Groundwater Monitoring Report Semi-Annual Sampling Event First Half of 2020

Capital Center 705 Broadway Albany, New York BCP Site No. C401070

CHA Project Number: 031647.000

Prepared for:

FC 705 Broadway LLC c/o Pioneer Companies 333 West Washington Street, Suite 600 Syracuse, New York 13202

Prepared by:

III Winners Circle Albany, New York 12205 Phone: (518) 453-4500 Fax: (518) 453-4773

July 14, 2020

 This report has been prepared and reviewed by the following qualified personnel employed by CHA.

Report Prepared By:

Caroline Hurlburt Scientist I

Report Reviewed By:

John L. Favreau Senior Scientist V

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Sampling Procedures	2
3.0	Groundwater Flow Direction	3
4.0	Laboratory Analytical Results	3
5.0	Future Activities	4

FIGURES

Figure 1 – Site Location Map

Figure 2 – Site Plan

TABLES

Table 1 – Groundwater Elevations

Table 2 – Groundwater Analytical Data

APPENDIX

Appendix A – Monitoring Well Sampling Log

Appendix B – Laboratory Analytical Report

1.0 INTRODUCTION

This report has been prepared by CHA Consulting, Inc. (CHA) on behalf of FC 705 Broadway LLC and Pioneer Companies to describe the field activities and present the findings associated with the first of two semiannual groundwater monitoring events in 2020 at the Capital Center Site (the Site), located at 705 Broadway in the City of Albany, Albany County, New York (Figure 1). The semiannual monitoring event conducted during the first half of the year was completed by CHA on April 9, 2020. The monitoring event was conducted in accordance with the New York State Department of Environmental Conservation (NYSDEC)-approved Site Management Plan (SMP), prepared by CHA in December 2017. The SMP includes periodic groundwater monitoring as a means to evaluate the effectiveness of the implemented remedy (soil excavation) and natural attenuation.

Six groundwater monitoring wells (MW-1 to MW-6) were installed across the Site in March 2018, all to a depth of 25 feet below ground surface (bgs). Monitoring well construction logs are included in Appendix C of the SMP. Monitoring wells MW-3 through MW-6 were decommissioned in October 2018, based on consistent quarterly analytical results from these wells showing concentrations of volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) below the TOGS 1.1.1 standard values. Monitoring well MW-2 was subsequently decommissioned in January 2020, based on analytical results from this well showing VOC and SVOC concentrations (particularly MTBE) below the TOGS 1.1.1 standard values. Monitoring well MW-1, located downgradient of the former on-site gasoline station building, was left in place to facilitate continued monitoring in this area; however, the PVC well riser was extended by five feet to accommodate filling and grading of the Site with crushed stone for construction purposes. The riser was subsequently extended another five feet as filling and grading progressed in this area of the Site. A site plan showing the locations of the existing and former monitoring wells is included as Figure 2.

2.0 SAMPLING PROCEDURES

On April 9, 2020, CHA personnel conducted groundwater monitoring activities at well MW-1 in accordance with the NYSDEC-approved SMP and CHA's standard operating procedure (SOP) for monitoring well sampling.

Prior to conducting groundwater sampling activities, the water level in the well was measured from the top of the well riser using an electronic water level meter. The well was then purged via low-flow sampling methods, using a portable bladder pump and dedicated tubing. During purging, the following parameters were measured at approximately five-minute intervals using a YSI water quality meter equipped with a flow-through cell: specific conductivity; temperature; pH; and oxidation/reduction potential (ORP). Turbidity was also measured using a separate turbidity meter. Field parameter measurements and observations were recorded and are documented in the Monitoring Well Sampling Log included as Appendix A.

Following stabilization of field parameters, a groundwater sample was collected from the well via the portable bladder pump and dedicated tubing. The sample was collected in laboratory-provided, pre-preserved containers, which were labeled and then placed in a rigid cooler with ice, pending submittal to the laboratory.

Following sampling activities, the groundwater sample was delivered by CHA to Alpha Analytical's (Alpha) Service Center in Albany, New York, for subsequent transport by Alpha to its laboratory in Westborough, Massachusetts, in accordance with proper chain-of-custody protocol. Alpha is currently certified by the New York State Department of Health's (NYSDOH) Environmental Laboratory Approval Program (ELAP). The groundwater sample was analyzed for VOCs and SVOCs via EPA Methods 8260 and 8270, respectively, in accordance with applicable NYSDOH QA/QC procedures. A trip blank sample, prepared by the laboratory, accompanied the groundwater sample to the laboratory and was to have been analyzed for VOCs only; however, the sample identification was inadvertently omitted from the chain-of-custody and therefore was not analyzed. Groundwater samples from the Site were historically also analyzed for metals; however, based on evaluation of detected metals during the past few monitoring events, the NYSDEC approved the discontinuation of metals analysis, beginning with the April 2020 monitoring event.

3.0 GROUNDWATER FLOW DIRECTION

Groundwater elevation data from monitoring well MW-1 is included in Table 1. It should be noted that water level measurements are required from a minimum of three locations to triangulate and determine groundwater flow direction. Due to availability of only one data point, a groundwater contour map was not generated; however, the water level measurement at well MW-1 indicates a relative groundwater elevation similar to that exhibited during past monitoring events at this location. Based on this data, along with historical data and local topography, the expected groundwater flow direction continues to be generally to the east, toward the Hudson River.

