120 Mountain Avenue Bloomfield, CT 06002 Tel: (860) 242-9933 • Fax: (860) 243-9055 • www.erl.com

November 18, 1999

Mr. Peter Doshau New York Dept. of Environmental Conservation 200 White Plains Road Tarrytown, NY 10591

RECEIVED

JAN 31 2000

HELLER, EHRMAN

Re:

Gateway Office Parcel, White Plains, New York

Environmental Summary Letter ERL Project No. 07561-05

Dear Peter:

Environmental Risk Limited has prepared this summary letter in accordance with our discussion on September 17, 1999. At that meeting, we discussed the existing site conditions and historical environmental issues related to the Gateway Office parcel located in White Plains, New York. The objective of the meeting was to determine the State's requirements to resolve the environmental conditions in order for the ownership of the property to be transferred.

At that meeting it was suggested that a No Further Action Letter (NFAL) from the New York State Department of Environmental Conservation (NYSDEC) could be issued. The NFAL would be dependent on a concise summary of environmental information and activities completed at the property and that a round of groundwater samples was collected and analyzed for BTEX and MTBE. Specifically, you requested:

- The collection and analysis of groundwater samples for BTEX and MTBE.
- The current status of the removed/excavated debris piles.
- The relationship of the reported 1989, 1990, and 1991 spills.
- The current status of the 2,000 and 10,000 gallon UST located in the southwestern corner of the building.
- The status of the gas/filling station located along the northern portion of the Gateway Office Building.
- The direction of groundwater flow.

The attached summary is submitted on behalf of our client CIGNA Investments, Inc., the current site owner, since who is considering a property transfer. The property is being considered for transfer. In anticipation of a No Further Action Letter, ERL would be pleased to provide you with further documentation or, if required, meet you at your office to discuss the findings.

If you have any questions, please do not hesitate to contact either Mr. David Purington or me at 860-242-9933.

Very truly yours,

ENVIRONMENTAL RISK LIMITED

Richard J. Desrosiers, L.E.P. Senior Associate, Hydrogeology

RJD/ceb/st s\ltr\misc\7561-05-whiteplains-nydec Attachments

cc: John Morgan, CIGNA Investments, Inc.

1.0 Site Description

The Gateway Office Building property (referred hereafter as the "Site") to consists of three parcels consisting of 1) the Gateway Office Building; 2) a surface parking lot; and 3) the White Plains bus transportation center and 5-story multi-level "Gateway Garage", located in downtown White Plains, New York. The Site comprises three city blocks and is located on approximately 5 acres. The property is bounded by the following streets: to the east by North Lexington Avenue, to the west by Ferris Avenue and Bank Street; to the north by Water Street; to the south by Main Street; and New Street and Hamilton Avenue divide the parcels.

2.0 Historical Overview

ERL recently prepared a Phase I Environmental Site Assessment of the premises for CIGNA. The following site history has been derived from Sanborn maps reviewed as part of our Phase I research. The Transportation Center/Garage was part of the City of White Plains renewal project undertaken in the late 1960's/early 1970's.

Surface Parking Lot

- In the 1880's the lot included dwellings, a railroad roundhouse, lumber storage yard and a fire station.
- In the early 1900's, rail spurs replaced the roundhouse.
- In 1930 a large feed storage warehouse was present.
- In 1950 a beer storage warehouse was shown.
- In 1987, the parcel was shown as being vacant land.

Transportation Center/Garage

- In the late 1880's the garage parcel included dwellings and sheds, but was mostly vacant.
- In the early 1900's there was little change, including the addition of a rail spur.
- In 1911 the site was occupied by the Standard Oil Company with three 18,000 gallon capacity aboveground storage tanks.
- In the 1930's the oil company is gone, and two underground storage tanks were shown in addition to a coal yard.
- In the 1950, the site includes a coal yard, with two additional USTs at the former oil company area (which is now being used as an asphalt company).
- 1987 show the parcel shown as a parking garage and bus station.

Gateway Office Building

- In 1885, residential dwellings were to the northeast and retail stores to the southeast. The Union Hotel is in the southwest corner. Adjacent use was residential and commercial.
- In1889, no changes except an addition to the central building.
- In 1894, a second addition to the central building and two new residential buildings.
- In 1900, to the east a large storage shed, and an addition to the southern building.
- In 1905, no obvious changes.

- In 1911, a dry goods store replaces all the south-central buildings.
- In 1930, a plumbing supply/storage business replaces the western rail line.
- In 1950, an auto sales/service facility occupies the former rail line to the north; the hotel is gone and two gasoline (filling) stations are present along Hamilton Avenue.
- In 1987 and 1995, "Gateway Tower" occupies the central and western portion.

3.0 Areas of Concern and Resolution

ERL's review of the environmental investigations conducted between 1991 through 1995 indicates that all Areas of Concern (AOCs) have been fully investigated. This summary provides a general overview on the environmental conditions at each AOC and describes the resolution.

Transportation Center/Gateway Garage

In 1993, BCM advanced six borings through the garage floor to groundwater. Several of the borings identified a fill layer (black sand and gravel, cinders/gravel/asphalt and black cinders) to a depth of 5 to 9 feet below the concrete. BCM concluded that the materials discovered were consistent with the prior site usage. The data from this testing event is summarized in Attachment A. No MTBE or BTEX was detected in a groundwater sample collected in September 1999 from a well through the garage floor.

Discussion: These materials are effectively isolated by the capping effect of the garage structure. BCM concluded that the current conditions would not require further action to achieve risk-based objectives. Thus, No further investigation or remedial activities are warranted.

Surface Parking Lot

A magnetic survey was completed across the lot and identified two anomalies consistent with USTs and two three-foot diameter "circular debris pits". In 1993, BCM completed an investigation of these areas and encountered one UST, miscellaneous debris, including what appeared to be a pump island. Contaminated soil was associated with the UST, debris and the "circular pits". BCM recommended that the UST and debris be removed.

A May 1995 report by Camp Dresser & McKee describes the removal of an underground fuel oil storage tank and contaminated tank grave soils as well as "fuel island debris". CDM determined that the UST capacity was 1000-gallons, and did not require registration with the NYDEC. Confirmation samples were collected during the excavation. The samples indicated residual contamination was still present and additional excavations were warranted. Additional soils were removed. At the conclusion of the second effort, all confirmation samples were below NYDEC criteria. The final UST excavation was 17.5 feet x 10 feet by 5 to 7 feet deep. [Note groundwater was recorded approximately 30 feet below grade in 1993.] The debris area was excavated 16 feet x 17 feet by 7 feet deep. Confirmation samples indicated that the sidewall and the pit bottom were below the analytical detection limits.

Discussion: Confirmation testing of the excavation areas showed that all constituents of concern were effectively removed.

