### White Plains Mall

#### 200 HAMILTON AVENUE, WHITE PLAINS, NEW YORK

### Spill Investigation NYSDEC Spill Number 1706297

**AKRF Project Number: 170029** 

**Prepared for:** 

SWD II, LLC dba Street-Works Development 168-A Irving Avenue, Suite 200K Port Chester, NY 10573

**Prepared by:** 



34 South Broadway, Suite 401 White Plains, New York 10601 914-949-7336

**APRIL 2018** 

#### **TABLE OF CONTENTS**

| INTRODUCTION                                      | 2            |
|---------------------------------------------------|--------------|
| Site Description                                  | 2            |
|                                                   |              |
|                                                   |              |
| Geophysical Survey and Utility Mark-Outs          | 5            |
| Soil Sampling                                     | 5            |
| Monitoring Well Installation                      | .7           |
| Groundwater Sampling                              | . 8          |
| Monitoring Well Surveying and Fluid Level Gauging | 9            |
| Investigation Results                             | 9            |
| Geophysical Survey and Utility Mark Outs          | 9            |
| Field Observations                                | 9            |
| Soil Analytical Results                           | 10           |
| Groundwater Analytical Results                    | 12           |
| Fluid Level Gauging Results                       | 13           |
| Summary, Conclusions and Recommendations          | 14           |
| Conclusions                                       | 15           |
| Recommendations                                   | 16           |
| Limitations                                       | 18           |
| Soil Disposal Issues                              | 19           |
|                                                   | INTRODUCTION |

#### **TABLES**

- Table 1 Soil Analytical Results of Volatile Organic Compounds (VOCs)
- Table 2 Soil Analytical Results of Semivolatile Organic Compounds (SVOCs)
- Table 3 Soil Analytical Results of Metals
- Table 4 Groundwater Analytical Results of VOCs
- Table 5 Groundwater Elevations Summary

#### **FIGURES**

- Figure 1 Property Location
- Figure 2 Site Map with Sample Locations
- Figure 3 Groundwater Contour Map February 16, 2018
- Figure 4 Groundwater Contour Map February 26, 2018
- Figure 5 Soil Sample Concentrations Above NYSDEC Soil Cleanup Objectives (SCOs)
- Figure 6 Groundwater Sample Concentrations Above NYSDEC Ambient Water Quality Standards and Guidance Values (AWQSs)

#### **APPENDICES**

- Appendix A Photographic Documentation
- Appendix B Geophysical Investigation Report
- Appendix C Field Sampling Logs
- Appendix D Laboratory Analytical Reports

#### **1.0 INTRODUCTION**

AKRF, Inc. (AKRF) was retained by SWD II, LLC dba Street-Works Development to perform a Spill Investigation (SI) at the property located at 200 Hamilton Avenue in the City of White Plains, Westchester County, New York (the "Site"). The 3.86-acre Site, as shown on Figure 1, includes the twostory White Plains Mall and associated asphalt-paved parking lot, and is identified as Tax Map ID Section 125.67, Block 5, Lot 1 on the City of White Plains tax map. The Site is bounded by Barker Avenue to the north followed by offices, a hotel, and commercial development; Cottage Place to the east followed by a Gulf service station and commercial buildings; Hamilton Avenue to the south followed by commercial and government buildings; and Dr. Martin Luther King Jr. Boulevard to the west followed by commercial development. The fieldwork associated with the SI was completed between February 6 and 26, 2018.

The purpose of the SI was to further assess petroleum-related contamination identified in the southeastern and southern portions of the Site during a Subsurface (Phase II) Investigation. As reported in the *Subsurface (Phase II) Investigation Report* (dated October 2017), field observations and laboratory results indicated evidence of a historic petroleum release or releases, resulting in the presence of petroleumrelated volatile organic compounds (VOCs) detected in groundwater at concentrations above the New York State Department of Environmental Conservation (NYSDEC) Ambient Water Quality Standards and Guidance Values (AWQSs). The petroleum-related groundwater contamination was reported to the NYSDEC Spills division, and Spill Number 1706297 was assigned to the Site. This SI was designed to further delineate the extent of the petroleum-related contamination and to evaluate potential source(s).

The SI scope included a geophysical survey, the advancement of 10 soil borings, installation of three permanent groundwater monitoring wells, and the collection of soil and groundwater samples for field-screening and laboratory analysis. In addition, four of the six groundwater monitoring wells previously installed at the Site by others were sampled for laboratory analysis. All nine on-site wells (three newly installed and six previously installed) were surveyed and gauged, and groundwater contour maps were prepared. This report describes the methods and results of the SI conducted by AKRF, and provides recommendations and a conceptual remedial plan to address the residual petroleum-related contamination that was identified. The locations of the soil borings and monitoring wells (including the locations from the 2017 Phase II) are depicted on Figure 2. A photographic log documenting the field activities is provided as Appendix A.

#### 2.0 SITE DESCRIPTION

The Site consists of a two-story shopping mall and an east-adjacent asphalt-paved parking lot, with additional parking on the building roof, accessed by a ramp on the northern side of the building. Based on a May 4, 2017 topographic survey prepared by Insite Engineering, Surveying & Landscape Architecture, P.C. (Insite), the topography surrounding the Site slopes downward to the west from approximately 200 feet along Cottage Place to approximately 190 feet along Martin Luther King Jr. Boulevard. Due to this change in elevation, the upper floor of the mall is at street level on the eastern side of the building, and the lower level is at street level on the western side. A retaining wall is present along the southeastern portion of the Site, where the Hamilton Avenue sidewalk is situated approximately 6 to 8 feet lower than the parking lot. The soil sampling depths and depths to groundwater referenced in this report are reported relative to existing ground surface at the corresponding boring and monitoring well locations.

#### **3.0 PREVIOUS INVESTIGATIONS**

<u>Subsurface Exploration and Geotechnical Engineering Report, White Plains Mall, White Plains, New</u> York; prepared by GZA GeoEnvironmental of New York, prepare for Exclusive Management, LLC -November 20, 2015.

GZA GeoEnvironmental of New York (GZA) conducted a geotechnical investigation at the Site to develop preliminary engineering recommendations for potential redevelopment. The investigation included the advancement of four soil borings around the Site perimeter to termination depths between 25 and 26 feet below ground surface (bgs), installation of an observation well at each boring, and collection of water level measurements from the wells. Based on logging of soil samples from the borings, GZA identified a fill layer present to depths of 6 to 8 feet bgs, consisting of sand with gravel, silt, and occasional construction debris (brick, crushed stone fragments). The fill layer was underlain by clay, silt, and sand. Groundwater was encountered in the observation wells at varying depths, generally between approximately 10 and 18 feet bgs. The observation wells installed by GZA were sampled during AKRF's 2017 Phase II investigation, and were designated as GT-1 through GT-4 (these wells have subsequently been re-designated as MW-1 through MW-4, respectively, as shown on Figure 2).

#### Phase I Environmental Site Assessment (ESA), 200 Hamilton Avenue, AKRF, Inc. - May 2017

AKRF conducted a Phase I ESA that was detailed in a May 2017 report. The objective of the Phase I ESA was to evaluate the Site for Recognized Environmental Conditions (RECs) and environmental concerns resulting from past or current uses of the Site and neighboring properties. The Phase I ESA identified the following RECs:

#### **On-Site Recognized Environmental Conditions**

- Based on review of historic records, two gasoline service stations were located on the Site prior to construction of the White Plains Mall. Historic Sanborn (fire insurance) maps depicted a gasoline station with three gas tanks on the 1930 through 1950 maps at the corner of Hamilton Avenue and William Street (230 Hamilton Avenue), and a second gasoline station with greasing operations and four gasoline tanks at the corner of Hamilton Avenue and Cottage Place (250 Hamilton Avenue). These gasoline stations may have been present until construction of the current building in approximately 1970. Over 20 private dwellings were shown within the current building footprint on historic Sanborn maps from 1894 to 1950. Based on these findings, the Phase I ESA identified the potential for abandoned underground storage tanks (USTs) and/or associated petroleum contamination in the Site subsurface associated with the gasoline service stations and/or heating oil for the residential dwellings.
- The Site was identified in the EDR Historic Cleaners database from 2004 to 2011 and potential dry cleaners ("Mall Cleaners" and "White Plains Mall Cleaners") were listed in the City Directories at 200 Hamilton Avenue in 1992, 1995, 1999, and 2008. The Site was not listed on the Resource Conservation and Recovery Act (RCRA) generator report or any other database.

#### **Off-Site Recognized Environmental Conditions**

- The regulatory database, historic city directories, site reconnaissance, and Sanborn maps identified an east-adjacent operating gasoline filling station with an open NYSDEC Spill (Spill No. 97-07887), and also listed on the petroleum bulk storage (PBS), RCRA, and Historic Auto databases.
- The regulatory database and Sanborn maps identified facilities in the surrounding area with some potential to have affected the Site subsurface, including: RCRA generators, Spills, PBS facilities, an NYSDEC Brownfield Cleanup (BCP) site and a NYSDEC Voluntary Cleanup (VCP) site.

In addition to the on-site and off-site REC's described above, the Phase I assessment identified on-site environmental concerns for consideration ahead of future redevelopment work, including: the presence of a historic fill layer identified during the 2015 geotechnical investigation; the presence of electric and hydraulic equipment that may contain polychlorinated biphenyl (PCB)- or mercury-containing components or oils; and suspect asbestos-containing materials (ACM) and lead-based paint (LBP) associated with the on-site structure.

#### Preliminary Geotechnical Engineering Report, 200 Hamilton Avenue, AKRF, Inc. – August 27, 2017

AKRF completed a preliminary geotechnical investigation in the parking lot in the eastern portion of the Site to evaluate subsurface conditions for the proposed redevelopment work. This geotechnical investigation was conducted concurrently with AKRF's 2017 Phase II investigation, described below. The geotechnical investigation included the advancement of four soil borings to depths between 24 and 55 feet below existing surface grade, including rock coring to confirm the presence of bedrock. Results of the investigation indicated that the Site is underlain by a layer of uncontrolled fill consisting mainly of brown, fine to coarse sand and gravel with varying amounts of silt and other miscellaneous fill including wood and asphalt fragments. A layer of brown, fine to coarse sand with varying amounts of silt and gravel was encountered below the uncontrolled fill material in all borings. Bedrock was encountered beneath the sand at depths ranging from approximately 13 feet below existing grade in the northeastern portion of the parking lot to approximately 37 feet below existing grade in the central portion of the parking lot. The AKRF geotechnical engineer gauged groundwater levels in the previously installed GZA monitoring wells and in the temporary wells installed as part of the Phase II investigation. Depth to groundwater measurements ranging from 9.9 feet bgs at B-03 (GT-3, re-designated MW-3), located at the lower elevation area along Martin Luther King Boulevard, to 23 feet bgs at TW-1, located in the higher elevation area in the asphalt-paved parking lot, were reported.

#### Subsurface (Phase II) Investigation, 200 Hamilton Avenue, AKRF, Inc. - October 2017

AKRF conducted a Phase II investigation at the Site that was detailed in the Phase II Report (dated October 2017). The objectives of the Phase II investigation were to further assess the RECs and other environmental concerns identified during AKRF's May 2017 Phase I ESA of the Site. The scope of the Phase II investigation included a soil boring and groundwater sampling program to characterize soil, soil vapor, and groundwater in the area of RECs and areas that would be disturbed during the proposed future redevelopment activities at the Site. Based on the field observations and laboratory analytical results, the following conclusions were presented:

- A historical petroleum release or releases was identified that affected groundwater beneath the Site, resulting in the presence of petroleum-related VOCs above the NYSDEC AWQSs. Although no obvious on-site source area (e.g., separate phase oil on the water table, grossly contaminated soil at the anticipated depth of potential former underground storage tanks) was identified, the observed groundwater contamination was attributed to the former on-site gasoline stations. The presence of MTBE in groundwater suggested that an off-site source (e.g., the existing gas station across Cottage Place) also contributed to the contamination, since the on-site gasoline stations closed before 1970 (before MTBE was used in New York State). Field evidence of petroleum contamination observed in the "smear zone" in soil borings SB-4 and SB-5, and petroleum-related VOCs detected above New York State Department of Health (NYSDOH) background levels in soil vapor were attributed to the groundwater contamination and any residual soil contamination. AKRF reported the groundwater contamination to the NYSDEC Spills division and the case was assigned spill #1706297.
- The chlorinated solvent trichloroethene (TCE) was detected above the NYSDOH Air Guidance Value (AGV) in two sub-slab vapor samples, but was not detected above the regulatory standards or guidance values in any soil or groundwater samples collected during the Phase II. Although TCE

may have been used by one of the potential former on-site dry cleaners identified in the May 2017 Phase I ESA, the levels detected in soil vapor were not considered to be indicative of a widespread release or on-site source area.

• Based on the Phase II field observations, metals and semivolatile organic compounds (SVOCs) that were detected in soil at levels above their respective Part 375 Unrestricted and/or Restricted Residential Use Soil Cleanup Objectives were attributable to likely contaminants in the shallow fill layer observed in the Site subsurface or to background conditions, and not likely to an on-site release or other source area.

The Phase II Report concluded with a recommendation to conduct a Spill Investigation (SI) to assess the extent of the petroleum-related contamination in groundwater and to further investigate potential on-site source area(s).

#### 4.0 FIELD ACTIVITIES

#### 4.1 Geophysical Survey and Utility Mark-Outs

On February 13, 2018, a geophysical survey was conducted across accessible indoor and outdoor areas of the Site to clear the proposed soil boring locations for subsurface utilities and/or structures. During the survey, accessible areas around the proposed borings were scanned for potential buried storage tanks to the extent feasible. The geophysical survey included electromagnetic (EM), radio-detection (RD), and ground penetrating radar (GPR) methods. The Geophysical Investigation Report is attached as Appendix B.

In addition to the geophysical survey, Cascade Drilling, Inc. (Cascade), the drilling contractor, notified Dig Safely New York prior to the start of the intrusive investigation work.

#### 4.2 Soil Sampling

A total of 10 soil borings (SB-10 through SB-18, and MW-9) were advanced at the Site between February 6 and 9, 2018 by Cascade at the locations shown on Figure 2. Soil borings SB-10 through SB-14, and SB-18 were advanced in the southeastern portion of the Site, in and adjacent to the footprint of the former gasoline station in this area. Soil borings SB-15 through SB-17 were advanced in the southern portion of the Site, in and adjacent to the footprint of the former gasoline station in this area. Soil borings center exists in this area), soil borings SB-16 and SB-17 were advanced outside of the Site building, along the southern edge of the footprint of the former gasoline station, and SB-15 was advanced in a main corridor inside of the Site building to the west (downgradient). Soil boring MW-9 was advanced in the southwestern corner of the Site, downgradient of the former on-site gasoline stations. Soil borings SB-10 through SB-14, SB-18, and MW-9 were advanced with a track-mounted Geoprobe<sup>®</sup> 6620DT direct push probe (DPP) unit. Due to limited access, SB-15 through SB-17 were advanced with a bobcat-mounted Geoprobe<sup>®</sup> 540MT DPP unit. The soil borings were advanced to depths ranging from 12 to 30 feet bgs. The locations and depths of the soil borings are summarized in the following table:

| Soil Boring                   | Soil Boring Depth<br>(feet bgs) | Soil Boring Location                                                                                                           |
|-------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| SB-10 to SB-<br>14, and SB-18 | 12-30                           | Southeastern portion of the Site, within footprint<br>of a former gas station at 250 Hamilton Avenue                           |
| SB-15                         | 16                              | Inside southern portion of the mall building, west<br>of former gas station footprint at 230 Hamilton<br>Avenue                |
| SB-16 and<br>SB-17            | 20                              | In concrete walkway south-adjacent to the mall<br>building, within footprint of a former gas station<br>at 230 Hamilton Avenue |
| MW-9                          | 15                              | Southwestern (presumed downgradient) corner of the Site                                                                        |

| Soil Boring Locations and Depths |
|----------------------------------|
|----------------------------------|

Notes:

bgs – below ground surface

Continuous soil samples were collected from the soil borings using 2-inch diameter macrocore piston rod samplers fitted with dedicated acetate liners. The soil samples at soil borings SB-10 through SB-14, SB-18, and MW-9 were collected with 5-foot long samplers and the samples at soil borings SB-15 through SB-17 were collected using 4-foot long samplers.

Each macrocore sample liner was split lengthwise and all samples were logged by AKRF field personnel. Logging consisted of describing the soil according to the modified Burmister Classification System; describing any evidence of contamination (e.g., staining, sheens, odors); and field-screening the soil for organic vapors using a photoionization detector (PID) in 6-inch intervals. Soil boring logs are provided in Appendix C. The PID was calibrated each day prior to on-site use using isobutylene gas in accordance with the manufacturer's specifications.

In general, two soil samples were selected for laboratory analysis from each boring: one from a 2-foot interval from between 0 to 10 feet below ground surface; and one from the 2-foot interval exhibiting the greatest evidence of contamination (or from the groundwater interface if no evidence of contamination was observed). Only one sample was selected for laboratory analysis from SB-18, which was added to the field program based on field evidence of contamination observed in SB-13; and no laboratory samples were selected from MW-9, which was advanced only for the purposes of installing groundwater monitoring well MW-9.

Samples selected for laboratory analysis were placed in laboratory-supplied containers and a chilled cooler in accordance with EPA protocols and transported via courier with appropriate chain of custody (COC) documentation to Alpha Analytical, Inc., a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified laboratory, in Westborough, Massachusetts. All soil samples were analyzed for the VOCs listed in Table 2 – Soil Cleanup Levels for Gasoline-Contaminated Soil presented in the NYSDEC Commissioner Policy, *CP-51: Soil Cleanup Guidance* by EPA Method 8260. In addition, the soil samples collected from the shallower suspected historic fill layer were also analyzed for the SVOCs listed in CP-51 Table 3 – Soil Cleanup Levels for Fuel Oil-Contaminated Soil by EPA Method 8270, and Resource Conservation and Recovery Act (RCRA) 8 Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) plus zinc by the EPA's 6000/7000 series Methods. A summary of soil sampling depths and corresponding laboratory analysis is presented in the following table:

| Soil<br>Boring | Sample<br>Depths<br>(feet bgs) | CP-51 VOCs | CP-51 SVOCs | RCRA 8 metals + Zn |
|----------------|--------------------------------|------------|-------------|--------------------|
| SB-10          | 3-5<br>20-22                   | X<br>X     | Х           | Х                  |
|                | 5-7                            | X          | X           | Х                  |
| SB-11          | 17-19                          | X          | Λ           | Λ                  |
|                | 2-4                            | X          | Х           | Х                  |
| SB-12          | 15-16                          | X          |             |                    |
| GD 10          | 3-5                            | Х          | Х           | Х                  |
| SB-13          | 10-12                          | Х          |             |                    |
| SD 14          | 2-4                            | Х          | Х           | Х                  |
| SB-14          | 15-16                          | Х          |             |                    |
| SB-15          | 2-4                            | Х          | Х           | Х                  |
| <b>3D-1</b> 3  | 10-11                          | Х          |             |                    |
| SB-16          | 2-4                            | Х          | Х           | Х                  |
| 30-10          | 12-13                          | Х          |             |                    |
| SB-17          | 5-7                            | Х          | Х           | Х                  |
| 50-17          | 8-9                            | Х          |             |                    |
| SB-18          | 12-14                          | Х          |             |                    |
| MW-9           | 1                              | NA         |             |                    |

#### **Soil Sample Depths**

Notes:

bgs – below ground surface NA –No samples collected

#### 4.3 Monitoring Well Installation

Three permanent groundwater monitoring wells (MW-7 through MW-9) were installed in soil borings SB-14, SB-15, and MW-9, respectively, for the collection of groundwater samples for laboratory analysis. Monitoring wells MW-7 and MW-8 were constructed with 10 feet of pre-packed wells screen and MW-9 was constructed with 15 feet of pre-packed well screen. The pre-packed well screen consisted of standard, slotted PVC well screen surrounded by stainless steel mesh, with sand packed between the slotted PVC well screen and the stainless steel mesh. Solid PVC well riser pipe was used to bring each monitoring well to grade surface. The exterior monitoring wells (MW-7 and MW-9) were installed by advancing 3.75-inch O.D. hollow casing into the corresponding open bore hole using the track-mounted Geoprobe® 6620DT DPP unit to install 2-inch diameter wells. The interior monitoring well (MW-8) was installed by advancing 3.25-inch O.D. hollow casing into the corresponding bore hole using the bobcatmounted Geoprobe<sup>®</sup> 540MT DPP unit to install a 1-inch diameter well. Once the target depth was achieved, the pre-packed well screen was lowered into the hollow casing with threaded PVC well riser pipe, and the casing was removed. Morie #2 sand was used to extend the sand pack to approximately 1 foot above the well screen, followed by a 1-foot bentonite well seal, and cement grout to the surface. The monitoring wells were completed with a locking well cap, and a bolt-down, flush-with-grade gate box set in concrete.

Following installation, the monitoring wells were developed by pumping and surging with a whale pump (MW-7 and MW-9) and a peristaltic pump (MW-8) to ensure that sedimentation/turbidity was reduced, to the extent practical, in each well. Turbidity was monitored during the development utilizing a LaMotte 2020we Turbidity Meter. Development continued until turbidity was less than 10 nephelometric turbidity units (NTU) at MW-8 and MW-9, with approximately 4 gallons and 12 gallons removed, respectively. Due to slow recharge, development at MW-7 occurred over the course of two days with turbidity reaching 98.3 NTU after removing a total of approximately 4.5 gallons. The development water was containerized in DOT-approved 55-gallon labeled drums staged in the loading dock area pending transportation and disposal at a licensed off-site disposal facility.

#### 4.4 Groundwater Sampling

AKRF returned to the Site on February 16, 2018 to collect groundwater samples from seven of the nine on-site monitoring wells, including the following:

- Two of the four monitoring wells installed during the 2015 GZA geotechnical investigation. These monitoring wells were referred to as GT-1 and GT-2 in previous reports, but have been re-designated MW-1 and MW-2 for the purposes of this SI. Monitoring wells MW-3 (previously GT-3) and MW-4 (previously GT-4) were not sampled as part of this SI;
- Two monitoring wells located near the eastern property boundary, which are suspected to be associated with the investigation of NYSDEC Spill Number 9707887 at the existing gasoline station across Cottage Place from the Site. These monitoring wells were referred to as GW-3 and GW-4 in AKRF's 2017 Phase II report, but have been re-designated as MW-5 and MW-6, respectively, for the purpose of this investigation.
- The three newly installed monitoring wells, MW-7, MW-8, and MW-9.

The locations of the groundwater monitoring wells are shown on Figure 2.

Prior to collecting the samples, the headspace at each monitoring well was screened for the presence of VOCs using a calibrated PID after removing the well cap. The depth to groundwater and the total well depth were then measured in each well using an oil-water interface probe attached to a measuring tape accurate to 0.01 feet.

Low-flow sampling techniques and dedicated tubing were utilized to purge the monitoring wells prior to sample collection. The purged water was monitored for turbidity and water quality indicators (i.e., pH, temperature, dissolved oxygen, oxidation-reduction potential, and specific conductivity) with measurements collected approximately every five minutes. Purging of the wells continued until the turbidity was less than 50 NTU for three successive readings and water quality indicators had stabilized to the extent practicable (MW-1, MW-6, MW-8, and MW-9). If turbidity and/or water quality indicators did not stabilize after two hours, purging was discontinued and samples were collected (MW-2, MW-5, and MW-7). Groundwater sampling logs are provided in Appendix C.

Groundwater samples were collected in laboratory-supplied glassware and placed in a chilled cooler in accordance with EPA protocols. The samples were transported via courier with appropriate COC documentation to Alpha Analytical, Inc. The groundwater samples were analyzed for the VOCs listed in CP-51, Table 2 by EPA Method 8260.

Purge water generated during monitoring well sampling was containerized in the DOT-approved 55-gallon labeled drums staged in the loading dock area pending transportation and disposal at a licensed offsite disposal facility.

#### 4.5 Monitoring Well Surveying and Fluid Level Gauging

Insite Engineering, Surveying & Landscape Architecture, P.C. (Insite), a New York State-licensed surveyor, met with AKRF staff during the groundwater sampling activities on February 16, 2018 to survey the nine on-site monitoring wells. Elevation measurements were taken at three points for each well location: the ground surface beside the well; the rim of the gate box; and the top of the PVC well casing. The elevations were referenced to the North American Vertical Datum of 1988 (NAVD 88).

Gauging of the nine wells was conducted on February 16, 2018 during the groundwater sampling activities and again on February 26, 2018 to determine the groundwater elevations and to check for the presence of light non-aqueous phase liquid (LNAPL). AKRF recorded the depth to groundwater and the total well depth in each well using an oil-water interface probe attached to a measuring tape accurate to 0.01 feet. Results from the well survey and water level gauging are described in Section 5.5.

#### 5.0 INVESTIGATION RESULTS

#### 5.1 Geophysical Survey and Utility Mark Outs

During the geophysical survey, linear anomalies consistent with subsurface utilities were marked out with spray paint prior to drilling and soil boring locations were adjusted accordingly. No evidence of buried tanks was identified in the areas that were scanned during the geophysical survey. The Geophysical Investigation Report is attached as Appendix B.

#### 5.2 Field Observations

Soils encountered during this investigation included historic fill extending from just below ground surface to depths ranging from 5 to 12 feet bgs. This fill layer included sand, silt, organics (wood/grass), brick, asphalt, gravel, and rubber. Apparent native soils composed of varying amounts of sand, silt, and gravel were identified underlying the fill layer extending to approximately 30 feet bgs (the maximum boring depth). Evidence of petroleum contamination was noted in seven of the 10 soil borings advanced during the investigation (SB-11, and SB-13 through SB-18), as summarized in the following table:

| Soil<br>Boring | Depth<br>(ft bgs)                    | Moisture | Field Observations               | PID<br>Readings<br>(PPM) |
|----------------|--------------------------------------|----------|----------------------------------|--------------------------|
| SB-11          | 12-22                                | Dry      | Petroleum-like odors             | 0.5 - 53.2               |
| SB-13          | 8-15                                 | Dry      | Petroleum-like odors             | 3.1 - 881.4              |
|                | 0-5                                  | Dry      | Septic-like odors                | 0.2 - 4.5                |
| SB-14          | 5-16                                 | Dry      | Petroleum- and Septic-like odors | 1.0 - 1370               |
|                | 16-30 Wet Petroleum-like odors       |          | 4.2 - 1264                       |                          |
| SB-15          | 10.5-11.5                            | Moist    | Petroleum-like odors             | 10.2 - 895               |
| <b>SD-15</b>   | 11.5-16                              | Wet      | Petroleum-like odors             | 12.8 - 1101              |
| SB-16          | 12-13                                | Moist    | Petroleum-like odors             | 2.8 - 5.5                |
| <b>3D-10</b>   | BB-16 13-19 Wet Petroleum-like odors |          | 0.1 - 5.8                        |                          |
| SB-17          | 8-9                                  | Dry      | Petroleum-like odors             | 24.3 - 298               |
| SD-17          | 9-19                                 | Wet      | Petroleum-like odors             | 0.5 - 15.7               |
| SB-18          | 11-19                                | Dry      | Petroleum-like odors             | 6.1 - 752                |

| Evidence | of Petroleum | Contamination |
|----------|--------------|---------------|
|----------|--------------|---------------|

Notes:

ft bgs = feet below ground surface

PPM = parts per million

No evidence of petroleum-like contamination or elevated PID readings were detected in the remaining soil borings. Soil descriptions, observations, and PID readings are detailed in the soil boring logs provided in Appendix C.

The depths to groundwater measured in the on-site monitoring wells were shallower in the southern and western portions of the Site (along Hamilton Avenue and Martin Luther King Boulevard) and deeper in the eastern portion of the Site (along Cottage Place), consistent with the elevation changes across the Site. No LNAPL was detected during sampling or fluid level gauging of the monitoring wells; however, petroleum-like odors were noted on purge water during sampling at MW-2, MW-6, MW-7, and MW-8. Results from the well survey and corresponding groundwater elevation calculations are described in Section 5.5.

#### 5.3 Soil Analytical Results

The analytical results from the 17 soil samples that were submitted to the laboratory from this investigation were compared to the Unrestricted Use Soil Cleanup Objectives (UUSCOs) and the Restricted Residential Soil Cleanup Objectives (RRSCOs) listed in Sections 6.8(a) and 6.8(b) of 6 NYCRR Part 375. In addition, the VOC and SVOC results were compared to the Soil Cleanup Levels (SCLs) for gasoline- and fuel oil-contaminated soil listed in Table 2 and Table 3 of the NYSDEC Commissioner Policy, *CP-51: Soil Cleanup Guidance*. Soil analytical results are summarized in Tables 1 through 3. The complete laboratory analytical report is provided as Appendix D. Exceedances of the NYSDEC SCOs and SCLs are summarized on Figure 5. The analytical results from the soil sampling are discussed below:

#### Volatile Organic Compounds (VOCs)

All 16 petroleum-related VOCs analyzed for were detected in one or more of the soil samples at concentrations ranging from 0.00018 to 100 milligrams per kilogram (mg/kg). As summarized in the following table, eight VOCs (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, n-propylbenzene, toluene, and total xylenes) were detected at concentrations exceeding the UUSCOs and CP-51 SCLs, and one VOC (1,2,4-trimethylbenzene) was detected at a concentration above its RRSCO.

| Boring ID              | Part 375  | Part 375 | SB-11    | SB-13    | SB-14    | SB-18    |
|------------------------|-----------|----------|----------|----------|----------|----------|
| Depth (ft bgs)         | UUSCO/    | RRSCO    | (17-19)  | (10-12)  | (15-16)  | (12-14)  |
| Date Sampled           | CP-51 SCL |          | 2/6/2018 | 2/6/2018 | 2/6/2018 | 2/6/2018 |
| Dilution Factor        |           |          | 10       | 10       | 10       | 20       |
| Units = mg/kg          |           |          |          |          |          |          |
| 1,2,4-Trimethylbenzene | 3.6       | 52       | 60       | 69       | 19       | 100      |
| 1,3,5-Trimethylbenzene | 8.4       | 52       | 17       | 22       | 11       | 34       |
| Benzene                | 0.06      | 4.8      | 0.1 U    | 0.11 U   | 0.12 J   | 0.18 U   |
| Ethylbenzene           | 1         | 41       | 11       | 14       | 4.9      | 11       |
| Isopropylbenzene       | 2.3       | NS       | 4.1      | 3.1      | 2.5      | 2.4      |
| n-Propylbenzene        | 3.9       | 100      | 15       | 12       | 4.1      | 7.2      |
| Toluene                | 0.7       | 100      | 0.11 U   | 0.87     | 0.12 U   | 0.28 J   |
| Xylenes, Total         | 0.26      | 100      | 18       | 68       | 17 J     | 78       |

Volatile Organic Compounds Detected in Soil Above the Part 375 SCOs and CP-51 SCLs

Notes:

**Bold** = Exceeds Unrestricted Use Soil Cleanup Objective (UUSCO)/CP-51 Table 2 Soil Cleanup Level (SCL) Highlighted = Exceeds Restricted Residential Soil Cleanup Objective (RRSCO)

ft bgs = feet below ground surface

mg/kg = milligram per kilogram

U = The analyte was not detected at the indicated concentration

J = The concentration given is an estimated value

Based on the field observations and the historic presence of a gasoline station at the Site in the vicinity of these soil sampling locations, the VOC detections in unsaturated soil are likely attributable to a historic release or releases from USTs associated with the former gasoline station. The complete analytical results for VOCs in soil are summarized in Table 1.

#### Semivolatile Organic Compounds (SVOCs)

All 16 petroleum-related SVOCs analyzed for were detected in one or more of the soil samples at concentrations ranging from 0.018 to 3.3 mg/kg. As summarized in the following table, seven SVOCs [benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene] were detected in one sample [SB-17 (5'-7')] at concentrations exceeding their respective UUSCOs/CP-51 SCLs and/or RRSCOs:

| Above the Full of boos and of brooks |           |          |          |  |  |  |  |  |
|--------------------------------------|-----------|----------|----------|--|--|--|--|--|
| Boring ID                            | Part 375  | Part 375 | SB-17    |  |  |  |  |  |
| Depth (ft bgs)                       | UUSCO/    | RRSCO    | (5-7)    |  |  |  |  |  |
| Date Sampled                         | CP-51 SCL |          | 2/9/2018 |  |  |  |  |  |
| Dilution Factor                      |           |          | 1        |  |  |  |  |  |
| Units = mg/kg                        |           |          |          |  |  |  |  |  |
| Benzo(a)anthracene                   | 1         | 1        | 2.8      |  |  |  |  |  |
| Benzo(a)pyrene                       | 1         | 1        | 2.4      |  |  |  |  |  |
| Benzo(b)fluoranthene                 | 1         | 1        | 3.3      |  |  |  |  |  |
| Benzo(k)fluoranthene                 | 0.8       | 3.9      | 0.85     |  |  |  |  |  |
| Chrysene                             | 1         | 3.9      | 2.2      |  |  |  |  |  |
| Dibenzo(a,h)anthracene               | 0.33      | 0.33     | 0.41     |  |  |  |  |  |
| Indeno(1,2,3-cd)pyrene               | 0.5       | 0.5      | 1.8      |  |  |  |  |  |

#### Semi-Volatile Organic Compounds Detected in Soil Above the Part 375 SCOs and CP-51 SCLs

Notes:

**Bold** = Exceeds Unrestricted Use Soil Cleanup Objective (UUSCO)/CP-51 Table 3 Soil Cleanup Level (SCL)

Highlighted = Exceeds Restricted Residential Soil Cleanup Objective (RRSCO)

ft bgs = feet below ground surface

mg/kg = milligram per kilogram

Based on the field observations and the Site history, the SVOC detections are likely attributable to the historic fill material observed in the soil borings, and not to a release or other source area. The complete analytical results for SVOCs in soil are summarized in Table 2.

#### <u>Metals</u>

Eight of the nine metals analyzed for were detected in one or more of the soil samples at concentrations ranging from 0.03 to 292 mg/kg. The detected metals included arsenic, barium, cadmium, chromium, lead, mercury, selenium, and zinc. As summarized in the following table, chromium lead, and mercury were detected at concentrations above their respective UUSCOs, but below their RRSCOs.

| Boring ID              | Part 375 | Part 375 | SB-10    | SB-12      | SB-14    | SB-15    |  |  |
|------------------------|----------|----------|----------|------------|----------|----------|--|--|
| Depth (ft bgs)         | UUSCO    | RRSCO    | (3-5)    | (2-4)      | (2-4)    | (2-4)    |  |  |
| Date Sampled           |          |          | 2/7/2018 | 2/6/2018   | 2/6/2018 | 2/9/2018 |  |  |
| <b>Dilution Factor</b> |          |          | 1        | 1          | 1        | 1        |  |  |
| Units = mg/kg          |          |          |          |            |          |          |  |  |
| Chromium               | 30*      | 180*     | 39.5     | 113        | 19.9     | 14.7     |  |  |
| Lead                   | 63       | 400      | 10.2     | 6.66       | 140      | 40.9     |  |  |
| Mercury                | 0.18     | 0.81     | 0.01 U   | 0.02 U     | 0.09     | 0.4      |  |  |
|                        |          |          |          | <b>_ U</b> | 0.07     | J        |  |  |

Metals Detected in Soil Above the Part 375 SCOs

Notes:

**Bold** = Exceeds Unrestricted Use Soil Cleanup Objective (UUSCO); ft bgs = feet below ground surface mg/kg = milligram per kilogram; \* = Standard reflects trivalent chromium, not total chromium U = The analyte was not detected at the indicated concentration

Based on the field observations and the Site history, the metal detections are likely attributable to the historic fill material observed in the borings and/or background conditions, and not to a release or other source area. The complete analytical results for metals in soil are summarized in Table 3.

#### 5.4 Groundwater Analytical Results

The analytical results from the seven groundwater samples and the associated trip blank were compared to the NYSDEC Class GA Ambient Water Quality Standards and Guidance Values (AWQSs) as listed in the NYSDEC Division of Water Technical Operational and Guidance Series (TOGS)1.1.1. The groundwater analytical results are summarized in Table 4. The complete laboratory analytical report is provided as Appendix D. Exceedances of the NYSDEC AWQSs are summarized on Figure 6. The analytical results from the groundwater sampling are discussed below:

#### <u>VOCs</u>

Fifteen (15) of the 16 petroleum-related VOCs analyzed for were detected in one or more of the groundwater samples at concentrations ranging from 0.67 to 1,800 micrograms per liter ( $\mu$ g/L). As summarized in the following table, 12 VOCs (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, isopropylbenzene, MTBE, n-butylbenzene, n-propylbenzene, naphthalene, o-xylene, p/m-xylene, p-isopropyltoluene, and sec-butylbenzene) were detected at concentrations exceeding the AWQSs.

|                        |          |             | -           |             |           |
|------------------------|----------|-------------|-------------|-------------|-----------|
| Sample ID              | Class GA | <b>MW-2</b> | <b>MW-7</b> | <b>MW-8</b> | MW-9      |
| Date Sampled           | AWQS     | 2/16/2018   | 2/16/2018   | 2/16/2018   | 2/16/2018 |
| Dilution Factor        |          | 10          | 2           | 2           | 1         |
| Units = $\mu g/L$      |          |             |             |             |           |
| 1,2,4-Trimethylbenzene | 5        | 7 U         | 110         | 4.8 J       | 0.7 U     |
| 1,3,5-Trimethylbenzene | 5        | 7 U         | 56          | 57          | 0.7 U     |
| Ethylbenzene           | 5        | 7 U         | 92          | 33          | 0.7 U     |
| Isopropylbenzene       | 5        | 7 U         | 14          | 44          | 0.7 U     |
| MTBE                   | 10       | 1,800       | 15          | 20          | 34        |
| Naphthalene            | 10       | 7 U         | 14          | 23          | 0.7 U     |
| n-Butylbenzene         | 5        | 7 U         | 1.9 J       | 36          | 0.7 U     |
| n-Propylbenzene        | 5        | 7 U         | 14          | 130         | 0.7 U     |
| o-Xylene               | 5        | 7 U         | 28          | 1.4 U       | 0.7 U     |
| p/m-Xylene             | 5        | 7 U         | 290         | 22          | 0.7 U     |

Volatile Organic Compounds Detected in Groundwater Above the Class GA AWQSs

| Sample ID<br>Date Sampled<br>Dilution Factor<br>Units = µg/L | Class GA<br>AWQS | MW-2<br>2/16/2018<br>10 | MW-7<br>2/16/2018<br>2 | MW-8<br>2/16/2018<br>2 | MW-9<br>2/16/2018<br>1 |
|--------------------------------------------------------------|------------------|-------------------------|------------------------|------------------------|------------------------|
| p-Isopropyltoluene                                           | 5                | 7 U                     | 4.5 J                  | 8.3                    | 0.7 U                  |
| sec-Butylbenzene                                             | 5                | 7 U                     | 2.7 J                  | 25                     | 0.7 U                  |

Notes:

**Bold** = Exceeds the Class GA AWQS

 $\mu g/L = microgram per liter$ 

U = The analyte was not detected at the indicated concentration

J = The concentration given is an estimated value

Monitoring wells MW-2, MW-7, and MW-8 are located within or immediately downgradient of the footprints of the former on-site gasoline stations in the southeastern and southern portions of the Site, while MW-9 is located near the downgradient boundary of the Site. All four of these monitoring wells are located downgradient of the existing off-site gasoline station located east of the Site, on the corner of Cottage Pace and Hamilton Avenue. As discussed further in Section 6.0, the identified groundwater contamination is likely attributable to a combination of historic petroleum releases from both the on-site and off-site facilities. The complete analytical results for VOCs in groundwater are summarized in Table 4.

#### 5.5 Fluid Level Gauging Results

The water table was measured in the nine on-site groundwater monitoring wells at depths ranging from 9.93 to 23.90 feet bgs on February 16, 2018 and from 9.58 to 22.51 feet bgs on February 26, 2018. The shallower groundwater depths were noted in those wells in the southern and western portions of the Site (along Hamilton Avenue and Martin Luther King Boulevard) and at deeper depths in the eastern portion of the Site (along Cottage Place), consistent with the elevation changes across the Site. The surveyed monitoring well elevations and the corresponding depth to water measurements were used to calculate the groundwater elevations in each well, as summarized in Table 5. Contour maps of the groundwater elevations measured for each event are provided as Figures 3 and 4. The contour maps indicate that groundwater flows in a southwesterly direction across the Site, with groundwater elevations ranging from 178.70 to 181.89 feet above mean sea level (referenced to NAVD 88).

#### 6.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

AKRF performed a Spill Investigation (SI) at the property located at 200 Hamilton Avenue in the City of White Plains, Westchester County, New York, as shown on Figure 1, between February 6 and 26, 2018. The purpose of the SI was to further assess petroleum-related contamination identified in the southeastern and southern portions of the Site during a Subsurface (Phase II) investigation. As reported in the *Subsurface (Phase II) Investigation Report* (dated October 2017), field observations and laboratory results indicated evidence of a historic petroleum release or releases, resulting in the presence of petroleum-related volatile organic compounds (VOCs) in groundwater at concentrations above the New York State Department of Environmental Conservation (NYSDEC) Ambient Water Quality Standards and Guidance Values (AWQSs). The SI scope included a soil boring and groundwater sampling program to further delineate the extent of the petroleum-related contamination associated with NYSDEC Spill Number 1706297 and to evaluate potential source(s).

The SI scope included a geophysical survey, the advancement of 10 soil borings, installation of three permanent groundwater monitoring wells, and the collection of soil and groundwater samples for field-screening and laboratory analysis. In addition, four of the six groundwater monitoring wells previously installed at the Site by others were sampled for laboratory analysis. The locations of the soil borings and monitoring wells (including the locations from the 2017 Phase II) are depicted on Figure 2. All nine on-site wells (three newly installed and six previously installed) were surveyed and gauged, and groundwater contour maps were prepared.

Consistent with the findings from the 2017 Phase II, a shallow fill layer was encountered in the 10 soil borings to depths ranging from approximately 5 to 12 feet below ground surface (bgs). The fill material was generally underlain by apparent native sand and silt to approximately 30 feet bgs (the maximum soil boring depth).

Evidence of petroleum contamination (petroleum-like odors and staining) and elevated photoionization detector (PID) readings as high as 1,370 parts per million (ppm) were noted above the saturated zone, as shallow as 8 feet bgs, in soil borings advanced within the footprint of the former gasoline station in the southeastern portion of the Site (SB-11, SB-13, SB-14, and SB-18). Refusal was encountered prior to reaching groundwater at soil borings SB-11, SB-13, and SB-18; however, contamination was observed to extend into the saturated zone below the observed groundwater interface at soil boring SB-14.

Evidence of contamination and elevated PID readings as high as 1,101 ppm were observed just above and within the saturated zone in soil borings advanced within the footprint of the former gasoline station in the southern portion of the Site (SB-15, SB-16, and SB-17).

Analytical results for the soil samples identified petroleum-related VOCs at concentrations above the New York State Department of Environmental Conservation (NYSDEC) Unrestricted Use Soil Cleanup Objectives (UUSCOs) and the Restricted Residential Soil Cleanup Objectives (RRSCOs) listed in Sections 6.8(a) and 6.8(b) of 6 NYCRR Part 375, and the Soil Cleanup Levels (SCLs) for gasoline-contaminated soil listed in Table 2 of the NYSDEC Commissioner Policy, *CP-51: Soil Cleanup Guidance*. The VOC exceedances were in samples collected from above the water table from soil borings SB-11, SB-13, SB-14, and SB-18, advanced in the footprint of the former gasoline station in the southeastern portion of the Site. Semivolatile organic compounds (SVOCs) above the NYSDEC UUSCOs and RRSCOs, and the CP-51 SCLs were noted in the samples collected from above the water table in soil boring SB-17. Three metals (chromium, lead, and mercury) were detected above the NYSDEC UUSCOs in samples collected from the shallow fill layer in SB-10, SB-12, SB-14, and SB-15. Soil analytical results are summarized in Tables 1 through 3. Exceedances of the NYSDEC SCOs and SCLs are summarized on Figure 5.

The water table was measured in the nine on-site groundwater monitoring wells at depths ranging from 9.58 to 23.90 feet bgs during two gauging events. Groundwater was noted to be shallower in the southern and western portions of the Site (along Hamilton Avenue and Martin Luther King Boulevard), and deeper in the eastern portion of the Site (along Cottage Place), consistent with the elevation changes across the Site. Groundwater elevations ranged from 181.89 to 179.70 feet above mean sea level [referenced to the North American Vertical Datum of 1988 (NAVD 88)] during the two gauging events, and groundwater elevations of each of the monitoring wells and the corresponding groundwater elevations from gauging events are summarized in Table 5, and the groundwater contours and flow directions are shown on Figures 3 and 4. No separate phase product was detected in the on-site monitoring wells; however, evidence of petroleum-like odors was noted on groundwater during sampling at MW-2, MW-6, MW-7, and MW-8.

Analytical results identified petroleum-related VOCs, including trimethylbenzenes, ethylbenzene, propylbenzenes, butylbenzenes, naphthalene, xylenes, and p-isopropyltoluene, above their respective NYSDEC Class GA Ambient Water Quality Standards and Guidance Values (AWQSs) in the groundwater samples from monitoring wells MW-7 (installed at soil boring SB-14) and MW-8 (installed at soil boring SB-15). Methyl tert-butyl ether (MTBE), an oxygenate that was used as a gasoline additive in New York State between 1979 and 2004, was detected above its AWQS of 10 micrograms per liter ( $\mu$ g/L) in four groundwater samples, MW-2 (1,800  $\mu$ g/L), MW-7 (14  $\mu$ g/L), MW-8 (20  $\mu$ g/L), and MW-9 (34  $\mu$ g/L). The groundwater analytical results are summarized in Table 4. Exceedances of the NYSDEC AWQSs are summarized on Figure 6.

#### 6.1 Conclusions

Based on the findings of the SI, AKRF concludes the following:

- Petroleum-contaminated soil is present in the unsaturated zone and extending below the water table within the footprint of the former gasoline station in the southeastern portion of the Site. The evidence of contamination included field observations of staining and odors as shallow as 5 feet bgs, and detection of petroleum-related VOCs exceeding the NYSDEC CP-51 Soil Cleanup Levels in samples as shallow as 10 feet bgs from soil borings in this area. This contamination is likely the result of a historic petroleum release or releases from the former gasoline station in this area and represents an on-site source of the documented groundwater contamination at the Site.
- Field evidence of petroleum-contamination was noted just above and extending into the saturated zone in soil borings located within the footprint and immediately downgradient of former on-site gasoline station in the southern portion of the site; however, VOCs were not detected above the NYSDEC CP-51 SCLs in soil samples collected from this area. The contamination observed in this area, which was primarily in the "smear zone" (i.e., the zone just above the water table that is intermittently saturate during periods of higher groundwater levels) is likely associated with groundwater contamination identified at the Site. It is inconclusive whether this contamination is indicative of a second on-site release area. However, a source of petroleum contamination may be present in areas of the former gas station footprint that were not accessible during this investigation.
- The presence of MTBE in groundwater suggests that an off-site source (e.g., the existing gas station across Cottage Place) has contributed to the documented on-site groundwater contamination. MTBE is an oxygenate that was used as a gasoline additive in New York State between 1979 and 2004, and since the on-site gasoline stations were closed prior to 1970, the source of the MTBE contamination could not have originated on-site. Therefore, it is likely that the groundwater contamination at the Site represents a comingled plume from historic releases from both the former on-site and existing off-site

gasoline stations. It appears that the original source of the MTBE contamination is no longer present, since the highest levels were detected over 300 feet downgradient of the off-site gasoline station.

• Based on the SI field observations, the metals and SVOCs detected in soil at levels above their respective Part 375 UUSCOs and RRSCOs, and CP-51 SCLs are likely attributable to contaminants in the shallow fill layer observed in the Site subsurface or to background conditions, and not likely to an on-site release or other source area.

#### 6.2 Recommendations

AKRF understands that SWD II, LLC is proposing to redevelop the entire Site footprint with a mixed use development that includes four high-rise residential buildings set on a "Public Platform" that will include specialty retail, restaurant and office space, and dynamic programmed public open space.

Based on the conclusions presented above in conjunction with the scope of the proposed redevelopment work, AKRF recommends applying to enroll in the NYSDEC Brownfield Cleanup Program (BCP). If the Site is accepted into the BCP, the open Spill case could be addressed and closed under the program, and qualified remediation costs and a portion of the redevelopment costs could be eligible for New York State tax credits. The NYSDEC BCP includes multiple phases including the Application and Agreement Phase, a Remedial Investigation Phase to delineate the nature and extent of contamination, and a Remediation Phase to select a remedy and complete the cleanup of the Site.

A full-scale remedial investigation phase may not be required for the Site based on the data generated from the Phase II and SI; however, some level of remedial investigation to further delineate the extent of contamination, and to provide additional data to integrate the designs for the proposed remediation and redevelopment is recommended. After completing the Remedial Investigation (RI), a Remedial Action Work Plan (RAWP) would be prepared to outline measures for addressing the Site contamination in conjunction with the proposed Site redevelopment. It is anticipated that the RAWP would include the following elements:

- Installation of a "cut-off wall" (e.g., steel sheeting with water-proofed joints) along the southeastern Site boundary to prevent migration of groundwater contamination onto the Site from the documented petroleum spill at the east-adjacent gasoline station. This wall could also serve as support-of-excavation for remedial excavations and any excavation required for Site redevelopment in this area.
- Excavation and off-site disposal of petroleum-contaminated soil from the southeastern and southern portions of the Site to remove "hot-spot" areas of contamination, with collection of post-excavation endpoint samples to demonstrate that the remedial action objectives have been achieved. The estimated extent of hot-spot remediation would be determined during the remedial investigation phase.
- Injection or application of a chemical oxidation and/or oxygen releasing product directly to groundwater in the open excavation areas to address residual groundwater contamination.
- Proper characterization, management, and off-site disposal of all soil excavated during site redevelopment, including the shallow fill layer observed at the Site and potential residual petroleum-contaminated soil near the groundwater interface in deeper excavations.
- Pre-treatment and appropriate discharge of any dewatering fluids pumped from the hot-spot excavations and other deeper excavations required for building foundations. Dewatering may also assist in remediating the groundwater contamination at the Site. It is anticipated that discharge of dewatering fluids to the municipal storm-water sewer system will require approval by the NYSDEC Division of Water under the BCP, which may take up to 4 or 5 months to obtain.

- Appropriate testing of any required backfill and top soil to ensure that it meets the import criteria specified in the RAWP.
- Implementation of appropriate Health and Safety and air monitoring measures during all excavation activities to ensure the protection of on-site workers and the surrounding community.
- Protection of existing and/or installation of new permanent groundwater monitoring wells for the collection of post-remedial groundwater samples to demonstrate that remedial action objectives have been achieved.
- Contingency measures for addressing any underground storage tanks and/or unexpected contaminated soil that may be encountered during excavation for Site redevelopment.

In addition to the remedial measures described above, the New York State Department of Health (NYSDOH) may also require installation of vapor mitigation measures under the new buildings. It is anticipated that these measures would not be required for the majority of the area under the public platform, which will consist of separately ventilated loading area/parking garage and storage areas. However, installation of a sub-slab depressurization system (e.g., slotted PVC piping installed in a permeable gravel layer under the building slab connected to vertical risers that vent to the building roof) may be required for some of the retail spaces that are not underlain by the garage/storage areas.

Alternatively, to the extent that the new foundations approach and/or extend into the water table, a waterproofing membrane (e.g., Grace Preprufe) may satisfy any vapor mitigation requirements. To the extent that waterproofing will be installed as part of the development activities, such costs may not be classified by the NYSDEC as "remediation costs" eligible for tax credits under the BCP.

#### 7.0 LIMITATIONS

The findings set forth in this report are strictly limited in scope and time to the date of the evaluation described herein. The conclusions and recommendations presented in the report are based solely on the services and any limitations described in this report.

This report may contain conclusions that are based on the analysis of data collected at the time and locations noted in the report through intrusive or non-intrusive sampling. However, further investigation might reveal additional data or variations of the current data, which may differ from our understanding of the conditions presented in this report and require the enclosed recommendations to be reevaluated or modified.

Chemical analyses may have been performed for specific parameters during the course of this investigation, as summarized in the text and tables. It should be noted that additional chemical constituents, not searched for during this investigation, may be present at the site. Due to the nature of the investigation and the limited data available, no warranty, expressed or implied, shall be construed with respect to undiscovered liabilities. The presence of biological hazards, radioactive materials, lead-based paint and asbestos-containing materials was not investigated, unless specified in the report.

Interpretations of the data, including comparison to regulatory standards, guidelines or background values, are not opinions that these comparisons are legally applicable. Furthermore, any conclusions or recommendations should not be construed as legal advice. For such advice, the client is recommended to seek appropriate legal counsel. Disturbance, handling, transportation, storage and disposal of known or potentially contaminated materials is subject to all applicable laws, which may or may not be fully described as part of this report.

The analytical data, conclusions, and/or recommendations provided in this report should not be construed in any way as a classification of waste that may be generated during future disturbance of the project site. Waste(s) generated at the site including excess fill may be considered regulated solid waste and potentially hazardous waste. Requirements for intended disposal facilities should be determined beforehand as the data provided in this report may be insufficient and could vary following additional sampling.

This report may be based solely or partially on data collected, conducted, and provided by, AKRF and/or others. No warranty is expressed or implied by usage of such data. Such data may be included in other investigation reports or documentation. In addition, these reports may have been based upon available previous reports, historical records, documentation from federal, state and local government agencies, personal interviews, and geological mapping. This report is subject, at a minimum, to the limitations of the previous reports, historical documents, availability and accuracy of collected documentation, and personal recollection of those persons interviewed. In certain instances, AKRF has been required to assume that the information provided is accurate with limited or no corroboratory evidence.

This report is intended for the use solely by SWD II, LLC. Reliance by third parties on the information and opinions contained herein is strictly prohibited and requires the written consent of AKRF. AKRF accepts no responsibility for damages incurred by third parties for any decisions or actions taken based on this report. This report must be used, interpreted, and presented in its entirety.

#### 8.0 SOIL DISPOSAL ISSUES

In addition to the discussions in the Conclusions, Recommendations, and Limitations Sections (Sections 6.0 and 7.0), the issue of appropriate management of off-site disposal of soil warrants careful consideration. Any material being disposed of off-site is a regulated waste, and disposal must be in accordance with:

- Requirements of the specific receiving facility;
- Requirements of any agencies overseeing the cleanup/excavation; and
- Federal and state requirements (sometimes in both the state where the soil is generated and where disposal will occur).

For hazardous wastes and petroleum-contaminated soil (and other 'clearly contaminated' materials), the requirements are usually fairly well defined. It is in the situation where contamination is not readily apparent (e.g., so called "historic or urban fill" or "construction and demolition debris" or material that may have been formerly identified as "clean fill") that present the greatest potential for problems and cost overruns. Even on sites where no contamination requiring remediation is identified, it is common that most of the excavated material is considered "contaminated" for purposes of waste disposal. Concentrations of the various contaminants in historic fill can be highly variable, and upon further testing, the material could contain higher contaminant concentrations than outlined in this investigation. Portions of this material could be classified as hazardous waste.

It is important that the intended disposal facility (or facilities) be identified in advance of off-site disposal. Agency approval is sometimes required for disposal, and the facility will frequently require additional testing prior to (and sometimes at the time of) accepting material. Material must conform to a lengthy list of requirements based on both chemical composition and sometimes numerous other parameters (related to size, percentage of liquids, presence of odors, etc.) for acceptance at the facility. Assuming (or allowing a contractor to assume) that all, or even most, of the soil from a site can be disposed of at minimal cost may result in unanticipated and expensive change orders.

For these reasons, we recommend that professional advice be sought prior to preparing bid documents and contracts incorporating soil disposal.