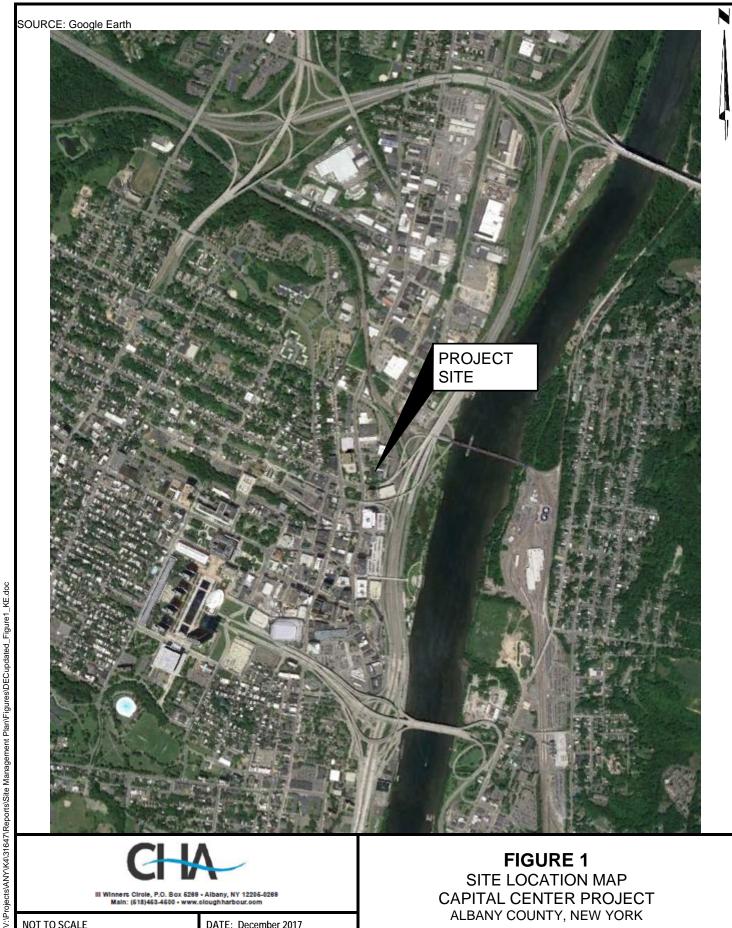
4.0 LABORATORY ANALYTICAL RESULTS

Groundwater analytical results were compared to the groundwater standards and/or guidance values listed in the NYSDEC Division of Water Technical and Operational Guidance Series 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1). Those parameters in excess of their respective standards or guidance values are shaded in Table 2. Appendix B includes the laboratory deliverables package for the April 2020 sampling event. A discussion of the analytical results for the groundwater samples collected from each monitoring well is provided below.

<u>MW-1</u>

In the sample collected from well MW-1, the VOC methyl tert-butyl ether (MTBE) was detected in exceedance of its TOGS 1.1.1 standard; however, the detected concentration was significantly reduced (nearly 80 percent) as compared to the August 2019 sampling results. Acetone was also detected in the sample, but at a concentration below its TOGS 1.1.1 standard. It should be noted that acetone is a common laboratory artifact and as a result, the detection of acetone in the MW-1 sample may be a result of laboratory contamination. No SVOCs were detected at concentrations above laboratory reporting limits.

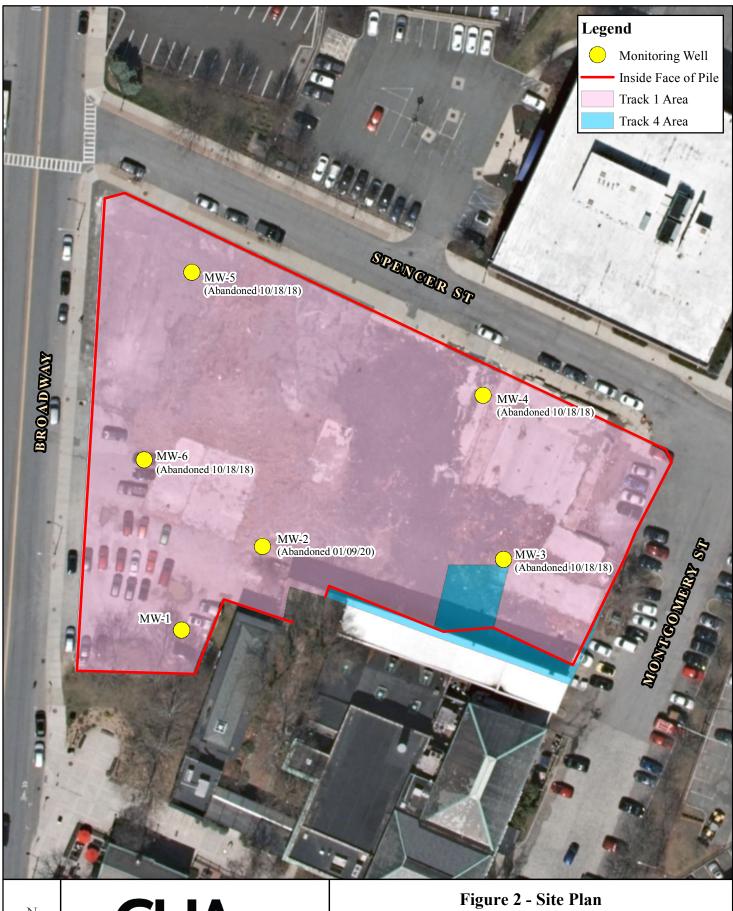
Summary


The VOC MTBE was detected at the location of well MW-1 (in the area downgradient of the former on-site gasoline station) at a concentration exceeding its TOGS 1.1.1 standard; however, the detected concentration (34 μ g/l) represents a significant decrease from the previous sampling event in August 2019 and indicates a continued decreasing trend in the concentration of MTBE at this location. The continued decreasing trend in MTBE concentrations at well MW-1 is indicative

of the effectiveness of the implemented remedial activities at the Site, along with natural attenuation.

5.0 FUTURE ACTIVITIES

The next semiannual groundwater monitoring event is scheduled to occur in October 2020. Given the recent decreasing trend in MTBE concentration at well MW-1 and in particular, the significant decrease exhibited during the April 2020 monitoring event, if the analytical results from the October 2020 monitoring event indicate a continued decreasing trend, it is anticipated that CHA will recommend that groundwater monitoring be discontinued and monitoring well MW-1 be properly decommissioned.