A May 1995 Malcolm Pirnie Inc., (MPI) correspondence describes the findings of a March 1995 investigation, which assess the extent of soil and potential groundwater contamination at the vacant lot (now surface parking lot). In all, 20 boreholes (including several in the vicinity of the above UST and pits) were advanced. Metals, PCBs, and polynuclear aromatic hydrocarbons (PAH) were reported at varying concentrations and locations, often in layers. The locations were delineated as Zone A, B, and C (see Figure 1.0).

Concentrations detected in zone A, located in the northern portion were either below the NYSDEC Clean-Up Goal or below background. The bulk of the contaminants detected were located in the upper two feet interval. Concentrations detected in zone B, located in the southern and western northern portion, slightly exceeding the NYSDEC Clean-Up Goal for mercury and background for magnesium in the 0 to 2-foot range below grade. PAH were also reported at the 4 to 6 foot intervals exceeding the NYSDEC Clean-Up Goal. Concentrations detected in zone C, located in the eastern portion, exceeded the NYSDEC Clean-Up Goal for PAH and PCB compounds at the 0 to 2 foot interval (Attachment B).

MPI made suggestions as to the handling of these soils in the event of construction activities, which included recommendations for some off-site disposal and for some "push-around" management. ERL has been unable to obtain any documentation concerning soils handling or disposal which may have occurred during the 1995 parking lot re-construction program.

Discussion: While it is unknown as to the disposition of any of the materials observed in many of the boreholes by MPI, the current constructed features of the surface parking lot effectively isolate any underlying materials. During the re-installation of the monitoring wells, no fill or disturbed soil was encountered below the pavement sub-base fill.

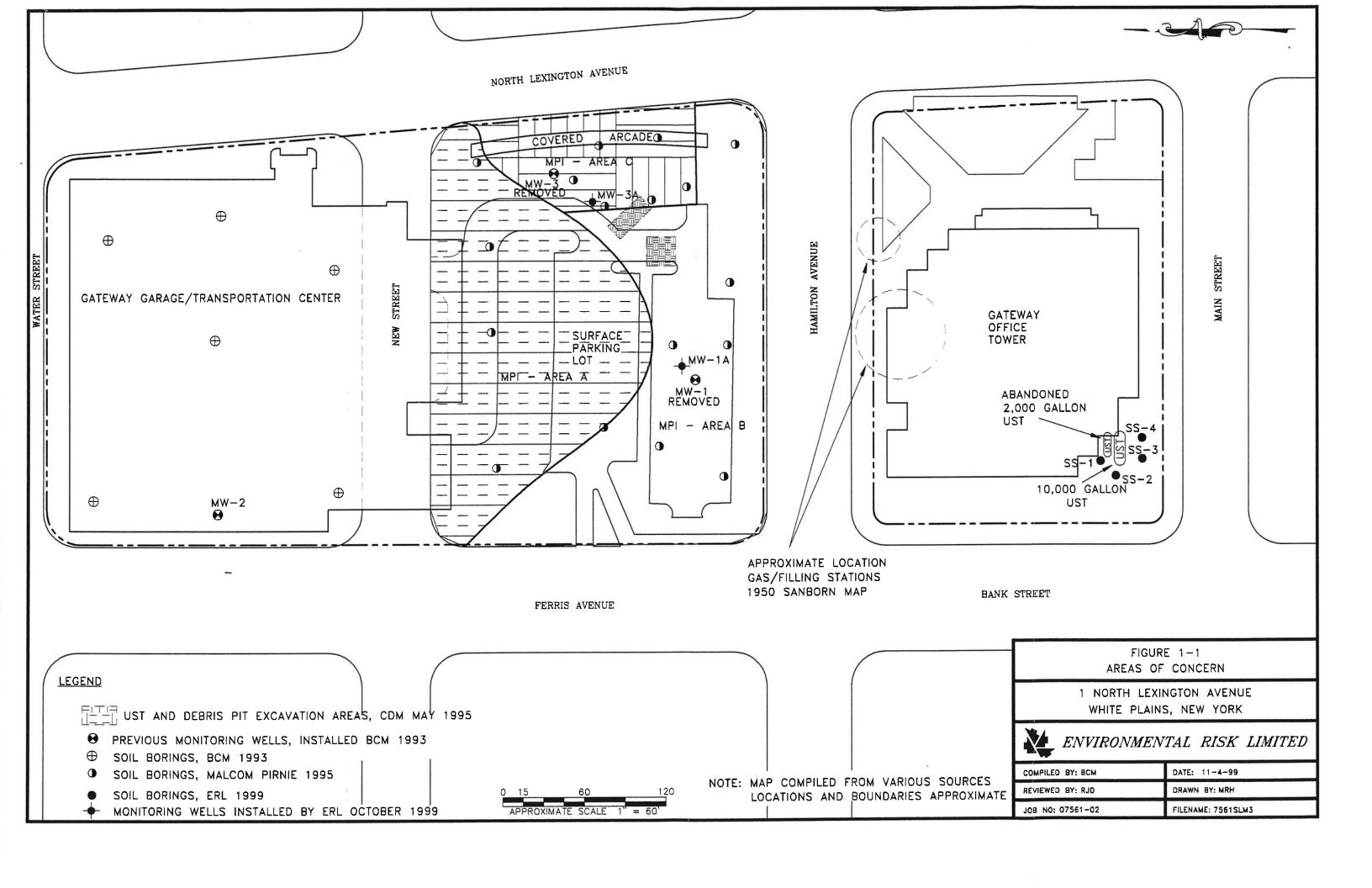
4.0 Groundwater Quality and Flow Direction