TABLES

# Table 1200 Hamilton AvenueWhite Plains, NYSpill Investigation Soil Analytical ResultsVolatile Organic Compounds

| Client ID               | CP-51        | NYSDEC       | NYSDEC      | SB-10 (20-22) | SB-10 (3-5) | SB-11 (17-19) | SB-11 (5-7) | SB-12 (2-4) | SB-12 (15-16) |
|-------------------------|--------------|--------------|-------------|---------------|-------------|---------------|-------------|-------------|---------------|
| Lab Sample ID           | Soil Cleanup | Part 375     | Part 375    | L1804131-10   | L1804131-11 | L1804131-01   | L1804131-02 | L1804131-08 | L1804131-09   |
| Date Sampled            | Level        | Unrestricted | Restricted  | 2/7/2018      | 2/7/2018    | 2/6/2018      | 2/6/2018    | 2/6/2018    | 2/6/2018      |
| Dilution                | SCL          | SCO          | Residential | 1             | 1           | 10            | 1           | 1           | 1             |
|                         |              |              | SCO         |               |             |               |             |             |               |
| Analyte                 | mg/kg        | mg/kg        | mg/kg       |               |             |               |             |             |               |
| 1,2,4-Trimethylbenzene  | 3.6          | 3.6          | 52          | 0.00018 U     | 0.00017 U   | 60            | 0.0002 U    | 0.00031 J   | 0.00017 U     |
| 1,3,5-Trimethylbenzene  | 8.4          | 8.4          | 52          | 0.00016 U     | 0.00015 U   | 17            | 0.00017 U   | 0.00016 U   | 0.00015 U     |
| Benzene                 | 0.06         | 0.06         | 4.8         | 0.00019 U     | 0.00018 U   | 0.1 U         | 0.0002 U    | 0.0002 U    | 0.00018 U     |
| Ethylbenzene            | 1            | 1            | 41          | 0.00016 U     | 0.00016 U   | 11            | 0.00018 U   | 0.00019 J   | 0.00016 U     |
| Isopropylbenzene        | 2.3          | NS           | NS          | 0.00019 U     | 0.00018 U   | 4.1           | 0.00021 U   | 0.0002 U    | 0.00018 U     |
| Methyl tert butyl ether | 0.93         | 0.93         | 100         | 0.00015 U     | 0.00014 U   | 0.084 U       | 0.00016 U   | 0.00016 U   | 0.00014 U     |
| Naphthalene             | 12           | 12           | 100         | 0.00013 U     | 0.00013 U   | 3.4           | 0.00015 U   | 0.00032 J   | 0.00013 U     |
| n-Butylbenzene          | 12           | 12           | 100         | 0.00022 U     | 0.00021 U   | 4             | 0.00024 U   | 0.00023 U   | 0.00021 U     |
| n-Propylbenzene         | 3.9          | 3.9          | 100         | 0.00021 U     | 0.0002 U    | 15            | 0.00023 U   | 0.00022 U   | 0.0002 U      |
| o-Xylene                | 0.26 TS      | 0.26 TS      | 100 TS      | 0.00033 U     | 0.00031 U   | 1.4           | 0.00036 U   | 0.00035 U   | 0.00031 U     |
| p/m-Xylene              | 0.26 TS      | 0.26 TS      | 100 TS      | 0.00034 U     | 0.00033 U   | 17            | 0.00037 U   | 0.00049 J   | 0.00033 U     |
| p-Isopropyltoluene      | 10           | NS           | NS          | 0.0002 U      | 0.00019 U   | 1             | 0.00022 U   | 0.00021 U   | 0.00019 U     |
| sec-Butylbenzene        | 11           | 11           | 100         | 0.00021 U     | 0.0002 U    | 2.3           | 0.00023 U   | 0.00022 U   | 0.0002 U      |
| tert-Butylbenzene       | 5.9          | 5.9          | 100         | 0.00024 U     | 0.00023 U   | 0.14 U        | 0.00026 U   | 0.00025 U   | 0.00023 U     |
| Toluene                 | 0.7          | 0.7          | 100         | 0.00019 U     | 0.00018 U   | 0.11 U        | 0.00021 U   | 0.0002 U    | 0.00018 U     |
| Xylenes, Total          | 0.26         | 0.26         | 100         | 0.00033 U     | 0.00031 U   | 18            | 0.00036 U   | 0.00049 J   | 0.00031 U     |

# Table 1200 Hamilton AvenueWhite Plains, NYSpill Investigation Soil Analytical ResultsVolatile Organic Compounds

| Client ID               | CP-51        | NYSDEC       | NYSDEC      | SB-13 (10-12) | SB-13 (3-5) | SB-14 (2-4) | SB-14 (15-16) | SB-15 (10-11) | SB-15 (2-4) |
|-------------------------|--------------|--------------|-------------|---------------|-------------|-------------|---------------|---------------|-------------|
| Lab Sample ID           | Soil Cleanup | Part 375     | Part 375    | L1804131-03   | L1804131-04 | L1804131-06 | L1804131-07   | L1804131-12   | L1804131-13 |
| Date Sampled            | Level        | Unrestricted | Restricted  | 2/6/2018      | 2/6/2018    | 2/6/2018    | 2/6/2018      | 2/9/2018      | 2/9/2018    |
| Dilution                | SCL          | SCO          | Residential | 10            | 1           | 1           | 10            | 1             | 1           |
|                         |              |              | SCO         |               |             |             |               |               |             |
| Analyte                 | mg/kg        | mg/kg        | mg/kg       |               |             |             |               |               |             |
| 1,2,4-Trimethylbenzene  | 3.6          | 3.6          | 52          | 69            | 0.00032 J   | 0.0008 J    | 19            | 0.00054 J     | 0.00022 U   |
| 1,3,5-Trimethylbenzene  | 8.4          | 8.4          | 52          | 22            | 0.00016 U   | 0.0003 J    | 11            | 0.0011 J      | 0.00019 U   |
| Benzene                 | 0.06         | 0.06         | 4.8         | 0.11 U        | 0.00019 U   | 0.00018 U   | 0.12 J        | 0.00023 U     | 0.00023 U   |
| Ethylbenzene            | 1            | 1            | 41          | 14            | 0.00017 U   | 0.00018 J   | 4.9           | 0.00036 J     | 0.0002 U    |
| Isopropylbenzene        | 2.3          | NS           | NS          | 3.1           | 0.00019 U   | 0.00018 U   | 2.5           | 0.0014        | 0.00023 U   |
| Methyl tert butyl ether | 0.93         | 0.93         | 100         | 0.085 U       | 0.00015 U   | 0.00014 U   | 0.094 U       | 0.0024        | 0.00018 U   |
| Naphthalene             | 12           | 12           | 100         | 5.8           | 0.00014 U   | 0.00085 J   | 2.8 J         | 0.0019 J      | 0.00016 U   |
| n-Butylbenzene          | 12           | 12           | 100         | 4.1           | 0.00022 U   | 0.00021 U   | 1.4           | 0.0064        | 0.00027 U   |
| n-Propylbenzene         | 3.9          | 3.9          | 100         | 12            | 0.00021 U   | 0.0002 U    | 4.1           | 0.0048        | 0.00025 U   |
| o-Xylene                | 0.26 TS      | 0.26 TS      | 100 TS      | 14            | 0.00033 U   | 0.00031 U   | 0.54 J        | 0.0004 U      | 0.0004 U    |
| p/m-Xylene              | 0.26 TS      | 0.26 TS      | 100 TS      | 54            | 0.00035 U   | 0.00066 J   | 16            | 0.00041 U     | 0.00041 U   |
| p-Isopropyltoluene      | 10           | NS           | NS          | 0.95          | 0.0002 U    | 0.00019 U   | 1.3           | 0.00091 J     | 0.00024 U   |
| sec-Butylbenzene        | 11           | 11           | 100         | 2.1           | 0.00021 U   | 0.00022 J   | 0.99          | 0.0037        | 0.00026 U   |
| tert-Butylbenzene       | 5.9          | 5.9          | 100         | 0.14 U        | 0.00024 U   | 0.00058 J   | 0.19 J        | 0.00031 J     | 0.00029 U   |
| Toluene                 | 0.7          | 0.7          | 100         | 0.87          | 0.00019 U   | 0.00018 U   | 0.12 U        | 0.00023 U     | 0.00027 J   |
| Xylenes, Total          | 0.26         | 0.26         | 100         | 68            | 0.00033 U   | 0.00066 J   | 17            | 0.0004 U      | 0.0004 U    |

# Table 1200 Hamilton AvenueWhite Plains, NYSpill Investigation Soil Analytical ResultsVolatile Organic Compounds

| Client ID               | CP-51        | NYSDEC       | NYSDEC      | SB-16 (12-13) | SB-16 (2-4) | SB-17 (8-9) | SB-17 (5-7) | SB-18 (12-14) |
|-------------------------|--------------|--------------|-------------|---------------|-------------|-------------|-------------|---------------|
| Lab Sample ID           | Soil Cleanup | Part 375     | Part 375    | L1804131-14   | L1804131-15 | L1804131-16 | L1804131-17 | L1804131-05   |
| Date Sampled            | Level        | Unrestricted | Restricted  | 2/9/2018      | 2/9/2018    | 2/9/2018    | 2/9/2018    | 2/6/2018      |
| Dilution                | SCL          | SCO          | Residential | 1             | 1           | 1           | 1           | 20            |
|                         |              |              | SCO         |               |             |             |             |               |
| Analyte                 | mg/kg        | mg/kg        | mg/kg       |               |             |             |             |               |
| 1,2,4-Trimethylbenzene  | 3.6          | 3.6          | 52          | 0.0002 U      | 0.0005 J    | 0.00056 J   | 0.00033 J   | 100           |
| 1,3,5-Trimethylbenzene  | 8.4          | 8.4          | 52          | 0.00017 U     | 0.00069 J   | 0.00024 J   | 0.0002 J    | 34            |
| Benzene                 | 0.06         | 0.06         | 4.8         | 0.00021 U     | 0.00023 U   | 0.00023 U   | 0.0002 U    | 0.18 U        |
| Ethylbenzene            | 1            | 1            | 41          | 0.00018 U     | 0.0002 U    | 0.0002 U    | 0.00018 U   | 11            |
| Isopropylbenzene        | 2.3          | NS           | NS          | 0.00021 U     | 0.00023 U   | 0.0011 J    | 0.0002 U    | 2.4           |
| Methyl tert butyl ether | 0.93         | 0.93         | 100         | 0.037         | 0.00018 U   | 0.00018 U   | 0.00016 U   | 0.14 U        |
| Naphthalene             | 12           | 12           | 100         | 0.00015 U     | 0.00025 J   | 0.0028 J    | 0.00014 U   | 6.6           |
| n-Butylbenzene          | 12           | 12           | 100         | 0.00024 U     | 0.00028 U   | 0.00027 U   | 0.00024 U   | 5.2           |
| n-Propylbenzene         | 3.9          | 3.9          | 100         | 0.00023 U     | 0.00026 U   | 0.0007 J    | 0.00022 U   | 7.2           |
| o-Xylene                | 0.26 TS      | 0.26 TS      | 100 TS      | 0.00036 U     | 0.00041 U   | 0.0004 U    | 0.00035 U   | 2.3           |
| p/m-Xylene              | 0.26 TS      | 0.26 TS      | 100 TS      | 0.00038 U     | 0.00042 U   | 0.00041 U   | 0.00037 U   | 76            |
| p-Isopropyltoluene      | 10           | NS           | NS          | 0.00022 U     | 0.00024 U   | 0.00024 U   | 0.00021 U   | 1.4           |
| sec-Butylbenzene        | 11           | 11           | 100         | 0.00025 J     | 0.00026 U   | 0.00026 U   | 0.00023 U   | 2.9           |
| tert-Butylbenzene       | 5.9          | 5.9          | 100         | 0.00026 U     | 0.0003 U    | 0.00034 J   | 0.00026 U   | 0.23 U        |
| Toluene                 | 0.7          | 0.7          | 100         | 0.0003 J      | 0.00026 J   | 0.00023 U   | 0.00047 J   | 0.28 J        |
| Xylenes, Total          | 0.26         | 0.26         | 100         | 0.00036 U     | 0.00041 U   | 0.0004 U    | 0.00035 U   | 78            |

### Table 2200 Hamilton AvenueWhite Plains, NYSpill Investigation Soil Analytical Results<br/>Semivolatile Organic Compounds

| Client ID              | CP-51        | NYSDEC       | NYSDEC      | SB-10 (3-5) | SB-11 (5-7) | SB-12 (2-4) | SB-13 (3-5) | SB-14 (2-4) | SB-15 (2-4) | SB-16 (2-4) | SB-17 (5-7) |
|------------------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Lab Sample ID          | Soil Cleanup | Part 375     | Part 375    | L1804131-11 | L1804131-02 | L1804131-08 | L1804131-04 | L1804131-06 | L1804131-13 | L1804131-15 | L1804131-17 |
| Date Sampled           | Level        | Unrestricted | Restricted  | 2/7/2018    | 2/6/2018    | 2/6/2018    | 2/6/2018    | 2/6/2018    | 2/9/2018    | 2/9/2018    | 2/9/2018    |
|                        | SCL          | SCO          | Residential |             |             |             |             |             |             |             |             |
|                        |              |              | SCO         |             |             |             |             |             |             |             |             |
| Analyte                | mg/kg        | mg/kg        | mg/kg       |             |             |             |             |             |             |             |             |
| Acenaphthene           | 20           | 20           | 100         | 0.018 U     | 0.019 U     | 0.019 U     | 0.02 U      | 0.035 J     | 0.019 U     | 0.02 U      | 0.088 J     |
| Acenaphthylene         | 100          | 100          | 100         | 0.028 U     | 0.029 U     | 0.028 U     | 0.029 U     | 0.047 J     | 0.028 U     | 0.089 J     | 0.43        |
| Anthracene             | 100          | 100          | 100         | 0.035 U     | 0.036 U     | 0.036 U     | 0.037 U     | 0.088 J     | 0.036 U     | 0.068 J     | 0.96        |
| Benzo(a)anthracene     | 1            | 1            | 1           | 0.02 U      | 0.021 U     | 0.02 U      | 0.021 U     | 0.24        | 0.036 J     | 0.24        | 2.8         |
| Benzo(a)pyrene         | 1            | 1            | 1           | 0.044 U     | 0.046 U     | 0.045 U     | 0.046 U     | 0.24        | 0.045 U     | 0.23        | 2.4         |
| Benzo(b)fluoranthene   | 1            | 1            | 1           | 0.03 U      | 0.032 U     | 0.031 U     | 0.032 U     | 0.33        | 0.05 J      | 0.32        | 3.3         |
| Benzo(ghi)perylene     | 100          | 100          | 100         | 0.021 U     | 0.022 U     | 0.022 U     | 0.022 U     | 0.19        | 0.028 J     | 0.16        | 1.5         |
| Benzo(k)fluoranthene   | 0.8          | 0.8          | 3.9         | 0.028 U     | 0.03 U      | 0.029 U     | 0.03 U      | 0.095 J     | 0.029 U     | 0.12        | 0.85        |
| Chrysene               | 1            | 1            | 3.9         | 0.018 U     | 0.019 U     | 0.019 U     | 0.02 U      | 0.21        | 0.03 J      | 0.21        | 2.2         |
| Dibenzo(a,h)anthracene | 0.33         | 0.33         | 0.33        | 0.021 U     | 0.022 U     | 0.021 U     | 0.022 U     | 0.051 J     | 0.021 U     | 0.048 J     | 0.41        |
| Fluoranthene           | 100          | 100          | 100         | 0.02 U      | 0.022 U     | 0.024 J     | 0.022 U     | 0.55        | 0.038 J     | 0.44        | 5.3         |
| Fluorene               | 30           | 30           | 100         | 0.017 U     | 0.018 U     | 0.018 U     | 0.018 U     | 0.018 J     | 0.018 U     | 0.03 J      | 0.19        |
| Indeno(1,2,3-cd)pyrene | 0.5          | 0.5          | 0.5         | 0.025 U     | 0.026 U     | 0.025 U     | 0.026 U     | 0.2         | 0.03 J      | 0.19        | 1.8         |
| Naphthalene            | 12           | 12           | 100         | 0.022 U     | 0.023 U     | 0.022 U     | 0.023 U     | 0.03 J      | 0.022 U     | 0.023 U     | 0.05 J      |
| Phenanthrene           | 100          | 100          | 100         | 0.022 U     | 0.023 U     | 0.022 U     | 0.023 U     | 0.12        | 0.022 U     | 0.24        | 2.7         |
| Pyrene                 | 100          | 100          | 100         | 0.018 U     | 0.019 U     | 0.024 J     | 0.019 U     | 0.44        | 0.039 J     | 0.37        | 4.2         |

#### Table 3 200 Hamilton Avenue White Plains, NY Spill Investigation Soil Analytical Results Metals

| Client ID       | NYSDEC       | NYSDEC      | SB-10 (3-5) | SB-11 (5-7) | SB-12 (2-4) | SB-13 (3-5) | SB-14 (2-4) | SB-15 (2-4) | SB-16 (2-4) | SB-17 (5-7) |
|-----------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Lab Sample ID   | Part 375     | Part 375    | L1804131-11 | L1804131-02 | L1804131-08 | L1804131-04 | L1804131-06 | L1804131-13 | L1804131-15 | L1804131-17 |
| Date Sampled    | Unrestricted | Restricted  | 2/7/2018    | 2/6/2018    | 2/6/2018    | 2/6/2018    | 2/6/2018    | 2/9/2018    | 2/9/2018    | 2/9/2018    |
|                 | SCO          | Residential |             |             |             |             |             |             |             |             |
|                 |              | SCO         |             |             |             |             |             |             |             |             |
| Analyte         | mg/kg        | mg/kg       |             |             |             |             |             |             |             |             |
| Arsenic, Total  | 13           | 16          | 2.05        | 1.3         | 1.77        | 1.73        | 2.04        | 1.46        | 1.69        | 1.92        |
| Barium, Total   | 350          | 400         | 158         | 80.5        | 292         | 95.6        | 92.7        | 55.3        | 59.8        | 56.6        |
| Cadmium, Total  | 2.5          | 4.3         | 0.041 U     | 0.043 U     | 0.041 U     | 0.044 U     | 0.042 U     | 0.439       | 0.526       | 0.574       |
| Chromium, Total | 30*          | 180*        | 39.5        | 18.5        | 113         | 21          | 19.9        | 14.7        | 12.8        | 12          |
| Lead, Total     | 63           | 400         | 10.2        | 4.32        | 6.66        | 14.1        | 140         | 40.9        | 8.19        | 16.5        |
| Mercury, Total  | 0.18         | 0.81        | 0.01 U      | 0.02 U      | 0.02 U      | 0.04 J      | 0.09        | 0.4         | 0.03 J      | 0.05 J      |
| Selenium, Total | 3.9          | 180         | 0.116 J     | 0.113 U     | 0.108 U     | 0.117 U     | 0.111 U     | 0.11 U      | 0.117 U     | 0.108 J     |
| Silver, Total   | 2            | 180         | 0.117 U     | 0.124 U     | 0.119 U     | 0.128 U     | 0.122 U     | 0.121 U     | 0.128 U     | 0.114 U     |
| Zinc, Total     | 109          | 10,000      | 56.1        | 32.3        | 59.2        | 42          | 66.5        | 41.4        | 26.9        | 38.8        |

#### Table 4

200 Hamilton Avenue White Plains, NY

Spill Investigation Groundwater Analytical Results Volatile Organic Compounds

| olatile Organic Comp | ounds |  |
|----------------------|-------|--|
|----------------------|-------|--|

| Client ID               | NYSDEC   | MW-1        | MW-2        | MW-5        | MW-6        | MW-7        | MW-8        | MW-9        | TB-1        |
|-------------------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Lab Sample ID           | Class GA | L1805675-01 | L1805675-05 | L1805675-02 | L1805675-03 | L1805675-04 | L1805675-08 | L1805675-06 | L1805675-07 |
| Date Sampled            | Ambient  | 2/16/2018   | 2/16/2018   | 2/16/2018   | 2/16/2018   | 2/16/2018   | 2/16/2018   | 2/16/2018   | 2/16/2018   |
| Units                   | Standard | 1           | 10          | 2.5         | 1           | 2           | 2           | 1           | 1           |
|                         |          |             |             |             |             |             |             |             |             |
| Analyte                 | μg/L     |             |             |             |             |             |             |             |             |
| 1,2,4-Trimethylbenzene  | 5        | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 110         | 4.8 J       | 0.7 U       | 0.7 U       |
| 1,3,5-Trimethylbenzene  | 5        | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 56          | 57          | 0.7 U       | 0.7 U       |
| Benzene                 | 1        | 0.16 U      | 1.6 U       | 0.4 U       | 0.67        | 0.94 J      | 0.32 U      | 0.16 U      | 0.16 U      |
| Ethylbenzene            | 5        | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 92          | 33          | 0.7 U       | 0.7 U       |
| Isopropylbenzene        | 5        | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 14          | 44          | 0.7 U       | 0.7 U       |
| Methyl tert butyl ether | 10       | 0.7 U       | 1,800       | 1.8 U       | 1.2 J       | 15          | 20          | 34          | 0.7 U       |
| Naphthalene             | 10       | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 14          | 23          | 0.7 U       | 0.7 U       |
| n-Butylbenzene          | 5        | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 1.9 J       | 36          | 0.7 U       | 0.7 U       |
| n-Propylbenzene         | 5        | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 14          | 130         | 0.7 U       | 0.7 U       |
| o-Xylene                | 5        | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 28          | 1.4 U       | 0.7 U       | 0.7 U       |
| p/m-Xylene              | 5        | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 290         | 22          | 0.7 U       | 0.7 U       |
| p-Isopropyltoluene      | 5        | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 4.5 J       | 8.3         | 0.7 U       | 0.7 U       |
| sec-Butylbenzene        | 5        | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 2.7 J       | 25          | 0.7 U       | 0.7 U       |
| tert-Butylbenzene       | 5        | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 1.4 U       | 1.4 U       | 0.7 U       | 0.7 U       |
| Toluene                 | 5        | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 2.3 J       | 1.4 U       | 0.7 U       | 0.7 U       |
| Xylenes, Total          | NS       | 0.7 U       | 7 U         | 1.8 U       | 0.7 U       | 320         | 22          | 0.7 U       | 0.7 U       |

### Tables 1-4200 Hamilton Avenue

#### White Plains, NY Spill Investigation Analytical Results Notes

#### GENERAL

NS: No standard.

- ${\bf U}$  : The analyte was not detected at the indicated concentration.
- J: The concentration given is an estimated value.
- **TS**: Value represents a sum total standard.

#### SOIL

| Part 375 Soil<br>CleanupSoil Cleanup Objectives listed in NYSDEC (New York State Department of Environ<br>Conservation) "Part 375" Regulations (6 NYCRR Part 375).Objectives | nental      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| CP-51 Soil Soil Cleanup Levels for Gasoline Contaminated Soils listed in Table 2 of NYSDEC Cleanup Levels Cleanup Guidance."                                                 | 'CP-51/Soil |
| <b>mg/kg</b> : milligrams per kilogram = parts per million (ppm)                                                                                                             |             |

#### Metals

\*: Standard reflects trivalent, not total, Chromium.

Exceedances of Part 375 Unrestricted Soil Cleanup Objectives (UUSCO) and CP-51 Soil Cleanup Levels (SCL) are highlighted in bold font.

Exceedances of Part 375 Restricted Residential Soil Cleanup Objectives (RRSCO) are highlighted in gray.

#### GROUNDWATER

 NYSDEC

 Class GA

 Ambient

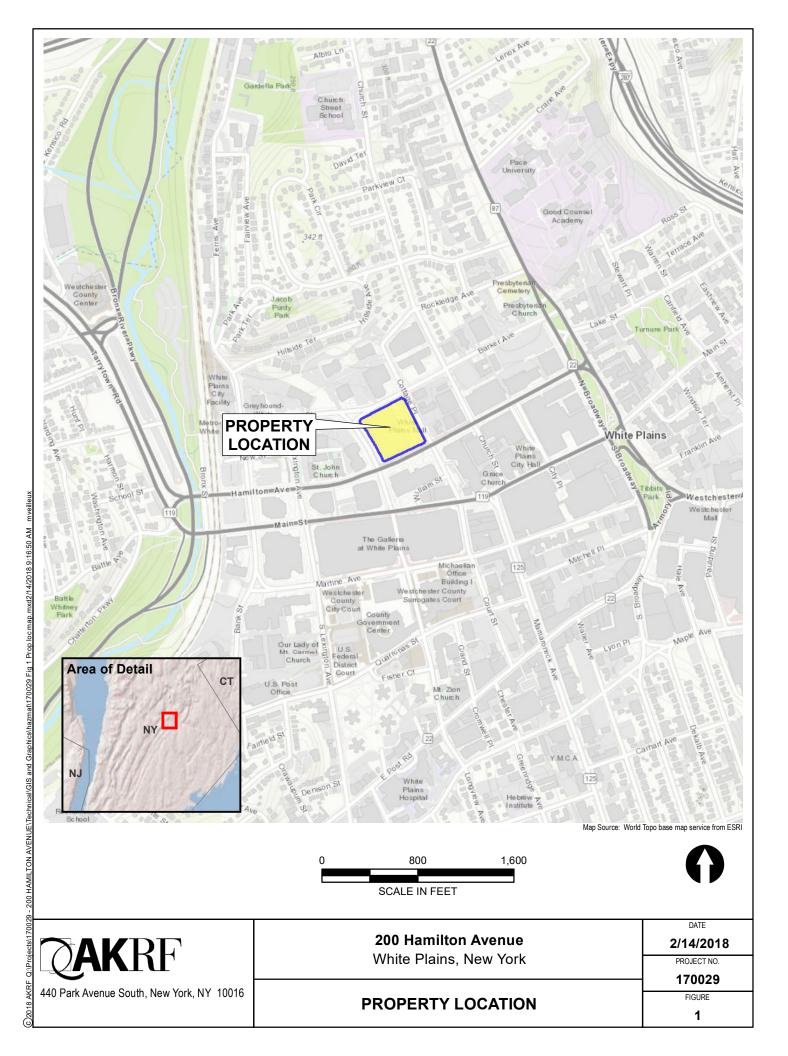
 Series (1.1.1): Class GA Ambient Water Quality Standards and Guidance Values.

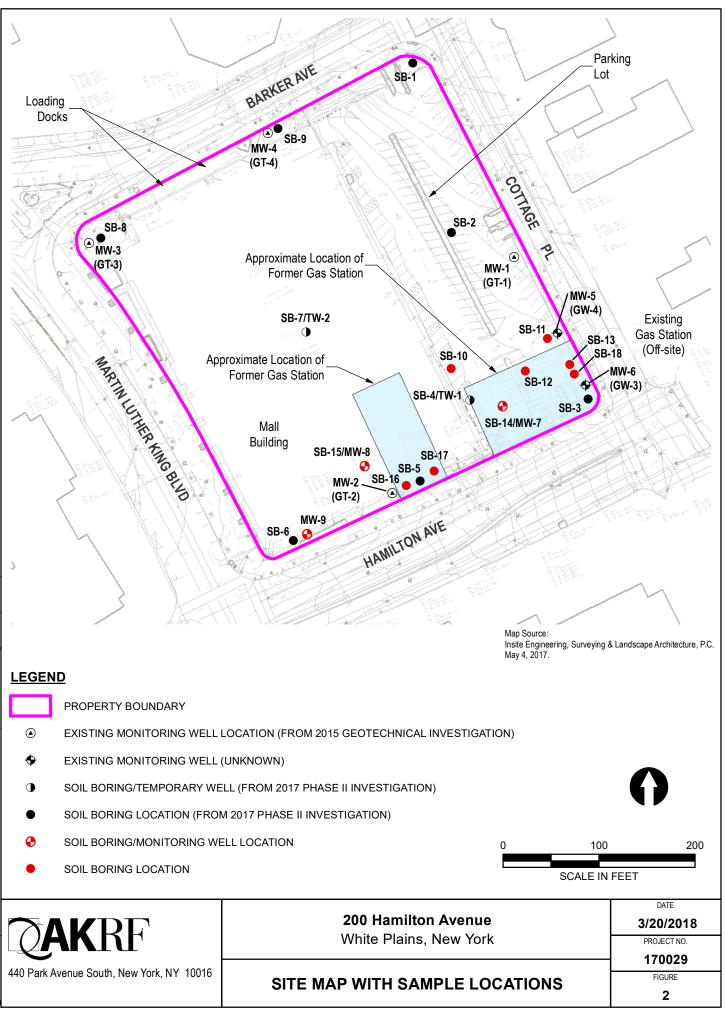
 Standard

µg/L : micrograms per Liter = parts per billion (ppb)

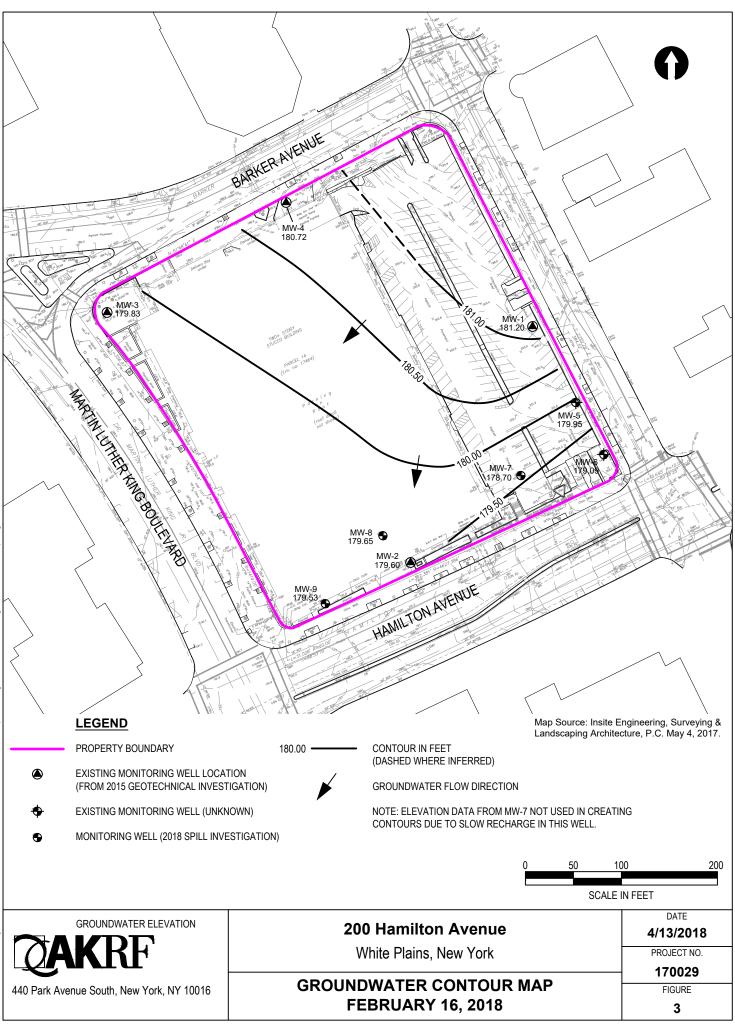
#### Exceedances of NYSDEC Class GA Ambient Standards are highlighted in bold font.

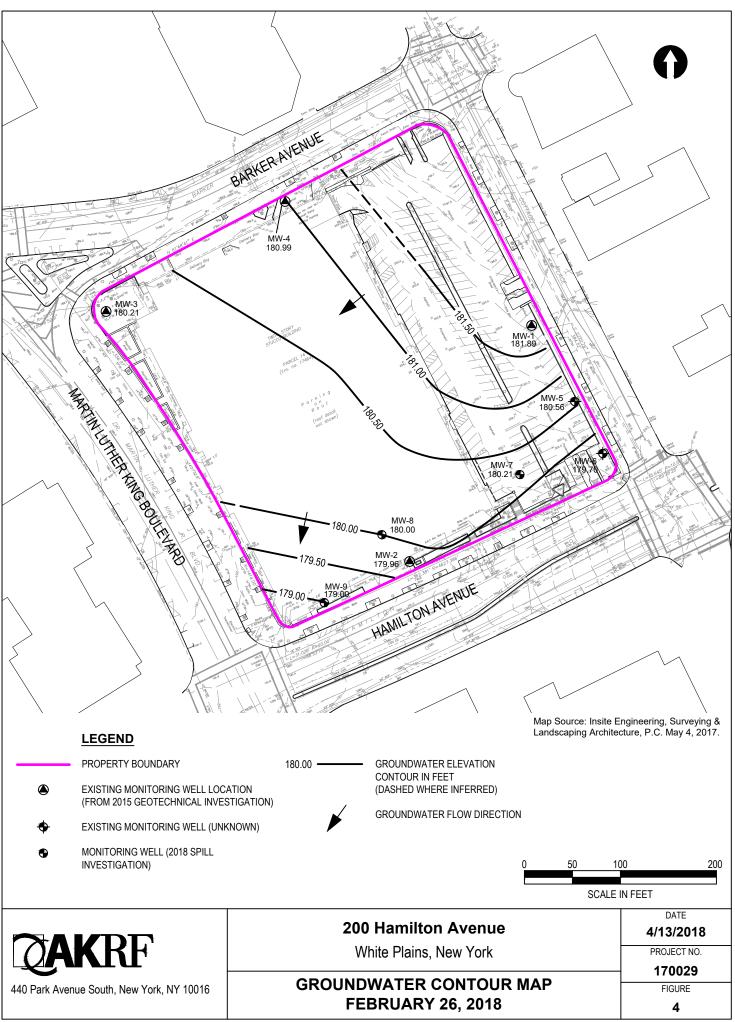
### Table 5200 Hamilton Avenue200 Hamilton Avenue, White Plains, New YorkGroundwater Elevations

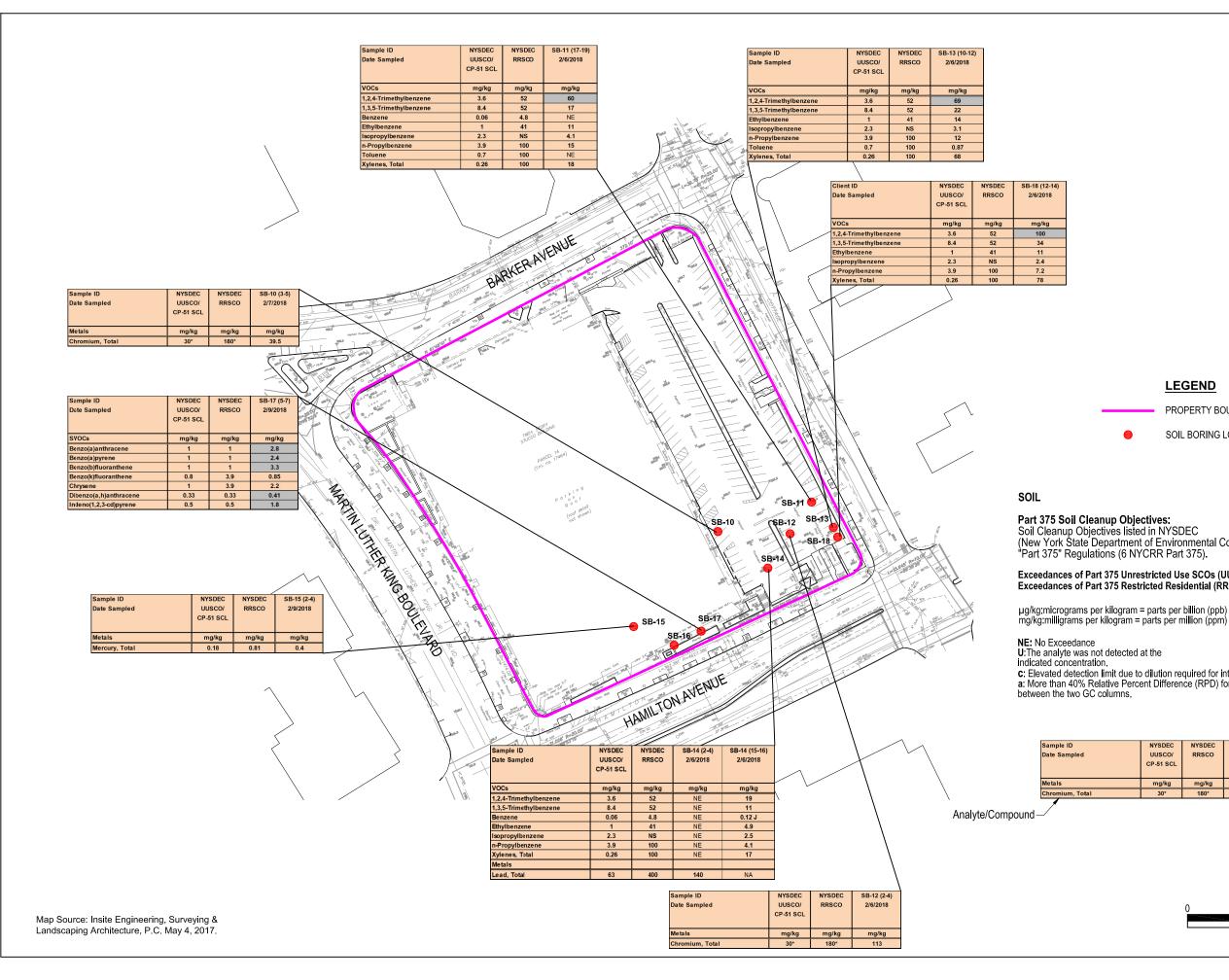

|                 | Top of Well Casing       |               | 2/16/2018                            | 2/26/2018     |                                      |  |
|-----------------|--------------------------|---------------|--------------------------------------|---------------|--------------------------------------|--|
| Monitor Well ID | Elevation<br>(feet NAVD) | DTW<br>(feet) | Groundwater Elevation<br>(feet NAVD) | DTW<br>(feet) | Groundwater Elevation<br>(feet NAVD) |  |
| MW-1            | 199.58                   | 18.38         | 181.20                               | 17.69         | 181.89                               |  |
| MW-2            | 192.02                   | 12.42         | 179.60                               | 12.06         | 179.96                               |  |
| MW-3            | 189.92                   | 10.09         | 179.83                               | 9.71          | 180.21                               |  |
| MW-4            | 191.25                   | 10.53         | 180.72                               | 10.26         | 180.99                               |  |
| MW-5            | 201.36                   | 21.41         | 179.95                               | 20.80         | 180.56                               |  |
| MW-6            | 202.21                   | 23.12         | 179.09                               | 22.51         | 179.70                               |  |
| MW-7            | 202.60                   | 23.90         | 178.70                               | 22.39         | 180.21                               |  |
| MW-8            | 189.58                   | 9.93          | 179.65                               | 9.58          | 180.00                               |  |
| MW-9            | 191.35                   | 11.82         | 179.53                               | 11.45         | 179.90                               |  |


#### Notes:

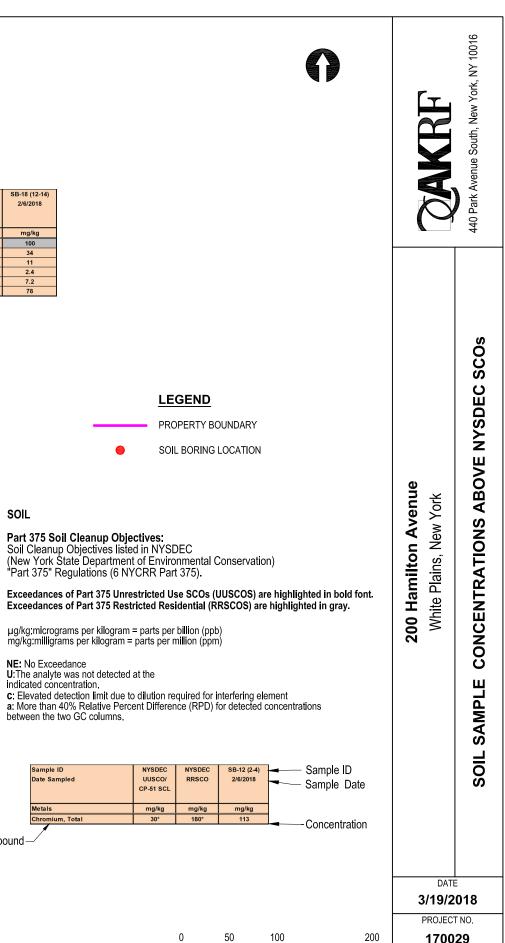
All elevations relative to North American Vertical Datum of 1988 (NAVD 88).


DTW - Depth to Water


FIGURES



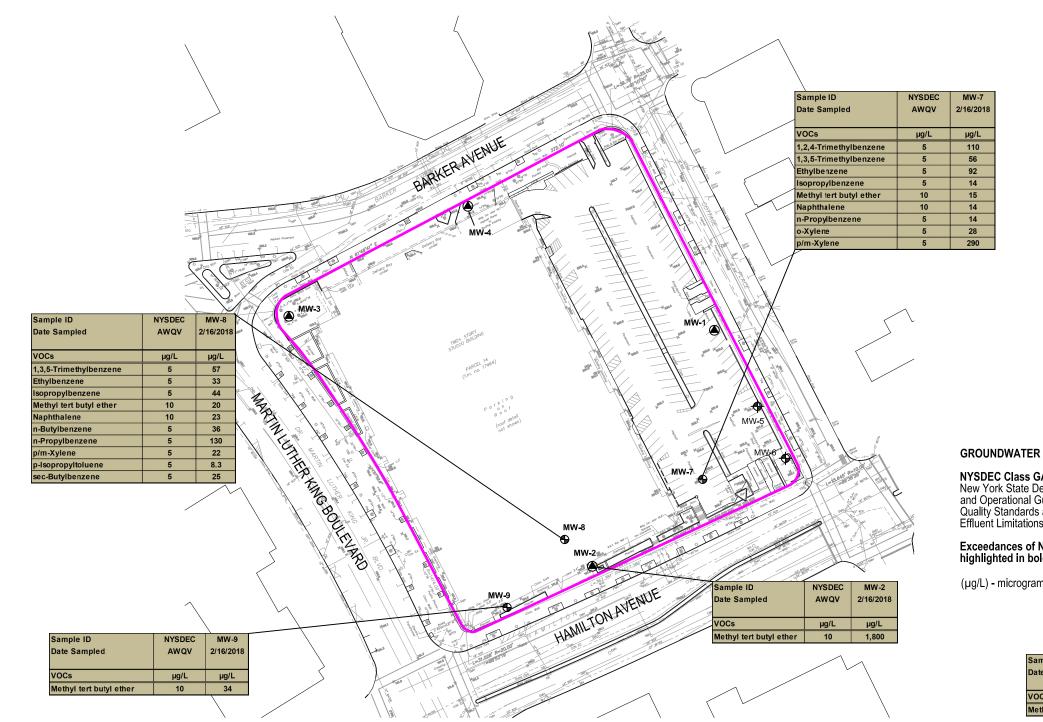




10:19:51 A M Sample with cal\GIS and Graphics\hazmat\170029 Fig 2 Site 200 HAMILTON AVENUE/Techr AKRF

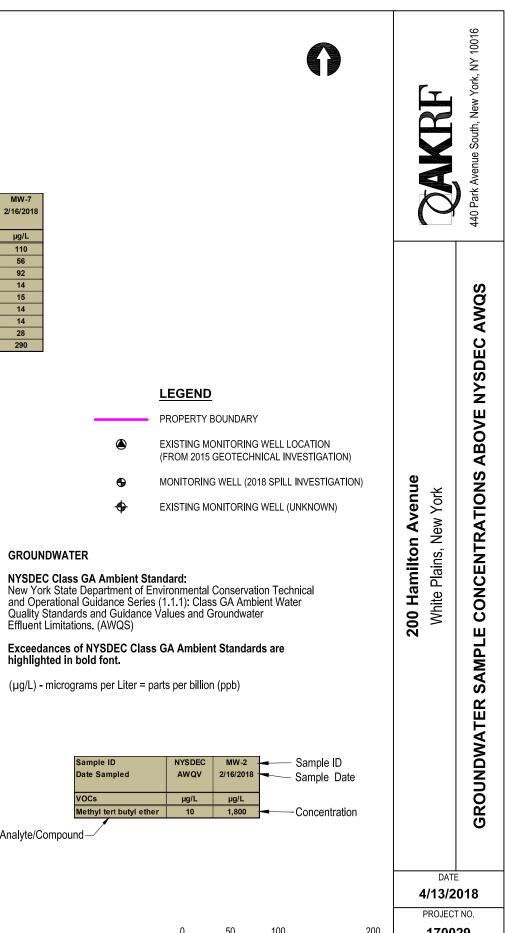







2




SCALE IN FEET

FIGURE

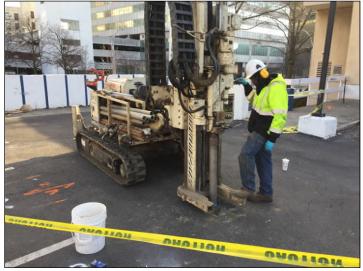
5



Map Source: Insite Engineering, Surveying & Landscaping Architecture, P.C. May 4, 2017.



170029 FIGURE


6

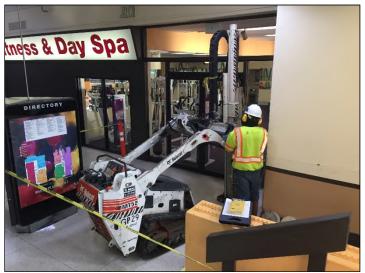
200 SCALE IN FEET

APPENDIX A Photographic Documentation



Photograph 1: Installation of soil boring SB-10 with trackmounted Geoprobe 6620DT.




Photograph 3: Installation of 3.75-inch O.D. hollow casing at SB-14 for the installation of MW-7.



Photograph 2: Soil cores from soil boring SB-10 staged for field screening and sample collection.



Photograph 4: Development of MW-7.



Photograph 5: Installation of soil boring SB-15 with bobcatmounted Geoprobe 540MT.



Photograph 7: Development of MW-15.



Photograph 6: Soil cores from soil boring SB-15 staged for field screening and sample collection.



Photograph 8: Low-flow groundwater sampling equipment set up at MW-5.

APPENDIX B GEOPHYSICAL INVESTIGATION REPORT

# **GEOPHYSICAL ENGINEERING SURVEY REPORT**

White Plains Mall 200 Hamilton Avenue White Plains, New York 10601

NOVA PROJECT NUMBER 18-0644

DATED February 12, 2018

# PREPARED FOR: **AKRF, INC.**

Environmental, Planning, and Engineering Consultants 34 South Broadway, Suite 401 White Plains, NY 10601

**PREPARED BY:** 



Douglaston, New York 1136 347-556-7787 (PHONE) 718-261-1527(FAX) www.nova-gsi.com

# NOVA GEOPHYSICAL SERVICES

SUBSURFACEMAPPING SOLUTIONS 56-01 Marathon Parkway, #765, Douglaston, New York 11362 Ph. 347-556-7787 Fax. 718-261-1527 www.nova-gsi.com

February 12, 2018

### **Timothy McClintock**

Environmental Scientist

# AKRF, INC.

34 South Broadway, Suite 401 White Plains, NY 10601 P) 914.922.2374 C) 914.439.1629 F) 914.949.7559

> Re: Geophysical Engineering Survey (GES) Report White Plains Mall 200 Hamilton Avenue White Plains, New York 10601

Dear Mr. McClintock:

Nova Geophysical Services (NOVA) is pleased to provide findings of the geophysical engineering survey (GES) at the above referenced project site: 200 Hamilton Avenue, White Plains, New York 10601 (the "Site"). Please see attached Site Location and Survey Plan maps for more details.

## INTRODUCTION TO GEOPHYSICAL ENGINEERING SURVEY (GES)

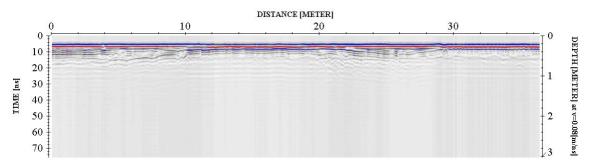
NOVA performed a Geophysical engineering surveys (GES) consisting of a Ground Penetrating Radar (GPR) survey at the site. The purpose of this survey is to locate and identify utilities and other substructures as well as clear boring locations on February 6, 2018.

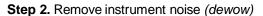
The equipment selected for this investigation was a Sensors and Software Noggin 250 MHz ground penetrating radar (GPR) shielded antenna and a Radio Detection RD7100 utility locator.

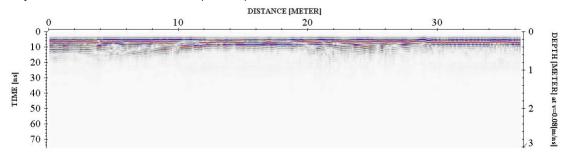
A GPR system consists of a radar control unit, control cable and a transducer (antenna). The control unit transmits a trigger pulse at a normal repetition rate of 250 MHz. The trigger pulse is sent to the transmitter electronics in the transducer via the control cable. The transmitter electronics amplify the trigger pulses into bipolar pulses that are radiated to the surface. The transformed pulses vary in shape and frequency according to the transducer used. In the subsurface, variations of the signal occur at boundaries where there is a dielectric contrast (void, steel, soil type, etc.). Signal reflections travel back to the control unit and are represented as color graphic images for interpolation.

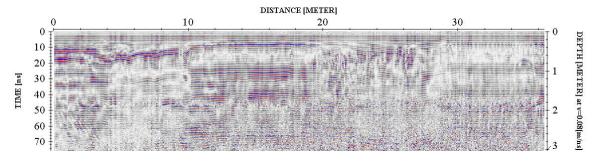


### **GEOPHYSICAL METHODS**

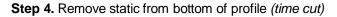

The project site was screened using the GPR to search the specified area and inspected for reflections, which could be indicative of substructures and utilities within the subsurface.

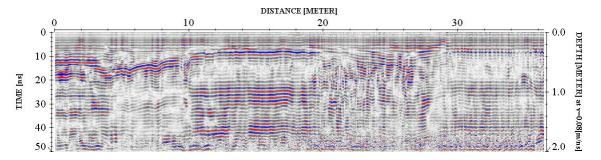

GPR data profiles were collected for the areas of the Site specified by the client. The surveyed areas consisted of asphalt, concrete, soil.

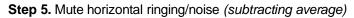

### DATA PROCESSING

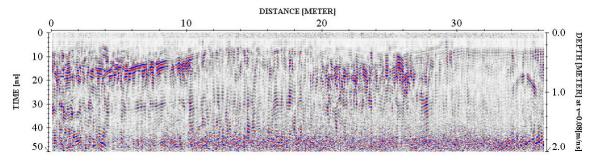

In order to improve the quality of the results and to better identify subsurface anomalies NOVA processed the collected data. The processes flow is briefly described in this section.

Step 1. Import raw RAMAC data to standard processing format




### Step 3. Correct for attenuation losses (energy decay function)









The above example shows the significance of data processing. The last image (step 5) has higher resolution than the starting image (raw data – step 1) and describes the subsurface anomalies more accurately.



### PHYSICAL SETTINGS

NOVA observed following physical conditions at the time of the survey:

Weather: Cloudy

**Temperature:** 30 Degrees (F)

Surface: Concrete, asphalt, soil

**Geophysical Noise Level (GNL):** Geophysical Noise Level (GNL) was high at the site. The noise was the result of being in an urban environment.

### RESULTS

The results of the geophysical engineering survey (GES) identified following at the project Site:

- NOVA identified multiple gas, electric, water, sewer and telecom lines within the survey area as shown in the site survey plan.
- NOVA did not identify any anomalies resembling an underground storage tank on the site.
- All detected subsurface anomalies were marked in the onsite mark out.
- All cleared boring locations were shown in the onsite mark out.
- The Survey Plan portrays the subsurface areas investigated during the GES.

If you have any questions, please do not hesitate to contact the undersigned. Sincerely,

### **NOVA Geophysical Services**

Swart Chell

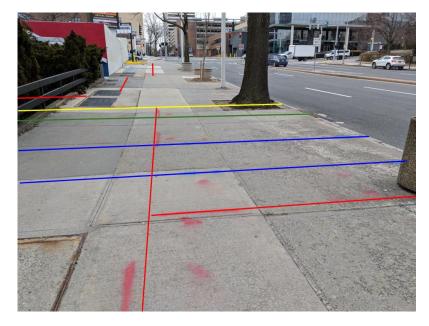
Levent Eskicakit, P.G., E.P. Project Engineer

Attachments: Site Location Map Survey Plan Geophysical Images

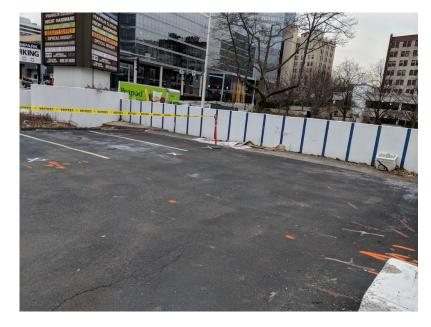




56-01 Marathon Parkway # 765 Douglaston, New York 11362 347-556-7787 (PHONE) 718-261-1527(FAX)


www.nova-gsi.com

| UTE.    | 200 Hamilton Avenue,<br>White Plains, New York 10601 |
|---------|------------------------------------------------------|
| CLIENT: | AKRF                                                 |
| DATE:   | February 6, 2018                                     |
| AUTH:   | Chris Steinley                                       |
|         |                                                      |


| Coogle Earth                                                                                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                         | SURVEY PLAN                                                                                                                                                                                        | LEGEND                                                                                                                                                                           |
| <b>NOVA</b><br><b>GEOPHYSICAL</b><br><b>ENGINEERING</b><br>Subsurface Mapping Solutions<br>56-01 Marathon Parkway # 765<br>Douglaston, New York 11362<br>347-556-7787 (PHONE)<br>718-261-1527 (FAX)<br>www.nova-gsi.com | SITE:       White Plains Mall         200 Hamilton Avenue,         White Plains, New York 10601         CLIENT:       AKRF         DATE:       February 6, 2018         AUTH:       Chris Steinley | <ul> <li>Survey Area</li> <li>Sewer</li> <li>Floor Drain</li> <li>Electric</li> <li>Electric Vault</li> <li>Water</li> <li>Trench Drain</li> <li>Gas</li> <li>Telecom</li> </ul> |