NOT TO SCALE

DATE: December 2017

FIGURE 1 SITE LOCATION MAP **CAPITAL CENTER PROJECT** ALBANY COUNTY, NEW YORK

Capital Center Site Quackenbush Square, 705 Broadway City of Albany, Albany County, New York

Scale 1" = 60'

CHA Project No. 31647

Service Layer Credits: Aerial imagery courtesy of Esri, DigitalGlobe, GeoEye, Earthstar Image Date: 6/7/2015

Table 1
Groundwater Elevations

Well ID	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6
TOR						
Elevations	103.27	101.46	96.23	94.22	101.27	101.88
(ft)						
3/27/2018	98.93	96.78	90.53	89.42	100.02	96.21
6/6/2018	98.42	96.17	89.98	89.61	99.52	99.21
9/27/2018	98.46	96.70	85.83	86.27	99.99	99.46
12/19/2018	97.27	96.20	decommissioned	decommissioned	decommissioned	decommissioned
3/20/2019	99.11	97.15	decommissioned	decommissioned	decommissioned	decommissioned
8/23/2019	98.73	97.84	decommissioned	decommissioned	decommissioned	decommissioned
4/9/2020	98.92	decommissioned	decommissioned	decommissioned	decommissioned	decommissioned

Note: MW-3 through MW-6 decommissioned and removed in October 2018

MW-2 decommissioned and grouted in place in January 2020

TOR Elevation corrected to 113.27 for 4/9/2020 event, due to raising of well riser following filling/grading of site

Table 2 Capital Center, Albany, NY Groundwater Analytical Monitoring Data Detected Compounds Only

LOCATION												М	W-1								
SAMPLING DATE			3/27/201	18	6/6/2018	3	9/26/201	8	12/19/20	018	12/19/20		3/20/201	9	3/20/201	9 [8/23/201	19	8/23/201	9	4/9/2020
			0.21,20		0.0.2020		7,-0,-0				DUPLICA		******		DUPLICA	$\overline{}$	0.20.20		DUPLICA	-	,
	NY-AWQS	Units										Re	sults								
Dissolved Metals																					
Aluminum, Dissolved	NS	ug/l	6.81	J	9.78	J	46.9		22	J	604	J	324	J	234	J	1580	J	310	J	NA
Antimony, Dissolved	3	ug/l	2.78	J	0.54	J	0.57	J	1.2	J	0.76	J	0.84	J+	1.32	J+	1.58	J	1.44	J	NA
Arsenic, Dissolved	25	ug/l	6.8		3.71		1.83		2.18		2.38		3.33		3.24		3.65		3.2	-	NA
Barium, Dissolved	1000	ug/l	185.2		53.62		215.8		149.8		148.1		19.97		17.12		30.06	J	17.28	J	NA
Cadmium, Dissolved	5 NC	ug/l	57600		0.28 25100		0.22 146000		0.11 166000	J	0.1	J	12000		11700		7720		6720	-	NA NA
Calcium, Dissolved Chromium, Dissolved	NS 50	ug/l ug/l	37600		25100	-	140000		100000		165000 0.74	J	0.43	J	0.33	J	7730 1.81		6720 0.19	ī	NA NA
Cobalt, Dissolved	NS NS	ug/l	1.1		0.41	J	1.44		1.6	J	2.02	J	0.43	J	0.33	J	1.05		0.19	J	NA NA
Copper, Dissolved	200	ug/l	1.13		0.41	J	1.25		0.93	J	2.02	J	1.37	J	1.21	J	3.78	J	1.39	J	NA NA
Iron, Dissolved	300	ug/l	1.13		0.77	-	83.2		67.9	J+	998	J+	385	Ī	193	J	1860	J+	293	J+	NA
Lead, Dissolved	25	ug/l					03.2		07.5		0.73	J	303		1,,,		1.22		2/3	-	NA
Magnesium, Dissolved	35000	ug/l	42300		16200		103000		141000		141000	J	7290		7140		4290		3550		NA
Manganese, Dissolved	300	ug/l	235.2		152.8		967.2		1041		1032		54.8		51.1		56.8	J	29.48	J	NA
Mercury, Dissolved	0.7	ug/l					0.2	UJ													NA
Nickel, Dissolved	100	ug/l	2.55		1.21	J	1.67	J	2.15		2.59		0.73	J			3.5		1.9	J	NA
Potassium, Dissolved	NS	ug/l	2080		871		2490		2300		2580		822		759		1120	J	633	J	NA
Silver, Dissolved	50	ug/l					0.22	J													NA
Sodium, Dissolved	20000	ug/l	97500		73400		193000		217000		214000		68200		68100		68700		65100		NA
Thallium, Dissolved	0.5	ug/l										_	2				,		0.19	J	NA
Vanadium, Dissolved	NS	ug/l	2.15	J			4.41	7			1.85	J	2.13	J	1.82	J	6.77		4.42	J	NA
Zinc, Dissolved	2000	ug/l					4.41	J									8.38	J		_	NA
Total Metals Aluminum, Total	NS	ne/1	3790		7650	- 1	2080	- 1	16100	т	20800	т	11700	Т	9800	- 1	12000		11900	-	NIA
Antimony, Total	3	ug/l ug/l	2.23	ī	7650 0.56	J	2080		0.92	J	1.95	J	0.92	ī	1.38	J	12000		0.47	т	NA NA
Antimony, Total Arsenic, Total	25	ug/l ug/l	9.06	J	6.7	J	3.3		18.12	J	24.9	J	12.27	J	10.76	J	12.09		12.18	J	NA NA
Barium, Total	1000	ug/l	228.5		99.23		244.4		511.3	,	518.6	J	98.99		86.21		125.8		127.2		NA NA
Beryllium, Total	3	ug/l	0.21	J	0.36	J	0.15	J	1.51		1.72		0.58		0.49	J	0.83	J	0.64	J	NA
Cadmium, Total	5	ug/l	0.06	J	0.57		0.47	-	1.14		1.12		0.13	J	0.14	J	0.19	J	0.22		NA
Calcium, Total	NS	ug/l	75500		42400		167000		820000		844000		57200		54000		69500		78100		NA
Chromium, Total	50	ug/l	5.3		11.2		3.67		29.51	J	39.21	J	16.91		14.59		21.48		20.49		NA
Cobalt, Total	NS	ug/l	4.29		6.63		4		36.94	J	46.53	J	14.23	J	10.83	J	14.64		14.69		NA
Copper, Total	200	ug/l	9		20.73		11.33		201.6		226.6		45.23	J	35.41	J	48.39		52.77		NA
Iron, Total	300	ug/l	7290		14400		4980	J+	88400		107000		27700	J+	21500	J+	31600	J-	31700	J-	NA
Lead, Total	25	ug/l	2.96		6.85		4.4		53.64		63.19		17.36		14.23		17.3		17.89		NA
Magnesium, Total	35000	ug/l	46100		23100		113000	J+	284000		274000		21600		19500		23800		25500		NA
Manganese, Total	300	ug/l	417		468		1270		10080		10390	,	869	,	784.5	,	1053		1131		NA
Nickel, Total	100	ug/l	9.82		13.88	-	2020		57.34	J	77.78	J	29.38	J	23.4	J	31.6		33.02	-	NA NA
Potassium, Total	NS 10	ug/l	3230		2410	-	2930		6540 8.83	J	8910 9.54	J	2590 3.37	т	2330 3.16	J	2900 5.71		2820 5.33	\dashv	NA NA
Selenium, Total Silver, Total	50	ug/l ug/l			0.19	J			0.83		0.21	J	3.3/	J	5.10	J	J./I		3.33	-	NA NA
Sodium, Total	20000	ug/l ug/l	99500		73100	J	200000		204000		195000	J	73400		74600		72900		75900		NA NA
Thallium, Total	0.5	ug/l	77500		75100		200000		0.28	J	0.48	J	0.16	J	0.15	J	0.26	JR	0.29	ī	NA
Vanadium, Total	NS	ug/l	9.07		12.62		5.75		47.17		55.38	3	21.65	J	17.37	J	27.04	310	26.61		NA
Zinc, Total	2000	ug/l	21.91		45.51		22.44		245	J	320.4	J	72.71		60.32		88.72		90.72		NA
Volatile Organics by GC/MS																					
1,4-Dioxane		ug/l					250	UR			61	UR									
Acetone	50	ug/l																			17
Bromomethane	5	ug/l					2.5	UJ													
Methyl tert butyl ether	10	ug/l	2300		660		3700		2800		2300		390		390		140		150		34
Tetrachloroethene	5	ug/l			0.59	J															
Semivolatile Organics by GC/MS	-	/1				- 1		-	0.7	777	0.7	7.77		-		-					
3,3'-Dichlorobenzidine	5	ug/l				_	-	7.77	0.5	UJ	0.5	UJ							-	-	
4-Chloroaniline 4-Nitroaniline	5	ug/l					5	UJ	0.5	UJ UJ	0.5	UJ UJ				\dashv			-	-	
4-Nitroaniline Acetophenone	3	ug/l ug/l							0.5	UJ	0.5	UJ								-	
Bis(2-ethylhexyl)phthalate	5	ug/l ug/l	3.7						52	J+											
Di-n-butylphthalate	50	ug/l	3.1						0.84	J										-	
2-Chloronaphthalene	10	ug/l							J.01												
2-Methylnaphthalene	NS	ug/l											0.02	J							
Anthracene	50	ug/l	0.1										2								
Fluoranthene	50	ug/l	0.1								0.03	J									
Fluorene	50	ug/l	0.1																		
Naphthalene	10	ug/l	0.1																0.42	BR	
Phenanthrene	50	ug/l	0.1										0.04	JU	0.05	JU					