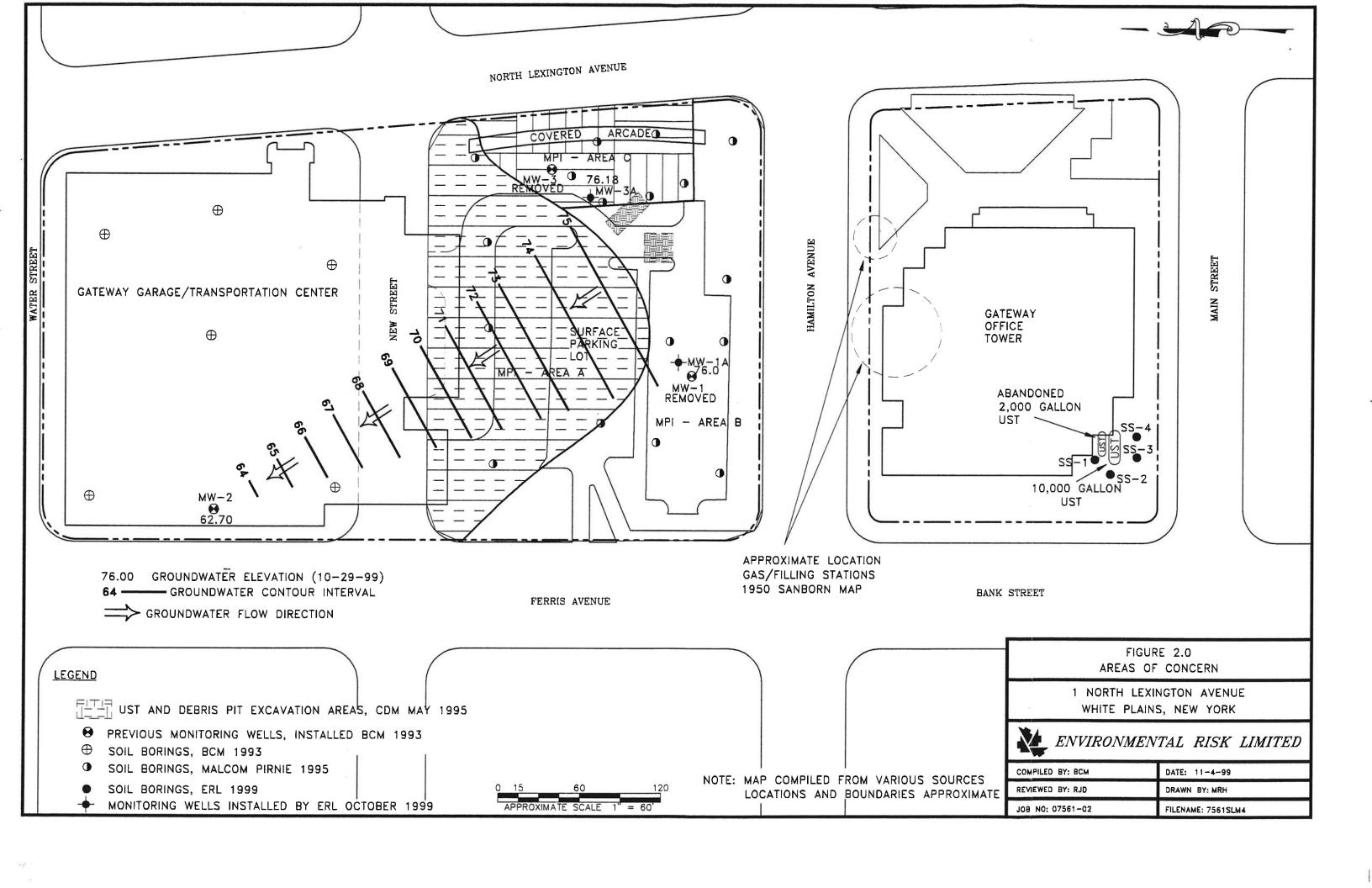
In October 1999, ERL re-installed two monitoring wells (MW-1A and MW-3A) in close proximity to the former wells located in the surface lot. Soil samples were collected at these locations and fill was encountered at 0 to 2 foot below pavement. Clean natural fine sand was recorded below the fill. One week after the wells were installed, ERL collected groundwater samples from these two wells plus the existing well (MW-2) located at the Gateway Garage (see Figure 2.0). The samples were submitted to a certified laboratory for MTBE and BTEX constituents via EPA Method 8260.

Prior to groundwater collection, ERL surveyed a reference elevation to the top of each well casing from a temporary bench-mark. The depth to groundwater was measured and subtracted from the reference elevation to determine the groundwater elevation as shown on figure 2.0. This data was used to develop a groundwater contour plan which indicates that groundwater flows to the northwest with a hydraulic gradient of 0.038 ft/ft.

The analytical data (Attachment C) indicated that no constituents were detected above the method detection limits, including MTBE and BTEX.

5.0 Existing Underground Storage Tanks and Spill Reports at the Gateway Office Building


One active tank, 10,000-gallons, No. 2 fuel, presumably installed 1985, is located west of the southwestern corner of the office tower for use in providing back-up fuel to the building heating system and emergency generator. An integrity test was performed (January 1999) and the tank passed the test.


One 2,000-gallons, No. 2 fuel was abandoned-in-place. In 1991, fuel was observed in the manway around the fill port. (Note a VISTA report indicated leaking UST events in 1989, 1990, and 1991). An integrity test was conducted and the tank failed. An October 14, 1991 letter from ESE Consultants describes the results of a sampling program at the 2,000-gallon UST. One bottom sample, exhibited elevated levels of TPH (15,900 ppm) which ESE attributed to spillage that occurred during excavation. Four other samples reported levels of TPH ranging 50 to 100 ppm. In August 1999, ERL advanced soil borings to 10 feet below grade around the two USTs. The retrieved soil cores did not indicate odors or evidence of petroleum. Eight samples were submitted for analysis. Of these samples all were reported below the detection limit for volatile organics and five of these sample exhibited low levels of TPH (25 to 46 parts per million). Such levels are common in urban settings and do not indicate that any significant amount of petroleum is present in the area sampled.

6.0 Former Gasoline/Filling Stations on the Gateway Office Parcel.

No site specific investigations were completed at the former stations due to physical constraints including utilities, sidewalk, and the building structure. Monitoring well MW-1A is considered downgradient of the western station. No BTEX constituents were detected in the October 1999 sampling event. Thus, residual contamination (if present) from the former station does not appear to be present. The foundation excavations for the Gateway Office Tower most likely removed much or all of the former stations and associated soil.

Discussion: While it is unknown as to the disposition of the former stations, the current office building isolates any underlying materials.

