059	1.60 ug/L	94
85) 1,2-Dibromo-3-Chloropr	12.798	157	1851	1.51 ug/L	98
86) 1,2,4-Trichlorobenzene	13.598	180	12941	1.82 ug/L	99
<pre>87) 1,2,3-Trichlorobenzene</pre>	14.048	180	14430	1.97 ug/L	96
88) Hexachlorobutadiene	13.749	225	6373	1.63 ug/L	95
89) Naphthalene	13.827	128	47205	2.71 ug/L	99
•••••••			• • • • • • • • • • • • • • • • • • • •		

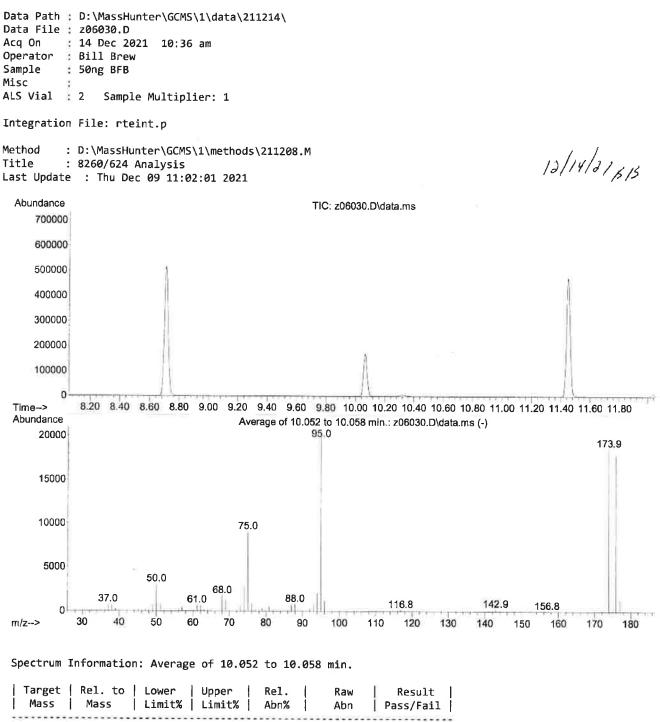
(#) = qualifier out of range (m) = manual integration (+) = signals summed



211208.M Tue Dec 14 11:52:13 2021


Page: 3

VOLATILE ORGANICS


RAW QC DATA

50	95	15	40	15.6	4688	PASS
75	95	30	60	48.4	14527	PASS
95	95	100	100	100.0	30009	PASS
96	95	5	9	7.4	2230	PASS
173	174	0.00	2	1.0	292	PASS
174	95	50	100	99.4	29819	PASS
175	174	5	9	6.8	2027	PASS
176	174	95	101	95.0	28328	PASS
177	176	1 5 1	9	5.9	1667	PASS

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail
50	95	15	40	15.9	5795	PASS
75	95	30	60	44.4	16200	PASS
95	95	100	100	100.0	36483	PASS
96	95	5	9	6.6	2391	PASS
173	174	0.00	2	1.0	371	PASS
174	95	50	100	99.3	36219	PASS
175	174	5	9	6.7	2439	PASS
176	174	95	101	97.7	35373	PASS
177	176	5	9	6.5	2300	PASS

Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail
50	95	15	40	15.4	3079	PASS
75	95	30	60	45.4	9077	PASS
95	95	100	100	100.0	19982	PASS
96	95	5	9	6.2	1230	PASS
173	174	0.00	2	0.3	48	PASS
174	95	50	100	93.1	18609	PASS
175	174	5	9	8.0	1484	PASS
176	174	95	101	96.3	17927	PASS
177	176	5	9	7.8	1403	PASS

BFB

Neu-Ville	Qua	ntitat	ion Report	- (QT	Reviewe	ed)	
Data Path : D:\MassHunter\GC	MS\1\data\2	11213\					
Data File : z06015.D							
Acq On : 13 Dec 2021 01: Operator : Bill Brew	то рш						
Sample : LCS Misc : Water_JVTCL	í.						
ALS Vial 10 Sample Mult:	iplier: 1						
Quant Time: Dec 14 09:23:03	2021						
Quant Method : D:\MassHunter	\GCMS\1\met	hods\2	11208.M		1		
Quant Title : 8260/624 Analy QLast Update : Thu Dec 09 11				/			13/11/6/1/61
Response via : Initial Calib							10/10/13/5
Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)	
Internal Standards							
1) Fluorobenzene	5.531		854010	50.00		0.00	
58) Chlorobenzene-d5 79) 1,4-Dichlorobenzene-d4	8.708 11.450		475032 142021	50.00 50.00	-	0.00 0.00	
					8, -		
System Monitoring Compounds 27) Pentafluorobenzene	4.914	168	349461	32.31	ug/L	0.00	
Spiked Amount 30.000	Range 89	- 114	Recove	ry =	107.70%		
31) 1,2-Dichloroethane-d4 Spiked Amount 30.000	5.216 Range 78	65 - 132		34.58	ug/L 115.27%	0.00	
49) Toluene-D8	7.129	98	441162	34.80	ug/L	0.00	
Spiked Amount 30.000 68) 4-Bromofluorobenzene	Range 76 10.068	- 117 95		-	116.00%		
Spiked Amount 30.000	Range 63				110.47%	0.00	
Target Compounds					0.4	alue	
2) Dichlorodifluoromethane	1.550	85	78680	29.11	-	98	
3) Chloromethane	1.708	50	63507	25.32	-	98	
 4) Vinyl chloride 5) Bromomethane 	1.801 2.094	62 94	87115 63053	23.77 25.85		96 96	
6) Chloroethane	2.184	64	42940	21.92		99	
 7) Trichlorofluoromethane 8) Ethyl ether 	2.406 2.660	101 59	172748 59020	22.33 20.37		97 92	
9) Freon 113	2.859	101	107020	20.57		99	
10) 1,1-Dichloroethene	2.865	61	141530	19.13		95	
11) Acetone 13) Carbon disulfide	2.936 3.068	43 76	29627m 298049	10.69 20.21	-	99	
15) Methylene chloride	3.293	84	85414	21.08	ug/L	96	
<pre>16) Acrylonitrile 18) Methyl tert-butyl Ether</pre>	3.528 3.534	53 73	17224	20.17		98	
19) trans-1,2-Dichloroethen		61	183836 140132	20.21 20.59		96 94	
20) 1,1-Dichloroethane	3.914	63	172302	20.56	ug/L	99	
21) Vinyl acetate 22) 2,2-Dichloropropane	3.955 4.444	43 77	65706 128483	19.73 21.02	•	96 97	
23) 2-Butanone	4.473	72	12350		ug/L #	73	
24) cis-1,2-Dichloroethene	4.444	96	112490	19.46		96	
25) Bromochloromethane 26) Chloroform	4.669 4.734	128 83	57668 185407	21.84	ug/L # ug/L	89 99	
28) Tetrahydrofuran	4.734	42	17541	19.03	ug/L	88	
29) 1,1,1-Trichloroethane 32) Carbon Tetrachloride	4.917 5.071	97 117	161447 145817		ug/L # ug/L #	58 70	
33) Benzene	5.270	78	398812	20.51		99	
34) 1,2-Dichloroethane	5.287	62	112052	20.26		99	
35) Trichloroethene 38) 1,4-Dioxane	5.888 6.296	130 88	124542 887m	19.96 19.60	-	97	
40) 1,2-Dichloropropane	6.119	63	96451	19.75	ug/L	98	
42) Dibromomethane43) Bromodichloromethane	6.238 6.389	93 83	55581 123785	21.00		94 99	
46) 1,1-Dichloropropene	5.068	85 75	123785	19.69 20.17		99 97	
47) cis-1,3-Dichloropropene	6.846	75	131899	19.09		97	

Data Path : D:\MassHunter\GCMS\1\data\211213\ Data File : z06015.D Acq On : 13 Dec 2021 01:10 pm Operator : Bill Brew Sample : LCS Misc : Water_JVTCL ALS Vial : 10 Sample Multiplier: 1

Quant Time: Dec 14 09:23:03 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev	(Min
48) 4-Methyl-2-pentanone	7.016	58	36552	21.88 ug/	_	9
50) Toluene	7.200	91	355090	20.35 ug/l	_	9
51) trans-1,3-Dichloropropene	7.434	75	98175	18.55 ug/l	_	9
52) 1,1,2-Trichloroethane	7.634	97	71905	20.10 ug/	_	9
53) 1,3-Dichloropropane	7.817	76	99130	19.97 ug/	L	9
54) Tetrachloroethene	7.785	166	138855	21.27 ug/	_	9
55) 2-Hexanone	7.910	43	64607	17.17 ug/l	-	9
56) Dibromochloromethane	8.065	129	88143	20.55 ug/l	-	9
57) 1,2-Dibromoethane	8.196	107	61941	20.21 ug/l	-	9
59) Chlorobenzene	8.740	112	204001	17.32 ug/l	-	9
60) 1,1,1,2-Tetrachloroethane	8.830	131	84690	17.72 ug/l	-	9
61) Ethylbenzene	8.862	91	273991	17.28 ug/l	-	9
62) m,p-Xylene	8.997	106	188644	34.25 ug/l	-	9
63) o-Xylene	9.454	106	87667	17.84 ug/l	-	10
64) Styrene	9.470	104	127517	17.43 ug/l	-	9
65) Bromoform	9.692	173	49072	17.79 ug/l	-	9
66) Isopropylbenzene	9.884	105	212729	17.59 ug/l	-	9
67) 1,2,3-Trichloropropane	10.296	110	14938	15.93 ug/l	-	9
69) Bromobenzene	10.245	156	68652	17.96 ug/l	_	9
70) 1,1,2,2-Tetrachloroethane	10.245	83	59034	16.90 ug/l	-	9
71) n-Propylbenzene	10.373	91	217334	16.56 ug/l	-	9
72) 2-Chlorotoluene	10.476	126	53922	17.47 ug/l	-	9
73) 4-Chlorotoluene	10.605	126	52513	17.42 ug/l	-	9
74) 1,3,5-Trimethylbenzene	10.582	105	161184	15.92 ug/l	-	9
75) tert-Butylbenzene	10.975	134	34430	15.85 ug/l	. #	9
76) 1,2,4-Trimethylbenzene	11.032	105	164731	15.36 ug/l	-	9
77) sec-Butylbenzene	11.241	105	198492	16.86 ug/l		9
78) p-Isopropyltoluene	11.418	119	177955	14.70 ug/l		9
80) 1,3-Dichlorobenzene	11.373	146	105820	16.21 ug/l	-	9
81) 1,4-Dichlorobenzene	11.479	146	105723	15.89 ug/l	-	9
82) n-Butylbenzene	11.913	91	194146	14.65 ug/l	-	9
83) 1,2-Dichlorobenzene	11.929	146	98345	14.91 ug/l	-	9
85) 1,2-Dibromo-3-Chloropr	12.794	157	17674	13.81 ug/l	-	9
86) 1,2,4-Trichlorobenzene	13.598	180	102959	13.83 ug/l		9
87) 1,2,3-Trichlorobenzene	14.048	180	107959	14.07 ug/l	-	9
88) Hexachlorobutadiene	13.753	225	54979	13.46 ug/l		9
89) Naphthalene	13.827	128	255399	14.01 ug/l	-	10

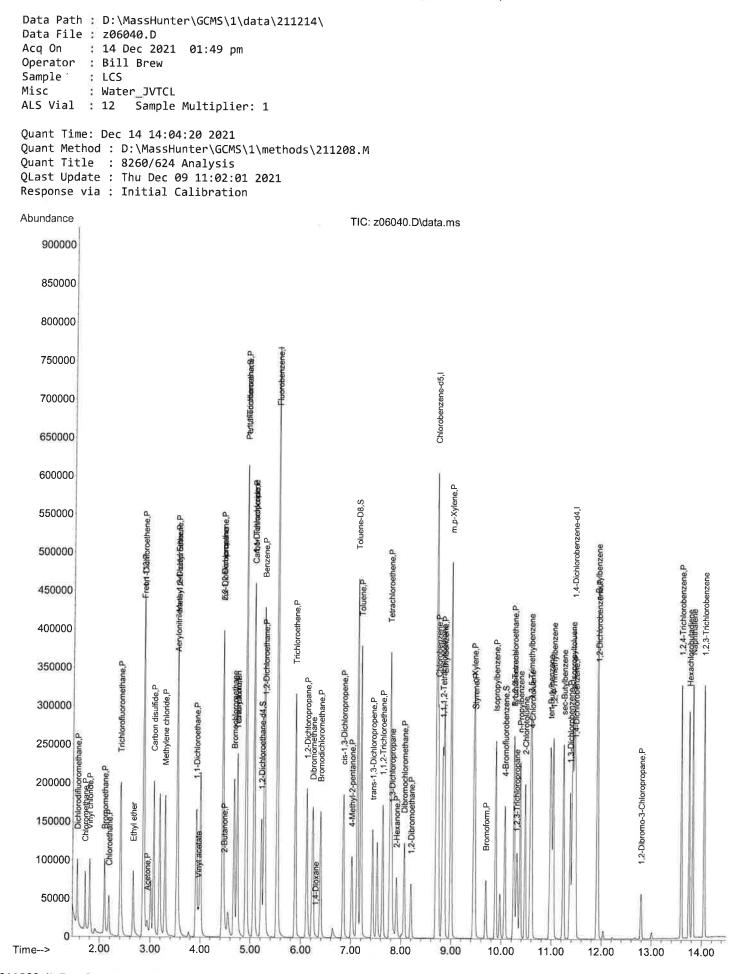
(#) = qualifier out of range (m) = manual integration (+) = signals summed