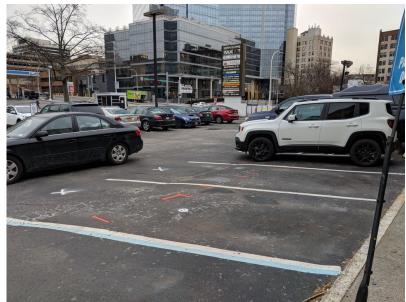


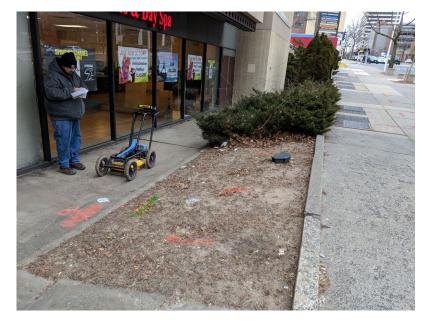

























APPENDIX C FIELD LOGS

| SOI                                                  | L BC                                              | ORING LOG                                                                             |                                                                                       | amilton Avenue                            |                               | ring ID:<br>1 of 2 | -                  | SB             | -10                                                  |
|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|--------------------|--------------------|----------------|------------------------------------------------------|
|                                                      |                                                   |                                                                                       | -                                                                                     | ect Number: 170029<br>Geoprobe DPP        |                               | 1 of 2             |                    |                |                                                      |
|                                                      | $\Delta \Lambda$                                  | <b>K</b> RF                                                                           | Drilling Method:<br>Sampling Method:                                                  | 5' Macrocores                             | Drilling                      |                    |                    | L              |                                                      |
|                                                      | <u>4</u> 71                                       | <b>NIU</b>                                                                            | Driller:                                                                              | Cascade Drilling                          | -Start Time                   | <b>::</b> 8:20     |                    | Finish Ti      | <b>me:</b> 9:25                                      |
| 110                                                  | Park Ave                                          | enue South, 7 <sup>th</sup> Floor                                                     | Weather:                                                                              | 30 °F, Cloudy                             |                               |                    |                    |                |                                                      |
| -+0                                                  |                                                   | ork, NY 10016                                                                         | Logged By:                                                                            | T. McClintock, AKRF                       | <b>Date:</b> 2/7/2            | 2018               |                    |                |                                                      |
| Depth (feet)                                         | Recovery<br>(Inches)                              |                                                                                       | urface Condition                                                                      |                                           | Odor                          | Moisture           | (mqq) Olq          | NAPL           | Soil Samples<br>Collected for<br>Laboratory Analysis |
|                                                      |                                                   | Top 5": ASPHALT<br>Bottom 44": Brown<br>Asphalt (FILL).<br>Top 5": SLOUGH.            |                                                                                       | L (FILL).<br>e Gravel, little Silt, trace | ND<br>ND<br>ND                | Dry<br>Dry<br>Dry  | ND<br>ND<br>ND     | ND<br>ND<br>ND | SB-10 (3-5)<br>at 9:25                               |
| <br>9<br>10                                          | 20                                                | Middle 12": Brown<br>Bottom 3": Fine GF                                               |                                                                                       | Gravel, little Silt (FILL).<br>(FILL).    | ND<br>ND                      | Dry<br>Dry         | ND<br>ND           | ND<br>ND       |                                                      |
| _11_                                                 |                                                   | Top 4": SLOUGH.                                                                       |                                                                                       |                                           | ND                            | Dry                | ND                 | ND             |                                                      |
| <u>12</u><br><u>13</u>                               | 29                                                | Middle 7": Fine GR                                                                    | AVEL, trace Silt.                                                                     |                                           | ND                            | Dry                | ND                 | ND             |                                                      |
| _ <u>14</u>                                          |                                                   | Bottom 18": Brown                                                                     | SAND, some Sil                                                                        | t, little fine Gravel.                    | ND                            | Dry                | ND                 | ND             |                                                      |
| _16_                                                 |                                                   | Top 12": SLOUGH                                                                       | l.                                                                                    |                                           | ND                            | Dry                | ND                 | ND             |                                                      |
| <u>17</u><br><u>18</u>                               | 49                                                | Middle 9": Brown S                                                                    | SAND and SILT, t                                                                      | race fine Gravel.                         | ND                            | Dry                | ND                 | ND             |                                                      |
| <u>19</u><br>20                                      |                                                   | Bottom 28": Brown                                                                     | SAND, little Silt,                                                                    | trace fine Gravel.                        | ND                            | Dry                | ND                 | ND             |                                                      |
| Notes:<br>Conse<br>Groun<br>End of<br>Pl<br>Soil cla | rvatior<br>dwater<br>soil b<br>D = ph<br>assifica | n and Recovery Ad<br>r encountered at a<br>oring at 30 feet be<br>notoionization dete | et (RCRA) 8 Meta<br>pproximately 23<br>low grade.<br>ector ppm =<br>ons presented are | feet below grade durin                    | ng soil boring<br>NAPL = non- | g installation     | on.<br>Dhase liqui | id ND =        | - not detected                                       |

| AKRF Project Number: 170029       Sheet 2 of 2         Image: AKRF Project Number: 170029       Sheet 2 of 2         Image: AKRF Project Number: 170029       Sheet 2 of 2         Image: AKRF Project Number: 170029       Drilling         Image: AKRF Project Number: 170029       Sheet 2 of 2         Image: AKRF Project Number: 170029       Drilling         Sampling Method:       Geoprobe DPP         Sampling Method:       5' Macrocores         Driller:       Cascade Drilling         Weather:       30 °F, Cloudy         Logged By:       T. McClintock, AKRF         Date: 2/7/2018         Image: Algorithm Project Number: Asphalt         Soil Samples Collected for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SOIL BORING LOG       AKRF Project Number: 170029       Solution         Image: Acceleration of the state of the | Soil Boi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ring ID:           |                                                  | SB.                 | -10            |            |                   |                   |                |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------|---------------------|----------------|------------|-------------------|-------------------|----------------|--|--|
| Disting Method:<br>More Vick, NY 10318       Disting Method:<br>Distribution:<br>Mark Vick, NY 10318       Distribution:<br>Distribution:<br>Mark Vick, NY 10318       Distribution:<br>Distribution:<br>Mark Vick, NY 10318       Distribution:<br>Distribution:<br>Mark Vick, NY 10318       Distribution:<br>Distribution:<br>Mark Vick, NY 10318       Finish Time: 9:25         0<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                  | ect Number: 170029  | Sheet          | 2 of 2     |                   | 30                | -10            |  |  |
| Moment South, 7* For<br>New York, Nº 10016       Differ:       Classcade During<br>Uageed By:       Date:       277/2018         9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\cap$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -                                                |                     | Drilling       |            |                   |                   |                |  |  |
| Moment South, 7* For<br>New York, Nº 10016       Differ:       Classcade During<br>Uageed By:       Date:       277/2018         9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 440 Park Avenue South, 7 <sup>th</sup> Floo<br>New York, NY 10016<br>Top 24": SLO<br>55<br>Bottom 31": B<br>56<br>Middle 26": Bu<br>Bottom 4": Bla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (KF)               | Sampling Method:                                 | 5' Macrocores       | Start Time     | . 0.20     |                   | Finish Time: 0:25 |                |  |  |
| New York, NY 10016     Logget By:     T. McClintock, ARRF     Date: 2712010       9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H40 Park Avenue South, 7th Floo         New York, NY 10016         Image: Second stress of the |                    | Driller:                                         | Cascade Drilling    | Start Time     | : 8:20     | Finish Lime: 9:25 |                   |                |  |  |
| New York, W1 1011s       Logged By:       [1. McCuntock, AKP         9g<br>gd<br>gd<br>gd<br>gd       9g<br>gd<br>gd       9g<br>gd                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                  |                     | Date: 2/7/2    | 018        |                   |                   |                |  |  |
| 21       Top 24": SLOUGH.       ND       Dry       ND       ND       SB-10 (20-22) at 9:20         23       55       Bottom 31": Brown SAND, little Silt, trace fine Gravel.       Septic-Like at 23"       at 23"       0.1       ND       ND         24       56       Top 26": SLOUGH.       ND       Dry       ND       ND       ND         25       56       Top 26": SLOUGH.       ND       Dry       ND       ND       ND         26       4       Top 26": SLOUGH.       ND       Dry       ND       ND       ND         27       56       Middle 26": Brown SAND, little Silt, trace fine Gravel.       Septic - Like       Wet       0.1       ND         28       56       Middle 26": Brown SAND and SILT, some fine Gravel.       Organic - Uke at 29"       0       ND         30       31       32       33       34       35       36       34       34       34       35         36       37       38       40       40       40       40       40       40       40         37       38       40       40       40       40       40       40       40       40       40         38       40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ew Yo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rk, NY 10016       | Logged By:                                       | T. McClintock, AKRF | Duto: 2/1/2    | 010        |                   |                   | 1              |  |  |
| Top 24": SLOUGH.       ND       Dry       ND       ND       SB-10 (20-22) at 9:20         22       55       Bottom 31": Brown SAND, little Silt, trace fine Gravel.       Septic-<br>Like at 23"       Wet       0.1       ND       ND         24       56       Middle 26": SLOUGH.       ND       Dry       ND       ND       ND         26       56       Middle 26": Brown SAND, little Silt, trace fine Gravel.       Septic -<br>Like at 23"       Wet       0.1       ND         28       56       Middle 26": Brown SAND, little Silt, trace fine Gravel.       Septic -<br>Like       Wet       0.1       ND         29       56       Bottom 4": Black SAND and SiLT, some fine Gravel.       Organic -<br>Like at 29"       Wet       0.1       ND         31       32       33       4       0       1       1       1         33       34       4       4       4       4       4       4       4         36       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4 <th>Depth (feet)<br/>Recovery</th> <th>(Inches)</th> <th>S</th> <th>urface Condition</th> <th>: Asphalt</th> <th>Odor</th> <th>Moisture</th> <th>PID (ppm)</th> <th>NAPL</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depth (feet)<br>Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S                  | urface Condition                                 | : Asphalt           | Odor           | Moisture   | PID (ppm)         | NAPL              |                |  |  |
| 23       Bottom 31*: Brown SAND, little Silt, trace fine Gravel.       Septic-<br>Like at 23       Wet<br>at 23'       0.1<br>0.1       ND       ND         26       Top 26*: SLOUGH.       ND       Dry       ND       ND         27       56       Middle 26*: Brown SAND, little Silt, trace fine Gravel.       Septic-<br>Like at 23'       Wet<br>0.1       0.1       ND         28       56       Middle 26*: Brown SAND, little Silt, trace fine Gravel.       Septic-<br>Like at 29'       Wet<br>0.1       ND       ND         29       Bottom 4*: Black SAND and SILT, some fine Gravel.       Organic -<br>Like at 29'       Wet<br>0.1       ND       ND         30       Image: Septic -<br>Like at 29'       Image: Septic -<br>Like at 29'       Image: Septic -<br>Like at 29'       ND       ND         31       32       Image: Septic -<br>Like at 29'                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Top 24": SLOUGH    |                                                  |                     | ND             | Dry        | ND                | ND                | SB-10 (20-22)  |  |  |
| 27.<br>28.<br>30       56       Middle 26°: Brown SAND, little Silt, trace fine Gravel.<br>Bottom 4°: Black SAND and SILT, some fine Gravel.<br>Uke at 29°       Septic -<br>Like       Wet       0.1       ND         30       0       0       0       0       0         31       0       0       0       0       0         32       0       0       0       0       0         33       0       0       0       0       0         34       0       0       0       0       0         35       0       0       0       0       0         36       0       0       0       0       0       0         36       0       0       0       0       0       0       0         37       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>23</u><br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bottom 31": Brown  | SAND, little Silt, t                             | race fine Gravel.   |                |            | 0.1<br>0.1        | ND                | at 9:20        |  |  |
| 28       56       Middle 26": Brown SAND, little Silt, trace fine Gravel.       Septic -<br>Like       Wet       0.1       ND         29       Bottom 4": Black SAND and SILT, some fine Gravel.       Organic -<br>Like at 29       Wet       0.2       ND         30       Image: Comparison of the second | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Top 26": SLOUGH    |                                                  |                     | ND             | Dry        | ND                | ND                |                |  |  |
| 29       Bottom 4*: Black SAND and SILT, some fine Gravel.       Organic - Like at 29'       Wet       0.2       ND         30       0       0       0       0       0         31       1       0       0       0       0         32       0       0       0       0       0         33       0       0       0       0       0       0         34       0       0       0       0       0       0       0         36       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Middle 26": Brown  | ddle 26": Brown SAND, little Silt, trace fine Gr |                     |                | Wet        | 0.3               | ND                |                |  |  |
| 32         33         34         35         36         37         38         39         40         Otes: Soil samples analyzed for Commissioners Policy (CP-51) VOCs (EPA 8260), CP-51 SVOCs (EPA 8270), and Resource conservation and Recovery Act (RCRA) 8 Metals plus Zinc.         iroundwater encountered at approximately 23 feet below grade during soil boring installation.         ind of soil boring at 30 feet below grade.         PID = photoionization detector       pm = parts per million         NAPL = non-aqueous phase liquid       ND = not detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bottom 4": Black S | AND and SILT, so                                 | ome fine Gravel.    | -              | Wet        | 0.2<br>0.1        | ND                |                |  |  |
| 33       34         34       35         35       36         36       37         38       39         40       40         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100         100       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                  |                     |                |            |                   |                   |                |  |  |
| 35       36         36       37         37       38         39       40         100tes: Soil samples analyzed for Commissioners Policy (CP-51) VOCs (EPA 8260), CP-51 SVOCs (EPA 8270), and Resource conservation and Recovery Act (RCRA) 8 Metals plus Zinc.         ioroundwater encountered at approximately 23 feet below grade during soil boring installation.         Ind of soil boring at 30 feet below grade.         PID = photoionization detector       ppm = parts per million         NAPL = non-aqueous phase liquid       ND = not detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                  |                     |                |            |                   |                   |                |  |  |
| 36       37         37       38         38       39         40       40         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                  |                     |                |            |                   |                   |                |  |  |
| 37       38         38       39         40       9         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                  |                     |                |            |                   |                   |                |  |  |
| 39       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                  |                     |                |            |                   |                   |                |  |  |
| 40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                  |                     |                |            |                   |                   |                |  |  |
| otes: Soil samples analyzed for Commissioners Policy (CP-51) VOCs (EPA 8260), CP-51 SVOCs (EPA 8270), and Resource<br>conservation and Recovery Act (RCRA) 8 Metals plus Zinc.<br>Froundwater encountered at approximately 23 feet below grade during soil boring installation.<br>Ind of soil boring at 30 feet below grade.<br>PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                  |                     |                |            |                   |                   |                |  |  |
| aroundwater encountered at approximately 23 feet below grade during soil boring installation.<br>Ind of soil boring at 30 feet below grade.<br>PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lotes: So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                  |                     | s (EPA 8260)   | , CP-51 S\ | /OCs (EP/         | A 8270), ar       | nd Resource    |  |  |
| PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | roundwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | encountered at a   | pproximately 23                                  |                     | ng soil boring | installati | on.               |                   |                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                  | parts per million   | NAPL = non-#   | aqueous n  | hase liqui        | id ND =           | = not detected |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                  |                     |                |            |                   |                   |                |  |  |

| SOI                                              | L BC                                              | DRING LOG                                                                            | 200 Ha                                                                                       | amilton Avenue                               | Soil Boi                      | ring ID:  |                                        | SB        | -11                                                  |
|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|-----------|----------------------------------------|-----------|------------------------------------------------------|
|                                                  |                                                   |                                                                                      | AKRF Proj                                                                                    | ect Number: 170029                           | Sheet                         | 1 of 2    |                                        |           | • •                                                  |
|                                                  |                                                   | <b>VDL</b>                                                                           | Drilling Method:                                                                             | Geoprobe DPP                                 | Drilling                      |           |                                        | T         |                                                      |
| (                                                | ZA                                                | KRF                                                                                  | Sampling Method:                                                                             | 5' Macrocores                                | Start Time                    | : 9:40    |                                        | Finish Ti | <b>me:</b> 11:05                                     |
|                                                  |                                                   | o <del></del>                                                                        | Driller:                                                                                     | Cascade Drilling                             |                               |           |                                        |           |                                                      |
| 440                                              |                                                   | enue South, 7 <sup>th</sup> Floor<br>ork, NY 10016                                   | Weather:<br>Logged By:                                                                       | 30 °F, Cloudy<br>T. McClintock, AKRF         | - Date: 2/6/2                 | 018       |                                        |           |                                                      |
| •                                                |                                                   |                                                                                      | Logged By.                                                                                   | T. MCOIIIIOCK, ARTRI                         |                               |           |                                        |           |                                                      |
| Depth (feet)                                     | Recovery<br>(Inches)                              | S                                                                                    | urface Conditior                                                                             | : Asphalt                                    | Odor                          | Moisture  | (mqq) Ol9                              | NAPL      | Soil Samples<br>Collected for<br>Laboratory Analysis |
| _1<br>_2                                         | 42                                                | Top 5": ASPHALT                                                                      | and fine GRAVE                                                                               | L (FILL).                                    | ND                            | Dry       | ND                                     | ND        |                                                      |
| <u>3</u>                                         |                                                   | Bottom 37": Brown<br>roots (FILL).                                                   | SAND, little Silt,                                                                           | fine Gravel, trace wood,                     | ND                            | Dry       | ND                                     | ND        |                                                      |
| _6                                               |                                                   | Top 8": SLOUGH.                                                                      |                                                                                              |                                              | ND                            | Dry       | ND                                     | ND        |                                                      |
| 7<br>8                                           | <br>53<br>                                        |                                                                                      | SAND, little Silt, f                                                                         | ine Gravel.                                  | ND                            | Dry       | ND                                     | ND        | SB-11 (5-7)<br>at 11:05                              |
| <u>9</u><br>10                                   |                                                   | Bottom 5": Gray S/                                                                   | AND, little Silt, tra                                                                        | ce fine Gravel.                              | ND                            | Dry       | ND                                     | ND        |                                                      |
| 11                                               |                                                   | Top 13": SLOUGH                                                                      |                                                                                              |                                              | ND                            | Dry       | ND                                     | ND        |                                                      |
| _ <u>12</u><br>_ <u>13</u><br>_ <u>14</u><br>_15 | 55                                                | Bottom 42": Gray S                                                                   | SAND, some fine                                                                              | Gravel, little Silt.                         | Petro -<br>Like at 12'        | Dry       | 0.5<br>1.6<br>6.1<br>2.5<br>1.8<br>2.9 | ND        |                                                      |
| <u>16</u><br>17                                  |                                                   | Top 12": SLOUGH                                                                      |                                                                                              |                                              | Petro -<br>Like               | Dry       | 0.7<br>1.7<br>1.3                      | ND        |                                                      |
| 18<br>19                                         | 48                                                | Bottom 36": Gray S                                                                   | SAND, little fine G                                                                          | ravel, Silt.                                 | Petro -<br>Like               | Dry       | 1.2<br>53.2<br>6<br>3.6<br>1.1         | ND        | SB-11 (17-19)<br>at 11:00                            |
| Conse<br>Groun<br>End of<br>Pl<br>Soil cla       | rvatior<br>dwater<br>soil b<br>D = ph<br>assifica | n and Recovery Ad<br>r was not encount<br>oring at 22 feet be<br>notoionization dete | et (RCRA) 8 Meta<br>ered during soil<br>low grade due to<br>ector ppm =<br>ons presented are | boring installation.<br>DPP refusal on appar | rent cobbles.<br>NAPL = non-a | aqueous p | VOCs (EP/                              | id ND =   | = not detected                                       |

| 601             |                      |                                              | 200 Ha               | milton Avenue                        | Soil Bo                 | ring ID:     |                 | <b>6</b> D  | 4.4                                                  |
|-----------------|----------------------|----------------------------------------------|----------------------|--------------------------------------|-------------------------|--------------|-----------------|-------------|------------------------------------------------------|
| 301             |                      | ORING LOG                                    | AKRF Proje           | ct Number: 170029                    | Sheet                   | 2 of 2       |                 | SB          | - 1 1                                                |
|                 |                      |                                              | Drilling Method:     | Geoprobe DPP                         | Drilling                |              |                 |             |                                                      |
| (               | <u>9</u> AI          | KRF                                          | Sampling Method:     | 5' Macrocores                        | Start Time              | <b>9</b> :40 |                 | Finish Ti   | <b>me:</b> 11:05                                     |
| 440             | Park Ave             | nue South, 7 <sup>th</sup> Floor             | Driller:<br>Weather: | Cascade Drilling<br>30 °F, Cloudy    |                         |              |                 |             |                                                      |
|                 |                      | ork, NY 10016                                | Logged By:           | T. McClintock, AKRF                  | <b>Date:</b> 2/6/2      | 2018         |                 | -           |                                                      |
| Depth (feet)    | Recovery<br>(Inches) | S                                            | urface Condition     | : Asphalt                            | Odor                    | Moisture     | PID (ppm)       | NAPL        | Soil Samples<br>Collected for<br>Laboratory Analysis |
|                 |                      | Top 15": SLOUGH                              |                      |                                      | Petro -                 | Dry          | 5.4             | ND          |                                                      |
| <u>21</u><br>22 | 36                   | Bottom 21": White/<br>Silt.                  | /Red/Blank SAND      | and fine Gravel, trace               | Like<br>Petro -<br>Like | Dry          | 4.1<br>2<br>2.2 | ND          |                                                      |
| 23              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 24              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 25              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 26              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 20              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 27              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 20              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 30              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 31              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 32              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 33              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 34              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 35              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 36              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 37              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 38              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 39              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
| 40              |                      |                                              |                      |                                      |                         |              |                 |             |                                                      |
|                 |                      |                                              |                      | rs Policy (CP-51) VOC                | s (EPA 8260)            | , CP-51 S    | VOCs (EP/       | A 8270), ar | nd Resource                                          |
|                 |                      | and Recovery Ac                              |                      | s plus Zinc.<br>poring installation. |                         |              |                 |             |                                                      |
| End of          | f soil b             | oring at 22 feet be                          | low grade on app     | parent cobbles.                      |                         |              |                 |             |                                                      |
|                 |                      | otoionization dete                           |                      |                                      | NAPL = non-             |              |                 |             | not detected                                         |
|                 |                      | tions and description<br>ntal purposes only. |                      | based on the Modified E              | ourmister Clas          | ssilication  | system. De      | escriptions | were aevelopea                                       |

| SOI                               | LBC                         | ORING LOG                                                     | 200 Ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | amilton Avenue                           | Soil Bo       | oring ID:       |           | SB        | -12              |
|-----------------------------------|-----------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|-----------------|-----------|-----------|------------------|
| •••                               | `                           |                                                               | AKRF Proj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ect Number: 170029                       | Sheet         | 1 of 2          |           | 00        | . –              |
|                                   | 2-1                         |                                                               | Drilling Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Geoprobe DPP                             | Drilling      |                 |           |           |                  |
| (                                 | 9A                          | <b>K</b> RF                                                   | Sampling Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5' Macrocores                            | Start Time    | <b>a.</b> 15:05 |           | Finish Ti | <b>me:</b> 15:50 |
|                                   |                             |                                                               | AKRF Project Number: 170029     Sheet 1 of 2       Diffing Method:     Sequence DPP     Diffing       Sampling Method:     S' Macrocores     Start Time: 15:05     Finish Time: 15:50       Driffer:     Cascade Driffing     Start Time: 15:05     Finish Time: 15:50       Weather:     30 °F, Cloudy     Date: 2/6/2018     Soil Samples       Surface Condition:     Asphalt     So     Soil Samples       ":     ASPHALT and fine GRAVEL (FILL).     ND     Dry     ND     ND       ":     ASPHALT and fine GRAVEL (FILL).     ND     Dry     ND     ND       ":     ASPHALT and fine GRAVEL (FILL).     ND     Dry     ND     ND       ":     ASPHALT and fine GRAVEL (FILL).     ND     Dry     ND     ND       ":     SLOUGH.     ND     Dry     ND     ND       ":     SLOUGH.     ND     Dry     ND     ND       2':     SLOUGH.     ND     Dry     ND     ND       and ':     Brown SAND, little Silt, fine Gravel.     ND     Dry     ND     ND       2':     SLOUGH.     ND     Dry     ND     ND     ND  | ne. 15.50                                |               |                 |           |           |                  |
| 440                               |                             | enue South, 7 <sup>th</sup> Floor                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | Date: 2/6/    | 2018            |           |           |                  |
|                                   | New Y                       | ork, NY 10016                                                 | Driller:       Classcade Drilling       Date:       2/6/2018         Weather:       D30 *F. Cloudy       Date:       2/6/2018         Surface Condition:       Asphalt       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B |                                          |               |                 |           |           |                  |
| Depth (feet)                      | Recovery<br>(Inches)        | S                                                             | urface Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : Asphalt                                | Odor          | Moisture        | PID (ppm) | NAPL      |                  |
| _1<br>_2                          | 44                          | Top 3": ASPHALT                                               | and fine GRAVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L (FILL).                                | ND            | Dry             | ND        | ND        |                  |
| 45                                |                             | Bottom 41": Brown                                             | SAND, little Silt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fine Gravel (FILL).                      | ND            | Dry             | ND        | ND        |                  |
| 6<br>7                            | 10                          | Top 8": SLOUGH.                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | ND            | Dry             | ND        | ND        |                  |
| <u>8</u>                          | 48                          | Bottom 40": Brown                                             | SAND, little Silt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fine Gravel.                             | ND            | Dry             | ND        | ND        |                  |
| _ <u>11</u>                       | 42                          | Top 12": SLOUGH                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | ND            | Dry             | ND        | ND        |                  |
| _ <u>13</u><br>_ <u>14</u><br>_15 |                             | Bottom 30": Brown                                             | SAND, little Silt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fine Gravel.                             | ND            | Dry             | ND        | ND        |                  |
| _ <u>16</u>                       |                             | Top 7": SLOUGH.                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | ND            | Dry             | ND        | ND        | SB-12 (15-16)    |
| _ <u>18</u>                       | 37                          | Bottom 30": Brown                                             | SAND, little Silt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fine Gravel.                             | ND            |                 | ND        | ND        | . ,              |
| Conse<br>Groun<br>End of          | rvatior<br>dwater<br>soil b | n and Recovery Ac<br>r was encountered<br>oring at 25 feet be | ct (RCRA) 8 Meta<br>I at approximate<br>Iow grade.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lls plus Zinc.<br>Iy 16 feet below grade | during soil b | oring insta     | allation. |           |                  |
| Р                                 | lD = ph                     | notoionization dete                                           | ector ppm =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | NAPL = non-   |                 |           |           | not detected     |
|                                   |                             |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | based on the Modified I                  |               |                 |           |           | were developed   |
|                                   |                             | ental purposes only.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |               |                 |           |           | <b>1</b>         |
| 5. 0.11                           |                             |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |               |                 |           |           |                  |

| 201                |                      |                                                    | 200 Ha                       | milton Avenue                                                   | Soil Bo            | ring ID:      |            | 00          | 40                                                   |
|--------------------|----------------------|----------------------------------------------------|------------------------------|-----------------------------------------------------------------|--------------------|---------------|------------|-------------|------------------------------------------------------|
| 301                | LB                   | DRING LOG                                          | AKRF Proje                   | ct Number: 170029                                               | Sheet              | 2 of 2        |            | SB-         | 12                                                   |
|                    |                      | VDE                                                | Drilling Method:             | Geoprobe DPP                                                    | Drilling           |               |            |             |                                                      |
| (                  | <b>Z</b> A           | <b>K</b> RF                                        | Sampling Method:<br>Driller: | 5' Macrocores<br>Cascade Drilling                               | Start Time         | : 15:05       |            | Finish Tir  | <b>ne:</b> 15:50                                     |
| 440                |                      | enue South, 7 <sup>th</sup> Floor<br>ork, NY 10016 | Weather:<br>Logged By:       | 30 °F, Cloudy<br>T. McClintock, AKRF                            | <b>Date:</b> 2/6/2 | 2018          |            |             |                                                      |
| Depth (feet)       | Recovery<br>(Inches) | S                                                  | urface Condition             | : Asphalt                                                       | Odor               | Moisture      | (mqq) Olq  | NAPL        | Soil Samples<br>Collected for<br>Laboratory Analysis |
| _2 <u>1</u><br>_22 |                      | Top 3": SLOUGH.                                    |                              |                                                                 | ND                 | Wet           | ND         | ND          |                                                      |
| _ <u>23</u><br>_24 | 32                   | Bottom 29": Gray S                                 | SAND, little Silt, fin       | e Gravel.                                                       | ND                 | Wet           | ND         | ND          |                                                      |
| 25                 |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| 26                 |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| 27                 |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| 28                 |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| 29                 |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| 30                 |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| 31<br>32           |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| 33                 |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| 34                 |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| 35                 |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| 36                 |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| 37                 |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| 38                 |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| 39                 |                      |                                                    |                              |                                                                 |                    |               |            |             |                                                      |
| Conse<br>Groun     | rvation<br>dwate     | n and Recovery Ad                                  | ct (RCRA) 8 Metal            | rs Policy (CP-51) VOC<br>Is plus Zinc.<br>y 16 feet below grade |                    |               |            | A 8270), an | d Resource                                           |
| Р                  | ID = ph              | notoionization dete                                | ector ppm =                  | parts per million                                               | NAPL = non-        | aqueous p     | hase liqui | d ND =      | not detected                                         |
|                    |                      | tions and descriptic<br>ental purposes only.       |                              | based on the Modified                                           | Burmister Clas     | ssification S | System. De | escriptions | were developed                                       |
|                    | - I OI II IE         | anai puipuses uilly.                               |                              |                                                                 |                    |               |            |             |                                                      |

| 501                      |                             | ORING LOG                                                 | 200 Ha                                                   | amilton Avenue                                | Soil Bo                            | ring ID:   |                                  | SB          | 12                                                   |
|--------------------------|-----------------------------|-----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|------------------------------------|------------|----------------------------------|-------------|------------------------------------------------------|
|                          |                             |                                                           | AKRF Proi                                                | ect Number: 170029                            | Sheet                              | 1 of 1     | 1                                | 30          | 13                                                   |
|                          |                             |                                                           | Drilling Method:                                         | Geoprobe DPP                                  | Drilling                           |            |                                  |             |                                                      |
| (                        | 0AI                         | KRF                                                       | Sampling Method:                                         | 5' Macrocores                                 |                                    | . 44.05    |                                  | Electron Th |                                                      |
| _                        |                             |                                                           | Driller:                                                 | Cascade Drilling                              | Start Time                         | : 11:05    |                                  | Finish Ti   | <b>ne:</b> 12:05                                     |
| 440                      | Park Ave                    | enue South, 7 <sup>th</sup> Floor                         | Weather:                                                 | 30 °F, Cloudy                                 | Date: 2/6/2                        | 010        |                                  |             |                                                      |
|                          | New Ye                      | ork, NY 10016                                             | Logged By:                                               | T. McClintock, AKRF                           | Date: 2/0/2                        | 010        |                                  |             |                                                      |
| Depth (feet)             | Recovery<br>(Inches)        | S                                                         | urface Condition                                         | : Asphalt                                     | Odor                               | Moisture   | PID (ppm)                        | NAPL        | Soil Samples<br>Collected for<br>Laboratory Analysis |
| _1_<br>_2_               | 50                          | Top 5": ASPHALT                                           | and fine GRAVE                                           | _ (FILL).                                     | ND                                 | Dry        | ND                               | ND          | SB-13 (3-5)                                          |
| _ <u>3</u>               | 50                          | Bottom 45": Brown<br>roots (FILL).                        | SAND, little Silt,                                       | fine Gravel, trace wood,                      | ND                                 | Dry        | ND                               | ND          | at 12:05                                             |
| _6                       |                             | Top 7": SLOUGH.                                           |                                                          |                                               | ND                                 | Dry        | ND                               | ND          |                                                      |
| 7<br>8                   | 58                          | Middle 46": Brown                                         | SAND, little Silt, f                                     | ine Gravel (FILL).                            | Petro -<br>Like at 8'              | Dry        | 3.1<br>5.2<br>9.2                | ND          |                                                      |
| <u>9</u><br>10           |                             | Bottom 5": Gray S/                                        | AND, little Silt, tra                                    | ce fine Gravel (FILL).                        | Petro -<br>Like                    | Dry        | 9.2<br>38.3                      | ND          |                                                      |
| _ <u>11</u>              | 32                          | Top 9": SLOUGH.<br>Bottom 23": Gray S<br>Concrete (FILL). | SAND, little Silt, tr                                    | ace fine Gravel,                              | Petro -<br>Like<br>Petro -<br>Like | Dry<br>Dry | 282.8<br>881.4<br>306.9<br>262.4 | ND<br>ND    | SB-13 (10-12)<br>at 12:00                            |
| 13<br>14                 |                             |                                                           |                                                          |                                               |                                    |            |                                  |             |                                                      |
| 15                       |                             |                                                           |                                                          |                                               |                                    |            |                                  |             |                                                      |
| 16<br>17                 |                             |                                                           |                                                          |                                               |                                    |            |                                  |             |                                                      |
| 18                       |                             |                                                           |                                                          |                                               |                                    |            |                                  |             |                                                      |
| 19<br>20                 |                             |                                                           |                                                          |                                               |                                    |            |                                  |             |                                                      |
| Conse<br>Groun<br>End of | rvatior<br>dwater<br>soil b | n and Recovery Act<br>was not encount                     | ct (RCRA) 8 Meta<br>ered during soil<br>low grade due to | boring installation.<br>DPP refusal on appare |                                    |            | -                                | -           | nd Resource                                          |
| Soil cla                 | assifica                    |                                                           | ons presented are                                        | based on the Modified E                       |                                    |            |                                  |             |                                                      |

| IL BORING AN              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | amilton Avenue<br>ject Number: 170029 | Groui                                                                                           | ndwater Monitoring<br>Well ID:<br>Sheet 1 of 2    | MW-                   | 7                | Soil Bo    | ring ID:          | SB-14     |                                                     |
|---------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|------------------|------------|-------------------|-----------|-----------------------------------------------------|
|                           |                       | Drilling Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Geoprobe DPP                          | Drilling                                                                                        |                                                   |                       |                  |            |                   |           |                                                     |
| <b>DAK</b> R              | F                     | Drilling Method:<br>Sampling Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5' Macrocores                         |                                                                                                 |                                                   |                       |                  |            |                   |           |                                                     |
|                           | L                     | Driller:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cascade Drilling                      | Start Ti                                                                                        | ime: 13:20                                        |                       |                  | Finish Tir | ne: 15:10         |           |                                                     |
| 440 Park Avenue South,    | 7 <sup>th</sup> Floor | Weather:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30 °F, Cloudy                         |                                                                                                 | 10/0040                                           |                       |                  | 1          |                   |           |                                                     |
| New York, NY 100          | 16                    | Logged by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T. McClintock, AKRF                   | Date: 2                                                                                         | /6/2018                                           |                       |                  |            |                   |           |                                                     |
| De pth (feet)<br>Mell Cor | struction             | Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e Condition: Asphalt                  | Recovery (Inches)                                                                               | Soil Borin                                        | ıg Log                | Odor             | Moisture   | PID (ppm)         | NAPL      | Soil Samples<br>Collected for<br>Laboratory Analysi |
|                           |                       | Locking Flus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | h Mount                               | Ĕ                                                                                               |                                                   |                       |                  |            |                   |           |                                                     |
| 1 <b>2</b>                | X                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                 | Top 5": ASPHALT and f                             | fine Gravel (FILL).   | Septic -<br>Like | Dry        | 0.2<br>0.6<br>2.2 | ND        |                                                     |
|                           | - KXX                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                 |                                                   |                       |                  |            | 4.5               |           | SB-14 (2-4)                                         |
| 3 🕅                       | - 1992                | Concrete Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | out: 0 - 18'                          | 51                                                                                              |                                                   |                       |                  |            | 3.6               |           | at 15:00                                            |
| 1534                      | - KXX                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1                                                                                               | Bottom 46": Brown SAN                             | ID, some fine         | Septic -         | Dry        | 2.2               | ND        |                                                     |
| ₄ 🕅                       | $\infty$              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1                                                                                               | Gravel, little Silt, trace                        |                       | Like             |            | 1.3               |           |                                                     |
| <b>K</b> XA               | - KXX                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1                                                                                               |                                                   | /                     |                  |            | 1.1               |           |                                                     |
| ₅ 🕅                       | - 1000                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1                                                                                               |                                                   |                       |                  |            |                   |           |                                                     |
| ····                      | $\mathbb{N}$          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                 | Top 3": SLOUGH.                                   |                       | Septic -         | Dry        |                   | ND        | 1                                                   |
| 6 XX                      | - KXX                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1                                                                                               |                                                   |                       | Like             |            | 0.3               |           |                                                     |
| 1883                      | - 1000                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1                                                                                               |                                                   |                       |                  |            | 1.2               |           |                                                     |
| 7 🔯                       |                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1                                                                                               | Middle 8": Brown SAND                             | ), some fine          | Septic           | Dry        | 6.6               | ND        |                                                     |
|                           | - KX                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                 | Gravel, little Silt.                              |                       | and Petro        |            | 1                 |           |                                                     |
| * 83                      | - 1000                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 43                                                                                              |                                                   |                       | - Like           |            | 6.9               |           |                                                     |
| ····                      |                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1                                                                                               |                                                   |                       |                  |            | 68.1              |           |                                                     |
| <b>, XX</b>               | - KXX                 | 2" Diameter F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VC Well Riser: 0.5' - 20'             |                                                                                                 | Bottom 32": Green/Gray                            | / SAND and SILT,      | Septic           | Dry        | 61.7              | ND        |                                                     |
| ···· <b>·</b> /22         | - 1993                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 1                                                                                               | trace fine Gravel.                                |                       | and Petro        | -          | 59.3              |           |                                                     |
| 10                        |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1                                                                                               |                                                   |                       | - Like           |            |                   |           |                                                     |
| <b>1</b> 884              | - 1000                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                 | Top 12": SLOUGH.                                  |                       | Ī                | Dry        |                   |           | İ                                                   |
| 11 🔀 🛛                    | - KXX                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                 |                                                   |                       | Septic           |            | 63.7              |           |                                                     |
|                           | _ [XX                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                 | Next 12": Gray SAND a                             | nd SILT.              | and Petro        | Dry        | 27.5              |           |                                                     |
| 12                        | - KXX                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 1                                                                                               |                                                   |                       | - Like           |            | 36.3              |           |                                                     |
|                           | - KXX                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 54                                                                                              | Next 18": Gray SAND, t                            | race Silt.            |                  | Dry        | 63.2              |           |                                                     |
| 13                        | _¶XX                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 54                                                                                              |                                                   |                       | Septic           |            | 75.8              |           |                                                     |
| - TXXI                    | - KXX                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1                                                                                               | Bottom 12": Gray SAND                             | ), little Silt, trace | and Petro        | Dry        | 629               |           |                                                     |
| 14 88                     | - KXX                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1                                                                                               | fine Gravel.                                      |                       | - Like           |            | 815               |           |                                                     |
| k⊠                        |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1                                                                                               |                                                   |                       |                  |            | 967               |           |                                                     |
| <u>15</u>                 | - 1000                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                 |                                                   |                       |                  |            |                   |           |                                                     |
| KXI                       | - KX                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                 | Top 3": SLOUGH.                                   |                       | Septic           | Dry        |                   |           |                                                     |
| 16 🔀                      |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                 |                                                   |                       | and Petro        |            | 1370              |           |                                                     |
| KXXI                      | 883                   | a de la companya de la |                                       |                                                                                                 |                                                   |                       | - Like           |            | 1264              |           |                                                     |
| 17                        | - KXX                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                 | Middle 10": Gray SAND                             | , little Silt, trace  | Petro -          | Wet        | 507               |           |                                                     |
| <b>KX</b>                 |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 55                                                                                              | fine Gravel.                                      |                       | Like             | at 16'     | 465               |           | SB-14 (15-16)                                       |
| 18                        | $\infty$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                 |                                                   |                       |                  | Dry        | 1006              |           | at 15:10                                            |
|                           |                       | Bentonite Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al: 18' - 19'                         |                                                                                                 |                                                   |                       |                  | 17 - 19'   | 1221              |           |                                                     |
| 19                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 1                                                                                               | Bottom 42": Gray SAND                             | ), little Silt, fine  | Petro -          | Wet        | 1193              |           |                                                     |
|                           |                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                 | Gravel.                                           |                       | Like             | at 19'     | 421               |           |                                                     |
| 20                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                 |                                                   |                       |                  |            | 96.1              |           |                                                     |
| s: 🔻 Gr                   | oundwate              | r Depth Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                 | mples analyzed for Con                            |                       | • •              | •          |                   | 51 SVOC   | s (EPA 8270),                                       |
| Indwater measure          | ed at 23.27           | 7 feet below grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e in MW-7 on 2/8/17.                  |                                                                                                 | source Conservation an<br>Iwater encountered at a |                       |                  |            |                   | boring in | stallation.                                         |
| Indwater monitor          | ng well in            | stalled to 30 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | below grade.                          | End of                                                                                          | soil boring at 30 feet be                         | elow grade.           |                  |            |                   |           |                                                     |
|                           |                       | ionization detecto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | L = non-aqueous phase liquid ppm = parts per million ND = not detected                          |                                                   |                       |                  |            |                   |           |                                                     |
|                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | d Burmister Classification System. Descriptions were developed for environmental purposes only. |                                                   |                       |                  |            |                   |           |                                                     |

| DIL BORING AND WELL<br>INSTALLATION LOG |                   | amilton Avenue<br>ject Number: 170029                | Grour             | ndwater Monitoring<br>Well ID:<br>Sheet 2 of 2                                                                                                                              | MW-                   | 7               | Soil Bo      | ring ID:           | S          | SB-14                                                |
|-----------------------------------------|-------------------|------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|--------------|--------------------|------------|------------------------------------------------------|
|                                         | Drilling Method:  | Geoprobe DPP                                         | Drilling          |                                                                                                                                                                             |                       |                 | L            |                    |            |                                                      |
| ØAKRF                                   | Sampling Method:  | 5' Macrocores                                        |                   |                                                                                                                                                                             |                       |                 | Figure 1     | 45:10              |            |                                                      |
|                                         | Driller:          | Cascade Drilling                                     | Start Ti          | i <b>me:</b> 13:20                                                                                                                                                          |                       |                 | Finish Tir   | ne: 15:10          |            |                                                      |
| 440 Park Avenue South, 7th Floor        | Weather:          | 30 °F, Cloudy                                        | Date: 2           | /6/2018                                                                                                                                                                     |                       |                 |              |                    |            |                                                      |
| New York, NY 10016                      | Logged by:        | T. McClintock, AKRF                                  |                   |                                                                                                                                                                             |                       |                 |              |                    |            |                                                      |
| ()<br>ee)<br>Hd<br>ed                   | Surface           | e Condition: Asphalt                                 | Recovery (Inches) | Soil Borin                                                                                                                                                                  | ig Log                | Odor            | Moisture     | PID (ppm)          | NAPL       | Soil Samples<br>Collected for<br>Laboratory Analysis |
| 21                                      | Morie #2 San      | d Pack: 19' - 30'                                    | Ľ                 | Top 6": SLOUGH.                                                                                                                                                             |                       | Petro -<br>Like | Wet          | 1215               | ND         |                                                      |
| 22                                      |                   |                                                      | 33                | Middle 10": Gray SAND<br>fine Gravel.                                                                                                                                       | , little Silt, trace  | Petro -<br>Like | Wet          | 975<br>457<br>75.7 | ND         |                                                      |
| 23                                      |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              | 62.3               |            |                                                      |
| 24                                      |                   | 2" Diameter Pre-Packed PVC Well<br>Screen: 20' - 30' |                   | Bottom 17": Brown SAN<br>Gravel.                                                                                                                                            | ID, little Silt, fine | Petro -<br>Like | Wet          | 11.8               | ND         |                                                      |
| 26                                      |                   |                                                      |                   | Top 6": SLOUGH.                                                                                                                                                             |                       | Petro -<br>Like | Wet          | 465                | ND         |                                                      |
| ┈──┨┊┊┣━━┫┊┊                            |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              | 529                |            |                                                      |
| 27                                      |                   |                                                      |                   | Middle 25": Brown SAN                                                                                                                                                       | D, little Silt, fine  | Petro -         | Wet          | 153                | ND         |                                                      |
|                                         |                   |                                                      | 48                | Gravel.                                                                                                                                                                     |                       | Like            |              | 113                |            |                                                      |
| 28                                      |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              | 152                |            |                                                      |
|                                         |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              | 40.5               |            |                                                      |
| 30                                      |                   |                                                      |                   | Bottom 17": Brown SAN<br>Gravel.                                                                                                                                            | ID, little Silt, fine | Petro -<br>Like | Wet          | 17.4<br>4.2        | ND         |                                                      |
| 31                                      |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              |                    |            |                                                      |
| 32                                      |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              |                    |            |                                                      |
| 33                                      |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              |                    |            |                                                      |
| 34                                      |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              |                    |            |                                                      |
| 35                                      |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              |                    |            |                                                      |
| 36                                      |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              |                    |            |                                                      |
| 37                                      |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              |                    |            |                                                      |
|                                         |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              |                    |            |                                                      |
| 39                                      |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              |                    |            |                                                      |
| 40                                      |                   |                                                      |                   |                                                                                                                                                                             |                       |                 |              |                    |            |                                                      |
|                                         | r Depth Indicator |                                                      | and Re            | mples analyzed for Con<br>source Conservation a                                                                                                                             | nd Recovery Act (F    | CRA) 8 M        | etals plus a | Zinc.              |            | •                                                    |
| undwater measured at 23.27              | -                 |                                                      |                   | lwater encountered at a                                                                                                                                                     |                       | / teet belo     | w grade d    | uring soil l       | poring ins | stallation.                                          |
| undwater monitoring well in             |                   |                                                      |                   | soil boring at 30 feet be                                                                                                                                                   |                       |                 |              |                    |            |                                                      |
|                                         |                   |                                                      |                   | PL = non-aqueous phase liquid ppm = parts per million ND = not detected<br>ed Burmister Classification System. Descriptions were developed for environmental purposes only. |                       |                 |              |                    |            |                                                      |

| DIL BORING AND WELL<br>INSTALLATION LOG                                                                    |                   | Hamilton Avenue<br>Dject Number: 170029 | Grour             | ndwater Monitoring<br>Well ID:<br>Sheet 1 of 1 | MW-                                  | 8           | Soil Bo    | ring ID:     | S         | SB-15                                               |
|------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|-------------------|------------------------------------------------|--------------------------------------|-------------|------------|--------------|-----------|-----------------------------------------------------|
|                                                                                                            | Drilling Method:  | Geoprobe DPP                            | Drilling          |                                                |                                      |             |            |              |           |                                                     |
| <b>MAK</b> RF                                                                                              | Sampling Method:  | 4' Macrocores                           | Chart T           | ime: 8:20                                      |                                      |             | Finish Tir |              |           |                                                     |
|                                                                                                            | Driller:          | Cascade Drilling                        | Start             | inie. 6.20                                     |                                      |             |            | lie. 9.00    |           |                                                     |
| 440 Park Avenue South, 7th Floor                                                                           | Weather:          | 25 °F, Cloudy                           | Data: 2           | /9/2018                                        |                                      |             |            |              |           |                                                     |
| New York, NY 10016                                                                                         | Logged by:        | T. McClintock, AKRF                     | Date. 2           | /9/2018                                        |                                      |             |            |              |           |                                                     |
| (199)<br>tig<br>O                                                                                          | Surface Condition | on: Terrazzo Tile and Concrete          | Recovery (Inches) | Soil Borin                                     | g Log                                | Odor        | Moisture   | PID (ppm)    | NAPL      | Soil Samples<br>Collected for<br>Laboratory Analysi |
|                                                                                                            | Locking Flus      | sh Mount                                |                   |                                                |                                      |             |            |              |           |                                                     |
| ·                                                                                                          | Concrete Gro      | out: 0 - 5'                             | 40.5              | Top 5.5": TILE and CON                         | NCRETE (FILL).                       | ND          | Dry        | ND           | ND        | SB-15 (2-4)<br>at 9:00                              |
|                                                                                                            | 2" Diameter       | PVC Well Riser: 0.5' - 7'               |                   | Bottom 35": Brown SAN<br>Gravel (FILL).        | D, little Silt, fine                 | ND          | Dry        | ND           | ND        |                                                     |
| - TKX KX                                                                                                   | 3                 |                                         |                   | Top 7": SLOUGH.                                |                                      | ND          | Dry        | ND           | ND        |                                                     |
| . <u>.</u>                                                                                                 | Bentonite Se      | Bentonite Seal: 5' - 6'                 |                   | Middle 17": Brown SAN<br>fine Gravel.          | D, little Silt, trace ND             |             | Dry        | ND           | ND        |                                                     |
| 8                                                                                                          |                   |                                         |                   | Bottom 35": Brown SAN<br>Gravel.               | D, trace Silt, fine                  | ND          | Dry        | ND           | ND        |                                                     |
| °                                                                                                          | Morie #2 San      | nd Pack: 6' - 17'                       |                   | Top 4": SLOUGH.                                |                                      | ND          | Dry        | ND           | ND        |                                                     |
|                                                                                                            | Worle #2 Sain     |                                         |                   | 100 4 . 3200011.                               |                                      | ND          | Diy        | ND           | ND        |                                                     |
| 9                                                                                                          | -                 |                                         |                   |                                                | -                                    |             |            |              |           |                                                     |
|                                                                                                            | 1                 |                                         |                   | Middle 23": Brown SAN                          | D, trace Slit.                       | Petro -     | Moist      | 0.5          |           |                                                     |
| 10                                                                                                         |                   |                                         | 37                |                                                |                                      | Like        | at 10.5    | 2.5          |           | SB-15 (10-11)                                       |
|                                                                                                            | 1                 |                                         |                   |                                                |                                      | at 10.5'    |            | 3.3          |           | at 8:55                                             |
| 11                                                                                                         | -                 |                                         |                   | Bottom 35": Gray SAND                          | , trace Silt.                        | Petro -     | Wet        | 10.2         |           |                                                     |
|                                                                                                            | 2" Diameter       | Pre-Packed PVC Well                     |                   |                                                |                                      | Like        | at 11.5    | 895          |           |                                                     |
| 12                                                                                                         | Screen: 7' - 1    | 17'                                     |                   |                                                |                                      |             |            | 1101         |           |                                                     |
|                                                                                                            |                   |                                         |                   |                                                |                                      |             |            |              |           |                                                     |
| 13                                                                                                         | :                 |                                         |                   |                                                |                                      |             |            | 806          |           |                                                     |
| ·····                                                                                                      |                   |                                         |                   | Top 6": SLOUGH.                                |                                      | Petro -     | Wet        | 778          |           |                                                     |
| 14 <b>[</b>                                                                                                | :                 |                                         |                   |                                                |                                      | Like        |            | 324          |           | 1                                                   |
| 14                                                                                                         | 1                 |                                         | 43                |                                                |                                      | LINC        |            |              |           | 1                                                   |
|                                                                                                            | 1                 |                                         |                   | Detter 071 0 0000                              | 011 -                                | D.(         |            | 42.7         |           | 1                                                   |
| 15                                                                                                         | :                 |                                         | 1                 | Bottom 37": Gray SAND                          | , some SILT.                         | Petro -     | Wet        | 20.5         |           |                                                     |
| i <b>⊢−−i</b>                                                                                              | 1                 |                                         | 1                 |                                                |                                      | Like        |            | 12.8         |           |                                                     |
| 16                                                                                                         | :                 |                                         |                   |                                                |                                      |             |            |              |           | L                                                   |
|                                                                                                            | :                 |                                         |                   |                                                |                                      |             |            |              |           |                                                     |
| 17                                                                                                         | :                 |                                         |                   |                                                |                                      |             |            |              |           |                                                     |
|                                                                                                            |                   |                                         |                   |                                                |                                      |             |            |              |           |                                                     |
| 18                                                                                                         |                   |                                         |                   |                                                |                                      |             |            |              |           |                                                     |
|                                                                                                            |                   |                                         |                   |                                                |                                      |             |            |              |           |                                                     |
| 19                                                                                                         |                   |                                         |                   |                                                |                                      |             |            |              |           |                                                     |
|                                                                                                            |                   |                                         |                   |                                                |                                      |             |            |              |           |                                                     |
| 20                                                                                                         |                   |                                         |                   |                                                |                                      |             |            |              |           |                                                     |
|                                                                                                            | r Depth Indicator | r                                       | Soil sa           | mples analyzed for Con                         | missioners Policy                    | (CP-51) V   | OCs (EPA   | 8260), CP-   | 51 SVOC   | s (EPA 8270),                                       |
|                                                                                                            |                   |                                         |                   | source Conservation ar                         |                                      |             |            |              |           |                                                     |
| undwater measured at 10.2                                                                                  | 6 feet below grad | le in MW-8 on 2/9/17.                   | Group             | dwater encountered at a                        | pproximately 10 2                    | 6 feet helo | w grade di | uring soil F | oorina in | stallation                                          |
|                                                                                                            | -                 |                                         |                   |                                                |                                      |             | -          | -            | -         |                                                     |
| oundwater monitoring well installed to 17 feet below grade.<br>PID = photoionization detector NAPL = non-a |                   |                                         |                   | soil boring at 16 feet be                      | low grade. Casing<br>ppm = parts per |             |            |              |           |                                                     |
|                                                                                                            |                   |                                         |                   |                                                |                                      |             |            | D = not det  |           |                                                     |

| SOI                                |                           | ORING LOG                                          | 200 Ha                                              | milton Avenue                       | Soil Bo                    | ring ID:        |                    | SB          | -16                                                  |  |  |
|------------------------------------|---------------------------|----------------------------------------------------|-----------------------------------------------------|-------------------------------------|----------------------------|-----------------|--------------------|-------------|------------------------------------------------------|--|--|
|                                    |                           |                                                    | AKRF Proje                                          | ect Number: 170029                  | Sheet                      | 1 of 1          |                    |             | 10                                                   |  |  |
|                                    |                           |                                                    | Drilling Method:                                    | Geoprobe DPP                        | Drilling                   |                 |                    |             |                                                      |  |  |
| (                                  | 9A                        | <b>K</b> RF                                        | Sampling Method:                                    | 4' Macrocores                       | Start Time                 | • 10.10         | Finish Time: 11:10 |             |                                                      |  |  |
|                                    | $\bigcirc$                |                                                    | Driller:                                            | Cascade Drilling                    |                            | . 10.10         |                    | 1 111311 11 | <b>IIIC.</b> 11.10                                   |  |  |
| 440                                | Park Ave                  | enue South, 7 <sup>th</sup> Floor<br>ork, NY 10016 | Weather:                                            | 25 °F, Clear<br>T. McClintock, AKRF | Date: 2/9/2                | 2018            |                    |             |                                                      |  |  |
| ~                                  |                           |                                                    | Logged By:                                          | T. WCCHINOCK, ANN                   |                            |                 |                    |             |                                                      |  |  |
| Depth (feet)                       | Recovery<br>(Inches)      | Su                                                 | Irface Condition:                                   | Concrete                            | Odor                       | Moisture        | (mqq) OI9          | NAPL        | Soil Samples<br>Collected for<br>Laboratory Analysis |  |  |
| 1                                  |                           | Top 4": CONCRET                                    | E and fine GRAV                                     | EL.                                 | ND                         | Dry             | ND                 | ND          |                                                      |  |  |
| 2                                  | 31                        | Middle 9": Brown S<br>Silt, trace Brick (Fl        |                                                     | crete, fine Gravel, little          | ND                         | Dry             | ND                 | ND          | SB-16 (2-4)<br>at 11:10                              |  |  |
| <u>3</u><br>4                      |                           | Bottom 18": Brown                                  | SAND, some Silt                                     | , trave fine Gravel (FILL).         | ND                         | Dry             | ND                 | ND          |                                                      |  |  |
| <u>5</u><br>6                      | 38                        | Top 10": SLOUGH                                    | l.                                                  |                                     | ND                         | Dry             | ND                 | ND          |                                                      |  |  |
| <u>7</u><br>8                      |                           | Bottom 28": Brown                                  | SAND, some Silt                                     | , trace fine Gravel.                | ND                         | Dry             | ND                 | ND          |                                                      |  |  |
| -                                  |                           | Top 12": SLOUGH                                    |                                                     |                                     | ND                         | Dry             | ND                 | ND          |                                                      |  |  |
| 9                                  |                           | Next 8": Brown SA                                  | ND, little Silt.                                    |                                     | ND                         | Dry             | ND                 | ND          |                                                      |  |  |
| <u>10</u><br>11                    | 41                        | Next 7": Brown SIL                                 | T, little Sand.                                     |                                     | ND                         | Moist<br>at 11' | ND                 | ND          |                                                      |  |  |
| 12                                 |                           | Bottom 14": Brown                                  | SAND, little Silt.                                  |                                     | ND                         | Moist           | ND                 | ND          |                                                      |  |  |
| 13                                 |                           | Top 7": SLOUGH.                                    |                                                     |                                     | Petro -<br>Like            | Wet<br>at 13'   | 5.5<br>2.8<br>4.7  |             |                                                      |  |  |
| 14                                 | 46                        | Middle 30": Gray S<br>Bottom 9": Brown \$          |                                                     |                                     | Petro -<br>Like<br>Petro - | Wet<br>Wet      | 5.8<br>5.4<br>3.7  |             | SB-16 (12-13)<br>at 11:00                            |  |  |
| <u>15</u><br>16                    |                           | Bollom 9 . Brown                                   | SILT, IIIIe Sanu.                                   |                                     | Like                       | wet             | 1.7<br>1.3         |             |                                                      |  |  |
| 17                                 |                           | Top 8": SLOUGH.                                    |                                                     |                                     | Petro -<br>Like            | Wet             | 0.5<br>0.3         | ND          |                                                      |  |  |
| 18                                 | 39                        | Middle 18": Brown                                  | SILT, little Sand.                                  |                                     | Petro -<br>Like            | Wet             | 0.7<br>0.1         | ND          |                                                      |  |  |
| <u>19</u><br>20                    |                           | Bottom 13": Gray S                                 | SAND, some Silt.                                    |                                     | Septic -<br>Like           | Wet             | 0.4<br>0.3<br>2.1  | ND          |                                                      |  |  |
| Notes:<br>Conse<br>Groun<br>End of | rvatio<br>dwate<br>soil b | n and Recovery Ac                                  | ct (RCRA) 8 Meta<br>I at approximatel<br>low grade. | y 13 feet below grade d             |                            | oring insta     | OCs (EP)           | -           | nd Resource                                          |  |  |
|                                    |                           |                                                    |                                                     | based on the Modified B             |                            |                 |                    |             |                                                      |  |  |
|                                    |                           | ental purposes only.                               | •                                                   |                                     |                            |                 | ,                  |             |                                                      |  |  |

| 440 Park Av<br>New V<br>Recovery<br>(Inches) | ORING LOG<br>KRF<br>renue South, 7 <sup>th</sup> Floor<br>fork, NY 10016 | Drilling Method:<br>Sampling Method:<br>Driller:<br>Weather:<br>Logged By: | ect Number: 170029<br>Geoprobe DPP<br>4' Macrocores<br>Cascade Drilling<br>25 °F, Clear<br>T. McClintock, AKRF | Sheet<br>Drilling<br>Start Time |              |                          | SB               |                                                      |
|----------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|--------------------------|------------------|------------------------------------------------------|
| 440 Park Av<br>New V<br>Kecover<br>(Juches)  | renue South, 7 <sup>th</sup> Floor<br>York, NY 10016                     | Drilling Method:<br>Sampling Method:<br>Driller:<br>Weather:<br>Logged By: | Geoprobe DPP<br>4' Macrocores<br>Cascade Drilling<br>25 °F, Clear                                              | Start Time                      | : 11:35      |                          |                  |                                                      |
| 440 Park Av<br>New V<br>Kecover<br>(Juches)  | renue South, 7 <sup>th</sup> Floor<br>York, NY 10016                     | Driller:<br>Weather:<br>Logged By:                                         | Cascade Drilling<br>25 °F, Clear                                                                               |                                 | : 11:35      |                          |                  |                                                      |
| 440 Park Av<br>New V<br>Kecover<br>(Juches)  | renue South, 7 <sup>th</sup> Floor<br>York, NY 10016                     | Weather:<br>Logged By:                                                     | 25 °F, Clear                                                                                                   |                                 | . 11.55      |                          | <b>Einich</b> Ti | me: 12:35                                            |
| Recovery (Inches)                            | /ork, NY 10016                                                           | Logged By:                                                                 |                                                                                                                |                                 |              |                          | FINISN TI        | ne: 12.35                                            |
| Leptn (reet)<br>Recovery<br>(Inches)         |                                                                          |                                                                            | T. McClintock, AKRF                                                                                            | Date: 2/9/2                     | 018          |                          |                  |                                                      |
|                                              | Su                                                                       |                                                                            |                                                                                                                |                                 |              |                          | 1                | <b></b>                                              |
|                                              |                                                                          | Irrace Condition                                                           | : Concrete                                                                                                     | Odor                            | Moisture     | PID (ppm)                | NAPL             | Soil Samples<br>Collected for<br>Laboratory Analysis |
| 1<br>2                                       | Top 4": CONCRET                                                          | ſE and fine GRA∖                                                           | /EL.                                                                                                           | ND                              | Dry          | ND                       | ND               |                                                      |
| 3 <u> </u>                                   | Bottom 25": Brown<br>(FILL).                                             | a SAND, little Silt,                                                       | fine Gravel, trace Brick                                                                                       | ND                              | Dry          | ND                       | ND               |                                                      |
| 5<br>624                                     | Top 7": SLOUGH.                                                          |                                                                            |                                                                                                                | ND                              | Dry          | ND                       | ND               | SB-17 (5-7)<br>at 12:35                              |
| 7<br>8                                       | Bottom 17": Brown<br>Rubber, Asphalt (F                                  | ND                                                                         | Dry                                                                                                            | ND                              | ND           | at 12.55                 |                  |                                                      |
| 9                                            | Top 6": SLOUGH.                                                          |                                                                            |                                                                                                                | ND                              | Dry          | ND<br>298                | ND               |                                                      |
| <u>0</u> 33                                  | Middle 19": Gray S                                                       | SILT, some Sand.                                                           |                                                                                                                | Petro -<br>Like at 8.5'         | Wet<br>at 9' | 24.3<br>15.7             | ND               | SB-17 (8-9)<br>at 12:25                              |
| 1<br>2                                       | Bottom 8": Gray S/                                                       | AND, trace Silt.                                                           |                                                                                                                |                                 |              | 11.4<br>12.7<br>10.7     | ND               |                                                      |
| 3                                            | Top 9": SLOUGH.                                                          |                                                                            |                                                                                                                | Petro -<br>Like                 | Wet          | 11.1<br>12.3             | ND               |                                                      |
| <u>4</u> 34                                  | Middle 10": Gray S                                                       | SAND, trace Silt.                                                          |                                                                                                                | Petro -<br>Like                 | Wet          | 3.7<br>4.2               | ND               |                                                      |
| <u>5</u><br>6                                | Bottom 15": Gray S                                                       | SILT, trace Sand.                                                          |                                                                                                                | Petro -<br>Like                 | Wet          | 3.8<br>2.9               | ND               |                                                      |
| 7<br>845                                     | Top 6": SLOUGH.                                                          |                                                                            |                                                                                                                | Petro -<br>Like                 | Wet          | 1.8<br>1.9<br>0.6<br>0.5 | ND               |                                                      |
| <u>9</u>                                     | Bottom 39": Gray S                                                       |                                                                            |                                                                                                                | Petro -<br>Like                 | Wet          | 0.8<br>1.1<br>0.7<br>0.1 | ND               |                                                      |
| nservatio<br>oundwate<br>d of soil b         | n and Recovery Ac<br>r was encountered<br>poring at 20 feet be           | ct (RCRA) 8 Meta<br>I at approximate<br>low grade.                         | ly 9 feet below grade d                                                                                        | uring soil bo                   | ring instal  | lation.                  |                  |                                                      |
|                                              | hotoionization dete                                                      |                                                                            |                                                                                                                | NAPL = non-a                    |              |                          |                  | = not detected                                       |
|                                              | ations and descriptic<br>ental purposes only.                            |                                                                            | based on the Modified E                                                                                        | Burmister Clas                  | sification S | System. De               | escriptions      | were developed                                       |

| SO                     |                                                                             | DRING LOG                         | 200 Ha                 | milton Avenue                | Soil Bor               | ring ID: | SB-18                    |                  |                                                      |  |  |
|------------------------|-----------------------------------------------------------------------------|-----------------------------------|------------------------|------------------------------|------------------------|----------|--------------------------|------------------|------------------------------------------------------|--|--|
|                        |                                                                             |                                   |                        | ect Number: 170029           | Sheet                  | 1 of 1   | OD-10                    |                  |                                                      |  |  |
|                        |                                                                             |                                   | Drilling Method:       | Geoprobe DPP                 | Drilling               |          |                          |                  |                                                      |  |  |
|                        | 0AI                                                                         | KRF                               | Sampling Method:       | Start Time                   | . 12:10                |          | Einich Ti                | <b>me:</b> 13:05 |                                                      |  |  |
|                        |                                                                             |                                   | Driller:               | Cascade Drilling             | Start Time             | 12.10    |                          | FINISN TI        | ne: 13.05                                            |  |  |
| 44                     |                                                                             | enue South, 7 <sup>th</sup> Floor | Weather:               | 30 °F, Cloudy                | Date: 2/6/2            | 018      |                          |                  |                                                      |  |  |
|                        | New Y                                                                       | ork, NY 10016                     | Logged By:             | T. McClintock, AKRF          |                        |          |                          |                  |                                                      |  |  |
| Depth (feet)           | Recovery<br>(Inches)                                                        | s                                 | urface Condition       | : Asphalt                    | Odor                   | Moisture | PID (ppm)                | NAPL             | Soil Samples<br>Collected for<br>Laboratory Analysis |  |  |
| 1<br>_2                | 45                                                                          | Top 5": ASPHALT                   | and fine GRAVEL        | - (FILL).                    | ND                     | Dry      | ND                       | ND               |                                                      |  |  |
| <u>3</u><br>4<br>5     | Bottom 40": Brown SAND, little Silt, fine Gravel, trace<br>Concrete (FILL). |                                   |                        |                              |                        | Dry      | ND                       | ND               |                                                      |  |  |
| <u>6</u><br>7<br>8     | 55                                                                          | Top 5": SLOUGH.                   | ND                     | Dry                          | ND<br>0.5<br>0.5       | ND       |                          |                  |                                                      |  |  |
| <u>9</u><br>10         |                                                                             | Bottom 50": Brown                 | i SAND, little Silt, f | fine Gravel.                 | ND                     | Dry      | 0.7<br>1.3<br>1.7<br>2   | ND               |                                                      |  |  |
| <u>11</u><br>12        |                                                                             | Top 10": SLOUGH                   | l.                     |                              | ND                     | Dry      | 1.3<br>2.9<br>103<br>752 | ND               |                                                      |  |  |
| 13                     | 55                                                                          | Middle 24": Brown                 |                        |                              | Petro -<br>Like at 11' | Dry      | 574<br>262<br>589        | ND               | SB-18 (12-14)<br>at 13:05                            |  |  |
| <u>14</u><br>15        |                                                                             | Bottom 21": Gray S                |                        | ne Gravel.                   | Petro -<br>Like        | Dry      | 246<br>648<br>619        | ND               |                                                      |  |  |
| 16                     |                                                                             | Top 9": SLOUGH.                   |                        |                              | Petro -<br>Like        | Dry      | 115<br>22.5<br>10.1      | ND               |                                                      |  |  |
| <u>17</u><br><u>18</u> | 53 Middle 15": Gray SAND, little Silt, fine Gravel.                         |                                   |                        |                              | Petro -<br>Like        | Dry      | 19.2<br>8.3<br>6.7       | ND               |                                                      |  |  |
| 19                     |                                                                             | Bottom 29": Red/B                 | rown/Black SAND        | ), little Silt, fine Gravel. | Petro -<br>Like        | Dry      | 5.8<br>7.2               | ND               |                                                      |  |  |
| 20                     |                                                                             |                                   |                        |                              |                        |          |                          |                  |                                                      |  |  |