Notes:

NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.
Samples were analyzed by Alpha Analytical Laboratory
Blank cells indicate parameters that were not detected
Shaded values indicate a value greater than NY TOGS 1.1.1 Ambient Water Quality Standards Limits
R - indicates a rejected, unusable value dictated by the DUSR report
J+ - indicates an estimated, biased high value dicated by the DUSR report
J - indicates an estimated value
J- - indicates an estimated value
N- indiates an estimated value dicated by the DUSR report
N- indiates an estimated value dicated by the DUSR report
N- no standard
N- Not Analyzed

APPENDIX A MONITORING WELL SAMPLING LOG

	CH	Δ	Me	Monitoring Well Sampling/			Sample/Well ID: MW-1				
<u></u>				Develo	pment Lo	g					
	lumber: 0316							Date: 4/9/			
	acility Name ocation/Sam	•		dway Albai	ny NV /1ct l	Half 2020	Logged By: C. Hurlburt Weather/Temp: 50° F, cloudy				
	Sampling Me				•		1	•	ement Dev		
P S	Janipinib	tilou	I WISHID III	etiloa 5 .	ייי פייייאיייטני	Ctiloa				il: <u>Heron 20</u>	00'
	ıbmersible Pı		del:					rface Probe		el:	
	eristaltic Pum		del:								
	edicated Pum icroPurge Pu		del: del:	□ Dodic	-+~4 □ Dic	asabla		•	umentation	:	
□ □ Ba	•		e:		ated 🗌 Dis	posavie		nent: <u>YSI M</u> nent: Turbi	<u>dimeter CH</u>	ΙΔΩ	
□ □ Ot		· 1 F	··				Instrum		unnece. c	<u> </u>	
Time Well Locked:							er Level (ft.): 14.35			
-	ace Reading:						Pump Int	ake Depth	(ft 1: 25		
	-mount casir		up casing								
Flow Kai	te (mL/min):	120						er ID No.: <u>12</u>	<u>20</u>		
				_	dition: A = A	Acceptable		•			
A U ⊠□w	Vell visibility			、 U ☑ □ Surfac	ادم دم			A U ⊠ □ Tota	ıl depth <u>37.</u>	51	
	Vell Identifica				ce sear ce casing cor	ndition		⊠ □ Tota	-	<u> </u>	
⊠ □ W	Vell lock/secu	urity		Corro	sion of surfa	ace casing		⊠ □ Rech			
\square \square \lor	Vell cap & gri	ipper plug		☐ Inner	Casing/Scre		:y	☐ ☐ Othe	er:		
	T	Т		1	Field An	alysis:	Г	Oth su	Oth su	Otto ou	Other
Time	Depth to Water	ORP/Eh	рН	Cond.	Turbidity	D.O.	Temp.	Other Field	Other Field	Other Field	Other Field
Tille	(ft.)	(mV)	μΠ	(mS/cm)	(NTU)	(mg/L)	(°C)	Data:	Data:	Data:	Data:
11:00	14.35	141.2	8.21	0.326	15.3	7.74	8.9				
11:10	14.4	134.7	8.33	0.327	17.7	7.64	9.1				
11:15	14.38	132.3	8.36	0.325	16.1	7.67	9.2				
11:20	14.42	131.4	8.38	0.327	17.9	7.5	9.2				
			·								
			<u> </u>								
		†	I								
		1	I								
		1	I								
		1									
		1	<u> </u>								
Start Pur	ge Time: 10:	:45 Tota	al Vol. Purg	ed:	Odor: 1	None	Purg	e Water Dis	posal Meth	nod: Groun	d Surf.
	ge Time: 11:		al Purge Tin	ne: 45 min				n Observed			
Sampling Information: Sampling Time: 11:45 Laboratory: Alpha Analytical											
	nalyses: <u>TCl</u> ts/Additiona					ottles: 5	fervescenc	o DVC wel	l ricer was (evtended 1	O feet in
January 2		1 Observatio	Jiis. Water	is cical with	11110 0001, 3	ileeli oi ei	rervescence	e. i ve wei	Tisci was t	skienaea 1	o reet iii
Signature	e(s) of Sampli	ing Team: (

