Groundwater Monitoring Report Semi-Annual Sampling Event First Half of 2021

> Capital Center 705 Broadway Albany, New York BCP Site No. C401070

> > CHA Project Number: 031647.000

Prepared for:

FC 705 Broadway LLC c/o Pioneer Companies 333 West Washington Street, Suite 600 Syracuse, New York 13202

Prepared by:

III Winners Circle Albany, New York 12205 Phone: (518) 453-4500 Fax: (518) 453-4773

July 2021

V:\Projects\ANY\K4\31647\Reports\Groundwater Monitoring\2021 Semi Annual Monitoring\1st Half\Final\H1_2021_Capital Ctr_Semiannual Rpt_Final_July 2021.docx This report has been prepared and reviewed by the following qualified personnel employed by CHA.

Report Prepared By:

Conti linte

Caroline Hurlburt Scientist I

Report Reviewed By:

John L. Favreau Senior Scientist V

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Sampling Procedures	2
3.0	Groundwater Flow Direction	3
4.0	Laboratory Analytical Results	3
5.0	Future Activities	4

FIGURES

Figure 1 – Site Location Map Figure 2 – Site Plan

TABLES

Table 1 – Groundwater Elevations Table 2 – Groundwater Analytical Data

APPENDIX

Appendix A – Monitoring Well Sampling Log

Appendix B – Laboratory Analytical Report

1.0 INTRODUCTION

This report has been prepared by CHA Consulting, Inc. (CHA) on behalf of FC 705 Broadway LLC and Pioneer Companies to describe the field activities and present the findings associated with the first of two semiannual groundwater monitoring events in 2021 at the Capital Center Site (the Site), located at 705 Broadway in the City of Albany, Albany County, New York (Figure 1). The semiannual monitoring event conducted during the first half of the year was completed by CHA on April 26, 2021. The monitoring event was conducted in accordance with the New York State Department of Environmental Conservation (NYSDEC)-approved Site Management Plan (SMP), prepared by CHA in December 2017. The SMP includes periodic groundwater monitoring as a means to evaluate the effectiveness of the implemented remedy (soil excavation) and natural attenuation.

Six groundwater monitoring wells (MW-1 to MW-6) were installed across the Site in March 2018, all to a depth of 25 feet below ground surface (bgs). Monitoring well construction logs are included in Appendix C of the SMP. Monitoring wells MW-3 through MW-6 were decommissioned in October 2018, based on consistent quarterly analytical results from these wells showing concentrations of volatile organic compounds (VOCs) and semi volatile organic compounds (SVOCs) below the TOGS 1.1.1 standard values. Monitoring well MW-2 was subsequently decommissioned in January 2020, based on analytical results from this well showing VOC and SVOC concentrations (particularly MTBE) below the TOGS 1.1.1 standard values. Monitoring well MW-1, located downgradient of the former on-site gasoline station building, was left in place to facilitate continued monitoring in this area; however, the PVC well riser was extended by five feet to accommodate filling and grading of the Site with crushed stone for construction purposes. The riser was subsequently extended another five feet as filling and grading progressed in this area of the Site. A site plan showing the locations of the existing and former monitoring wells is included as Figure 2.

2.0 SAMPLING PROCEDURES

On April 26, 2021, CHA personnel conducted groundwater monitoring activities at well MW-1 in accordance with the NYSDEC-approved SMP and CHA's standard operating procedure (SOP) for monitoring well sampling.

Prior to conducting groundwater sampling activities, the water level in the well was measured from the top of the well riser using an electronic water level meter. The well was then purged via low-flow sampling methods, using a portable bladder pump and dedicated tubing. During purging, the following parameters were measured at approximate five-minute intervals using a YSI water quality meter equipped with a flow-through cell: specific conductivity; temperature; pH; and oxidation/reduction potential (ORP). Turbidity was also measured using a separate turbidity meter. Field parameter measurements and observations were recorded and are documented in the Monitoring Well Sampling Log included as Appendix A.

Following stabilization of field parameters, a groundwater sample was collected from the well via the portable bladder pump and dedicated tubing. The sample was collected in laboratory-provided, pre-preserved containers, which were labeled and then placed in a rigid cooler with ice, pending submittal to the laboratory.

Following sampling activities, the groundwater sample was delivered by CHA to Alpha Analytical's (Alpha) Service Center in Albany, New York, for subsequent transport by Alpha to its laboratory in Westborough, Massachusetts, in accordance with proper chain-of-custody protocol. Alpha is currently certified by the New York State Department of Health's (NYSDOH) Environmental Laboratory Approval Program (ELAP). The groundwater sample was analyzed for VOCs and SVOCs via EPA Methods 8260 and 8270, respectively, in accordance with applicable NYSDOH QA/QC procedures. A trip blank sample, prepared by the laboratory, accompanied the groundwater sample to the laboratory and was analyzed for VOCs only. Groundwater samples from the Site were historically also analyzed for metals; however, based on evaluation of historical results for detected metals, the NYSDEC approved the discontinuation of metals analysis, beginning with the April 2020 monitoring event.

3.0 GROUNDWATER FLOW DIRECTION

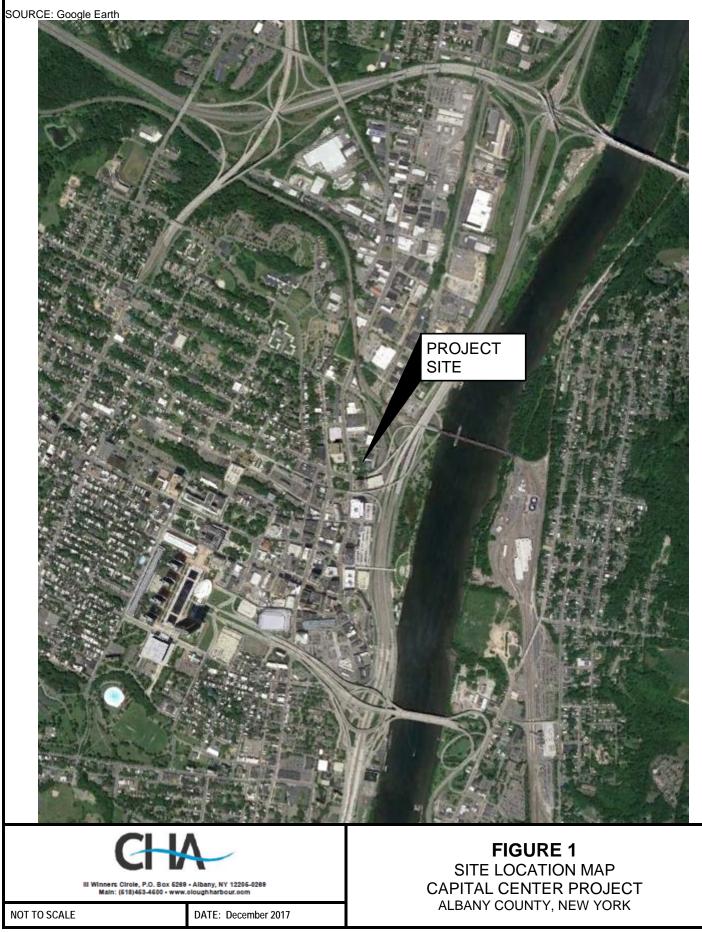
Groundwater elevation data from monitoring well MW-1 is included in Table 1. It should be noted that water level measurements are required from a minimum of three locations to triangulate and determine groundwater flow direction. Due to availability of only one data point, a groundwater contour map was not generated; however, the water level measurement at well MW-1 indicates a relative groundwater elevation similar to that exhibited during past monitoring events at this location. Based on this data, along with historical data and local topography, the expected groundwater flow direction continues to be generally to the east, toward the Hudson River.