Groundwater was not encountered during soil boring installation. End of soil boring at 19 feet below grade due to DPP refusal on apparent cobbles. PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid

ND = not detected Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

|                      | RING AND WELL<br>LLATION LOG |                  | Hamilton Avenue<br>Dject Number: 170029             | Grour                                | ndwater Monitoring<br>Well ID:<br>Sheet 1 of 1     | MW-9                | •                                     | Soil Bo           | oring ID:  | SE           | 3/MW-9                                               |    |  |
|----------------------|------------------------------|------------------|-----------------------------------------------------|--------------------------------------|----------------------------------------------------|---------------------|---------------------------------------|-------------------|------------|--------------|------------------------------------------------------|----|--|
| $\sim$               |                              | Drilling Method: | Geoprobe DPP                                        | Drilling                             |                                                    |                     |                                       |                   |            |              |                                                      |    |  |
|                      | <b>K</b> RF                  | Sampling Method: | 5' Macrocores                                       | Start Time: 11:35 Finish Time: 12:15 |                                                    |                     |                                       |                   |            |              |                                                      |    |  |
|                      |                              | Driller:         | Cascade Drilling                                    | otart 1                              | ine. 11.55                                         |                     |                                       | 1 111311 111      | ne. 12.15  |              |                                                      |    |  |
|                      | wenue South, 7th Floor       | Weather:         | 30 °F, Cloudy                                       | Date: 2                              | 2/7/2018                                           |                     |                                       |                   |            |              |                                                      |    |  |
| INEW                 | York, NY 10016               | Logged by:       | T. McClintock, AKRF                                 | s)                                   |                                                    |                     | 1                                     | 1                 | 1          |              | <b>1</b>                                             |    |  |
| Depth (feet)         | Well Construction            | Surface Co       | ndition: Topsoil and Grass                          | Recovery (Inches                     | Soil Borin                                         | g Log               | Odor                                  | Moisture          | (mqq) OI9  | NAPL         | Soil Samples<br>Collected for<br>Laboratory Analysis |    |  |
|                      | $\overline{\mathbf{x}}$      | Locking Flu      | sh Mount                                            |                                      |                                                    |                     |                                       |                   |            |              |                                                      |    |  |
| 1                    | 88 88                        | Concrete Gr      | out: 0 - 18'                                        |                                      | Top 8": Topsoil, trace g                           | rass, roots (FILL). | ND                                    | Dry               | ND         | ND           |                                                      |    |  |
| 2                    | ×                            | 2" Diameter      | PVC Well Riser: 0.5' - 5'                           | 50                                   |                                                    |                     |                                       |                   |            |              |                                                      |    |  |
| 3                    | ×× ××                        | Bentonite Se     | əal: 3' - 4'                                        | 50                                   | Bottom 42": Brown SAN<br>fine Gravel, trace Brick, |                     | ND                                    | Dry               | ND         | ND           |                                                      |    |  |
| 5<br>6<br>7          |                              |                  |                                                     |                                      | Top 8": SLOUGH.                                    |                     | ND                                    | Dry               | ND         | ND           |                                                      |    |  |
| 8<br>9<br>10         |                              | Morie #2 Sai     | lorie #2 Sand Pack: 6' - 17'                        |                                      | Morie #2 Sand Pack: 6' - 17'                       | 57                  | Bottom 49": Brown SAN<br>fine Gravel. | D and SILT, trace | ND         | Wet<br>at 9' | ND                                                   | ND |  |
| 11                   |                              |                  |                                                     |                                      | Top 7": SLOUGH.                                    |                     | ND                                    | Wet               | ND         | ND           |                                                      |    |  |
| 12<br>13             |                              |                  | 2" Diameter Pre-Packed PVC Well<br>Screen: 7' - 17' |                                      | Middle 5": Brown SILT,                             | little Sand.        | ND                                    | Wet               | ND         | ND           |                                                      |    |  |
| <u>14</u><br>15      |                              |                  |                                                     |                                      | Bottom 18": Gray SILT,                             | little Sand.        | ND                                    | Wet               | ND         | ND           |                                                      |    |  |
| 16<br>17<br>18<br>19 |                              |                  |                                                     |                                      |                                                    |                     |                                       |                   |            |              |                                                      |    |  |
| 20                   |                              |                  |                                                     |                                      |                                                    |                     |                                       |                   |            |              |                                                      |    |  |
| es:                  | Groundwate                   | r Depth Indicato | r                                                   | Soil co                              | mples from SB/MW/ 0                                | are not submitted f | or labora                             | ory analys        | le         |              |                                                      |    |  |
|                      |                              |                  | le in MW-9 on 2/8/17.                               |                                      | mples from SB/MW-9 w                               |                     |                                       |                   |            | boring in    | stallation.                                          |    |  |
|                      | er monitoring well in        | -                |                                                     |                                      | soil boring at 15 feet be                          |                     |                                       | -                 | -          | -            |                                                      |    |  |
| anamale              |                              | ionization detec |                                                     |                                      | s phase liquid                                     | ppm = parts per i   |                                       |                   | D = not de |              |                                                      |    |  |

| K | R | F |
|---|---|---|
|   |   |   |

| <b>Job No:</b> 1700 | t                       | Well No:               |              |                         |              |                   |               |                    |                                                                                                                                                     |
|---------------------|-------------------------|------------------------|--------------|-------------------------|--------------|-------------------|---------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Locat       | tion: 200 Hamilton      | Avenue, White          | Plains, NY   |                         |              | Sampled By: Chris | s Puoplo      |                    |                                                                                                                                                     |
| Date: 2/16/20       | 18                      |                        |              |                         |              | Sampling Time: 1  | 0:25          |                    | <b>MW-1</b>                                                                                                                                         |
| LEL at surfa        |                         |                        |              |                         |              |                   |               |                    |                                                                                                                                                     |
| PID at surfac       | e: ND                   |                        |              |                         |              |                   |               |                    |                                                                                                                                                     |
| Fotal Depth:        |                         |                        | 24.27        | ft. below top of        | casing       | Water Column:     | 5.89          | feet               | *= 0.163 * WC for 2" wells                                                                                                                          |
| Depth to Wat        |                         |                        |              | ft. below top of        | Ū            | Well Volume*:     |               | gallons            | *= 0.653 * WC for 4" wells                                                                                                                          |
| Depth to Proc       |                         |                        |              | ft. below top of        |              | Volume Purged:    |               | gallons            | *= 1.469 * WC for 6" wells                                                                                                                          |
| Depth to top        |                         |                        |              | ft. below top of        | Ũ            | Well Diam.:       |               | inches             | Target maximum                                                                                                                                      |
| •                   | om of screen:           |                        |              | ft. below top of        | Ū            | Purging Device (p | 1 01 0        |                    | flow rate is<br>100 ml/min                                                                                                                          |
| Approx. Pum         |                         | Deres Det              |              | ft. below top of        |              | QEI               | D Bladder Pum |                    |                                                                                                                                                     |
| Time                | Depth to Water<br>(Ft.) | Purge Rate<br>(ml/min) | Temp<br>(°C) | Conductivity<br>(mS/cm) | DO<br>(mg/L) | pН                | ORP<br>(mV)   | Turbidity<br>(NTU) | <b>Comments</b> (problems, odor, sheen)                                                                                                             |
| 8:57                | 18.38                   | 100                    | 13.88        | 10.0                    | 1.00         | 7.49              | 164           | 902                | ( <b>t</b> , , ,                                                                                                                                    |
| 9:02                | 18.38                   | 100                    | 14.20        | 10.0                    | 0.55         | 7.50              | 152           | 712                | -                                                                                                                                                   |
| 9:07                | 18.38                   | 100                    | 14.32        | 9.92                    | 0.38         | 7.51              | 144           | 493                | -                                                                                                                                                   |
| 9:12                | 18.38                   | 100                    | 14.39        | 9.61                    | 0.30         | 7.53              | 139           | 425                | -                                                                                                                                                   |
| 9:17                | 18.38                   | 100                    | 14.45        | 9.23                    | 0.25         | 7.55              | 134           | 304                | -                                                                                                                                                   |
| 9:22                | 18.38                   | 100                    | 14.48        | 8.97                    | 0.20         | 7.56              | 129           | 235                | -                                                                                                                                                   |
| 9:27                | 18.38                   | 100                    | 14.47        | 8.76                    | 0.18         | 7.57              | 124           | 165                | -                                                                                                                                                   |
| 9:32                | 18.38                   | 100                    | 14.48        | 8.43                    | 0.12         | 7.58              | 115           | 117                | No odor or sheen                                                                                                                                    |
| 9:37                | 18.38                   | 100                    | 14.48        | 8.41                    | 0.11         | 7.58              | 114           | 114                |                                                                                                                                                     |
| 9:42                | 18.38                   | 100                    | 14.51        | 8.35                    | 0.10         | 7.59              | 112           | 117                | _                                                                                                                                                   |
| 9:47                | 18.38                   | 100                    | 14.52        | 8.27                    | 0.08         | 7.59              | 109           | 94.4               | -                                                                                                                                                   |
| 9:52                | 18.38                   | 100                    | 14.53        | 8.22                    | 0.08         | 7.59              | 108           | 90.8               | _                                                                                                                                                   |
| 9:57                | 18.38                   | 100                    | 14.53        | 8.17                    | 0.06         | 7.59              | 106           | 68.4               | _                                                                                                                                                   |
| 10:02               | 18.38                   | 100                    | 14.54        | 8.14                    | 0.06         | 7.59              | 105           | 63.8               | -                                                                                                                                                   |
| 10:07               | 18.38                   | 100                    | 14.55        | 8.10                    | 0.05         | 7.59              | 103           | 50.4               | _                                                                                                                                                   |
| 20.07               | Stabilization           |                        |              | +/- 3 mS/cm             | +/- 0.3 mg/L | +/- 0.1 pH units  | +/- 10 mV     | <50 NTU            | If water quality parameters do not stabili<br>and/or turbidity is greater than 50 NTL<br>within two hours, discontinue purging a<br>collect sample. |

| K | R | F |
|---|---|---|
|   |   |   |

| <b>Job No:</b> 17002    | 29                                                                             |                        |              |                         |              | Client: Street-Work | ks Developmen      | t                  | Well No:                                                                                                                                                   |  |
|-------------------------|--------------------------------------------------------------------------------|------------------------|--------------|-------------------------|--------------|---------------------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Project Locat           | tion: 200 Hamilton                                                             | Avenue, White          | Plains, NY   |                         |              | Sampled By: Chris   | s Puoplo           |                    |                                                                                                                                                            |  |
| Date: 2/16/20           | 18                                                                             |                        |              |                         |              | Sampling Time: 1    | mpling Time: 10:25 |                    |                                                                                                                                                            |  |
| LEL at surfa            | ce: N/A                                                                        |                        |              |                         |              |                     |                    |                    | <b>MW-1</b>                                                                                                                                                |  |
| PID at surfac           | e: ND                                                                          |                        |              |                         |              |                     |                    |                    |                                                                                                                                                            |  |
| <b>Fotal Depth:</b>     |                                                                                |                        | 24.27        | ft. below top of        | casing       | Water Column:       | 5.89               | feet               | *= 0.163 * WC for 2" wells                                                                                                                                 |  |
| Depth to Wat            | er:                                                                            |                        | 18.38        | ft. below top of        | casing       | Well Volume*:       | 0.96               | gallons            | *= 0.653 * WC for 4" wells                                                                                                                                 |  |
| Depth to Proc           | luct:                                                                          |                        | ND           | ft. below top of        | casing       | Volume Purged:      | 4                  | gallons            | *= 1.469 * WC for 6" wells                                                                                                                                 |  |
| Pepth to top of         | of screen:                                                                     |                        | 10.6         | ft. below top of        | casing       | Well Diam.:         | 2                  | inches             | Target maximum                                                                                                                                             |  |
| epth to bott            | th to bottom of screen:25.6 ft. below top of casingPurging Device (pump type): |                        |              |                         |              |                     |                    | flow rate is       |                                                                                                                                                            |  |
| Approx. Pum             |                                                                                |                        |              | ft. below top of        |              | QEI                 | D Bladder Pum      |                    | 100 ml/min                                                                                                                                                 |  |
| Time                    | Depth to Water<br>(Ft.)                                                        | Purge Rate<br>(ml/min) | Temp<br>(°C) | Conductivity<br>(mS/cm) | DO<br>(mg/L) | рН                  | ORP<br>(mV)        | Turbidity<br>(NTU) | Comments<br>(problems, odor, sheen)                                                                                                                        |  |
| 10:12                   | 18.38                                                                          | 100                    | 14.56        | 8.07                    | 0.04         | 7.59                | 101                | 38.9               |                                                                                                                                                            |  |
| 10:17                   | 18.38                                                                          | 100                    | 14.56        | 8.07                    | 0.03         | 7.60                | 100                | 39.8               | No odor or sheen                                                                                                                                           |  |
| 10:22                   | 18.38                                                                          | 100                    | 14.57        | 8.04                    | 0.03         | 7.59                | 98                 | 31.0               | No odor or sneen                                                                                                                                           |  |
| 10:33                   | 18.38                                                                          | 100                    | 14.35        | 8.02                    | 0.10         | 7.60                | 98                 | 32.3               |                                                                                                                                                            |  |
|                         |                                                                                |                        |              |                         |              |                     |                    |                    |                                                                                                                                                            |  |
| Stabilization Criteria: |                                                                                |                        |              | +/- 3 mS/cm             | +/- 0.3 mg/L | +/- 0.1 pH units    | +/- 10 mV          | <50 NTU            | If water quality parameters do not state<br>and/or turbidity is greater than 50 N <sup>-</sup><br>within two hours, discontinue purging<br>collect sample. |  |

| K | R | F |
|---|---|---|
|   |   |   |

| <b>Job No:</b> 17002 | 29                      |                        |              |                         |              | Client: Street-Work | ks Developmen | t                  | Well No:                                                                                                                                             |
|----------------------|-------------------------|------------------------|--------------|-------------------------|--------------|---------------------|---------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Locat        | ion: 200 Hamilton       | Avenue, White I        | Plains, NY   |                         |              | Sampled By: Tim     | McClintock    |                    |                                                                                                                                                      |
| Date: 2/16/20        | 18                      |                        |              |                         |              | Sampling Time: 1    | 6:25          |                    | <b>MW-2</b>                                                                                                                                          |
| LEL at surfa         | ce: N/A                 |                        |              |                         |              |                     |               |                    |                                                                                                                                                      |
| PID at surfac        | e: 0.4 ppm              |                        |              |                         |              |                     |               |                    |                                                                                                                                                      |
| Total Depth:         |                         |                        | 22.24        | ft. below top of        | casing       | Water Column:       | 9.82          | feet               | *= 0.163 * WC for 2" wells                                                                                                                           |
| Depth to Wat         |                         |                        |              | tf. below top of        | ě l          | Well Volume*:       |               | gallons            | *= 0.653 * WC for 4" wells                                                                                                                           |
| Depth to Proc        |                         |                        |              | ft. below top of        | ě            | Volume Purged:      |               | gallons            | *= 1.469 * WC for 6" wells                                                                                                                           |
| Depth to top o       |                         |                        |              | ft. below top of        | U            | Well Diam.:         |               | inches             | Target maximum                                                                                                                                       |
|                      | om of screen:           |                        |              | ft. below top of        | Ũ            | Purging Device (p   |               |                    | flow rate is<br>100 ml/min                                                                                                                           |
| Approx. Pum          | <b>A</b>                | <b>D D</b> (           |              | ft. below top of        | -            | QEI                 | D Bladder Pum |                    |                                                                                                                                                      |
| Time                 | Depth to Water<br>(Ft.) | Purge Rate<br>(ml/min) | Temp<br>(°C) | Conductivity<br>(mS/cm) | DO<br>(mg/L) | рН                  | ORP<br>(mV)   | Turbidity<br>(NTU) | <b>Comments</b> (problems, odor, sheen)                                                                                                              |
| 14:20                | 12.42                   | 100                    | 15.26        | 4.67                    | 4.52         | 6.51                | 41            | 221                |                                                                                                                                                      |
| 14:25                | 12.42                   | 100                    | 15.53        | 3.87                    | 3.93         | 6.62                | -2            | 209                | -                                                                                                                                                    |
| 14:30                | 12.42                   | 100                    | 15.56        | 5.40                    | 3.69         | 6.48                | -10           | 196                | -                                                                                                                                                    |
| 14:35                | 12.42                   | 100                    | 15.57        | 5.45                    | 3.19         | 6.48                | -19           | 185                | -                                                                                                                                                    |
| 14:40                | 12.42                   | 100                    | 15.49        | 5.46                    | 2.87         | 6.48                | -22           | 176                | -                                                                                                                                                    |
| 14:45                | 12.42                   | 100                    | 15.44        | 5.55                    | 2.60         | 6.45                | -24           | 174                | -                                                                                                                                                    |
| 14:50                | 12.42                   | 100                    | 15.42        | 5.64                    | 2.21         | 6.46                | -27           | 166                | -                                                                                                                                                    |
| 14:55                | 12.42                   | 100                    | 15.38        | 5.68                    | 1.97         | 6.46                | -29           | 161                | Petro- & septic- like odor, n                                                                                                                        |
| 15:00                | 12.42                   | 100                    | 15.35        | 5.76                    | 1.70         | 6.46                | -32           | 155                | - sheen.                                                                                                                                             |
| 15:05                | 12.42                   | 100                    | 15.31        | 5.74                    | 1.56         | 6.45                | -34           | 151                | -                                                                                                                                                    |
| 15:10                | 12.42                   | 100                    | 15.25        | 5.75                    | 2.35         | 6.45                | -34           | 148                | -                                                                                                                                                    |
| 15:15                | 12.42                   | 100                    | 15.16        | 5.75                    | 2.08         | 6.46                | -36           | 144                | -                                                                                                                                                    |
| 15:20                | 12.42                   | 100                    | 15.23        | 5.78                    | 1.91         | 6.45                | -36           | 142                | -                                                                                                                                                    |
| 15:25                | 12.42                   | 100                    | 15.22        | 5.82                    | 1.69         | 6.45                | -38           | 139                | 1                                                                                                                                                    |
| 15:30                | 12.42                   | 100                    | 15.17        | 5.82                    | 1.53         | 6.46                | -39           | 136                | -                                                                                                                                                    |
|                      | Stabilizatior           |                        |              | +/- 3 mS/cm             | +/- 0.3 mg/L | +/- 0.1 pH units    | +/- 10 mV     | <50 NTU            | If water quality parameters do not stabili<br>and/or turbidity is greater than 50 NTU<br>within two hours, discontinue purging ar<br>collect sample. |

| K | R | F |
|---|---|---|
|   |   |   |

| Job No: 17002 | 29                                                                               |                        |              |                         |              | Client: Street-Wor | ks Developmen | t                  | Well No:                                                                                                                                               |
|---------------|----------------------------------------------------------------------------------|------------------------|--------------|-------------------------|--------------|--------------------|---------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Locat | tion: 200 Hamilton                                                               | Avenue, White          | Plains, NY   |                         |              | Sampled By: Tim    | McClintock    |                    |                                                                                                                                                        |
| Date: 2/16/20 | 18                                                                               |                        |              |                         |              | Sampling Time: 1   | 6:25          | <b>MW-2</b>        |                                                                                                                                                        |
| LEL at surfa  | ce: N/A                                                                          |                        |              |                         |              |                    |               |                    |                                                                                                                                                        |
| PID at surfac | e: 0.4 ppm                                                                       |                        |              |                         |              |                    |               |                    |                                                                                                                                                        |
| Total Depth:  |                                                                                  |                        | 22.24        | ft. below top of        | casing       | Water Column:      | 9.82          | feet               | *= 0.163 * WC for 2" wells                                                                                                                             |
| Depth to Wat  |                                                                                  |                        |              | ft. below top of        | Ū            | Well Volume*:      | 1.60          | gallons            | *= 0.653 * WC for 4" wells                                                                                                                             |
| Depth to Proc |                                                                                  |                        |              | ft. below top of        | e            | Volume Purged:     |               | gallons            | *= 1.469 * WC for 6" wells                                                                                                                             |
|               | th to top of screen:     10 ft. below top of casing     Well Diam.:     2 inches |                        |              |                         |              |                    | inches        | Target maximum     |                                                                                                                                                        |
| •             | om of screen:                                                                    |                        |              | ft. below top of        | Ŭ            | Purging Device (p  |               |                    | flow rate is<br>100 ml/min                                                                                                                             |
| Approx. Pum   |                                                                                  |                        |              | ft. below top of        |              | QEI                | D Bladder Pum |                    |                                                                                                                                                        |
| Time          | Depth to Water<br>(Ft.)                                                          | Purge Rate<br>(ml/min) | Temp<br>(°C) | Conductivity<br>(mS/cm) | DO<br>(mg/L) | рН                 | ORP<br>(mV)   | Turbidity<br>(NTU) | <b>Comments</b> (problems, odor, sheen)                                                                                                                |
| 15:35         | 12.42                                                                            | 100                    | 14.59        | 5.95                    | 1.26         | 6.41               | -36           | 131                |                                                                                                                                                        |
| 15:40         | 12.42                                                                            | 100                    | 14.54        | 5.94                    | 1.23         | 6.37               | -35           | 130                |                                                                                                                                                        |
| 15:45         | 12.42                                                                            | 100                    | 14.48        | 5.92                    | 1.15         | 6.39               | -36           | 129                |                                                                                                                                                        |
| 15:50         | 12.42                                                                            | 100                    | 14.35        | 5.92                    | 1.03         | 6.39               | -37           | 127                |                                                                                                                                                        |
| 15:55         | 12.42                                                                            | 100                    | 14.34        | 5.94                    | 0.97         | 6.41               | -39           | 127                | Petro- & septic- like odor,<br>sheen.                                                                                                                  |
| 16:00         | 12.42                                                                            | 100                    | 14.36        | 5.94                    | 0.89         | 6.43               | -41           | 125                |                                                                                                                                                        |
| 16:05         | 12.42                                                                            | 100                    | 14.31        | 5.96                    | 0.78         | 6.45               | -43           | 115                | - sneen.                                                                                                                                               |
| 16:10         | 12.42                                                                            | 100                    | 14.27        | 6.00                    | 0.73         | 6.46               | -43           | 121                |                                                                                                                                                        |
| 16:15         | 12.42                                                                            | 100                    | 14.24        | 6.00                    | 0.60         | 6.46               | -45           | 119                | -                                                                                                                                                      |
| 16:20         | 12.42                                                                            | 100                    | 14.23        | 5.97                    | 0.57         | 6.47               | -45           | 117                | -                                                                                                                                                      |
| 16:30         | 12.42                                                                            | 100                    | 14.19        | 5.96                    | 0.64         | 6.39               | -26           | 115                |                                                                                                                                                        |
|               |                                                                                  |                        |              |                         |              |                    |               |                    | _                                                                                                                                                      |
|               |                                                                                  |                        |              |                         |              |                    |               |                    | -                                                                                                                                                      |
|               |                                                                                  |                        |              |                         |              |                    |               |                    | -                                                                                                                                                      |
|               | Stabilization                                                                    | n Criteria:            |              | +/- 3 mS/cm             | +/- 0.3 mg/L | +/- 0.1 pH units   | +/- 10 mV     | <50 NTU            | If water quality parameters do not stabiliz<br>and/or turbidity is greater than 50 NTU<br>within two hours, discontinue purging and<br>collect sample. |

| K | R | F |
|---|---|---|
|   |   |   |

| Job No: 170029                                          |                         |                        |              |                             |                                            | Client: Street-Worl         | ks Developmen                                                                                                                                    | Well No:       |                                         |
|---------------------------------------------------------|-------------------------|------------------------|--------------|-----------------------------|--------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------|
| Project Location: 200 Hamilton Avenue, White Plains, NY |                         |                        |              |                             |                                            | Sampled By: Tim McClintock  |                                                                                                                                                  |                |                                         |
| Date: 2/16/2018                                         |                         |                        |              |                             | Sampling Time: 11:45                       |                             |                                                                                                                                                  |                | <b>MW-5</b>                             |
| LEL at surfa                                            |                         |                        |              |                             |                                            |                             |                                                                                                                                                  |                |                                         |
| PID at surfac                                           | e: ND                   |                        |              |                             |                                            |                             |                                                                                                                                                  |                |                                         |
| Total Depth: 28.22                                      |                         |                        | 28.22        | 2 ft. below top of casing   |                                            | Water Column:               |                                                                                                                                                  |                | *= 0.163 * WC for 2" wells              |
| •                                                       |                         |                        |              | .41 ft. below top of casing |                                            | Well Volume*:               | 1.11 gallons                                                                                                                                     |                | *= 0.653 * WC for 4" wells              |
| <b>*</b>                                                |                         |                        |              | ID ft. below top of casing  |                                            | Volume Purged:              | 4 gallons                                                                                                                                        |                | *= 1.469 * WC for 6" wells              |
| Depth to top of screen: unknow                          |                         |                        |              | *                           | ft. below top of casing Well Diam.: 2 inch |                             | inches                                                                                                                                           | Target maximum |                                         |
| •                                                       |                         |                        |              | wn ft. below top of casing  |                                            | Purging Device (pump type): |                                                                                                                                                  |                | flow rate is<br>100 ml/min              |
| Approx. Pum                                             |                         | Deres Dete             |              | 25 ft. below top of casing  |                                            |                             | D Bladder Pumj<br>ORP                                                                                                                            | o<br>Turbidity |                                         |
| Time                                                    | Depth to Water<br>(Ft.) | Purge Rate<br>(ml/min) | Temp<br>(°C) | Conductivity<br>(mS/cm)     | DO<br>(mg/L)                               | рН                          | (mV)                                                                                                                                             | (NTU)          | <b>Comments</b> (problems, odor, sheen) |
| 9:40                                                    | 21.41                   | 100                    | 14.70        | 12.0                        | 1.68                                       | 6.08                        | 268                                                                                                                                              | 860            | No odor or sheen                        |
| 9:45                                                    | 21.41                   | 100                    | 14.89        | 11.5                        | 2.58                                       | 6.16                        | 258                                                                                                                                              | 375            |                                         |
| 9:50                                                    | 21.41                   | 100                    | 14.59        | 11.6                        | 2.21                                       | 6.15                        | 253                                                                                                                                              | 291            |                                         |
| 9:55                                                    | 21.41                   | 100                    | 14.36        | 11.9                        | 1.65                                       | 6.09                        | 252                                                                                                                                              | 203            |                                         |
| 10:00                                                   | 21.41                   | 100                    | 14.33        | 12.0                        | 1.41                                       | 6.05                        | 247                                                                                                                                              | 150            |                                         |
| 10:05                                                   | 21.41                   | 100                    | 14.31        | 12.1                        | 1.23                                       | 6.04                        | 244                                                                                                                                              | 126            |                                         |
| 10:10                                                   | 21.41                   | 100                    | 14.31        | 12.1                        | 1.09                                       | 6.08                        | 236                                                                                                                                              | 118            |                                         |
| 10:15                                                   | 21.41                   | 100                    | 14.31        | 12.1                        | 0.97                                       | 6.11                        | 232                                                                                                                                              | 106            |                                         |
| 10:20                                                   | 21.41                   | 100                    | 14.26        | 12.1                        | 0.86                                       | 6.14                        | 227                                                                                                                                              | 123            |                                         |
| 10:25                                                   | 21.41                   | 100                    | 14.05        | 12.1                        | 0.81                                       | 6.13                        | 225                                                                                                                                              | 109            |                                         |
| 10:30                                                   | 21.41                   | 100                    | 13.58        | 12.1                        | 0.69                                       | 6.05                        | 227                                                                                                                                              | 121            |                                         |
| 10:35                                                   | 21.41                   | 100                    | 13.41        | 12.1                        | 0.75                                       | 6.02                        | 226                                                                                                                                              | 119            |                                         |
| 10:40                                                   | 21.41                   | 100                    | 13.40        | 12.1                        | 0.69                                       | 6.00                        | 225                                                                                                                                              | 131            |                                         |
| 10:45                                                   | 21.41                   | 100                    | 13.40        | 12.1                        | 0.65                                       | 6.00                        | 224                                                                                                                                              | 114            |                                         |
| 10:50                                                   | 21.41                   | 100                    | 13.40        | 12.1                        | 0.59                                       | 5.97                        | 224                                                                                                                                              | 107            | -                                       |
| Stabilization Criteria:                                 |                         | +/- 3 mS/cm            | +/- 0.3 mg/L | +/- 0.1 pH units            | +/- 10 mV                                  | <50 NTU                     | If water quality parameters do not stabi<br>and/or turbidity is greater than 50 NT<br>within two hours, discontinue purging a<br>collect sample. |                |                                         |

| K | R | F |
|---|---|---|
|   |   |   |

| <b>Job No:</b> 17002                          | 29                      |                        |              |                         |              | Client: Street-Wor | ks Developmen | Well No:           |                                                                                                                                                    |
|-----------------------------------------------|-------------------------|------------------------|--------------|-------------------------|--------------|--------------------|---------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Locat                                 | ion: 200 Hamilton       | Avenue, White          | Plains, NY   |                         |              | Sampled By: Tim    | McClintock    |                    |                                                                                                                                                    |
| Date: 2/16/20                                 | 18                      |                        |              |                         |              | Sampling Time: 1   | 1:45          |                    | <b>MW-5</b>                                                                                                                                        |
| LEL at surfa                                  | ce: N/A                 |                        |              |                         |              |                    |               |                    |                                                                                                                                                    |
| PID at surfac                                 | e: ND                   |                        |              |                         |              |                    |               |                    |                                                                                                                                                    |
| Total Depth:                                  |                         |                        | 28.22        | ft. below top of        | casing       | Water Column:      | 6.81          | feet               | *= 0.163 * WC for 2" wells                                                                                                                         |
| Depth to Water: 21.41 ft. below top of casing |                         |                        |              |                         |              | Well Volume*:      |               | gallons            | *= 0.653 * WC for 4" wells                                                                                                                         |
| Depth to Proc                                 |                         |                        |              | ft. below top of        | ě.           | Volume Purged:     |               | gallons            | *= 1.469 * WC for 6" wells                                                                                                                         |
| Depth to top o                                |                         |                        |              | ft. below top of        | U            | Well Diam.:        |               | inches             | Target maximum                                                                                                                                     |
| •                                             | om of screen:           |                        |              | ft. below top of        | U            | Purging Device (p  |               |                    | flow rate is                                                                                                                                       |
| Approx. Pum                                   |                         |                        |              | ft. below top of        |              | QEI                | D Bladder Pum |                    | 100 ml/min                                                                                                                                         |
| Time                                          | Depth to Water<br>(Ft.) | Purge Rate<br>(ml/min) | Temp<br>(°C) | Conductivity<br>(mS/cm) | DO<br>(mg/L) | рН                 | ORP<br>(mV)   | Turbidity<br>(NTU) | <b>Comments</b> (problems, odor, sheen)                                                                                                            |
| 10:55                                         | 21.41                   | 100                    | 13.27        | 12.2                    | 0.53         | 5.98               | 221           | 101                |                                                                                                                                                    |
| 11:00                                         | 21.41                   | 100                    | 13.28        | 12.2                    | 0.48         | 5.98               | 218           | 97.7               | -                                                                                                                                                  |
| 11:05                                         | 21.41                   | 100                    | 13.23        | 12.2                    | 0.45         | 5.98               | 217           | 117                |                                                                                                                                                    |
| 11:10                                         | 21.41                   | 100                    | 13.91        | 12.2                    | 0.41         | 6.02               | 211           | 122                | -                                                                                                                                                  |
| 11:15                                         | 21.41                   | 100                    | 13.59        | 12.2                    | 0.34         | 6.02               | 211           | 126                |                                                                                                                                                    |
| 11:20                                         | 21.41                   | 100                    | 13.48        | 12.2                    | 0.30         | 6.00               | 210           | 133                | No odor or sheen                                                                                                                                   |
| 11:25                                         | 21.41                   | 100                    | 13.68        | 12.2                    | 0.29         | 6.02               | 207           | 120                |                                                                                                                                                    |
| 11:30                                         | 21.41                   | 100                    | 13.27        | 12.2                    | 0.27         | 6.02               | 201           | 131                |                                                                                                                                                    |
| 11:35                                         | 21.41                   | 100                    | 13.29        | 12.2                    | 0.25         | 6.06               | 199           | 121                |                                                                                                                                                    |
| 11:40                                         | 21.41                   | 100                    | 13.33        | 12.2                    | 0.24         | 6.06               | 199           | 124                |                                                                                                                                                    |
| 11:50                                         | 21.41                   | 100                    | 13.83        | 12.2                    | 0.19         | 5.99               | 209           | 121                |                                                                                                                                                    |
|                                               |                         |                        |              |                         |              |                    |               |                    | -                                                                                                                                                  |
|                                               |                         |                        |              |                         |              |                    |               |                    | -                                                                                                                                                  |
|                                               |                         |                        |              |                         |              |                    |               |                    | -                                                                                                                                                  |
|                                               | Stabilization           | n Criteria:            |              | +/- 3 mS/cm             | +/- 0.3 mg/L | +/- 0.1 pH units   | +/- 10 mV     | <50 NTU            | If water quality parameters do not stabil<br>and/or turbidity is greater than 50 NTU<br>within two hours, discontinue purging a<br>collect sample. |

| K | R | F |
|---|---|---|
|   |   |   |

| <b>Job No:</b> 17002               | 29                                                                               |                        | Client: Street-Worl | ks Developmen           | Well No:     |                  |               |                    |                                                                                                                                                  |
|------------------------------------|----------------------------------------------------------------------------------|------------------------|---------------------|-------------------------|--------------|------------------|---------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Locat                      | tion: 200 Hamilton                                                               | Avenue, White          | Plains, NY          |                         |              | Sampled By: Tim  | McClintock    |                    |                                                                                                                                                  |
| Date: 2/16/20                      | 18                                                                               |                        |                     |                         |              | Sampling Time: 1 | 3:20          |                    | <b>MW-6</b>                                                                                                                                      |
| LEL at surface: N/A                |                                                                                  |                        |                     |                         |              |                  |               |                    |                                                                                                                                                  |
| PID at surfac                      | e: 0.7 ppm                                                                       |                        |                     |                         |              |                  |               |                    |                                                                                                                                                  |
| Total Depth:                       |                                                                                  |                        | 28.94               | ft. below top of        | casing       | Water Column:    | 5.82          | feet               | *= 0.163 * WC for 2" wells                                                                                                                       |
| Depth to Water: 23.12 ft. below to |                                                                                  |                        |                     |                         | casing       | Well Volume*:    | 0.95          | gallons            | *= 0.653 * WC for 4" wells                                                                                                                       |
| *                                  |                                                                                  |                        |                     | ft. below top of        | casing       | Volume Purged:   | 2             | gallons            | *= 1.469 * WC for 6" wells                                                                                                                       |
| Depth to top o                     | of screen:                                                                       |                        | unknown             | ft. below top of        | casing       | Well Diam.:      | 2             | inches             | Target maximum                                                                                                                                   |
| Depth to botto                     | a to bottom of screen:unknown ft. below top of casingPurging Device (pump type): |                        |                     |                         |              |                  | flow rate is  |                    |                                                                                                                                                  |
| Approx. Pum                        |                                                                                  |                        |                     | ft. below top of        |              | QEI              | D Bladder Pum |                    | 100 ml/min                                                                                                                                       |
| Time                               | Depth to Water<br>(Ft.)                                                          | Purge Rate<br>(ml/min) | Temp<br>(°C)        | Conductivity<br>(mS/cm) | DO<br>(mg/L) | рН               | ORP<br>(mV)   | Turbidity<br>(NTU) | Comments<br>(problems, odor, sheen)                                                                                                              |
| 12:40                              | 23.12                                                                            | 100                    | 14.71               | 10.0                    | 0.28         | 6.36             | 13            | 181                |                                                                                                                                                  |
| 12:45                              | 23.12                                                                            | 100                    | 14.89               | 10.1                    | 0.14         | 6.32             | -6            | 137                |                                                                                                                                                  |
| 12:50                              | 23.12                                                                            | 100                    | 14.94               | 10.1                    | 0.08         | 6.31             | -14           | 106                | Petro-like odor, no sheen                                                                                                                        |
| 12:55                              | 23.12                                                                            | 100                    | 14.97               | 10.1                    | 0.00         | 6.29             | -21           | 72.2               |                                                                                                                                                  |
| 13:00                              | 23.12                                                                            | 100                    | 14.99               | 10.1                    | 0.00         | 6.29             | -25           | 59.5               |                                                                                                                                                  |
| 13:05                              | 23.12                                                                            | 100                    | 15.01               | 10.1                    | 0.00         | 6.29             | -29           | 47.4               |                                                                                                                                                  |
| 13:10                              | 23.12                                                                            | 100                    | 15.01               | 10.1                    | 0.00         | 6.29             | -32           | 39.7               |                                                                                                                                                  |
| 13:15                              | 23.12                                                                            | 100                    | 14.99               | 10.1                    | 0.00         | 6.28             | -33           | 36.6               |                                                                                                                                                  |
| 13:20                              | 23.12                                                                            | 100                    | 14.99               | 10.1                    | 0.00         | 6.28             | -34           | 35.1               |                                                                                                                                                  |
| 13:30                              | 23.12                                                                            | 100                    | 14.91               | 10.1                    | 0.00         | 6.28             | -35           | 33.2               |                                                                                                                                                  |
|                                    |                                                                                  |                        |                     |                         |              |                  |               |                    | -                                                                                                                                                |
|                                    |                                                                                  |                        |                     |                         |              |                  |               |                    | -                                                                                                                                                |
|                                    |                                                                                  |                        |                     |                         |              |                  |               |                    |                                                                                                                                                  |
|                                    | Stabilization                                                                    | n Criteria:            |                     | +/- 3 mS/cm             | +/- 0.3 mg/L | +/- 0.1 pH units | +/- 10 mV     | <50 NTU            | If water quality parameters do not stabi<br>and/or turbidity is greater than 50 NT<br>within two hours, discontinue purging a<br>collect sample. |

# **ØAK**RF

| <b>Job No:</b> 17002    | 29                      |                        |              |                         |                  | Client: Street-Worl | ks Developmen  | Well No:                                                                                                                                         |                                                  |
|-------------------------|-------------------------|------------------------|--------------|-------------------------|------------------|---------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Project Locat           | ion: 200 Hamilton       | Avenue, White          | Plains, NY   |                         |                  | Sampled By: Chris   | s Puoplo       |                                                                                                                                                  |                                                  |
| Date: 2/16/20           | 18                      |                        |              |                         |                  | Sampling Time: 1    | 3:55           |                                                                                                                                                  | <b>MW-7</b>                                      |
| LEL at surfa            | ce: N/A                 |                        |              |                         |                  |                     |                |                                                                                                                                                  |                                                  |
| PID at surfac           | e: 250.6 ppm            |                        |              |                         |                  |                     |                |                                                                                                                                                  |                                                  |
| Total Depth:            |                         |                        |              | ft. below top of        | Ũ                | Water Column:       | 6.45           | feet                                                                                                                                             | *= 0.163 * WC for 2" wells                       |
| Depth to Water: 23.     |                         |                        |              | ft. below top of        |                  | Well Volume*:       |                | gallons                                                                                                                                          | *= 0.653 * WC for 4" wells                       |
| Depth to Proc           |                         |                        |              | ft. below top of        | e                | Volume Purged:      |                | gallons                                                                                                                                          | *= 1.469 * WC for 6" wells                       |
| Depth to top o          |                         |                        |              | ft. below top of        | ę                | Well Diam.:         |                | inches                                                                                                                                           | Target maximum                                   |
| •                       | om of screen:           |                        |              | ft. below top of        | Ũ                | Purging Device (p   | 1 11           |                                                                                                                                                  | flow rate is<br>100 ml/min                       |
| Approx. Pum             | <b>A</b>                | <b>D</b>               |              | ft. below top of        | Ų                | QEI                 | D Bladder Pumj |                                                                                                                                                  |                                                  |
| Time                    | Depth to Water<br>(Ft.) | Purge Rate<br>(ml/min) | Temp<br>(°C) | Conductivity<br>(mS/cm) | DO<br>(mg/L)     | рН                  | ORP<br>(mV)    | Turbidity<br>(NTU)                                                                                                                               | <b>Comments</b> (problems, odor, sheen)          |
| 11:54                   | 23.90                   | 100                    | 14.69        | 4.10                    | 0.86             | 7.43                | -174           | 216                                                                                                                                              | ( <b>1</b> · · · · · · · · · · · · · · · · · · · |
| 11:59                   | 23.90                   | 100                    | 14.92        | 4.05                    | 0.58             | 7.40                | -302           | 198                                                                                                                                              |                                                  |
| 12:04                   | 23.90                   | 100                    | 15.13        | 3.88                    | 0.54             | 7.40                | -363           | 244                                                                                                                                              |                                                  |
| 12:09                   | 23.90                   | 100                    | 15.20        | 3.70                    | 0.57             | 7.39                | -334           | 489                                                                                                                                              |                                                  |
| 12:14                   | 23.90                   | 100                    | 15.10        | 3.68                    | 0.57             | 7.39                | -326           | 467                                                                                                                                              |                                                  |
| 12:19                   | 23.90                   | 100                    | 15.02        | 3.72                    | 0.60             | 7.39                | -324           | 392                                                                                                                                              | -                                                |
| 12:24                   | 23.90                   | 100                    | 14.98        | 3.82                    | 0.54             | 7.38                | -318           | 339                                                                                                                                              | -                                                |
| 12:29                   | 23.90                   | 100                    | 15.05        | 3.87                    | 0.48             | 7.38                | -332           | 271                                                                                                                                              | Petro-like odor, no sheen                        |
| 12:34                   | 23.90                   | 100                    | 15.03        | 3.87                    | 0.53             | 7.38                | -334           | 251                                                                                                                                              |                                                  |
| 12:39                   | 23.90                   | 100                    | 14.69        | 3.95                    | 0.50             | 7.35                | -327           | 180                                                                                                                                              | -                                                |
| 12:44                   | 23.90                   | 100                    | 14.66        | 4.10                    | 0.51             | 7.35                | -332           | 143                                                                                                                                              | -                                                |
| 12:49                   | 23.90                   | 100                    | 14.66        | 4.12                    | 0.53             | 7.34                | -330           | 128                                                                                                                                              | -                                                |
| 12:54                   | 23.90                   | 100                    | 14.77        | 4.20                    | 0.55             | 7.34                | -325           | 191                                                                                                                                              |                                                  |
| 12:59                   | 23.90                   | 100                    | 14.80        | 4.15                    | 0.39             | 7.34                | -325           | 168                                                                                                                                              |                                                  |
| 13:04                   | 23.90                   | 100                    | 15.01        | 4.04                    | 0.34             | 7.39                | -312           | 122                                                                                                                                              |                                                  |
| Stabilization Criteria: |                         |                        | +/- 3 mS/cm  | +/- 0.3 mg/L            | +/- 0.1 pH units | +/- 10 mV           | <50 NTU        | If water quality parameters do not stabi<br>and/or turbidity is greater than 50 NT<br>within two hours, discontinue purging a<br>collect sample. |                                                  |

| K | R | F |
|---|---|---|
|   |   |   |

| Job No: 1700                 | 29                      |                        |              |                         |              | Client: Street-World     | ks Developmen | Well No:           |                                                                                                                                                 |  |
|------------------------------|-------------------------|------------------------|--------------|-------------------------|--------------|--------------------------|---------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Project Locat                | tion: 200 Hamilton      | Avenue, White          | Plains, NY   |                         |              | Sampled By: Chris Puoplo |               |                    |                                                                                                                                                 |  |
| Date: 2/16/20                | 18                      |                        |              |                         |              | Sampling Time: 1         | 3:55          |                    | <b>MW-7</b>                                                                                                                                     |  |
| LEL at surfa                 | ce: N/A                 |                        |              |                         |              |                          |               |                    |                                                                                                                                                 |  |
| PID at surfac                | ce: 250.6 ppm           |                        |              |                         |              |                          |               |                    |                                                                                                                                                 |  |
| Total Depth:                 |                         |                        | 30.35        | ft. below top of        | casing       | Water Column:            | 6.45          | feet               | *= 0.163 * WC for 2" wells                                                                                                                      |  |
| Depth to Water: 23.9 ft. bel |                         |                        |              |                         | casing       | Well Volume*:            | 1.05          | gallons            | *= 0.653 * WC for 4" wells                                                                                                                      |  |
| Depth to Proc                | duct:                   |                        | ND           | ft. below top of        | casing       | Volume Purged:           | 2.5           | gallons            | *= 1.469 * WC for 6" wells                                                                                                                      |  |
| Depth to top                 | of screen:              |                        | 20.35        | ft. below top of        | casing       | Well Diam.:              |               | inches             | Target maximum                                                                                                                                  |  |
| •                            |                         |                        |              | ft. below top of        | Ŭ            | Purging Device (p        |               |                    | flow rate is                                                                                                                                    |  |
| Approx. Pum                  |                         |                        |              | ft. below top of        | -            | QEI                      | D Bladder Pum |                    | 100 ml/min                                                                                                                                      |  |
| Time                         | Depth to Water<br>(Ft.) | Purge Rate<br>(ml/min) | Temp<br>(°C) | Conductivity<br>(mS/cm) | DO<br>(mg/L) | рН                       | ORP<br>(mV)   | Turbidity<br>(NTU) | Comments<br>(problems, odor, sheen)                                                                                                             |  |
| 13:09                        | 23.90                   | 100                    | 15.06        | 3.93                    | 0.36         | 7.72                     | -119          | 105                |                                                                                                                                                 |  |
| 13:14                        | 23.90                   | 100                    | 15.10        | 3.07                    | 0.40         | 7.42                     | 81            | 84.5               |                                                                                                                                                 |  |
| 13:19                        | 23.90                   | 100                    | 14.83        | 5.27                    | 0.36         | 7.33                     | -358          | 260                |                                                                                                                                                 |  |
| 13:24                        | 23.90                   | 100                    | 15.36        | 5.30                    | 0.11         | 7.35                     | -449          | 217                | -                                                                                                                                               |  |
| 13:29                        | 23.90                   | 100                    | 15.40        | 5.02                    | 0.11         | 7.35                     | -436          | 400                |                                                                                                                                                 |  |
| 13:34                        | 23.90                   | 100                    | 15.45        | 4.96                    | 0.16         | 7.35                     | -417          | 571                | Petro-like odor, no sheen                                                                                                                       |  |
| 13:39                        | 23.90                   | 100                    | 15.39        | 4.94                    | 0.20         | 7.35                     | -416          | 710                |                                                                                                                                                 |  |
| 13:44                        | 23.90                   | 100                    | 15.21        | 5.05                    | 0.20         | 7.34                     | -405          | 626                |                                                                                                                                                 |  |
| 13:49                        | 23.90                   | 100                    | 15.14        | 5.13                    | 0.20         | 7.34                     | -403          | 606                |                                                                                                                                                 |  |
| 13:54                        | 23.90                   | 100                    | 15.09        | 5.12                    | 0.22         | 7.34                     | -403          | 572                |                                                                                                                                                 |  |
| 14:02                        | 23.90                   | 100                    | 15.00        | 5.14                    | 0.43         | 7.34                     | -297          | 668                |                                                                                                                                                 |  |
|                              |                         |                        |              |                         |              |                          |               |                    | _                                                                                                                                               |  |
|                              |                         |                        |              |                         |              |                          |               |                    | -                                                                                                                                               |  |
|                              |                         |                        |              |                         |              |                          |               |                    |                                                                                                                                                 |  |
|                              | Stabilization           | n Criteria:            |              | +/- 3 mS/cm             | +/- 0.3 mg/L | +/- 0.1 pH units         | +/- 10 mV     | <50 NTU            | If water quality parameters do not stab<br>and/or turbidity is greater than 50 NT<br>within two hours, discontinue purging a<br>collect sample. |  |

| K | R | F |
|---|---|---|
|   |   |   |

| <b>Job No:</b> 17002 | 29                      |                        |              |                         |              | Client: Street-Worl | ks Developmen | t                  | Well No:                                                                                                                                         |
|----------------------|-------------------------|------------------------|--------------|-------------------------|--------------|---------------------|---------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Locat        | tion: 200 Hamilton      | Avenue, White          | Plains, NY   |                         |              | Sampled By: Chris   | s Puoplo      |                    |                                                                                                                                                  |
| Date: 2/16/20        | 18                      |                        |              |                         |              | Sampling Time: 1    | 8:07          |                    | <b>MW-8</b>                                                                                                                                      |
| LEL at surfa         |                         |                        |              |                         |              |                     |               |                    |                                                                                                                                                  |
| PID at surfac        | e: 11 ppm               |                        |              |                         |              |                     |               |                    |                                                                                                                                                  |
| Total Depth:         |                         |                        | 16.98        | ft. below top of        | casing       | Water Column:       | 7.05          | feet               | *= 0.163 * WC for 2" wells                                                                                                                       |
| Depth to Wat         | er:                     |                        |              | ft. below top of        | e            | Well Volume*:       | 1.15          | gallons            | *= 0.653 * WC for 4" wells                                                                                                                       |
| ▲<br>▲               |                         |                        |              | ft. below top of        | 6            | Volume Purged:      |               | gallons            | *= 1.469 * WC for 6" wells                                                                                                                       |
| Depth to top o       |                         |                        |              | ft. below top of        | Ũ            | Well Diam.:         |               | inches             | Target maximum                                                                                                                                   |
| •                    |                         |                        |              | ft. below top of        | Ŭ            | Purging Device (p   | 1 11          |                    | flow rate is<br>100 ml/min                                                                                                                       |
| Approx. Pum          |                         |                        |              | ft. below top of        |              | QEI                 | D Bladder Pum |                    |                                                                                                                                                  |
| Time                 | Depth to Water<br>(Ft.) | Purge Rate<br>(ml/min) | Temp<br>(°C) | Conductivity<br>(mS/cm) | DO<br>(mg/L) | рН                  | ORP<br>(mV)   | Turbidity<br>(NTU) | Comments<br>(problems, odor, sheen)                                                                                                              |
| 17:35                | 9.93                    | 100                    | 14.78        | 5.28                    | 0.10         | 6.59                | -61           | 277                |                                                                                                                                                  |
| 17:40                | 9.93                    | 100                    | 15.81        | 5.20                    | 0.06         | 6.58                | -78           | 201                | <ul> <li>Petro-like odor, no sheen</li> </ul>                                                                                                    |
| 17:45                | 9.93                    | 100                    | 16.47        | 5.17                    | 0.00         | 6.66                | -94           | 107                |                                                                                                                                                  |
| 17:50                | 9.93                    | 100                    | 16.70        | 5.17                    | 0.00         | 6.67                | -100          | 63.5               |                                                                                                                                                  |
| 17:55                | 9.93                    | 100                    | 16.84        | 5.17                    | 0.00         | 6.67                | -103          | 46.2               |                                                                                                                                                  |
| 18:00                | 9.93                    | 100                    | 17.04        | 5.13                    | 0.00         | 6.67                | -107          | 27.6               |                                                                                                                                                  |
| 18:05                | 9.93                    | 100                    | 17.15        | 5.12                    | 0.00         | 6.63                | -107          | 19.0               |                                                                                                                                                  |
| 18:14                | 9.93                    | 100                    | 17.13        | 5.09                    | 0.00         | 6.56                | -102          | 20.0               |                                                                                                                                                  |
|                      |                         |                        |              |                         |              |                     |               |                    | -                                                                                                                                                |
|                      |                         |                        |              |                         |              |                     |               |                    | -                                                                                                                                                |
|                      |                         |                        |              |                         |              |                     |               |                    | -                                                                                                                                                |
|                      |                         |                        |              |                         |              |                     |               |                    | -                                                                                                                                                |
|                      | Stabilization           | n Criteria:            |              | +/- 3 mS/cm             | +/- 0.3 mg/L | +/- 0.1 pH units    | +/- 10 mV     | <50 NTU            | If water quality parameters do not stabi<br>and/or turbidity is greater than 50 NT<br>within two hours, discontinue purging a<br>collect sample. |

| K | R | F |
|---|---|---|
|   |   |   |

| <b>Job No:</b> 17002    | 29                      | Client: Street-Worl    | t            | Well No:                |                  |                   |                |                                                                                                                                                      |                                         |
|-------------------------|-------------------------|------------------------|--------------|-------------------------|------------------|-------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Project Locat           | ion: 200 Hamilton       | Avenue, White          | Plains, NY   |                         |                  | Sampled By: Chris | Puoplo         |                                                                                                                                                      |                                         |
| Date: 2/16/20           | 18                      |                        |              |                         |                  | Sampling Time: 1  | 6:37           |                                                                                                                                                      | <b>MW-9</b>                             |
| LEL at surfac           | ce: N/A                 |                        |              |                         |                  |                   |                |                                                                                                                                                      |                                         |
| PID at surfac           | <b>e:</b> 0.4 ppm       |                        |              |                         |                  |                   |                |                                                                                                                                                      |                                         |
| Total Depth:            |                         |                        |              | ft. below top of        | Ũ                | Water Column:     | 8.43           | feet                                                                                                                                                 | *= 0.163 * WC for 2" wells              |
| =                       |                         |                        |              | ft. below top of        |                  | Well Volume*:     |                | gallons                                                                                                                                              | *= 0.653 * WC for 4" wells              |
| Depth to Prod           |                         |                        |              | ft. below top of        | e                | Volume Purged:    |                | gallons                                                                                                                                              | *= 1.469 * WC for 6" wells              |
| Depth to top o          |                         |                        |              | ft. below top of        | ę                | Well Diam.:       |                | inches                                                                                                                                               | Target maximum                          |
| •                       | om of screen:           |                        |              | ft. below top of        | 0                | Purging Device (p | ump type):     |                                                                                                                                                      | flow rate is<br>100 ml/min              |
| Approx. Pum             |                         |                        |              | ft. below top of        | Ų                | QEI               | D Bladder Pump |                                                                                                                                                      |                                         |
| Time                    | Depth to Water<br>(Ft.) | Purge Rate<br>(ml/min) | Temp<br>(°C) | Conductivity<br>(mS/cm) | DO<br>(mg/L)     | pН                | ORP<br>(mV)    | Turbidity<br>(NTU)                                                                                                                                   | <b>Comments</b> (problems, odor, sheen) |
| 15:05                   | 11.82                   | 100                    | 14.33        | 3.55                    | 2.48             | 7.34              | 78             | 487                                                                                                                                                  |                                         |
| 15:10                   | 11.82                   | 100                    | 13.63        | 3.61                    | 3.43             | 7.33              | 69             | 437                                                                                                                                                  | -                                       |
| 15:15                   | 11.82                   | 100                    | 13.55        | 3.59                    | 3.46             | 7.33              | 64             | 389                                                                                                                                                  |                                         |
| 15:20                   | 11.82                   | 100                    | 13.29        | 3.58                    | 3.21             | 7.33              | 50             | 300                                                                                                                                                  |                                         |
| 15:25                   | 11.82                   | 100                    | 13.26        | 3.59                    | 3.07             | 7.33              | 48             | 267                                                                                                                                                  |                                         |
| 15:30                   | 11.82                   | 100                    | 13.17        | 3.59                    | 2.95             | 7.33              | 45             | 208                                                                                                                                                  |                                         |
| 15:35                   | 11.82                   | 100                    | 13.09        | 3.59                    | 2.78             | 7.33              | 43             | 167                                                                                                                                                  |                                         |
| 15:40                   | 11.82                   | 100                    | 12.99        | 3.61                    | 2.70             | 7.33              | 36             | 134                                                                                                                                                  | No odor or sheen                        |
| 15:45                   | 11.82                   | 100                    | 12.97        | 3.61                    | 2.58             | 7.33              | 33             | 108                                                                                                                                                  |                                         |
| 15:50                   | 11.82                   | 100                    | 12.96        | 3.61                    | 2.50             | 7.33              | 34             | 107                                                                                                                                                  |                                         |
| 15:55                   | 11.82                   | 100                    | 12.95        | 3.62                    | 2.52             | 7.33              | 31             | 99                                                                                                                                                   |                                         |
| 16:00                   | 11.82                   | 100                    | 12.99        | 3.63                    | 2.37             | 7.33              | 26             | 83.9                                                                                                                                                 | -                                       |
| 16:05                   | 11.82                   | 100                    | 12.96        | 3.64                    | 2.28             | 7.33              | 26             | 82.9                                                                                                                                                 |                                         |
| 16:10                   | 11.82                   | 100                    | 12.92        | 3.65                    | 2.22             | 7.33              | 22             | 73                                                                                                                                                   |                                         |
| 16:15                   | 11.82                   | 100                    | 12.89        | 3.67                    | 2.10             | 7.33              | 13             | 58.2                                                                                                                                                 | 1                                       |
| Stabilization Criteria: |                         |                        | +/- 3 mS/cm  | +/- 0.3 mg/L            | +/- 0.1 pH units | +/- 10 mV         | <50 NTU        | If water quality parameters do not stabili<br>and/or turbidity is greater than 50 NTU<br>within two hours, discontinue purging ar<br>collect sample. |                                         |

| K | R | F |
|---|---|---|
|   |   |   |

| Job No: 170029<br>Project Location: 200 Hamilton Avenue, White Plains, NY<br>Date: 2/16/2018 |                         |                        |                  |                           |               | Client: Street-Works Development Sampled By: Chris Puoplo |               |                            | Well No:                                                                                                                                                  |
|----------------------------------------------------------------------------------------------|-------------------------|------------------------|------------------|---------------------------|---------------|-----------------------------------------------------------|---------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                              |                         |                        |                  |                           |               |                                                           |               |                            |                                                                                                                                                           |
|                                                                                              |                         |                        |                  |                           |               | Sampling Time: 1                                          | 6:37          |                            | <b>MW-9</b>                                                                                                                                               |
| LEL at surface: N/A                                                                          |                         |                        |                  |                           |               |                                                           |               |                            |                                                                                                                                                           |
| PID at surfac                                                                                | e: 0.4 ppm              |                        |                  |                           |               |                                                           |               |                            |                                                                                                                                                           |
| Total Depth: 20.25                                                                           |                         |                        | ft. below top of | casing                    | Water Column: | 8.43                                                      | feet          | *= 0.163 * WC for 2" wells |                                                                                                                                                           |
| Depth to Wat                                                                                 | er:                     |                        | 11.82            | ft. below top of          | casing        | Well Volume*:                                             | 1.36          | gallons                    | *= 0.653 * WC for 4" wells                                                                                                                                |
| Depth to Proc                                                                                | duct:                   |                        |                  | ft. below top of          | ě             | Volume Purged:                                            |               | gallons                    | *= 1.469 * WC for 6" wells                                                                                                                                |
| Depth to top o                                                                               | of screen:              |                        | 5.25             | ft. below top of          | casing        | Well Diam.:                                               |               | inches                     | Target maximum                                                                                                                                            |
| -                                                                                            | om of screen:           |                        |                  | 5 ft. below top of casing |               | Purging Device (p                                         | ump type):    |                            | flow rate is                                                                                                                                              |
| Approx. Pum                                                                                  |                         |                        |                  | ft. below top of          | -             | QEI                                                       | D Bladder Pum |                            | 100 ml/min                                                                                                                                                |
| Time                                                                                         | Depth to Water<br>(Ft.) | Purge Rate<br>(ml/min) | Temp<br>(°C)     | Conductivity<br>(mS/cm)   | DO<br>(mg/L)  | рН                                                        | ORP<br>(mV)   | Turbidity<br>(NTU)         | Comments<br>(problems, odor, sheen)                                                                                                                       |
| 16:20                                                                                        | 11.82                   | 100                    | 12.88            | 3.67                      | 2.03          | 7.33                                                      | 13            | 54.4                       |                                                                                                                                                           |
| 16:25                                                                                        | 11.82                   | 100                    | 12.86            | 3.68                      | 1.95          | 7.33                                                      | 12            | 47.6                       |                                                                                                                                                           |
| 16:30                                                                                        | 11.82                   | 100                    | 12.81            | 3.70                      | 1.89          | 7.33                                                      | 7             | 40.8                       | No odor or sheen                                                                                                                                          |
| 16:35                                                                                        | 11.82                   | 100                    | 12.78            | 3.71                      | 1.87          | 7.33                                                      | 6             | 42.0                       |                                                                                                                                                           |
| 16:47                                                                                        | 11.82                   | 100                    | 12.36            | 3.74                      | 1.72          | 7.33                                                      | 5             | 49.2                       |                                                                                                                                                           |
|                                                                                              |                         |                        |                  |                           |               |                                                           |               |                            |                                                                                                                                                           |
|                                                                                              |                         |                        |                  |                           |               |                                                           |               |                            |                                                                                                                                                           |
|                                                                                              |                         |                        |                  |                           |               |                                                           |               |                            |                                                                                                                                                           |
|                                                                                              |                         |                        |                  |                           |               |                                                           |               |                            |                                                                                                                                                           |
|                                                                                              |                         |                        |                  |                           |               |                                                           |               |                            |                                                                                                                                                           |
|                                                                                              |                         |                        |                  |                           |               |                                                           |               |                            |                                                                                                                                                           |
|                                                                                              |                         |                        |                  |                           |               |                                                           |               |                            | -                                                                                                                                                         |
|                                                                                              |                         |                        |                  |                           |               |                                                           |               |                            |                                                                                                                                                           |
|                                                                                              |                         |                        |                  |                           |               |                                                           |               |                            |                                                                                                                                                           |
|                                                                                              |                         |                        |                  |                           |               |                                                           |               |                            |                                                                                                                                                           |
|                                                                                              | Stabilization           | n Criteria:            |                  | +/- 3 mS/cm               | +/- 0.3 mg/L  | +/- 0.1 pH units                                          | +/- 10 mV     | <50 NTU                    | If water quality parameters do not stab<br>and/or turbidity is greater than 50 N <sup>-</sup><br>within two hours, discontinue purging<br>collect sample. |

APPENDIX D LABORATORY ANALYTICAL REPORTS



#### ANALYTICAL REPORT

| Lab Number:     | L1804131               |
|-----------------|------------------------|
| Client:         | AKRF, Inc.             |
|                 | 34 South Broadway      |
|                 | White Plains, NY 10601 |
|                 |                        |
| ATTN:           | Becky Kinal            |
| Phone:          | (914) 922-2362         |
| Project Name:   | 200 HAMILTON AVENUE    |
| Project Number: | 170029                 |
| Report Date:    | 02/13/18               |
|                 |                        |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Serial\_No:02131814:52

Project Name:200 HAMILTON AVENUEProject Number:170029

| Lab Number:  | L1804131 |
|--------------|----------|
| Report Date: | 02/13/18 |

| Alpha<br>Sample ID | Client ID     | Matrix | Sample<br>Location                     | Collection<br>Date/Time | Receive Date |
|--------------------|---------------|--------|----------------------------------------|-------------------------|--------------|
| L1804131-01        | SB-11 (17-19) | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/06/18 11:00          | 02/06/18     |
| L1804131-02        | SB-11 (5-7)   | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/06/18 11:05          | 02/06/18     |
| L1804131-03        | SB-13 (10-12) | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/06/18 12:00          | 02/06/18     |
| L1804131-04        | SB-13 (3-5)   | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/06/18 12:05          | 02/06/18     |
| L1804131-05        | SB-18 (12-14) | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/06/18 13:05          | 02/06/18     |
| L1804131-06        | SB-14 (2-4)   | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/06/18 15:00          | 02/06/18     |
| L1804131-07        | SB-14 (15-16) | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/06/18 15:10          | 02/06/18     |
| L1804131-08        | SB-12 (2-4)   | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/06/18 15:40          | 02/06/18     |
| L1804131-09        | SB-12 (15-16) | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/06/18 15:50          | 02/06/18     |
| L1804131-10        | SB-10 (20-22) | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/07/18 09:20          | 02/07/18     |
| L1804131-11        | SB-10 (3-5)   | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/07/18 09:25          | 02/07/18     |
| L1804131-12        | SB-15 (10-11) | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/09/18 08:55          | 02/09/18     |
| L1804131-13        | SB-15 (2-4)   | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/09/18 09:00          | 02/09/18     |
| L1804131-14        | SB-16 (12-13) | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/09/18 11:00          | 02/09/18     |
| L1804131-15        | SB-16 (2-4)   | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/09/18 11:10          | 02/09/18     |
| L1804131-16        | SB-17 (8-9)   | SOIL   | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/09/18 12:25          | 02/09/18     |
| L1804131-17        | SB-17 (5-7)   | SOIL   | 200 HAMILTON AVE., WHITE PLAINS, NY    | 02/09/18 12:35          | 02/09/18     |



# Project Name:200 HAMILTON AVENUEProject Number:170029

Lab Number: L1804131 Report Date: 02/13/18

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

#### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.