ATTACHMENT A

Transportation Center/Gateway Garage Soil Data

GATEWAY PARKING GARAGE SOIL BORINGS

BCM Project No. 08-4216-40

ANALYTE	SE	SP-01		SP-02		SP-03	03		SP-04	100		1000	Į,	8		
	7:-9	9-11	7'-9'	9-11	13'-15'	9,-14,	11, 12,	1, 3,	14 12		2,1		2	SF-08	90	STATE
TOH MEYER	٩	١					2		1-0	11-0	21-12	1-c	9-11"	6-7"	11'-13'	STANDARD
(May May			144	2	2	2	2	ş	QN	Q	62.2	7420	882	26100	QN	NONE
BASE NEUTRAL PRIORITY POLLUTANTS (ug/kg)	Y POLL	UTANT	3 (ug/kg	=												
Acenaphthene	QN	180	QN	ON	Q	QN	Q	QN	QN	387	Q.	20003	630.1	< 10800	GZ Z	000
Anthracene	QN	6300	82J	QN	QN	QV	Ç	Q	QN	118	650	× 14600	1000	1060		50,000
Benzo(a)anthracene	QN	924	250J	QN	Q	501	Q	73.	1307	260J	1480	<14800	2200.1	10801	2 2	000,00
Benzo(a)pyrene	1001	737	250J	Q	Q	51J	9	72.7	1207	260J	1200.1	×14600	2500.1	10801		224(a)
Benzo(b)fluoranthene	160J	869	310J	507	Q	66J	9	Q	1707	359 (1480	×14600	1	2000		61(b)
Benzo(k)fluoranthene	QN	3401	1207	Ş	Q	Q	2	2	56J	286		14800	-11	2000		1,100
Benzo(g,h,l)perylene	Q	2703	1407	Q	Q	39J	QN	Q	135	140.1	510.1	1480	-	2000	2 9	1,100
Chrysone	1102	858	Q	35J	QV	95J	S	633	110.1	10	TZ	1		2008		50,000
Olbenzo(a,h)anthracene	QN	1100	QN	QN	QN	Q	Q.	2	2	+	_		-	Onoal	2	.: 007
Puotanthene	2401	1870	K30.1	1 30							+	40m	4 BB0	×19600	9	14(c)
	3		Mer.	200		3	2	120	2307	559	2880	21007	5140	< 19600	Q.	50,000
01101011	2 3	2200		Q	2	2	Q	Q.	Q	39.1	1800	2200J	710	< 19600	Q	50.000
ndeno(1,2,3-cd)pyrene	3	2005	1500	2	2	397	Q.	Q	827	150J	6000	<14600	13007	< 19600	9	3 200
Vaphthalone	Q	787	Q	2	Q	Q	Q	QN	QN	Q	Q.	140003	13007	<19600	2	000 61
henenthrene	2007	2090	3201	52.1	QN	39.1	QN	637	1001	432	1800	5000.1	+	1060		13,000
Yrene	2407	1760	450.1	63.1	QN	83.1	Q	1202	2100	498	+	+	+			000,000
concentrations	901		- 000		-					1	+	*	Sign	ONGALS	2	50,000
	1,120	11,247	2,602	285	QN	248	Q	511	1,288	3,179	15,220	27,900	33,130	-	Q	None

^{*} Detection limits on these samples were elevated significantly by high TPH. PAHs were detected but are below the instrument detection limit.

NYSDEC TAGM Determination of Soil Cleanup Objectives and Cleanup Levels, January 24, 1994.

⁽a) Soil cleanup objective to protect groundwater is 3,000 ug/kg.
(b) Soil cleanup objective to protect groundwater is 11,000 ug/kg.
(c) Soil cleanup objective to protect groundwater is 165,000,000 ug/kg.

Compound was detected below the method quantification limit.

Table 2
SUMMARY OF ANALYTICAL RESULTS

FOR SOILS

(Results Reported if Detected in ug/kg, unless noted otherwise)

	,		n pdyka, mute	ss noted other	wise)	
PC8-1260	MW-2	SP1	SP-2	<u>sp3</u>	BACKGROUND CONCENTRATIONS(3)	STATE STANDARD (c)
	5	•	L 88	4,700 J		10,000 (d)
Metals (mg/kg)						1-7
Arsenic	1.06					
Selenium		NA	NA	NA	4.8 (<0.1 - 73)	7.5 (3-12) (e)
Mercury	1.14	NA	NA	NA .	0.3 (<0.1 - 3.9)	2 (0.1-3.9)
-	3.63	NA	NA ,	NA	0.081 (0.01 - 3.4)	
Chromium	9.92	NA	NA	NA	33 (1 - 1000)	0.1 10 (1.5-40) (e)
Copper	8.37	NA	NA	NA	13 (<1 - 700)	
Zinc	47.0	NA	NA	NA	40 (<5 - 2.900)	25 (1-50)
Lead	14.0	סא	593	292		20 (9-50)
				234	14 (<10 - 300)	SB (200-500) (I)
Semivolatile Priority Pollutants						
,					STATE STANDARD (b)	STATE STANDARD (c)
Acenaphthene	67.5 J		900 J			**
Anthracene .	283 J			ND	-	50,000
Benzo(a)anthracene		•	1,770 J	735 J	1,000	50,000
Benzo(a)pyrene	588	•	4,690	1,690 J	220 (human health)	224 (g)
Benzo(b)fluoranthene	436	•	3,930	1,330 J	61 (human health)	61 (h)
	610	•	5,200	2,050 J	220 (human health)	1,100
Benzo(k)fluoranthene	ON	<u>.</u>	ND	651 J	.04 (in extract)	1,100
Benzo(g,h,i)perylene	196 J	•	2,030 J	מא	-	
bis(2-Ethnythexyt) phthalate					_	50,000
hu m reneria	75.2 J		NO	ND	-	50,000
Chrysene	468	•	3,680 J	1,570 J	0.4.6	*
Diethylphthalate	58.8 JB		ND		.04 (in extract)	400
Fluoranthene	1,200			ND	-	7,100
Fluorene		•	9,760	3,980	1,000	50,000
Indeno(1,2,3-cd)pyrene	91.5 J	•	697 J	ND	1,000	50,000
· · · · · · · · · · · · · · · · · · ·	240 J	•	2.280 J	NO	0.04 (in extract)	3,200

(Page 1 of 3)

Table 2 (CONTINUED)

SUMMARY OF ANALYTICAL RESULTS

FOR SOILS

(Results Reported If Detected in ug/kg)

Phenanthrene	MW-3	SP1	SP-2	SP-3		STATE STANDARD	STATE STANDARD (c)
	752	•	6,840	3,490 J	1,000	•	
Pyrene	1,060		9.510	4,700	1,000		50,000
Purgeable Organics					,,,,,,,,	•	50,000
Chloroform							
Methylene Chloride	"	•	1.27 J*	•			•
	6.54 B	•	6.39 B	•	*	•	300
Tetrachloroethene (PCE)	•	•	5.07 J			•	100
Toluene	1.09 J	. •	2.53 J	2.41 J			1.400
library Search - Semivolatiles						-	1,500
unknown	41,560(17)						
unknown PAHs		•	9,100(2)	67(6)			
hexachlorophenyl	4,730 (2)	•	3,700 (2)	11,730 (6)			**
	•	•	1,750 (2)				
unknown C14H10Cl4	•	•	•	860		(e	
unknown dimethyl alkane	•	230					
unknown methyl-phenanthrene				8			
PAH			7,100				
unknown dimethyl-phenanthrene				•			
PAH			930				
2.5-dimethyl-phenanthrene			330	•			
4-fluoro-4,1'-biphenyl		•	*	900			*
	4,200	•	•	•			
	B-5	<u>B-6</u>	B-7			STATE	STATE
diethylphthalate	ND	ND	50.1 JB	<u>B-8</u>		STANDARD	STANDARD (c)
methylene chloride	ND	ND		64.9 JB			7.00
dimethyl alkane C10H22			ND	4.19 JB			7,100
trimethyl siland	•	10	•	•			100
	•	5	•	•			
unknown	5	5	25				
unknown alkene			6				
unknown CSH2O	**			•			
unknown dimethyl alkane	•	7	•	-			
	14	•	8	•			
unknown fatty acid amide	•	820		120			

Table 2 (CONTINUED FOOTNOTES)

SUMMARY OF ANALYTICAL RESULTS

FOR SOILS

(Results Reported If Detected in ug/kg)

SB - Site Background

NA - Not Analyzed

J - J Value - (Estimated concentration below qualification limit)

B = detected in laboratory blank

Number in parentheses represents the number of individual compounds included in the total concentration indicated. This comment applies to Library Searches.