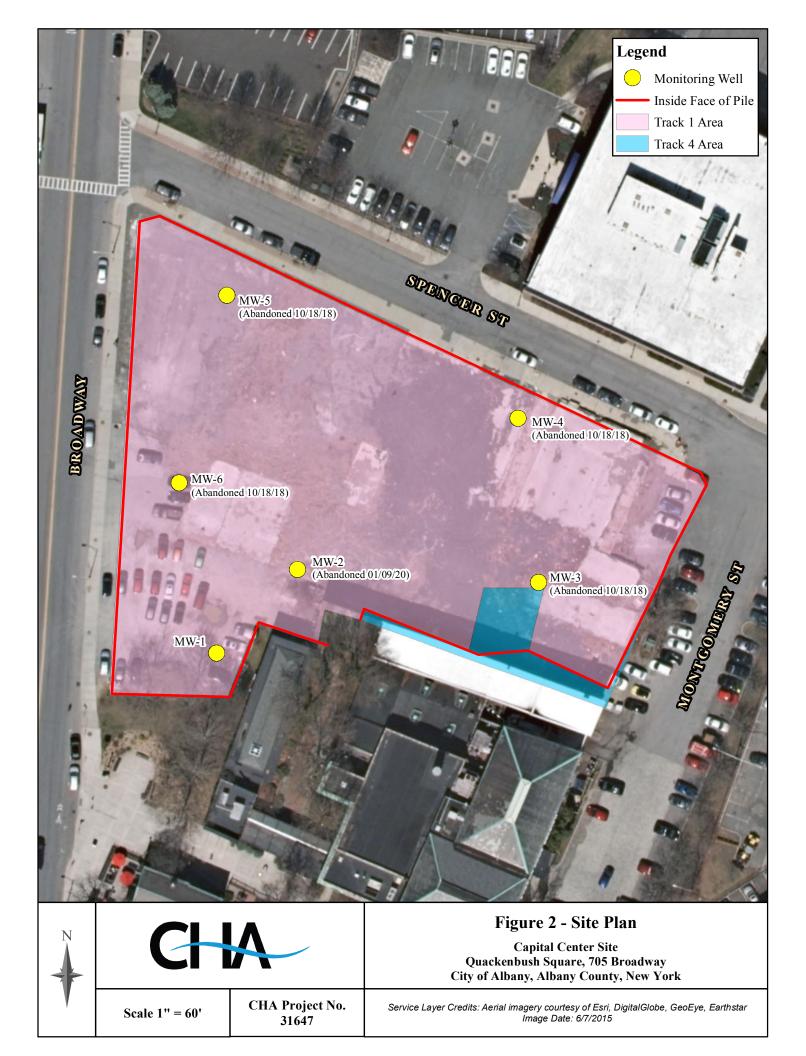
4.0 LABORATORY ANALYTICAL RESULTS

Groundwater analytical results were compared to the groundwater standards and/or guidance values listed in the NYSDEC Division of Water Technical and Operational Guidance Series 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1). Those parameters in excess of their respective standards or guidance values are shaded in Table 2. Appendix B includes the laboratory deliverables package for the April 2021 sampling event. A discussion of the analytical results for the groundwater samples collected from each monitoring well is provided below.

<u>MW-1</u>

In the sample collected from well MW-1, the VOC methyl tert-butyl ether (MTBE) was detected at a concentration exceeding its TOGS 1.1.1 standard; however, the detected concentration was reduced as compared to the October 2020 sampling results. No SVOCs were detected in the sample at concentrations above laboratory reporting limits.


Summary


The VOC MTBE was detected at the location of well MW-1 (in the area downgradient of the former on-site gasoline station) at a concentration exceeding its TOGS 1.1.1 standard; however, the detected concentration $(17 \ \mu g/l)$ represents a decrease from the previous sampling event in October 2020 and continuation of the decreasing trend exhibited over the past two and a half years. The detected concentration also represents a 99.5 percent decrease in the concentration of MTBE at MW-1 since September 2018. The continued decreasing trend in MTBE concentration at well MW-1 is indicative of the effectiveness of the implemented remedial activities at the Site, along with natural attenuation.

5.0 FUTURE ACTIVITIES

The next semiannual groundwater monitoring event is scheduled to occur in October 2021. Given the continued decreasing trend in MTBE concentration at well MW-1 to a concentration nearing the TOGS 1.1.1 standard, if the analytical results from the October 2021 monitoring event indicate further reduction in the concentration of MTBE, it is anticipated that CHA will recommend that groundwater monitoring be discontinued and monitoring well MW-1 be properly decommissioned.

FIGURES

TABLES

Table 1 Groundwater Elevations

Well ID		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6
TOR	MW-						
Elevations	1	103.27	101.46	96.23	94.22	101.27	101.88
(ft)	DTW						
3/27/2018	4.34	98.93	96.78	90.53	89.42	100.02	96.21
6/6/2018	4.85	98.42	96.17	89.98	89.61	99.52	99.21
9/27/2018	4.81	98.46	96.70	85.83	86.27	99.99	99.46
12/19/2018	6.00	97.27	96.20	decommissioned	decommissioned	decommissioned	decommissioned
3/20/2019	4.16	99.11	97.15	decommissioned	decommissioned	decommissioned	decommissioned
8/23/2019	4.54	98.73	97.84	decommissioned	decommissioned	decommissioned	decommissioned
4/9/2020	4.54	98.92	decommissioned	decommissioned	decommissioned	decommissioned	decommissioned
10/15/2020	4.54	97.98	decommissioned	decommissioned	decommissioned	decommissioned	decommissioned
4/26/2021	5.20	98.07	decommissioned	decommissioned	decommissioned	decommissioned	decommissioned

Notes:

MW-3 through MW-6 decommissioned and removed in October 2018

MW-2 decommissioned and grouted in place in January 2020

TOR - Top of Riser

TOR elevation corrected to 113.27 for 4/9/2020 and 10/15/20 events, due to raising of riser following filling/grading of site.

Table 2 Capital Center, Albany, NY Groundwater Analytical Monitoring Data Detected Compounds Only