Project Name: 200 HAMILTON AVENUE Project Number: 170029 
 Lab Number:
 L1804131

 Report Date:
 02/13/18

#### **Case Narrative (continued)**

#### Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

#### Volatile Organics

L1804131-07: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

#### **Total Metals**

The WG1088167-3 MS recovery, performed on L1804131-13, is outside the acceptance criteria for mercury (0%). A post digestion spike was performed and yielded an unacceptable recovery of 124%. This has been attributed to sample matrix.

The WG1088167-4 Laboratory Duplicate RPD for mercury (46%), performed on L1804131-13, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

#### Solids, Total

L1804131-12 through -17: A Laboratory Duplicate was prepared with the sample batch, however, the native sample was not available for reporting; therefore, the Laboratory Duplicate results could not be reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Nails Amita Naik

Authorized Signature:

Title: Technical Director/Representative

Date: 02/13/18



# ORGANICS



# VOLATILES



|                                   |                              |                  |         | Serial_No                         | 0:02131814:52              |
|-----------------------------------|------------------------------|------------------|---------|-----------------------------------|----------------------------|
| Project Name:                     | 200 HAMILTON AV              | ENUE             |         | Lab Number:                       | L1804131                   |
| Project Number:                   | 170029                       |                  |         | Report Date:                      | 02/13/18                   |
|                                   |                              | SAMPLE           | RESULTS |                                   |                            |
| Lab ID:<br>Client ID:             | L1804131-01<br>SB-11 (17-19) | D                |         | Date Collected:<br>Date Received: | 02/06/18 11:00<br>02/06/18 |
| Sample Location:<br>Sample Depth: | 200 HAMILTON A               | /E., WHITE PLAIN | S, NY   | Field Prep:                       | Not Specified              |
| Matrix:                           | Soil                         |                  |         |                                   |                            |
| Analytical Method:                | 1,8260C                      |                  |         |                                   |                            |
| Analytical Date:                  | 02/12/18 10:43               |                  |         |                                   |                            |
| Analyst:                          | MV                           |                  |         |                                   |                            |
| Percent Solids:                   | 88%                          |                  |         |                                   |                            |

| Parameter                                        | Result | Qualifier | Units | RL   | MDL | Dilution Factor |  |  |
|--------------------------------------------------|--------|-----------|-------|------|-----|-----------------|--|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |      |     |                 |  |  |
| Benzene                                          | ND     |           | ug/kg | 550  | 100 | 10              |  |  |
| Toluene                                          | ND     |           | ug/kg | 820  | 110 | 10              |  |  |
| Ethylbenzene                                     | 11000  |           | ug/kg | 550  | 93. | 10              |  |  |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 1100 | 84. | 10              |  |  |
| p/m-Xylene                                       | 17000  |           | ug/kg | 1100 | 190 | 10              |  |  |
| o-Xylene                                         | 1400   |           | ug/kg | 1100 | 180 | 10              |  |  |
| Xylenes, Total                                   | 18000  |           | ug/kg | 1100 | 180 | 10              |  |  |
| n-Butylbenzene                                   | 4000   |           | ug/kg | 550  | 120 | 10              |  |  |
| sec-Butylbenzene                                 | 2300   |           | ug/kg | 550  | 120 | 10              |  |  |
| tert-Butylbenzene                                | ND     |           | ug/kg | 2700 | 140 | 10              |  |  |
| Isopropylbenzene                                 | 4100   |           | ug/kg | 550  | 110 | 10              |  |  |
| p-Isopropyltoluene                               | 1000   |           | ug/kg | 550  | 110 | 10              |  |  |
| Naphthalene                                      | 3400   |           | ug/kg | 2700 | 76. | 10              |  |  |
| n-Propylbenzene                                  | 15000  |           | ug/kg | 550  | 120 | 10              |  |  |
| 1,3,5-Trimethylbenzene                           | 17000  |           | ug/kg | 2700 | 88. | 10              |  |  |
| 1,2,4-Trimethylbenzene                           | 60000  |           | ug/kg | 2700 | 100 | 10              |  |  |
|                                                  |        |           |       |      |     |                 |  |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 109        | 70-130                           |  |
| Toluene-d8            | 102        | 70-130                           |  |
| 4-Bromofluorobenzene  | 100        | 70-130                           |  |
| Dibromofluoromethane  | 97         | 70-130                           |  |



|                                                                                                                                                |                                                                                                                     | Serial_No                                        | 0:02131814:52                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                                                  | 200 HAMILTON AVENUE                                                                                                 | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                                                                                | 170029                                                                                                              | Report Date:                                     | 02/13/18                                    |
|                                                                                                                                                | SAMPLE RESULTS                                                                                                      |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | L1804131-02<br>SB-11 (5-7)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8260C<br>02/10/18 11:35<br>AD<br>89% | Date Collected:<br>Date Received:<br>Field Prep: | 02/06/18 11:05<br>02/06/18<br>Not Specified |

| Parameter                                        | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |  |  |
|--------------------------------------------------|--------|-----------|-------|-----|------|-----------------|--|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |     |      |                 |  |  |
| Benzene                                          | ND     |           | ug/kg | 1.1 | 0.20 | 1               |  |  |
| Toluene                                          | ND     |           | ug/kg | 1.6 | 0.21 | 1               |  |  |
| Ethylbenzene                                     | ND     |           | ug/kg | 1.1 | 0.18 | 1               |  |  |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 2.1 | 0.16 | 1               |  |  |
| p/m-Xylene                                       | ND     |           | ug/kg | 2.1 | 0.37 | 1               |  |  |
| o-Xylene                                         | ND     |           | ug/kg | 2.1 | 0.36 | 1               |  |  |
| Xylenes, Total                                   | ND     |           | ug/kg | 2.1 | 0.36 | 1               |  |  |
| n-Butylbenzene                                   | ND     |           | ug/kg | 1.1 | 0.24 | 1               |  |  |
| sec-Butylbenzene                                 | ND     |           | ug/kg | 1.1 | 0.23 | 1               |  |  |
| tert-Butylbenzene                                | ND     |           | ug/kg | 5.3 | 0.26 | 1               |  |  |
| Isopropylbenzene                                 | ND     |           | ug/kg | 1.1 | 0.21 | 1               |  |  |
| p-Isopropyltoluene                               | ND     |           | ug/kg | 1.1 | 0.22 | 1               |  |  |
| Naphthalene                                      | ND     |           | ug/kg | 5.3 | 0.15 | 1               |  |  |
| n-Propylbenzene                                  | ND     |           | ug/kg | 1.1 | 0.23 | 1               |  |  |
| 1,3,5-Trimethylbenzene                           | ND     |           | ug/kg | 5.3 | 0.17 | 1               |  |  |
| 1,2,4-Trimethylbenzene                           | ND     |           | ug/kg | 5.3 | 0.20 | 1               |  |  |
|                                                  |        |           |       |     |      |                 |  |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 103        | 70-130                           |  |
| Toluene-d8            | 102        | 70-130                           |  |
| 4-Bromofluorobenzene  | 95         | 70-130                           |  |
| Dibromofluoromethane  | 107        | 70-130                           |  |



|                                   |                 |               |            | Serial_No       | 0:02131814:52  |
|-----------------------------------|-----------------|---------------|------------|-----------------|----------------|
| Project Name:                     | 200 HAMILTON AV | ENUE          |            | Lab Number:     | L1804131       |
| Project Number:                   | 170029          |               |            | Report Date:    | 02/13/18       |
|                                   |                 | SAMP          | LE RESULTS |                 |                |
| Lab ID:                           | L1804131-03     | D             |            | Date Collected: | 02/06/18 12:00 |
| Client ID:                        | SB-13 (10-12)   |               |            | Date Received:  | 02/06/18       |
| Sample Location:<br>Sample Depth: | 200 HAMILTON A  | VE., WHITE PL | _AINS, NY  | Field Prep:     | Not Specified  |
| Matrix:                           | Soil            |               |            |                 |                |
| Analytical Method:                | 1,8260C         |               |            |                 |                |
| Analytical Date:                  | 02/12/18 11:09  |               |            |                 |                |
| Analyst:                          | MV              |               |            |                 |                |
| Percent Solids:                   | 92%             |               |            |                 |                |

| Parameter                                        | Result | Qualifier | Units | RL   | MDL | Dilution Factor |  |
|--------------------------------------------------|--------|-----------|-------|------|-----|-----------------|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |      |     |                 |  |
| Benzene                                          | ND     |           | ug/kg | 560  | 110 | 10              |  |
| Toluene                                          | 870    |           | ug/kg | 830  | 110 | 10              |  |
| Ethylbenzene                                     | 14000  |           | ug/kg | 560  | 94. | 10              |  |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 1100 | 85. | 10              |  |
| p/m-Xylene                                       | 54000  |           | ug/kg | 1100 | 200 | 10              |  |
| o-Xylene                                         | 14000  |           | ug/kg | 1100 | 190 | 10              |  |
| Xylenes, Total                                   | 68000  |           | ug/kg | 1100 | 190 | 10              |  |
| n-Butylbenzene                                   | 4100   |           | ug/kg | 560  | 130 | 10              |  |
| sec-Butylbenzene                                 | 2100   |           | ug/kg | 560  | 120 | 10              |  |
| tert-Butylbenzene                                | ND     |           | ug/kg | 2800 | 140 | 10              |  |
| Isopropylbenzene                                 | 3100   |           | ug/kg | 560  | 110 | 10              |  |
| p-Isopropyltoluene                               | 950    |           | ug/kg | 560  | 110 | 10              |  |
| Naphthalene                                      | 5800   |           | ug/kg | 2800 | 77. | 10              |  |
| n-Propylbenzene                                  | 12000  |           | ug/kg | 560  | 120 | 10              |  |
| 1,3,5-Trimethylbenzene                           | 22000  |           | ug/kg | 2800 | 90. | 10              |  |
| 1,2,4-Trimethylbenzene                           | 69000  |           | ug/kg | 2800 | 100 | 10              |  |
|                                                  |        |           |       |      |     |                 |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 110        | 70-130                           |  |
| Toluene-d8            | 103        | 70-130                           |  |
| 4-Bromofluorobenzene  | 102        | 70-130                           |  |
| Dibromofluoromethane  | 99         | 70-130                           |  |



|                                                                                                                                                 |                                                                                                                     | Serial_No                                        | 0:02131814:52                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                                                   | 200 HAMILTON AVENUE                                                                                                 | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                                                                                 | 170029                                                                                                              | Report Date:                                     | 02/13/18                                    |
|                                                                                                                                                 | SAMPLE RESULTS                                                                                                      |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>December Solido: | L1804131-04<br>SB-13 (3-5)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8260C<br>02/10/18 12:03<br>AD<br>87% | Date Collected:<br>Date Received:<br>Field Prep: | 02/06/18 12:05<br>02/06/18<br>Not Specified |
| Percent Solids:                                                                                                                                 | 87%                                                                                                                 |                                                  |                                             |

| Parameter                                        | Result | Qualifier | Units | RL   | MDL  | Dilution Factor |  |  |
|--------------------------------------------------|--------|-----------|-------|------|------|-----------------|--|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |      |      |                 |  |  |
| Benzene                                          | ND     |           | ug/kg | 0.99 | 0.19 | 1               |  |  |
| Toluene                                          | ND     |           | ug/kg | 1.5  | 0.19 | 1               |  |  |
| Ethylbenzene                                     | ND     |           | ug/kg | 0.99 | 0.17 | 1               |  |  |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 2.0  | 0.15 | 1               |  |  |
| p/m-Xylene                                       | ND     |           | ug/kg | 2.0  | 0.35 | 1               |  |  |
| o-Xylene                                         | ND     |           | ug/kg | 2.0  | 0.33 | 1               |  |  |
| Xylenes, Total                                   | ND     |           | ug/kg | 2.0  | 0.33 | 1               |  |  |
| n-Butylbenzene                                   | ND     |           | ug/kg | 0.99 | 0.22 | 1               |  |  |
| sec-Butylbenzene                                 | ND     |           | ug/kg | 0.99 | 0.21 | 1               |  |  |
| tert-Butylbenzene                                | ND     |           | ug/kg | 4.9  | 0.24 | 1               |  |  |
| Isopropylbenzene                                 | ND     |           | ug/kg | 0.99 | 0.19 | 1               |  |  |
| p-Isopropyltoluene                               | ND     |           | ug/kg | 0.99 | 0.20 | 1               |  |  |
| Naphthalene                                      | ND     |           | ug/kg | 4.9  | 0.14 | 1               |  |  |
| n-Propylbenzene                                  | ND     |           | ug/kg | 0.99 | 0.21 | 1               |  |  |
| 1,3,5-Trimethylbenzene                           | ND     |           | ug/kg | 4.9  | 0.16 | 1               |  |  |
| 1,2,4-Trimethylbenzene                           | 0.32   | J         | ug/kg | 4.9  | 0.18 | 1               |  |  |
|                                                  |        |           |       |      |      |                 |  |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 103        | 70-130                           |  |
| Toluene-d8            | 105        | 70-130                           |  |
| 4-Bromofluorobenzene  | 97         | 70-130                           |  |
| Dibromofluoromethane  | 105        | 70-130                           |  |



|                                   |                 |               |            | Serial_No       | 0:02131814:52  |
|-----------------------------------|-----------------|---------------|------------|-----------------|----------------|
| Project Name:                     | 200 HAMILTON AV | ENUE          |            | Lab Number:     | L1804131       |
| Project Number:                   | 170029          |               |            | Report Date:    | 02/13/18       |
|                                   |                 | SAMP          | LE RESULTS |                 |                |
| Lab ID:                           | L1804131-05     | D             |            | Date Collected: | 02/06/18 13:05 |
| Client ID:                        | SB-18 (12-14)   |               |            | Date Received:  | 02/06/18       |
| Sample Location:<br>Sample Depth: | 200 HAMILTON A  | VE., WHITE PL | AINS, NY   | Field Prep:     | Not Specified  |
| Matrix:                           | Soil            |               |            |                 |                |
| Analytical Method:                | 1,8260C         |               |            |                 |                |
| Analytical Date:                  | 02/12/18 11:36  |               |            |                 |                |
| Analyst:                          | MV              |               |            |                 |                |
| Percent Solids:                   | 94%             |               |            |                 |                |

| Parameter                                        | Result | Qualifier | Units | RL   | MDL | Dilution Factor |  |  |
|--------------------------------------------------|--------|-----------|-------|------|-----|-----------------|--|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |      |     |                 |  |  |
| Benzene                                          | ND     |           | ug/kg | 940  | 180 | 20              |  |  |
| Toluene                                          | 280    | J         | ug/kg | 1400 | 180 | 20              |  |  |
| Ethylbenzene                                     | 11000  |           | ug/kg | 940  | 160 | 20              |  |  |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 1900 | 140 | 20              |  |  |
| p/m-Xylene                                       | 76000  |           | ug/kg | 1900 | 330 | 20              |  |  |
| o-Xylene                                         | 2300   |           | ug/kg | 1900 | 320 | 20              |  |  |
| Xylenes, Total                                   | 78000  |           | ug/kg | 1900 | 320 | 20              |  |  |
| n-Butylbenzene                                   | 5200   |           | ug/kg | 940  | 210 | 20              |  |  |
| sec-Butylbenzene                                 | 2900   |           | ug/kg | 940  | 200 | 20              |  |  |
| tert-Butylbenzene                                | ND     |           | ug/kg | 4700 | 230 | 20              |  |  |
| Isopropylbenzene                                 | 2400   |           | ug/kg | 940  | 180 | 20              |  |  |
| p-lsopropyltoluene                               | 1400   |           | ug/kg | 940  | 190 | 20              |  |  |
| Naphthalene                                      | 6600   |           | ug/kg | 4700 | 130 | 20              |  |  |
| n-Propylbenzene                                  | 7200   |           | ug/kg | 940  | 200 | 20              |  |  |
| 1,3,5-Trimethylbenzene                           | 34000  |           | ug/kg | 4700 | 150 | 20              |  |  |
| 1,2,4-Trimethylbenzene                           | 100000 |           | ug/kg | 4700 | 180 | 20              |  |  |
|                                                  |        |           |       |      |     |                 |  |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 107        | 70-130                           |  |
| Toluene-d8            | 102        | 70-130                           |  |
| 4-Bromofluorobenzene  | 106        | 70-130                           |  |
| Dibromofluoromethane  | 98         | 70-130                           |  |



|                                                                                                                                                |                                                                                                                     | Serial_No                                        | 0:02131814:52                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                                                  | 200 HAMILTON AVENUE                                                                                                 | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                                                                                | 170029                                                                                                              | Report Date:                                     | 02/13/18                                    |
|                                                                                                                                                | SAMPLE RESULTS                                                                                                      |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | L1804131-06<br>SB-14 (2-4)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8260C<br>02/10/18 12:30<br>AD<br>90% | Date Collected:<br>Date Received:<br>Field Prep: | 02/06/18 15:00<br>02/06/18<br>Not Specified |

| Parameter                                        | Result | Qualifier | Units | RL   | MDL  | Dilution Factor |  |  |
|--------------------------------------------------|--------|-----------|-------|------|------|-----------------|--|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |      |      |                 |  |  |
| Benzene                                          | ND     |           | ug/kg | 0.92 | 0.18 | 1               |  |  |
| Toluene                                          | ND     |           | ug/kg | 1.4  | 0.18 | 1               |  |  |
| Ethylbenzene                                     | 0.18   | J         | ug/kg | 0.92 | 0.16 | 1               |  |  |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 1.8  | 0.14 | 1               |  |  |
| p/m-Xylene                                       | 0.66   | J         | ug/kg | 1.8  | 0.32 | 1               |  |  |
| o-Xylene                                         | ND     |           | ug/kg | 1.8  | 0.31 | 1               |  |  |
| Xylenes, Total                                   | 0.66   | J         | ug/kg | 1.8  | 0.31 | 1               |  |  |
| n-Butylbenzene                                   | ND     |           | ug/kg | 0.92 | 0.21 | 1               |  |  |
| sec-Butylbenzene                                 | 0.22   | J         | ug/kg | 0.92 | 0.20 | 1               |  |  |
| tert-Butylbenzene                                | 0.58   | J         | ug/kg | 4.6  | 0.23 | 1               |  |  |
| Isopropylbenzene                                 | ND     |           | ug/kg | 0.92 | 0.18 | 1               |  |  |
| p-Isopropyltoluene                               | ND     |           | ug/kg | 0.92 | 0.19 | 1               |  |  |
| Naphthalene                                      | 0.85   | J         | ug/kg | 4.6  | 0.13 | 1               |  |  |
| n-Propylbenzene                                  | ND     |           | ug/kg | 0.92 | 0.20 | 1               |  |  |
| 1,3,5-Trimethylbenzene                           | 0.30   | J         | ug/kg | 4.6  | 0.15 | 1               |  |  |
| 1,2,4-Trimethylbenzene                           | 0.80   | J         | ug/kg | 4.6  | 0.17 | 1               |  |  |
|                                                  |        |           |       |      |      |                 |  |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 105        | 70-130                           |  |
| Toluene-d8            | 101        | 70-130                           |  |
| 4-Bromofluorobenzene  | 108        | 70-130                           |  |
| Dibromofluoromethane  | 106        | 70-130                           |  |



|                                                                                                                                                |                                                                                                   |                       |         | Serial_No                                        | 0:02131814:52                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------|---------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                                                  | 200 HAMILTON AV                                                                                   | ENUE                  |         | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                                                                                | 170029                                                                                            |                       |         | Report Date:                                     | 02/13/18                                    |
|                                                                                                                                                |                                                                                                   | SAMPLE F              | RESULTS |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | L1804131-07<br>SB-14 (15-16)<br>200 HAMILTON A'<br>Soil<br>1,8260C<br>02/12/18 12:02<br>MV<br>89% | D<br>/E., WHITE PLAIN | S, NY   | Date Collected:<br>Date Received:<br>Field Prep: | 02/06/18 15:10<br>02/06/18<br>Not Specified |

| Parameter                                        | Result | Qualifier | Units | RL   | MDL | Dilution Factor |  |  |
|--------------------------------------------------|--------|-----------|-------|------|-----|-----------------|--|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |      |     |                 |  |  |
| Benzene                                          | 120    | J         | ug/kg | 610  | 120 | 10              |  |  |
| Toluene                                          | ND     |           | ug/kg | 920  | 120 | 10              |  |  |
| Ethylbenzene                                     | 4900   |           | ug/kg | 610  | 100 | 10              |  |  |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 1200 | 94. | 10              |  |  |
| p/m-Xylene                                       | 16000  |           | ug/kg | 1200 | 220 | 10              |  |  |
| o-Xylene                                         | 540    | J         | ug/kg | 1200 | 210 | 10              |  |  |
| Xylenes, Total                                   | 17000  | J         | ug/kg | 1200 | 210 | 10              |  |  |
| n-Butylbenzene                                   | 1400   |           | ug/kg | 610  | 140 | 10              |  |  |
| sec-Butylbenzene                                 | 990    |           | ug/kg | 610  | 130 | 10              |  |  |
| tert-Butylbenzene                                | 190    | J         | ug/kg | 3100 | 150 | 10              |  |  |
| Isopropylbenzene                                 | 2500   |           | ug/kg | 610  | 120 | 10              |  |  |
| p-Isopropyltoluene                               | 1300   |           | ug/kg | 610  | 120 | 10              |  |  |
| Naphthalene                                      | 2800   | J         | ug/kg | 3100 | 84. | 10              |  |  |
| n-Propylbenzene                                  | 4100   |           | ug/kg | 610  | 130 | 10              |  |  |
| 1,3,5-Trimethylbenzene                           | 11000  |           | ug/kg | 3100 | 99. | 10              |  |  |
| 1,2,4-Trimethylbenzene                           | 19000  |           | ug/kg | 3100 | 110 | 10              |  |  |
|                                                  |        |           |       |      |     |                 |  |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 111        | 70-130                           |  |
| Toluene-d8            | 106        | 70-130                           |  |
| 4-Bromofluorobenzene  | 122        | 70-130                           |  |
| Dibromofluoromethane  | 102        | 70-130                           |  |



|                                                                                                                                                |                                                                                                                     | Serial_No                                        | 0:02131814:52                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                                                  | 200 HAMILTON AVENUE                                                                                                 | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                                                                                | 170029                                                                                                              | Report Date:                                     | 02/13/18                                    |
|                                                                                                                                                | SAMPLE RESULTS                                                                                                      |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | L1804131-08<br>SB-12 (2-4)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8260C<br>02/10/18 12:58<br>AD<br>90% | Date Collected:<br>Date Received:<br>Field Prep: | 02/06/18 15:40<br>02/06/18<br>Not Specified |

| Volatile Organics by 8260/5035 - Westborough Lab           Benzene         ND         ug/kg         1.0         0.20           Toluene         ND         ug/kg         1.5         0.20           Ethylbenzene         0.19         J         ug/kg         1.0         0.17           Methyl tert butyl ether         ND         ug/kg         2.0         0.16           p/m-Xylene         0.49         J         ug/kg         2.0         0.36           o-Xylene         ND         ug/kg         2.0         0.35           Xylenes, Total         0.49         J         ug/kg         2.0         0.35           r-Butylbenzene         ND         ug/kg         1.0         0.23           sec-Butylbenzene         ND         ug/kg         1.0         0.22           tert-Butylbenzene         ND         ug/kg         1.0         0.22           sec-Butylbenzene         ND         ug/kg         1.0         0.20           sec-Butylbenzene         ND         ug/kg         1.0         0.20           sec-Butylbenzene         ND         ug/kg         1.0         0.20           sec-Butylbenzene         ND         ug/kg         1.0         0. | Dilution Factor                                  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|--|--|
| Toluene         ND         ug/kg         1.5         0.20           Ethylbenzene         0.19         J         ug/kg         1.0         0.17           Methyl tert butyl ether         ND         ug/kg         2.0         0.16           p/m-Xylene         0.49         J         ug/kg         2.0         0.36           o-Xylene         ND         ug/kg         2.0         0.35           Xylenes, Total         0.49         J         ug/kg         2.0         0.35           n-Butylbenzene         ND         ug/kg         1.0         0.23           tert-Butylbenzene         ND         ug/kg         1.0         0.22           tert-Butylbenzene         ND         ug/kg         1.0         0.22           lsopropylbenzene         ND         ug/kg         1.0         0.22           lsopropylbenzene         ND         ug/kg         1.0         0.20           p-lsopropyltoluene         ND         ug/kg         1.0         0.20                                                                                                                                                                                                        | Volatile Organics by 8260/5035 - Westborough Lab |  |  |  |  |  |  |  |
| Toluene         ND         ug/kg         1.5         0.20           Ethylbenzene         0.19         J         ug/kg         1.0         0.17           Methyl tert butyl ether         ND         ug/kg         2.0         0.16           p/m-Xylene         0.49         J         ug/kg         2.0         0.36           o-Xylene         ND         ug/kg         2.0         0.35           xylenes, Total         0.49         J         ug/kg         2.0         0.35           n-Butylbenzene         ND         ug/kg         1.0         0.23           sec-Butylbenzene         ND         ug/kg         1.0         0.22           tert-Butylbenzene         ND         ug/kg         1.0         0.22           tert-Butylbenzene         ND         ug/kg         1.0         0.25           Isopropylbenzene         ND         ug/kg         1.0         0.20           p-Isopropyltoluene         ND         ug/kg         1.0         0.21                                                                                                                                                                                                        | 1                                                |  |  |  |  |  |  |  |
| Methyl tert butyl ether         ND         ug/kg         2.0         0.16           p/m-Xylene         0.49         J         ug/kg         2.0         0.36           o-Xylene         ND         ug/kg         2.0         0.35           Xylenes, Total         0.49         J         ug/kg         2.0         0.35           n-Butylbenzene         ND         ug/kg         1.0         0.23           sec-Butylbenzene         ND         ug/kg         1.0         0.22           tert-Butylbenzene         ND         ug/kg         1.0         0.25           lsopropylbenzene         ND         ug/kg         1.0         0.20           p-Isopropyltoluene         ND         ug/kg         1.0         0.20                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                |  |  |  |  |  |  |  |
| p/m-Xylene       0.49       J       ug/kg       2.0       0.36         o-Xylene       ND       ug/kg       2.0       0.35         Xylenes, Total       0.49       J       ug/kg       2.0       0.35         n-Butylbenzene       ND       ug/kg       1.0       0.23         sec-Butylbenzene       ND       ug/kg       1.0       0.22         tert-Butylbenzene       ND       ug/kg       5.1       0.25         Isopropylbenzene       ND       ug/kg       1.0       0.20         p-Isopropyltoluene       ND       ug/kg       1.0       0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                |  |  |  |  |  |  |  |
| ND         ug/kg         2.0         0.35           Xylenes, Total         0.49         J         ug/kg         2.0         0.35           n-Butylbenzene         ND         ug/kg         1.0         0.23           sec-Butylbenzene         ND         ug/kg         1.0         0.22           tert-Butylbenzene         ND         ug/kg         5.1         0.25           lsopropylbenzene         ND         ug/kg         1.0         0.20           p-Isopropyltoluene         ND         ug/kg         1.0         0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                |  |  |  |  |  |  |  |
| Xylenes, Total       0.49       J       ug/kg       2.0       0.35         n-Butylbenzene       ND       ug/kg       1.0       0.23         sec-Butylbenzene       ND       ug/kg       1.0       0.22         tert-Butylbenzene       ND       ug/kg       5.1       0.25         lsopropylbenzene       ND       ug/kg       1.0       0.20         p-Isopropyltoluene       ND       ug/kg       1.0       0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                |  |  |  |  |  |  |  |
| ND         ug/kg         1.0         0.23           sec-Butylbenzene         ND         ug/kg         1.0         0.22           tert-Butylbenzene         ND         ug/kg         5.1         0.25           lsopropylbenzene         ND         ug/kg         1.0         0.20           p-Isopropyltoluene         ND         ug/kg         1.0         0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                |  |  |  |  |  |  |  |
| sec-ButylbenzeneNDug/kg1.00.22tert-ButylbenzeneNDug/kg5.10.25IsopropylbenzeneNDug/kg1.00.20p-IsopropyltolueneNDug/kg1.00.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                |  |  |  |  |  |  |  |
| tert-ButylbenzeneNDug/kg5.10.25IsopropylbenzeneNDug/kg1.00.20p-IsopropyltolueneNDug/kg1.00.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                |  |  |  |  |  |  |  |
| Isopropylbenzene         ND         ug/kg         1.0         0.20           p-Isopropyltoluene         ND         ug/kg         1.0         0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                |  |  |  |  |  |  |  |
| p-Isopropyltoluene ND ug/kg 1.0 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                |  |  |  |  |  |  |  |
| Naphthalene 0.32 J ug/kg 5.1 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                |  |  |  |  |  |  |  |
| n-Propylbenzene ND ug/kg 1.0 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                |  |  |  |  |  |  |  |
| 1,3,5-Trimethylbenzene ND ug/kg 5.1 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                |  |  |  |  |  |  |  |
| 1,2,4-Trimethylbenzene 0.31 J ug/kg 5.1 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                |  |  |  |  |  |  |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 103        | 70-130                           |  |
| Toluene-d8            | 107        | 70-130                           |  |
| 4-Bromofluorobenzene  | 109        | 70-130                           |  |
| Dibromofluoromethane  | 104        | 70-130                           |  |



|                                                                                                                                                |                                                                                                                       | Serial_N                                         | 0:02131814:52                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                                                  | 200 HAMILTON AVENUE                                                                                                   | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                                                                                | 170029                                                                                                                | Report Date:                                     | 02/13/18                                    |
|                                                                                                                                                | SAMPLE RESULTS                                                                                                        |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | L1804131-09<br>SB-12 (15-16)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8260C<br>02/10/18 13:25<br>AD<br>88% | Date Collected:<br>Date Received:<br>Field Prep: | 02/06/18 15:50<br>02/06/18<br>Not Specified |

| Parameter                                        | Result | Qualifier | Units | RL   | MDL  | Dilution Factor |  |
|--------------------------------------------------|--------|-----------|-------|------|------|-----------------|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |      |      |                 |  |
| Benzene                                          | ND     |           | ug/kg | 0.93 | 0.18 | 1               |  |
| Toluene                                          | ND     |           | ug/kg | 1.4  | 0.18 | 1               |  |
| Ethylbenzene                                     | ND     |           | ug/kg | 0.93 | 0.16 | 1               |  |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 1.9  | 0.14 | 1               |  |
| p/m-Xylene                                       | ND     |           | ug/kg | 1.9  | 0.33 | 1               |  |
| o-Xylene                                         | ND     |           | ug/kg | 1.9  | 0.31 | 1               |  |
| Xylenes, Total                                   | ND     |           | ug/kg | 1.9  | 0.31 | 1               |  |
| n-Butylbenzene                                   | ND     |           | ug/kg | 0.93 | 0.21 | 1               |  |
| sec-Butylbenzene                                 | ND     |           | ug/kg | 0.93 | 0.20 | 1               |  |
| tert-Butylbenzene                                | ND     |           | ug/kg | 4.6  | 0.23 | 1               |  |
| Isopropylbenzene                                 | ND     |           | ug/kg | 0.93 | 0.18 | 1               |  |
| p-Isopropyltoluene                               | ND     |           | ug/kg | 0.93 | 0.19 | 1               |  |
| Naphthalene                                      | ND     |           | ug/kg | 4.6  | 0.13 | 1               |  |
| n-Propylbenzene                                  | ND     |           | ug/kg | 0.93 | 0.20 | 1               |  |
| 1,3,5-Trimethylbenzene                           | ND     |           | ug/kg | 4.6  | 0.15 | 1               |  |
| 1,2,4-Trimethylbenzene                           | ND     |           | ug/kg | 4.6  | 0.17 | 1               |  |
|                                                  |        |           |       |      |      |                 |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 104        | 70-130                           |  |
| Toluene-d8            | 103        | 70-130                           |  |
| 4-Bromofluorobenzene  | 98         | 70-130                           |  |
| Dibromofluoromethane  | 103        | 70-130                           |  |



|                                                                                                                                                |                                                                                                                       | Serial_No                                        | :02131814:52                                |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                                                  | 200 HAMILTON AVENUE                                                                                                   | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                                                                                | 170029                                                                                                                | Report Date:                                     | 02/13/18                                    |
|                                                                                                                                                | SAMPLE RESULTS                                                                                                        |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | L1804131-10<br>SB-10 (20-22)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8260C<br>02/10/18 13:53<br>AD<br>92% | Date Collected:<br>Date Received:<br>Field Prep: | 02/07/18 09:20<br>02/07/18<br>Not Specified |

| Parameter                                        | Result | Qualifier | Units | RL   | MDL  | Dilution Factor |  |
|--------------------------------------------------|--------|-----------|-------|------|------|-----------------|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |      |      |                 |  |
| Benzene                                          | ND     |           | ug/kg | 0.97 | 0.19 | 1               |  |
| Toluene                                          | ND     |           | ug/kg | 1.5  | 0.19 | 1               |  |
| Ethylbenzene                                     | ND     |           | ug/kg | 0.97 | 0.16 | 1               |  |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 1.9  | 0.15 | 1               |  |
| p/m-Xylene                                       | ND     |           | ug/kg | 1.9  | 0.34 | 1               |  |
| o-Xylene                                         | ND     |           | ug/kg | 1.9  | 0.33 | 1               |  |
| Xylenes, Total                                   | ND     |           | ug/kg | 1.9  | 0.33 | 1               |  |
| n-Butylbenzene                                   | ND     |           | ug/kg | 0.97 | 0.22 | 1               |  |
| sec-Butylbenzene                                 | ND     |           | ug/kg | 0.97 | 0.21 | 1               |  |
| tert-Butylbenzene                                | ND     |           | ug/kg | 4.9  | 0.24 | 1               |  |
| Isopropylbenzene                                 | ND     |           | ug/kg | 0.97 | 0.19 | 1               |  |
| p-Isopropyltoluene                               | ND     |           | ug/kg | 0.97 | 0.20 | 1               |  |
| Naphthalene                                      | ND     |           | ug/kg | 4.9  | 0.13 | 1               |  |
| n-Propylbenzene                                  | ND     |           | ug/kg | 0.97 | 0.21 | 1               |  |
| 1,3,5-Trimethylbenzene                           | ND     |           | ug/kg | 4.9  | 0.16 | 1               |  |
| 1,2,4-Trimethylbenzene                           | ND     |           | ug/kg | 4.9  | 0.18 | 1               |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 102        | 70-130                           |  |
| Toluene-d8            | 103        | 70-130                           |  |
| 4-Bromofluorobenzene  | 96         | 70-130                           |  |
| Dibromofluoromethane  | 106        | 70-130                           |  |



|                                                                                                                 |                                                                                                        | Serial_No                                        | 0:02131814:52                               |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                   | 200 HAMILTON AVENUE                                                                                    | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                                                 | 170029                                                                                                 | Report Date:                                     | 02/13/18                                    |
|                                                                                                                 | SAMPLE RESULTS                                                                                         |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date: | L1804131-11<br>SB-10 (3-5)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8260C<br>02/10/18 14:21 | Date Collected:<br>Date Received:<br>Field Prep: | 02/07/18 09:25<br>02/07/18<br>Not Specified |
| Analyst:<br>Percent Solids:                                                                                     | AD<br>93%                                                                                              |                                                  |                                             |

| Parameter                                        | Result | Qualifier | Units | RL   | MDL  | Dilution Factor |  |
|--------------------------------------------------|--------|-----------|-------|------|------|-----------------|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |      |      |                 |  |
| Benzene                                          | ND     |           | ug/kg | 0.93 | 0.18 | 1               |  |
| Toluene                                          | ND     |           | ug/kg | 1.4  | 0.18 | 1               |  |
| Ethylbenzene                                     | ND     |           | ug/kg | 0.93 | 0.16 | 1               |  |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 1.9  | 0.14 | 1               |  |
| p/m-Xylene                                       | ND     |           | ug/kg | 1.9  | 0.33 | 1               |  |
| o-Xylene                                         | ND     |           | ug/kg | 1.9  | 0.31 | 1               |  |
| Xylenes, Total                                   | ND     |           | ug/kg | 1.9  | 0.31 | 1               |  |
| n-Butylbenzene                                   | ND     |           | ug/kg | 0.93 | 0.21 | 1               |  |
| sec-Butylbenzene                                 | ND     |           | ug/kg | 0.93 | 0.20 | 1               |  |
| tert-Butylbenzene                                | ND     |           | ug/kg | 4.6  | 0.23 | 1               |  |
| Isopropylbenzene                                 | ND     |           | ug/kg | 0.93 | 0.18 | 1               |  |
| p-lsopropyltoluene                               | ND     |           | ug/kg | 0.93 | 0.19 | 1               |  |
| Naphthalene                                      | ND     |           | ug/kg | 4.6  | 0.13 | 1               |  |
| n-Propylbenzene                                  | ND     |           | ug/kg | 0.93 | 0.20 | 1               |  |
| 1,3,5-Trimethylbenzene                           | ND     |           | ug/kg | 4.6  | 0.15 | 1               |  |
| 1,2,4-Trimethylbenzene                           | ND     |           | ug/kg | 4.6  | 0.17 | 1               |  |
|                                                  |        |           |       |      |      |                 |  |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 103        |           | 70-130                 |  |
| Toluene-d8            | 104        |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 101        |           | 70-130                 |  |
| Dibromofluoromethane  | 104        |           | 70-130                 |  |



|                                                                                                                 |                                                                                                          | Serial_No                                        | 0:02131814:52                               |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                   | 200 HAMILTON AVENUE                                                                                      | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                                                 | 170029                                                                                                   | Report Date:                                     | 02/13/18                                    |
|                                                                                                                 | SAMPLE RESULTS                                                                                           |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date: | L1804131-12<br>SB-15 (10-11)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8260C<br>02/12/18 09:51 | Date Collected:<br>Date Received:<br>Field Prep: | 02/09/18 08:55<br>02/09/18<br>Not Specified |
| Analyst:<br>Percent Solids:                                                                                     | MV<br>83%                                                                                                |                                                  |                                             |

| Parameter                                        | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |  |
|--------------------------------------------------|--------|-----------|-------|-----|------|-----------------|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |     |      |                 |  |
| Benzene                                          | ND     |           | ug/kg | 1.2 | 0.23 | 1               |  |
| Toluene                                          | ND     |           | ug/kg | 1.8 | 0.23 | 1               |  |
| Ethylbenzene                                     | 0.36   | J         | ug/kg | 1.2 | 0.20 | 1               |  |
| Methyl tert butyl ether                          | 2.4    |           | ug/kg | 2.4 | 0.18 | 1               |  |
| p/m-Xylene                                       | ND     |           | ug/kg | 2.4 | 0.41 | 1               |  |
| o-Xylene                                         | ND     |           | ug/kg | 2.4 | 0.40 | 1               |  |
| Xylenes, Total                                   | ND     |           | ug/kg | 2.4 | 0.40 | 1               |  |
| n-Butylbenzene                                   | 6.4    |           | ug/kg | 1.2 | 0.27 | 1               |  |
| sec-Butylbenzene                                 | 3.7    |           | ug/kg | 1.2 | 0.26 | 1               |  |
| tert-Butylbenzene                                | 0.31   | J         | ug/kg | 5.9 | 0.29 | 1               |  |
| Isopropylbenzene                                 | 1.4    |           | ug/kg | 1.2 | 0.23 | 1               |  |
| p-Isopropyltoluene                               | 0.91   | J         | ug/kg | 1.2 | 0.24 | 1               |  |
| Naphthalene                                      | 1.9    | J         | ug/kg | 5.9 | 0.16 | 1               |  |
| n-Propylbenzene                                  | 4.8    |           | ug/kg | 1.2 | 0.25 | 1               |  |
| 1,3,5-Trimethylbenzene                           | 1.1    | J         | ug/kg | 5.9 | 0.19 | 1               |  |
| 1,2,4-Trimethylbenzene                           | 0.54   | J         | ug/kg | 5.9 | 0.22 | 1               |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 108        | 70-130                           |  |
| Toluene-d8            | 105        | 70-130                           |  |
| 4-Bromofluorobenzene  | 109        | 70-130                           |  |
| Dibromofluoromethane  | 100        | 70-130                           |  |



|                                   |                                     | Serial_No       | 0:02131814:52  |
|-----------------------------------|-------------------------------------|-----------------|----------------|
| Project Name:                     | 200 HAMILTON AVENUE                 | Lab Number:     | L1804131       |
| Project Number:                   | 170029                              | Report Date:    | 02/13/18       |
|                                   | SAMPLE RESULTS                      |                 |                |
| Lab ID:                           | L1804131-13                         | Date Collected: | 02/09/18 09:00 |
| Client ID:                        | SB-15 (2-4)                         | Date Received:  | 02/09/18       |
| Sample Location:<br>Sample Depth: | 200 HAMILTON AVE., WHITE PLAINS, NY | Field Prep:     | Not Specified  |
| Matrix:                           | Soil                                |                 |                |
| Analytical Method:                | 1,8260C                             |                 |                |
| Analytical Date:                  | 02/10/18 14:48                      |                 |                |
| Analyst:                          | AD                                  |                 |                |
| Percent Solids:                   | 90%                                 |                 |                |

| Parameter                                        | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |  |
|--------------------------------------------------|--------|-----------|-------|-----|------|-----------------|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |     |      |                 |  |
| Benzene                                          | ND     |           | ug/kg | 1.2 | 0.23 | 1               |  |
| Toluene                                          | 0.27   | J         | ug/kg | 1.8 | 0.23 | 1               |  |
| Ethylbenzene                                     | ND     |           | ug/kg | 1.2 | 0.20 | 1               |  |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 2.4 | 0.18 | 1               |  |
| p/m-Xylene                                       | ND     |           | ug/kg | 2.4 | 0.41 | 1               |  |
| o-Xylene                                         | ND     |           | ug/kg | 2.4 | 0.40 | 1               |  |
| Xylenes, Total                                   | ND     |           | ug/kg | 2.4 | 0.40 | 1               |  |
| n-Butylbenzene                                   | ND     |           | ug/kg | 1.2 | 0.27 | 1               |  |
| sec-Butylbenzene                                 | ND     |           | ug/kg | 1.2 | 0.26 | 1               |  |
| tert-Butylbenzene                                | ND     |           | ug/kg | 5.9 | 0.29 | 1               |  |
| Isopropylbenzene                                 | ND     |           | ug/kg | 1.2 | 0.23 | 1               |  |
| p-Isopropyltoluene                               | ND     |           | ug/kg | 1.2 | 0.24 | 1               |  |
| Naphthalene                                      | ND     |           | ug/kg | 5.9 | 0.16 | 1               |  |
| n-Propylbenzene                                  | ND     |           | ug/kg | 1.2 | 0.25 | 1               |  |
| 1,3,5-Trimethylbenzene                           | ND     |           | ug/kg | 5.9 | 0.19 | 1               |  |
| 1,2,4-Trimethylbenzene                           | ND     |           | ug/kg | 5.9 | 0.22 | 1               |  |
|                                                  |        |           |       |     |      |                 |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 101        | 70-130                           |  |
| Toluene-d8            | 104        | 70-130                           |  |
| 4-Bromofluorobenzene  | 99         | 70-130                           |  |
| Dibromofluoromethane  | 105        | 70-130                           |  |



|                                                                                                                             |                                                                                                                | Serial_No                                        | 0:02131814:52                               |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                               | 200 HAMILTON AVENUE                                                                                            | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                                                             | 170029                                                                                                         | Report Date:                                     | 02/13/18                                    |
|                                                                                                                             | SAMPLE RESULTS                                                                                                 |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1804131-14<br>SB-16 (12-13)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8260C<br>02/10/18 15:16<br>AD | Date Collected:<br>Date Received:<br>Field Prep: | 02/09/18 11:00<br>02/09/18<br>Not Specified |
| Percent Solids:                                                                                                             | 82%                                                                                                            |                                                  |                                             |

| Parameter                                        | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |  |
|--------------------------------------------------|--------|-----------|-------|-----|------|-----------------|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |     |      |                 |  |
| Benzene                                          | ND     |           | ug/kg | 1.1 | 0.21 | 1               |  |
| Toluene                                          | 0.30   | J         | ug/kg | 1.6 | 0.21 | 1               |  |
| Ethylbenzene                                     | ND     |           | ug/kg | 1.1 | 0.18 | 1               |  |
| Methyl tert butyl ether                          | 37     |           | ug/kg | 2.2 | 0.16 | 1               |  |
| p/m-Xylene                                       | ND     |           | ug/kg | 2.2 | 0.38 | 1               |  |
| o-Xylene                                         | ND     |           | ug/kg | 2.2 | 0.36 | 1               |  |
| Xylenes, Total                                   | ND     |           | ug/kg | 2.2 | 0.36 | 1               |  |
| n-Butylbenzene                                   | ND     |           | ug/kg | 1.1 | 0.24 | 1               |  |
| sec-Butylbenzene                                 | 0.25   | J         | ug/kg | 1.1 | 0.23 | 1               |  |
| tert-Butylbenzene                                | ND     |           | ug/kg | 5.4 | 0.26 | 1               |  |
| Isopropylbenzene                                 | ND     |           | ug/kg | 1.1 | 0.21 | 1               |  |
| p-Isopropyltoluene                               | ND     |           | ug/kg | 1.1 | 0.22 | 1               |  |
| Naphthalene                                      | ND     |           | ug/kg | 5.4 | 0.15 | 1               |  |
| n-Propylbenzene                                  | ND     |           | ug/kg | 1.1 | 0.23 | 1               |  |
| 1,3,5-Trimethylbenzene                           | ND     |           | ug/kg | 5.4 | 0.17 | 1               |  |
| 1,2,4-Trimethylbenzene                           | ND     |           | ug/kg | 5.4 | 0.20 | 1               |  |
|                                                  |        |           |       |     |      |                 |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 101        | 70-130                           |  |
| Toluene-d8            | 103        | 70-130                           |  |
| 4-Bromofluorobenzene  | 100        | 70-130                           |  |
| Dibromofluoromethane  | 104        | 70-130                           |  |



|                                                                                                                                                |                                                                                                                     | Serial_N                                         | 0:02131814:52                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                                                  | 200 HAMILTON AVENUE                                                                                                 | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                                                                                | 170029                                                                                                              | Report Date:                                     | 02/13/18                                    |
|                                                                                                                                                | SAMPLE RESULTS                                                                                                      |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | L1804131-15<br>SB-16 (2-4)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8260C<br>02/10/18 15:43<br>AD<br>86% | Date Collected:<br>Date Received:<br>Field Prep: | 02/09/18 11:10<br>02/09/18<br>Not Specified |

| Parameter                                        | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |  |
|--------------------------------------------------|--------|-----------|-------|-----|------|-----------------|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |     |      |                 |  |
| Benzene                                          | ND     |           | ug/kg | 1.2 | 0.23 | 1               |  |
| Toluene                                          | 0.26   | J         | ug/kg | 1.8 | 0.24 | 1               |  |
| Ethylbenzene                                     | ND     |           | ug/kg | 1.2 | 0.20 | 1               |  |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 2.4 | 0.18 | 1               |  |
| p/m-Xylene                                       | ND     |           | ug/kg | 2.4 | 0.42 | 1               |  |
| o-Xylene                                         | ND     |           | ug/kg | 2.4 | 0.41 | 1               |  |
| Xylenes, Total                                   | ND     |           | ug/kg | 2.4 | 0.41 | 1               |  |
| n-Butylbenzene                                   | ND     |           | ug/kg | 1.2 | 0.28 | 1               |  |
| sec-Butylbenzene                                 | ND     |           | ug/kg | 1.2 | 0.26 | 1               |  |
| tert-Butylbenzene                                | ND     |           | ug/kg | 6.0 | 0.30 | 1               |  |
| Isopropylbenzene                                 | ND     |           | ug/kg | 1.2 | 0.23 | 1               |  |
| p-lsopropyltoluene                               | ND     |           | ug/kg | 1.2 | 0.24 | 1               |  |
| Naphthalene                                      | 0.25   | J         | ug/kg | 6.0 | 0.17 | 1               |  |
| n-Propylbenzene                                  | ND     |           | ug/kg | 1.2 | 0.26 | 1               |  |
| 1,3,5-Trimethylbenzene                           | 0.69   | J         | ug/kg | 6.0 | 0.19 | 1               |  |
| 1,2,4-Trimethylbenzene                           | 0.50   | J         | ug/kg | 6.0 | 0.22 | 1               |  |
|                                                  |        |           |       |     |      |                 |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 105        | 70-130                           |  |
| Toluene-d8            | 104        | 70-130                           |  |
| 4-Bromofluorobenzene  | 97         | 70-130                           |  |
| Dibromofluoromethane  | 106        | 70-130                           |  |



|                                                                                                                                                |                                                                                                                     | Serial_No                                        | 0:02131814:52                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                                                  | 200 HAMILTON AVENUE                                                                                                 | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                                                                                | 170029                                                                                                              | Report Date:                                     | 02/13/18                                    |
|                                                                                                                                                | SAMPLE RESULTS                                                                                                      |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | L1804131-16<br>SB-17 (8-9)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8260C<br>02/12/18 10:17<br>MV<br>80% | Date Collected:<br>Date Received:<br>Field Prep: | 02/09/18 12:25<br>02/09/18<br>Not Specified |

| Parameter                                        | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |
|--------------------------------------------------|--------|-----------|-------|-----|------|-----------------|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |     |      |                 |
| Benzene                                          | ND     |           | ug/kg | 1.2 | 0.23 | 1               |
| Toluene                                          | ND     |           | ug/kg | 1.8 | 0.23 | 1               |
| Ethylbenzene                                     | ND     |           | ug/kg | 1.2 | 0.20 | 1               |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 2.4 | 0.18 | 1               |
| p/m-Xylene                                       | ND     |           | ug/kg | 2.4 | 0.41 | 1               |
| o-Xylene                                         | ND     |           | ug/kg | 2.4 | 0.40 | 1               |
| Xylenes, Total                                   | ND     |           | ug/kg | 2.4 | 0.40 | 1               |
| n-Butylbenzene                                   | ND     |           | ug/kg | 1.2 | 0.27 | 1               |
| sec-Butylbenzene                                 | ND     |           | ug/kg | 1.2 | 0.26 | 1               |
| tert-Butylbenzene                                | 0.34   | J         | ug/kg | 5.9 | 0.29 | 1               |
| Isopropylbenzene                                 | 1.1    | J         | ug/kg | 1.2 | 0.23 | 1               |
| p-Isopropyltoluene                               | ND     |           | ug/kg | 1.2 | 0.24 | 1               |
| Naphthalene                                      | 2.8    | J         | ug/kg | 5.9 | 0.16 | 1               |
| n-Propylbenzene                                  | 0.70   | J         | ug/kg | 1.2 | 0.25 | 1               |
| 1,3,5-Trimethylbenzene                           | 0.24   | J         | ug/kg | 5.9 | 0.19 | 1               |
| 1,2,4-Trimethylbenzene                           | 0.56   | J         | ug/kg | 5.9 | 0.22 | 1               |
|                                                  |        |           |       |     |      |                 |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 108        |           | 70-130                 |  |
| Toluene-d8            | 106        |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 160        | Q         | 70-130                 |  |
| Dibromofluoromethane  | 99         |           | 70-130                 |  |



|                                                                                                                                                |                                                                                                                     | Serial_No                                        | 0:02131814:52                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                                                                                  | 200 HAMILTON AVENUE                                                                                                 | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                                                                                | 170029                                                                                                              | Report Date:                                     | 02/13/18                                    |
|                                                                                                                                                | SAMPLE RESULTS                                                                                                      |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | L1804131-17<br>SB-17 (5-7)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8260C<br>02/10/18 16:11<br>AD<br>93% | Date Collected:<br>Date Received:<br>Field Prep: | 02/09/18 12:35<br>02/09/18<br>Not Specified |

| Parameter                                        | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |  |
|--------------------------------------------------|--------|-----------|-------|-----|------|-----------------|--|
| Volatile Organics by 8260/5035 - Westborough Lab |        |           |       |     |      |                 |  |
| Benzene                                          | ND     |           | ug/kg | 1.0 | 0.20 | 1               |  |
| Toluene                                          | 0.47   | J         | ug/kg | 1.6 | 0.20 | 1               |  |
| Ethylbenzene                                     | ND     |           | ug/kg | 1.0 | 0.18 | 1               |  |
| Methyl tert butyl ether                          | ND     |           | ug/kg | 2.1 | 0.16 | 1               |  |
| p/m-Xylene                                       | ND     |           | ug/kg | 2.1 | 0.37 | 1               |  |
| o-Xylene                                         | ND     |           | ug/kg | 2.1 | 0.35 | 1               |  |
| Xylenes, Total                                   | ND     |           | ug/kg | 2.1 | 0.35 | 1               |  |
| n-Butylbenzene                                   | ND     |           | ug/kg | 1.0 | 0.24 | 1               |  |
| sec-Butylbenzene                                 | ND     |           | ug/kg | 1.0 | 0.23 | 1               |  |
| tert-Butylbenzene                                | ND     |           | ug/kg | 5.2 | 0.26 | 1               |  |
| Isopropylbenzene                                 | ND     |           | ug/kg | 1.0 | 0.20 | 1               |  |
| p-Isopropyltoluene                               | ND     |           | ug/kg | 1.0 | 0.21 | 1               |  |
| Naphthalene                                      | ND     |           | ug/kg | 5.2 | 0.14 | 1               |  |
| n-Propylbenzene                                  | ND     |           | ug/kg | 1.0 | 0.22 | 1               |  |
| 1,3,5-Trimethylbenzene                           | 0.20   | J         | ug/kg | 5.2 | 0.17 | 1               |  |
| 1,2,4-Trimethylbenzene                           | 0.33   | J         | ug/kg | 5.2 | 0.20 | 1               |  |
|                                                  |        |           |       |     |      |                 |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 100        | 70-130                           |  |
| Toluene-d8            | 105        | 70-130                           |  |
| 4-Bromofluorobenzene  | 95         | 70-130                           |  |
| Dibromofluoromethane  | 104        | 70-130                           |  |