APPENDIX B LABORATORY ANALYTICAL DATA

ANALYTICAL REPORT

Lab Number: L2015218

Client: CHA Companies

3 Winners Circle Albany, NY 12205

ATTN: C. Hurlburt
Phone: (518) 453-4500
Project Name: Not Specified

Project Number: 31647 Report Date: 04/16/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: Not Specified

Project Number: 31647

Lab Number:

L2015218

Report Date: 04/16/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2015218-01	GW-MW1-040920	WATER	Not Specified	04/09/20 11:45	04/09/20
L2015218-02	TRIP BLANK	WATER	Not Specified	04/09/20 00:00	04/09/20

Project Name:Not SpecifiedLab Number:L2015218Project Number:31647Report Date:04/16/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:Not SpecifiedLab Number:L2015218Project Number:31647Report Date:04/16/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2015218-02: A sample identified as "TRIP BLANK" was received, but not listed on the Chain of Custody. This sample was not analyzed.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Whilly U. Myrig Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative Date: 04/16/20

ALPHA

ORGANICS

VOLATILES

04/09/20 11:45

Project Name: Not Specified

Project Number: 31647

SAMPLE RESULTS

Lab Number: L2015218

Report Date: 04/16/20

SAMFLE NESOI

Lab ID: L2015218-01 Client ID: GW-MW1-040920

Sample Location: Not Specified

Date Received: 04/09/20 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/14/20 01:13

Analyst: NLK

Volatile Organics by GC/MS - Westborough	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	1.6	J	ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Not Specified Lab Number: L2015218

Project Number: 31647 Report Date: 04/16/20

SAMPLE RESULTS

Lab ID: Date Collected: 04/09/20 11:45

Client ID: GW-MW1-040920 Date Received: 04/09/20 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	34		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	17		ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	ND		ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	ND		ug/l	10	0.40	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	107	70-130	

L2015218

Project Name: Not Specified Lab Number:

Project Number: 31647 Report Date: 04/16/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/13/20 17:43

Analyst: AD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01 Batch:	WG1360924-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: Not Specified

Project Number: 31647

Lab Number: L2015218

Report Date: 04/16/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/13/20 17:43

Analyst: AD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - We	estborough Lab	for sample(s): 01	Batch:	WG1360924-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: Not Specified Lab Number: L2015218

Project Number: 31647 Report Date: 04/16/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/13/20 17:43

Analyst: AD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1360924-5

	Acceptan						
Surrogate	%Recovery Qual	<u>-</u>					
1,2-Dichloroethane-d4	111	70-130					
Toluene-d8	101	70-130					
4-Bromofluorobenzene	95	70-130					
Dibromofluoromethane	97	70-130					

Lab Control Sample Analysis Batch Quality Control

Project Name: Not Specified

Project Number: 31647

Lab Number: L2015218

Report Date: 04/16/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westbor	ough Lab Associated	sample(s): 0	1 Batch: WG1	360924-3	WG1360924-4				
Methylene chloride	120		110		70-130	9		20	
1,1-Dichloroethane	130		120		70-130	8		20	
Chloroform	110		110		70-130	0		20	
Carbon tetrachloride	99		95		63-132	4		20	
1,2-Dichloropropane	120		110		70-130	9		20	
Dibromochloromethane	100		100		63-130	0		20	
1,1,2-Trichloroethane	110		110		70-130	0		20	
Tetrachloroethene	97		94		70-130	3		20	
Chlorobenzene	100		100		75-130	0		20	
Trichlorofluoromethane	130		120		62-150	8		20	
1,2-Dichloroethane	120		120		70-130	0		20	
1,1,1-Trichloroethane	96		100		67-130	4		20	
Bromodichloromethane	110		110		67-130	0		20	
trans-1,3-Dichloropropene	93		93		70-130	0		20	
cis-1,3-Dichloropropene	100		100		70-130	0		20	
Bromoform	93		97		54-136	4		20	
1,1,2,2-Tetrachloroethane	110		110		67-130	0		20	
Benzene	110		110		70-130	0		20	
Toluene	100		100		70-130	0		20	
Ethylbenzene	110		100		70-130	10		20	
Chloromethane	140	Q	130		64-130	7		20	
Bromomethane	95		99		39-139	4		20	
Vinyl chloride	130		120		55-140	8		20	

Lab Control Sample Analysis Batch Quality Control

Project Name: Not Specified

Project Number: 31647

Lab Number: L2015218

Report Date: 04/16/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG	1360924-3	WG1360924-4		
Chloroethane	150	Q	140	Q	55-138	7	20
1,1-Dichloroethene	110		100		61-145	10	20
trans-1,2-Dichloroethene	110		100		70-130	10	20
Trichloroethene	110		110		70-130	0	20
1,2-Dichlorobenzene	100		98		70-130	2	20
1,3-Dichlorobenzene	100		99		70-130	1	20
1,4-Dichlorobenzene	100		95		70-130	5	20
Methyl tert butyl ether	97		110		63-130	13	20
p/m-Xylene	110		105		70-130	5	20
o-Xylene	105		105		70-130	0	20
cis-1,2-Dichloroethene	110		110		70-130	0	20
Styrene	105		100		70-130	5	20
Dichlorodifluoromethane	96		93		36-147	3	20
Acetone	130		130		58-148	0	20
Carbon disulfide	120		110		51-130	9	20
2-Butanone	130		130		63-138	0	20
4-Methyl-2-pentanone	110		120		59-130	9	20
2-Hexanone	110		120		57-130	9	20
Bromochloromethane	110		110		70-130	0	20
1,2-Dibromoethane	100		100		70-130	0	20
1,2-Dibromo-3-chloropropane	93		92		41-144	1	20
Isopropylbenzene	100		96		70-130	4	20
1,2,3-Trichlorobenzene	92		92		70-130	0	20