			3/27/2018	6/6/2018	9/26/2018	12/19	/2018	12/19/20	18	3/20/201		W-1 3/20/20	19	8/23/20	19	8/23/201	19	4/9/2020	1
					.			DUPLICA	ATE			DUPLICA	ATE			DUPLICA	TE		
	NY-AWQS	Units									Re	sults							
Dissolved Metals																			
Aluminum, Dissolved	NS	ug/l	6.81	J 9.78	J 46.9	22	J	604	J	324	J	234	J	1580	J	310	J	NA	
antimony, Dissolved	3	ug/l	2.78	J 0.54	J 0.57	J 1.2	J	0.76	J	0.84	J+	1.32	J+	1.58	J	1.44	J	NA	
Arsenic, Dissolved	25	ug/l	6.8	3.71	1.83	2.18		2.38		3.33		3.24		3.65		3.2		NA	
arium, Dissolved	1000	ug/l	185.2	53.62	215.8	149.	8	148.1		19.97		17.12		30.06	J	17.28	J	NA	_
Cadmium, Dissolved	5	ug/l		0.28	0.22	0.11	J	0.1	J									NA	_
Calcium, Dissolved	NS	ug/l	57600	25100	146000	16600	00	165000		12000		11700		7730		6720		NA	_
Chromium, Dissolved	50	ug/l		0.41				0.74	J	0.43	J	0.33	J	1.81		0.19	J	NA	
Cobalt, Dissolved	NS	ug/l	1.1		J 1.44	1.6	j	2.02	J	0.31	J	0.22	J	1.05		0.25	J	NA	-
Copper, Dissolved	200	ug/l	1.13	0.99	J 1.25	0.93		2.21	I.	1.37	I	1.21	т	3.78	J	1.39	J	NA	-
ron, Dissolved	300 25	ug/l			83.2	67.9	J+	998	J+	385	J	193	J	1860	J+	293	J+	NA NA	-
ead, Dissolved	35000	ug/l	42300	16200	103000	14100	0	0.73 141000	J	7290		7140		4290		3550		NA	-
Aagnesium, Dissolved	3000	ug/l	235.2	152.8	967.2	14100		1032	J	54.8		51.1		56.8	I	29.48	т		-
Ianganese, Dissolved Iercury, Dissolved	0.7	ug/l	233.2	152.8		UJ		1032		54.8		51.1		30.8	J	29.48	J	NA NA	-
lickel, Dissolved	100	ug/l	2.55	1.21	J 1.67	J 2.15		2.59		0.73	т			3.5		1.9	т	NA	+
otassium, Dissolved	NS	ug/l ug/l	2.33	871	2490	2300		2.39		822	J	759		1120	J	633	J	NA	+
lilver, Dissolved	50	ug/l	2080	871	0.22	1)	2380		822		139		1120	J	033	J	NA	+
odium, Dissolved	20000	ug/l	97500	73400	193000	21700	0	214000		68200		68100		68700		65100		NA	+
hallium, Dissolved	0.5	ug/l	27500	75400	175000	21/00	//	214000		00200		00100		00700		0.19	J	NA	+
Vanadium, Dissolved	NS	ug/l	2.15	T				1.85	T	2.13	T	1.82	T	6.77		4.42	J	NA	+
Zinc, Dissolved	2000	ug/1 ug/1	2.13	J	4.41	J		1.05	J	2.13	J	1.02	J	8.38	J	7.42	J	NA	+
Fotal Metals	2000	ug/1			1.71	-								0.50	3	L		1121	
Aluminum, Total	NS	ug/l	3790	7650	2080	1610	0 J	20800	J	11700	1	9800	1	12000		11900		NA	1
Antimony, Total	3	ug/l	2.23	J 0.56	1	0.92		1.95	J	0.92	I	1.38	J	12000		0.47	T	NA	+
Arsenic, Total	25	ug/l	9.06	6.7	3.3	18.12		24.9	Ţ	12.27		10.76	,	12.09		12.18	3	NA	1
Barium, Total	1000	ug/l	228.5	99.23	244.4	511.		518.6		98.99		86.21		125.8		127.2		NA	1
Beryllium, Total	3	ug/l	0.21	J 0.36	J 0.15	J 1.51		1.72		0.58		0.49	J	0.83	J	0.64	J	NA	
Cadmium, Total	5	ug/1 ug/1	0.06	J 0.57	0.47	1.14		1.12		0.13	J	0.14	J	0.19	J	0.22		NA	+
Calcium, Total	NS	ug/l	75500	42400	167000	82000		844000		57200	-	54000		69500	-	78100		NA	
Chromium, Total	50	ug/l	5.3	11.2	3.67	29.5		39.21	J	16.91		14.59		21.48		20.49		NA	
Cobalt, Total	NS	ug/l	4.29	6.63	4	36.9		46.53	J	14.23	J	10.83	J	14.64		14.69		NA	
Copper, Total	200	ug/l	9	20.73	11.33	201.	5	226.6		45.23	J	35.41	J	48.39		52.77		NA	
ron, Total	300	ug/l	7290	14400	4980	J+ 8840		107000		27700	J+	21500	J+	31600	J-	31700	J-	NA	
lead, Total	25	ug/l	2.96	6.85	4.4	53.6	1	63.19		17.36		14.23		17.3		17.89		NA	
Magnesium, Total	35000	ug/l	46100	23100	113000	J+ 28400	00	274000		21600		19500		23800		25500		NA	1
Manganese, Total	300	ug/l	417	468	1270	1008	0	10390		869		784.5		1053		1131		NA	1
vickel, Total	100	ug/l	9.82	13.88	6	57.34	4 J	77.78	J	29.38	J	23.4	J	31.6		33.02		NA	
Potassium, Total	NS	ug/l	3230	2410	2930	6540) J	8910	J	2590		2330		2900		2820		NA	
Selenium, Total	10	ug/l				8.83		9.54		3.37	J	3.16	J	5.71		5.33		NA	1
Silver, Total	50	ug/l		0.19	l			0.21	J									NA	
Sodium, Total	20000	ug/l	99500	73100	200000	20400	00	195000		73400		74600		72900		75900		NA	
Fhallium, Total	0.5	ug/l				0.28	J	0.48	J	0.16	J	0.15	J	0.26	JR	0.29	J	NA	
Vanadium, Total	NS	ug/l	9.07	12.62	5.75	47.1	7	55.38		21.65	J	17.37	J	27.04		26.61		NA	
Zinc, Total	2000	ug/l	21.91	45.51	22.44	245	J	320.4	J	72.71		60.32		88.72		90.72		NA	
Volatile Organics by GC/MS																-			
,4-Dioxane		ug/l			250	UR		61	UR										
Acetone	50	ug/l																17	
Bromomethane	5	ug/l				UJ													
Methyl tert butyl ether	10	ug/l	2300	660	3700	2800)	2300		390		390		140		150		34	
Fetrachloroethene	5	ug/l		0.59	J														
Semivolatile Organics by GC/MS	-				-			0.5				-							4
3,3'-Dichlorobenzidine	5	ug/l				0.5	UJ	0.5	UJ										_
4-Chloroaniline	5	ug/l			5	UJ 1.1	UJ	1.1	UJ										-
4-Nitroaniline	5	ug/l				0.5	UJ	0.5	UJ										_
Acetophenone		ug/l	2.5																-
Bis(2-ethylhexyl)phthalate	5	ug/l	3.7		_	52	J+												_
Di-n-butylphthalate	50	ug/l			_	0.84	J												-
2-Chloronaphthalene	10 NC	ug/l			_					0.02	I								-
2-Methylnaphthalene Anthracene	NS 50	ug/l	0.1		_					0.02	J								-
Fluoranthene	50	ug/l	0.1					0.03	I										+
	50	ug/l ug/l	0.1					0.03	J										-
	10		0.1													0.42	BR		+
Fluorene	50	ug/l ug/l	0.1		1					0.04	JU	0.05	JU			0.42	ла		1
Naphthalene	50	•	0.1					0.02	т	0.04	30	0.05	10						+
	5	ug/l						0.02	J										

U - indates an estimated value dicated by the DUSR report NS - no standard NA - Not Analyzed

10/15/2020	4/26/2021
10/15/2020	
-	
NA	NA
NA	NA
NA	NA
NA NA	NA NA
NA	NA
NA NA	NA NA
NA	NA
NA NA	NA NA
NA	NA
NA NA	NA NA
NA	NA
NA NA	NA NA
NA	NA
NA NA	NA NA
NA	NA
NA	NA
22	17

Table 3 Summary of Purging Parameters

Well I.D.	Date	Static Water Level (ft. below TOR)	Time	Depth to Water (ft)	ORP/Eh (mV)	рН	Conductivity (mS/cm)	Turbidity (NTU)	D.O. (mg/L)	Temperature (°C)	Water Description
			16:30	5.3	-180.2	7.8	0.102	40.2	4.3	21.2	
MW-1	4/26/2021	5.20	16:35	5.32	-182.3	7.8	0.109	26.1	3.5	20.4	Water was clear with no odor,
101 00 - 1	7/20/2021	5.20	16:40	5.31	-182	7.8	0.106	10.2	3.8	20.6	sheen, or effervescence.
			16:45	5.3	-180.7	7.8	0.111	12.6	3.6	20.9	