- (a) Mean background concentration in the eastern United States from USGS Professional Paper 1270. Range is provided in parenthesis.
- (b) NYDEC Guidance Value for protection of Groundwater from fuel oil contaminated soil, unless otherwise noted.

NF- None Found

- (c) NYSDEC TAGM Determination of Soil Cleanup Objectives and Cleanup Levels, January 24, 1994.
- (d) Subsurface
- (e) New York State background range is given in parentheses. Other background ranges in parentheses represent Eastern USA values. Except for mercury, recommended soil cleanup objectives are the values presented or site background. Cleanup to site background is not an option for mercury.
- (f) Range represents background in metropolitan or suburban areas.
- (g) Soil cleanup objective to protect groundwater is 3,000 ug/kg.
- (h) Soil cleanup objective to protect groundwater is 11,000 ug/kg.

ATTACHMENT B

Surface Parking Lot Data

TABLE I

CIGNA: GATEWAY VACANT LOT AREA A

Description	A-02	A-24	4-46	.4-53	A3-810-A1-810	ī	
Depth (feet)	1 0 to 2	2 to 4	4 to 5	ó to S	3 to 10		
PARAMETER	1	,	CONCENT	TRATION		CLEANUP GOAL.	EASTERN USA SOIL
			ന്മേ	kg)		(měrkě)	BACKGROUND[1] (mg/ki
METALS							2
Aluminum	3500	3800	++00	++00	3200	SB	22.000
Antimony	ND	ND.	ND.	ND	ND	SB	33,000
Arsen;c	0.71	ND.	GV.	DV.	ND.	7.5 or SB	NA 3-12**
Banun	3.5	36	43	42	37	300 or SB	15-600
Beryllium	ND	ND	ND	ND	ND	0.16(HEAST) or SB	0-1.75
Cadmium	.VD	.MD	Ωĸ	ND	ХD	L or SB	0.1-1
Calcium	36000	21000	13000	23000	30000	SB	130-35,000 • •
Chromium	6.5	5.4		9.4	6.1	10 or SB	1.5-40**
Cobait	3 3	3 5	3.7	3.3	2.9	30 or SB	2.5-60
Copper	11	11	12	14	11	25 or SB	1-50
ron	6100	5700	7000	7400	6000	2000 or SB	2000-550,000
Lead	14	÷ 5	3.7	4.5	4.9	SB***	2000-330,000
Magnesium	21000	12000	14000	15000	16000	SB	100-5000
Manganese	110	120	110	140	99	SB	50-5000
Marour.	ND	M.	ND	ND	ND	0.1	0.001-0.2
Nickei	5.6	7.2	5.9	- 7	6.7	13 or SB	0.5-25
otassium	1200	1300	1700	1300	1400	SB	8500-43,000
Selenium	ND	ND	ND	ND	ND	2 or SB	0.1-3.9
lver	ND	ND	ND	ND	ND	SB	0.1-5.9 NA
Jdium	64	59	77	75	74	SB	6000-8000
Thallium	ND	ND.	ND	ND	ND	SB	NA
/anadium	9.3	10	12	12	8.9	150 or SB	1-300
Linc	63	22	24	24	20	20 or SB	9-50
EMI-VOLATILES							
	0.053	ND	.VD		\		
inthracene	0.033	ND	ΔĎ.	ND	ND OX	41	N/A
henanthrene	0.33	ND	VD.	ט.083 טאי	ХD	700	N/A
i-n-butylphthalate	ND	0.059	ND.	ND	ND ND	220	N/A
vrene	0.41	ND	******************	0.072		8.1	N/A
luoranthene	0.41	ND	ND.	_	ND 0.035	665	N/A
enzoja anthracene	0.21	ND CK	.VD .VD	0.093	0.035	1900	N/A
hr-sene	0.22	7D	ND DN	.VD	ND GK	3	N/A
is: 2-Ethylhexyl.phthalate	0.064			ND.	ND .	0.4	N/A
enzojo tluoranthene	0.16	ND ND	383) 2	0.3	435	N/A
enzo(k tluoranthene	0.10	ZD GX	DV. DV.	ND CZ	ND	1.1	N/A
enzoialpyrene	0.2			ND ND	ND ND	1.1	N/A
deno[1,2.3-cd]pyrene	0 12	```D	 \.T.	ND.	7,0	11	N/A
ibenz[a.h]anthracene	0.05	ND ND	.VD	ND.	ND	3.2	N/A
enzoig.h.ilperviene	0.03	ND DN	ZZ GX.	ХD	%D	165,000	N/A
		ערייייייייייייייייייייייייייייייייייייי	ND	ND	ND	300	N/A
					- 1		
CBs PHs	ND	.VD	GV.	ND	ND	10*	N/A

.D = Not Detected

[1] NYSDEC, 1994

NA = Not Available

for total PCBs

N/A = Not Applicable •• N

^{**} NYS background

SB = Scii Background

^{***} Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Averagebackground levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

TABLE 1 (continued)