 \mathbf{S}_{i}

Data Path : D:\MassHunter\GCMS\1\data\211213\ Data File : z06015.D : 13 Dec 2021 01:10 pm Acq On Operator : Bill Brew Sample : LCS Misc : Water_JVTCL ALS Vial : 10 Sample Multiplier: 1 Quant Time: Dec 14 09:23:03 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration Abundance 1100000 TIC: z06015.D\data.ms 1050000 1000000 950000 900000 Chlorobenzene-d5,I 1,1,1-Fredtlaßtoetbaseazene,S 850000 800000 750000 Toluene-D8,S 700000 m,p-Xylene,P unitopicaeP 650000 212-D& Distribution of the P 1,4-Dichlorobenzene-d4,1 Aerylonitriketentsyf 12-rDinitryhrEtitieente, P **Firebidfl@idlethene**,P Cárbehiðietne Benzene, P 600000 Tetrachloroethene,P 550000 Aliena 500000 1,2,3-Trichtorobenzene 1,2,4-Trichlorobenzene,P loroputationene Trichloroethene,P 1,1,1,2-Tetrachildiologiangene. .2-Dichloroethane-d4. §.2-Dichloroethane,P 450000 StorkiyleRe, P sopropvibenzene.P 400000 cis-1,3-Dichloropropene,P 4-Methyl-2-pentanone,P richlorofluoromethane, P Brongethiogenetigane 1,2-Dichloropropane,P 1. 2-Trichloroethane.P Carbon disulfide,P Methylene chloride,P Bromodichloromethane, P trans-1,3-Dichloropropene,P Hexach 350000 1.1-Dichloroethane,P omochloromethane.P 4-Bromofi .3-Dichloropropar 2,3-Trichloropropane 2.Chlor 300000 a ,2-Dibromo-3-Chloropropane,P Dibrom 250000 Chloroethare, Bromomethane, P Chloroprethance, F 200000 uppor Ethyl ether Bromoform,P 2-Butanone,F 2-Dibr Vinvi acetate 150000 100000 t-Dioxane 50000 0 2.00 3.00 4.00 6.00 7.00 9.00 10.00 14.00 5.00 8.00 11.00 12.00 13.00 Time-->

211208.M Tue Dec 14 09:24:11 2021

Page: 3


Nen-Velle	Qua	ntitat	ion Report	(QT	Reviewe	ed)		
Data Path : D:\MassHunter\GCM	S\1\data\2	11214\						
Data File : z06040.D		±1214 (
Acq On : 14 Dec 2021 01:4	9 pm							
Operator : Bill Brew Sample : LCS						1.20		
Misc 🤇 Water_JVTCL								
ALS Vial : 12 Sample Multi	plier: 1				X			
Quant Time: Dec 14 14:04:20 2	021							
Quant Method : D:\MassHunter\	GCMS\1\met	nods\2	11208.M	/				
Quant Title : 8260/624 Analy QLast Update : Thu Dec 09 11:							12/14/21 B	
Response via : Initial Calibra							10/14/01 B,	B
Compound	0 Ŧ	0.7	D	c		<i></i> 、		
Compound	K. .	QTON	Response	Conc U	nits Dev	(Min)		
Internal Standards								
 Fluorobenzene Chlorobenzene-d5 	5.531		729148m	50.00		0.00		
79) 1,4-Dichlorobenzene-d4	8.708 11.450		396592 129013	50.00 50.00	-	0.00 0.00		
, .,			120019	50.00	чБ/ L	0.00		
System Monitoring Compounds	4 010	100	200240					
27) Pentafluorobenzene Spiked Amount 30.000	4.910 Range 89		298218 Recover	32.30 v =	-	0.00		
31) 1,2-Dichloroethane-d4	5.216		104812	32.46		0.00		
Spiked Amount 30.000	Range 78			-	108.20%			
49) Toluene-D8 Spiked Amount 30.000	7.129 Range 76	98 - 117	354068 Recover	32.71 Y =	ug/L 109.03%	0.00		
68) 4-Bromofluorobenzene	10.068	95		30.91		0.00		
Spiked Amount 30.000	Range 63	- 133	Recover		103.03%			
Target Compounds					0	alue		
2) Dichlorodifluoromethane	1.550	85	69424	30.09		99		
3) Chloromethane	1.708	50	57027	26.64	ug/L	98		
4) Vinyl chloride 5) Bromomethane	1.801 2.094	62 94	78471 53130	25.08	-	98 07		
6) Chloroethane	2.034	64	39492	25.50 23.67		97 99		
7) Trichlorofluoromethane	2.405	101	158414	23.99	ug/L	98		
8) Ethyl ether 9) Freon 113	2.659 2.856	59 101	49510 100399	20.02 23.79		91 97		
10) 1,1-Dichloroethene	2.850	61	126852	20.09	-	97 97		
11) Acetone	2.936	43	29298	12.94	ug/L	95		
13) Carbon disulfide 15) Methylene chloride	3.068 3.293	76 84	271755 86647	21.58 25.05		100		
16) Acrylonitrile	3.528	53	17364	23.81		95 96		
18) Methyl tert-butyl Ether	3.534	73	152256	19.61	ug/L	96		
<pre>19) trans-1,2-Dichloroethene 20) 1,1-Dichloroethane</pre>	3.534 3.917	61 63	126987	21.85		92		
21) Vinyl acetate	3.958	43	156063 58746	21.81 20.66		99 97		
22) 2,2-Dichloropropane	4.444	77	113388	21.73	ug/L	98		
23) 2-Butanone 24) cis-1,2-Dichloroethene	4.473 4.444	72 06	13136		ug/L #	76		
25) Bromochloromethane	4.444	96 128	100359 48901	20.34 21.69	ug/L ug/L #	97 86		
26) Chloroform	4.737	83	166844	22.42	ug/L	98		
28) Tetrahydrofuran 29) 1,1,1-Trichloroethane	4.733 4.913	42 97	17917	22.77		96 61		
32) Carbon Tetrachloride	4.913 5.071	97 117	145904 134228		ug/L # ug/L #	61 68		
33) Benzene	5.270	78	348417	20.98		99		
34) 1,2-Dichloroethane	5.286	62	96969	20.54		99		
35) Trichloroethene 38) 1,4-Dioxane	5.888 6.293	130 88	112258 770m	21.07 19.93		97		
40) 1,2-Dichloropropane	6.119	63	85140	20.42	ug/L	98		
42) Dibromomethane	6.238	93	47832	21.17		96		
43) Bromodichloromethane 46) 1,1-Dichloropropene	6.389 5.068	83 75	107423 127765	20.02 21.41		100 97		
47) cis-1,3-Dichloropropene	6.849	75	114602	19.43		97		

Data Path	5	D:\MassHunter\GCMS\1\data\211214\
Data File	:	z06040.D
Acq On		14 Dec 2021 01:49 pm
Operator		Bill Brew
Sample	1	LCS
Misc	:	Water_JVTCL
ALS Vial	:	12 Sample Multiplier: 1

Quant Time: Dec 14 14:04:20 2021 Quant Method : D:\MassHunter\GCMS\1\methods\211208.M Quant Title : 8260/624 Analysis QLast Update : Thu Dec 09 11:02:01 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units De	v(Min)
48) 4-Methyl-2-pentanone	7.016	58	34027	23.95 ug/L	99
50) Toluene	7.200	91	307022	20.61 ug/L	99
51) trans-1,3-Dichloropropene	7.434	75	85107	18.83 ug/L	97
52) 1,1,2-Trichloroethane	7.634	97	61802	20.24 ug/L	99
53) 1,3-Dichloropropane	7.820	76	84797	20.01 ug/L	99
54) Tetrachloroethene	7.785	166	122032m	21.89 ug/L	
55) 2-Hexanone	7.910	43	61910	19.27 ug/L	99
56) Dibromochloromethane	8.064	129	74698	20.40 ug/L	99
57) 1,2-Dibromoethane	8.200	107	53572	20.48 ug/L	100
59) Chlorobenzene	8.740	112	173760	17.67 ug/L	97
60) 1,1,1,2-Tetrachloroethane	8.833	131	72424	18.15 ug/L	96
61) Ethylbenzene	8.862	91	236597	17.87 ug/L	97
62) m,p-Xylene	8.997	106	161353	35.09 ug/L	100
63) o-Xylene	9.453	106	74050	18.05 ug/L	97
64) Styrene	9.473	104	113556	18.60 ug/L	99
65) Bromoform	9.688	173	43018	18.68 ug/L	99
66) Isopropylbenzene	9.884	105	189550	18.78 ug/L	99
67) 1,2,3-Trichloropropane	10.296	110	14432	18.43 ug/L	97
69) Bromobenzene	10.244	156	59854	18.76 ug/L	94
70) 1,1,2,2-Tetrachloroethane	10.244	83	54334	18.63 ug/L	97
71) n-Propylbenzene	10.370	91	198236	18.10 ug/L	98
72) 2-Chlorotoluene	10.476	126	48080	18.65 ug/L	97
73) 4-Chlorotoluene	10.605	126	46966	18.67 ug/L	94
74) 1,3,5-Trimethylbenzene	10.582	105	156376	18.51 ug/L	99
75) tert-Butylbenzene	10.974	134	32140	17.72 ug/L	97
76) 1,2,4-Trimethylbenzene	11.032	105	165064	18.44 ug/L	100
77) sec-Butylbenzene	11.238	105	199532	20.30 ug/L	98
78) p-Isopropyltoluene	11.418	119	184402	18.24 ug/L	99
80) 1,3-Dichlorobenzene	11.373	146	97486	16.44 ug/L	99
81) 1,4-Dichlorobenzene	11.479	146	98489	16.30 ug/L	98
82) n-Butylbenzene	11.913	91	206911	17.19 ug/L	98
<pre>83) 1,2-Dichlorobenzene</pre>	11.929	146	97797	16.32 ug/L	98
85) 1,2-Dibromo-3-Chloropr	12.794	157	18287	15.73 ug/L	95
86) 1,2,4-Trichlorobenzene	13.598	180	105721	15.63 ug/L	99
87) 1,2,3-Trichlorobenzene	14.048	180	110525	15.86 ug/L	99
88) Hexachlorobutadiene	13.752	225	58136	15.67 ug/L	98
89) Naphthalene	13.826	128	250116	15.11 ug/L	100

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Client:	<u>Neu-Velle</u>
Project Reference:	3130 Monroe Avenue
Lab Project ID:	215562
SDG #:	5562-01
Matrix:	Groundwater

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed	
1,1,1-Trichloroethane	<2.00	ug/L		12/13/2021	13:29
1,1,2,2-Tetrachloroethane	<2.00	ug/L		12/13/2021	13:29
1,1,2-Trichloroethane	<2.00	ug/L		12/13/2021	13:29
1,1-Dichloroethane	<2.00	ug/L		12/13/2021	13:29
1,1-Dichloroethene	<2.00	ug/L		12/13/2021	13:29
1,2,3-Trichlorobenzene	<5.00	ug/L		12/13/2021	13:29
1,2,4-Trichlorobenzene	<5.00	ug/L		12/13/2021	13:29
1,2-Dibromo-3-Chloropropane	<10.0	ug/L		12/13/2021	13:29
1,2-Dibromoethane	<2.00	ug/L		12/13/2021	13:29
1,2-Dichlorobenzene	<2.00	ug/L		12/13/2021	13:29
1,2-Dichloroethane	<2.00	ug/L		12/13/2021	13:29
1,2-Dichloropropane	<2.00	ug/L		12/13/2021	13:29
1,3-Dichlorobenzene	<2.00	ug/L		12/13/2021	13:29
1,4-Dichlorobenzene	<2.00	ug/L		12/13/2021	13:29
1,4-Dioxane	<10.0	ug/L		12/13/2021	13:29
2-Butanone	<10.0	ug/L		12/13/2021	13:29
2-Hexanone	<5.00	ug/L		12/13/2021	13:29
4-Methyl-2-pentanone	<5.00	ug/L		12/13/2021	13:29
Acetone	<10.0	ug/L		12/13/2021	13:29
Benzene	<1.00	ug/L		12/13/2021	13:29
Bromochloromethane	<5.00	ug/L		12/13/2021	13:29
Bromodichloromethane	<2.00	ug/L		12/13/2021	13:29
Bromoform	<5.00	ug/L		12/13/2021	13:29
Bromomethane	<2.00	ug/L		12/13/2021	13:29
Carbon disulfide	<2.00	ug/L		12/13/2021	13:29
Carbon Tetrachloride	<2.00	ug/L		12/13/2021	13:29
Chlorobenzene	<2.00	ug/L		12/13/2021	13:29

Client:	<u>Neu-Velle</u>
Project Reference:	3130 Monroe Avenue
Lab Project ID:	215562
SDG #:	5562-01
Matrix:	Groundwater

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
Chloroethane	<2.00	ug/L		12/13/2021	13:29
Chloroform	<2.00	ug/L		12/13/2021	13:29
Chloromethane	<2.00	ug/L		12/13/2021	13:29
cis-1,2-Dichloroethene	<2.00	ug/L		12/13/2021	13:29
cis-1,3-Dichloropropene	<2.00	ug/L		12/13/2021	13:29
Cyclohexane	<10.0	ug/L		12/13/2021	13:29
Dibromochloromethane	<2.00	ug/L		12/13/2021	13:29
Dichlorodifluoromethane	<2.00	ug/L		12/13/2021	13:29
Ethylbenzene	<2.00	ug/L		12/13/2021	13:29
Freon 113	<2.00	ug/L		12/13/2021	13:29
Isopropylbenzene	<2.00	ug/L		12/13/2021	13:29
m,p-Xylene	<2.00	ug/L		12/13/2021	13:29
Methyl acetate	<2.00	ug/L		12/13/2021	13:29
Methyl tert-butyl Ether	<2.00	ug/L		12/13/2021	13:29
Methylcyclohexane	<2.00	ug/L		12/13/2021	13:29
Methylene chloride	<5.00	ug/L		12/13/2021	13:29
o-Xylene	<2.00	ug/L		12/13/2021	13:29
Styrene	<5.00	ug/L		12/13/2021	13:29
Tetrachloroethene	<2.00	ug/L		12/13/2021	13:29
Toluene	<2.00	ug/L		12/13/2021	13:29
trans-1,2-Dichloroethene	<2.00	ug/L		12/13/2021	13:29
trans-1,3-Dichloropropene	<2.00	ug/L		12/13/2021	13:29
Trichloroethene	<2.00	ug/L		12/13/2021	13:29
Trichlorofluoromethane	<2.00	ug/L		12/13/2021	13:29
Vinyl chloride	<2.00	ug/L		12/13/2021	13:29