APPENDIX A MONITORING WELL SAMPLING LOG

	СН	Δ	Me	-	Well Sam								
		\mathbf{n}		Develo	opment Log	g	-	Well ID: M\					
	Number: 0316							g Date: 04/2					
-	Facility Name	-			www./and			By: C. Hurlb	urt				
	ocation/Sam						Weather	/Temp: evel Measur	in and Day				
Purging/s	Samping me	thuu. r – i	fulging in		Squihing me	ethou		er Level Me			۱Ŋ		
	ubmersible Pu	ump Mod	lel:					rface Probe		el: <u></u>	<u> </u>		
	eristaltic Pum	np Mod	lel:										
		np Mod	lel:					uality Instru	imentation	:			
	-				ated 🗋 Dis	posable	Instrum						
		туре	::				Instrum Instrum						
				Time Well	Locked:		-	Static Wate	_ er Level (ft.	۱۰ 5 2 ft			
				Time tre						J. J.2 IC			
	-						Pump Intake Depth (ft.): <u>30</u>						
Flow Rat	te (mL/min):	80					Controlle	er ID No.: <u>12</u>	<u>23</u>				
	(ft.) (mV) (mS/cm) (NTU) 2:55 5.3 -180.2 7.8 0.102 40.2 3:00 5.32 -182.3 7.8 0.109 26.1 3:05 5.31 -182 7.8 0.106 10.2						e U = Una	acceptable					
			A	Ū				A U					
								Tota		<u>51</u>			
					-			☑ □ Silta☑ □ Rech					
		• •	-			-			-				
		ppc, p0	<u> </u>				· y						
	Depth to					_	T 3 100 10	Other	Other	Other	Other		
Time	-	-	рН			D.O. (mg/L)	Temp.	Field	Field	Field	Field		
	(ft.)	(1117)					(°C)	Data:	Data:	Data:	Data:		
12:55	5.3	-180.2	7.8	0.102	40.2	4.3	21.2		ļ				
13:00	5.32	-182.3	7.8	0.109		3.5	20.4						
13:05	5.31	-182	7.8	0.106	10.2	3.8	20.6		L				
13:10	5.3	-180.7	7.8	0.111	12.6	3.6	20.9						
[T			[!		「							
	Γ			<u> </u>					 				
									[
				++		1							
	+	++				+							
	1	++		├ ───┦		+							
	+	++		<u>├</u> ───┦		+			<u> </u>				
	+	++		<u>∤</u> י	<u> </u>	+			<u> </u>				
	+	++		<u>∤</u> י	<u> </u>	+			<u> </u>				
	+	++		<u> </u> !	<u> </u>	+							
Start Pur	ge Time: 12:	·50 Tota	l Vol. Purg	ied	Odor: I	None	Purg	e Water Dis	nosal Meth	nod: Groun	d Surf		
	ge Time: 12:		-	ne: 20 mins			-	n Observed	•	100. 0100	u 3011.		
	g Information					ing Time:			y: <u>Alpha Ar</u>	nalyt <u>ical</u>			
	Analyses: <u>TCL</u>		<u>Cs (8260/8</u>	<u>270)</u>		ottles: 5							
Commen	nts/Additiona	I Observatio	ns: Water	is clear wit	h no odor, sl	heen or ef	fervescenc	е.					
Signature	e(s) of Sampli	ing Team: C	.RH										

APPENDIX B LABORATORY ANALYTICAL DATA

ANALYTICAL REPORT

Lab Number:	L2121264
Client:	CHA Companies 3 Winners Circle Albany, NY 12205
ATTN: Phone:	C. Hurlburt (518) 453-4500
Project Name:	CAPITAL CENTER
Project Number:	031647.000
Report Date:	05/06/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:05062115:38

Project Name:CAPITAL CENTERProject Number:031647.000

 Lab Number:
 L2121264

 Report Date:
 05/06/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2121264-01	MW1-04262021	WATER	ALBANY, NY	04/26/21 17:10	04/26/21
L2121264-02	TRIP BLANK	WATER	ALBANY, NY	04/26/21 00:00	04/26/21

Project Name: CAPITAL CENTER Project Number: 031647.000

Lab Number: L2121264 Report Date: 05/06/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:CAPITAL CENTERProject Number:031647.000

 Lab Number:
 L2121264

 Report Date:
 05/06/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Sebastian Corbin

1

Authorized Signature:

Title: Technical Director/Representative

Date: 05/06/21

ORGANICS

VOLATILES

			Serial_N	0:05062115:38
Project Name:	CAPITAL CENTER		Lab Number:	L2121264
Project Number:	031647.000		Report Date:	05/06/21
		SAMPLE RESULTS		
Lab ID:	L2121264-01		Date Collected:	04/26/21 17:10
Client ID:	MW1-04262021		Date Received:	04/26/21
Sample Location:	ALBANY, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	05/05/21 12:22			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

						Serial_No	:05062115:38	
Project Name:	CAPITAL CENTER				Lab Nu	mber:	L2121264	
Project Number:	031647.000				Report	Date:	05/06/21	
-		SAMPI		6				
Lab ID: Client ID: Sample Location:	L2121264-01 MW1-04262021 ALBANY, NY				Date Col Date Rec Field Pre	ceived:	04/26/21 17:10 04/26/21 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		17		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl Acetate		ND		ug/l	2.0	0.23	1	
Cyclohexane		ND		ug/l	10	0.27	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
Freon-113		ND		ug/l	2.5	0.70	1	
Methyl cyclohexane		ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	109	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	93	70-130	

			Serial_N	0:05062115:38
Project Name:	CAPITAL CENTER		Lab Number:	L2121264
Project Number:	031647.000		Report Date:	05/06/21
		SAMPLE RESULTS		
Lab ID:	L2121264-02		Date Collected:	04/26/21 00:00
Client ID:	TRIP BLANK		Date Received:	04/26/21
Sample Location:	ALBANY, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	05/05/21 12:45			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					Ş	Serial_No	:05062115:38	
Project Name:	CAPITAL CENTER				Lab Nu	mber:	L2121264	
Project Number:	031647.000				Report	Date:	05/06/21	
-		SAMPI		5	•			
Lab ID: Client ID: Sample Location:	L2121264-02 TRIP BLANK ALBANY, NY				Date Col Date Rec Field Pre	ceived:	04/26/21 00:00 04/26/21 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl Acetate		ND		ug/l	2.0	0.23	1	
Cyclohexane		ND		ug/l	10	0.27	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
Freon-113		ND		ug/l	2.5	0.70	1	
Methyl cyclohexane		ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	110	70-130
4-Bromofluorobenzene	106	70-130
Dibromofluoromethane	94	70-130

Project Name: CAPITAL CENTER

Project Number: 031647.000

 Lab Number:
 L2121264

 Report Date:
 05/06/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:05/05/21 10:49Analyst:PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Westborough Lab	o for sample(s): 0	1-02 Batch:	WG1494997-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: CAPITAL CENTER

Project Number: 031647.000

 Lab Number:
 L2121264

 Report Date:
 05/06/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:05/05/21 10:49Analyst:PD

arameter	Result 0	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab f	or sample(s): 01-02	Batch:	WG1494997-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name:	CAPITAL CENTER	Lab Number:	L2121264
Project Number:	031647.000	Report Date:	05/06/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:05/05/21 10:49Analyst:PD

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS -	Westborough Lal	b for sample	ə(s):	01-02	Batch:	WG1494997-5	

		ŀ	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	104		70-130
Toluene-d8	106		70-130
4-Bromofluorobenzene	108		70-130
Dibromofluoromethane	94		70-130

Lab Control Sample Analysis Batch Quality Control

Project Number: 031647.000 Lab Number: L2121264

Report Date: 05/06/21

arameter	LCS %Recovery Qual	LCSD I %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westboroug	h Lab Associated sample((s): 01-02 Batch:	WG1494997-3 WG1494997-4			
Methylene chloride	100	100	70-130	0	20	
1,1-Dichloroethane	100	100	70-130	0	20	
Chloroform	99	98	70-130	1	20	
Carbon tetrachloride	84	83	63-132	1	20	
1,2-Dichloropropane	110	110	70-130	0	20	
Dibromochloromethane	95	94	63-130	1	20	
1,1,2-Trichloroethane	100	100	70-130	0	20	
Tetrachloroethene	95	95	70-130	0	20	
Chlorobenzene	99	99	75-130	0	20	
Trichlorofluoromethane	85	86	62-150	1	20	
1,2-Dichloroethane	100	100	70-130	0	20	
1,1,1-Trichloroethane	92	92	67-130	0	20	
Bromodichloromethane	93	95	67-130	2	20	
trans-1,3-Dichloropropene	98	97	70-130	1	20	
cis-1,3-Dichloropropene	96	94	70-130	2	20	
Bromoform	96	96	54-136	0	20	
1,1,2,2-Tetrachloroethane	110	110	67-130	0	20	
Benzene	98	97	70-130	1	20	
Toluene	100	100	70-130	0	20	
Ethylbenzene	98	97	70-130	1	20	
Chloromethane	81	80	64-130	1	20	
Bromomethane	51	57	39-139	11	20	
Vinyl chloride	90	90	55-140	0	20	

Lab Control Sample Analysis Batch Quality Control

Project Number: 031647.000

CAPITAL CENTER

Project Name:

Report Date: 05/06/21

arameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-02	Batch:	WG1494997-3	WG1494997-4			
Chloroethane	100			98		55-138	2		20
1,1-Dichloroethene	91			91		61-145	0		20
trans-1,2-Dichloroethene	98			97		70-130	1		20
Trichloroethene	96			96		70-130	0		20
1,2-Dichlorobenzene	100			100		70-130	0		20
1,3-Dichlorobenzene	100			100		70-130	0		20
1,4-Dichlorobenzene	100			100		70-130	0		20
Methyl tert butyl ether	95			96		63-130	1		20
p/m-Xylene	100			95		70-130	5		20
o-Xylene	100			100		70-130	0		20
cis-1,2-Dichloroethene	100			100		70-130	0		20
Styrene	95			100		70-130	5		20
Dichlorodifluoromethane	63			64		36-147	2		20
Acetone	140			120		58-148	15		20
Carbon disulfide	97			94		51-130	3		20
2-Butanone	110			110		63-138	0		20
4-Methyl-2-pentanone	110			110		59-130	0		20
2-Hexanone	110			110		57-130	0		20
Bromochloromethane	100			100		70-130	0		20
1,2-Dibromoethane	100			99		70-130	1		20
1,2-Dibromo-3-chloropropane	88			89		41-144	1		20
Isopropylbenzene	110			110		70-130	0		20
1,2,3-Trichlorobenzene	96			100		70-130	4		20

Lab Control Sample Analysis Batch Quality Control

Project Name: CAPITAL CENTER

Project Number: 031647.000

Lab Number: L2121264 Report Date: 05/06/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics by GC/MS - Westborough L	•						
Volatile Organics by GC/WS - Westborough L	an Associated	sample(s).	01-02 Balch.	WG1494997-3	WG1494997-4		
1,2,4-Trichlorobenzene	100		100		70-130	0	 20
Methyl Acetate	96		100		70-130	4	 20
Cyclohexane	97		95	_	70-130	2	 20
1,4-Dioxane	80		88		56-162	10	 20
Freon-113	84		84		70-130	0	 20
Methyl cyclohexane	86		60		70-130	1	20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	101	104	70-130
Toluene-d8	106	106	70-130
4-Bromofluorobenzene	108	108	70-130
Dibromofluoromethane	99	97	70-130

SEMIVOLATILES

			Serial_No	0:05062115:38
Project Name:	CAPITAL CENTER		Lab Number:	L2121264
Project Number:	031647.000		Report Date:	05/06/21
		SAMPLE RESULTS		
Lab ID:	L2121264-01		Date Collected:	04/26/21 17:10
Client ID:	MW1-04262021		Date Received:	04/26/21
Sample Location:	ALBANY, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D		Extraction Date:	05/02/21 14:34
Analytical Date:	05/04/21 01:11			
Analyst:	EK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Westborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	1.6	J	ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

			Serial_N	0:05062115:38
Project Name:	CAPITAL CENTER		Lab Number:	L2121264
Project Number:	031647.000		Report Date:	05/06/21
		SAMPLE RESULTS		
Lab ID:	L2121264-01		Date Collected:	04/26/21 17:10
Client ID:	MW1-04262021		Date Received:	04/26/21
Sample Location:	ALBANY, NY		Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	49	21-120
Phenol-d6	39	10-120
Nitrobenzene-d5	57	23-120
2-Fluorobiphenyl	67	15-120
2,4,6-Tribromophenol	85	10-120
4-Terphenyl-d14	69	41-149

			Serial_No	0:05062115:38
Project Name:	CAPITAL CENTER		Lab Number:	L2121264
Project Number:	031647.000		Report Date:	05/06/21
		SAMPLE RESULTS		
Lab ID:	L2121264-01		Date Collected:	04/26/21 17:10
Client ID:	MW1-04262021		Date Received:	04/26/21
Sample Location:	ALBANY, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	l: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	05/02/21 14:36
Analytical Date:	05/06/21 12:50			
Analyst:	DV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM - Westborough Lab							
Acenaphthene	ND		ug/l	0.10	0.01	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	ND		ug/l	0.10	0.02	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1	
Naphthalene	ND		ug/l	0.10	0.05	1	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1	
Chrysene	ND		ug/l	0.10	0.01	1	
Acenaphthylene	ND		ug/l	0.10	0.01	1	
Anthracene	ND		ug/l	0.10	0.01	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1	
Fluorene	0.02	J	ug/l	0.10	0.01	1	
Phenanthrene	0.03	J	ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1	
Pyrene	ND		ug/l	0.10	0.02	1	
2-Methylnaphthalene	0.06	J	ug/l	0.10	0.02	1	
Pentachlorophenol	ND		ug/l	0.80	0.01	1	
Hexachlorobenzene	ND		ug/l	0.80	0.01	1	
Hexachloroethane	ND		ug/l	0.80	0.06	1	

		othorough Lo		Units			Dilution Factor
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	ALBANY, NY				Field Prep:		Not Specified
Client ID:	MW1-04262021				Date Receiv	/ed:	04/26/21
Lab ID:	L2121264-01				Date Collect		04/26/21 17:10
		•,					
•		SAMP	LE RESULT	5	•		
Project Number:	031647.000				Report Da	te:	05/06/21
Project Name:	CAPITAL CENTER				Lab Numb	er:	L2121264
		Serial_No:05062115:38					

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	48	21-120
Phenol-d6	43	10-120
Nitrobenzene-d5	66	23-120
2-Fluorobiphenyl	71	15-120
2,4,6-Tribromophenol	59	10-120
4-Terphenyl-d14	85	41-149

Project Name:	CAPITAL CENTER	Lab Number:	L2121264
Project Number:	031647.000	Report Date:	05/06/21

Method Blank Analysis Batch Quality Control

Analytical Method	d:
Analytical Date:	
Analyst:	

1,8270D 05/04/21 00:22 EK Extraction Method: EPA 3510C Extraction Date: 05/02/21 14:34