 Project Name:
 200 HAMILTON AVENUE
 Lab Number:
 L1804131

 Project Number:
 170029
 Report Date:
 02/13/18

#### Method Blank Analysis Batch Quality Control

| Analytical Method: | 1,8260C        |
|--------------------|----------------|
| Analytical Date:   | 02/10/18 11:08 |
| Analyst:           | MKS            |

| arameter                                   | Result           | Qualifier  | Units    | RL            | MDL         |        |
|--------------------------------------------|------------------|------------|----------|---------------|-------------|--------|
| olatile Organics by 8260/50<br>/G1088368-5 | 35 - Westborough | Lab for sa | mple(s): | 02,04,06,08-7 | 11,13-15,17 | Batch: |
| Benzene                                    | ND               |            | ug/kg    | 1.0           | 0.19        |        |
| Toluene                                    | ND               |            | ug/kg    | 1.5           | 0.20        |        |
| Ethylbenzene                               | ND               |            | ug/kg    | 1.0           | 0.17        |        |
| Methyl tert butyl ether                    | ND               |            | ug/kg    | 2.0           | 0.15        |        |
| p/m-Xylene                                 | ND               |            | ug/kg    | 2.0           | 0.35        |        |
| o-Xylene                                   | ND               |            | ug/kg    | 2.0           | 0.34        |        |
| Xylenes, Total                             | ND               |            | ug/kg    | 2.0           | 0.34        |        |
| n-Butylbenzene                             | ND               |            | ug/kg    | 1.0           | 0.23        |        |
| sec-Butylbenzene                           | ND               |            | ug/kg    | 1.0           | 0.22        |        |
| tert-Butylbenzene                          | ND               |            | ug/kg    | 5.0           | 0.25        |        |
| lsopropylbenzene                           | ND               |            | ug/kg    | 1.0           | 0.19        |        |
| p-Isopropyltoluene                         | ND               |            | ug/kg    | 1.0           | 0.20        |        |
| Naphthalene                                | ND               |            | ug/kg    | 5.0           | 0.14        |        |
| n-Propylbenzene                            | ND               |            | ug/kg    | 1.0           | 0.22        |        |
| 1,3,5-Trimethylbenzene                     | ND               |            | ug/kg    | 5.0           | 0.16        |        |
| 1,2,4-Trimethylbenzene                     | ND               |            | ug/kg    | 5.0           | 0.19        |        |

|                       |           | A         | cceptance |
|-----------------------|-----------|-----------|-----------|
| Surrogate             | %Recovery | Qualifier | Criteria  |
| 1,2-Dichloroethane-d4 | 103       |           | 70-130    |
| Toluene-d8            | 104       |           | 70-130    |
| 4-Bromofluorobenzene  | 98        |           | 70-130    |
| Dibromofluoromethane  | 103       |           | 70-130    |



 Project Name:
 200 HAMILTON AVENUE
 Lab Number:
 L1804131

 Project Number:
 170029
 Report Date:
 02/13/18

#### Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:02/12/18 08:59Analyst:MV

| Parameter                     | Result          | Qualifier  | Units    | RL    |        | MDL         |
|-------------------------------|-----------------|------------|----------|-------|--------|-------------|
| olatile Organics by 8260/503/ | 5 - Westborough | Lab for sa | mple(s): | 12,16 | Batch: | WG1088505-5 |
| Benzene                       | ND              |            | ug/kg    | 1.0   | )      | 0.19        |
| Toluene                       | ND              |            | ug/kg    | 1.5   | ;      | 0.20        |
| Ethylbenzene                  | ND              |            | ug/kg    | 1.0   | )      | 0.17        |
| Methyl tert butyl ether       | 0.21            | J          | ug/kg    | 2.0   | )      | 0.15        |
| p/m-Xylene                    | ND              |            | ug/kg    | 2.0   | )      | 0.35        |
| o-Xylene                      | ND              |            | ug/kg    | 2.0   | )      | 0.34        |
| Xylenes, Total                | ND              |            | ug/kg    | 2.0   | )      | 0.34        |
| n-Butylbenzene                | ND              |            | ug/kg    | 1.0   | )      | 0.23        |
| sec-Butylbenzene              | ND              |            | ug/kg    | 1.0   | )      | 0.22        |
| tert-Butylbenzene             | ND              |            | ug/kg    | 5.0   | )      | 0.25        |
| Isopropylbenzene              | ND              |            | ug/kg    | 1.0   | )      | 0.19        |
| p-Isopropyltoluene            | ND              |            | ug/kg    | 1.0   | )      | 0.20        |
| Naphthalene                   | ND              |            | ug/kg    | 5.0   | )      | 0.14        |
| n-Propylbenzene               | ND              |            | ug/kg    | 1.0   | )      | 0.22        |
| 1,3,5-Trimethylbenzene        | ND              |            | ug/kg    | 5.0   | )      | 0.16        |
| 1,2,4-Trimethylbenzene        | ND              |            | ug/kg    | 5.0   | )      | 0.19        |

|                       |              | Acceptance       |
|-----------------------|--------------|------------------|
| Surrogate             | %Recovery Qu | alifier Criteria |
| 1.2-Dichloroethane-d4 | 109          | 70-130           |
| Toluene-d8            | 103          | 70-130           |
| 4-Bromofluorobenzene  | 102          | 70-130           |
| Dibromofluoromethane  | 99           | 70-130           |



 Project Name:
 200 HAMILTON AVENUE
 Lab Number:
 L1804131

 Project Number:
 170029
 Report Date:
 02/13/18

#### Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:02/12/18 08:59Analyst:MV

| Parameter                       | Result      | Qualifier  | Units    | RL          | MDL    |             |
|---------------------------------|-------------|------------|----------|-------------|--------|-------------|
| olatile Organics by 8260/5035 - | Westborough | Lab for sa | mple(s): | 01,03,05,07 | Batch: | WG1088551-5 |
| Benzene                         | ND          |            | ug/kg    | 50          | 9.6    |             |
| Toluene                         | ND          |            | ug/kg    | 75          | 9.8    |             |
| Ethylbenzene                    | ND          |            | ug/kg    | 50          | 8.5    |             |
| Methyl tert butyl ether         | 10          | J          | ug/kg    | 100         | 7.6    |             |
| p/m-Xylene                      | ND          |            | ug/kg    | 100         | 18.    |             |
| o-Xylene                        | ND          |            | ug/kg    | 100         | 17.    |             |
| Xylenes, Total                  | ND          |            | ug/kg    | 100         | 17.    |             |
| n-Butylbenzene                  | ND          |            | ug/kg    | 50          | 11.    |             |
| sec-Butylbenzene                | ND          |            | ug/kg    | 50          | 11.    |             |
| tert-Butylbenzene               | ND          |            | ug/kg    | 250         | 12.    |             |
| Isopropylbenzene                | ND          |            | ug/kg    | 50          | 9.7    |             |
| p-Isopropyltoluene              | ND          |            | ug/kg    | 50          | 10.    |             |
| Naphthalene                     | ND          |            | ug/kg    | 250         | 6.9    |             |
| n-Propylbenzene                 | ND          |            | ug/kg    | 50          | 11.    |             |
| 1,3,5-Trimethylbenzene          | ND          |            | ug/kg    | 250         | 8.0    |             |
| 1,2,4-Trimethylbenzene          | ND          |            | ug/kg    | 250         | 9.3    |             |

|                       |                | Acceptance     |  |  |
|-----------------------|----------------|----------------|--|--|
| Surrogate             | %Recovery Qual | ifier Criteria |  |  |
| 1,2-Dichloroethane-d4 | 109            | 70-130         |  |  |
| Toluene-d8            | 103            | 70-130         |  |  |
| 4-Bromofluorobenzene  | 102            | 70-130         |  |  |
| Dibromofluoromethane  | 99             | 70-130         |  |  |



# Lab Control Sample Analysis Batch Quality Control

Project Number: 170029 Lab Number: L1804131

Report Date: 02/13/18

| Parameter                                   | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | Qual       | %Recovery<br>Limits | RPD       |         | RPD<br>.imits |
|---------------------------------------------|------------------|---------------|-------------------|------------|---------------------|-----------|---------|---------------|
| Volatile Organics by 8260/5035 - Westboroug | gh Lab Associat  | ed sample(s): | 02,04,06,08-11    | 1,13-15,17 | Batch: WG10883      | 68-3 WG10 | 88368-4 |               |
| Benzene                                     | 84               |               | 84                |            | 70-130              | 0         |         | 30            |
| Toluene                                     | 96               |               | 96                |            | 70-130              | 0         |         | 30            |
| Ethylbenzene                                | 103              |               | 104               |            | 70-130              | 1         |         | 30            |
| Methyl tert butyl ether                     | 76               |               | 76                |            | 66-130              | 0         |         | 30            |
| p/m-Xylene                                  | 102              |               | 104               |            | 70-130              | 2         |         | 30            |
| o-Xylene                                    | 102              |               | 102               |            | 70-130              | 0         |         | 30            |
| n-Butylbenzene                              | 113              |               | 115               |            | 70-130              | 2         |         | 30            |
| sec-Butylbenzene                            | 112              |               | 115               |            | 70-130              | 3         |         | 30            |
| tert-Butylbenzene                           | 112              |               | 114               |            | 70-130              | 2         |         | 30            |
| Isopropylbenzene                            | 108              |               | 110               |            | 70-130              | 2         |         | 30            |
| p-Isopropyltoluene                          | 116              |               | 117               |            | 70-130              | 1         |         | 30            |
| Naphthalene                                 | 87               |               | 96                |            | 70-130              | 10        |         | 30            |
| n-Propylbenzene                             | 108              |               | 109               |            | 70-130              | 1         |         | 30            |
| 1,3,5-Trimethylbenzene                      | 110              |               | 111               |            | 70-130              | 1         |         | 30            |
| 1,2,4-Trimethylbenzene                      | 108              |               | 110               |            | 70-130              | 2         |         | 30            |

| Surrogate             | LCS<br>%Recovery Qua | LCSD<br>I %Recovery Qual | Acceptance<br>Criteria |
|-----------------------|----------------------|--------------------------|------------------------|
| 1,2-Dichloroethane-d4 | 100                  | 100                      | 70-130                 |
| Toluene-d8            | 103                  | 102                      | 70-130                 |
| 4-Bromofluorobenzene  | 93                   | 95                       | 70-130                 |
| Dibromofluoromethane  | 102                  | 102                      | 70-130                 |



# Lab Control Sample Analysis Batch Quality Control

Project Number: 170029 Lab Number: L1804131 Report Date: 02/13/18

| arameter                                  | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | RPD<br>Qual Limits | ; |
|-------------------------------------------|------------------|---------------|-------------------|----------|---------------------|-----|--------------------|---|
| platile Organics by 8260/5035 - Westborou | gh Lab Associat  | ed sample(s): | 12,16 Batch       | : WG1088 | 505-3 WG1088505     | 5-4 |                    |   |
| Benzene                                   | 93               |               | 92                |          | 70-130              | 1   | 30                 |   |
| Toluene                                   | 92               |               | 91                |          | 70-130              | 1   | 30                 |   |
| Ethylbenzene                              | 97               |               | 96                |          | 70-130              | 1   | 30                 |   |
| Methyl tert butyl ether                   | 96               |               | 95                |          | 66-130              | 1   | 30                 |   |
| p/m-Xylene                                | 98               |               | 97                |          | 70-130              | 1   | 30                 |   |
| o-Xylene                                  | 102              |               | 101               |          | 70-130              | 1   | 30                 |   |
| n-Butylbenzene                            | 96               |               | 94                |          | 70-130              | 2   | 30                 |   |
| sec-Butylbenzene                          | 96               |               | 93                |          | 70-130              | 3   | 30                 |   |
| tert-Butylbenzene                         | 96               |               | 93                |          | 70-130              | 3   | 30                 |   |
| Isopropylbenzene                          | 98               |               | 94                |          | 70-130              | 4   | 30                 |   |
| p-Isopropyltoluene                        | 96               |               | 94                |          | 70-130              | 2   | 30                 |   |
| Naphthalene                               | 95               |               | 98                |          | 70-130              | 3   | 30                 |   |
| n-Propylbenzene                           | 97               |               | 94                |          | 70-130              | 3   | 30                 |   |
| 1,3,5-Trimethylbenzene                    | 96               |               | 95                |          | 70-130              | 1   | 30                 |   |
| 1,2,4-Trimethylbenzene                    | 97               |               | 94                |          | 70-130              | 3   | 30                 |   |

| Surrogate             | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|-----------------------|-----------------------|------------------------|------------------------|
| 1,2-Dichloroethane-d4 | 111                   | 110                    | 70-130                 |
| Toluene-d8            | 104                   | 104                    | 70-130                 |
| 4-Bromofluorobenzene  | 104                   | 101                    | 70-130                 |
| Dibromofluoromethane  | 103                   | 102                    | 70-130                 |



Project Number: 170029

|                                            | LCS           |                | LCSD        |        | %Recove     | NF17        |      | RPD    |
|--------------------------------------------|---------------|----------------|-------------|--------|-------------|-------------|------|--------|
| arameter                                   | %Recovery     | Qual           | %Recovery   | Qua    |             |             | Qual | Limits |
| blatile Organics by 8260/5035 - Westboroug | h Lab Associa | ted sample(s): | 01,03,05,07 | Batch: | WG1088551-3 | WG1088551-4 |      |        |
| Benzene                                    | 93            |                | 92          |        | 70-130      | 1           |      | 30     |
| Toluene                                    | 92            |                | 91          |        | 70-130      | 1           |      | 30     |
| Ethylbenzene                               | 97            |                | 96          |        | 70-130      | 1           |      | 30     |
| Methyl tert butyl ether                    | 96            |                | 95          |        | 66-130      | 1           |      | 30     |
| p/m-Xylene                                 | 98            |                | 97          |        | 70-130      | 1           |      | 30     |
| o-Xylene                                   | 102           |                | 101         |        | 70-130      | 1           |      | 30     |
| n-Butylbenzene                             | 96            |                | 94          |        | 70-130      | 2           |      | 30     |
| sec-Butylbenzene                           | 96            |                | 93          |        | 70-130      | 3           |      | 30     |
| tert-Butylbenzene                          | 96            |                | 93          |        | 70-130      | 3           |      | 30     |
| Isopropylbenzene                           | 98            |                | 94          |        | 70-130      | 4           |      | 30     |
| p-lsopropyltoluene                         | 96            |                | 94          |        | 70-130      | 2           |      | 30     |
| Naphthalene                                | 95            |                | 98          |        | 70-130      | 3           |      | 30     |
| n-Propylbenzene                            | 97            |                | 94          |        | 70-130      | 3           |      | 30     |
| 1,3,5-Trimethylbenzene                     | 96            |                | 95          |        | 70-130      | 1           |      | 30     |
| 1,2,4-Trimethylbenzene                     | 97            |                | 94          |        | 70-130      | 3           |      | 30     |

| Surrogate             | LCS           | LCSD             | Acceptance |
|-----------------------|---------------|------------------|------------|
|                       | %Recovery Qua | I %Recovery Qual | Criteria   |
| 1,2-Dichloroethane-d4 | 111           | 110              | 70-130     |
| Toluene-d8            | 104           | 104              | 70-130     |
| 4-Bromofluorobenzene  | 104           | 101              | 70-130     |
| Dibromofluoromethane  | 103           | 102              | 70-130     |



# SEMIVOLATILES



|                                                                                             |                                                                                      | Serial_N                                                                                 | o:02131814:52                                                               |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Project Name:                                                                               | 200 HAMILTON AVENUE                                                                  | Lab Number:                                                                              | L1804131                                                                    |
| Project Number:                                                                             | 170029                                                                               | Report Date:                                                                             | 02/13/18                                                                    |
|                                                                                             | SAMPLE RESULTS                                                                       |                                                                                          |                                                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method: | L1804131-02<br>SB-11 (5-7)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1.8270D | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Metho<br>Extraction Date: | 02/06/18 11:05<br>02/06/18<br>Not Specified<br>d:EPA 3546<br>02/08/18 22:06 |
| Analytical Date:<br>Analyst:<br>Percent Solids:                                             | 02/10/18 03:23<br>RC<br>89%                                                          |                                                                                          |                                                                             |

| Parameter                        | Result          | Qualifier | Units | RL  | MDL | Dilution Factor |
|----------------------------------|-----------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS - | Westborough Lab |           |       |     |     |                 |
| Acenaphthene                     | ND              |           | ug/kg | 150 | 19. | 1               |
| Fluoranthene                     | ND              |           | ug/kg | 110 | 22. | 1               |
| Naphthalene                      | ND              |           | ug/kg | 190 | 23. | 1               |
| Benzo(a)anthracene               | ND              |           | ug/kg | 110 | 21. | 1               |
| Benzo(a)pyrene                   | ND              |           | ug/kg | 150 | 46. | 1               |
| Benzo(b)fluoranthene             | ND              |           | ug/kg | 110 | 32. | 1               |
| Benzo(k)fluoranthene             | ND              |           | ug/kg | 110 | 30. | 1               |
| Chrysene                         | ND              |           | ug/kg | 110 | 19. | 1               |
| Acenaphthylene                   | ND              |           | ug/kg | 150 | 29. | 1               |
| Anthracene                       | ND              |           | ug/kg | 110 | 36. | 1               |
| Benzo(ghi)perylene               | ND              |           | ug/kg | 150 | 22. | 1               |
| Fluorene                         | ND              |           | ug/kg | 190 | 18. | 1               |
| Phenanthrene                     | ND              |           | ug/kg | 110 | 23. | 1               |
| Dibenzo(a,h)anthracene           | ND              |           | ug/kg | 110 | 22. | 1               |
| ndeno(1,2,3-cd)pyrene            | ND              |           | ug/kg | 150 | 26. | 1               |
| Pyrene                           | ND              |           | ug/kg | 110 | 19. | 1               |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 88         | 23-120                           |  |
| 2-Fluorobiphenyl | 85         | 30-120                           |  |
| 4-Terphenyl-d14  | 104        | 18-120                           |  |



|                                                                       |                                                                   | Serial_N                                         | o:02131814:52                               |
|-----------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                         | 200 HAMILTON AVENUE                                               | Lab Number:                                      | L1804131                                    |
| Project Number:                                                       | 170029                                                            | Report Date:                                     | 02/13/18                                    |
|                                                                       | SAMPLE RESULTS                                                    |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:            | L1804131-04<br>SB-13 (3-5)<br>200 HAMILTON AVE., WHITE PLAINS, NY | Date Collected:<br>Date Received:<br>Field Prep: | 02/06/18 12:05<br>02/06/18<br>Not Specified |
| Matrix:                                                               | Soil                                                              | Extraction Metho                                 | d:EPA 3546                                  |
| Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | 1,8270D<br>02/10/18 03:47<br>RC<br>87%                            | Extraction Date:                                 | 02/08/18 22:06                              |

| Parameter                      | Result              | Qualifier | Units | RL  | MDL | Dilution Factor |
|--------------------------------|---------------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS | S - Westborough Lab |           |       |     |     |                 |
| Acenaphthene                   | ND                  |           | ug/kg | 150 | 20. | 1               |
| Fluoranthene                   | ND                  |           | ug/kg | 110 | 22. | 1               |
| Naphthalene                    | ND                  |           | ug/kg | 190 | 23. | 1               |
| Benzo(a)anthracene             | ND                  |           | ug/kg | 110 | 21. | 1               |
| Benzo(a)pyrene                 | ND                  |           | ug/kg | 150 | 46. | 1               |
| Benzo(b)fluoranthene           | ND                  |           | ug/kg | 110 | 32. | 1               |
| Benzo(k)fluoranthene           | ND                  |           | ug/kg | 110 | 30. | 1               |
| Chrysene                       | ND                  |           | ug/kg | 110 | 20. | 1               |
| Acenaphthylene                 | ND                  |           | ug/kg | 150 | 29. | 1               |
| Anthracene                     | ND                  |           | ug/kg | 110 | 37. | 1               |
| Benzo(ghi)perylene             | ND                  |           | ug/kg | 150 | 22. | 1               |
| Fluorene                       | ND                  |           | ug/kg | 190 | 18. | 1               |
| Phenanthrene                   | ND                  |           | ug/kg | 110 | 23. | 1               |
| Dibenzo(a,h)anthracene         | ND                  |           | ug/kg | 110 | 22. | 1               |
| Indeno(1,2,3-cd)pyrene         | ND                  |           | ug/kg | 150 | 26. | 1               |
| Pyrene                         | ND                  |           | ug/kg | 110 | 19. | 1               |
|                                |                     |           |       |     |     |                 |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 84         | 23-120                           |  |
| 2-Fluorobiphenyl | 82         | 30-120                           |  |
| 4-Terphenyl-d14  | 104        | 18-120                           |  |



|                                                                       |                                                                   | Serial_N                                         | o:02131814:52                               |
|-----------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                         | 200 HAMILTON AVENUE                                               | Lab Number:                                      | L1804131                                    |
| Project Number:                                                       | 170029                                                            | Report Date:                                     | 02/13/18                                    |
|                                                                       | SAMPLE RESULTS                                                    |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:            | L1804131-06<br>SB-14 (2-4)<br>200 HAMILTON AVE., WHITE PLAINS, NY | Date Collected:<br>Date Received:<br>Field Prep: | 02/06/18 15:00<br>02/06/18<br>Not Specified |
| Matrix:                                                               | Soil                                                              | Extraction Metho<br>Extraction Date:             | d:EPA 3546<br>02/08/18 22:06                |
| Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | 1,8270D<br>02/10/18 06:59<br>RC<br>90%                            |                                                  | 02/00/10 22.00                              |

| Parameter                            | Result       | Qualifier | Units | RL  | MDL | Dilution Factor |
|--------------------------------------|--------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS - Wes | tborough Lab |           |       |     |     |                 |
| Acenaphthene                         | 35           | J         | ug/kg | 140 | 19. | 1               |
| Fluoranthene                         | 550          |           | ug/kg | 110 | 21. | 1               |
| Naphthalene                          | 30           | J         | ug/kg | 180 | 22. | 1               |
| Benzo(a)anthracene                   | 240          |           | ug/kg | 110 | 20. | 1               |
| Benzo(a)pyrene                       | 240          |           | ug/kg | 140 | 44. | 1               |
| Benzo(b)fluoranthene                 | 330          |           | ug/kg | 110 | 31. | 1               |
| Benzo(k)fluoranthene                 | 95           | J         | ug/kg | 110 | 29. | 1               |
| Chrysene                             | 210          |           | ug/kg | 110 | 19. | 1               |
| Acenaphthylene                       | 47           | J         | ug/kg | 140 | 28. | 1               |
| Anthracene                           | 88           | J         | ug/kg | 110 | 36. | 1               |
| Benzo(ghi)perylene                   | 190          |           | ug/kg | 140 | 21. | 1               |
| Fluorene                             | 18           | J         | ug/kg | 180 | 18. | 1               |
| Phenanthrene                         | 120          |           | ug/kg | 110 | 22. | 1               |
| Dibenzo(a,h)anthracene               | 51           | J         | ug/kg | 110 | 21. | 1               |
| Indeno(1,2,3-cd)pyrene               | 200          |           | ug/kg | 140 | 25. | 1               |
| Pyrene                               | 440          |           | ug/kg | 110 | 18. | 1               |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 111        | 23-120                           |  |
| 2-Fluorobiphenyl | 93         | 30-120                           |  |
| 4-Terphenyl-d14  | 109        | 18-120                           |  |



|                                                                                  |                                                                   | Serial_N                                         | o:02131814:52                               |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                    | 200 HAMILTON AVENUE                                               | Lab Number:                                      | L1804131                                    |
| Project Number:                                                                  | 170029                                                            | Report Date:                                     | 02/13/18                                    |
|                                                                                  | SAMPLE RESULTS                                                    |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:                       | L1804131-08<br>SB-12 (2-4)<br>200 HAMILTON AVE., WHITE PLAINS, NY | Date Collected:<br>Date Received:<br>Field Prep: | 02/06/18 15:40<br>02/06/18<br>Not Specified |
| Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | Soil<br>1,8270D<br>02/10/18 04:59<br>RC<br>90%                    | Extraction Metho<br>Extraction Date:             | d:EPA 3546<br>02/08/18 22:06                |

| Parameter                            | Result        | Qualifier | Units | RL  | MDL | Dilution Factor |
|--------------------------------------|---------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS - Wes | stborough Lab |           |       |     |     |                 |
| Acenaphthene                         | ND            |           | ug/kg | 150 | 19. | 1               |
| Fluoranthene                         | 24            | J         | ug/kg | 110 | 21. | 1               |
| Naphthalene                          | ND            |           | ug/kg | 180 | 22. | 1               |
| Benzo(a)anthracene                   | ND            |           | ug/kg | 110 | 20. | 1               |
| Benzo(a)pyrene                       | ND            |           | ug/kg | 150 | 45. | 1               |
| Benzo(b)fluoranthene                 | ND            |           | ug/kg | 110 | 31. | 1               |
| Benzo(k)fluoranthene                 | ND            |           | ug/kg | 110 | 29. | 1               |
| Chrysene                             | ND            |           | ug/kg | 110 | 19. | 1               |
| Acenaphthylene                       | ND            |           | ug/kg | 150 | 28. | 1               |
| Anthracene                           | ND            |           | ug/kg | 110 | 36. | 1               |
| Benzo(ghi)perylene                   | ND            |           | ug/kg | 150 | 22. | 1               |
| Fluorene                             | ND            |           | ug/kg | 180 | 18. | 1               |
| Phenanthrene                         | ND            |           | ug/kg | 110 | 22. | 1               |
| Dibenzo(a,h)anthracene               | ND            |           | ug/kg | 110 | 21. | 1               |
| Indeno(1,2,3-cd)pyrene               | ND            |           | ug/kg | 150 | 25. | 1               |
| Pyrene                               | 24            | J         | ug/kg | 110 | 18. | 1               |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 86         | 23-120                           |  |
| 2-Fluorobiphenyl | 88         | 30-120                           |  |
| 4-Terphenyl-d14  | 113        | 18-120                           |  |



|                                   |                                     | Serial_N         | o:02131814:52  |
|-----------------------------------|-------------------------------------|------------------|----------------|
| Project Name:                     | 200 HAMILTON AVENUE                 | Lab Number:      | L1804131       |
| Project Number:                   | 170029                              | Report Date:     | 02/13/18       |
|                                   | SAMPLE RESULTS                      |                  |                |
| Lab ID:                           | L1804131-11                         | Date Collected:  | 02/07/18 09:25 |
| Client ID:                        | SB-10 (3-5)                         | Date Received:   | 02/07/18       |
| Sample Location:<br>Sample Depth: | 200 HAMILTON AVE., WHITE PLAINS, NY | Field Prep:      | Not Specified  |
| Matrix:                           | Soil                                | Extraction Metho | d:EPA 3546     |
| Analytical Method:                | 1,8270D                             | Extraction Date: | 02/08/18 22:06 |
| Analytical Date:                  | 02/10/18 04:35                      |                  |                |
| Analyst:                          | RC                                  |                  |                |
| Percent Solids:                   | 93%                                 |                  |                |

| Semivolatile Organics by GC/MS - Westborough Lab |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140                                                                                                                                                                                    | 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                                                                                                                                                                    | 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180                                                                                                                                                                                    | 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                                                                                                                                                                    | 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140                                                                                                                                                                                    | 44.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                                                                                                                                                                    | 30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                                                                                                                                                                    | 28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                                                                                                                                                                    | 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140                                                                                                                                                                                    | 28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                                                                                                                                                                    | 35.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140                                                                                                                                                                                    | 21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180                                                                                                                                                                                    | 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                                                                                                                                                                    | 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                                                                                                                                                                    | 21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140                                                                                                                                                                                    | 25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ND                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                                                                                                                                                                    | 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                  | ND           ND | ND         ND | NDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kg | ND         ug/kg         140           ND         ug/kg         110           ND         ug/kg         180           ND         ug/kg         180           ND         ug/kg         110           ND         ug/kg         140           ND         ug/kg         110           ND         ug/kg | ND         ug/kg         140         18.           ND         ug/kg         110         20.           ND         ug/kg         180         22.           ND         ug/kg         110         20.           ND         ug/kg         180         22.           ND         ug/kg         110         20.           ND         ug/kg         110         20.           ND         ug/kg         110         20.           ND         ug/kg         140         44.           ND         ug/kg         110         30.           ND         ug/kg         110         28.           ND         ug/kg         140         28.           ND         ug/kg         140         28.           ND         ug/kg         140         28.           ND         ug/kg         140         21.           ND         ug/kg         140         21.           ND         ug/kg         110         22.           ND         ug/kg         110         21.           ND         ug/kg         140         21.           ND         ug/kg         140< |  |  |

| Surrogate        | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|------------------|------------|-----------|------------------------|--|
| Nitrobenzene-d5  | 96         |           | 23-120                 |  |
| 2-Fluorobiphenyl | 93         |           | 30-120                 |  |
| 4-Terphenyl-d14  | 123        | Q         | 18-120                 |  |



|                                                                                                                                                |                                                                                                                     | Serial_N                                                                                 | o:02131814:52                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Project Name:                                                                                                                                  | 200 HAMILTON AVENUE                                                                                                 | Lab Number:                                                                              | L1804131                                                                    |
| Project Number:                                                                                                                                | 170029                                                                                                              | Report Date:                                                                             | 02/13/18                                                                    |
|                                                                                                                                                | SAMPLE RESULTS                                                                                                      |                                                                                          |                                                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | L1804131-13<br>SB-15 (2-4)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8270D<br>02/11/18 17:36<br>TT<br>90% | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Metho<br>Extraction Date: | 02/09/18 09:00<br>02/09/18<br>Not Specified<br>d:EPA 3546<br>02/10/18 07:50 |

| Parameter                      | Result            | Qualifier | Units | RL  | MDL | Dilution Factor |
|--------------------------------|-------------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS | - Westborough Lab |           |       |     |     |                 |
| Acenaphthene                   | ND                |           | ug/kg | 150 | 19. | 1               |
| Fluoranthene                   | 38                | J         | ug/kg | 110 | 21. | 1               |
| Naphthalene                    | ND                |           | ug/kg | 180 | 22. | 1               |
| Benzo(a)anthracene             | 36                | J         | ug/kg | 110 | 21. | 1               |
| Benzo(a)pyrene                 | ND                |           | ug/kg | 150 | 45. | 1               |
| Benzo(b)fluoranthene           | 50                | J         | ug/kg | 110 | 31. | 1               |
| Benzo(k)fluoranthene           | ND                |           | ug/kg | 110 | 29. | 1               |
| Chrysene                       | 30                | J         | ug/kg | 110 | 19. | 1               |
| Acenaphthylene                 | ND                |           | ug/kg | 150 | 28. | 1               |
| Anthracene                     | ND                |           | ug/kg | 110 | 36. | 1               |
| Benzo(ghi)perylene             | 28                | J         | ug/kg | 150 | 22. | 1               |
| Fluorene                       | ND                |           | ug/kg | 180 | 18. | 1               |
| Phenanthrene                   | ND                |           | ug/kg | 110 | 22. | 1               |
| Dibenzo(a,h)anthracene         | ND                |           | ug/kg | 110 | 21. | 1               |
| Indeno(1,2,3-cd)pyrene         | 30                | J         | ug/kg | 150 | 26. | 1               |
| Pyrene                         | 39                | J         | ug/kg | 110 | 18. | 1               |
|                                |                   |           |       |     |     |                 |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 82         | 23-120                           |  |
| 2-Fluorobiphenyl | 88         | 30-120                           |  |
| 4-Terphenyl-d14  | 94         | 18-120                           |  |



|                                                                                                                 |                                                                                                        | Serial_N                                                                                 | o:02131814:52                                                               |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Project Name:                                                                                                   | 200 HAMILTON AVENUE                                                                                    | Lab Number:                                                                              | L1804131                                                                    |
| Project Number:                                                                                                 | 170029                                                                                                 | Report Date:                                                                             | 02/13/18                                                                    |
|                                                                                                                 | SAMPLE RESULTS                                                                                         |                                                                                          |                                                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date: | L1804131-15<br>SB-16 (2-4)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8270D<br>02/13/18 05:37 | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Metho<br>Extraction Date: | 02/09/18 11:10<br>02/09/18<br>Not Specified<br>d:EPA 3546<br>02/10/18 07:50 |
| Analyst:<br>Percent Solids:                                                                                     | RC<br>86%                                                                                              |                                                                                          |                                                                             |

| Parameter                      | Result            | Qualifier | Units | RL  | MDL | Dilution Factor |
|--------------------------------|-------------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS | - Westborough Lab |           |       |     |     |                 |
| Acenaphthene                   | ND                |           | ug/kg | 150 | 20. | 1               |
| Fluoranthene                   | 440               |           | ug/kg | 110 | 22. | 1               |
| Naphthalene                    | ND                |           | ug/kg | 190 | 23. | 1               |
| Benzo(a)anthracene             | 240               |           | ug/kg | 110 | 22. | 1               |
| Benzo(a)pyrene                 | 230               |           | ug/kg | 150 | 47. | 1               |
| Benzo(b)fluoranthene           | 320               |           | ug/kg | 110 | 32. | 1               |
| Benzo(k)fluoranthene           | 120               |           | ug/kg | 110 | 31. | 1               |
| Chrysene                       | 210               |           | ug/kg | 110 | 20. | 1               |
| Acenaphthylene                 | 89                | J         | ug/kg | 150 | 30. | 1               |
| Anthracene                     | 68                | J         | ug/kg | 110 | 37. | 1               |
| Benzo(ghi)perylene             | 160               |           | ug/kg | 150 | 22. | 1               |
| Fluorene                       | 30                | J         | ug/kg | 190 | 19. | 1               |
| Phenanthrene                   | 240               |           | ug/kg | 110 | 23. | 1               |
| Dibenzo(a,h)anthracene         | 48                | J         | ug/kg | 110 | 22. | 1               |
| Indeno(1,2,3-cd)pyrene         | 190               |           | ug/kg | 150 | 27. | 1               |
| Pyrene                         | 370               |           | ug/kg | 110 | 19. | 1               |
|                                |                   |           |       |     |     |                 |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 95         | 23-120                           |  |
| 2-Fluorobiphenyl | 83         | 30-120                           |  |
| 4-Terphenyl-d14  | 81         | 18-120                           |  |



|                                                                                             |                                                                                      | Serial_N                                                                                 | o:02131814:52                                                               |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Project Name:                                                                               | 200 HAMILTON AVENUE                                                                  | Lab Number:                                                                              | L1804131                                                                    |
| Project Number:                                                                             | 170029                                                                               | Report Date:                                                                             | 02/13/18                                                                    |
|                                                                                             | SAMPLE RESULTS                                                                       |                                                                                          |                                                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix:<br>Analytical Method: | L1804131-17<br>SB-17 (5-7)<br>200 HAMILTON AVE., WHITE PLAINS, NY<br>Soil<br>1,8270D | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Metho<br>Extraction Date: | 02/09/18 12:35<br>02/09/18<br>Not Specified<br>d:EPA 3546<br>02/10/18 07:50 |
| Analytical Date:<br>Analyst:<br>Percent Solids:                                             | 02/13/18 06:01<br>RC<br>93%                                                          |                                                                                          |                                                                             |

| Parameter                           | Result        | Qualifier | Units | RL  | MDL | Dilution Factor |
|-------------------------------------|---------------|-----------|-------|-----|-----|-----------------|
| Semivolatile Organics by GC/MS - We | stborough Lab |           |       |     |     |                 |
| Acenaphthene                        | 88            | J         | ug/kg | 140 | 18. | 1               |
| Fluoranthene                        | 5300          |           | ug/kg | 110 | 20. | 1               |
| Naphthalene                         | 50            | J         | ug/kg | 180 | 22. | 1               |
| Benzo(a)anthracene                  | 2800          |           | ug/kg | 110 | 20. | 1               |
| Benzo(a)pyrene                      | 2400          |           | ug/kg | 140 | 43. | 1               |
| Benzo(b)fluoranthene                | 3300          |           | ug/kg | 110 | 30. | 1               |
| Benzo(k)fluoranthene                | 850           |           | ug/kg | 110 | 28. | 1               |
| Chrysene                            | 2200          |           | ug/kg | 110 | 18. | 1               |
| Acenaphthylene                      | 430           |           | ug/kg | 140 | 27. | 1               |
| Anthracene                          | 960           |           | ug/kg | 110 | 35. | 1               |
| Benzo(ghi)perylene                  | 1500          |           | ug/kg | 140 | 21. | 1               |
| Fluorene                            | 190           |           | ug/kg | 180 | 17. | 1               |
| Phenanthrene                        | 2700          |           | ug/kg | 110 | 22. | 1               |
| Dibenzo(a,h)anthracene              | 410           |           | ug/kg | 110 | 20. | 1               |
| Indeno(1,2,3-cd)pyrene              | 1800          |           | ug/kg | 140 | 25. | 1               |
| Pyrene                              | 4200          |           | ug/kg | 110 | 18. | 1               |

| Surrogate        | % Recovery | Acceptance<br>Qualifier Criteria |  |
|------------------|------------|----------------------------------|--|
| Nitrobenzene-d5  | 89         | 23-120                           |  |
| 2-Fluorobiphenyl | 74         | 30-120                           |  |
| 4-Terphenyl-d14  | 70         | 18-120                           |  |



| Project Name:   | 200 HAMILTON AVENUE   | Lab Number:  | L1804131 |
|-----------------|-----------------------|--------------|----------|
| Project Number: | 170029                | Report Date: | 02/13/18 |
|                 | Method Blank Analysis |              |          |

### Batch Quality Control

| Analytical Method: | 1,8270D        | Extraction Method: | EPA 3546       |
|--------------------|----------------|--------------------|----------------|
| Analytical Date:   | 02/12/18 08:50 | Extraction Date:   | 02/08/18 22:06 |
| Analyst:           | EK             |                    |                |

| arameter                                     | Result       | Qualifier   | Units     | RL             | MDL    |
|----------------------------------------------|--------------|-------------|-----------|----------------|--------|
| emivolatile Organics by GC/MS<br>/G1087801-1 | - Westboroug | h Lab for s | ample(s): | 02,04,06,08,11 | Batch: |
| Acenaphthene                                 | ND           |             | ug/kg     | 130            | 17.    |
| Fluoranthene                                 | ND           |             | ug/kg     | 97             | 18.    |
| Naphthalene                                  | ND           |             | ug/kg     | 160            | 20.    |
| Benzo(a)anthracene                           | ND           |             | ug/kg     | 97             | 18.    |
| Benzo(a)pyrene                               | ND           |             | ug/kg     | 130            | 39.    |
| Benzo(b)fluoranthene                         | ND           |             | ug/kg     | 97             | 27.    |
| Benzo(k)fluoranthene                         | ND           |             | ug/kg     | 97             | 26.    |
| Chrysene                                     | ND           |             | ug/kg     | 97             | 17.    |
| Acenaphthylene                               | ND           |             | ug/kg     | 130            | 25.    |
| Anthracene                                   | ND           |             | ug/kg     | 97             | 32.    |
| Benzo(ghi)perylene                           | ND           |             | ug/kg     | 130            | 19.    |
| Fluorene                                     | ND           |             | ug/kg     | 160            | 16.    |
| Phenanthrene                                 | ND           |             | ug/kg     | 97             | 20.    |
| Dibenzo(a,h)anthracene                       | ND           |             | ug/kg     | 97             | 19.    |
| Indeno(1,2,3-cd)pyrene                       | ND           |             | ug/kg     | 130            | 22.    |
| Pyrene                                       | ND           |             | ug/kg     | 97             | 16.    |

#### Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/kg



| Project Name:                                      | 200 HAMILTON AVENUE                            | Lab Number:                           | L1804131                     |
|----------------------------------------------------|------------------------------------------------|---------------------------------------|------------------------------|
| Project Number:                                    | 170029                                         | Report Date:                          | 02/13/18                     |
|                                                    | Method Blank Analysis<br>Batch Quality Control |                                       |                              |
| Analytical Method:<br>Analytical Date:<br>Analyst: | 1,8270D<br>02/12/18 08:50<br>EK                | Extraction Method<br>Extraction Date: | : EPA 3546<br>02/08/18 22:06 |

| Parameter                                       | Result        | Qualifier   | Units     | RL             | MDL    |
|-------------------------------------------------|---------------|-------------|-----------|----------------|--------|
| Semivolatile Organics by GC/MS -<br>WG1087801-1 | · Westborougl | n Lab for s | ample(s): | 02,04,06,08,11 | Batch: |

| Surrogate            | %Recovery Q | Acceptance<br>ualifier Criteria |
|----------------------|-------------|---------------------------------|
| 2-Fluorophenol       | 67          | 25-120                          |
| Phenol-d6            | 74          | 10-120                          |
| Nitrobenzene-d5      | 67          | 23-120                          |
| 2-Fluorobiphenyl     | 77          | 30-120                          |
| 2,4,6-Tribromophenol | 94          | 10-136                          |
| 4-Terphenyl-d14      | 111         | 18-120                          |



| Project Name:   | 200 HAMILTON AVENUE   | Lab Number:  | L1804131 |
|-----------------|-----------------------|--------------|----------|
| Project Number: | 170029                | Report Date: | 02/13/18 |
|                 | Method Blank Analysis |              |          |

### Batch Quality Control

| Analytical Method: | 1,8270D        | Extraction Method: | EPA 3546       |
|--------------------|----------------|--------------------|----------------|
| Analytical Date:   | 02/12/18 11:49 | Extraction Date:   | 02/10/18 07:50 |
| Analyst:           | ТТ             |                    |                |

| arameter                     | Result          | Qualifier   | Units     | RL       | MDL                |
|------------------------------|-----------------|-------------|-----------|----------|--------------------|
| emivolatile Organics by GC/N | 1S - Westboroug | h Lab for s | ample(s): | 13,15,17 | Batch: WG1088188-1 |
| Acenaphthene                 | ND              |             | ug/kg     | 130      | 17.                |
| Fluoranthene                 | ND              |             | ug/kg     | 98       | 19.                |
| Naphthalene                  | ND              |             | ug/kg     | 160      | 20.                |
| Benzo(a)anthracene           | ND              |             | ug/kg     | 98       | 18.                |
| Benzo(a)pyrene               | ND              |             | ug/kg     | 130      | 40.                |
| Benzo(b)fluoranthene         | ND              |             | ug/kg     | 98       | 28.                |
| Benzo(k)fluoranthene         | ND              |             | ug/kg     | 98       | 26.                |
| Chrysene                     | ND              |             | ug/kg     | 98       | 17.                |
| Acenaphthylene               | ND              |             | ug/kg     | 130      | 25.                |
| Anthracene                   | ND              |             | ug/kg     | 98       | 32.                |
| Benzo(ghi)perylene           | ND              |             | ug/kg     | 130      | 19.                |
| Fluorene                     | ND              |             | ug/kg     | 160      | 16.                |
| Phenanthrene                 | ND              |             | ug/kg     | 98       | 20.                |
| Dibenzo(a,h)anthracene       | ND              |             | ug/kg     | 98       | 19.                |
| Indeno(1,2,3-cd)pyrene       | ND              |             | ug/kg     | 130      | 23.                |
| Pyrene                       | ND              |             | ug/kg     | 98       | 16.                |

#### Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/kg



| Project Name:                                      | 200 HAMILTON AVENUE                            | Lab Number:                            | L1804131                   |
|----------------------------------------------------|------------------------------------------------|----------------------------------------|----------------------------|
| Project Number:                                    | 170029                                         | Report Date:                           | 02/13/18                   |
|                                                    | Method Blank Analysis<br>Batch Quality Control |                                        |                            |
| Analytical Method:<br>Analytical Date:<br>Analyst: | 1,8270D<br>02/12/18 11:49<br>TT                | Extraction Method:<br>Extraction Date: | EPA 3546<br>02/10/18 07:50 |

| Parameter                        | Result     | Qualifier    | Units     | RL       | MDL                |
|----------------------------------|------------|--------------|-----------|----------|--------------------|
| Semivolatile Organics by GC/MS - | Westboroug | gh Lab for s | ample(s): | 13,15,17 | Batch: WG1088188-1 |

| Surrogate            | %Recovery Q | Acceptance<br>ualifier Criteria |
|----------------------|-------------|---------------------------------|
| 2-Fluorophenol       | 82          | 25-120                          |
| Phenol-d6            | 83          | 10-120                          |
| Nitrobenzene-d5      | 89          | 23-120                          |
| 2-Fluorobiphenyl     | 83          | 30-120                          |
| 2,4,6-Tribromophenol | 77          | 10-136                          |
| 4-Terphenyl-d14      | 96          | 18-120                          |



Project Number: 170029 Lab Number: L1804131

Report Date: 02/13/18

| Parameter                          | LCS<br>%Recovery        | Qual            | LCSD<br>%Recovery | Qual   | %Recovery<br>Limits | RPD         | Qual | RPD<br>Limits |
|------------------------------------|-------------------------|-----------------|-------------------|--------|---------------------|-------------|------|---------------|
| Semivolatile Organics by GC/MS - V | Vestborough Lab Associa | ated sample(s): | 02,04,06,08,11    | Batch: | WG1087801-2         | WG1087801-3 |      |               |
| Acenaphthene                       | 80                      |                 | 97                |        | 31-137              | 19          |      | 50            |
| Fluoranthene                       | 87                      |                 | 104               |        | 40-140              | 18          |      | 50            |
| Naphthalene                        | 76                      |                 | 88                |        | 40-140              | 15          |      | 50            |
| Benzo(a)anthracene                 | 83                      |                 | 101               |        | 40-140              | 20          |      | 50            |
| Benzo(a)pyrene                     | 88                      |                 | 106               |        | 40-140              | 19          |      | 50            |
| Benzo(b)fluoranthene               | 86                      |                 | 102               |        | 40-140              | 17          |      | 50            |
| Benzo(k)fluoranthene               | 84                      |                 | 104               |        | 40-140              | 21          |      | 50            |
| Chrysene                           | 82                      |                 | 97                |        | 40-140              | 17          |      | 50            |
| Acenaphthylene                     | 84                      |                 | 102               |        | 40-140              | 19          |      | 50            |
| Anthracene                         | 83                      |                 | 102               |        | 40-140              | 21          |      | 50            |
| Benzo(ghi)perylene                 | 84                      |                 | 102               |        | 40-140              | 19          |      | 50            |
| Fluorene                           | 84                      |                 | 100               |        | 40-140              | 17          |      | 50            |
| Phenanthrene                       | 80                      |                 | 98                |        | 40-140              | 20          |      | 50            |
| Dibenzo(a,h)anthracene             | 87                      |                 | 105               |        | 40-140              | 19          |      | 50            |
| Indeno(1,2,3-cd)pyrene             | 102                     |                 | 109               |        | 40-140              | 7           |      | 50            |
| Pyrene                             | 84                      |                 | 101               |        | 35-142              | 18          |      | 50            |



### Lab Control Sample Analysis

Batch Quality Control

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

 Lab Number:
 L1804131

 Report Date:
 02/13/18

LCSLCSD%Recovery%RecoveryRPDParameter%RecoveryQualLimitsRPDQualLimitsSemivolatile Organics by GC/MS - Westborough LabAssociated sample(s):02,04,06,08,11Batch:WG1087801-2WG1087801-3

| Surrogate            | LCS<br>%Recovery Qua | LCSD<br>%Recovery Qu | Acceptance<br>al Criteria |
|----------------------|----------------------|----------------------|---------------------------|
| 2-Fluorophenol       | 84                   | 96                   | 25-120                    |
| Phenol-d6            | 85                   | 99                   | 10-120                    |
| Nitrobenzene-d5      | 79                   | 105                  | 23-120                    |
| 2-Fluorobiphenyl     | 84                   | 99                   | 30-120                    |
| 2,4,6-Tribromophenol | 96                   | 114                  | 10-136                    |
| 4-Terphenyl-d14      | 96                   | 113                  | 18-120                    |



Project Number: 170029

| Parameter                                  | LCS<br>%Recovery | Qual           | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD    | Qual | RPD<br>Limits |
|--------------------------------------------|------------------|----------------|-------------------|-----------|---------------------|--------|------|---------------|
| Semivolatile Organics by GC/MS - Westborou | ugh Lab Associ   | ated sample(s) | : 13,15,17 B      | atch: WG1 | 088188-2 WG108      | 8188-3 |      |               |
| Acenaphthene                               | 83               |                | 75                |           | 31-137              | 10     |      | 50            |
| Fluoranthene                               | 88               |                | 82                |           | 40-140              | 7      |      | 50            |
| Naphthalene                                | 76               |                | 69                |           | 40-140              | 10     |      | 50            |
| Benzo(a)anthracene                         | 87               |                | 80                |           | 40-140              | 8      |      | 50            |
| Benzo(a)pyrene                             | 92               |                | 83                |           | 40-140              | 10     |      | 50            |
| Benzo(b)fluoranthene                       | 92               |                | 85                |           | 40-140              | 8      |      | 50            |
| Benzo(k)fluoranthene                       | 86               |                | 74                |           | 40-140              | 15     |      | 50            |
| Chrysene                                   | 82               |                | 77                |           | 40-140              | 6      |      | 50            |
| Acenaphthylene                             | 86               |                | 80                |           | 40-140              | 7      |      | 50            |
| Anthracene                                 | 87               |                | 81                |           | 40-140              | 7      |      | 50            |
| Benzo(ghi)perylene                         | 87               |                | 81                |           | 40-140              | 7      |      | 50            |
| Fluorene                                   | 86               |                | 78                |           | 40-140              | 10     |      | 50            |
| Phenanthrene                               | 82               |                | 77                |           | 40-140              | 6      |      | 50            |
| Dibenzo(a,h)anthracene                     | 88               |                | 82                |           | 40-140              | 7      |      | 50            |
| Indeno(1,2,3-cd)pyrene                     | 91               |                | 86                |           | 40-140              | 6      |      | 50            |
| Pyrene                                     | 85               |                | 80                |           | 35-142              | 6      |      | 50            |



Project Name: 200 HAMILTON AVENUE

Project Number: 170029

 Lab Number:
 L1804131

 Report Date:
 02/13/18

| Parameter                                 | LCS<br>%Recovery | Qual           | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD    | Qual | RPD<br>Limits |  |
|-------------------------------------------|------------------|----------------|-------------------|-----------|---------------------|--------|------|---------------|--|
| Semivolatile Organics by GC/MS - Westbord | ough Lab Associa | ited sample(s) | ): 13,15,17 Ba    | atch: WG1 | 088188-2 WG108      | 8188-3 |      |               |  |

| Surrogate            | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|----------------------|-----------------------|------------------------|------------------------|
| 2-Fluorophenol       | 79                    | 71                     | 25-120                 |
| Phenol-d6            | 83                    | 74                     | 10-120                 |
| Nitrobenzene-d5      | 83                    | 80                     | 23-120                 |
| 2-Fluorobiphenyl     | 81                    | 75                     | 30-120                 |
| 2,4,6-Tribromophenol | 90                    | 83                     | 10-136                 |
| 4-Terphenyl-d14      | 91                    | 83                     | 18-120                 |



### METALS



| Project Name:                     | 200 HAMILTON AVENUE                 | Lab Number:     | L1804131       |
|-----------------------------------|-------------------------------------|-----------------|----------------|
| Project Number:                   | 170029                              | Report Date:    | 02/13/18       |
|                                   | SAMPLE RESULTS                      |                 |                |
| Lab ID:                           | L1804131-02                         | Date Collected: | 02/06/18 11:05 |
| Client ID:                        | SB-11 (5-7)                         | Date Received:  | 02/06/18       |
| Sample Location:<br>Sample Depth: | 200 HAMILTON AVE., WHITE PLAINS, NY | Field Prep:     | Not Specified  |