Client:	<u>Neu-Velle</u>
Project Reference:	3130 Monroe Avenue
Lab Project ID:	215562
SDG #:	5562-01
Matrix:	Groundwater

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed
<u>Surrogate</u>	Percent Recovery	Limits	Outliers	Date Anal	yzed
1,2-Dichloroethane-d4	108	77.9 - 132		12/13/2021	13:29
4-Bromofluorobenzene	99.9	62.6 • 133		12/13/2021	13:29
Pentafluorobenzene	109	88.9 - 114		12/13/2021	13:29
Toluene-D8	103	75.6 - 117		12/13/2021	13:29
Method Reference(s): EPA 8260C EPA 5030C					
Data File: z06016.D					
QC Batch ID: voaw211213					
QC Number: Blk 1					

Client:	<u>Neu-Velle</u>
Project Reference:	3130 Monroe Avenue
Lab Project ID:	215562
SDG #:	5562-01
Matrix:	Groundwater

Volatile Organics

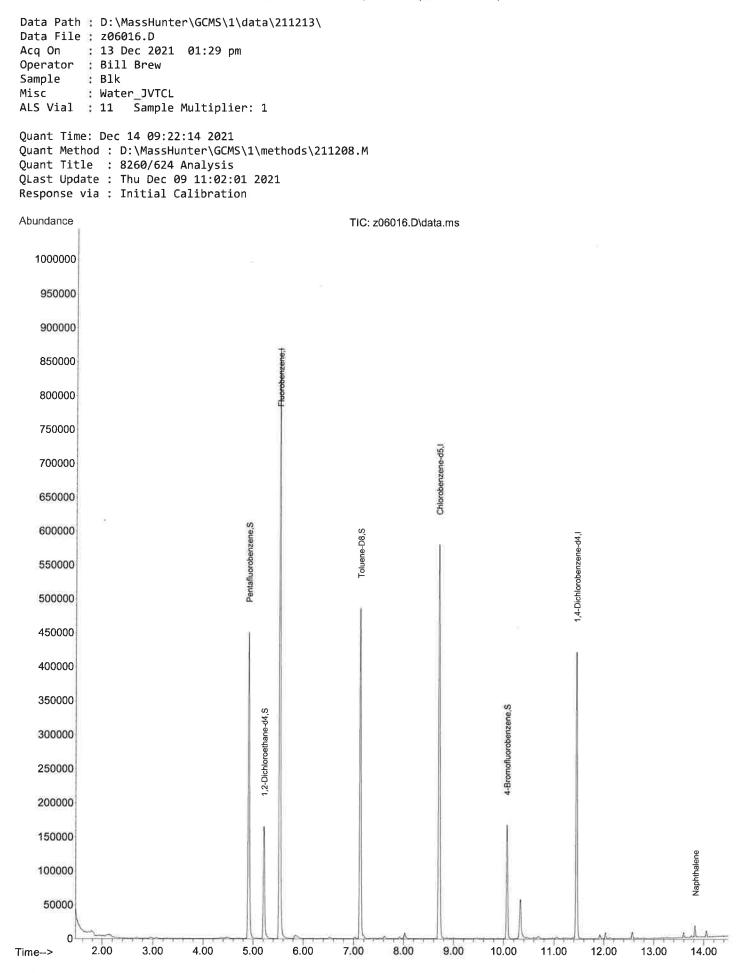
alyte Result		<u>Units</u>	<u>Qualifier</u>	Date Analyzed		
1,1,1-Trichloroethane	<2.00	ug/L		12/14/2021	14:08	
1,1,2,2-Tetrachloroethane	<2.00	ug/L		12/14/2021	14:08	
1,1,2-Trichloroethane	<2.00	ug/L		12/14/2021	14:08	
1,1-Dichloroethane	<2.00	ug/L		12/14/2021	14:08	
1,1-Dichloroethene	<2.00	ug/L		12/14/2021	14:08	
1,2,3-Trichlorobenzene	<5.00	ug/L		12/14/2021	14:08	
1,2,4-Trichlorobenzene	<5.00	ug/L		12/14/2021	14:08	
1,2-Dibromo-3-Chloropropane	<10.0	ug/L		12/14/2021	14:08	
1,2-Dibromoethane	<2.00	ug/L		12/14/2021	14:08	
1,2-Dichlorobenzene	<2.00	ug/L		12/14/2021	14:08	
1,2-Dichloroethane	<2.00	ug/L		12/14/2021	14:08	
1,2-Dichloropropane	<2.00	ug/L		12/14/2021	14:08	
1,3-Dichlorobenzene	<2.00	ug/L		12/14/2021	14:08	
1,4-Dichlorobenzene	<2.00	ug/L		12/14/2021	14:08	
1,4-Dioxane	<10.0	ug/L		12/14/2021	14:08	
2-Butanone	<10.0	ug/L		12/14/2021	14:08	
2-Hexanone	<5.00	ug/L		12/14/2021	14:08	
4-Methyl-2-pentanone	<5.00	ug/L		12/14/2021	14:08	
Acetone	<10.0	ug/L		12/14/2021	14:08	
Benzene	<1.00	ug/L		12/14/2021	14:08	
Bromochloromethane	<5.00	ug/L		12/14/2021	14:08	
Bromodichloromethane	<2.00	ug/L		12/14/2021	14:08	
Bromoform	<5.00	ug/L		12/14/2021	14:08	
Bromomethane	<2.00	ug/L		12/14/2021	14:08	
Carbon disulfide	<2.00	ug/L		12/14/2021	14:08	
Carbon Tetrachloride	<2.00	ug/L		12/14/2021	14:08	
Chlorobenzene	<2.00	ug/L		12/14/2021	14:08	

Client:	<u>Neu-Velle</u>
Project Reference:	3130 Monroe Avenue
Lab Project ID:	215562
SDG #:	5562-01
Matrix:	Groundwater

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	<u>zed</u>
Chloroethane	<2.00	ug/L		12/14/2021	14:08
Chloroform	<2.00	ug/L		12/14/2021	14:08
Chloromethane	<2.00	ug/L		12/14/2021	14:08
cis-1,2-Dichloroethene	<2.00	ug/L		12/14/2021	14:08
cis-1,3-Dichloropropene	<2.00	ug/L		12/14/2021	14:08
Cyclohexane	<10.0	ug/L		12/14/2021	14:08
Dibromochloromethane	<2.00	ug/L		12/14/2021	14:08
Dichlorodifluoromethane	<2.00	ug/L		12/14/2021	14:08
Ethylbenzene	<2.00	ug/L		12/14/2021	14:08
Freon 113	<2.00	ug/L		12/14/2021	14:08
Isopropylbenzene	<2.00	ug/L		12/14/2021	14:08
m,p-Xylene	<2.00	ug/L		12/14/2021	14:08
Methyl acetate	<2.00	ug/L		12/14/2021	14:08
Methyl tert-butyl Ether	<2.00	ug/L		12/14/2021	14:08
Methylcyclohexane	<2.00	ug/L		12/14/2021	14:08
Methylene chloride	<5.00	ug/L		12/14/2021	14:08
o-Xylene	<2.00	ug/L		12/14/2021	14:08
Styrene	<5.00	ug/L		12/14/2021	14:08
Tetrachloroethene	<2.00	ug/L		12/14/2021	14:08
Toluene	<2.00	ug/L		12/14/2021	14:08
trans-1,2-Dichloroethene	<2.00	ug/L		12/14/2021	14:08
trans-1,3-Dichloropropene	<2.00	ug/L		12/14/2021	14:08
Trichloroethene	<2.00	ug/L		12/14/2021	14:08
Trichlorofluoromethane	<2.00	ug/L		12/14/2021	14:08
Vinyl chloride	<2.00	ug/L		12/14/2021	14:08

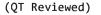
Client:	<u>Neu-Velle</u>
Project Reference:	3130 Monroe Avenue
Lab Project ID:	215562
SDG #:	5562-01
Matrix:	Groundwater

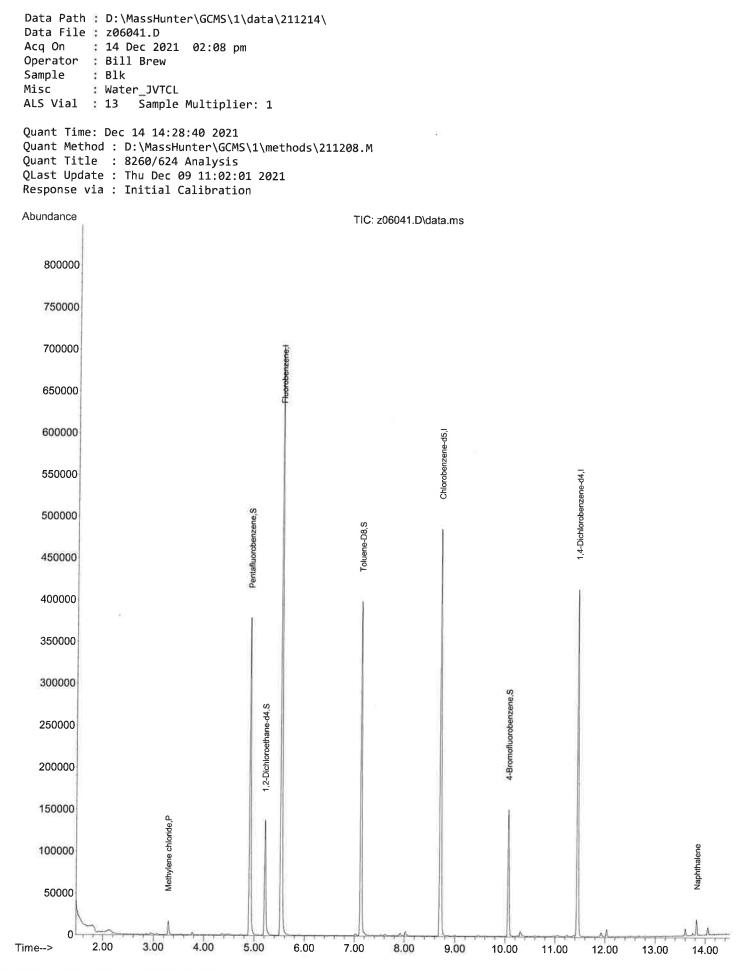

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed
<u>Surrogate</u>	Percent Recovery	Limits	Outliers	Date Anal	yzed
1,2-Dichloroethane-d4	109	77.9 - 132		12/14/2021	14:08
4-Bromofluorobenzene	107	62.6 • 133		12/14/2021	14:08
Pentafluorobenzene	111	88.9 • 114		12/14/2021	14:08
Toluene-D8	103	75.6 - 117		12/14/2021	14:08
Method Reference(s): EPA 8260C EPA 5030C					
Data File: z06041.D					
QC Batch ID: voaw211214					
QC Number: Blk 1					

Nen-Velle	Quan	titati	ion Report	(QT	Reviewe	d)
Data Path : D:\MassHunter\GCM Data File : 206016.D Acq On : 13 Dec 2021 01:2 Operator : Bill Brew Sample : Blk Misc : Water_JVTCL ALS Vial : 11 Sample Multi	29 pm	1213\				BIN
Quant Time: Dec 14 09:22:14 2 Quant Method : D:\MassHunter\ Quant Title : 8260/624 Analy QLast Update : Thu Dec 09 11: Response via : Initial Calibr	GCMS\1\meth sis 02:01 2021	ods\21	L1208.M			
Compound	R.T. (QIon	Response	Conc U	nits Dev	(Min)
Internal Standards						
 Fluorobenzene 	5.531	96	810111	50.00	ug/L	0.00
58) Chlorobenzene-d5	8.707	117	382071	50.00	ug/L	0.00
79) 1,4-Dichlorobenzene-d4	11.450				ug/L	0.00
System Monitoring Compounds						
27) Pentafluorobenzene	4.910	168				0.00
Spiked Amount 30.000	Range 89					
31) 1,2-Dichloroethane-d4	5.215			32.47	ug/L	0.00
Spiked Amount 30.000	Range 78					
49) Toluene-D8	7.132				ug/L	0.00
Spiked Amount 30.000	Range 76 ·					
68) 4-Bromofluorobenzene				29.98		0.00
Spiked Amount 30.000	Range 63 ·	- 133	Recover	у =	99.93%	
Target Compounds						alue
11) Acetone		43				
89) Naphthalene	13.826	128	13269	0.74	ug/L ~ j	97

(#) = qualifier out of range (m) = manual integration (+) = signals summed


12/14/21 BB



211208.M Tue Dec 14 09:22:55 2021

Neu-Velle	Quantitat	ion Report (Q	T Reviewed)	
Data Path : D:\MassHunter\GCM Data File : z06041.D Acq On : 14 Dec 2021 02:0 Operator : Bill Brew Sample : Blk Misc : Water_JVTCL ALS Vial : 13 Sample Multi Quant Time: Dec 14 14:28:40 2 Quant Method : D:\MassHunter Quant Title : 8260/624 Analy QLast Update : Thu Dec 09 11: Response via : Initial Calibr	28 pm 2011 2021 2025 \1\methods\2: 202:01 2021		TBDL	13/14/21 1313
Compound	R.T. QIon	Response Conc L	Jnits Dev(Min)	1275
Internal Standards 1) Fluorobenzene 58) Chlorobenzene-d5 79) 1,4-Dichlorobenzene-d4		326654 50.00	0 ug/L 0.00 0 ug/L 0.00 0 ug/L 0.00	
System Monitoring Compounds 27) Pentafluorobenzene Spiked Amount 30.000 31) 1,2-Dichloroethane-d4 Spiked Amount 30.000 49) Toluene-D8 Spiked Amount 30.000 68) 4-Bromofluorobenzene Spiked Amount 30.000	4.914 168 Range 89 - 114 5.213 65 Range 78 - 132 7.129 98 Range 76 - 117 10.068 95 Range 63 - 133	Recovery = 96066 32.73 Recovery = 302658 30.77 Recovery = 54173 32.01	'ug/L 0.00 102.57% ug/L 0.00	
Target Compounds 11) Acetone 15) Methylene chloride 89) Naphthalene	2.939 43 3.293 84 13.823 128	7635 2.43	Qvalue Cal $\angle 1 \bigcirc 83$ ug/L $\angle 5 94$ ug/L $\downarrow 100$	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