3,3-Dichlorobenzidine ND ug/l 5.0 1.6 2,4-Dinitrotoluene ND ug/l 5.0 1.2 2,6-Dinitrotoluene ND ug/l 5.0 0.93 1-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1-Bromophenyl phenyl ether ND ug/l 2.0 0.38 3is(2-chloroisopropyl)ether ND ug/l 2.0 0.53 3is(2-chloroisopropyl)ether ND ug/l 5.0 0.50 4exachlorocyclopentadiene ND ug/l 5.0 0.69 sophorone ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 5.0 0.64 3is(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 3is(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 0.38 Di-n-butylphthalate ND ug/l 5.0 0.38 Di-n-otylphthalate <td< th=""><th>arameter</th><th>Result</th><th>Qualifier Units</th><th>RL</th><th>MDL</th></td<>	arameter	Result	Qualifier Units	RL	MDL
3,3-Dichlorobenzidine ND ug/l 5.0 1.6 2,4-Dinitrotoluene ND ug/l 5.0 1.2 2,6-Dinitrotoluene ND ug/l 5.0 0.93 1-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1-Bromophenyl phenyl ether ND ug/l 2.0 0.38 3is(2-chloroisopropyl)ether ND ug/l 2.0 0.53 3is(2-chloroethoxy)methane ND ug/l 5.0 0.50 4exachlorocyclopentadiene ND ug/l 5.0 0.69 sophorone ND ug/l 2.0 0.67 VDPA/DPA ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 5.0 0.64 3is(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 3is(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 Di-n-otylphthalate ND ug/l 5.0 0.39 Di-n-otylphthalate ND ug/l 5.0 0.38 Dibenzyl phthalate ND	emivolatile Organics by GC/MS -	Westborough	Lab for sample(s):	01 Ba	atch: WG1493452-1
ND ug/l 5.0 1.2 2,6-Dinitrotoluene ND ug/l 5.0 0.93 1-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1-Bromophenyl phenyl ether ND ug/l 2.0 0.38 3is(2-chloroisopropyl)ether ND ug/l 2.0 0.53 3is(2-chloroethoxy)methane ND ug/l 5.0 0.50 4exachlorocyclopentadiene ND ug/l 5.0 0.69 sophorone ND ug/l 5.0 0.77 NDPA/DPA ND ug/l 2.0 0.42 N-Nitrosodi-n-propylamine ND ug/l 5.0 0.42 NDPA/DPA ND ug/l 5.0 0.64 3is(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 1.3 Di-n-otylphthalate ND ug/l 5.0 1.3 Di-n-otylphthalate ND ug/l	Bis(2-chloroethyl)ether	ND	ug/l	2.0	0.50
ND ug/l 5.0 0.93 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 3is(2-chloroisopropyl)ether ND ug/l 2.0 0.53 3is(2-chloroethoxy)methane ND ug/l 5.0 0.50 4exachlorocyclopentadiene ND ug/l 5.0 0.69 sophorone ND ug/l 5.0 0.77 NDPA/DPA ND ug/l 5.0 0.64 3is(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 3is(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 0i-n-butylphthalate ND ug/l 5.0 0.39 0i-n-octylphthalate ND ug/l 5.0 0.38 0i-n-octylphthalate ND ug/l 5.0 0.38 0i-n-octylphthalate ND ug/l 5.0 0.38 0i-noctylphthalate ND u	3,3'-Dichlorobenzidine	ND	ug/l	5.0	1.6
H-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 3is(2-chloroisopropyl)ether ND ug/l 2.0 0.53 3is(2-chloroethoxy)methane ND ug/l 5.0 0.50 4exachlorocyclopentadiene ND ug/l 5.0 1.2 Nitrobenzene ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 2.0 0.42 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 3is(2-ethylhexyl)phthalate ND ug/l 5.0 0.42 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 3is(2-ethylhexyl)phthalate ND ug/l 5.0 1.2 Di-n-otylphthalate ND ug/l 5.0 0.39 Di-n-otylphthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 0.50 I-chotroph	2,4-Dinitrotoluene	ND	ug/l	5.0	1.2
Hermophenyl phenyl ether ND ug/l 2.0 0.38 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 Hexachlorocyclopentadiene ND ug/l 5.0 1.2 Sophorone ND ug/l 2.0 0.69 NDPA/DPA ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 5.0 0.42 NDPA/DPA ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 Din-butylphthalate ND ug/l 5.0 0.39 Din-octylphthalate ND ug/l 5.0 0.38 Din-octylphthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 0.50 Din-hottylphthalate ND	2,6-Dinitrotoluene	ND	ug/l	5.0	0.93
Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.69 Bis(2-chloroethoxy)methane ND ug/l 20 0.69 Sophorone ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 0.38 Di-n-butylphthalate ND ug/l 5.0 0.38 Di-n-butylphthalate ND ug/l 5.0 0.46 Di-n-butylphthalate ND ug/l 5.0 0.50 Di-n-butylphthalate ND	4-Chlorophenyl phenyl ether	ND	ug/l	2.0	0.49
ND ug/l 5.0 0.50 Hexachlorocyclopentadiene ND ug/l 20 0.69 sophorone ND ug/l 5.0 1.2 Nitrobenzene ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 2.0 0.42 N-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-otylphthalate ND ug/l 5.0 0.38 Di-n-butylphthalate ND ug/l 5.0 0.38 Di-n-otylphthalate ND ug/l 5.0 0.38 Di-n-otylphthalate ND ug/l 5.0 0.46 Chloroaniline ND ug/l 5.0 0.46 Siphenyl ND ug/l 5.0 0.50	4-Bromophenyl phenyl ether	ND	ug/l	2.0	0.38
Hexachlorocyclopentadiene ND ug/l 20 0.69 sophorone ND ug/l 5.0 1.2 Nitrobenzene ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 2.0 0.42 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 0.38 Di-n-octylphthalate ND ug/l 5.0 0.38 Dienthyl phthalate ND ug/l 5.0 0.38 Dienthyl phthalate ND ug/l 5.0 0.46 Chloroaniline ND ug/l 5.0 0.50 Siphenyl ND ug/l 5.0 0.61 Chloroaniline ND ug/l <td< td=""><td>Bis(2-chloroisopropyl)ether</td><td>ND</td><td>ug/l</td><td>2.0</td><td>0.53</td></td<>	Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	0.53
ND ug/l 5.0 1.2 Nitrobenzene ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 2.0 0.42 NItrosodi-n-propylamine ND ug/l 5.0 0.64 Sis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 Sis(2-ethylhexyl)phthalate ND ug/l 5.0 1.2 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 0.46 I-Chloroaniline ND ug/l 5.0 0.50 Shitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 5.0 0.80 <td>Bis(2-chloroethoxy)methane</td> <td>ND</td> <td>ug/l</td> <td>5.0</td> <td>0.50</td>	Bis(2-chloroethoxy)methane	ND	ug/l	5.0	0.50
ND ug/l 2.0 0.77 NDPA/DPA ND ug/l 2.0 0.42 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 Butyl benzyl phthalate ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 1.4 Siphenyl ND ug/l 5.0 1.4 Pritroaniline ND ug/l 5.0 0.50 Bi-Nitroaniline ND ug/l 5.0 0.81 Pritroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 5.0 0.80	Hexachlorocyclopentadiene	ND	ug/l	20	0.69
ND ug/l 2.0 0.42 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 Butyl benzyl phthalate ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 0.46 4-Chloroaniline ND ug/l 5.0 0.45 2-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 1.0 <	Isophorone	ND	ug/l	5.0	1.2
ND ug/l 5.0 0.64 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 Butyl benzyl phthalate ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 1.8 Biphenyl ND ug/l 5.0 1.1 P-Nitroaniline ND ug/l 5.0 0.50 B-Nitroaniline ND ug/l 5.0 0.81 P-Nitroaniline ND ug/l 5.0 0.50 Dibenzofuran ND ug/l 10 0.44 <td>Nitrobenzene</td> <td>ND</td> <td>ug/l</td> <td>2.0</td> <td>0.77</td>	Nitrobenzene	ND	ug/l	2.0	0.77
Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 Butyl benzyl phthalate ND ug/l 5.0 1.2 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 1.3 Di-n-octylphthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 1.3 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 1.4 Biphenyl ND ug/l 5.0 1.4 Choroaniline ND ug/l 5.0 1.1 Partoaniline ND ug/l 5.0 0.50 Bartoaniline ND ug/l 5.0 0.81 Colonaniline ND ug/l 5.0 0.60 Dibenzofuran ND ug/l 5.0 0.50 Dibenzofuran ND ug/l 5.0 0.53	NDPA/DPA	ND	ug/l	2.0	0.42
Butyl benzyl phthalate ND ug/l 5.0 1.2 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 1.3 Di-n-octylphthalate ND ug/l 5.0 0.38 Di-n-octylphthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 0.46 Primethyl phthalate ND ug/l 5.0 0.46 A-Chloroaniline ND ug/l 5.0 0.50 A-Chloroaniline ND ug/l 5.0 0.81 A-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 I,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l	n-Nitrosodi-n-propylamine	ND	ug/l	5.0	0.64
ND ug/l 5.0 0.39 Di-n-butylphthalate ND ug/l 5.0 0.39 Di-n-octylphthalate ND ug/l 5.0 1.3 Diethyl phthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 1.8 Biphenyl ND ug/l 5.0 1.1 4-Chloroaniline ND ug/l 5.0 0.50 8-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 1.0 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	1.5
Di-n-octylphthalate ND ug/l 5.0 1.3 Diethyl phthalate ND ug/l 5.0 0.38 Diethyl phthalate ND ug/l 5.0 1.8 Diethyl phthalate ND ug/l 5.0 1.8 Diethyl phthalate ND ug/l 2.0 0.46 Biphenyl ND ug/l 5.0 1.1 4-Chloroaniline ND ug/l 5.0 0.50 8-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 5.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Butyl benzyl phthalate	ND	ug/l	5.0	1.2
Diethyl phthalate ND ug/l 5.0 0.38 Dimethyl phthalate ND ug/l 5.0 1.8 Biphenyl ND ug/l 2.0 0.46 4-Chloroaniline ND ug/l 5.0 1.1 2-Nitroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 10-Nitroaniline ND ug/l 5.0 0.80 2-Nitroaniline ND ug/l 5.0 0.80 10-Nitroaniline ND ug/l 5.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Di-n-butylphthalate	ND	ug/l	5.0	0.39
Dimethyl phthalate ND ug/l 5.0 1.8 Biphenyl ND ug/l 2.0 0.46 H-Chloroaniline ND ug/l 5.0 1.1 2-Nitroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 5.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Di-n-octylphthalate	ND	ug/l	5.0	1.3
ND ug/l 2.0 0.46 A-Chloroaniline ND ug/l 5.0 1.1 2-Nitroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.81 1-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Diethyl phthalate	ND	ug/l	5.0	0.38
ND ug/l 5.0 1.1 2-Nitroaniline ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 0ibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Dimethyl phthalate	ND	ug/l	5.0	1.8
ND ug/l 5.0 0.50 3-Nitroaniline ND ug/l 5.0 0.81 4-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Biphenyl	ND	ug/l	2.0	0.46
ND ug/l 5.0 0.81 A-Nitroaniline ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 5.0 0.80 J,2,4,5-Tetrachlorobenzene ND ug/l 2.0 0.50 Acetophenone ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 A,4,6-Trichlorophenol ND ug/l 5.0 0.61	4-Chloroaniline	ND	ug/l	5.0	1.1
ND ug/l 5.0 0.80 Dibenzofuran ND ug/l 2.0 0.50 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	2-Nitroaniline	ND	ug/l	5.0	0.50
Dibenzofuran ND ug/l 2.0 0.50 I,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	3-Nitroaniline	ND	ug/l	5.0	0.81
ND ug/l 10 0.44 Acetophenone ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	4-Nitroaniline	ND	ug/l	5.0	0.80
ND ug/l 5.0 0.53 2,4,6-Trichlorophenol ND ug/l 5.0 0.61	Dibenzofuran	ND	ug/l	2.0	0.50
2,4,6-Trichlorophenol ND ug/I 5.0 0.61	1,2,4,5-Tetrachlorobenzene	ND	ug/l	10	0.44
	Acetophenone	ND	ug/l	5.0	0.53
p-Chloro-m-cresol ND ug/l 2.0 0.35	2,4,6-Trichlorophenol	ND	ug/l	5.0	0.61
	p-Chloro-m-cresol	ND	ug/l	2.0	0.35