Matrix: Soil Percent Solids: 89%

| Percent Solids:    | 89%        |           |       |       |       | Dilution | Date           | Date             | Prep      | Analytical |        |
|--------------------|------------|-----------|-------|-------|-------|----------|----------------|------------------|-----------|------------|--------|
| Parameter Ro       | Result     | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed         | Method    | Method     | Analys |
| Total Metals - Man | sfield Lab |           |       |       |       |          |                |                  |           |            |        |
| Arsenic, Total     | 1.30       |           | mg/kg | 0.438 | 0.091 | 1        | 02/07/18 21:10 | ) 02/12/18 17:30 | EPA 3050B | 1,6010C    | AB     |
| Barium, Total      | 80.5       |           | mg/kg | 0.438 | 0.076 | 1        | 02/07/18 21:10 | ) 02/12/18 17:30 | EPA 3050B | 1,6010C    | AB     |
| Cadmium, Total     | ND         |           | mg/kg | 0.438 | 0.043 | 1        | 02/07/18 21:10 | ) 02/12/18 17:30 | EPA 3050B | 1,6010C    | AB     |
| Chromium, Total    | 18.5       |           | mg/kg | 0.438 | 0.042 | 1        | 02/07/18 21:10 | ) 02/12/18 17:30 | EPA 3050B | 1,6010C    | AB     |
| Lead, Total        | 4.32       |           | mg/kg | 2.19  | 0.117 | 1        | 02/07/18 21:10 | 02/12/18 17:30   | EPA 3050B | 1,6010C    | AB     |
| Mercury, Total     | ND         |           | mg/kg | 0.07  | 0.02  | 1        | 02/08/18 08:00 | 02/08/18 19:36   | EPA 7471B | 1,7471B    | EA     |
| Selenium, Total    | ND         |           | mg/kg | 0.876 | 0.113 | 1        | 02/07/18 21:10 | ) 02/12/18 17:30 | EPA 3050B | 1,6010C    | AB     |
| Silver, Total      | ND         |           | mg/kg | 0.438 | 0.124 | 1        | 02/07/18 21:10 | 02/12/18 17:30   | EPA 3050B | 1,6010C    | AB     |
| Zinc, Total        | 32.3       |           | mg/kg | 2.19  | 0.128 | 1        | 02/07/18 21:10 | 02/12/18 17:30   | EPA 3050B | 1,6010C    | AB     |



| Project Name:                     | 200 HAMILTON AVENUE                 | Lab Number:     | L1804131       |
|-----------------------------------|-------------------------------------|-----------------|----------------|
| Project Number:                   | 170029                              | Report Date:    | 02/13/18       |
|                                   | SAMPLE RESULTS                      |                 |                |
| Lab ID:                           | L1804131-04                         | Date Collected: | 02/06/18 12:05 |
| Client ID:                        | SB-13 (3-5)                         | Date Received:  | 02/06/18       |
| Sample Location:<br>Sample Depth: | 200 HAMILTON AVE., WHITE PLAINS, NY | Field Prep:     | Not Specified  |

| Matrix:            | Soil       |           |       |       |       |          |               |                  |           |            |         |
|--------------------|------------|-----------|-------|-------|-------|----------|---------------|------------------|-----------|------------|---------|
| Percent Solids:    | 87%        |           |       |       |       | Dilution | Date          | Date             | Prep      | Analytical |         |
| Parameter          | Result     | Qualifier | Units | RL    | MDL   | Factor   | Prepared      | Analyzed         | Method    | Method     | Analyst |
| Total Metals - Man | sfield Lab |           |       |       |       |          |               |                  |           |            |         |
| Arsenic, Total     | 1.73       |           | mg/kg | 0.452 | 0.094 | 1        | 02/07/18 21:1 | 0 02/12/18 17:35 | EPA 3050B | 1,6010C    | AB      |
| Barium, Total      | 95.6       |           | mg/kg | 0.452 | 0.079 | 1        | 02/07/18 21:1 | 0 02/12/18 17:35 | EPA 3050B | 1,6010C    | AB      |
| Cadmium, Total     | ND         |           | mg/kg | 0.452 | 0.044 | 1        | 02/07/18 21:1 | 0 02/12/18 17:35 | EPA 3050B | 1,6010C    | AB      |
| Chromium, Total    | 21.0       |           | mg/kg | 0.452 | 0.043 | 1        | 02/07/18 21:1 | 0 02/12/18 17:35 | EPA 3050B | 1,6010C    | AB      |
| Lead, Total        | 14.1       |           | mg/kg | 2.26  | 0.121 | 1        | 02/07/18 21:1 | 0 02/12/18 17:35 | EPA 3050B | 1,6010C    | AB      |
| Mercury, Total     | 0.04       | J         | mg/kg | 0.07  | 0.02  | 1        | 02/08/18 08:0 | 0 02/08/18 19:38 | EPA 7471B | 1,7471B    | EA      |
| Selenium, Total    | ND         |           | mg/kg | 0.904 | 0.117 | 1        | 02/07/18 21:1 | 0 02/12/18 17:35 | EPA 3050B | 1,6010C    | AB      |
| Silver, Total      | ND         |           | mg/kg | 0.452 | 0.128 | 1        | 02/07/18 21:1 | 0 02/12/18 17:35 | EPA 3050B | 1,6010C    | AB      |
| Zinc, Total        | 42.0       |           | mg/kg | 2.26  | 0.132 | 1        | 02/07/18 21:1 | 0 02/12/18 17:35 | EPA 3050B | 1,6010C    | AB      |
|                    |            |           |       |       |       |          |               |                  |           |            |         |



| Project Name:    | 200 HAMILTON AVENUE                 | Lab Number:     | L1804131       |
|------------------|-------------------------------------|-----------------|----------------|
| Project Number:  | 170029                              | Report Date:    | 02/13/18       |
|                  | SAMPLE RESULTS                      |                 |                |
| Lab ID:          | L1804131-06                         | Date Collected: | 02/06/18 15:00 |
| Client ID:       | SB-14 (2-4)                         | Date Received:  | 02/06/18       |
| Sample Location: | 200 HAMILTON AVE., WHITE PLAINS, NY | Field Prep:     | Not Specified  |
| Sample Depth:    |                                     |                 |                |
|                  |                                     |                 |                |

| Matrix:            | Soil       |           |       |       |       |          |               |                  |           |            |        |
|--------------------|------------|-----------|-------|-------|-------|----------|---------------|------------------|-----------|------------|--------|
| Percent Solids:    | 90%        |           |       |       |       | Dilution | Date          | Date             | Prep      | Analytical |        |
| Parameter          | Result     | Qualifier | Units | RL    | MDL   | Factor   | Prepared      | Analyzed         | Method    | Method     | Analys |
| Total Metals - Man | sfield Lab |           |       |       |       |          |               |                  |           |            |        |
| Arsenic, Total     | 2.04       |           | mg/kg | 0.431 | 0.090 | 1        | 02/07/18 21:1 | 0 02/12/18 17:40 | EPA 3050B | 1,6010C    | AB     |
| Barium, Total      | 92.7       |           | mg/kg | 0.431 | 0.075 | 1        | 02/07/18 21:1 | 0 02/12/18 17:40 | EPA 3050B | 1,6010C    | AB     |
| Cadmium, Total     | ND         |           | mg/kg | 0.431 | 0.042 | 1        | 02/07/18 21:1 | 0 02/12/18 17:40 | EPA 3050B | 1,6010C    | AB     |
| Chromium, Total    | 19.9       |           | mg/kg | 0.431 | 0.041 | 1        | 02/07/18 21:1 | 0 02/12/18 17:40 | EPA 3050B | 1,6010C    | AB     |
| Lead, Total        | 140        |           | mg/kg | 2.15  | 0.115 | 1        | 02/07/18 21:1 | 0 02/12/18 17:40 | EPA 3050B | 1,6010C    | AB     |
| Mercury, Total     | 0.09       |           | mg/kg | 0.07  | 0.02  | 1        | 02/08/18 08:0 | 0 02/08/18 19:40 | EPA 7471B | 1,7471B    | EA     |
| Selenium, Total    | ND         |           | mg/kg | 0.862 | 0.111 | 1        | 02/07/18 21:1 | 0 02/12/18 17:40 | EPA 3050B | 1,6010C    | AB     |
| Silver, Total      | ND         |           | mg/kg | 0.431 | 0.122 | 1        | 02/07/18 21:1 | 0 02/12/18 17:40 | EPA 3050B | 1,6010C    | AB     |
| Zinc, Total        | 66.5       |           | mg/kg | 2.15  | 0.126 | 1        | 02/07/18 21:1 | 0 02/12/18 17:40 | EPA 3050B | 1,6010C    | AB     |
|                    |            |           |       |       |       |          |               |                  |           |            |        |



| Project Name:                     | 200 HAMILTON AVENUE                 | Lab Number:     | L1804131       |
|-----------------------------------|-------------------------------------|-----------------|----------------|
| Project Number:                   | 170029                              | Report Date:    | 02/13/18       |
|                                   | SAMPLE RESULTS                      |                 |                |
| Lab ID:                           | L1804131-08                         | Date Collected: | 02/06/18 15:40 |
| Client ID:                        | SB-12 (2-4)                         | Date Received:  | 02/06/18       |
| Sample Location:<br>Sample Depth: | 200 HAMILTON AVE., WHITE PLAINS, NY | Field Prep:     | Not Specified  |

| Matrix:            | Soil       |           |       |       |       |          |               |                  |           |            |         |
|--------------------|------------|-----------|-------|-------|-------|----------|---------------|------------------|-----------|------------|---------|
| Percent Solids:    | 90%        |           |       |       |       | Dilution | Date          | Date             | Prep      | Analytical |         |
| Parameter          | Result     | Qualifier | Units | RL    | MDL   | Factor   | Prepared      | Analyzed         | Method    | Method     | Analyst |
| Total Metals - Man | sfield Lab |           |       |       |       |          |               |                  |           |            |         |
| Arsenic, Total     | 1.77       |           | mg/kg | 0.420 | 0.087 | 1        | 02/07/18 21:1 | 0 02/12/18 17:45 | EPA 3050B | 1,6010C    | AB      |
| Barium, Total      | 292        |           | mg/kg | 0.420 | 0.073 | 1        | 02/07/18 21:1 | 0 02/12/18 17:45 | EPA 3050B | 1,6010C    | AB      |
| Cadmium, Total     | ND         |           | mg/kg | 0.420 | 0.041 | 1        | 02/07/18 21:1 | 0 02/12/18 17:45 | EPA 3050B | 1,6010C    | AB      |
| Chromium, Total    | 113        |           | mg/kg | 0.420 | 0.040 | 1        | 02/07/18 21:1 | 0 02/12/18 17:45 | EPA 3050B | 1,6010C    | AB      |
| Lead, Total        | 6.66       |           | mg/kg | 2.10  | 0.112 | 1        | 02/07/18 21:1 | 0 02/12/18 17:45 | EPA 3050B | 1,6010C    | AB      |
| Mercury, Total     | ND         |           | mg/kg | 0.07  | 0.02  | 1        | 02/08/18 08:0 | 0 02/08/18 19:42 | EPA 7471B | 1,7471B    | EA      |
| Selenium, Total    | ND         |           | mg/kg | 0.839 | 0.108 | 1        | 02/07/18 21:1 | 0 02/12/18 17:45 | EPA 3050B | 1,6010C    | AB      |
| Silver, Total      | ND         |           | mg/kg | 0.420 | 0.119 | 1        | 02/07/18 21:1 | 0 02/12/18 17:45 | EPA 3050B | 1,6010C    | AB      |
| Zinc, Total        | 59.2       |           | mg/kg | 2.10  | 0.123 | 1        | 02/07/18 21:1 | 0 02/12/18 17:45 | EPA 3050B | 1,6010C    | AB      |
|                    |            |           | -     |       |       |          |               |                  |           |            |         |



| Project Name:                     | 200 HAMILTON AVENUE                 | Lab Number:     | L1804131       |
|-----------------------------------|-------------------------------------|-----------------|----------------|
| Project Number:                   | 170029                              | Report Date:    | 02/13/18       |
|                                   | SAMPLE RESULTS                      |                 |                |
| Lab ID:                           | L1804131-11                         | Date Collected: | 02/07/18 09:25 |
| Client ID:                        | SB-10 (3-5)                         | Date Received:  | 02/07/18       |
| Sample Location:<br>Sample Depth: | 200 HAMILTON AVE., WHITE PLAINS, NY | Field Prep:     | Not Specified  |

| Matrix:            | Soil       |           |       |       |       |          |               |                  |           |            |        |
|--------------------|------------|-----------|-------|-------|-------|----------|---------------|------------------|-----------|------------|--------|
| Percent Solids:    | 93%        |           |       |       |       | Dilution | Date          | Date             | Prep      | Analytical |        |
| Parameter          | Result     | Qualifier | Units | RL    | MDL   | Factor   | Prepared      | Analyzed         | Method    | Method     | Analys |
| Total Metals - Man | sfield Lab |           |       |       |       |          |               |                  |           |            |        |
| Arsenic, Total     | 2.05       |           | mg/kg | 0.414 | 0.086 | 1        | 02/08/18 07:0 | 0 02/08/18 12:41 | EPA 3050B | 1,6010C    | LC     |
| Barium, Total      | 158        |           | mg/kg | 0.414 | 0.072 | 1        | 02/08/18 07:0 | 0 02/08/18 12:41 | EPA 3050B | 1,6010C    | LC     |
| Cadmium, Total     | ND         |           | mg/kg | 0.414 | 0.041 | 1        | 02/08/18 07:0 | 0 02/08/18 12:41 | EPA 3050B | 1,6010C    | LC     |
| Chromium, Total    | 39.5       |           | mg/kg | 0.414 | 0.040 | 1        | 02/08/18 07:0 | 0 02/08/18 12:41 | EPA 3050B | 1,6010C    | LC     |
| Lead, Total        | 10.2       |           | mg/kg | 2.07  | 0.111 | 1        | 02/08/18 07:0 | 0 02/08/18 12:41 | EPA 3050B | 1,6010C    | LC     |
| Mercury, Total     | ND         |           | mg/kg | 0.07  | 0.01  | 1        | 02/08/18 08:0 | 0 02/08/18 19:44 | EPA 7471B | 1,7471B    | EA     |
| Selenium, Total    | 0.116      | J         | mg/kg | 0.828 | 0.107 | 1        | 02/08/18 07:0 | 0 02/08/18 12:41 | EPA 3050B | 1,6010C    | LC     |
| Silver, Total      | ND         |           | mg/kg | 0.414 | 0.117 | 1        | 02/08/18 07:0 | 0 02/08/18 12:41 | EPA 3050B | 1,6010C    | LC     |
| Zinc, Total        | 56.1       |           | mg/kg | 2.07  | 0.121 | 1        | 02/08/18 07:0 | 0 02/08/18 12:41 | EPA 3050B | 1,6010C    | LC     |
|                    |            |           |       |       |       |          |               |                  |           |            |        |



| Project Name:    | 200 HAMILTON AVENUE                 | Lab Number:     | L1804131       |
|------------------|-------------------------------------|-----------------|----------------|
| Project Number:  | 170029                              | Report Date:    | 02/13/18       |
|                  | SAMPLE RESULTS                      |                 |                |
| Lab ID:          | L1804131-13                         | Date Collected: | 02/09/18 09:00 |
| Client ID:       | SB-15 (2-4)                         | Date Received:  | 02/09/18       |
| Sample Location: | 200 HAMILTON AVE., WHITE PLAINS, NY | Field Prep:     | Not Specified  |
| Sample Depth:    |                                     |                 |                |
| Matrix:          | Soil                                |                 |                |

| Percent Solids:    | 90%        |           |       |       |       | Dilution | Date          | Date             | Prep      | Analytical |         |
|--------------------|------------|-----------|-------|-------|-------|----------|---------------|------------------|-----------|------------|---------|
| Parameter          | Result     | Qualifier | Units | RL    | MDL   | Factor   | Prepared      | Analyzed         | Method    | Method     | Analyst |
| Total Metals - Man | sfield Lab |           |       |       |       |          |               |                  |           |            |         |
| Arsenic, Total     | 1.46       |           | mg/kg | 0.426 | 0.089 | 1        | 02/10/18 07:0 | 0 02/12/18 11:50 | EPA 3050B | 1,6010C    | PS      |
| Barium, Total      | 55.3       |           | mg/kg | 0.426 | 0.074 | 1        | 02/10/18 07:0 | 0 02/12/18 11:50 | EPA 3050B | 1,6010C    | PS      |
| Cadmium, Total     | 0.439      |           | mg/kg | 0.426 | 0.042 | 1        | 02/10/18 07:0 | 0 02/12/18 11:50 | EPA 3050B | 1,6010C    | PS      |
| Chromium, Total    | 14.7       |           | mg/kg | 0.426 | 0.041 | 1        | 02/10/18 07:0 | 0 02/12/18 11:50 | EPA 3050B | 1,6010C    | PS      |
| Lead, Total        | 40.9       |           | mg/kg | 2.13  | 0.114 | 1        | 02/10/18 07:0 | 0 02/12/18 11:50 | EPA 3050B | 1,6010C    | PS      |
| Mercury, Total     | 0.40       |           | mg/kg | 0.07  | 0.02  | 1        | 02/10/18 11:0 | 0 02/12/18 11:34 | EPA 7471B | 1,7471B    | MG      |
| Selenium, Total    | ND         |           | mg/kg | 0.853 | 0.110 | 1        | 02/10/18 07:0 | 0 02/12/18 11:50 | EPA 3050B | 1,6010C    | PS      |
| Silver, Total      | ND         |           | mg/kg | 0.426 | 0.121 | 1        | 02/10/18 07:0 | 0 02/12/18 11:50 | EPA 3050B | 1,6010C    | PS      |
| Zinc, Total        | 41.4       |           | mg/kg | 2.13  | 0.125 | 1        | 02/10/18 07:0 | 0 02/12/18 11:50 | EPA 3050B | 1,6010C    | PS      |
|                    |            |           |       |       |       |          |               |                  |           |            |         |



| Project Name:    | 200 HAMILTON AVENUE                 | Lab Number:     | L1804131       |
|------------------|-------------------------------------|-----------------|----------------|
| Project Number:  | 170029                              | Report Date:    | 02/13/18       |
|                  | SAMPLE RESULTS                      |                 |                |
| Lab ID:          | L1804131-15                         | Date Collected: | 02/09/18 11:10 |
| Client ID:       | SB-16 (2-4)                         | Date Received:  | 02/09/18       |
| Sample Location: | 200 HAMILTON AVE., WHITE PLAINS, NY | Field Prep:     | Not Specified  |
| Sample Depth:    |                                     |                 |                |

| Matrix:            | Soil       |           |       |       |       |          |               |                  |           |            |         |
|--------------------|------------|-----------|-------|-------|-------|----------|---------------|------------------|-----------|------------|---------|
| Percent Solids:    | 86%        |           |       |       |       | Dilution | Date          | Date             | Prep      | Analytical |         |
| Parameter          | Result     | Qualifier | Units | RL    | MDL   | Factor   | Prepared      | Analyzed         | Method    | Method     | Analyst |
| Total Metals - Man | sfield Lab |           |       |       |       |          |               |                  |           |            |         |
| Arsenic, Total     | 1.69       |           | mg/kg | 0.453 | 0.094 | 1        | 02/10/18 07:0 | 0 02/12/18 14:19 | EPA 3050B | 1,6010C    | PS      |
| Barium, Total      | 59.8       |           | mg/kg | 0.453 | 0.079 | 1        | 02/10/18 07:0 | 0 02/12/18 14:19 | EPA 3050B | 1,6010C    | PS      |
| Cadmium, Total     | 0.526      |           | mg/kg | 0.453 | 0.044 | 1        | 02/10/18 07:0 | 0 02/12/18 14:19 | EPA 3050B | 1,6010C    | PS      |
| Chromium, Total    | 12.8       |           | mg/kg | 0.453 | 0.044 | 1        | 02/10/18 07:0 | 0 02/12/18 14:19 | EPA 3050B | 1,6010C    | PS      |
| Lead, Total        | 8.19       |           | mg/kg | 2.27  | 0.121 | 1        | 02/10/18 07:0 | 0 02/12/18 14:19 | EPA 3050B | 1,6010C    | PS      |
| Mercury, Total     | 0.03       | J         | mg/kg | 0.07  | 0.02  | 1        | 02/10/18 11:0 | 0 02/12/18 11:41 | EPA 7471B | 1,7471B    | MG      |
| Selenium, Total    | ND         |           | mg/kg | 0.907 | 0.117 | 1        | 02/10/18 07:0 | 0 02/12/18 14:19 | EPA 3050B | 1,6010C    | PS      |
| Silver, Total      | ND         |           | mg/kg | 0.453 | 0.128 | 1        | 02/10/18 07:0 | 0 02/12/18 14:19 | EPA 3050B | 1,6010C    | PS      |
| Zinc, Total        | 26.9       |           | mg/kg | 2.27  | 0.133 | 1        | 02/10/18 07:0 | 0 02/12/18 14:19 | EPA 3050B | 1,6010C    | PS      |
|                    |            |           |       |       |       |          |               |                  |           |            |         |



| Project Name:    | 200 HAMILTON AVENUE                 | Lab Number:     | L1804131       |
|------------------|-------------------------------------|-----------------|----------------|
| Project Number:  | 170029                              | Report Date:    | 02/13/18       |
|                  | SAMPLE RESULTS                      |                 |                |
| Lab ID:          | L1804131-17                         | Date Collected: | 02/09/18 12:35 |
| Client ID:       | SB-17 (5-7)                         | Date Received:  | 02/09/18       |
| Sample Location: | 200 HAMILTON AVE., WHITE PLAINS, NY | Field Prep:     | Not Specified  |
| Sample Depth:    |                                     |                 |                |
| Matrix:          | Soil                                |                 |                |

| Matrix:            | Soil       |           |       |       |       |          |               |                  |           |            |         |
|--------------------|------------|-----------|-------|-------|-------|----------|---------------|------------------|-----------|------------|---------|
| Percent Solids:    | 93%        |           |       |       |       | Dilution | Date          | Date             | Prep      | Analytical |         |
| Parameter          | Result     | Qualifier | Units | RL    | MDL   | Factor   | Prepared      | Analyzed         | Method    | Method     | Analyst |
| Total Metals - Man | sfield Lab |           |       |       |       |          |               |                  |           |            |         |
| Arsenic, Total     | 1.92       |           | mg/kg | 0.402 | 0.084 | 1        | 02/10/18 07:0 | 0 02/12/18 14:24 | EPA 3050B | 1,6010C    | PS      |
| Barium, Total      | 56.6       |           | mg/kg | 0.402 | 0.070 | 1        | 02/10/18 07:0 | 0 02/12/18 14:24 | EPA 3050B | 1,6010C    | PS      |
| Cadmium, Total     | 0.574      |           | mg/kg | 0.402 | 0.039 | 1        | 02/10/18 07:0 | 0 02/12/18 14:24 | EPA 3050B | 1,6010C    | PS      |
| Chromium, Total    | 12.0       |           | mg/kg | 0.402 | 0.039 | 1        | 02/10/18 07:0 | 02/12/18 14:24   | EPA 3050B | 1,6010C    | PS      |
| Lead, Total        | 16.5       |           | mg/kg | 2.01  | 0.108 | 1        | 02/10/18 07:0 | 0 02/12/18 14:24 | EPA 3050B | 1,6010C    | PS      |
| Mercury, Total     | 0.05       | J         | mg/kg | 0.07  | 0.01  | 1        | 02/10/18 11:0 | 0 02/12/18 11:43 | EPA 7471B | 1,7471B    | MG      |
| Selenium, Total    | 0.108      | J         | mg/kg | 0.803 | 0.104 | 1        | 02/10/18 07:0 | 0 02/12/18 14:24 | EPA 3050B | 1,6010C    | PS      |
| Silver, Total      | ND         |           | mg/kg | 0.402 | 0.114 | 1        | 02/10/18 07:0 | 0 02/12/18 14:24 | EPA 3050B | 1,6010C    | PS      |
| Zinc, Total        | 38.8       |           | mg/kg | 2.01  | 0.118 | 1        | 02/10/18 07:0 | 0 02/12/18 14:24 | EPA 3050B | 1,6010C    | PS      |



Project Name:200 HAMILTON AVENUEProject Number:170029

 Lab Number:
 L1804131

 Report Date:
 02/13/18

### Method Blank Analysis Batch Quality Control

| Parameter              | Result Qualifier       | Units     | RL      | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|------------------------|------------------------|-----------|---------|-------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfie | eld Lab for sample(s): | 02,04,06, | 08 Bate | h: WG | 1087407-1          |                  |                  |                      |         |
| Arsenic, Total         | ND                     | mg/kg     | 0.400   | 0.083 | 1                  | 02/07/18 21:10   | 02/12/18 15:16   | 1,6010C              | LC      |
| Barium, Total          | ND                     | mg/kg     | 0.400   | 0.070 | 1                  | 02/07/18 21:10   | 02/12/18 15:16   | 1,6010C              | LC      |
| Cadmium, Total         | ND                     | mg/kg     | 0.400   | 0.039 | 1                  | 02/07/18 21:10   | 02/12/18 15:16   | 1,6010C              | LC      |
| Chromium, Total        | ND                     | mg/kg     | 0.400   | 0.038 | 1                  | 02/07/18 21:10   | 02/12/18 15:16   | 1,6010C              | LC      |
| Lead, Total            | ND                     | mg/kg     | 2.00    | 0.107 | 1                  | 02/07/18 21:10   | 02/12/18 15:16   | 1,6010C              | LC      |
| Selenium, Total        | ND                     | mg/kg     | 0.800   | 0.103 | 1                  | 02/07/18 21:10   | 02/12/18 15:16   | 1,6010C              | LC      |
| Silver, Total          | ND                     | mg/kg     | 0.400   | 0.113 | 1                  | 02/07/18 21:10   | 02/12/18 15:16   | 1,6010C              | LC      |
| Zinc, Total            | ND                     | mg/kg     | 2.00    | 0.117 | 1                  | 02/07/18 21:10   | 02/12/18 15:16   | 1,6010C              | LC      |

#### **Prep Information**

Digestion Method: EPA 3050B

| Parameter              | Result Qualifier       | Units       | RL   | MDL      | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|------------------------|------------------------|-------------|------|----------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfie | eld Lab for sample(s): | 02,04,06,08 | 3,11 | Batch: V | VG1087472          | :-1              |                  |                      |         |
| Mercury, Total         | ND                     | mg/kg       | 0.08 | 0.02     | 1                  | 02/08/18 08:00   | 02/08/18 19:07   | 1,7471B              | EA      |

#### **Prep Information**

Digestion Method: EPA 7471B

| Parameter              | Result Qualifier       | Units    | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|------------------------|------------------------|----------|---------|---------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfie | eld Lab for sample(s): | 11 Batch | n: WG10 | 087494- | 1                  |                  |                  |                      |         |
| Arsenic, Total         | ND                     | mg/kg    | 0.400   | 0.083   | 1                  | 02/08/18 07:00   | 02/08/18 12:03   | 1,6010C              | LC      |
| Barium, Total          | ND                     | mg/kg    | 0.400   | 0.070   | 1                  | 02/08/18 07:00   | 02/08/18 12:03   | 1,6010C              | LC      |
| Cadmium, Total         | ND                     | mg/kg    | 0.400   | 0.039   | 1                  | 02/08/18 07:00   | 02/08/18 12:03   | 1,6010C              | LC      |
| Chromium, Total        | ND                     | mg/kg    | 0.400   | 0.038   | 1                  | 02/08/18 07:00   | 02/08/18 12:03   | 1,6010C              | LC      |
| Lead, Total            | ND                     | mg/kg    | 2.00    | 0.107   | 1                  | 02/08/18 07:00   | 02/08/18 12:03   | 1,6010C              | LC      |
| Selenium, Total        | ND                     | mg/kg    | 0.800   | 0.103   | 1                  | 02/08/18 07:00   | 02/08/18 12:03   | 1,6010C              | LC      |
| Silver, Total          | ND                     | mg/kg    | 0.400   | 0.113   | 1                  | 02/08/18 07:00   | 02/08/18 12:03   | 1,6010C              | LC      |
| Zinc, Total            | ND                     | mg/kg    | 2.00    | 0.117   | 1                  | 02/08/18 07:00   | 02/08/18 12:03   | 1,6010C              | LC      |



Project Name:200 HAMILTON AVENUEProject Number:170029

 Lab Number:
 L1804131

 Report Date:
 02/13/18

### Method Blank Analysis Batch Quality Control

| Prep Information | on |
|------------------|----|
|------------------|----|

Digestion Method: EPA 3050B

| Parameter                | Result Qu   | alifier | Units    | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-------------|---------|----------|--------|-------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfield | Lab for sam | ple(s): | 13,15,17 | Batch: | WG108 | 8164-1             |                  |                  |                      |         |
| Arsenic, Total           | ND          |         | mg/kg    | 0.400  | 0.083 | 1                  | 02/10/18 07:00   | 02/12/18 11:08   | 1,6010C              | PS      |
| Barium, Total            | ND          |         | mg/kg    | 0.400  | 0.070 | 1                  | 02/10/18 07:00   | 02/12/18 11:08   | 1,6010C              | PS      |
| Cadmium, Total           | 0.040       | J       | mg/kg    | 0.400  | 0.039 | 1                  | 02/10/18 07:00   | 02/12/18 11:08   | 1,6010C              | PS      |
| Chromium, Total          | ND          |         | mg/kg    | 0.400  | 0.038 | 1                  | 02/10/18 07:00   | 02/12/18 11:08   | 1,6010C              | PS      |
| Lead, Total              | ND          |         | mg/kg    | 2.00   | 0.107 | 1                  | 02/10/18 07:00   | 02/12/18 11:08   | 1,6010C              | PS      |
| Selenium, Total          | ND          |         | mg/kg    | 0.800  | 0.103 | 1                  | 02/10/18 07:00   | 02/12/18 11:08   | 1,6010C              | PS      |
| Silver, Total            | ND          |         | mg/kg    | 0.400  | 0.113 | 1                  | 02/10/18 07:00   | 02/12/18 11:08   | 1,6010C              | PS      |
| Zinc, Total              | ND          |         | mg/kg    | 2.00   | 0.117 | 1                  | 02/10/18 07:00   | 02/12/18 11:08   | 1,6010C              | PS      |

#### **Prep Information**

Digestion Method: EPA 3050B

| Parameter         | Result Qualifier            | Units    | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method |    |
|-------------------|-----------------------------|----------|--------|-------|--------------------|------------------|------------------|----------------------|----|
| Total Metals - Ma | ansfield Lab for sample(s): | 13,15,17 | Batch: | WG108 | 8167-1             |                  |                  |                      |    |
| Mercury, Total    | ND                          | mg/kg    | 0.08   | 0.02  | 1                  | 02/10/18 11:00   | 02/12/18 11:30   | 1,7471B              | MG |

**Prep Information** 

Digestion Method: EPA 7471B



**Project Name:** 200 HAMILTON AVENUE

Project Number: 170029

|                                                  | LCS               | LCSD                  | %Recovery                         |     |      |            |
|--------------------------------------------------|-------------------|-----------------------|-----------------------------------|-----|------|------------|
| arameter                                         | %Recovery         | Qual %Recovery        | Qual Limits                       | RPD | Qual | RPD Limits |
| otal Metals - Mansfield Lab Associated sample    | e(s): 02,04,06,08 | Batch: WG1087407-2    | SRM Lot Number: D098-540          |     |      |            |
| Arsenic, Total                                   | 98                | -                     | 83-117                            | -   |      |            |
| Barium, Total                                    | 86                | -                     | 82-118                            | -   |      |            |
| Cadmium, Total                                   | 94                | -                     | 82-117                            | -   |      |            |
| Chromium, Total                                  | 92                | -                     | 83-119                            | -   |      |            |
| Lead, Total                                      | 92                | -                     | 82-117                            | -   |      |            |
| Selenium, Total                                  | 100               | -                     | 78-121                            | -   |      |            |
| Silver, Total                                    | 99                | -                     | 80-120                            | -   |      |            |
| Zinc, Total                                      | 96                | -                     | 81-119                            | -   |      |            |
| otal Metals - Mansfield Lab Associated sample    | 102               | 11 Batch: WG1087472-2 | SRM Lot Number: D098-54<br>50-149 | -   |      |            |
| otal Metals - Mansfield Lab Associated sample    | e(s): 11 Batch: \ | WG1087494-2 SRM Lot   | Number: D098-540                  |     |      |            |
| Arsenic, Total                                   | 113               | -                     | 83-117                            | -   |      |            |
|                                                  |                   |                       |                                   |     |      |            |
| Barium, Total                                    | 101               | -                     | 82-118                            | -   |      |            |
| Barium, Total<br>Cadmium, Total                  | 101<br>107        | -                     | 82-118<br>82-117                  | -   |      |            |
|                                                  |                   |                       |                                   |     |      |            |
| Cadmium, Total                                   | 107               | -                     | 82-117                            | -   |      |            |
| Cadmium, Total<br>Chromium, Total                | 107<br>102        | -                     | 82-117<br>83-119                  | -   |      |            |
| Cadmium, Total<br>Chromium, Total<br>Lead, Total | 107<br>102<br>102 | -<br>-<br>-           | 82-117<br>83-119<br>82-117        | -   |      |            |



**Project Name:** 200 HAMILTON AVENUE

Project Number: 170029

| arameter                          | LCS<br>%Recovery              | LCSD<br>%Recovery | %Recovery<br>y Limits    | RPD | RPD Limits |
|-----------------------------------|-------------------------------|-------------------|--------------------------|-----|------------|
| otal Metals - Mansfield Lab Assoc | ciated sample(s): 13,15,17 Ba | atch: WG1088164-2 | SRM Lot Number: D098-540 |     |            |
| Arsenic, Total                    | 98                            | -                 | 83-117                   | -   |            |
| Barium, Total                     | 92                            | -                 | 82-118                   | -   |            |
| Cadmium, Total                    | 93                            | -                 | 82-117                   | -   |            |
| Chromium, Total                   | 92                            | -                 | 83-119                   | -   |            |
| Lead, Total                       | 93                            | -                 | 82-117                   | -   |            |
| Selenium, Total                   | 95                            | -                 | 78-121                   | -   |            |
| Silver, Total                     | 98                            | -                 | 80-120                   | -   |            |
| Zinc, Total                       | 94                            | -                 | 81-119                   | -   |            |
| otal Metals - Mansfield Lab Assoc | ciated sample(s): 13,15,17 Ba | atch: WG1088167-2 | SRM Lot Number: D098-540 |     |            |
| Mercury, Total                    | 94                            | -                 | 50-149                   | -   |            |



## Matrix Spike Analysis Batch Quality Control

Project Name: 200 HAMILTON AVENUE

**Project Number:** 170029 Lab Number: L1804131 **Report Date:** 02/13/18

| arameter                 | Native<br>Sample   | MS<br>Added   | MS<br>Found | MS<br>%Recovery | Qual   | MSD<br>Found | MSD<br>%Recovery Qual | Recovery<br>Limits | RPD       | RPD<br>Qual Limits |
|--------------------------|--------------------|---------------|-------------|-----------------|--------|--------------|-----------------------|--------------------|-----------|--------------------|
| Total Metals - Mansfield | Lab Associated san | nple(s): 02,0 | 04,06,08    | QC Batch ID: W  | /G1087 | 407-3 Q      | C Sample: L1804089-0  | 3 Client           | ID: MS S  | Sample             |
| Arsenic, Total           | 2.64               | 12.8          | 13.1        | 82              |        | -            | -                     | 75-125             | -         | 20                 |
| Barium, Total            | 721.               | 214           | 660         | 0               | Q      | -            | -                     | 75-125             | -         | 20                 |
| Cadmium, Total           | ND                 | 5.45          | 4.67        | 86              |        | -            | -                     | 75-125             | -         | 20                 |
| Chromium, Total          | 11.9               | 21.4          | 32.0        | 94              |        | -            | -                     | 75-125             | -         | 20                 |
| Lead, Total              | 12.4               | 54.5          | 57.3        | 82              |        | -            | -                     | 75-125             | -         | 20                 |
| Selenium, Total          | ND                 | 12.8          | 10.2        | 80              |        | -            | -                     | 75-125             | -         | 20                 |
| Silver, Total            | 0.628J             | 32            | 30.3        | 94              |        | -            | -                     | 75-125             | -         | 20                 |
| Zinc, Total              | 101.               | 53.4          | 140         | 73              | Q      | -            | -                     | 75-125             | -         | 20                 |
| Fotal Metals - Mansfield | Lab Associated san | nple(s): 02,  | 04,06,08,11 | QC Batch ID     | : WG10 | 087472-3     | QC Sample: L180403    | 6-01 Clie          | ent ID: M | IS Sample          |
| Mercury, Total           | ND                 | 0.161         | 0.20        | 124             | Q      | -            | -                     | 80-120             | -         | 20                 |
| Fotal Metals - Mansfield | Lab Associated san | nple(s): 11   | QC Batch    | ID: WG108749    | 4-3 (  | QC Sample    | e: L1803664-15 Clien  | t ID: MS S         | ample     |                    |
| Arsenic, Total           | 1.83               | 10.1          | 10.6        | 87              |        | -            | -                     | 75-125             | -         | 20                 |
| Barium, Total            | 60.6               | 168           | 186         | 74              | Q      | -            | -                     | 75-125             | -         | 20                 |
| Cadmium, Total           | ND                 | 4.29          | 3.02        | 70              | Q      | -            | -                     | 75-125             | -         | 20                 |
| Chromium, Total          | 7.36               | 16.8          | 18.7        | 67              | Q      | -            | -                     | 75-125             | -         | 20                 |
| Lead, Total              | 8.03               | 42.9          | 35.5        | 64              | Q      | -            | -                     | 75-125             | -         | 20                 |
| Selenium, Total          | 0.874              | 10.1          | 11.1        | 101             |        | -            | -                     | 75-125             | -         | 20                 |
| Silver, Total            | 0.157J             | 25.2          | 26.2        | 104             |        | -            | -                     | 75-125             | -         | 20                 |
| Zinc, Total              | 25.8               | 42.1          | 51.5        | 61              | Q      | -            | -                     | 75-125             | -         | 20                 |
|                          |                    |               |             |                 |        |              |                       |                    |           |                    |



## Matrix Spike Analysis Batch Quality Control

Project Name: 200 HAMILTON AVENUE

**Project Number:** 170029

| arameter                    | Native<br>Sample | MS<br>Added   | MS<br>Found | MS<br>%Recovery |          | ISD<br>ound | MSD<br>%Recovery    | Recovery<br>Limits | RPD         | RPD<br>Limits |
|-----------------------------|------------------|---------------|-------------|-----------------|----------|-------------|---------------------|--------------------|-------------|---------------|
| otal Metals - Mansfield Lat | o Associated sar | nple(s): 13,1 | 15,17 QC    | Batch ID: WG1   | 088164-3 | QC S        | Sample: L1804693-01 | Client ID:         | MS Sample   |               |
| Arsenic, Total              | 20.1             | 12.7          | 34.1        | 110             |          | -           | -                   | 75-125             | -           | 20            |
| Barium, Total               | 93.6             | 212           | 300         | 97              |          | -           | -                   | 75-125             | -           | 20            |
| Cadmium, Total              | 3.46             | 5.42          | 8.43        | 92              |          | -           | -                   | 75-125             | -           | 20            |
| Chromium, Total             | 141.             | 21.2          | 161         | 94              |          | -           | -                   | 75-125             | -           | 20            |
| Lead, Total                 | 198.             | 54.2          | 232         | 63              | Q        | -           | -                   | 75-125             | -           | 20            |
| Selenium, Total             | ND               | 12.7          | 11.7        | 92              |          | -           | -                   | 75-125             | -           | 20            |
| Silver, Total               | 0.191J           | 31.8          | 32.9        | 103             |          | -           | -                   | 75-125             | -           | 20            |
| Zinc, Total                 | 43.7             | 53.1          | 92.2        | 91              |          | -           | -                   | 75-125             | -           | 20            |
| otal Metals - Mansfield Lat | o Associated sar | nple(s): 13,1 | 15,17 QC    | Batch ID: WG1   | 088167-3 | QC S        | Sample: L1804131-13 | Client ID:         | SB-15 (2-4) |               |
| Mercury, Total              | 0.40             | 0.139         | 0.36        | 0               | Q        | -           | -                   | 80-120             | -           | 20            |



#### Lab Duplicate Analysis Batch Quality Control

Project Name: 200 HAMILTON AVENUE

 Lab Number:
 L1804131

 Report Date:
 02/13/18

Project Number: 170029

| Parameter                                          | Native Sample            | Duplicate Sample   | Units            | RPD       | Qual       | <b>RPD</b> Limits |
|----------------------------------------------------|--------------------------|--------------------|------------------|-----------|------------|-------------------|
| Total Metals - Mansfield Lab Associated sample(s): | 02,04,06,08 QC Batch ID: | WG1087407-4 QC S   | Sample: L180408  | 9-03 Cli  | ent ID: DL | JP Sample         |
| Arsenic, Total                                     | 2.64                     | 2.18               | mg/kg            | 19        |            | 20                |
| Barium, Total                                      | 721.                     | 448                | mg/kg            | 47        | Q          | 20                |
| Cadmium, Total                                     | ND                       | ND                 | mg/kg            | NC        |            | 20                |
| Chromium, Total                                    | 11.9                     | 17.8               | mg/kg            | 40        | Q          | 20                |
| Lead, Total                                        | 12.4                     | 52.6               | mg/kg            | 124       | Q          | 20                |
| Selenium, Total                                    | ND                       | ND                 | mg/kg            | NC        |            | 20                |
| Silver, Total                                      | 0.628J                   | 0.440J             | mg/kg            | NC        |            | 20                |
| Zinc, Total                                        | 101.                     | 140                | mg/kg            | 32        | Q          | 20                |
| otal Metals - Mansfield Lab Associated sample(s):  | 02,04,06,08,11 QC Batch  | ID: WG1087472-4 Q  | C Sample: L1804  | 4036-01   | Client ID: | DUP Sample        |
| Mercury, Total                                     | ND                       | ND                 | mg/kg            | NC        |            | 20                |
| otal Metals - Mansfield Lab Associated sample(s):  | 11 QC Batch ID: WG1087   | 494-4 QC Sample: L | 1803664-15 Clie  | ent ID: D | UP Sampl   | 9                 |
| Chromium, Total                                    | 7.36                     | 6.06               | mg/kg            | 19        |            | 20                |
| otal Metals - Mansfield Lab Associated sample(s):  | 13,15,17 QC Batch ID: W  | G1088164-4 QC Sam  | nple: L1804693-0 | 1 Client  | ID: DUP    | Sample            |
| Lead, Total                                        | 198.                     | 196                | mg/kg            | 1         |            | 20                |
| Total Metals - Mansfield Lab Associated sample(s): | 13,15,17 QC Batch ID: W  | G1088167-4 QC Sam  | nple: L1804131-1 | 3 Client  | ID: SB-15  | 5 (2-4)           |
| Mercury, Total                                     | 0.40                     | 0.25               | mg/kg            | 46        | Q          | 20                |



# INORGANICS & MISCELLANEOUS



| Serial | No:02131814:52 |
|--------|----------------|
|        |                |

| Project Name:<br>Project Number: | 200 HAMILT<br>170029 | ON AVE    | NUE      |           |       |                    |                  | lumber:<br>rt Date: | L1804131<br>02/13/18 |        |
|----------------------------------|----------------------|-----------|----------|-----------|-------|--------------------|------------------|---------------------|----------------------|--------|
|                                  | 170029               |           |          | SAMPLE    | RESUL | гѕ                 | Керо             | T Date.             | 02/10/10             |        |
| Lab ID:                          | L1804131-0           | 1         |          |           |       |                    | Date             | Collected:          | 02/06/18 11:0        | 0      |
| Client ID:                       | SB-11 (17-1          | 9)        |          |           |       |                    | Date             | Received:           | 02/06/18             |        |
| Sample Location:                 | 200 HAMILT           | ON AVE    | ., WHITE | E PLAINS, | NY    |                    | Field            | Prep:               | Not Specified        |        |
| Sample Depth:                    |                      |           |          |           |       |                    |                  |                     |                      |        |
| Matrix:                          | Soil                 |           |          |           |       |                    |                  |                     |                      |        |
| Parameter                        | Result               | Qualifier | Units    | RL        | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed    | Analytical<br>Method | Analys |
| neral Chemistry - We             | stborough Lab        | )         |          |           |       |                    |                  |                     |                      |        |
| ids, Total                       | 88.2                 |           | %        | 0.100     | NA    | 1                  | -                | 02/07/18 12:03      | 3 121,2540G          | RI     |



| Serial | No:02131814:52 |
|--------|----------------|
|        |                |

| Project Name:<br>Project Number:                                      | 200 HAMILTON AVENUE<br>170029                    |           |         |           |       |                    |                  | lumber:<br>rt Date: | L1804131<br>02/13/18                       |        |
|-----------------------------------------------------------------------|--------------------------------------------------|-----------|---------|-----------|-------|--------------------|------------------|---------------------|--------------------------------------------|--------|
|                                                                       |                                                  |           |         | SAMPLE    | RESUL | TS                 |                  |                     |                                            |        |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix: | L1804131-02<br>SB-11 (5-7)<br>200 HAMILT<br>Soil | _         | , WHITE | E PLAINS, | NY    |                    |                  |                     | 02/06/18 11:0<br>02/06/18<br>Not Specified | -      |
| Parameter                                                             | Result                                           | Qualifier | Units   | RL        | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed    | Analytical<br>Method                       | Analys |
| neral Chemistry - Wes                                                 | stborough Lab                                    |           |         |           |       |                    |                  |                     |                                            |        |
| lids, Total                                                           | 88.6                                             |           | %       | 0.100     | NA    | 1                  | -                | 02/07/18 12:03      | 3 121,2540G                                | RI     |



| Project Name:<br>Project Number: | 200 HAMILTON AVENUE<br>170029 |           |          |           |       |                    |                  | lumber:<br>rt Date: | L1804131<br>02/13/18 |        |
|----------------------------------|-------------------------------|-----------|----------|-----------|-------|--------------------|------------------|---------------------|----------------------|--------|
|                                  |                               |           |          | SAMPLE    | RESUL | TS                 |                  |                     |                      |        |
| Lab ID:                          | L1804131-0                    | 3         |          |           |       |                    | Date             | Collected:          | 02/06/18 12:0        | 0      |
| Client ID:                       | SB-13 (10-1                   | 2)        |          |           |       |                    | Date             |                     | 02/06/18             |        |
| Sample Location:                 | 200 HAMILT                    | ON AVE    | ., WHITE | E PLAINS, | NY    |                    | Field            | Not Specified       |                      |        |
| Sample Depth:                    |                               |           |          |           |       |                    |                  |                     |                      |        |
| Matrix:                          | Soil                          |           |          |           |       |                    |                  |                     |                      |        |
| Parameter                        | Result                        | Qualifier | Units    | RL        | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed    | Analytical<br>Method | Analys |
| neral Chemistry - We             | stborough Lab                 | )         |          |           |       |                    |                  |                     |                      |        |
| ids, Total                       | 92.0                          |           | %        | 0.100     | NA    | 1                  | -                | 02/07/18 12:03      | 3 121,2540G          | RI     |



| Serial | No:02131814:52 |
|--------|----------------|
|        |                |

| Project Name:<br>Project Number:                                      | 200 HAMILTON AVENUE<br>170029                    |           |         |           |       |                    |                  | lumber:<br>rt Date: | L1804131<br>02/13/18                       |        |
|-----------------------------------------------------------------------|--------------------------------------------------|-----------|---------|-----------|-------|--------------------|------------------|---------------------|--------------------------------------------|--------|
|                                                                       |                                                  |           |         | SAMPLE    | RESUL | TS                 |                  |                     |                                            |        |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix: | L1804131-04<br>SB-13 (3-5)<br>200 HAMILT<br>Soil | -         | , WHITE | E PLAINS, | NY    |                    |                  |                     | 02/06/18 12:0<br>02/06/18<br>Not Specified | 5      |
| Parameter                                                             | Result                                           | Qualifier | Units   | RL        | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed    | Analytical<br>Method                       | Analys |
| neral Chemistry - We                                                  | stborough Lab                                    |           |         |           |       |                    |                  |                     |                                            |        |
| ids, Total                                                            | 87.3                                             |           | %       | 0.100     | NA    | 1                  | -                | 02/07/18 12:03      | 3 121,2540G                                | RI     |



| Project Name:<br>Project Number: | 200 HAMILTON AVENUE<br>170029 |           |         |           |       |                    |                  | lumber:<br>rt Date: | L1804131<br>02/13/18 |        |  |
|----------------------------------|-------------------------------|-----------|---------|-----------|-------|--------------------|------------------|---------------------|----------------------|--------|--|
|                                  |                               |           |         | SAMPLE    | RESUL | rs                 |                  |                     |                      |        |  |
| Lab ID:                          | L1804131-0                    | -         |         |           |       |                    |                  |                     | 02/06/18 13:0        | 5      |  |
| Client ID:                       | SB-18 (12-1-                  | ,         |         |           |       |                    |                  |                     | 02/06/18             |        |  |
| Sample Location:                 | 200 HAMILT                    | ON AVE.   | , WHITE | E PLAINS, | NY    |                    | Field            | Prep:               | Not Specified        |        |  |
| Sample Depth:                    |                               |           |         |           |       |                    |                  |                     |                      |        |  |
| Matrix:                          | Soil                          |           |         |           |       |                    |                  |                     |                      |        |  |
| Parameter                        | Result                        | Qualifier | Units   | RL        | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed    | Analytical<br>Method | Analys |  |
| neral Chemistry - Wes            | stborough Lab                 | )         |         |           |       |                    |                  |                     |                      |        |  |
| ids, Total                       | 94.4                          |           | %       | 0.100     | NA    | 1                  | -                | 02/07/18 12:03      | 3 121,2540G          | RI     |  |



| Serial | No:02131814:52 |
|--------|----------------|
| Ochui_ |                |

| Project Name:<br>Project Number:                                      | 200 HAMILTON AVENUE<br>170029                     |           |         |           |       |                    |                  |                  | L1804131<br>02/13/18                       |        |
|-----------------------------------------------------------------------|---------------------------------------------------|-----------|---------|-----------|-------|--------------------|------------------|------------------|--------------------------------------------|--------|
|                                                                       |                                                   |           |         | SAMPLE    | RESUL | TS                 |                  |                  |                                            |        |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix: | L1804131-06<br>SB-14 (2-4)<br>200 HAMILT(<br>Soil |           | , WHITI | E PLAINS, | NY    |                    |                  | Received:        | 02/06/18 15:0<br>02/06/18<br>Not Specified | 0      |
| Parameter                                                             | Result                                            | Qualifier | Units   | RL        | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method                       | Analys |
| eneral Chemistry - We                                                 | stborough Lab                                     |           |         |           |       |                    |                  |                  |                                            |        |
| olids, Total                                                          | 90.3                                              |           | %       | 0.100     | NA    | 1                  | -                | 02/07/18 12:03   | 3 121,2540G                                | RI     |



| Serial | No:02131814:52 |
|--------|----------------|
| Ochui_ |                |

| Project Name:<br>Project Number:          | 200 HAMILTON AVENUE<br>170029             |           |          |           |       |                    |                  |                  | L1804131<br>02/13/18                       |        |  |
|-------------------------------------------|-------------------------------------------|-----------|----------|-----------|-------|--------------------|------------------|------------------|--------------------------------------------|--------|--|
|                                           |                                           |           |          | SAMPLE    | RESUL | TS                 |                  |                  |                                            |        |  |
| Lab ID:<br>Client ID:<br>Sample Location: | L1804131-07<br>SB-14 (15-16<br>200 HAMILT | 5)        | ., WHITE | E PLAINS, | NY    |                    |                  | Received:        | 02/06/18 15:1<br>02/06/18<br>Not Specified | -      |  |
| Sample Depth:<br>Matrix:                  | Soil                                      |           |          |           |       |                    |                  |                  |                                            |        |  |
| Parameter                                 | Result                                    | Qualifier | Units    | RL        | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method                       | Analys |  |
| neral Chemistry - Wes                     | stborough Lab                             |           |          |           |       |                    |                  |                  |                                            |        |  |
| ids, Total                                | 89.0                                      |           | %        | 0.100     | NA    | 1                  | -                | 02/07/18 12:03   | 3 121,2540G                                | RI     |  |



| Serial | No:02131814:52 |
|--------|----------------|
| Ochui_ |                |

| Project Name:<br>Project Number:                                      | 200 HAMILT<br>170029                             | ON AVE    | NUE     |           |       |                    | L1804131<br>02/13/18 |                  |                                            |         |
|-----------------------------------------------------------------------|--------------------------------------------------|-----------|---------|-----------|-------|--------------------|----------------------|------------------|--------------------------------------------|---------|
|                                                                       |                                                  |           |         | SAMPLE    | RESUL | TS                 |                      |                  |                                            |         |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix: | L1804131-08<br>SB-12 (2-4)<br>200 HAMILT<br>Soil | -         | ., WHIT | E PLAINS, | NY    |                    |                      | Received:        | 02/06/18 15:4<br>02/06/18<br>Not Specified | 0       |
| Parameter                                                             | Result                                           | Qualifier | Units   | RL        | MDL   | Dilution<br>Factor | Date<br>Prepared     | Date<br>Analyzed | Analytical<br>Method                       | Analyst |
| eneral Chemistry - We                                                 | stborough Lab                                    | 1         |         |           |       |                    |                      |                  |                                            |         |
| olids, Total                                                          | 90.0                                             |           | %       | 0.100     | NA    | 1                  | -                    | 02/07/18 12:03   | 3 121,2540G                                | RI      |



| Serial | No:02131814:52 |
|--------|----------------|
|        |                |

| Project Name:<br>Project Number:  | 200 HAMILT<br>170029        | ON AVEI   | NUE     |           |       | lumber:<br>rt Date: | L1804131<br>02/13/18      |                  |                      |        |
|-----------------------------------|-----------------------------|-----------|---------|-----------|-------|---------------------|---------------------------|------------------|----------------------|--------|
|                                   |                             |           |         | SAMPLE    | RESUL | rs                  |                           |                  |                      |        |
| Lab ID:<br>Client ID:             | L1804131-09<br>SB-12 (15-16 | -         |         |           |       | Received:           | 02/06/18 15:5<br>02/06/18 | -                |                      |        |
| Sample Location:<br>Sample Depth: | 200 HAMILT                  | ON AVE.   | , WHITE | E PLAINS, | NY    |                     | Field                     | Prep:            | Not Specified        |        |
| Matrix:                           | Soil                        |           |         |           |       |                     |                           |                  |                      |        |
| Parameter                         | Result                      | Qualifier | Units   | RL        | MDL   | Dilution<br>Factor  | Date<br>Prepared          | Date<br>Analyzed | Analytical<br>Method | Analys |
| neral Chemistry - We              | stborough Lab               |           |         |           |       |                     |                           |                  |                      |        |
| ids, Total                        | 88.0                        |           | %       | 0.100     | NA    | 1                   | -                         | 02/07/18 12:03   | 3 121,2540G          | RI     |



| Project Name:<br>Project Number: | 200 HAMILT<br>170029 | TON AVE   | NUE     |           |       | lumber:<br>rt Date: | L1804131<br>02/13/18      |                  |                      |         |
|----------------------------------|----------------------|-----------|---------|-----------|-------|---------------------|---------------------------|------------------|----------------------|---------|
|                                  |                      |           |         | SAMPLE    | RESUL | TS                  |                           |                  |                      |         |
| Lab ID:                          | L1804131-1           | 0         |         |           |       |                     | Date (                    | Collected:       | 02/07/18 09:2        | 0       |
| Client ID:                       | SB-10 (20-2          | 2)        |         |           |       |                     | Date Received:            |                  | 02/07/18             |         |
| Sample Location:                 | 200 HAMILT           | ON AVE.   | , WHITE | E PLAINS, | NY    |                     | Field Prep: Not Specified |                  |                      |         |
| Sample Depth:                    |                      |           |         |           |       |                     |                           |                  |                      |         |
| Matrix:                          | Soil                 |           |         |           |       |                     |                           |                  |                      |         |
| Parameter                        | Result               | Qualifier | Units   | RL        | MDL   | Dilution<br>Factor  | Date<br>Prepared          | Date<br>Analyzed | Analytical<br>Method | Analyst |
| eneral Chemistry - We            | stborough Lat        | )         |         |           |       |                     |                           |                  |                      |         |
| olids, Total                     | 91.6                 |           | %       | 0.100     | NA    | 1                   | -                         | 02/08/18 00:5    | 7 121,2540G          | FN      |



| Project Name:<br>Project Number:                                      | 200 HAMILTO<br>170029                              | N AVEN   | IUE     |           |       |                    |                  |                  | L1804131<br>02/13/18                       |         |
|-----------------------------------------------------------------------|----------------------------------------------------|----------|---------|-----------|-------|--------------------|------------------|------------------|--------------------------------------------|---------|
|                                                                       |                                                    |          |         | SAMPLE    | RESUL | ſS                 |                  |                  |                                            |         |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix: | L1804131-11<br>SB-10 (3-5)<br>200 HAMILTOI<br>Soil | N AVE.,  | , WHITE | E PLAINS, | NY    |                    |                  | Received:        | 02/07/18 09:2<br>02/07/18<br>Not Specified | 5       |
| Parameter                                                             | Result Q                                           | ualifier | Units   | RL        | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method                       | Analyst |
| neral Chemistry - We                                                  | stborough Lab                                      |          |         |           |       |                    |                  |                  |                                            |         |
| lids, Total                                                           | 92.6                                               |          | %       | 0.100     | NA    | 1                  | -                | 02/08/18 00:57   | 7 121,2540G                                | FN      |



| Project Name:<br>Project Number: | 200 HAMILT<br>170029 | ON AVE    | NUE     |           |       | lumber:<br>rt Date: | L1804131<br>02/13/18   |                  |                      |        |
|----------------------------------|----------------------|-----------|---------|-----------|-------|---------------------|------------------------|------------------|----------------------|--------|
|                                  |                      |           |         | SAMPLE    | RESUL | TS                  |                        |                  |                      |        |
| Lab ID:                          | L1804131-1           | 2         |         |           |       |                     | Date                   | Collected:       | 02/09/18 08:5        | 5      |
| Client ID:                       | SB-15 (10-1          | 1)        |         |           |       |                     | Date Received:         |                  | 02/09/18             |        |
| Sample Location:                 | 200 HAMILT           | ON AVE.   | , WHITE | E PLAINS, | NY    |                     | Field Prep: Not Specif |                  |                      |        |
| Sample Depth:                    |                      |           |         |           |       |                     |                        |                  |                      |        |
| Matrix:                          | Soil                 |           |         |           |       |                     |                        |                  |                      |        |
| Parameter                        | Result               | Qualifier | Units   | RL        | MDL   | Dilution<br>Factor  | Date<br>Prepared       | Date<br>Analyzed | Analytical<br>Method | Analys |
| eneral Chemistry - Wes           | stborough Lab        | )         |         |           |       | _                   | _                      | _                |                      |        |
| lids, Total                      | 83.1                 |           | %       | 0.100     | NA    | 1                   | -                      | 02/10/18 11:0    | 6 121,2540G          | RI     |



| Serial | No:02131814:52 |
|--------|----------------|
| Ochui_ |                |

| Project Name:<br>Project Number:                                      | 200 HAMILT<br>170029                             | ON AVE    | NUE     |           |       |                    | L1804131<br>02/13/18 |                  |                                            |         |
|-----------------------------------------------------------------------|--------------------------------------------------|-----------|---------|-----------|-------|--------------------|----------------------|------------------|--------------------------------------------|---------|
|                                                                       |                                                  |           |         | SAMPLE    | RESUL | TS                 |                      |                  |                                            |         |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix: | L1804131-13<br>SB-15 (2-4)<br>200 HAMILT<br>Soil | -         | ., WHIT | E PLAINS, | NY    |                    |                      | Received:        | 02/09/18 09:0<br>02/09/18<br>Not Specified | 0       |
| Parameter                                                             | Result                                           | Qualifier | Units   | RL        | MDL   | Dilution<br>Factor | Date<br>Prepared     | Date<br>Analyzed | Analytical<br>Method                       | Analyst |
| eneral Chemistry - We                                                 | stborough Lab                                    | 1         |         |           |       |                    |                      |                  |                                            |         |
| olids, Total                                                          | 90.0                                             |           | %       | 0.100     | NA    | 1                  | -                    | 02/10/18 11:06   | 6 121,2540G                                | RI      |



| Project Name:<br>Project Number: | 200 HAMILT<br>170029 | ON AVE    | NUE      |           |       |                    | lumber:<br>rt Date: | L1804131<br>02/13/18 |                      |        |
|----------------------------------|----------------------|-----------|----------|-----------|-------|--------------------|---------------------|----------------------|----------------------|--------|
|                                  | 110020               |           |          | SAMPLE    | RESUL | TS                 |                     |                      |                      |        |
| Lab ID:                          | L1804131-1           | 4         |          |           |       |                    | Date                | Collected:           | 02/09/18 11:0        | 0      |
| Client ID:                       | SB-16 (12-1          | 3)        |          |           | Date  | Received:          | 02/09/18            |                      |                      |        |
| Sample Location:                 | 200 HAMILT           | ON AVE    | ., WHITE | E PLAINS, | NY    |                    | Field               | Prep:                | Not Specified        |        |
| Sample Depth:                    |                      |           |          |           |       |                    |                     |                      |                      |        |
| Matrix:                          | Soil                 |           |          |           |       |                    |                     |                      |                      |        |
| Parameter                        | Result               | Qualifier | Units    | RL        | MDL   | Dilution<br>Factor | Date<br>Prepared    | Date<br>Analyzed     | Analytical<br>Method | Analys |
| neral Chemistry - We             | stborough Lat        | )         |          |           |       |                    |                     |                      |                      |        |
| ids, Total                       | 81.5                 |           | %        | 0.100     | NA    | 1                  | -                   | 02/10/18 11:06       | 6 121,2540G          | RI     |



| Serial | No:02131814:52 |
|--------|----------------|
| Ochui_ |                |

| Project Name:<br>Project Number:  | 200 HAMILT<br>170029      | ON AVE                              | NUE   |        |       | lumber:<br>rt Date: | L1804131<br>02/13/18 |                         |                            |        |
|-----------------------------------|---------------------------|-------------------------------------|-------|--------|-------|---------------------|----------------------|-------------------------|----------------------------|--------|
|                                   |                           |                                     |       | SAMPLE | RESUL | TS                  |                      |                         |                            |        |
| Lab ID:<br>Client ID:             | L1804131-1<br>SB-16 (2-4) | 5                                   |       |        |       |                     |                      | Collected:<br>Received: | 02/09/18 11:10<br>02/09/18 |        |
| Sample Location:<br>Sample Depth: | · · · ·                   | 200 HAMILTON AVE., WHITE PLAINS, NY |       |        |       |                     | Field                |                         | Not Specified              |        |
| Matrix:                           | Soil                      |                                     |       |        |       |                     |                      |                         |                            |        |
| Parameter                         | Result                    | Qualifier                           | Units | RL     | MDL   | Dilution<br>Factor  | Date<br>Prepared     | Date<br>Analyzed        | Analytical<br>Method       | Analys |
| eneral Chemistry - We             | stborough Lab             | )                                   |       |        |       |                     |                      |                         |                            |        |
| olids, Total                      | 86.3                      |                                     | %     | 0.100  | NA    | 1                   | -                    | 02/10/18 11:0           | 6 121,2540G                | RI     |



| Serial | No:02131814:52 |
|--------|----------------|
| Ochui_ |                |

| Project Name:<br>Project Number: | 200 HAMILT<br>170029 | ON AVE    | NUE     |           |       | lumber:<br>rt Date: | L1804131<br>02/13/18    |                  |                      |        |
|----------------------------------|----------------------|-----------|---------|-----------|-------|---------------------|-------------------------|------------------|----------------------|--------|
|                                  |                      |           |         | SAMPLE    | RESUL | rs                  |                         |                  |                      |        |
| Lab ID:                          | L1804131-1           | 6         |         |           |       |                     | Date                    | Collected:       | 02/09/18 12:2        | 5      |
| Client ID:                       | SB-17 (8-9)          |           |         |           |       | Date I              | Received:               | 02/09/18         |                      |        |
| Sample Location:                 | 200 HAMILT           | ON AVE.   | , WHITE | E PLAINS, | NY    |                     | Field Prep: Not Specifi |                  |                      |        |
| Sample Depth:                    |                      |           |         |           |       |                     |                         |                  |                      |        |
| Matrix:                          | Soil                 |           |         |           |       |                     |                         |                  |                      |        |
| Parameter                        | Result               | Qualifier | Units   | RL        | MDL   | Dilution<br>Factor  | Date<br>Prepared        | Date<br>Analyzed | Analytical<br>Method | Analys |
| eneral Chemistry - We            | stborough Lat        | )         |         |           |       |                     |                         |                  |                      |        |
| lids, Total                      | 80.1                 |           | %       | 0.100     | NA    | 1                   | -                       | 02/10/18 11:0    | 6 121,2540G          | RI     |



| Serial | No:02131814:52 |
|--------|----------------|
| Ochui_ |                |

| Project Name:<br>Project Number:                                      | 200 HAMILTON AVENUE<br>170029                    |           |          |           |       |                    |                  |                  | L1804131<br>02/13/18                       |        |
|-----------------------------------------------------------------------|--------------------------------------------------|-----------|----------|-----------|-------|--------------------|------------------|------------------|--------------------------------------------|--------|
|                                                                       |                                                  |           |          | SAMPLE    | RESUL | rs                 |                  |                  |                                            |        |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:<br>Matrix: | L1804131-17<br>SB-17 (5-7)<br>200 HAMILT<br>Soil |           | ., WHITI | E PLAINS, | NY    |                    |                  | Received:        | 02/09/18 12:3<br>02/09/18<br>Not Specified | 5      |
| Parameter                                                             | Result                                           | Qualifier | Units    | RL        | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method                       | Analys |
| eneral Chemistry - We                                                 | stborough Lab                                    |           |          |           |       |                    |                  |                  |                                            |        |
| olids, Total                                                          | 93.4                                             |           | %        | 0.100     | NA    | 1                  | -                | 02/10/18 11:06   | 6 121,2540G                                | RI     |



# Lab Duplicate Analysis Batch Quality Control

Project Name:200 HAMILTON AVENUEProject Number:170029

 Lab Number:
 L1804131

 Report Date:
 02/13/18

| Parameter                                 | Native Sample                 | Duplicate Sample     | Units      | RPD         | Qual       | RPD Limits |
|-------------------------------------------|-------------------------------|----------------------|------------|-------------|------------|------------|
| General Chemistry - Westborough Lab Assoc | ciated sample(s): 01-09 QC Ba | atch ID: WG1087274-1 | QC Sample: | L1804097-01 | Client ID: | DUP Sample |
| Solids, Total                             | 86.8                          | 86.0                 | %          | 1           |            | 20         |
| General Chemistry - Westborough Lab Assoc | ciated sample(s): 10-11 QC Ba | atch ID: WG1087465-1 | QC Sample: | L1804250-01 | Client ID: | DUP Sample |
| Solids, Total                             | 89.5                          | 90.6                 | %          | 1           |            | 20         |



### Sample Receipt and Container Information

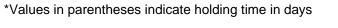
YES

Were project specific reporting limits specified?