CIGNA: GATEWAY VACANT LOT AREA B

Description	T 3-02	3-24	3-46 DL	3-63	7	
Depth (teet)	1 :0 2	1:54	4 13 0	÷ to 3		
PARAMETER	Ţ		NTRATION		CLEANUP GOAL	EASTERN USA SOIL
			ie kej		(mykg)	BACKGROUND[1] (mg/kg
METALS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Aluminum	93	12000	9300	5200	SB	33,000
Antimony	ND	ND	ND	ND	SB	NA
Arsenic	3 3	: 9	0.61	ND	7.5 or SB	3-12**
Banum	0.41	:40	70	43	300 or SB	15-600
Beritium	0.0061	1 53	0.32	MD.	0.16(HEAST) or SB	0-1.75
Cadmium	QV.	333	DK.	MD.	l or SB	0.1-1
Calcium	37	13000	11000	10000	SB	130-35,000**
Chromium	0.25	19	12	10	10 or SB	1.5-40
Cobalt	0.12	5.8	5.2	4.8	30 or SB	2.5-60**
Copper	0.61	25	21	15	25 or SB	1-50
Fron	300	17000	13000	9800	2000 or SB	2000-550.000
Lead	0.4	: 90	90	35	SB***	***
Magnesium	43	5100	4200	13000	SB	100-5000
Manganese	66	300	230	180	SB	50-5000
Mercury	0.3	CK.	GK	ND	0.1	0.001-0.2
Nickel	0.26	15	13	91	13 or SB	0.5-25
Potassium	13	1600	1600	1500	SB	8500-43,000**
Selenium	ND.	ND	ND.	ND.	2 or SB	0.1-3.9
Silver Sodium	ND	ND.	ΝD	ΝD	SB	NA NA
	3.3	230	120	98	SB	6000-8000
Thallium	ND	ND.	ND	ND	SB	NA
Vanadium Zinc	0.32	23	19	14	150 or SB	1-300
ZIIC	0.64	140	66	43	20 or SB	9-50
SEMI-VOLATILES						
Naphthalene	ND		٠٠٠.55	Ωĸ	13	N/A
2-Methylnapthalene	ND	MD	0.073	ND.	36.4	N/A
Acenaphthene	ND	MD.	0.66	ND	90	N/A
Acenaphthylene	0.2	M	0.089	ND	41	N/A
Anthracene	0.22	9) []	1.4	ND	700	N/A
Dibenzoiuran	ND	GV.	0.35	ND.	6.2	N/A
Fluorene	ND	CZ	0.58	DV.	350	N/A
Phenanthrene	0 62	1.39	5.2	0.11	220	N/A
Carbazole	0.1	2.05	0.77	ND.	140(2)	N/A
Di-n-outylphthalate	0 15	Cr.	1.0) 21	8.1	N/A
Pyrene	I	, 7 6	::	3 27	565	N/A
Fluoranthene	il	5 54	5	0.2	1900	N/A
Benzojajanthracene	0 63	1.4	13	514	3	N/A
Chrysene	0.75	; 47	4 7) 16	0.4	N/A
bisi 2-Ethylhexyl)phthalate	0 051	C/.	ND	ND.	435	N/A
Benzoj b j tluoranthene	0.72	1 36	5 3	0.2	1.1	N/A
Benzo[k]tluoranthene	0 54	921	3 9).22	1.1	N/A
Benzoja pyrene	0 64	2.31	5 l	3 23	11	N/A
ndenoį 1,2,3-cd į pyrene	0 38	3.21	3 9	·) 11	3.2	N/A
Dibenz(a,h)anthracene	0.22	0.13	2	ND	165,000	N/A
Benzo(g,h,i)pervlene	0.37	0.23	4 2	0.12	800	N/A

TABLE I (continued)

CIGNA: GATEWAY VACANT LOT AREA B

Description	3-02	3-24	3-46 DL	3-68	7	
Depth (feet)	0 to 2	2 to 4	÷ to 5	i to 3		
PARAMETER	i	CONCE	NTRATION		CLEANUP GOAL	EASTERN USA SOIL
		(п	ig/kg)		(mg/kg)	BACKGROUND ^[1] (mg/kg)
PCBs						
Arociar 1254	0.046	2.041	ND	0.88	10*	N/A
TPHs	0.35	3 31	0 18	0.25	NA	N/A

ND = Not Detected

[1] NYSDEC. 1994

[2] Value is a Risk-based concentration for industrial soil

NA = Not Available

for total PCBs

N/A = Not Applicable

** NYS background

SB = Soil Background

*** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 3-51 ppm. Averagebackground levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

TABLE i (continued)

CIGNA: GATEWAY VACANT LOT AREA C

Description	C-01 DL	: 24	€46	€-68	7	
Depth (teet)	0 to 1	2 to 4	÷ to 6	o to 3		
PARAMETER	!	CONCE	NTRATION		CLEANUP GOAL	EASTERN USA SOIL
		(0	ng ke i		(mg/kg)	BACKGROUNDIII (mg/kg
METALS						
Aluminum	5000	-200	7100	5500	SB	33,000
Antimony	ND	ND.	ND	Z	SB	NA
Arsenic	3.7	: 3	0.57	0.38	7.5 or SB	3-12**
Banum	66	230	170	30	300 or SB	15-600
Beryilium	_ ND	C4.	ND	, D	0.16(HEAST) or SB	0-1.75
Cadmium	ND	9.4	0.74	0.39	· 1 or SB	0.1-1
Calcium	30000	25000	13000	30000	SB	130-35,000**
Chromium	7.1	97	10	12	10 or SB	1.5-10 **
Cobalt	2.7	÷	4.6	4 2	30 or SB	2.5-60**
Copper	19	14	16	16	25 or SB	1-50
[Iron	7100	3300	9900	9800	2000 or SB	2000-550,000
Lead	- 6l	75	54	29	SB***	•••
Magnesium	9200	5400	5300	9900	SB	100-5000
Manganese	190	130	2:0	170	SB	50-5000
Mercury	QV.	;∙⊃	Œ%	0.53	0.1	0.001-0.2
Nickei	6.5	7	:0	9.4	13 or SB	0.5-25
Potassium	310	:500	i á 00	1700	SB	8500-43.000**
Selenuum	ND	CV.	ND	ND	2 or SB	0.1-3.9
Silver	ND	ND.	ND	ND	SB	NA
Sodium	170	180	110	190	SB	6000-8000
Thallium	ND	ND	ND	DN	SB	NA
Vanadium	11	16	16	15	150 or SB	1-300
Zinc	59	95	75	38	20 or SB	9-50
SEMI-VOLATILES						
Naphthaiene	U 39	J 091	ND	ND	13	N/A
2-Methylnapthalene	0.13	ND	ND	ND.	36.4	N/A
Acenaphthene	1.1	0.31	ND	ND	90	N/A
Acenaphthylene	0.26	U 13	0.48	ND	41	N/A
Anthracene	2.1	Ð.7	0.42	0.12	700	N/A
Dibenzoturan	0.48	5.21	ND	ND	6.2	N/A N/A
luorene	0.93	332	0.046	ND	350	N/A
Phenanthrene	3 9		0.55	0 43	220	N/A
Carbazole	0.91	: 3	0 072	0.057	[40 ^[2]	
Di-n-bur, lphthalate	ND	191	0 064	ND	8.1	N/A
rene	21	3 7	2.1	0.076	665	N/A
luoranthene	14	; ;	- 1	0.66	1900	N/A
Benzoja janthracene	il		 1 3	0.36	3	N/A
Chrysene	5.4	2 3	! 3	0 44	0.4	N/A
us: 2-Ethylhexyl phthalate) 21	:D	0 14	37	435	N/A
Benzo(b)tluoranthene	9	: }	1 2	53	1.1	N/A
Benzoik!tluoranthene	3 8	: 4	33	0 23		N/A
lenzojajpyrene	39				1.1	N/A
ndenoi 1,2,3-cd pyrene	3 8		0.47	0.28	11	N/A
libenz(a,h)anthracene		. 3	0 67	0.18	3.2	N/A
enzoi g.h.i perviene	2	3 57	0.4	0.1	165,000	N/A
crizioi g.m.riperviene	4.1	<u>i 4</u>	0.68	02	800	N/A