Lab Control Sample Analysis Batch Quality Control

Project Name: Not Specified

Project Number: 31647

Lab Number:

L2015218

Report Date:

04/16/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
	•					KF D	Quai	Lillits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: W	1360924-3	WG1360924-4				
1,2,4-Trichlorobenzene	89		89		70-130	0		20	
Methyl Acetate	120		130		70-130	8		20	
Cyclohexane	110		110		70-130	0		20	
1,4-Dioxane	154		158		56-162	3		20	
Freon-113	110		100		70-130	10		20	
Methyl cyclohexane	110		100		70-130	10		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	111	111	70-130
Toluene-d8	101	99	70-130
4-Bromofluorobenzene	94	91	70-130
Dibromofluoromethane	102	102	70-130

SEMIVOLATILES

Project Name: Not Specified Lab Number: L2015218

Project Number: 31647 Report Date: 04/16/20

SAMPLE RESULTS

Lab ID: Date Collected: 04/09/20 11:45

Client ID: GW-MW1-040920 Date Received: 04/09/20 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 04/15/20 15:24

Analytical Method: 1,8270D Extraction Date: 04/15/20 15:24
Analytical Date: 04/16/20 00:22

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1	
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1	
Isophorone	ND		ug/l	5.0	1.2	1	
Nitrobenzene	ND		ug/l	2.0	0.77	1	
NDPA/DPA	ND		ug/l	2.0	0.42	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.38	1	
Dimethyl phthalate	ND		ug/l	5.0	1.8	1	
Biphenyl	ND		ug/l	2.0	0.46	1	
4-Chloroaniline	ND		ug/l	5.0	1.1	1	
2-Nitroaniline	ND		ug/l	5.0	0.50	1	
3-Nitroaniline	ND		ug/l	5.0	0.81	1	
4-Nitroaniline	ND		ug/l	5.0	0.80	1	
Dibenzofuran	ND		ug/l	2.0	0.50	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1	
Acetophenone	ND		ug/l	5.0	0.53	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1	

Project Name: Not Specified Lab Number: L2015218

Project Number: 31647 Report Date: 04/16/20

SAMPLE RESULTS

Lab ID: L2015218-01 Date Collected: 04/09/20 11:45

Client ID: GW-MW1-040920 Date Received: 04/09/20 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1	
2-Chlorophenol	ND		ug/l	2.0	0.48	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1	
2-Nitrophenol	ND		ug/l	10	0.85	1	
4-Nitrophenol	ND		ug/l	10	0.67	1	
2,4-Dinitrophenol	ND		ug/l	20	6.6	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1	
Phenol	ND		ug/l	5.0	0.57	1	
2-Methylphenol	ND		ug/l	5.0	0.49	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1	
Carbazole	ND		ug/l	2.0	0.49	1	
Atrazine	ND		ug/l	10	0.76	1	
Benzaldehyde	ND		ug/l	5.0	0.53	1	
Caprolactam	ND		ug/l	10	3.3	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	54	21-120
Phenol-d6	46	10-120
Nitrobenzene-d5	65	23-120
2-Fluorobiphenyl	61	15-120
2,4,6-Tribromophenol	41	10-120
4-Terphenyl-d14	63	41-149

Project Name: Not Specified Lab Number: L2015218

Project Number: 31647 Report Date: 04/16/20

SAMPLE RESULTS

Lab ID: L2015218-01 Date Collected: 04/09/20 11:45

Client ID: GW-MW1-040920 Date Received: 04/09/20 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/13/20 23:55
Analytical Date: 04/15/20 12:19

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ıb				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: Not Specified Lab Number: L2015218

Project Number: 31647 Report Date: 04/16/20

SAMPLE RESULTS

Lab ID: L2015218-01 Date Collected: 04/09/20 11:45

Client ID: GW-MW1-040920 Date Received: 04/09/20 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	53	21-120
Phenol-d6	48	10-120
Nitrobenzene-d5	66	23-120
2-Fluorobiphenyl	62	15-120
2,4,6-Tribromophenol	50	10-120
4-Terphenyl-d14	63	41-149

L2015218

Project Name: Not Specified

Project Number: 31647 Rep

Report Date: 04/16/20

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 04/15/20 10:55

Analyst: JJW

Extraction Method: EPA 3510C Extraction Date: 04/13/20 23:55

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS	S-SIM - Westbo	orough Lab	for sample	e(s): 01	Batch: WG1360851	-1
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.02	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	ND		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	

Project Name: Not Specified Lab Number: L2015218

Project Number: 31647 Report Date: 04/16/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 04/15/20 10:55 Extraction Date: 04/13/20 23:55

Analyst: JJW

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s):
 01
 Batch:
 WG1360851-1

Acceptance Surrogate %Recovery Qualifier Criteria 2-Fluorophenol 42 21-120 Phenol-d6 41 10-120 Nitrobenzene-d5 23-120 58 2-Fluorobiphenyl 57 15-120 2,4,6-Tribromophenol 33 10-120 4-Terphenyl-d14 65 41-149