GC/MS VOA System 8860/5977B

Initial Calibration Date 12/8/2/

Date	GC Method	Vial#	Data File						1				Re	s	
2/7/21				Matrix	Sample ID	Volume	Std#	Test	Seq	Initials	A	Rp			Initia
4[1]4[8260 / UN	15	205901	unter	5473-01	5 nl	VI	V62YBTEX	5+5	13B	D	4) nes	f	B
		16	5902		1-02					- 1	\square		1 P		
		17	5903		-02M5						\square				
		18	5904	Ŧ	+ -oamsp	Į Į	f	+	f	4		1.852			1
		20	5905		waty				5+10	BB				made new IS/SS	BK
18/21	8260/(VN	1	205906		Brown form Vagrade	11	23972					_	_		
		2	5907		50 mg BFB		01110-		575	<u>1313</u>	-4				131
		3	5908		4						H	_			
		4	5909		1 just wegg al	5 al					H	_		R # 111	BI
		5	5910		5	1	upo	lates			K	_	00,	1 # 24144 -> 50. Dut Hac	
		6	5411		20		/2	19/2/11			K		.00		
		7	5912		50		-10	10/01 01			H		20		
		8	5413		100 -		(21	1208.M)			H		<u>a.</u> 0		
		4	5914		150		6.0	10.00111			F		100.		
		10	5915		200 1						H		50. 200.		
		11	5916		water	ų –					É	_	10.	*	¥
		12	5917		4	0						_			
		13	5918	soil	LCS / SS Ref	5 ml		VTCL			Þ		1000	# 24/29-150. Onl Hao	<i>P</i> ,
		14	5919		BIK				5+10		Ħ		4.0° 10	01/d1-50.0 4 420	BI
		15	5420		215528-01	1.65%	63-2	V375			Þ	1	bas	211208)	
		16	5921	¥	5455-01	1.45 2	6]	UTCL	I		Ħ		1 1	0118001	
		17	5982	water	605	5 ml		JUMisc	5+5		T		000	24129-350.0 - l H20	- 1
		18	5925		13 / K	ł		4					1 m	01121-150.0 re 1120	
		19	5924		5533-01	5 al	VI	VTCL			T	1v	Dawl	211208)	
		10	5925		1-02	_/	/				T	1	1		
	¥	21	5126	vt	+ -03	4	¥	t	\downarrow	¥	17				J

-

٦

GC/MS VOA System 8860/5977B

Initial Calibration Date 12/8/21

1

Date	GC Method	Vial#	Data File	Matrix	Commis ID		C. 111	-					Res		
-//				IVIALITX	Sample ID	Volume	Std#	Test	Seq		AF	R pH	CI	Comments	Initials
12/13/21	82601(VN		206006		Brimitarin Degende	Inf	23972		5+5	. 1313	1	_			1313
		4	6007		50 in BFB						4				1
		3	6008		t t	60						1			
		4	60179		50 pph meg. cc	5 ml					A	50		# 24/44 - 50, 0 ml H.	4 B12
		5	6010		1 ppb Ristd	+					4	1.	Del	1 4	
		6	6011	TELP	MLCS			XVOA			K	. 20	Jul	* 24129- 50.0 l	
		7	6017		BIK						4	/		+/uid # 8459	
		8	6013	1 K	215509-01	0,5 ml		y.			4	(V	pa x	3/12/3)	
		9			13 5575 01A		53	VTCL			K			Voah/2/12/3	
		10	6015	unter	LCS	5 al		JUTCL			4	Z	Ul	24129-750, Ouff	4.
		[]	6016	- ×-	BIK			I I			4				
		12	6017		HL PB	O. Inl		VTCL							I F
		13	6018	NAQ		5 l		+Feb						notrun	
		IN	6019	unter	5558-01	5 ml	VI				4	(V	Paw	2/12/3)	1513
		15	6020		60-1						4	È			
		16	601		+ -03			V			4				
		17	22		5559-01			USTARS							
		18	23		1-02			1			1				
		19	24		-03						1				
		20	25		1 -04	4	+	¥			×			Ne 2,5 ml	
		16	16		215562-05	5 rl	V	SVTIL							
		22	27		-01		11		1						
		23	28		50-		1							Als error	V
		24	84		-03									Als error	
		ð5	30	¥	1 -04	×	1	of		8		<		1	
		20	3/	TUP	5525-01A	0.5 ml		XVOA				(¥	-
		87	32						ł	×					
0ul com	bined 150ppr	n Surro	gate / 250pp	om Internal	Standard #/4/45 	/ added t	to each si	ample						ejected orded for 624 Cashy172	of 223

GC/MS VOA System 8860/5977B

Initial Calibration Date 12/8/21

Date	GC Method	Vial#	Data File	Matrix	Sample ID	Volume	Std#	Test	Seq	Initials	×	A	R	PH C		Initia
114/21	8260 KUN	1	206029		Brome form Degende	Int	23972		5+5	. 13 13			-			131
		2	6030		50 mBFB	17				1			-			PI
		3	6031		d d							H				
		Ч	6032	р	50 ppb maga CC	5 ml							-	50.0	1 #24144-> 50.0 AH	B
		5	6033		1 pph RL std	4								100	, l d	
		6	6034	TUP	LES			XVOA						20.0	1-l # 24129-150.0.1	
		2	6035		BIK						Ū				+/uid #8459	
		9	6036		215575-01A	0.5 ml		ļ						(Voa	×211214)	
		9	6037		5599-01A	1 *		XBEHZ								
		10	6038		5600-01A	+		1				\triangleleft				
		11	6039	×		50 ml		<i>F</i>				\triangleleft			Eler. D.L NTS	
		12	6040	lister	LCS	5 ml		JUTCL						20.0	Eler. D.L NTS 24129-50.02H	6
		13	6041		BIK	+	4:T					4		(V 0a	W2/12/4)	
		14	6042		5582-01	5 ml	comp	V624				4		ez ne	7.	
		15	6043		215562-02		va	JUTCL			-	4				
		16	6044		-03		+					4	_			
		17 18	6045		+ -04	V I		- F			4	4	_			
		19	6046		5559-04	2.5 ul	V2	USTAKS	_		4	4	4			
		20	6049		5577-01	5 ml	VI	VTCL			-	4				
-		21	6049	+	5583-01	I ml 5 nl		VSTAKS			4	4	-			
		46	6050	And	605	5 nl	¥	V624	V		1	4	+	4 2 mg		
		23	6051	end	BIK	2 14		VSTARS	5+10		-	4	+	20,0	1 # 24/29 - 50, Onl Hal	1
		24	6052		5641-01	1.825	63		1		1	$\frac{1}{2}$	+			+
		25	6053		1-02	1.599					ł	\neq	4	rloa	50/12/4)	
		26	6054		-03	1.265					1	+	-			
		27	6055	Ŧ	+ -04	1.25 9			1		1	7	-			
l coml	bined 150ppm	n Surrog	ate / 250ppr	n Internal :	Standard #///5 3.4.146	IF	o each sa	ample	<u>*</u>	*					=Rejected ecorded for 624 8799 ¹⁷³	of 223

Appendix D

NEU-VELLE LLC

Low Flow Sampling Data Logs

December 2021

NEU-VEL	<u>LE, LLC</u>			Low FI	ow Ground	the second s		
Date	12/ 7/2021	Person	nel	K R Miller	A Rothfuss	Weather C		* 32°F
Site Name	3130 Monroe Avenue	Evacua	tion Method	Bladder Pu	imp	Well #	MW	4
Site Location	Pittsford (T), NY	Sampli	ng Method	Bladder Pu	imp	Project #		
Well informa Depth of Well Depth to Wate Length of Wate	* 14.4	t <u>3</u> ft. 65 ^{ft.} 12 ft. 12	17/21	* Measurer 1 .CU	ments taken from X	Top of Well Cas Top of Protective (Other, Specify)	•	
Start Purge T	ime: 13:0.	5						
Time	Depth To Water (ft. BTOC)	Temperature	рН	Conductivity (μs/cm)	Oxidation Reduction Potential (mV)		Turbidity (NTU)	Flow Rate (ml/min)
1310	8.95	13,0	6.91	0,94	-66.5	1.25	35.8	t-100
13:15	9,14	14.0	6.84	0:86	-34,3	0.90	20.3	
13120	9,50	14.5	6.82	0.88	-36.4	0.87	12.5	
13:30	\$ 9.62	14.3	6.90	6.95	-51.6	0.33	12.6	
13:35	9.77	14.5	6.61	0.99	-59.7	Ditte	10.9	
17.40								\mathbf{V}
and a start of the								
End Purge Ti Water samp Time collecte	le: 2:45	40		Total volume of	f purged water re	moved:	± 1 0	1 al
Physical app Sheen/Free	earance at start Color Odor <u>Sligh</u> Product	Lear the topetro	ng grai	hen		arance at samplin Color Odor S ree Product	" den Light po N	tro ala
			" M	W4-	LULI	LT		
Analytical P	arameters:							Container pH
Containe	r Size Conta	ainer Type	# Collec	ted Fi	eld Filtered	Preserva HCI		NM
40 m	0	Glass	7	c	No			
			-					······

NEU-VEL	LE, LLC			Low Fl	ow Ground	d Water Sa	mpling Log	
Date	12/ 🖁 /2021	Person	inel	K R Miller /	A Rothfuss	Weather O	vercast	# 30° F
Site Name	3130 Monroe Avenue	Evacua	ation Method	Bladder Pu	imp	Well #	MW	3
Site Location	Pittsford (T), NY	Sampl	ng Method	Bladder Pu	Imp	Project #		
Well informat Depth of Well	* 14.5	/ft. ~2	" well	* Measurer	ments taken from	1		
Depth to Wate _ength of Wat		/ft. ⁻² 7ft. / 2 5ft.	2/+/2		X	Top of Well Cas Top of Protective (Other, Specify)		
Start Purge Ti	me: //:35							
Гime	Depth To Water (ft. BTOC)	Temperature (C°)	pH (Conductivity µs/cm)	Oxidation Reduction Potential (mV)	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)
10 1145	10.72	13,1	7.98	0.65	-27.4	2.34	19.7	75 ml
11:50	10,40	121	8.09	0.67	- +11	5.82	19.5	1 7 80
11:00	11.00	13.1	8.03	0.69	501	5.81	13.1	
12:05	11.95	13,3	BiOI	0.70	-13.7	1168	9.12	
12:10	12.10	3.3	7.95	0 12	-23.5	1. 12	3.11	·
12115	12.40	13,43	7,87	0 77	-50.8	1,65	3.15	
12:20	12.55	13.2	7.79	0,75	-54.4	1155	3.22	
1147-7	14173	17	-72.1					
								+
							1	
				and a substant of the state of the		2		
	me: 24	15		an terre an				0
End Purge Ti							=1.5	gal
Water sampl Time collecte				Total volume of	f purged water re	emoved:		
						arance at samplir	ng cle	2
Physical app	earance at start ColorC	lans			Physical appe	Color	· CIE	\sim
,	Color U	COC.				Odor	Po	Tal
		NONE			Sheen/F	ree Product	N	ONE
Sheen/Free I	Product	-NP-		MIN13	- 7.0	21/20	011	
			1 h	1009			0	
Analytical P	arameters:							Container pH
		tainer Type	# Collec	ted F	ield Filtered	Preserv	and the second se	NM
Containe 40 m	1 0120	Glass	2		No		-	
40 11								

IEU-VEL	LE, LLC		den en elen de la compañía de la com	Low Fl	ow Ground	Water Sa	mpling Log	- 3
ate	12/ 9 /2021	Persor	inel	K R Miller /	A Rothfuss	Weather SN	OWY, OV2	reast
-	3130 Monroe Avenue	- Evacua	ation Method	Bladder Pu	imp	Well #	MW2	= = 35
-	Pittsford (T), NY	-	ing Method	Bladder Pu	imp	Project #		«F
Vell informati	on:		21 W	011				
epth of Well		ft. ,			ments taken from			
epth to Wate		o majort.	12/7/2	() (t)	and the state of t	Top of Well Casi	-	
ength of Wate	er Column	ft.	CPr	and		Top of Protective (Other, Specify)	e Casing	
	en de la companya de		.	ang mangang si di mangang sa				
itart Purge Tir	ne:	4:00					~	r
	Depth			O and a stir it	Oxidation	Dissolved	Turbidite	Flow
ime	To Water (ft. BTOC)	Temperature (C°)	, pH	Conductivity (μs/cm)	Reduction Potential (mV)	Oxygen (mg/l)	Turbidity (NTU)	Rate (ml/min)
14.05	12.4	10,2	6,82	2.86	-59,4	1.16	43.5	+80
14:10	12155		6.84	2.77	-65.7	1.85	29,0	
14:15	12,71	10,6	6,80	- 2° + 6	-679	2.73	20:2	
14120	13.08	10.7	6.93	2.74	-03.K	7.76	19.5	
14:30	13.1	10.0	6.68	2,61	-65.5	2.81	1216	
,			-					
				and the states of the				
								Y
				waa ay ang				
							L	
Ind Purge Tin Vater sample	"Holf	1,30		Total volume of	purged water ren	noved:	± 1.	fal
					Physical appea	rance at samplin	g aleat	8632°8°
Physical appe	arance at start	ray	()		Color	NUM	-
	Color 17.9 Odor	Detrolei	im ad	Le	04	Odor ee Product	- Pure	120
Sheen/Free P		en			Sneen/Fr	ee Flouuci		an l
		1	MN	2-	NM 21	02112	2081	
An ale that I De	arameters.		+					
Analytical Pa				tod Ei	eld Filtered	Preserva	ative	Container pH
	Size Con	tainer Type	# Collec		No	HCI		NM
Container		Glass						