TABLE I (continued)

CIGNA: GATEWAY VACANT LOT AREA C

Description	10-02 DL	C-24	€-46	C-68	1	
Depth (feet)	0 to 2	2 to 4	4 to 6	ó to 3	1	
PARAMETER	1	CONCE	TRATION		CLEANUP GOALII	EASTERN USA SOIL
		(m	e/ke)		(mg/kg)	BACKGROUND ^[1] (mg/kg)
PCBs						
Arocior : 242	ND	5.12	ΩN	ΦZ	10*	N/A
Aroclar 1260	1.2	0.21	0.14	MD.	10*	N/A
TPHs	0.33	·).3) [3	0.13	NA	N/A

ND = Not Detected

[1] NYSDEC. 1994

[2] Value is a Risk-based concentration for industrial soil

NA = Not Available N/A = Not Applicable SB = Soil Background • for total PCBs

** NYS background

*** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Averagebackground levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

SUMMARY OF OF GROUNDWATER SAMPLING RESULTS
CONSTITUENTS OF CONCERN
GATEWAY VACANT LOT TABLE 2

53	- 10.	15.000 11 000 10	15.000 11 000 1	4.900 15.000 11.000 10.0
430,000 460 120 ND	580,000 NA NA NA NA	580,000 580,000 430,0 36 130 130 0.60 NA NA NA	580,000 580,000 430,0 36 130 130 0.60 NA NA NA	48,000 580,000 580,000 430,0 0 9.5 38 38 89 130 NA NA NA NA NA NA NA NA
		580,000 36 130 0.60	000 15,000 56 9.5 36 130 NA 0.60	4,900 15,000 14,900 15,000 15,

Note:

NE - not established.

- exceeds NYS Groundwater Action Level.

NA — not applicable. Blank space indicates compound analyzed for but not detected. NYS Graundwater Action Levels are for inactive Hazardous Waste Sites.

ATTACHMENT C

BTEX, MTBE Groundwater Data

Technical Report

prepared for

Environmental Risk Limited 120 Mountain Avenue Bloomfield, CT 06002 Attention: Mr. Rich Desrosiers

Report Date: 11/8/1999 Re: Client Project ID: 07561-05 York Project No.: 99100683

CT License No. PH-0723 New York License No. 10854 Mass. License No. M-CT106 Rhode Island License No. 93 EPA I.D. Nc. CT00106

Report Date: 11/8/1999 Client Project ID: 07561-05

York Project No.: 99100683

Environmental Risk Limited 120 Mountain Avenue Bloomfield, CT 06002 Attention: Mr. Rich Desrosiers

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on 10/29/99. The project was identified as your project "07561-05".

The analysis was conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

The results of the analysis are summarized in the following table(s).

Analysis Results

Client Sample ID	1		MW-1A		MW-2	
York Sample ID			99100683-01		99100683-02	
Matrix			WATER		WATER	
Parameter	Method	Units	Results	MDL	Results	MDL
Volatiles-8021+MTBE water	SW846-8260	ug/L	444			
Benzene			Not detected	1	Not detected	1
Bromobenzene			Not detected	ī	Not detected	1
Bromochloromethane			Not detected	1	Not detected	1
Bromodichloromethane			Not detected	1	Not detected	1
Bromoform			Not detected	1	Not detected	1
Bromomethane			Not detected	10	Not detected	10
n-Butylbenzene			Not detected	1	Not detected	1
sec-Butylbenzene			Not detected	1	Not detected	1
tert-Butylbenzene			Not detected	1	Not detected	1
Carbon tetrachloride			Not detected	1	Not detected	1
Chiorobenzene			Not detected	1	Not detected	1
Chloroethane		1	Not detected	1	Not detected	1
Chloroform			Not detected	1	Not detected	1
Chloromethane			Not detected	10	Not detected	10
2-Chlorotoluene			Not detected	1	Not detected	1
4-Chlorotoluene			Not detected	1	Not detected	1
Dibromochloromethane			Not detected	1	Not detected	1
1,2-Dibromo-3-chloropropane			Not detected	1	Not detected	1

Client Sample ID			MW-3A	
York Sample ID			99100683-03	
Matrix	 	1	WATER	
Parameter	Method	Units	Results	MDL
Bromochloromethane	 	1	Not detected	1
Bromodichloromethane	 		Not detected	1
Bromoform	 		Not detected	1
Bromomethane	 		Not detected	10
n-Butylbenzene			Not detected	1
sec-Butylbenzeus			Not detected	1
tert-Butylbenzene	1	1	Not detected	1
Carbon tetrachloride			Not detected	1
Chlorobenzene	+		Not detected	1
Chloroethane	1	1	Not detected	1
Chloroform		+	Not detected	1
Chloromethane			Not detected	10
2-Chlorotoluene		1	Not detected	1
4-Chlorotoluene	·		Not detected	1
Dibromochloromethane			Not detected	1
1,2-Dibromo-3-chloropropane	 	1	Not detected	1
1,2-Dibromoethane	 	1	Not detected	1
Dibromomethane		1	Not detected	1
1,2-Dichlorobenzene	 	-	Not detected	1
1,3-Dichlorobenzene	 		Not detected	1
1,4-Dichlorobenzene		 	Not detected	1
Dichlorod:fluoromethane		1	Not detected	1
1,1-Dichloroethane		 	Not detected	1
1,2-Dichloroethane		+	Not detected	1
1,1-Dichloroethylene	-	1	Not detected	1
1,2-Dichioroethylene (Total)		1	Not detected	1
1,2-Dichloropropane			Not detected	1
1,3-Dichloropropane		 	Not detected	1
2,2-Dichloropropane	 	-	Not detected	1
1,1-Dichloropropylene		+	Not detected	1
cis-1,3-Dichloropropylene		 	Not detected	 i
trans-1,3-Dichloropropylene	 	-	Not detected	l i
Ethylbenzene		1	Not detected	1
Hexachlorobutadiene		+	Not detected	i
Isopropylbenzene	 	 	Not detected	1
p-Isopropyltoluene	 	 	Not detected	
Methylene chloride		1	Not detected	l i
Naphthalene	 	1	Not detected	
n-Propylbenzene	1	 	Not detected	1
Styrene		1	Not detected	1
1,1,1,2-Tetrachlorcethane	+	1	Not detected	l i
1,1,2,2-Tetrachloroethane	1		Not detected	i
Tetrachloroethylene	1		Not detected	i
Toluene	+	+	Not detected	l i
1,2,3-Trichlorobenzene	+	-	Not detected	1
1,2,4-Trichlorobenzene	+	+	Not detected	 i
1,1,1-Trichloroethane	+		Not detected	Î
1,1,2-Trichloroethane	 		Not detected	i
Trichloroethylene	 	+	Not detected	l i
Trichlorofluoromethane	 	1	Not detected	i
1,2,3-Trichlorpropane			Not detected	1