L2015218

Project Name: Not Specified

Project Number: 31647

Report Date: 04/16/20

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 04/15/20 23:11

Analyst: WR

Extraction Method: EPA 3510C Extraction Date: 04/15/20 15:24

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01	Batch:	WG1361431-1	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.50	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.6	
2,4-Dinitrotoluene	ND		ug/l		5.0	1.2	
2,6-Dinitrotoluene	ND		ug/l		5.0	0.93	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.49	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.38	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.53	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.50	
Hexachlorocyclopentadiene	ND		ug/l		20	0.69	
Isophorone	ND		ug/l		5.0	1.2	
Nitrobenzene	ND		ug/l		2.0	0.77	
NDPA/DPA	ND		ug/l		2.0	0.42	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.64	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	1.5	
Butyl benzyl phthalate	ND		ug/l		5.0	1.2	
Di-n-butylphthalate	ND		ug/l		5.0	0.39	
Di-n-octylphthalate	ND		ug/l		5.0	1.3	
Diethyl phthalate	ND		ug/l		5.0	0.38	
Dimethyl phthalate	ND		ug/l		5.0	1.8	
Biphenyl	ND		ug/l		2.0	0.46	
4-Chloroaniline	ND		ug/l		5.0	1.1	
2-Nitroaniline	ND		ug/l		5.0	0.50	
3-Nitroaniline	ND		ug/l		5.0	0.81	
4-Nitroaniline	ND		ug/l		5.0	0.80	
Dibenzofuran	ND		ug/l		2.0	0.50	
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.44	
Acetophenone	ND		ug/l		5.0	0.53	
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.61	
p-Chloro-m-cresol	ND		ug/l		2.0	0.35	

L2015218

Lab Number:

Project Name: Not Specified

Project Number: 31647 Report Date: 04/16/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 04/15/20 23:11

Analyst: WR

Extraction Method: EPA 3510C Extraction Date: 04/15/20 15:24

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/MS	S - Westborough	Lab for sample(s):	01 Batch:	WG1361431-1
2-Chlorophenol	ND	ug/l	2.0	0.48
2,4-Dichlorophenol	ND	ug/l	5.0	0.41
2,4-Dimethylphenol	ND	ug/l	5.0	1.8
2-Nitrophenol	ND	ug/l	10	0.85
4-Nitrophenol	ND	ug/l	10	0.67
2,4-Dinitrophenol	ND	ug/l	20	6.6
4,6-Dinitro-o-cresol	ND	ug/l	10	1.8
Phenol	ND	ug/l	5.0	0.57
2-Methylphenol	ND	ug/l	5.0	0.49
3-Methylphenol/4-Methylphenol	ND	ug/l	5.0	0.48
2,4,5-Trichlorophenol	ND	ug/l	5.0	0.77
Carbazole	ND	ug/l	2.0	0.49
Atrazine	ND	ug/l	10	0.76
Benzaldehyde	ND	ug/l	5.0	0.53
Caprolactam	ND	ug/l	10	3.3
2,3,4,6-Tetrachlorophenol	ND	ug/l	5.0	0.84

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
O Flygraph and	50	04.400
2-Fluorophenol	53	21-120
Phenol-d6	42	10-120
Nitrobenzene-d5	61	23-120
2-Fluorobiphenyl	58	15-120
2,4,6-Tribromophenol	41	10-120
4-Terphenyl-d14	59	41-149

Project Name: Not Specified

Project Number: 31647

Lab Number: L2015218

Report Date: 04/16/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - V	Vestborough Lab A	ssociated san	nple(s): 01 Bato	ch: WG136	60851-2 WG1360	0851-3	
Acenaphthene	53		51		40-140	4	40
2-Chloronaphthalene	52		49		40-140	6	40
Fluoranthene	51		54		40-140	6	40
Hexachlorobutadiene	47		38	Q	40-140	21	40
Naphthalene	50		43		40-140	15	40
Benzo(a)anthracene	53		56		40-140	6	40
Benzo(a)pyrene	56		59		40-140	5	40
Benzo(b)fluoranthene	54		57		40-140	5	40
Benzo(k)fluoranthene	52		56		40-140	7	40
Chrysene	52		56		40-140	7	40
Acenaphthylene	51		49		40-140	4	40
Anthracene	53		54		40-140	2	40
Benzo(ghi)perylene	57		59		40-140	3	40
Fluorene	52		52		40-140	0	40
Phenanthrene	53		54		40-140	2	40
Dibenzo(a,h)anthracene	61		62		40-140	2	40
Indeno(1,2,3-cd)pyrene	60		62		40-140	3	40
Pyrene	51		54		40-140	6	40
2-Methylnaphthalene	54		48		40-140	12	40
Pentachlorophenol	39	Q	42		40-140	7	40
Hexachlorobenzene	52		52		40-140	0	40
Hexachloroethane	43		34	Q	40-140	23	40

Project Name: Not Specified

Lab Number:

L2015218

Project Number: 31647

Report Date:

04/16/20

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1360851-2 WG1360851-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	49	40	21-120
Phenol-d6	47	39	10-120
Nitrobenzene-d5	57	48	23-120
2-Fluorobiphenyl	52	48	15-120
2,4,6-Tribromophenol	54	49	10-120
4-Terphenyl-d14	55	58	41-149

Project Name: Not Specified

Project Number: 31647

Lab Number: L2015218

Report Date: 04/16/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbo	orough Lab Assoc	iated sample(s):	01 Batch:	WG1361431-2	2 WG1361431-3				
Bis(2-chloroethyl)ether	64		74		40-140	14		30	
3,3'-Dichlorobenzidine	37	Q	33	Q	40-140	11		30	
2,4-Dinitrotoluene	53		65		48-143	20		30	
2,6-Dinitrotoluene	53		63		40-140	17		30	
4-Chlorophenyl phenyl ether	62		70		40-140	12		30	
4-Bromophenyl phenyl ether	58		65		40-140	11		30	
Bis(2-chloroisopropyl)ether	70		79		40-140	12		30	
Bis(2-chloroethoxy)methane	62		70		40-140	12		30	
Hexachlorocyclopentadiene	52		59		40-140	13		30	
Isophorone	61		71		40-140	15		30	
Nitrobenzene	62		73		40-140	16		30	
NDPA/DPA	60		69		40-140	14		30	
n-Nitrosodi-n-propylamine	65		76		29-132	16		30	
Bis(2-ethylhexyl)phthalate	64		76		40-140	17		30	
Butyl benzyl phthalate	54		63		40-140	15		30	
Di-n-butylphthalate	60		71		40-140	17		30	
Di-n-octylphthalate	58		68		40-140	16		30	
Diethyl phthalate	62		70		40-140	12		30	
Dimethyl phthalate	58		65		40-140	11		30	
Biphenyl	58		64		40-140	10		30	
4-Chloroaniline	39	Q	67		40-140	53	Q	30	
2-Nitroaniline	51	Q	60		52-143	16		30	
3-Nitroaniline	45		44		25-145	2		30	