NEU-VEL	LE, LLC			Low F	low Ground	d Water Sa	mpling Log	
Date	12/ 9 /2021	Persor	nel	K R Miller	/ A Rothfuss	Weather OV	escasit	± 30°F
Site Name	3130 Monroe Avenue	Evacua	ation Method	Bladder Pu	ump	Well #	MW	1
Site Location	Pittsford (T), NY	Sampli	ng Method	Bladder Pt	ump	Project #		
Nell informat	ion:		111 h	M			an an an an an ann an an ann an an an an	an the second
Depth of Well	17 0	7 ft.	1010	/ * Measure	ments taken from	1		
Depth to Wate	r* 7	14 ft. 1	4114	-		Top of Well Cas		
ength of Wat	er Column	ft.、	t į			Top of Protective (Other, Specify)	e Casing	
						(Other, Specity)		Designation and the second
Start Purge Ti	me: 🔥	12:30						·····
	Depth				Oxidation	Dissolved Oxygen	Turbidity	Flow
lime -	To Water	Temperature (C°)	рН	Conductivity (μs/cm)	Reduction Potential (mV)	(mg/l)	(NTU)	Rate (ml/min)
11165	(ft. BTOC)	10.10	10 44	4,15	36.7	1.48	lluD	100
12:40	7.16	5.9	6.93	3.70	46,9	1002	10.99	
12:45	7.15	6.n	10.90	3.02	49.0	0.96	8.76	
12:50	7.16	10. 2	6.92	3.50	56:5	0:12	6.62	
12:55	7.17	0.5	6.92	3.51	57.5	0.63	5:47	
13:00	7:10	0.5	0.92	- 3.51	57.0	0:66	4,97	
13:05	tolt	6.6	12.90	1.11	1100			
				· · · ·				
						· · · · · · · · · · · · · · · · · · ·		
							-	
			1	1	; <u></u>			
- 10 - T	13	05						- 1
End Purge Ti		and the second					±0,	Sarl
Water samp				Total volume o	of purged water re	emoved:		Ta
Time collecte	ed: 13°215							V.
2 1							ng l	
	et start	1			Physical appe	arance at sampli Color	Cleas	-
Physical app	earance at start Color	Jean -	gen.			Odor	NON	E
	Odor	NONE	~		Sheen/F	Free Product	NG	1
Sheen/Free		NO						
Sneen/Fiec		1		1	001106	911		
			ML	1 1 2 C	021120	(
	Parameters'							the second
Analytical	Parameters:		# Oct	acted F	ield Filtered	Presen		Container pH NM
Containe	er Size Con	tainer Type	# Colle	2	No	НС		
40		Glass						
								1

Appendix E

NEU-VELLE LLC

Data Usability Summary Reports

December 2021

DATA USABILITY SUMMARY REPORT (DUSR)

3130 Monroe Avenue Rochester, NY

SDGs: 215562 4 Water Samples and a Trip Blank

Prepared for:

Neu Velle, LLC 1667 Lake Ave., Bldg. 59, Suite 101 Rochester, NY 14615 Attention: Kyle Miller

February 2022

EDU Environmental Data Usability 10028 Deer Park Dr. Dansville, NY 14437 585-991-9156

Table of Contents

REVIEWER'S NARRATIVE

1.0	SUMMARY	1
2.0	INTRODUCTION	1
3.0	SAMPLE AND ANALYSIS SUMMARY	2
4.0	GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA	2
5.0	DATA VALIDATION QUALIFIERS	3
6.0	RESULTS OF THE DATA REVIEW	4
7.0	TOTAL USABLE DATA	4

APPENDIX A	Validated Analytical Results
APPENDIX B	Laboratory QC Documentation
APPENDIX C	Validator Qualifications

Tables

Table 4-1	Data Validation Guidance Documents
Table 4-2	Quality Control Criteria for Validating Laboratory Analytical Data

Summaries of Validated Results

 Table 6-1
 8260 - VOCs

REVIEWER'S NARRATIVE Neu-Velle SDG 215562: 3130 Monroe Ave.

The data associated with this Sample Delivery Group (SDG) 215562, analyzed by Paradigm Environmental Services, Inc. Rochester, NY have been reviewed in accordance with assessment criteria provided by the New York State Department of Environmental Conservation following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated "J", or as non-detects, "U", are considered usable for the purpose of evaluating water and/or soil quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data usability summary report (DUSR).

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on the final data tables because they cannot be relied upon, even as the last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Reviewer's Signature:

Míchael K. Perry

Date: 2/8/2022

Michael K. Perry Chemist

1.0 SUMMARY

SITE:	3130 Monroe Avenue Rochester, NY
SAMPLING DATE:	December 07 – 09, 2021
SAMPLE TYPE:	4 water samples and trip blank
LABORATORY:	Paradigm Environmental Services, Inc. Rochester, NY
SDG No.:	215562

2.0 INTRODUCTION

This data usability summary report (DUSR) was prepared in accordance with guidance provided by the New York State Department of Environmental Conservation (NYSDEC). The DUSR is based on a review and evaluation of the laboratory analytical data package. Specifically, the NYSDEC guidance recommends review and evaluation of the following elements of the data package:

- Completeness of the data package as defined under the requirements of the NYSDEC Analytical Services Protocols (ASP) Category B or the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) deliverables,
- Compliance with established analyte holding times,
- Adherence to quality control (QC) limits and specifications for blanks, instrument tuning and calibration, surrogate recoveries, spike recoveries, laboratory duplicate analyses, and other QC criteria,
- Adherence to established analytical protocols,
- Conformance of data summary sheets with raw analytical data, and
- Use of correct data qualifiers.

Data deficiencies, analytical protocol deviations, and quality control problems identified using the review criteria above and their effect on the analytical results are discussed in this report.

3.0 SAMPLE AND ANALYSIS SUMMARY

The data packages consists of analytical results for four water samples and trip blank collected on December 07 - 09, 2021. These samples were analyzed for Volatile Organic Compounds (VOCs).

All analyses were performed by Paradigm Environmental Services, Inc., Rochester, NY and analyzed as SDG: 215562. The analytical results were provided in NYSDEC ASP Category B format, which includes all raw analytical data and laboratory QC data.

4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA

The guidance documents appropriate for reviewing laboratory quality control (QC) data and assigning data qualifiers (flags) to analytical results were selected from those listed in Table 4-1. The QC limits established in the documents applicable to this data review were used to assess the quality of the analytical results. In some cases, however, QC limits established internally by the laboratory were taken into account to determine data quality.

The QC criteria considered for assessing the usability of the reported analytical results provided for each analyte type (i.e. VOCs, SVOCs, metals, etc.) are listed in Table 4-2. These criteria may vary with the analytical method utilized by the laboratory. These criteria comply with the guidance recommended in Section 2.0 above.

5.0 DATA VALIDATION QUALIFIERS

The letter qualifiers (flags) used to define data usability are described briefly below. These letters are assigned by the data validator to analytical results having questionable accuracy and/or precision as determined by reviewing the laboratory QC data associated with the analytical results.

TABLE 4-1

Guidance Used For Validating Laboratory Analytical Data

Analyte Group	Guidance	Date
Metals (ICP-AES) Metals (Hg & CN)	USEPA SOP HW-3a, Rev. 1 USEPA SOP HW-3c, Rev. 1	September 2016 September 2016
Volatile Organic Compounds (by Methods 8260B & 8260C)	USEPA SOP HW-24, Rev. 4	September 2014
Semi-Volatile Organic Compounds (by Method 8270D)	USEPA SOP HW-22 Rev. 5	December 2010
Pesticides (by Method 8181B)	USEPA SOP HW-44, Rev. 1.1	December 2010
Chlorinated Herbicides (by Method 8151A)	USEPA SOP HW-17, Rev. 3.1	December 2010
Polychlorinated Biphenyls (PCBs)	USEPA SOP HW-37A, Rev. 0	June 2015
Volatile Organic Compounds (Air) (by Method TO-15)	USEPA SOP HW-31, Rev. 6	September 2016
Per- and PolyFluoroAlkyl Substances (PFAS)	* NYSDEC	January 2021
General Chemistry Parameters	per NYSDEC ASP	July 2005

* Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs, Appendix I

TABLE 4-2

QUALITY CONTROL CRITERIA USED FOR VALIDATING LABORATORY ANALYTICAL DATA

VOCs	SVOCs	Pesticides/PCBs	Metals	Gen Chemistry	PFAS
Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg
Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation
Holding Time	Holding Time	Holding Time	Holding Time	Holding Times	Holding Time
System Monitoring	Surrogate Recoveries	Surrogate Recoveries	Initial/Continuing	Calibration	Instr Performance
Compounds	Lab Control Sample	Matrix Spikes	Calibration	Lab Control Samples	Check
Lab Control Sample	Matrix Spikes	Blanks	CRDL Standards	Blanks	Initial Calibration
Matrix Spikes	Blanks	Instrument Calibration	Blanks	Spike Recoveries	Continuing Calibration
Blanks	Instrument Tuning	& Verification	Interference Check	Lab Duplicates	Blanks
Instrument Tuning	Internal Standards	Comparison of	Sample		Surrogates
Internal Standards	Initial Calibration	duplicate	Spike Recoveries		Lab Fortified Blank
Initial Calibration	Continuing Calibration	GC column results	Lab Duplicate		Matrix Spikes
Continuing Calibration	Lab Qualifiers	Analyte ID	Lab Control Sample		Internal Standards
Lab Qualifiers	Field Duplicate	Lab Qualifiers	ICP Serial Dilutions		
Field Duplicate		Field Duplicate	Lab Qualifiers		
			Field Duplicate		

Method TO-15 (Air)
Completeness of Pkg
Sample Preservation
Holding Time
Canister Certification
Instrument Tuning
Initial Calibration and
Instrument Performance
Daily Calibration
Blanks
Lab Control Sample
Field Duplicate

The laboratory may also use various letters and symbols to flag analytical results generated when QC limits were exceeded. The meanings of these flags may differ from those used by the independent data validator. Those used by the laboratory are provided with the analytical results.

NOTE: The assignment of data qualifiers by the data reviewer (validator) to laboratory analytical results should not necessarily be interpreted by the data user as a measure of laboratory ability or proficiency. Rather, the qualifiers are intended to provide a measure of data accuracy and precision to the data user, which, for example, may provide a level of confidence in determining whether or not standards or cleanup objectives have been met.

- U The analyte was analyzed for but was not detected at or above the sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the *approximate* concentration of the analyte in the sample. (The magnitude of any \pm value associated with the result is not determined by data validation).
- **J**+ The result is an estimated quantity and may be biased high.
- **J-** The result is an estimated quantity and may be biased low.
- **UJ** The analyte was analyzed for but not detected. The reported quantitation limit is approximate and may inaccurate or imprecise.
- **R** The sample result is rejected (i.e., is unusable) due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

The validated analytical results are attached to this report. Validation qualifiers (flags) are indicated in red print. Data sheets having qualified data are signed and dated by the data reviewer.

6.0 **RESULTS OF THE DATA REVIEW**

The results of the data review are summarized in Table 6-1. The tables list the samples where QC criteria were found to exceed acceptable limits and the actions taken to qualify the associated analytical results.

7.0 TOTAL USABLE DATA

For SDGs 215562, five samples were analyzed and results were reported for 265 analytes. Five results were rejected. Even though some results were flagged with a "J" as estimated, all other results (99 %) are considered usable. See the summary table for the analyses that have been qualified and the associated QC reasons.

SDG 215562

Table 6-1VOCs

SAMPLES AFFECTED			QC VIOLATION	COMMENTS
MW1-20211209	1-20211209 All analytes J		Surrogate recovery PFB > QC limit	Data are estimated
All samples	1,4-Dioxane	R	ICAL RF < 0.005	Sample data are rejected

ACRONYMS

BSP	Blank Spike
CCAL	Continuing Calibration
ССВ	Continuing Calibration Blank
CCV	Continuing Calibration Verification
CRDL	Contract Required Detection Limit
CRQL	Contract Required Quantitation Limit
%D	Percent Difference
ICAL	Initial Calibration
ICB	Initial Calibration Blank
IS	Internal Standard
LCS	Laboratory Control Sample
MS/MSD	Matrix Spike/Matrix Spike Duplicate
QA	Quality Assurance
QC	Quality Control
% R	Percent recovery
RPD	Relative Percent Difference
RRF	Relative Response Factor
%RSD	Percent Relative Standard Deviation
TAL	Target Analyte List (metals)
TCL	Target Compound List (organics)

Appendix A

Validated Analytical Results

LAB PROJECT NARRATIVE: 215562 PROJECT NAME: 3130 Monroe Avenue SDG: 5562-01 CLIENT: Neu-Velle

Four groundwater samples were collected by the client between December 07 and 09, 2021 and were received by the Paradigm laboratory on December 09, 2021. Samples were accompanied by a trip blank. Samples were received under the conditions as noted on the chain-of-custody supplement. The samples were submitted with the Chain-of-Custody requesting the TCL list for Volatiles. All analyses were performed using EPA SW-846 Methods and the associated holding times.

The items noted in this case narrative address compliance with the referenced methods, NYSDOH ELAP rules, and any project specific data quality requirements. These may be different from the usability criteria referenced in any "Functional Guidelines" or other data review standards used by data validators.

GENERAL NOTES

ALL ANALYSES

The initial and continuing calibration reports are only evaluated for compounds that are on the sample summary report.

Regarding results on QC summary forms versus included raw data, due to calculations made at the instrument where many significant figures may be used, there may be slight discrepancies between the summary report result and that recorded on the raw data. This does not affect data usability.