York Sample ID Matrix Parameter 1,2-Dibromoethane			99100683-01		99100683-02	ASS
Parameter 1,2-Dibromoethane						
1,2-Dibromoethane		1	WATER		WATER	
	Method	Units	Results	MDL	Results	MDL
			Not detected	I	Not detected	I
Dibromomethane			Not detected	1	Not detected	1
1,2-Dichlorobenzene		1	Not detected	1	Not detected	1
1,3-Dichlorobenzene			Not detected	1	No: detected	1
1,4-Dichlorobenzene			Not detected	1	Not detected	1
Dichlorodifluoromethane			Not detected	1	Not detected	11
1.1-Dichloroethane			Not detected	1	Not detected	1
1,2-Dichloroethane			Not detected	1	Not detected	1
1,1-Dichloroethylene			Not detected	1	Not detected	1
2.2-Dichloroethylene (Total)			Not detected	1	Not detected	1
1,2-Dichloropropane			Not detected	1	Not detected	1
1,3-Dichloropropane			Not detected	1	Not detected	1
2,2-Dichloropropane			Not detected	1	Not detected	1
1,1-Dichloropropylene			Not detected	1	Not detected	1
cis-1,3-Dichloropropylene			Not detected	1	Not detected	1
trans-1,3-Dichloropropylene			Not detected	1	Not detected	ı
Ethylbenzene		 	Not detected	1	Not detected	1
Hexachlorobutadiene			Not detected	1	Not detected	1
Isopropylbenzene			Not detected	1	Not detected	1
p-Isopropyltoluene			Not detected	1	Not detected	1
Methylene chloride		+	Not detected	1	Not detected	1
Naphthalene		-	Not detected		Not detected	T
n-Propylbenzene		+	Not detected	1	Not detected	1
Styrene		+	Not detected	1	Not detected	1
1,1,1,2-Tetrachloroethane		+	Not detected	1	Not detected	1
1,1,2,2-Tetrachloroethane		-	Not detected	1	Not detected	1
Tetrachloroethylene		+	Not detected	l i	Not detected	1 - i
Toluene			Not detected	l î	Not detected	1
1,2,3-Trichlorobenzene		+	Not detected	1	Not detected	
1,2,4-Trichlorobenzene			Not detected	 	Not detected	1
1.1,1-Trichloroethane			Not detected	l i	Not detected	1
1,1,2-Trichloroethane			Not detected	i	Not detected	T î
Trichloroethylene			Not detected	l i	Not detected	1
Trichlorofluoromethane		+	Not detected	l i	Not detected	
		+	Not detected	l i	Not detected	ΗĖ
1,2,3-Trichlorpropane			Not detected	+ 1	Not detected	1
1,2,4-Trimethylbenzene		+	Not detected	1 1	Not detected	1
1,3,5-Trimethylbenzene		-	Not detected	10	Not detected	10
Vinyl chloride		-			Not detected	10
o-Xylene			Not detected	1		1 1
p- & m-Xylenes Methyl tert-butyl ether (MTBE)			Not detected Not detected	1 1	Not detected Not detected	

Client Sample ID			MW-3A	
York Sample ID			99100683-03	
Matrix			WATER	
Parameter	Method	Units	Results	MDL
Volatiles-8021+MTBE water	SW846-8260	ug/L		
Benzene			Not detected	1
Bromobenzene			Not detected	1

Client Sample ID			MW-3A	
York Sample ID			99100683-03	
Matrix		1	WATER	
Parameter	Method	Units	Results	MDL
1,2,4-Trimethylbenzene			Not detected	1
1,3,5-Trimethylbenzene			Not detected	1
Vinyl chloride			Not detected	10
o-Xylene		1	Not detected	1
p- & m-Xylenes		T	Not detected	1
Methyl tert-butyl ether (MTBE)			Not detected	1

Units Key:

For Waters/Liquids: mg/L = ppm; ug/L = ppb

For Soils/Solids: mg/kg = ppm; ug/kg = ppb

Notes:

I. The MDL (Minimum Detectable Limit) reported is adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. If dilution factor is reported at the end of the compound list, the MDL is determined by multiplying the MDL times the listed dilution factor.

Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
 York's liability for the above data is limited to the dollar value paid to York for the referenced project.

Approved By:

Date: 11/8/1999

Field Chain-of-Custody Record

Page 1 of

ANALYTICAL LABORATORIES, ING. ONE REMEANCH DRIVE STAMFORD, CT 06906

(203) 325-1371 FAX (203) 357-0166	1 FAX (203)	357-0164							
Company Name	Name	Report To:		Invoice To:	_	PR	Project ID/No.	Rest 14	
126		Rich		Accounting	0	50-195+0	0 5	Sample / Collecte	ed By (Signature)
ر ا ا		Destoisers		Carla Tracy	6	0. 井 (Jb901 # 016	Bob Helfrich	ic L Name (Prived)
Sample No.	Loc	Location/ID	Date Sampled	Wate	Sample Matrix	Matrix Air þTHER	ANALYSES REQUESTED	REQUESTED	Container Description(s)
	ME	MW-2A	10-29-99	X			8021B) Avoma	8021(B) Aromatics & MTBE 2x4	2×40m vials
	MW-Z	۲-		X				8 un (6) 801/9	Se Se
	\ \int \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MW-3A	<i>→</i>	\times			>	NAME OF THE PARTY	7
									5
	Drum	Drum 1 & 3	10-29-94		X		704.		2 X40mlvials
								٠.	
					-				
			**						
Chain-of-Custody Record	ody Record						-		
Bottles Refinquished from Lab by	shed from Lab	by Date/Time	ne Sample Relinquished by	nquished by		Date/Time	100	Sample Received by	13000 mm
Bottles Received in Field by	ed in Field by	Date/Time	 	nquished by	\	Late	-	Sample Received in CAH by	Date/Time

RUSH(define)_

Tum-Around Time X Standard

Comments/Special Instructions