Project Name: Not Specified

Project Number: 31647

Lab Number: L2015218

Report Date: 04/16/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - West	borough Lab Assoc	ated sample(s):	01 Batch:	WG1361431-2	2 WG1361431-3		
4-Nitroaniline	43	Q	49	Q	51-143	13	30
Dibenzofuran	64		70		40-140	9	30
1,2,4,5-Tetrachlorobenzene	56		62		2-134	10	30
Acetophenone	57		66		39-129	15	30
2,4,6-Trichlorophenol	55		62		30-130	12	30
p-Chloro-m-cresol	59		68		23-97	14	30
2-Chlorophenol	58		68		27-123	16	30
2,4-Dichlorophenol	58		66		30-130	13	30
2,4-Dimethylphenol	53		66		30-130	22	30
2-Nitrophenol	54		65		30-130	18	30
4-Nitrophenol	50		62		10-80	21	30
2,4-Dinitrophenol	55		61		20-130	10	30
4,6-Dinitro-o-cresol	62		67		20-164	8	30
Phenol	43		49		12-110	13	30
2-Methylphenol	57		68		30-130	18	30
3-Methylphenol/4-Methylphenol	57		67		30-130	16	30
2,4,5-Trichlorophenol	56		63		30-130	12	30
Carbazole	62		73		55-144	16	30
Atrazine	67		78		40-140	15	30
Benzaldehyde	57		67		40-140	16	30
Caprolactam	27		31		10-130	14	30
2,3,4,6-Tetrachlorophenol	52		63		40-140	19	30

Project Name: Not Specified Lab Number:

L2015218

Project Number:

31647

Report Date:

04/16/20

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1361431-2 WG1361431-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	52	61	21-120
Phenol-d6	44	50	10-120
Nitrobenzene-d5	59	68	23-120
2-Fluorobiphenyl	55	63	15-120
2,4,6-Tribromophenol	51	57	10-120
4-Terphenyl-d14	52	59	41-149

Lab Number: L2015218

Report Date: 04/16/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

Not Specified

Cooler Information

Project Name:

Project Number: 31647

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pH deg C Pres Seal		Seal	Date/Time	Analysis(*)	
L2015218-01A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2015218-01B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2015218-01C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2015218-01D	Amber 250ml unpreserved	Α	7	7	5.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2015218-01E	Amber 250ml unpreserved	Α	7	7	5.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2015218-02A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		HOLD-8260(14)
L2015218-02B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		HOLD-8260(14)

Project Name: Lab Number: Not Specified L2015218 **Project Number: Report Date:** 31647 04/16/20

GLOSSARY

Acronyms

EDL

EMPC

EPA

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

- Matrix Spike Sample Duplicate: Refer to MS. MSD

NA - Not Applicable.

- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:Not SpecifiedLab Number:L2015218Project Number:31647Report Date:04/16/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name:Not SpecifiedLab Number:L2015218Project Number:31647Report Date:04/16/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

R - Analytical results are from sample re-analysis.

 $\boldsymbol{RE} \quad \ \, \text{-Analytical results} \text{ are from sample re-extraction}.$

S - Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:Not SpecifiedLab Number:L2015218Project Number:31647Report Date:04/16/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 16

ID No.:17873

Page 1 of 1

Published Date: 2/17/2020 10:46:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

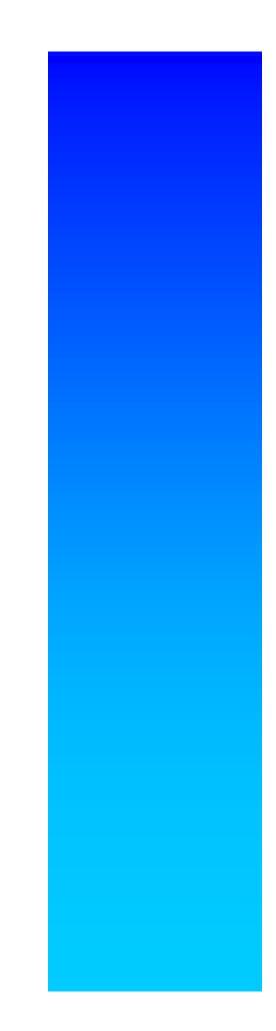
EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.


SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-893-9220		Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Project Information				ge /	Deli		Rec'd	4/10/20			ALPHA JOB# 12018	
	Pro	ect Name: ect Location:					- F	ASP			▼ ASF	P-B ulS (4 File)	Billing Information Same as Client Info	
Client: CHA Address: III WINNERS	/1 te	ect# 31647 Project name as P					Reg	Othe		000 1		715 (4 FIIE)	Po# Disposal Site Information	
Phone: 518 453 4	12 205 ALP	Turn-Around Time							OGS Standard	[is [NYC		Please identify below location of applicable disposal facilities.	of
Fax: Email: Churl burt @ C These samples have been pre-	hacompanikaus liously analyzed by	Alpha		Due Date # of Days				NY Ur	restricte lewer Dis	d Use	Other	r	Disposal Facility: NJ NY Other:	
Other project specific require	ments/comments:							LYSIS					Sample Filtration	T
Please specify Metals or TAL ALPHA Lab ID							VOCS/8240	SVOCS PARA					Done Lab to do Preservation Lab to do	o t a l B o
(Lab Use Only)	Sample II		Deta =		Sample Sampler's Matrix Initials		15						(Please Specify below)	t
15318 DIGN	- MM1 -	040920	4/9/20	11:45	WOHER		V	~					Sample Specific Comments	e
A = None P = Plastic	P = Plastic Westboro: Certification No: MA935 A = Amber Glass Mansfield: Certification No: MA015				Conta	ainer Type	V	A					Please print clearly, legibly	H
D = H ₂ SO ₄ G = Glass E = NaOH B = Bacteri F = MeOH C = Cube	a Cup	Relinquished By: Date/Time				eservative		A					and completely. Samples of not be logged in and turnaround time clock will re	can
G = NaHSO ₄	ottle				13:20 /325	Am (oceive		441			Contract Con	start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S	
Form No: 01-25 HC (rev. 30-Sept-2013	W/					1000		- ()	-		-	TERMS & CONDITIONS. (See reverse side.)	.5