Project Name:	CAPITAL CENTER	Lab Number:	L2121264
Project Number:	031647.000	Report Date:	05/06/21

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 05/04/21 00:22 EK Extraction Method: EPA 3510C Extraction Date: 05/02/21 14:34

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	6 - Westboroug	h Lab for s	ample(s):	01	Batch:	WG1493452-1
2-Chlorophenol	ND		ug/l		2.0	0.48
2,4-Dichlorophenol	ND		ug/l		5.0	0.41
2,4-Dimethylphenol	ND		ug/l		5.0	1.8
2-Nitrophenol	ND		ug/l		10	0.85
4-Nitrophenol	ND		ug/l		10	0.67
2,4-Dinitrophenol	ND		ug/l		20	6.6
4,6-Dinitro-o-cresol	ND		ug/l		10	1.8
Phenol	ND		ug/l		5.0	0.57
2-Methylphenol	ND		ug/l		5.0	0.49
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	0.48
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.77
Carbazole	ND		ug/l		2.0	0.49
Atrazine	ND		ug/l		10	0.76
Benzaldehyde	ND		ug/l		5.0	0.53
Caprolactam	ND		ug/l		10	3.3
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.84

Surrogate	%Recovery Qual	Acceptance fier Criteria
2-Fluorophenol	72	21-120
Phenol-d6	59	10-120
Nitrobenzene-d5	112	23-120
2-Fluorobiphenyl	97	15-120
2,4,6-Tribromophenol	77	10-120
4-Terphenyl-d14	101	41-149

Project Name:	CAPITAL CENTER	Lab Number:	L2121264
Project Number:	031647.000	Report Date:	05/06/21

Method Blank Analysis Batch Quality Control

Analytical Method:	1
Analytical Date:	C
Analyst:	J

1,8270D-SIM 05/04/21 13:33 JRW Extraction Method: EPA 3510C Extraction Date: 05/02/21 14:36

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC	/MS-SIM - Westbo	rough Lab for sample	e(s): 01	Batch: WG1493454-1
Acenaphthene	ND	ug/l	0.10	0.01
2-Chloronaphthalene	ND	ug/l	0.20	0.02
Fluoranthene	ND	ug/l	0.10	0.02
Hexachlorobutadiene	ND	ug/l	0.50	0.05
Naphthalene	ND	ug/l	0.10	0.05
Benzo(a)anthracene	ND	ug/l	0.10	0.02
Benzo(a)pyrene	ND	ug/l	0.10	0.02
Benzo(b)fluoranthene	ND	ug/l	0.10	0.01
Benzo(k)fluoranthene	ND	ug/l	0.10	0.01
Chrysene	ND	ug/l	0.10	0.01
Acenaphthylene	ND	ug/l	0.10	0.01
Anthracene	ND	ug/l	0.10	0.01
Benzo(ghi)perylene	ND	ug/l	0.10	0.01
Fluorene	ND	ug/l	0.10	0.01
Phenanthrene	ND	ug/l	0.10	0.02
Dibenzo(a,h)anthracene	ND	ug/l	0.10	0.01
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10	0.01
Pyrene	ND	ug/l	0.10	0.02
2-Methylnaphthalene	ND	ug/l	0.10	0.02
Pentachlorophenol	ND	ug/l	0.80	0.01
Hexachlorobenzene	ND	ug/l	0.80	0.01
Hexachloroethane	ND	ug/l	0.80	0.06

Project Name: Project Number:	CAPITAL CENTER 031647.000		Lab Number: Report Date:	L2121264 05/06/21
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270D-SIM 05/04/21 13:33 JRW		Extraction Method: Extraction Date:	EPA 3510C 05/02/21 14:36

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	SIM - Westb	orough Lab	for sample	e(s): 01	Batch: WG1493454-1

Surrogate	%Recovery Q	Acceptance ualifier Criteria
2-Fluorophenol	64	21-120
Phenol-d6	55	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	98	15-120
2,4,6-Tribromophenol	78	10-120
4-Terphenyl-d14	125	41-149

Project Number: 031647.000 Lab Number: L2121264

Report Date: 05/06/21

Parameter	LCS %Recovery	Qual %	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Wes	stborough Lab Associa	ated sample(s):	01 Batch:	WG1493452-2	2 WG1493452-3				
Bis(2-chloroethyl)ether	65		65		40-140	0		30	
3,3'-Dichlorobenzidine	64		63		40-140	2		30	
2,4-Dinitrotoluene	73		76		48-143	4		30	
2,6-Dinitrotoluene	79		79		40-140	0		30	
4-Chlorophenyl phenyl ether	62		64		40-140	3		30	
4-Bromophenyl phenyl ether	63		62		40-140	2		30	
Bis(2-chloroisopropyl)ether	81		80		40-140	1		30	
Bis(2-chloroethoxy)methane	77		72		40-140	7		30	
Hexachlorocyclopentadiene	61		61		40-140	0		30	
Isophorone	80		77		40-140	4		30	
Nitrobenzene	84		81		40-140	4		30	
NDPA/DPA	68		70		40-140	3		30	
n-Nitrosodi-n-propylamine	88		82		29-132	7		30	
Bis(2-ethylhexyl)phthalate	90		92		40-140	2		30	
Butyl benzyl phthalate	88		87		40-140	1		30	
Di-n-butylphthalate	78		77		40-140	1		30	
Di-n-octylphthalate	95		98		40-140	3		30	
Diethyl phthalate	73		74		40-140	1		30	
Dimethyl phthalate	77		73		40-140	5	_	30	
Biphenyl	70		66		40-140	6		30	
4-Chloroaniline	75		78		40-140	4		30	
2-Nitroaniline	82		81		52-143	1		30	
3-Nitroaniline	63		68		25-145	8	-	30	

Project Number: 031647.000

CAPITAL CENTER

Project Name:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Wes	tborough Lab Associat	ed sample(s):	01 Batch:	WG1493452-2	2 WG1493452-3			
4-Nitroaniline	65		65		51-143	0		30
Dibenzofuran	64		65		40-140	2		30
1,2,4,5-Tetrachlorobenzene	66		64		2-134	3		30
Acetophenone	71		71		39-129	0		30
2,4,6-Trichlorophenol	75		68		30-130	10		30
p-Chloro-m-cresol	89		82		23-97	8		30
2-Chlorophenol	70		66		27-123	6		30
2,4-Dichlorophenol	74		74		30-130	0		30
2,4-Dimethylphenol	75		76		30-130	1		30
2-Nitrophenol	90		91		30-130	1		30
4-Nitrophenol	54		57		10-80	5		30
2,4-Dinitrophenol	65		61		20-130	6		30
4,6-Dinitro-o-cresol	69		73		20-164	6		30
Phenol	56		55		12-110	2		30
2-Methylphenol	68		70		30-130	3		30
3-Methylphenol/4-Methylphenol	72		72		30-130	0		30
2,4,5-Trichlorophenol	81		67		30-130	19		30
Carbazole	76		75		55-144	1		30
Atrazine	90		89		40-140	1		30
Benzaldehyde	65		61		40-140	6		30
Caprolactam	47		43		10-130	9		30
2,3,4,6-Tetrachlorophenol	65		68		40-140	5		30