VOLATILES

Regarding initial calibrations, it should be noted that the Quantitation Report concentrations supplied for the initial calibration reflect the calibration prior to updating. The response factors and areas are correct.

Regarding Quantitation Reports, it should be noted that the "#" symbol that appears on some of the Quantitation Reports is a software artifact and should be disregarded.

Compounds flagged with an "*" on the summary table have been calibrated using a non-average Response Factor calibration curve. The supporting curves are located after the initial calibration table.

Holding times were met for the samples.

Surrogate recoveries for the samples and associated QC were within acceptance limits, with the following exception: Pentafluorobenzene recovered outside of acceptance limits (high) in MW1-20211209. This outlier has been flagged with an "*" on the summary form and the sample report.

Site specific QC was not requested on this SDG. The Laboratory Control Samples recovered within acceptance limits.

The Method Blanks were free from contamination within reportable ranges.

The instrument tunes passed all criteria and samples were within a 12-hour window.

The internal standards areas and retention times were within acceptance ranges for the samples and QC.

All data for the initial calibration was within acceptance limits for the reported analytes.

All continuing calibration data was within acceptance limits for the reported analytes, with the following exceptions: 1,2-Dichlorobenzene and 1,2,4-Trichlorobenzene were out low in the CCV analyzed on December 13, 2021. A single point 1ppb standard was analyzed to verify sensitivity at the reporting limit. This is usable for non-detects only. 2-Hexanone was out high in the CCV analyzed on December 14, 2021. This is usable for non-detects only. All samples were non-detect for these compounds.

Steven Del'ito (signed) Steven DeVito – Technical Director

(date) 12/23/2021

BATCH LOG

Lab Name:	Paradigm Environmental Services
Lab Project #:	<u>215562</u>
Client Name:	Neu-Velle
Client Project Name:	3130 Monroe Avenue
Client Project #:	N/A
SDG No.:	<u>5562-01</u>

Prot	cocol: <u>SW84</u>	16 Report D	ue Date:	<u>12/16/2021</u>	Batch Due I	Date:	<u>1/8/2022</u>	
	•	•	T					
LAB	MATRIX	CLIENT			REQUESTED ANALYSI	S	DATE	DATE
SAMPLE NO.		SAMPLE ID					SAMPLED	REC'D
215562-01	Groundwater	MW4-20211207	VOAs				12/7/2021	12/9/2021
215562-02	Groundwater	MW3-20211208	VOAs				12/8/2021	12/9/2021
215562-03	Groundwater	MW2-20211208	VOAs				12/8/2021	12/9/2021
215562-04	Groundwater	MW1-20211209	VOAs				12/9/2021	12/9/2021
215562-05	Water	Trip Blank T1084	VOAs				12/6/2021	12/9/2021
	1							
			1					
			1					
			1					
L	1	1						

			179 Lake Aver						(585) 647-	-3311				10/2
				CHAI	N OF	CU	STO	DY						r 0 = •
PARADIGM PROJECT REFERENC 3130 Mento	E Mat	ESS 166 Ruche (585) trix Codes:	REPORT TO: -Vefle	LLC Ave 1461; lele	CLIEN ADDR CITY: PHON ATTN:	ESS: E:		STAT	<i>m</i>	ZIP:	Emai ot r c _i (55(ation #:	nte Fusse no e	Dneu- Julle Com
3130 Menro Avenne		AQ - Aqueo NQ - Non-A	us Liquid queous Liquid	WA - Wate WG - Grou			DW - Drink WW - Was	king Water stewater		D - Soil L - Sludge	SD - S PT - Pa		WP - Wipe CK - Caulk	OL - Oil AR - Air
DATE COLLECTED TIME COLLECTED $TIME$ $COLLECTED$ $TIME$ $COLLECTED$ $TIME$ $COLLECTED$ $TIME$ $COLLECTED$ $TIME$ TE TE TE TE TE TE TE T	G R A B	MW 4 MW 3 MW 2 MW 2 Tri	SAMPLE IDENTIFIER - 202112 - 202112 - 202112 - 202112 - 202112	08 V 08 V	AC M TD E RE R IS X O	ALCLVAC, B200						REMARKS	19/2/ 1	PARADIGM LAB SAMPLE NUMBER 01 02 03 04 05 05 05 05 05 05 05 05 05 05 05 05 05
Turnaround Time Availability contingent upo		oort Suppler				1.M	4	- A.	Roy Date/Time		12/5	7-9/ - _{Tot}	Γ	Intact militar
10 day Determined and the second seco	e Required ch QC egory A egory B	Ba	Ine Required	Sampled I Reimquid Received	red By	n, Na	n il (9/21	15: 153 34	30		
Date Needed Other please indicate date needed:	er e indicate package nee		her EDD ase indicate EDD needed :	By signi	ng this fo	orm, cl	ient agr	ees to Pa	radigm [•]	Ferms and	l Condition	s (rever	rse).	

See additional page for sample conditions. Page 195 of 223

VOLATILE ORGANICS

SAMPLE DATA

Client:	<u>Neu-Velle</u>		
Project Reference:	3130 Monroe Avenue		
Sample Identifier:	MW4-20211207		
Lab Sample ID:	215562-01	Date Sampled:	12/7/2021
Matrix:	Groundwater	Date Received:	12/9/2021

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/13/2021 17:02
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/13/2021 17:02
1,1,2-Trichloroethane	< 2.00	ug/L		12/13/2021 17:02
1,1-Dichloroethane	< 2.00	ug/L		12/13/2021 17:02
1,1-Dichloroethene	< 2.00	ug/L		12/13/2021 17:02
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/13/2021 17:02
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/13/2021 17:02
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/13/2021 17:02
1,2-Dibromoethane	< 2.00	ug/L		12/13/2021 17:02
1,2-Dichlorobenzene	< 2.00	ug/L		12/13/2021 17:02
1,2-Dichloroethane	< 2.00	ug/L		12/13/2021 17:02
1,2-Dichloropropane	< 2.00	ug/L		12/13/2021 17:02
1,3-Dichlorobenzene	< 2.00	ug/L		12/13/2021 17:02
1,4-Dichlorobenzene	< 2.00	ug/L		12/13/2021 17:02
1,4-Dioxane	< <u>10.0</u> R	ug/L		12/13/2021 17:02
2-Butanone	< 10.0	ug/L		12/13/2021 17:02
2-Hexanone	< 5.00	ug/L		12/13/2021 17:02
4-Methyl-2-pentanone	< 5.00	ug/L		12/13/2021 17:02
Acetone	< 10.0	ug/L		12/13/2021 17:02
Benzene	< 1.00	ug/L		12/13/2021 17:02
Bromochloromethane	< 5.00	ug/L		12/13/2021 17:02
Bromodichloromethane	< 2.00	ug/L		12/13/2021 17:02
Bromoform	< 5.00	ug/L		12/13/2021 17:02

Client:	<u>Neu-Velle</u>				
Project Reference:	3130 Monroe Avenue				
Sample Identifier:	MW4-20211207				
Lab Sample ID:	215562-01		Date Sampled:	12/7/2021	
Matrix:	Groundwater		Date Received:	12/9/2021	
Bromomethane	< 2.00	ug/L		12/13/2021	17:02
Carbon disulfide	< 2.00	ug/L		12/13/2021	17:02
Carbon Tetrachloride	< 2.00	ug/L		12/13/2021	17:02
Chlorobenzene	< 2.00	ug/L		12/13/2021	17:02
Chloroethane	< 2.00	ug/L		12/13/2021	17:02
Chloroform	< 2.00	ug/L		12/13/2021	17:02
Chloromethane	< 2.00	ug/L		12/13/2021	17:02
cis-1,2-Dichloroethene	< 2.00	ug/L		12/13/2021	17:02
cis-1,3-Dichloropropen	e < 2.00	ug/L		12/13/2021	17:02
Cyclohexane	< 10.0	ug/L		12/13/2021	17:02
Dibromochloromethan	e < 2.00	ug/L		12/13/2021	17:02
Dichlorodifluorometha	ne < 2.00	ug/L		12/13/2021	17:02
Ethylbenzene	< 2.00	ug/L		12/13/2021	17:02
Freon 113	< 2.00	ug/L		12/13/2021	17:02
Isopropylbenzene	< 2.00	ug/L		12/13/2021	17:02
m,p-Xylene	< 2.00	ug/L		12/13/2021	17:02
Methyl acetate	< 2.00	ug/L		12/13/2021	17:02
Methyl tert-butyl Ether	< 2.00	ug/L		12/13/2021	17:02
Methylcyclohexane	< 2.00	ug/L		12/13/2021	17:02
Methylene chloride	< 5.00	ug/L		12/13/2021	17:02
o-Xylene	< 2.00	ug/L		12/13/2021	17:02
Styrene	< 5.00	ug/L		12/13/2021	17:02
Tetrachloroethene	< 2.00	ug/L		12/13/2021	17:02
Toluene	< 2.00	ug/L		12/13/2021	17:02
trans-1,2-Dichloroethe	ne < 2.00	ug/L		12/13/2021	17:02

Client:	<u>Neu-Velle</u>						
Project Reference:	3130 Monroe A	Avenue					
Sample Identifier:	MW4-202112	207					
Lab Sample ID:	215562-01			Date	e Sampled:	12/7/202	21
Matrix:	Groundwater			Date	e Received:	12/9/202	1
trans-1,3-Dichloropro	pene	< 2.00	ug/L			12/13/202	21 17:02
Trichloroethene		< 2.00	ug/L			12/13/202	21 17:02
Trichlorofluorometha	ne	< 2.00	ug/L			12/13/202	21 17:02
Vinyl chloride		< 2.00	ug/L			12/13/202	21 17:02
<u>Surrogate</u>		<u>P</u>	ercent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
1,2-Dichloroethane-d4	ł		104	77.9 - 132		12/13/2021	17:02
4-Bromofluorobenzen	e		101	62.6 - 133		12/13/2021	17:02
Pentafluorobenzene			110	88.9 - 114		12/13/2021	17:02
Toluene-D8			99.0	75.6 - 117		12/13/2021	17:02
Method Referen	ce(s): EPA 8260	С					
Data File:	EPA 5030 z06027.D	С					

Client:	<u>Neu-Velle</u>			
Project Reference:	3130 Monroe Avenue			
Sample Identifier:	MW3-20211208			
Lab Sample ID:	215562-02		Date Sampled:	12/8/2021
Matrix:	Groundwater		Date Received:	12/9/2021
Volatile Organics				
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/14/2021 14:47

1,1,1-Trichloroethane	< 2.00		ug/L	12/14/2021	14:47
1,1,2,2-Tetrachloroethane	< 2.00		ug/L	12/14/2021	14:47
1,1,2-Trichloroethane	< 2.00		ug/L	12/14/2021	14:47
1,1-Dichloroethane	< 2.00		ug/L	12/14/2021	14:47
1,1-Dichloroethene	< 2.00		ug/L	12/14/2021	14:47
1,2,3-Trichlorobenzene	< 5.00		ug/L	12/14/2021	14:47
1,2,4-Trichlorobenzene	< 5.00		ug/L	12/14/2021	14:47
1,2-Dibromo-3-Chloropropane	< 10.0		ug/L	12/14/2021	14:47
1,2-Dibromoethane	< 2.00		ug/L	12/14/2021	14:47
1,2-Dichlorobenzene	< 2.00		ug/L	12/14/2021	14:47
1,2-Dichloroethane	< 2.00		ug/L	12/14/2021	14:47
1,2-Dichloropropane	< 2.00		ug/L	12/14/2021	14:47
1,3-Dichlorobenzene	< 2.00		ug/L	12/14/2021	14:47
1,4-Dichlorobenzene	< 2.00		ug/L	12/14/2021	14:47
1,4-Dioxane	< 10.0	R	ug/L	12/14/2021	14:47
2-Butanone	< 10.0		ug/L	12/14/2021	14:47
2-Hexanone	< 5.00		ug/L	12/14/2021	14:47
4-Methyl-2-pentanone	< 5.00		ug/L	12/14/2021	14:47
Acetone	< 10.0		ug/L	12/14/2021	14:47
Benzene	< 1.00		ug/L	12/14/2021	14:47
Bromochloromethane	< 5.00		ug/L	12/14/2021	14:47
Bromodichloromethane	< 2.00		ug/L	12/14/2021	14:47
Bromoform	< 5.00		ug/L	12/14/2021	14:47

Client:	<u>Neu-Velle</u>			
Project Reference:	3130 Monroe Avenue			
Sample Identifier:	MW3-20211208			
Lab Sample ID:	215562-02		Date Sampled:	12/8/2021
Matrix:	Groundwater		Date Received:	12/9/2021
Bromomethane	< 2.00	ug/L		12/14/2021 14:47
Carbon disulfide	< 2.00	ug/L		12/14/2021 14:47
Carbon Tetrachloride	< 2.00	ug/L		12/14/2021 14:47
Chlorobenzene	< 2.00	ug/L		12/14/2021 14:47
Chloroethane	< 2.00	ug/L		12/14/2021 14:47
Chloroform	< 2.00	ug/L		12/14/2021 14:47
Chloromethane	< 2.00	ug/L		12/14/2021 14:47
cis-1,2-Dichloroethene	2.02	ug/L		12/14/2021 14:47
cis-1,3-Dichloroproper	ne < 2.00	ug/L		12/14/2021 14:47
Cyclohexane	< 10.0	ug/L		12/14/2021 14:47
Dibromochloromethan	e < 2.00	ug/L		12/14/2021 14:47
Dichlorodifluorometha	ne < 2.00	ug/L		12/14/2021 14:47
Ethylbenzene	< 2.00	ug/L		12/14/2021 14:47
Freon 113	< 2.00	ug/L		12/14/2021 14:47
Isopropylbenzene	< 2.00	ug/L		12/14/2021 14:47
m,p-Xylene	< 2.00	ug/L		12/14/2021 14:47
Methyl acetate	< 2.00	ug/L		12/14/2021 14:47
Methyl tert-butyl Ether	< 2.00	ug/L		12/14/2021 14:47
Methylcyclohexane	< 2.00	ug/L		12/14/2021 14:47
Methylene chloride	4.24	ug/L	J	12/14/2021 14:47
o-Xylene	< 2.00	ug/L		12/14/2021 14:47
Styrene	< 5.00	ug/L		12/14/2021 14:47
Tetrachloroethene	< 2.00	ug/L		12/14/2021 14:47
Toluene	< 2.00	ug/L		12/14/2021 14:47
trans-1,2-Dichloroethe	ene < 2.00	ug/L		12/14/2021 14:47