Project Name: CAPITAL CENTER

Project Number: 031647.000

Lab Number: L2121264

Report Date: 05/06/21

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS - Westborg	ough Lab Associa	ated sample(s): 01 Batch:	WG1493452-2	2 WG1493452-3				

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	76	73	21-120
Phenol-d6	60	59	10-120
Nitrobenzene-d5	106	106	23-120
2-Fluorobiphenyl	90	88	15-120
2,4,6-Tribromophenol	81	90	10-120
4-Terphenyl-d14	90	99	41-149

Project Number: 031647.000

Lab Number: L2121264

Report Date: 05/06/21

arameter	LCS %Recovery QI	LCSD Jal %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS-SIM - V	Vestborough Lab Associa	ated sample(s): 01 Bate	ch: WG1493454-2 WG1493	454-3	
Acenaphthene	80	86	40-140	7	40
2-Chloronaphthalene	78	84	40-140	7	40
Fluoranthene	91	103	40-140	12	40
Hexachlorobutadiene	66	72	40-140	9	40
Naphthalene	74	80	40-140	8	40
Benzo(a)anthracene	83	89	40-140	7	40
Benzo(a)pyrene	90	98	40-140	9	40
Benzo(b)fluoranthene	90	103	40-140	13	40
Benzo(k)fluoranthene	92	97	40-140	5	40
Chrysene	83	93	40-140	11	40
Acenaphthylene	82	89	40-140	8	40
Anthracene	85	94	40-140	10	40
Benzo(ghi)perylene	85	91	40-140	7	40
Fluorene	85	91	40-140	7	40
Phenanthrene	82	90	40-140	9	40
Dibenzo(a,h)anthracene	92	99	40-140	7	40
Indeno(1,2,3-cd)pyrene	89	93	40-140	4	40
Pyrene	90	102	40-140	13	40
2-Methylnaphthalene	81	87	40-140	7	40
Pentachlorophenol	77	84	40-140	9	40
Hexachlorobenzene	73	79	40-140	8	40
Hexachloroethane	64	70	40-140	9	40

Project Name: CAPITAL CENTER

Project Number: 031647.000

Lab Number: L2121264

Report Date: 05/06/21

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS-SIM - We	estborough Lab As	sociated sa	mple(s): 01 Batc	h: WG14	93454-2 WG1493	454-3			

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	70	76	21-120
Phenol-d6	60	63	10-120
Nitrobenzene-d5	89	97	23-120
2-Fluorobiphenyl	95	103	15-120
2,4,6-Tribromophenol	88	103	10-120
4-Terphenyl-d14	123	140	41-149

Project Name:CAPITAL CENTERProject Number:031647.000

Serial_No:05062115:38 *Lab Number:* L2121264 *Report Date:* 05/06/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal						
A	Absent						

Container Information

Container Information					Final	Temp			Frozen			
	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)		
	L2121264-01A	Vial HCl preserved	A	NA		3.4	Y	Absent		NYTCL-8260-R2(14)		
	L2121264-01B	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)		
	L2121264-01C	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)		
	L2121264-01D	Amber 250ml unpreserved	А	7	7	3.4	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)		
	L2121264-01E	Amber 250ml unpreserved	А	7	7	3.4	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)		
	L2121264-02A	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)		
	L2121264-02B	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)		

Project Name: CAPITAL CENTER

Project Number: 031647.000

Lab Number: L2121264

Report Date: 05/06/21

GLOSSARY

Acronyms

Acronyins	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	 Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: CAPITAL CENTER

Project Number: 031647.000

Lab Number: L2121264

Report Date: 05/06/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: CAPITAL CENTER

Project Number: 031647.000

Lab Number: L2121264 Report Date: 05/06/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Project Name: CAPITAL CENTER Project Number: 031647.000
 Lab Number:
 L2121264

 Report Date:
 05/06/21

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II,

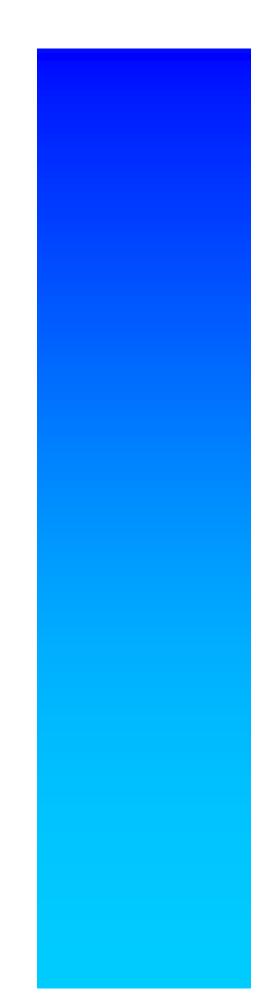
EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.


Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	Service Centers Page Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way of Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Of Of					Date Rec'd 4/27/2/						ALPHA JOB # 22121264		
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	in the				Deliv	erable				5371	Billing Information		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 0001		1tcp				ASP-		X	ASP-		Same as Client Info	0	
		Project Location: AL		NY					S (1 File)		EQui	S (4 File)	Po#		
Client Information	ACI Ibia a	Project # 031647		²²				Other			_				
	nsulting	(Use Project name as Pr			_		and the owner of the local division of the l		Requirem	nent			Disposal Site Informatio	n	
Address: # WINI	ners circle	Project Manager: SCO	H SM	Hh			X	NY TO	GS		NY Pa		Please identify below location	encoext	
Albany, N		ALPHAQuote #:		1000				AWQ	Standards		NY CP	-51	applicable disposal facilities	k.	
	3.2819	Turn-Around Time		1 2 8 1	alla Pros			NY Re	stricted Us	e 🗌	Other		Disposal Facility:		
Fax:		Standard		Due Date:				NY Un	restricted l	Jse			и 🕅 Си 🗌		
		Rush (only if pre approved		# of Days:			NYC Sewer Discharge					Other:			
These samples have be	the state of the s	and the second se					ANALYSIS					Sample Filtration	T.		
Other project specific		ients:					ones/s	s/sato					Done Lab to do Preservation Lab to do	t a I B	
							vocs,	3						0	
	1		Call	ation			>	N					(Please Specify below)) t	
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Collection		Sample Matrix	Sampler's Initials		LCLSVO						i	
21264/-01	NAME - OA	21. 2021	Date	Time			F	COLUMN TWO IS NOT		-			Sample Specific Commen	1000	
-02	MWI - 04		4/26/21	17:10	GW	CRH	X	X		-				5	
	TRIP BIOI	() / -	-	-	· w		X	-		_				2	
										_					
										_					
								-	-	-					
										_					
										_					
										_					
										_					
Preservative Code:	Container Code								<u> </u>	_					
A = None B = HCI C = HNO ₃	P = Plastic A = Amber Glass V = Vial	Westboro: Certification N Mansfield: Certification N	Container Type		V	A					Please print clearly, le and completely. Samp not be logged in and				
	G = Glass B = Bacteria Cup			Preservative		reservative	BA	A					turnaround time clock will not		
	C = Cube	- RoliAquished I	Dur.	Detec	Element.	1		1.00					start until any ambigu resolved. BY EXECU		
G = NaHSO ₄	O = Other E = Encore	Relifiquished E	зу. Э	Date/	and the second se	A A	Receiv	ed By		41	Date/			NO 100 100 100 100 100 100 100 100 100 10	
11 - 11010101	D = BOD Bottle	Phillip	5	4/20/21	17:50	126	NO AL			A	26/2	1 17:50	HAS READ AND AGE	REES	
O = Other	/	mon	0 0	26/21	11:22	AND	9	P2	1	11.	URI	01:25	TO BE BOUND BY A TERMS & CONDITIO	AND DESCRIPTION OF THE OWNER.	
Form No: 01-25 HC (rev. 30	-Sept-2013)	/				10		1	/	+			(See reverse side.)	140.	