Client:	<u>Neu-Velle</u>						
Project Reference:	3130 Monroe Av	enue	!				
Sample Identifier:	MW3-20211208	3					
Lab Sample ID:	215562-02			Date	e Sampled:	12/8/202	1
Matrix:	Groundwater			Date	e Received	: 12/9/202	1
trans-1,3-Dichloropro	pene <	2.00	ug/L			12/14/202	21 14:47
Trichloroethene	< 2	2.00	ug/L			12/14/202	21 14:47
Trichlorofluorometha	ne < 2	2.00	ug/L			12/14/202	21 14:47
Vinyl chloride	< 2	2.00	ug/L			12/14/202	21 14:47
<u>Surrogate</u>		<u>P</u>	<u>ercent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Ana	lyzed
1,2-Dichloroethane-d4	Ļ		117	77.9 - 132		12/14/2021	14:47
4-Bromofluorobenzen	e		115	62.6 - 133		12/14/2021	14:47
Pentafluorobenzene			113	88.9 - 114		12/14/2021	14:47
Toluene-D8			107	75.6 - 117		12/14/2021	14:47
Method Referen							
Data File:	EPA 5030C z06043.D						

Client:	<u>Neu-Velle</u>		
Project Reference:	3130 Monroe Avenue		
Sample Identifier:	MW2-20211208		
Lab Sample ID:	215562-03	Date Sampled:	12/8/2021
Matrix:	Groundwater	Date Received:	12/9/2021
Volatile Organics			

Analyte Result Units **Oualifier Date Analyzed** 1.1.1-Trichloroethane < 2.00 ug/L 12/14/2021 15:06 1,1,2,2-Tetrachloroethane < 2.00 12/14/2021 15:06 ug/L 1,1,2-Trichloroethane < 2.00 ug/L 12/14/2021 15:06 1.1-Dichloroethane < 2.00 12/14/2021 15:06 ug/L 1.1-Dichloroethene < 2.00 ug/L 12/14/2021 15:06 1.2.3-Trichlorobenzene < 5.00 ug/L 12/14/2021 15:06 1,2,4-Trichlorobenzene < 5.00 ug/L 12/14/2021 15:06 1,2-Dibromo-3-Chloropropane < 10.0 ug/L 12/14/2021 15:06 1.2-Dibromoethane < 2.00 ug/L 12/14/2021 15:06 1.2-Dichlorobenzene < 2.00 12/14/2021 15:06 ug/L 1,2-Dichloroethane < 2.00 12/14/2021 15:06 ug/L < 2.00 12/14/2021 15:06 1,2-Dichloropropane ug/L 1,3-Dichlorobenzene < 2.00 ug/L 12/14/2021 15:06 1.4-Dichlorobenzene < 2.00 ug/L 12/14/2021 15:06 <10.0 R 1.4-Dioxane 12/14/2021 15:06 ug/L 2-Butanone < 10.0 ug/L 12/14/2021 15:06 2-Hexanone < 5.00 12/14/2021 15:06 ug/L 4-Methyl-2-pentanone < 5.00 ug/L 12/14/2021 15:06 Acetone < 10.0 ug/L 12/14/2021 15:06 Benzene < 1.00ug/L 12/14/2021 15:06 Bromochloromethane < 5.00 ug/L 12/14/2021 15:06 Bromodichloromethane < 2.00 ug/L 12/14/2021 15:06 Bromoform < 5.00 ug/L 12/14/2021 15:06

Client:	<u>Neu-Velle</u>				
Project Reference:	3130 Monroe Avenue				
Sample Identifier:	MW2-20211208				
Lab Sample ID:	215562-03		Date Sampled:	12/8/2021	
Matrix:	Groundwater		Date Received:	12/9/2021	
Bromomethane	< 2.00	ug/L		12/14/2021	15:06
Carbon disulfide	< 2.00	ug/L		12/14/2021	15:06
Carbon Tetrachloride	< 2.00	ug/L		12/14/2021	15:06
Chlorobenzene	< 2.00	ug/L		12/14/2021	15:06
Chloroethane	< 2.00	ug/L		12/14/2021	15:06
Chloroform	< 2.00	ug/L		12/14/2021	15:06
Chloromethane	< 2.00	ug/L		12/14/2021	15:06
cis-1,2-Dichloroethene	< 2.00	ug/L		12/14/2021	15:06
cis-1,3-Dichloropropen	e < 2.00	ug/L		12/14/2021	15:06
Cyclohexane	< 10.0	ug/L		12/14/2021	15:06
Dibromochloromethan	e < 2.00	ug/L		12/14/2021	15:06
Dichlorodifluorometha	ne < 2.00	ug/L		12/14/2021	15:06
Ethylbenzene	< 2.00	ug/L		12/14/2021	15:06
Freon 113	< 2.00	ug/L		12/14/2021	15:06
Isopropylbenzene	< 2.00	ug/L		12/14/2021	15:06
m,p-Xylene	< 2.00	ug/L		12/14/2021	15:06
Methyl acetate	< 2.00	ug/L		12/14/2021	15:06
Methyl tert-butyl Ether	< 2.00	ug/L		12/14/2021	15:06
Methylcyclohexane	< 2.00	ug/L		12/14/2021	15:06
Methylene chloride	3.22	ug/L	J	12/14/2021	15:06
o-Xylene	< 2.00	ug/L		12/14/2021	15:06
Styrene	< 5.00	ug/L		12/14/2021	15:06
Tetrachloroethene	< 2.00	ug/L		12/14/2021	15:06
Toluene	< 2.00	ug/L		12/14/2021	15:06
trans-1,2-Dichloroether	ne < 2.00	ug/L		12/14/2021	15:06

Client:	<u>Neu-Velle</u>						
Project Reference:	3130 Monro	be Avenue					
Sample Identifier:	MW2-2022	11208					
Lab Sample ID:	215562-03	3		Dat	e Sampled	: 12/8/202	1
Matrix:	Groundwa	ter		Dat	e Received	: 12/9/202	21
trans-1,3-Dichloropro	pene	< 2.00	ug/L			12/14/202	21 15:06
Trichloroethene		< 2.00	ug/L			12/14/202	21 15:06
Trichlorofluorometha	ne	< 2.00	ug/L			12/14/202	21 15:06
Vinyl chloride		< 2.00	ug/L			12/14/202	21 15:06
<u>Surrogate</u>		<u>Pe</u>	ercent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
1,2-Dichloroethane-d4	ŀ		109	77.9 - 132		12/14/2021	15:06
4-Bromofluorobenzen	e		104	62.6 - 133		12/14/2021	15:06
Pentafluorobenzene			113	88.9 - 114		12/14/2021	15:06
Toluene-D8			105	75.6 - 117		12/14/2021	15:06
Method Referen		3260C 5030C					
Data File:	z0604						

Client:	<u>Neu-Velle</u>			
Project Reference:	3130 Monroe Avenue			
Sample Identifier:	MW1-20211209			
Lab Sample ID:	215562-04		Date Sampled:	12/9/2021
Matrix:	Groundwater		Date Received:	12/9/2021
Volatile Organics				
<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/14/2021 15:26
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/14/2021 15:26
1,1,2-Trichloroethane	< 2.00	ug/L		12/14/2021 15:26
1,1-Dichloroethane	< 2.00	ug/L		12/14/2021 15:26
1,1-Dichloroethene	< 2.00	ug/L		12/14/2021 15:26
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/14/2021 15:26
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/14/2021 15:26
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/14/2021 15:26
1,2-Dibromoethane	< 2.00	ug/L		12/14/2021 15:26
1,2-Dichlorobenzene	< 2.00	ug/L		12/14/2021 15:26
1,2-Dichloroethane	< 2.00	ug/L		12/14/2021 15:26
1,2-Dichloropropane	< 2.00	ug/L		12/14/2021 15:26
1,3-Dichlorobenzene	< 2.00	ug/L		12/14/2021 15:26
1,4-Dichlorobenzene	< 2.00	ug/L		12/14/2021 15:26
1,4-Dioxane	<u><18.0</u> R	ug/L		12/14/2021 15:26
2-Butanone	< 10.0	ug/L		12/14/2021 15:26
2-Hexanone	< 5.00	ug/L		12/14/2021 15:26
4-Methyl-2-pentanone	< 5.00	ug/L		12/14/2021 15:26
Acetone	< 10.0	ug/L		12/14/2021 15:26
Benzene	< 1.00	ug/L		12/14/2021 15:26
Bromochloromethane	< 5.00	ug/L		12/14/2021 15:26
Bromodichloromethane	< 2.00	ug/L		12/14/2021 15:26
Bromoform	< 5.00	ug/L		12/14/2021 15:26

Client:	<u>Neu-Velle</u>				
Project Reference:	3130 Monroe Avenue				
Sample Identifier:	MW1-20211209				
Lab Sample ID:	215562-04		Date Sampled:	12/9/2021	
Matrix:	Groundwater		Date Received:	12/9/2021	
Bromomethane	< 2.00	ug/L		12/14/2021	15:26
Carbon disulfide	< 2.00	ug/L		12/14/2021	15:26
Carbon Tetrachloride	< 2.00	ug/L		12/14/2021	15:26
Chlorobenzene	< 2.00	ug/L		12/14/2021	15:26
Chloroethane	< 2.00	ug/L		12/14/2021	15:26
Chloroform	< 2.00	ug/L		12/14/2021	15:26
Chloromethane	< 2.00	ug/L		12/14/2021	15:26
cis-1,2-Dichloroethene	< 2.00	ug/L		12/14/2021	15:26
cis-1,3-Dichloropropen	e < 2.00	ug/L		12/14/2021	15:26
Cyclohexane	< 10.0	ug/L		12/14/2021	15:26
Dibromochloromethan	e < 2.00	ug/L		12/14/2021	15:26
Dichlorodifluorometha	ne < 2.00	ug/L		12/14/2021	15:26
Ethylbenzene	< 2.00	ug/L		12/14/2021	15:26
Freon 113	< 2.00	ug/L		12/14/2021	15:26
Isopropylbenzene	< 2.00	ug/L		12/14/2021	15:26
m,p-Xylene	< 2.00	ug/L		12/14/2021	15:26
Methyl acetate	< 2.00	ug/L		12/14/2021	15:26
Methyl tert-butyl Ether	< 2.00	ug/L		12/14/2021	15:26
Methylcyclohexane	< 2.00	ug/L		12/14/2021	15:26
Methylene chloride	4.95 J	ug/L	J	12/14/2021	15:26
o-Xylene	< 2.00	ug/L		12/14/2021	15:26
Styrene	< 5.00	ug/L		12/14/2021	15:26
Tetrachloroethene	< 2.00	ug/L		12/14/2021	15:26
Toluene	< 2.00	ug/L		12/14/2021	15:26
trans-1,2-Dichloroethe	ne < 2.00	ug/L		12/14/2021	15:26

Client:	<u>Neu-Velle</u>						
Project Reference:	3130 Monroe Av	enue	!				
Sample Identifier:	MW1-20211209	9					
Lab Sample ID:	215562-04			Date	e Sampled	: 12/9/202	1
Matrix:	Groundwater			Dat	e Received	: 12/9/202	1
trans-1,3-Dichloropro	pene <	2.00	ug/L			12/14/202	21 15:26
Trichloroethene	<	2.00	ug/L			12/14/202	21 15:26
Trichlorofluorometha	ne <	2.00	ug/L			12/14/202	21 15:26
Vinyl chloride	<	2.00	ug/L			12/14/202	21 15:26
<u>Surrogate</u>		<u>P</u> (<u>ercent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Ana	alyzed
1,2-Dichloroethane-d4	Ļ		111	77.9 - 132		12/14/2021	15:26
4-Bromofluorobenzen	e		105	62.6 - 133		12/14/2021	15:26
Pentafluorobenzene			115	88.9 - 114	*	12/14/2021	15:26
Toluene-D8			103	75.6 - 117		12/14/2021	15:26
Method Referen							
Data File:	EPA 5030C z06045.D						

Client:	<u>Neu-Velle</u>		
Project Reference:	3130 Monroe Avenue		
Sample Identifier:	Trip Blank T1084		
Lab Sample ID:	215562-05	Date Sampled:	12/6/2021
Matrix:	Water	Date Received:	12/9/2021

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/13/2021 16:43
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/13/2021 16:43
1,1,2-Trichloroethane	< 2.00	ug/L		12/13/2021 16:43
1,1-Dichloroethane	< 2.00	ug/L		12/13/2021 16:43
1,1-Dichloroethene	< 2.00	ug/L		12/13/2021 16:43
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/13/2021 16:43
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/13/2021 16:43
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/13/2021 16:43
1,2-Dibromoethane	< 2.00	ug/L		12/13/2021 16:43
1,2-Dichlorobenzene	< 2.00	ug/L		12/13/2021 16:43
1,2-Dichloroethane	< 2.00	ug/L		12/13/2021 16:43
1,2-Dichloropropane	< 2.00	ug/L		12/13/2021 16:43
1,3-Dichlorobenzene	< 2.00	ug/L		12/13/2021 16:43
1,4-Dichlorobenzene	< 2.00	ug/L		12/13/2021 16:43
1,4-Dioxane	<18.0 R	ug/L		12/13/2021 16:43
2-Butanone	< 10.0	ug/L		12/13/2021 16:43
2-Hexanone	< 5.00	ug/L		12/13/2021 16:43
4-Methyl-2-pentanone	< 5.00	ug/L		12/13/2021 16:43
Acetone	< 10.0	ug/L		12/13/2021 16:43
Benzene	< 1.00	ug/L		12/13/2021 16:43
Bromochloromethane	< 5.00	ug/L		12/13/2021 16:43
Bromodichloromethane	< 2.00	ug/L		12/13/2021 16:43
Bromoform	< 5.00	ug/L		12/13/2021 16:43

Client:	<u>Neu-Velle</u>				
Project Reference:	3130 Monroe Avenue				
Sample Identifier:	Trip Blank T1084		Data Comuladi	12/6/2021	=
Lab Sample ID: Matrix:	215562-05 Water		Date Sampled: Date Received:	12/6/2021 12/9/2021	
Bromomethane	< 2.00	ug/L	Date Received.	12/13/2021 16:43	2
Carbon disulfide	< 2.00	ug/L		12/13/2021 16:43	
Carbon Tetrachloride	< 2.00	ug/L ug/L		12/13/2021 16:43	
Chlorobenzene	< 2.00			12/13/2021 16:43	
Chloroethane	< 2.00	ug/L			
		ug/L		12/13/2021 16:43	
Chloroform	< 2.00	ug/L		12/13/2021 16:43	
Chloromethane	< 2.00	ug/L		12/13/2021 16:43	
cis-1,2-Dichloroethene	< 2.00	ug/L		12/13/2021 16:43	
cis-1,3-Dichloropropen		ug/L		12/13/2021 16:43	
Cyclohexane	< 10.0	ug/L		12/13/2021 16:43	
Dibromochloromethane		ug/L		12/13/2021 16:43	
Dichlorodifluorometha	ne < 2.00	ug/L		12/13/2021 16:43	3
Ethylbenzene	< 2.00	ug/L		12/13/2021 16:43	3
Freon 113	< 2.00	ug/L		12/13/2021 16:43	3
Isopropylbenzene	< 2.00	ug/L		12/13/2021 16:43	3
m,p-Xylene	< 2.00	ug/L		12/13/2021 16:43	3
Methyl acetate	< 2.00	ug/L		12/13/2021 16:43	3
Methyl tert-butyl Ether	< 2.00	ug/L		12/13/2021 16:43	3
Methylcyclohexane	< 2.00	ug/L		12/13/2021 16:43	3
Methylene chloride	< 5.00	ug/L		12/13/2021 16:43	3
o-Xylene	< 2.00	ug/L		12/13/2021 16:43	3
Styrene	< 5.00	ug/L		12/13/2021 16:43	3
Tetrachloroethene	< 2.00	ug/L		12/13/2021 16:43	3
Toluene	< 2.00	ug/L		12/13/2021 16:43	3
trans-1,2-Dichloroether	ne < 2.00	ug/L		12/13/2021 16:43	3

Client:	<u>Neu-Velle</u>						
Project Reference:	3130 Monro	e Avenue					
Sample Identifier:	Trip Blank	T1084					
Lab Sample ID:	215562-05			Dat	e Sampled:	12/6/202	21
Matrix:	Water			Dat	e Received	: 12/9/202	21
trans-1,3-Dichloropro	pene	< 2.00	ug/L			12/13/202	21 16:43
Trichloroethene		< 2.00	ug/L			12/13/202	21 16:43
Trichlorofluorometha	ne	< 2.00	ug/L			12/13/202	21 16:43
Vinyl chloride		< 2.00	ug/L			12/13/202	21 16:43
<u>Surrogate</u>		Pe	ercent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Ana	<u>alyzed</u>
1,2-Dichloroethane-d4	ł		108	77.9 - 132		12/13/2021	16:43
4-Bromofluorobenzen	e		111	62.6 - 133		12/13/2021	16:43
Pentafluorobenzene			110	88.9 - 114		12/13/2021	16:43
Toluene-D8			106	75.6 - 117		12/13/2021	16:43
Method Referen							
Data File:	EPA 5 z0602						

Appendix B

. -

Laboratory QC Documentation

2 VOLATILE SURROGATE RECOVERY

Lab Name: Lab Project #: Client Name: Client Project M Client Project # SDG No.: Instrument ID: GC Column 1:	#: <u>N/A</u> <u>5562-01</u>	<u>es</u> <u>0.20</u>	Mat QC Detector:	rix: Batch: <u>MSD</u>	<u>Groundwater</u> voaw211214	
LAB	CLIENT	PFB	12DCEd4	TD8	4BFB	Total
SAMPLE NO.	SAMPLE ID	%REC	%REC	%REC	%REC	Out
1 Blk 1	N/A	111	109	103	107	0
2 LCS 1	N/A	108	108	109	103	0
3 215562-02	MW3-20211208	113	117	107	115	0
4 215562-03	MW2-20211208	113	109	105	104	0
5 215562-04	MW1-20211209	115 *	111	103	105	1
6 7 8 9 9 10 11 12 13 14 15 16 16 17 18 19 20 21 21 22 23 24 25 5						

	QC LIMITS %
PFB = Pentafluorobenzene	(88.9 - 114)
12DCEd4 = 1,2-Dichloroethane-d4	(77.9 - 132)
TD8 = Toluene-d8	(75.6 - 117)
4BFB = 4-Bromofluorobenzene	(62.6 - 133)

* Values outside of current required QC limits

D Surrogate diluted out

Meth Titl Last	od File e : Update	n : D:\MassHun e : 211208.M : 8260/624 Ana e : Wed Dec 0 ia : Initial C	lysis 8 14:34	4:39 2		٨									
		n Files 9.D 2 =z059	10.D	3 =z	05911.1	D 4	=z059:	12.D	5 =z(05913.D	6 =2	:05914.D	7	=z05915.1)
-2-2-2-2		ound	1	2	3	4	5	6	7	Avg	%RSD				
1) I		probenzene													
2) P		lorodifluo									13.98				
2) P 3) P		promethane								0.158	25.51	×.			
4) P	Vin	/l chloride	0.250		0.154						9.77	200			
5) P		nomethane									24.95	¥			
6) P		proethane									20.88				
7) P		chlorofluor	0 490	0.460	0.444	0.160	0.439	0.440	0.433	0.453	4.40				
8)		/l ether									8.89				
9) P	-		0.309								3.83				
10) P		Dichloroet									5.74				
11) P		cone			0.153						48.47	*			
12)		propyl Alcohol								0.000	-1.00				
13) P		on disulfide		0.889	0.843	0.849	0.781	0.785	0.760		15.05				
14) P		nyl acetate									5.61				
15) P		ylene chlo									11.08				
16)		/lonitrile									12.88				
17)		Butyl Alc									12.15				
18) P		nyl tert-bu									13.87				
19) P	tran		0.406	0.388	0.397	0.401	0.395	0.397	0.405	0.398	1.58				
20) P	1,1-	Dichloroet	0.531	0.475	0.482	0.484	0.483	0.489	0.492	0.491	3.78				
21)	Viny	/l acetate	0.182	0.166	0.184	0.194	0.208	0.235		0.195	12.40				
22)	2,2-	Dichloropr	0.375	0.336	0.337	0.360	0.354	0.365	0.379	0.358	4.71				
23) P	2-Bu	utanone	0.078	0.049	0.049	0.046	0.044	0.038	0.040	0.049#	27.16	\Rightarrow			
24) P	cis-	1,2-Dichlo	0.374	0.323	0.330	0.331	0.332	0.337	0.342	0.338	4.91				
25)	Brom	nochloromet	0.162	0.150	0.156	0.150	0.154	0.156	0.154	0.155	2.61				
26) P		proform			0.501						5.52				
27) S	Pent	afluoroben	0.646	0.639	0.636	0.628	0.623	0.621	0.639	0.633	1.44				
28)		rahydrofuran									14.03				
29) P		1-Trichlor									3.11				
-	-	Lohexane									5.45				
31) S		Dichloroet									2.27				
32) P		oon Tetrach									2.60				
33) P					1.116						4.24				
34) P		Dichloroet									4.21				
35) P		hloroethene	0.411	0.353	0.352	0.362	0.35/	0.359	0.303		5.67				
36)		:-Butyl Ace ylcyclohexane	0.500	a 400	A F14	0 542	0 520	0 531	0 E40	0.000	-1.00				
37) P			2.203	0.498		0.003					3.97	RF >	0.00	75	
38)	-4, T	Dioxane			0.003	0.003	0.003	0.005	0.001	0.005	2.04		. 0.00		

211208. M Wed Dec 08 15:21:21 2021 * curve is not avg. of response factors Page: 1

12/8/21 BB

Appendix C

Validator Qualifications

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).

Appendix F

NEU-VELLE LLC

Institutional Control/Engineering Control (IC/EC) Certification

December 2021

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No.	Site Details C828109	Box 1					
Site Name	Speedy's Cleaners						
Site Addres City/Town: County: Mo Site Acreag	nroe						
Reporting F	Period: November 30, 2020 to November 30, 2021						
		YES	NO				
1. Is the in	formation above correct?	X					
lf NO, ir	nclude handwritten above or on a separate sheet.						
	ne or all of the site property been sold, subdivided, merged, or undergone a a amendment during this Reporting Period?	X					
	re been any change of use at the site during this Reporting Period IYCRR 375-1.11(d))?		X				
	ny federal, state, and/or local permits (e.g., building, discharge) been issued the property during this Reporting Period?		X				
-	nswered YES to questions 2 thru 4, include documentation or evidence cumentation has been previously submitted with this certification form.		an e				
5. Is the si	te currently undergoing development?		X				
	·						
		Box 2					
		YES	NO				
	urrent site use consistent with the use(s) listed below? rcial and Industrial	x					
7. Are all I	Cs in place and functioning as designed?						
IF	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.						
A Corrective	e Measures Work Plan must be submitted along with this form to address th	ese issı	les.				
Signature of	A June 12/10/2 Owner, Remedial Party or Designated Representative Date	/					

SITE NO. C828109

Description of Institutional Controls

<u>Parcel</u> 150.120-1-6

<u>Owner</u> Monroe Oaks LLC Institutional Control

Ground Water Use Restriction Soil Management Plan Building Use Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

The elements of the institutional and engineering controls are listed below:

1) A site cover (consisting of the building and paved parking lot) currently exists and will be maintained to allow for commercial use of the site.

2) Imposition of an institutional control in the form of an environmental easement for the controlled property that:

a) requires the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3);

b) allows the use and development of the controlled property for commercial and industrial uses as defined by Part 375-1.8(g), although land use is subject to local zoning laws;

c) restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County DOH; and

d) requires compliance with the Department approved Site Management Plan.

3) A Site Management Plan is required, which includes the following:

A) An Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to ensure the following institutional and/or engineering controls remain in place and effective:

Institutional Controls: The environmental easement discussed above.

Engineering Controls: The sub-slab depressurization system, and the site cover system discussed above.

This plan includes, but may not be limited to:

a) an Excavation Plan which details the provisions for management of future excavations in areas of remaining contamination;

b) descriptions of the provisions of the environmental easement including any land use and groundwater use restrictions;

c) a provision for evaluation of the potential for soil vapor intrusion for any new buildings developed on the site, including provision for implementing actions recommended to address exposures related to soil vapor intrusion;

d) a provision for the continued operation, maintenance, and monitoring of the existing sub-slab depressurization system at the on-site building;

e) provisions for the management and inspection of the identified engineering controls;

f) maintaining site access controls and Department notification; and

g) the steps necessary for the periodic reviews and certification of the institutional and/or engineering controls.

B) A Monitoring Plan to assess the performance and effectiveness of the remedy. The plan includes, but may not be limited to:

a) monitoring of groundwater and indoor air to assess the performance and effectiveness of the remedy;

b) a schedule of monitoring and frequency of submittals to the Department; and

c) monitoring for soil vapor intrusion for any buildings occupied or developed on the site, as may be

required by t	the Institutiona	I and Engineering	Control F	Plan discussed	above.

Box 4

Description of Engineering Cor	ntrols
--------------------------------	--------

Engineering Control

Parcel 150.120-1-6

Vapor Mitigation Cover System

			Box 5	
	Periodic Review Report (PRR) Certification Statements			
1.	I certify by checking "YES" below that:			
	 a) the Periodic Review report and all attachments were prepared under the direct reviewed by, the party making the Engineering Control certification; 	tion of,	and	
	b) to the best of my knowledge and belief, the work and conclusions described in this certian are in accordance with the requirements of the site remedial program, and generally acception of the site remedial program.			
	engineering practices; and the information presented is accurate and compete.	YES	NO	
		X		
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all c following statements are true:	of the		
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Dep	artmen	ıt;	
	(b) nothing has occurred that would impair the ability of such Control, to protect p the environment;	oublic h	ealth and	
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control;	the		
	(d) nothing has occurred that would constitute a violation or failure to comply with Site Management Plan for this Control; and	1 the		
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.			
		YES	NO	
		X		
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.			
	A Corrective Measures Work Plan must be submitted along with this form to address th	ese iss	sues.	
	Signature of Owner, Remedial Party or Designated Representative Date			

IC CERTIFICATIONS SITE NO. C828109				
	Box 6			
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. New-Velle LCC				
I Albert G. Lyons, Jr at Rochester, NY 14615 print name print business address				
print name print business address				
am certifying as <u>Owner Representative</u>	(Owner or Remedial Party)			
for the Site named in the Site Details Section of this form.	/ Z / 10 / Z / Date			

EC CERTIFICATIONS

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

	bed verice eee
	1667 LAKE AVE
1_Albert G. Lyons, Jr at	Rochester, NY 14615
print name	print business address
Provide (1971) AL Provide 21 (1983)	B. BUTTAL BERT RELIARCE RECEIPTION (RECT.) - EXPERIMENTAL RELIARCE RELIARCE
am certifying as a Professional Engineer for the	Owner
	PROF NOWNER or Remedial Party)
	STATE G. LYOI G.
	× 3
	C C
	4710
allert D Typong	WOFESSIONAL 12/10/21
Signature of Professional Engineer, for the Own	
Remedial Party, Rendering Certification	(Required for PE)
	(

Box 7