**Cooler Information** 

| Cooler | Custody Seal |
|--------|--------------|
| А      | Absent       |
| A1     | Absent       |
| A2     | Absent       |

### Container Information


| Container Information |              |                                        |        | Initial | Final | Temp  |      |        | Frozen          |                                                                                                          |  |
|-----------------------|--------------|----------------------------------------|--------|---------|-------|-------|------|--------|-----------------|----------------------------------------------------------------------------------------------------------|--|
|                       | Container ID | Container Type                         | Cooler | рН      | рН    | deg C | Pres | Seal   | Date/Time       | Analysis(*)                                                                                              |  |
|                       | L1804131-01A | 5 gram Encore Sampler                  | А      | NA      |       | 3.5   | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-01B | 5 gram Encore Sampler                  | А      | NA      |       | 3.5   | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-01C | 5 gram Encore Sampler                  | А      | NA      |       | 3.5   | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-01D | Plastic 2oz unpreserved for TS         | А      | NA      |       | 3.5   | Y    | Absent |                 | TS(7)                                                                                                    |  |
|                       | L1804131-01X | Vial MeOH preserved split              | А      | NA      |       | 3.5   | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-01Y | Vial Water preserved split             | А      | NA      |       | 3.5   | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-01Z | Vial Water preserved split             | А      | NA      |       | 3.5   | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-02A | 5 gram Encore Sampler                  | А      | NA      |       | 3.5   | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-02B | 5 gram Encore Sampler                  | А      | NA      |       | 3.5   | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-02C | 5 gram Encore Sampler                  | А      | NA      |       | 3.5   | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-02D | Plastic 2oz unpreserved for TS         | А      | NA      |       | 3.5   | Y    | Absent |                 | TS(7)                                                                                                    |  |
|                       | L1804131-02E | Metals Only-Glass 60mL/2oz unpreserved | A      | NA      |       | 3.5   | Y    | Absent |                 | AS-TI(180),BA-TI(180),AG-TI(180),CR-<br>TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG-<br>T(28),CD-TI(180) |  |
|                       | L1804131-02F | Glass 120ml/4oz unpreserved            | А      | NA      |       | 3.5   | Y    | Absent |                 | NYCP51-PAH(14)                                                                                           |  |
|                       | L1804131-02X | Vial MeOH preserved split              | А      | NA      |       | 3.5   | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-02Y | Vial Water preserved split             | А      | NA      |       | 3.5   | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-02Z | Vial Water preserved split             | А      | NA      |       | 3.5   | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-03A | 5 gram Encore Sampler                  | А      | NA      |       | 3.5   | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-03B | 5 gram Encore Sampler                  | А      | NA      |       | 3.5   | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-03C | 5 gram Encore Sampler                  | А      | NA      |       | 3.5   | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-03D | Plastic 2oz unpreserved for TS         | А      | NA      |       | 3.5   | Y    | Absent |                 | TS(7)                                                                                                    |  |
|                       |              |                                        |        |         |       |       |      |        |                 |                                                                                                          |  |



| Container Information |                                        |        | Initial | Final | Temp |      |        | Frozen          |                                                                                                          |
|-----------------------|----------------------------------------|--------|---------|-------|------|------|--------|-----------------|----------------------------------------------------------------------------------------------------------|
| Container ID          | Container Type                         | Cooler | pН      | pН    |      | Pres | Seal   | Date/Time       | Analysis(*)                                                                                              |
| L1804131-03X          | Vial MeOH preserved split              | A      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-03Y          | Vial Water preserved split             | А      | NA      |       | 3.5  | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-03Z          | Vial Water preserved split             | А      | NA      |       | 3.5  | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-04A          | 5 gram Encore Sampler                  | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-04B          | 5 gram Encore Sampler                  | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-04C          | 5 gram Encore Sampler                  | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-04D          | Plastic 2oz unpreserved for TS         | А      | NA      |       | 3.5  | Y    | Absent |                 | TS(7)                                                                                                    |
| L1804131-04E          | Metals Only-Glass 60mL/2oz unpreserved | A      | NA      |       | 3.5  | Y    | Absent |                 | AS-TI(180),BA-TI(180),AG-TI(180),CR-<br>TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG-<br>T(28),CD-TI(180) |
| L1804131-04F          | Glass 120ml/4oz unpreserved            | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-PAH(14)                                                                                           |
| L1804131-04X          | Vial MeOH preserved split              | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-04Y          | Vial Water preserved split             | А      | NA      |       | 3.5  | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-04Z          | Vial Water preserved split             | А      | NA      |       | 3.5  | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-05A          | 5 gram Encore Sampler                  | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-05B          | 5 gram Encore Sampler                  | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-05C          | 5 gram Encore Sampler                  | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-05D          | Plastic 2oz unpreserved for TS         | А      | NA      |       | 3.5  | Y    | Absent |                 | TS(7)                                                                                                    |
| L1804131-05X          | Vial MeOH preserved split              | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-05Y          | Vial Water preserved split             | А      | NA      |       | 3.5  | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-05Z          | Vial Water preserved split             | А      | NA      |       | 3.5  | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-06A          | 5 gram Encore Sampler                  | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-06B          | 5 gram Encore Sampler                  | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-06C          | 5 gram Encore Sampler                  | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-06D          | Plastic 2oz unpreserved for TS         | А      | NA      |       | 3.5  | Y    | Absent |                 | TS(7)                                                                                                    |
| L1804131-06E          | Metals Only-Glass 60mL/2oz unpreserved | A      | NA      |       | 3.5  | Y    | Absent |                 | AS-TI(180),BA-TI(180),AG-TI(180),CR-<br>TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG-<br>T(28),CD-TI(180) |
| L1804131-06F          | Glass 120ml/4oz unpreserved            | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-PAH(14)                                                                                           |
| L1804131-06X          | Vial MeOH preserved split              | А      | NA      |       | 3.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
| L1804131-06Y          | Vial Water preserved split             | А      | NA      |       | 3.5  | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |



| Container Info |                                        | Initial | Final | Temp |     |      | Frozen |                 |                                                                                                          |  |
|----------------|----------------------------------------|---------|-------|------|-----|------|--------|-----------------|----------------------------------------------------------------------------------------------------------|--|
| Container ID   | Container Type                         | Cooler  | рН    | pН   |     | Pres | Seal   | Date/Time       | Analysis(*)                                                                                              |  |
| L1804131-06Z   | Vial Water preserved split             | А       | NA    |      | 3.5 | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-07A   | 5 gram Encore Sampler                  | А       | NA    |      | 3.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-07B   | 5 gram Encore Sampler                  | А       | NA    |      | 3.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-07C   | 5 gram Encore Sampler                  | А       | NA    |      | 3.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-07D   | Plastic 2oz unpreserved for TS         | А       | NA    |      | 3.5 | Y    | Absent |                 | TS(7)                                                                                                    |  |
| L1804131-07X   | Vial MeOH preserved split              | А       | NA    |      | 3.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-07Y   | Vial Water preserved split             | А       | NA    |      | 3.5 | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-07Z   | Vial Water preserved split             | А       | NA    |      | 3.5 | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-08A   | 5 gram Encore Sampler                  | А       | NA    |      | 3.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-08B   | 5 gram Encore Sampler                  | А       | NA    |      | 3.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-08C   | 5 gram Encore Sampler                  | А       | NA    |      | 3.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-08D   | Plastic 2oz unpreserved for TS         | А       | NA    |      | 3.5 | Y    | Absent |                 | TS(7)                                                                                                    |  |
| L1804131-08E   | Metals Only-Glass 60mL/2oz unpreserved | A       | NA    |      | 3.5 | Y    | Absent |                 | AS-TI(180),BA-TI(180),AG-TI(180),CR-<br>TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG-<br>T(28),CD-TI(180) |  |
| L1804131-08F   | Glass 120ml/4oz unpreserved            | А       | NA    |      | 3.5 | Y    | Absent |                 | NYCP51-PAH(14)                                                                                           |  |
| L1804131-08X   | Vial MeOH preserved split              | А       | NA    |      | 3.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-08Y   | Vial Water preserved split             | А       | NA    |      | 3.5 | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-08Z   | Vial Water preserved split             | А       | NA    |      | 3.5 | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-09A   | 5 gram Encore Sampler                  | А       | NA    |      | 3.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-09B   | 5 gram Encore Sampler                  | А       | NA    |      | 3.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-09C   | 5 gram Encore Sampler                  | А       | NA    |      | 3.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-09D   | Plastic 2oz unpreserved for TS         | А       | NA    |      | 3.5 | Y    | Absent |                 | TS(7)                                                                                                    |  |
| L1804131-09X   | Vial MeOH preserved split              | А       | NA    |      | 3.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-09Y   | Vial Water preserved split             | А       | NA    |      | 3.5 | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-09Z   | Vial Water preserved split             | А       | NA    |      | 3.5 | Y    | Absent | 07-FEB-18 09:16 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-10A   | 5 gram Encore Sampler                  | A1      | NA    |      | 2.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-10B   | 5 gram Encore Sampler                  | A1      | NA    |      | 2.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
| L1804131-10C   | 5 gram Encore Sampler                  | A1      | NA    |      | 2.5 | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |





| Container Information |                                        |        | Initial | Final | Temp |      |        | Frozen          |                                                                                                          |  |  |
|-----------------------|----------------------------------------|--------|---------|-------|------|------|--------|-----------------|----------------------------------------------------------------------------------------------------------|--|--|
| Container ID          | Container Type                         | Cooler |         | pН    | -    | Pres | Seal   | Date/Time       | Analysis(*)                                                                                              |  |  |
| L1804131-10D          | Plastic 2oz unpreserved for TS         | A1     | NA      |       | 2.5  | Y    | Absent |                 | TS(7)                                                                                                    |  |  |
| L1804131-10X          | Vial MeOH preserved split              | A1     | NA      |       | 2.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-10Y          | Vial Water preserved split             | A1     | NA      |       | 2.5  | Y    | Absent | 08-FEB-18 02:07 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-10Z          | Vial Water preserved split             | A1     | NA      |       | 2.5  | Y    | Absent | 08-FEB-18 02:07 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-11A          | 5 gram Encore Sampler                  | A1     | NA      |       | 2.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-11B          | 5 gram Encore Sampler                  | A1     | NA      |       | 2.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-11C          | 5 gram Encore Sampler                  | A1     | NA      |       | 2.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-11D          | Plastic 2oz unpreserved for TS         | A1     | NA      |       | 2.5  | Y    | Absent |                 | TS(7)                                                                                                    |  |  |
| L1804131-11E          | Metals Only-Glass 60mL/2oz unpreserved | A1     | NA      |       | 2.5  | Y    | Absent |                 | AS-TI(180),BA-TI(180),AG-TI(180),CR-<br>TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG-<br>T(28),CD-TI(180) |  |  |
| L1804131-11F          | Glass 120ml/4oz unpreserved            | A1     | NA      |       | 2.5  | Y    | Absent |                 | NYCP51-PAH(14)                                                                                           |  |  |
| L1804131-11X          | Vial MeOH preserved split              | A1     | NA      |       | 2.5  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-11Y          | Vial Water preserved split             | A1     | NA      |       | 2.5  | Y    | Absent | 08-FEB-18 02:07 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-11Z          | Vial Water preserved split             | A1     | NA      |       | 2.5  | Y    | Absent | 08-FEB-18 02:07 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-12A          | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-12B          | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-12C          | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-12D          | Plastic 2oz unpreserved for TS         | A2     | NA      |       | 3.1  | Y    | Absent |                 | TS(7)                                                                                                    |  |  |
| L1804131-12X          | Vial MeOH preserved split              | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-12Y          | Vial Water preserved split             | A2     | NA      |       | 3.1  | Y    | Absent | 10-FEB-18 11:36 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-12Z          | Vial Water preserved split             | A2     | NA      |       | 3.1  | Y    | Absent | 10-FEB-18 11:36 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-13A          | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-13B          | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-13C          | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |  |
| L1804131-13D          | Plastic 2oz unpreserved for TS         | A2     | NA      |       | 3.1  | Y    | Absent |                 | TS(7)                                                                                                    |  |  |
| L1804131-13E          | Metals Only-Glass 60mL/2oz unpreserved | A2     | NA      |       | 3.1  | Y    | Absent |                 | AS-TI(180),BA-TI(180),AG-TI(180),CR-<br>TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG-<br>T(28),CD-TI(180) |  |  |
| L1804131-13F          | Glass 120ml/4oz unpreserved            | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-PAH(14)                                                                                           |  |  |
| L1804131-13X          | Vial MeOH preserved split              | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |  |



| Container Information |              |                                        |        | Initial | Final | Temp |      |        | Frozen          |                                                                                                          |  |
|-----------------------|--------------|----------------------------------------|--------|---------|-------|------|------|--------|-----------------|----------------------------------------------------------------------------------------------------------|--|
|                       | Container ID | Container Type                         | Cooler | рН      | pН    |      | Pres | Seal   | Date/Time       | Analysis(*)                                                                                              |  |
|                       | L1804131-13Y | Vial Water preserved split             | A2     | NA      |       | 3.1  | Y    | Absent | 10-FEB-18 11:36 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-13Z | Vial Water preserved split             | A2     | NA      |       | 3.1  | Y    | Absent | 10-FEB-18 11:36 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-14A | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-14B | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-14C | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-14D | Plastic 2oz unpreserved for TS         | A2     | NA      |       | 3.1  | Y    | Absent |                 | TS(7)                                                                                                    |  |
|                       | L1804131-14X | Vial MeOH preserved split              | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-14Y | Vial Water preserved split             | A2     | NA      |       | 3.1  | Y    | Absent | 10-FEB-18 11:36 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-14Z | Vial Water preserved split             | A2     | NA      |       | 3.1  | Y    | Absent | 10-FEB-18 11:36 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-15A | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-15B | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-15C | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-15D | Plastic 2oz unpreserved for TS         | A2     | NA      |       | 3.1  | Y    | Absent |                 | TS(7)                                                                                                    |  |
|                       | L1804131-15E | Metals Only-Glass 60mL/2oz unpreserved | A2     | NA      |       | 3.1  | Y    | Absent |                 | AS-TI(180),BA-TI(180),AG-TI(180),CR-<br>TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG-<br>T(28),CD-TI(180) |  |
|                       | L1804131-15F | Glass 120ml/4oz unpreserved            | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-PAH(14)                                                                                           |  |
|                       | L1804131-15X | Vial MeOH preserved split              | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-15Y | Vial Water preserved split             | A2     | NA      |       | 3.1  | Y    | Absent | 10-FEB-18 11:36 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-15Z | Vial Water preserved split             | A2     | NA      |       | 3.1  | Y    | Absent | 10-FEB-18 11:36 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-16A | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-16B | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-16C | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-16D | Plastic 2oz unpreserved for TS         | A2     | NA      |       | 3.1  | Y    | Absent |                 | TS(7)                                                                                                    |  |
|                       | L1804131-16X | Vial MeOH preserved split              | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-16Y | Vial Water preserved split             | A2     | NA      |       | 3.1  | Y    | Absent | 10-FEB-18 11:36 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-16Z | Vial Water preserved split             | A2     | NA      |       | 3.1  | Y    | Absent | 10-FEB-18 11:36 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-17A | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       | L1804131-17B | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1  | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |  |
|                       |              |                                        |        |         |       |      |      |        |                 |                                                                                                          |  |





| Container Information |              |                                        |        | Initial | Final | Temp  |      |        | Frozen          |                                                                                                          |
|-----------------------|--------------|----------------------------------------|--------|---------|-------|-------|------|--------|-----------------|----------------------------------------------------------------------------------------------------------|
|                       | Container ID | Container Type                         | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time       | Analysis(*)                                                                                              |
|                       | L1804131-17C | 5 gram Encore Sampler                  | A2     | NA      |       | 3.1   | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
|                       | L1804131-17D | Plastic 2oz unpreserved for TS         | A2     | NA      |       | 3.1   | Y    | Absent |                 | TS(7)                                                                                                    |
|                       | L1804131-17E | Metals Only-Glass 60mL/2oz unpreserved | A2     | NA      |       | 3.1   | Y    | Absent |                 | AS-TI(180),BA-TI(180),AG-TI(180),CR-<br>TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG-<br>T(28),CD-TI(180) |
|                       | L1804131-17F | Glass 120ml/4oz unpreserved            | A2     | NA      |       | 3.1   | Y    | Absent |                 | NYCP51-PAH(14)                                                                                           |
|                       | L1804131-17X | Vial MeOH preserved split              | A2     | NA      |       | 3.1   | Y    | Absent |                 | NYCP51-8260HLW(14)                                                                                       |
|                       | L1804131-17Y | Vial Water preserved split             | A2     | NA      |       | 3.1   | Y    | Absent | 10-FEB-18 11:36 | NYCP51-8260HLW(14)                                                                                       |
|                       | L1804131-17Z | Vial Water preserved split             | A2     | NA      |       | 3.1   | Y    | Absent | 10-FEB-18 11:36 | NYCP51-8260HLW(14)                                                                                       |

### Project Name: 200 HAMILTON AVENUE

Project Number: 170029

# Lab Number: L1804131

#### **Report Date:** 02/13/18

#### GLOSSARY

#### Acronyms

| EDL      | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA      | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS      | <ul> <li>Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of<br/>analytes or a material containing known and verified amounts of analytes.</li> </ul>                                                                                                                                                                                                                                   |
| LCSD     | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB      | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| MDL      | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS       | - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.                                                                                                                                                                                                                                                  |
| MSD      | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA       | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NC       | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
| NDPA/DPA | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI       | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP       | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| RL       | <ul> <li>Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.</li> </ul>                                                                                                                                                                                                                |
| RPD      | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM      | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP     | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
| TIC      | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound                                                                                                                                                                                                                                                                                                                               |

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

#### Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after

adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers



### Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1804131 Report Date: 02/13/18

#### Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.



 Lab Number:
 L1804131

 Report Date:
 02/13/18

### REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



# Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine. EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate EPA 9010: <u>NPW</u> and SCM: Amenable Cyanide Distillation SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. **Mansfield Facility** 

SM 2540D: TSS EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

#### **Mansfield Facility:**

Drinking Water EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: AI, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

| ALPHA NEW YORK CHAIN OF CUSTODY CUSTODY Service Centers<br>Mahwah, NJ 07430: 35 Whitney Rd, Suite 5<br>Albany, NY 12205: 14 Walker Way<br>Tonawanda, NY 14150: 275 Cooper Ave, Suite 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                            |                                        |           | Page<br>of             | 1                            | Date Rec'd<br>in Lab 2/6/18 |                                          |                         |      |                 |                                                                                                                                                           | ALPHA JOB #<br>L 1804131                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------|----------------------------------------|-----------|------------------------|------------------------------|-----------------------------|------------------------------------------|-------------------------|------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Westborough, MA 01581<br>8 Walkup Dr.<br>TEL: 508-698-9220<br>FAX: 508-898-9193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mansfield, MA 02048<br>320 Forbes Blvd<br>TEL: 508-822-9300<br>FAX: 508-822-3288 | Project Location: 200      | Hamilton<br>Hangilton A                |           |                        |                              |                             | rables<br>ASP-/<br>EQuIS<br>Other        | No. of Concession, name | _    | ASP-B<br>EQuIS  | (4 File)                                                                                                                                                  | Billing Information<br>Same as Client Info<br>Po #                            |
| Client Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  | Project # 1700.29          |                                        |           |                        | Regulatory Requirement       |                             |                                          |                         |      |                 | Disposal Site Information                                                                                                                                 |                                                                               |
| Client: AKRF, INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  | (Use Project name as Pr    |                                        | 1         |                        |                              |                             | NY TO                                    |                         |      | NY Part         | 375                                                                                                                                                       | Please identify below location of                                             |
| Address: 34 South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Broadway                                                                         | Project Manager: Rel       | secca kir                              | 191       |                        |                              |                             |                                          | itandards               |      | NY CP-          |                                                                                                                                                           | applicable disposal facilities.                                               |
| White Plains 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J .                                                                              | ALPHAQuote #:              |                                        |           |                        |                              |                             |                                          | stricted Use            |      | Other           | 5200                                                                                                                                                      | Disposal Facility:                                                            |
| Phone: 914-922-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 362                                                                              | Turn-Around Time           |                                        |           |                        | -                            | Second .                    |                                          | restricted U            | -    | Guilde          |                                                                                                                                                           |                                                                               |
| Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  | Standard                   | 511                                    | Due Date: |                        |                              |                             | 10.004                                   | ewer Disch              |      |                 |                                                                                                                                                           | Other:                                                                        |
| Email: RKING1@A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KRF: LOM                                                                         | Rush (only if pre approved | Rush (only if pre approved) # of Days: |           |                        |                              |                             |                                          | ewer Discri             | arge |                 |                                                                                                                                                           | Sample Filtration                                                             |
| These samples have be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |                            | by Alpha                               |           |                        |                              |                             | YSIS                                     |                         | 1    |                 | -                                                                                                                                                         | 0                                                                             |
| Other project specific<br>Please specify Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | keep SD(                                                                         |                            |                                        |           |                        |                              | Vodes)                      | SUNCS<br>(BRTO)                          | BMEKEIS +<br>ZINC       |      |                 |                                                                                                                                                           | Done t<br>Lab to do a<br>Preservation Lab to do B<br>(Please Specify below) t |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                            | Colle                                  | ection    | Comple                 | Sampler's                    | 15                          |                                          |                         |      |                 |                                                                                                                                                           |                                                                               |
| ALPHA Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S                                                                                | ample ID                   | Date                                   | Time      | Sample<br>Matrix       | Initials                     | CP                          | CP-S1                                    | RCRA                    |      |                 |                                                                                                                                                           | Sample Specific Comments                                                      |
| (Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 11 (17 10                                                                     | <u></u>                    | 2618                                   | 1100      | 3                      | TH                           | X                           | -                                        |                         | -    |                 |                                                                                                                                                           |                                                                               |
| 09/31-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58-11 (17-19                                                                     | ()                         | 2/0/18                                 | 1105      | 5                      | TM                           | X                           | ×                                        | ×                       | -    |                 |                                                                                                                                                           |                                                                               |
| 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5B-11 (5-7)                                                                      | ~                          | 2/4/18                                 | 1200      | 5                      | TM                           | ¥                           | -                                        |                         |      |                 |                                                                                                                                                           |                                                                               |
| 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58-13 (10-17                                                                     |                            | 2618                                   | 1205      | 5                      | TM                           | ×                           | ×                                        | ×                       | -    |                 |                                                                                                                                                           |                                                                               |
| 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SB-13 (3-5                                                                       | 1                          | 2/6/18                                 | 1305      | S                      | TM                           | X                           |                                          |                         |      |                 |                                                                                                                                                           |                                                                               |
| 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SB-18 (12-                                                                       | \                          | 2618                                   | 1500      | 5                      | TM                           | ×                           | ×                                        | ¥                       |      |                 |                                                                                                                                                           |                                                                               |
| 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SB-14 (2-4)                                                                      |                            | 2618                                   | 1510      | 5                      | TM                           | ×                           |                                          |                         |      |                 |                                                                                                                                                           |                                                                               |
| 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5B-14 (15-16                                                                     |                            | 2/0/18                                 | 1540      | 5                      | TM                           | X                           | x                                        | ×                       |      |                 |                                                                                                                                                           |                                                                               |
| 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SB-12 (2-4)                                                                      | <u>``</u>                  | 2618                                   | 1550      | 5                      | TM                           | ×                           |                                          |                         |      |                 |                                                                                                                                                           |                                                                               |
| 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58-12 (15-11                                                                     | ~)                         | 2141.0                                 | 1000      |                        |                              | 1                           |                                          |                         |      |                 |                                                                                                                                                           |                                                                               |
| Preservative Code:       Container Code       Westboro: Certification No: MA935         A = None       P = Plastic       Mansfield: Certification No: MA015         B = HCI       A = Amber Glass       Mansfield: Certification No: MA015         C = HNO3       V = Vial       Mansfield: Certification No: MA015         D = H <sub>2</sub> SO <sub>4</sub> G = Glass       Mansfield: Certification No: MA015         E = NaOH       B = Bacteria Cup       Relinquished By:         F = MeOH       C = Cube       Relinquished By:         G = NaHSO <sub>4</sub> O = Other       MMXUMM         H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> E = Encore       MMXUMM         V/E = Zn Ac/NaOH       D = BOD Bottle       Mmx         O = Other       Mansfield: Certification No: MA015 |                                                                                  |                            |                                        |           |                        | ntainer Type<br>Preservative |                             | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 |                         |      |                 | Please print clearly, legibly<br>and completely. Samples can<br>not be logged in and<br>turnaround time clock will not<br>start until any ambiguities are |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                            |                                        |           | 1605<br>1605<br>141:56 | 1                            | Received By:                |                                          |                         |      | Date/<br>6 // 8 | 16:0                                                                                                                                                      | resolved, BY EXECUTING                                                        |

Page 92 of 94

|                                             | NEW YORK<br>CHAIN OF<br>CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Service Centers<br>Mahwah, NJ 07430: 35 Whitne<br>Albany, NY 12205: 14 Walker V<br>Tonawanda, NY 14150: 275 Ce | Nay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105                | Pag            | e  <br>of \                |         |                | Rec'd<br>Lab         | 217    | 115     |                        | ALPHA JOD #<br>L1804131                                                        |                                                                                                                        |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|----------------------------|---------|----------------|----------------------|--------|---------|------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Westborough, MA 01581<br>8 Walkup Dr.       | Mansfield, MA 02048<br>320 Forbes Blvd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project Information                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second second  |                |                            | Deli    | verabl         | es                   | all    | 110     |                        | Billing Information                                                            |                                                                                                                        |
| TEL: 508-898-9220                           | TEL: 508-822-9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Project Name: 200                                                                                              | Hamilton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Avenue             |                |                            | X       | ASF            | -A                   | [      | ASP     | -B                     | Same as Client Info                                                            |                                                                                                                        |
| FAX: 508-898-9193                           | FAX: 508-822-3288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Project Location: 200 }                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | e Plains       | NY                         | 1Ē      |                | IS (1 File           |        |         | S (4 File)             | PO#                                                                            |                                                                                                                        |
| Client Information                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project # 1700 29                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 5 ( POW12      |                            | 17      | Othe           |                      | 15 E   |         | - (                    |                                                                                |                                                                                                                        |
| Client: AKRF, I                             | ASC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Use Project name as P                                                                                         | roiect #)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                |                            | Reg     |                | Require              | ment   |         |                        | Disposal Site Information                                                      |                                                                                                                        |
| Address: 34 South                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project Manager: Rey                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                |                |                            |         | NYT            |                      |        | NY Pa   | art 375                |                                                                                |                                                                                                                        |
| White Plain                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALPHAQuote #:                                                                                                  | in the second se | i inter i          |                |                            | 12      | 1956           | Standard             |        | NYC     |                        | Please identify below location of<br>applicable disposal facilities.           |                                                                                                                        |
| Phone: 914-922-2                            | And the second se | Turn-Around Time                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contraction of the |                |                            |         | a la constante | estricted l          | 270    | Other   |                        |                                                                                |                                                                                                                        |
| Fax:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Standard                                                                                                       | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Due Date           |                |                            |         | lile and       | nrestricted          |        | 1 Onier |                        | Disposal Facility:                                                             |                                                                                                                        |
| Email: RKINGI @A                            | KRFICOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rush (only if pre approved                                                                                     | 24.1 25.1 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # of Days          |                |                            |         | 10023          |                      |        |         |                        | I NJ I NY                                                                      |                                                                                                                        |
| These samples have be                       | And the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # UI Days          | 6              |                            |         | LYSI           | Sewer Dis            | charge | _       | _                      | Other:                                                                         |                                                                                                                        |
| Other project specific                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                            |         |                | <u>р</u>             |        | -       |                        | Sample Filtration                                                              |                                                                                                                        |
|                                             | se keeps SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                            | (09160) | (otca)         | A B Metals +<br>ZINC |        |         |                        | Done t<br>Lab to do a<br>Preservation<br>Lab to do B<br>(Please Specify below) |                                                                                                                        |
| ALPHA Lab ID                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.15                                                                                                           | Coll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ection             | Sample         | Sampler's                  | h       | 5              | 2                    |        |         |                        | (ricese opeciny below)                                                         |                                                                                                                        |
| (Lab Use Only)                              | Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mple ID                                                                                                        | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time               | Matrix         | Initials                   | CP-     | CP.            | RC                   |        |         |                        | Sample Specific Comments                                                       |                                                                                                                        |
| 04131 10                                    | 58-10 (20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -22)                                                                                                           | 217/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 920                | 5              | TH                         | X       |                |                      | -      |         |                        | e anno e preside comments                                                      |                                                                                                                        |
| 11                                          | 53-10 (3-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                | 2718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 925                | 5              | Thu                        | X       | ×              | X                    |        |         | -                      | <u> </u>                                                                       |                                                                                                                        |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |                |                            |         |                | T.                   |        |         |                        |                                                                                |                                                                                                                        |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                            |         |                |                      |        |         |                        |                                                                                |                                                                                                                        |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                            |         |                |                      | _      |         | _                      |                                                                                |                                                                                                                        |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                            |         |                |                      | -      |         |                        |                                                                                |                                                                                                                        |
| Preservative Code:                          | Container Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                            |         |                |                      |        |         |                        |                                                                                |                                                                                                                        |
| A = None<br>B = HCl<br>C = HNO <sub>3</sub> | P = Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Westboro: Certification N<br>Mansfield: Certification N                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                | tainer Type<br>reservative | EA      | 6              |                      | GA     | _       |                        |                                                                                | Please print clearly, legibly<br>and completely. Samples can<br>not be logged in and<br>turnaround time clock will not |
| 1 CT 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  | B = Bacteria Cup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                            | 1.4     | 1.             |                      |        |         |                        | start until any ambiguities are                                                |                                                                                                                        |
|                                             | C = Cube<br>O = Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | By:                                                                                                            | Date/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | R              | Receiv                     | ed By   |                |                      | Date/1 | lime    | resolved. BY EXECUTING |                                                                                |                                                                                                                        |
| $H = Na_2S_2O_3$                            | E = Encore<br>D = BOD Bottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Daniel Eischer A                                                                                               | AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 217/18             | 160100<br>7:42 | Daniel F                   | tsch    | er A           | AL                   | 2/7    | 117     | 6:10                   | THIS COC, THE CLIENT<br>HAS READ AND AGREES<br>TO BE BOUND BY ALPHA'S          |                                                                                                                        |
| orm No: 01-25 HC (rev. 30-                  | -Sept-2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | La A                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.17/18            | r alt          | 2.                         | -       | _              | _                    | 217    | 118     | 2230                   | TERMS & CONDITIONS.<br>(See reverse side.)                                     |                                                                                                                        |

| Ацена                                             | NEW YORK<br>CHAIN OF<br>CUSTODY                                           | Service Centers<br>Mahwah, NJ 07430: 35 Whitn<br>Albany, NY 12205: 14 Walker<br>Tonawanda, NY 14150: 275 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Way                                                                                                            | 105       | Pag     | of          |                 |        | Rec'd<br>Lab | 2)0       | 118                    |             | ALPHA JOD #<br>21864131                                                              |
|---------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|---------|-------------|-----------------|--------|--------------|-----------|------------------------|-------------|--------------------------------------------------------------------------------------|
| Westborough, MA 01581<br>8 Walkup Dr.             | Mansfield, MA 02048<br>320 Forbes Blvd                                    | Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |           |         |             | Deli            | verabl | es           |           |                        |             | Billing Information                                                                  |
| TEL: 508-898-9220<br>FAX: 508-898-9193            | TEL: 508-822-9300                                                         | Project Name: 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | > Hamilt                                                                                                       | ton Ave   | nue     |             | X               | ASF    | P-A          |           | ASP                    | -B          | Same as Client Info                                                                  |
| FAX: 008-898-8193                                 | FAX: 508-822-3288                                                         | Project Location: 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | > Hamilton                                                                                                     | n Ave     | White S | Jains NY    |                 | EQU    | IS (1 Fil    | e) [      | ] EQui                 | IS (4 File) | PO #                                                                                 |
| Client Information                                |                                                                           | Project # 17002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the second s |           |         |             | 1 C             | Othe   | ər           | 333 37    | 2000 (CCC)             |             |                                                                                      |
| Client: AKRF, I                                   | ω<,                                                                       | (Use Project name as F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | And and a second se |           |         |             | Reg             | ulator | y Require    | ement     |                        |             | Disposal Site Information                                                            |
| Address: 34 South                                 |                                                                           | Project Manager: Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                | 51001     |         |             |                 |        | OGS          | _         | NY Pa                  | art 375     | Please identify below location of                                                    |
| White Plain                                       | IS NY                                                                     | ALPHAQuote #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |           |         |             | 1 F             | AWC    | Standard     |           | NY CI                  |             | applicable disposal facilities.                                                      |
| Phone: 914-92                                     |                                                                           | Turn-Around Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |           |         |             |                 | NYR    | lestricted   |           | Other                  | S.          | Disposal Facility:                                                                   |
| Fax:                                              |                                                                           | Standar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | Due Date  |         |             |                 |        | Inrestricte  | 1         | -                      |             |                                                                                      |
| Email: RKING1                                     | Q AKRE LON                                                                | Rush (only if pre approve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 - C L - C - C - C - C - C - C - C - C -                                                                      | # of Days |         |             |                 |        | Sewer Di     |           |                        |             | Other:                                                                               |
| These samples have b                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |           |         |             |                 |        |              | oorion go | _                      |             | Sample Filtration                                                                    |
| Other project specific                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |           |         |             | 100             | LYSI   | ,<br>Т Т     |           | 1                      |             |                                                                                      |
| Dease specify Metals                              | lose SDG<br>sor TAL.                                                      | $\otimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |           |         |             | 10055<br>(8260) | SVOCS  | A BMetals +  |           |                        |             | Done<br>Lab to do<br>Preservation<br>Lab to do<br>(Please Specify below)             |
| ALPHA Lab ID                                      | 5.0                                                                       | mple ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Colle                                                                                                          | ection    | Sample  | Sampler's   | 5               | 5      | d'N          |           |                        |             |                                                                                      |
| (Lab Use Only)                                    | oa                                                                        | Inpie ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date                                                                                                           | Time      | Matrix  | Initials    | 3               | CD-    | RCRA         |           |                        |             | Sample Specific Comments                                                             |
| 64131-12                                          | SB-15 (10-1                                                               | 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/4/18                                                                                                         | 855       | 5       | tm          | X               | -      |              |           |                        |             |                                                                                      |
| -13                                               | 58-15 (2-4                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2918                                                                                                           | 900       | 3       | TM          | X               | X      | ×            | -         |                        |             |                                                                                      |
| -14                                               | 53-16 (12-                                                                | 13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/9/18                                                                                                         | 1100      | 5       | TM          | X               | 1      | 1            | -         |                        |             |                                                                                      |
| -15                                               | 53-16 (2-                                                                 | and the second se | 29/18                                                                                                          | 1110      | S       | TM          | X               | *      | ×            |           |                        |             |                                                                                      |
| -16                                               | 53-17 (8-                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 219/18                                                                                                         | 1225      | 5       | TM          | X               | 1      | ++           | -         |                        |             |                                                                                      |
| -17                                               | SB-17 (5-                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 319118                                                                                                         | 1235      | 3       | TM          | ×               | ×      | ×            |           | +                      |             |                                                                                      |
|                                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |           |         |             |                 |        |              |           |                        |             |                                                                                      |
| Preservative Code:                                | Contribut Contr                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |           |         |             |                 |        |              |           |                        |             |                                                                                      |
| A = None<br>3 = HCI<br>C = HNO <sub>3</sub>       | Container Code<br>P = Plastic<br>A = Amber Glass<br>V = Vial<br>G = Glass | Westboro: Certification Mansfield: Certification M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                |           |         | tainer Type |                 | G      | G            |           |                        |             | Please print clearly, legibly<br>and completely. Samples can<br>not be logged in and |
|                                                   | B = Bacteria Cup                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |           |         | reservative | A               | A      | A            |           |                        |             | turnaround time clock will no<br>start until any ambiguities are                     |
| Contraction and a little                          | C = Cube<br>O = Other                                                     | Date/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time                                                                                                           | AF        | Receiv  | /ed By      | ç.              |        | Date/        | Time      | resolved. BY EXECUTING |             |                                                                                      |
| I = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | E = Encore                                                                | 2918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1512                                                                                                           | Bruce     | De      | ch          | AAL             | 21     | 2/18         | 1512      | THIS COC, THE CLIENT   |             |                                                                                      |
| VE = Zn Ac/NaOH<br>) = Other                      | D = BOD Bottle                                                            | Brue, Josh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AAL                                                                                                            | 2/9/18    | 1600    | N           | U               | Z      | Mat          | 1/1       | 1110                   | 622:4       | HAS READ AND AGREES<br>TO BE BOUND BY ALPHA'S<br>TERMS & CONDITIONS.                 |
| orm No: 01-25 HC (rev. 30                         | )-Sept-2013)                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |           | alout - | A DV        | nic             | Cab    | 1 mar        | a         | 10101                  | 000-        | (See reverse side.)                                                                  |



# ANALYTICAL REPORT

| Lab Number:     | L1805675               |
|-----------------|------------------------|
| Client:         | AKRF, Inc.             |
|                 | 34 South Broadway      |
|                 | White Plains, NY 10601 |
|                 |                        |
| ATTN:           | Becky Kinal            |
| Phone:          | (914) 922-2362         |
| Project Name:   | 200 HAMILTON AVENUE    |
| Project Number: | 170029                 |
| Report Date:    | 02/22/18               |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Serial\_No:02221816:22

| Lab Number:  | L1805675 |
|--------------|----------|
| Report Date: | 02/22/18 |

| Alpha<br>Sample ID | Client ID | Matrix | Sample<br>Location                     | Collection<br>Date/Time | Receive Date |
|--------------------|-----------|--------|----------------------------------------|-------------------------|--------------|
| L1805675-01        | MW-1      | WATER  | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/16/18 10:25          | 02/16/18     |
| L1805675-02        | MW-5      | WATER  | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/16/18 11:45          | 02/16/18     |
| L1805675-03        | MW-6      | WATER  | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/16/18 13:20          | 02/16/18     |
| L1805675-04        | MW-7      | WATER  | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/16/18 13:55          | 02/16/18     |
| L1805675-05        | MW-2      | WATER  | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/16/18 16:25          | 02/16/18     |
| L1805675-06        | MW-9      | WATER  | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/16/18 16:47          | 02/16/18     |
| L1805675-07        | TB-1      | WATER  | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/16/18 00:00          | 02/16/18     |
| L1805675-08        | MW-8      | WATER  | 200 HAMILTON AVE., WHITE PLAINS,<br>NY | 02/16/18 18:07          | 02/17/18     |



Lab Number: L1805675 Report Date: 02/22/18

### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

#### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.



 Lab Number:
 L1805675

 Report Date:
 02/22/18

### **Case Narrative (continued)**

**Report Submission** 

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

**Volatile Organics** 

L1805675-02: The sample has elevated detection limits due to the dilution required by the sample matrix (foam).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Kara Solla Kara Soroko

Authorized Signature:

Title: Technical Director/Representative

Date: 02/22/18



# ORGANICS



# VOLATILES



|                                                               |                                                            | Serial_N                                         | 0:02221816:22                               |
|---------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                 | 200 HAMILTON AVENUE                                        | Lab Number:                                      | L1805675                                    |
| Project Number:                                               | 170029                                                     | Report Date:                                     | 02/22/18                                    |
|                                                               | SAMPLE RESULTS                                             |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:    | L1805675-01<br>MW-1<br>200 HAMILTON AVE., WHITE PLAINS, NY | Date Collected:<br>Date Received:<br>Field Prep: | 02/16/18 10:25<br>02/16/18<br>Not Specified |
| Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>1,8260C<br>02/21/18 11:30<br>AD                   |                                                  |                                             |

| ough Lab |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND       |                                                                                 | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N | ND         ND | ND         ug/l           ND         ug/l | ND         ug/l         2.5           ND         ug/l         2.5 | ND         ug/l         2.5         0.70           ND         ug/l         2.5 </td |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 110        | 70-130                           |  |
| Toluene-d8            | 89         | 70-130                           |  |
| 4-Bromofluorobenzene  | 84         | 70-130                           |  |
| Dibromofluoromethane  | 106        | 70-130                           |  |



|                                                               |                                                              | Serial_N                                         | o:02221816:22                               |
|---------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                 | 200 HAMILTON AVENUE                                          | Lab Number:                                      | L1805675                                    |
| Project Number:                                               | 170029                                                       | Report Date:                                     | 02/22/18                                    |
|                                                               | SAMPLE RESULTS                                               |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:    | L1805675-02 D<br>MW-5<br>200 HAMILTON AVE., WHITE PLAINS, NY | Date Collected:<br>Date Received:<br>Field Prep: | 02/16/18 11:45<br>02/16/18<br>Not Specified |
| Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>1,8260C<br>02/20/18 21:13<br>PD                     |                                                  |                                             |

| ug/l<br>ug/l<br>ug/l | 1.2<br>6.2<br>6.2                                            | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ug/l<br>ug/l         | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ug/l<br>ug/l         |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ug/l                 | 6.2                                                          | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ua/l                 |                                                              | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ug/l                 | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ug/l                 | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ug/l                 | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ug/l                 | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ug/l                 | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ug/l                 | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ug/l                 | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ug/l                 | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ug/l                 | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ug/l                 | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ug/l                 | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ug/l                 | 6.2                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l | ug/l       6.2         ug/l       6.2 | ug/l         6.2         1.8           ug/l         6.2         1.8 |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 105        | 70-130                           |  |
| Toluene-d8            | 97         | 70-130                           |  |
| 4-Bromofluorobenzene  | 95         | 70-130                           |  |
| Dibromofluoromethane  | 103        | 70-130                           |  |



|                                                               |                                                            | Serial_N                                         | o:02221816:22                               |
|---------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                 | 200 HAMILTON AVENUE                                        | Lab Number:                                      | L1805675                                    |
| Project Number:                                               | 170029                                                     | Report Date:                                     | 02/22/18                                    |
|                                                               | SAMPLE RESULTS                                             |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:    | L1805675-03<br>MW-6<br>200 HAMILTON AVE., WHITE PLAINS, NY | Date Collected:<br>Date Received:<br>Field Prep: | 02/16/18 13:20<br>02/16/18<br>Not Specified |
| Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>1,8260C<br>02/21/18 11:59<br>AD                   |                                                  |                                             |

| Parameter                         | Result      | Qualifier | Units | RL   | MDL  | Dilution Factor |
|-----------------------------------|-------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - West | borough Lab |           |       |      |      |                 |
| Benzene                           | 0.67        |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                           | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                      | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| Methyl tert butyl ether           | 1.2         | J         | ug/l  | 2.5  | 0.70 | 1               |
| p/m-Xylene                        | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| o-Xylene                          | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| Xylenes, Total                    | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Butylbenzene                    | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| sec-Butylbenzene                  | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| tert-Butylbenzene                 | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| Isopropylbenzene                  | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| p-lsopropyltoluene                | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| Naphthalene                       | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Propylbenzene                   | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,3,5-Trimethylbenzene            | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2,4-Trimethylbenzene            | ND          |           | ug/l  | 2.5  | 0.70 | 1               |
|                                   |             |           |       |      |      |                 |

| Surrogate             | % Recovery | eptance<br>riteria |  |
|-----------------------|------------|--------------------|--|
| 1,2-Dichloroethane-d4 | 112        | 70-130             |  |
| Toluene-d8            | 89         | 70-130             |  |
| 4-Bromofluorobenzene  | 85         | 70-130             |  |
| Dibromofluoromethane  | 104        | 70-130             |  |



|                                                               |                                                              | Serial_N                                         | o:02221816:22                               |
|---------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                 | 200 HAMILTON AVENUE                                          | Lab Number:                                      | L1805675                                    |
| Project Number:                                               | 170029                                                       | Report Date:                                     | 02/22/18                                    |
|                                                               | SAMPLE RESULTS                                               |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:    | L1805675-04 D<br>MW-7<br>200 HAMILTON AVE., WHITE PLAINS, NY | Date Collected:<br>Date Received:<br>Field Prep: | 02/16/18 13:55<br>02/16/18<br>Not Specified |
| Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>1,8260C<br>02/21/18 12:27<br>AD                     |                                                  |                                             |

| Parameter                      | Result         | Qualifier | Units | RL  | MDL  | Dilution Factor |
|--------------------------------|----------------|-----------|-------|-----|------|-----------------|
| Volatile Organics by GC/MS - W | estborough Lab |           |       |     |      |                 |
| Benzene                        | 0.94           | J         | ug/l  | 1.0 | 0.32 | 2               |
| Toluene                        | 2.3            | J         | ug/l  | 5.0 | 1.4  | 2               |
| Ethylbenzene                   | 92             |           | ug/l  | 5.0 | 1.4  | 2               |
| Methyl tert butyl ether        | 15             |           | ug/l  | 5.0 | 1.4  | 2               |
| p/m-Xylene                     | 290            |           | ug/l  | 5.0 | 1.4  | 2               |
| o-Xylene                       | 28             |           | ug/l  | 5.0 | 1.4  | 2               |
| Xylenes, Total                 | 320            |           | ug/l  | 5.0 | 1.4  | 2               |
| n-Butylbenzene                 | 1.9            | J         | ug/l  | 5.0 | 1.4  | 2               |
| sec-Butylbenzene               | 2.7            | J         | ug/l  | 5.0 | 1.4  | 2               |
| tert-Butylbenzene              | ND             |           | ug/l  | 5.0 | 1.4  | 2               |
| Isopropylbenzene               | 14             |           | ug/l  | 5.0 | 1.4  | 2               |
| p-Isopropyltoluene             | 4.5            | J         | ug/l  | 5.0 | 1.4  | 2               |
| Naphthalene                    | 14             |           | ug/l  | 5.0 | 1.4  | 2               |
| n-Propylbenzene                | 14             |           | ug/l  | 5.0 | 1.4  | 2               |
| 1,3,5-Trimethylbenzene         | 56             |           | ug/l  | 5.0 | 1.4  | 2               |
| 1,2,4-Trimethylbenzene         | 110            |           | ug/l  | 5.0 | 1.4  | 2               |
|                                |                |           |       |     |      |                 |

| Surrogate             | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|-----------------------|------------|-----------|------------------------|--|
| 1,2-Dichloroethane-d4 | 111        |           | 70-130                 |  |
| Toluene-d8            | 92         |           | 70-130                 |  |
| 4-Bromofluorobenzene  | 85         |           | 70-130                 |  |
| Dibromofluoromethane  | 101        |           | 70-130                 |  |



|                                                               | Serial_No:02221816:22                                        |                                                  |                                             |  |  |  |  |
|---------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|--|--|--|--|
| Project Name:                                                 | 200 HAMILTON AVENUE                                          | Lab Number:                                      | L1805675                                    |  |  |  |  |
| Project Number:                                               | 170029                                                       | Report Date:                                     | 02/22/18                                    |  |  |  |  |
|                                                               | SAMPLE RESULTS                                               |                                                  |                                             |  |  |  |  |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:    | L1805675-05 D<br>MW-2<br>200 HAMILTON AVE., WHITE PLAINS, NY | Date Collected:<br>Date Received:<br>Field Prep: | 02/16/18 16:25<br>02/16/18<br>Not Specified |  |  |  |  |
| Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>1,8260C<br>02/21/18 12:56<br>AD                     |                                                  |                                             |  |  |  |  |

| Result                                       | Qualifier                                                                                                                 | Units                                               | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dilution Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Volatile Organics by GC/MS - Westborough Lab |                                                                                                                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| ND                                           |                                                                                                                           | ug/l                                                | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1800                                         |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ND                                           |                                                                                                                           | ug/l                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                              | borough Lab<br>ND<br>ND<br>ND<br>ND<br>1800<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | borough Lab  ND | ND         ug/l           ND         ug/l           ND         ug/l           ND         ug/l           ND         ug/l           1800         ug/l           ND         ug/l           ND | ND         ug/l         5.0           ND         ug/l         25           ND         ug/l         25           ND         ug/l         25           1800         ug/l         25           ND         ug/l         25 | ND         ug/l         5.0         1.6           ND         ug/l         25         7.0           ND         ug/l         25         7.0           ND         ug/l         25         7.0           1800         ug/l         25         7.0           ND         ug/l         25         7.0 |  |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 108        | 70-130                           |  |
| Toluene-d8            | 89         | 70-130                           |  |
| 4-Bromofluorobenzene  | 85         | 70-130                           |  |
| Dibromofluoromethane  | 104        | 70-130                           |  |



| Serial_No:02221816:22             |                                     |                 |                |  |  |
|-----------------------------------|-------------------------------------|-----------------|----------------|--|--|
| Project Name:                     | 200 HAMILTON AVENUE                 | Lab Number:     | L1805675       |  |  |
| Project Number:                   | 170029                              | Report Date:    | 02/22/18       |  |  |
|                                   | SAMPLE RESULTS                      |                 |                |  |  |
| Lab ID:                           | L1805675-06                         | Date Collected: | 02/16/18 16:47 |  |  |
| Client ID:                        | MW-9                                | Date Received:  | 02/16/18       |  |  |
| Sample Location:<br>Sample Depth: | 200 HAMILTON AVE., WHITE PLAINS, NY | Field Prep:     | Not Specified  |  |  |
| Matrix:                           | Water                               |                 |                |  |  |
| Analytical Method:                | 1,8260C                             |                 |                |  |  |
| Analytical Date:                  | 02/21/18 13:54                      |                 |                |  |  |
| Analyst:                          | AD                                  |                 |                |  |  |

| Parameter                      | Result         | Qualifier | Units | RL   | MDL  | Dilution Factor |
|--------------------------------|----------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - W | estborough Lab |           |       |      |      |                 |
| Benzene                        | ND             |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                        | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                   | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Methyl tert butyl ether        | 34             |           | ug/l  | 2.5  | 0.70 | 1               |
| p/m-Xylene                     | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| o-Xylene                       | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Xylenes, Total                 | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Butylbenzene                 | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| sec-Butylbenzene               | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| tert-Butylbenzene              | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Isopropylbenzene               | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| p-Isopropyltoluene             | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Naphthalene                    | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Propylbenzene                | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,3,5-Trimethylbenzene         | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2,4-Trimethylbenzene         | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
|                                |                |           |       |      |      |                 |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 107        | 70-130                           |  |
| Toluene-d8            | 89         | 70-130                           |  |
| 4-Bromofluorobenzene  | 84         | 70-130                           |  |
| Dibromofluoromethane  | 104        | 70-130                           |  |



|                                                               |                                                            | Serial_N                                         | o:02221816:22                               |
|---------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                 | 200 HAMILTON AVENUE                                        | Lab Number:                                      | L1805675                                    |
| Project Number:                                               | 170029                                                     | Report Date:                                     | 02/22/18                                    |
|                                                               | SAMPLE RESULTS                                             |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:    | L1805675-07<br>TB-1<br>200 HAMILTON AVE., WHITE PLAINS, NY | Date Collected:<br>Date Received:<br>Field Prep: | 02/16/18 00:00<br>02/16/18<br>Not Specified |
| Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>1,8260C<br>02/20/18 20:38<br>PD                   |                                                  |                                             |

| Parameter                      | Result         | Qualifier | Units | RL   | MDL  | Dilution Factor |
|--------------------------------|----------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - W | estborough Lab |           |       |      |      |                 |
| Benzene                        | ND             |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                        | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                   | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Methyl tert butyl ether        | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| p/m-Xylene                     | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| o-Xylene                       | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Xylenes, Total                 | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Butylbenzene                 | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| sec-Butylbenzene               | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| tert-Butylbenzene              | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Isopropylbenzene               | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| p-Isopropyltoluene             | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Naphthalene                    | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| n-Propylbenzene                | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,3,5-Trimethylbenzene         | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2,4-Trimethylbenzene         | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
|                                |                |           |       |      |      |                 |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 103        | 70-130                           |  |
| Toluene-d8            | 99         | 70-130                           |  |
| 4-Bromofluorobenzene  | 98         | 70-130                           |  |
| Dibromofluoromethane  | 103        | 70-130                           |  |



| Serial_No:02221816:22                                         |                                                              |                                                  |                                             |  |  |  |
|---------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|--|--|--|
| Project Name:                                                 | 200 HAMILTON AVENUE                                          | Lab Number:                                      | L1805675                                    |  |  |  |
| Project Number:                                               | 170029                                                       | Report Date:                                     | 02/22/18                                    |  |  |  |
|                                                               | SAMPLE RESULTS                                               |                                                  |                                             |  |  |  |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:    | L1805675-08 D<br>MW-8<br>200 HAMILTON AVE., WHITE PLAINS, NY | Date Collected:<br>Date Received:<br>Field Prep: | 02/16/18 18:07<br>02/17/18<br>Not Specified |  |  |  |
| Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>1,8260C<br>02/21/18 13:25<br>AD                     |                                                  |                                             |  |  |  |

| Parameter                      | Result         | Qualifier | Units | RL  | MDL  | Dilution Factor |
|--------------------------------|----------------|-----------|-------|-----|------|-----------------|
| Volatile Organics by GC/MS - W | estborough Lab |           |       |     |      |                 |
| Benzene                        | ND             |           | ug/l  | 1.0 | 0.32 | 2               |
| Toluene                        | ND             |           | ug/l  | 5.0 | 1.4  | 2               |
| Ethylbenzene                   | 33             |           | ug/l  | 5.0 | 1.4  | 2               |
| Methyl tert butyl ether        | 20             |           | ug/l  | 5.0 | 1.4  | 2               |
| p/m-Xylene                     | 22             |           | ug/l  | 5.0 | 1.4  | 2               |
| o-Xylene                       | ND             |           | ug/l  | 5.0 | 1.4  | 2               |
| Xylenes, Total                 | 22             |           | ug/l  | 5.0 | 1.4  | 2               |
| n-Butylbenzene                 | 36             |           | ug/l  | 5.0 | 1.4  | 2               |
| sec-Butylbenzene               | 25             |           | ug/l  | 5.0 | 1.4  | 2               |
| tert-Butylbenzene              | ND             |           | ug/l  | 5.0 | 1.4  | 2               |
| Isopropylbenzene               | 44             |           | ug/l  | 5.0 | 1.4  | 2               |
| p-Isopropyltoluene             | 8.3            |           | ug/l  | 5.0 | 1.4  | 2               |
| Naphthalene                    | 23             |           | ug/l  | 5.0 | 1.4  | 2               |
| n-Propylbenzene                | 130            |           | ug/l  | 5.0 | 1.4  | 2               |
| 1,3,5-Trimethylbenzene         | 57             |           | ug/l  | 5.0 | 1.4  | 2               |
| 1,2,4-Trimethylbenzene         | 4.8            | J         | ug/l  | 5.0 | 1.4  | 2               |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 118        | 70-130                           |  |
| Toluene-d8            | 90         | 70-130                           |  |
| 4-Bromofluorobenzene  | 84         | 70-130                           |  |
| Dibromofluoromethane  | 97         | 70-130                           |  |



 Project Name:
 200 HAMILTON AVENUE
 Lab Number:
 L1805675

 Project Number:
 170029
 Report Date:
 02/22/18

# Method Blank Analysis Batch Quality Control

| Analytical Method: | 1,8260C        |
|--------------------|----------------|
| Analytical Date:   | 02/20/18 17:41 |
| Analyst:           | PD             |

| arameter                  | Result            | Qualifier Units    | RL          | MDL         |
|---------------------------|-------------------|--------------------|-------------|-------------|
| olatile Organics by GC/MS | - Westborough Lat | o for sample(s): C | 2,07 Batch: | WG1091048-5 |
| Benzene                   | ND                | ug/l               | 0.50        | 0.16        |
| Toluene                   | ND                | ug/l               | 2.5         | 0.70        |
| Ethylbenzene              | ND                | ug/l               | 2.5         | 0.70        |
| Methyl tert butyl ether   | ND                | ug/l               | 2.5         | 0.70        |
| p/m-Xylene                | ND                | ug/l               | 2.5         | 0.70        |
| o-Xylene                  | ND                | ug/l               | 2.5         | 0.70        |
| Xylenes, Total            | ND                | ug/l               | 2.5         | 0.70        |
| n-Butylbenzene            | ND                | ug/l               | 2.5         | 0.70        |
| sec-Butylbenzene          | ND                | ug/l               | 2.5         | 0.70        |
| tert-Butylbenzene         | ND                | ug/l               | 2.5         | 0.70        |
| Isopropylbenzene          | ND                | ug/l               | 2.5         | 0.70        |
| p-Isopropyltoluene        | ND                | ug/l               | 2.5         | 0.70        |
| Naphthalene               | ND                | ug/l               | 2.5         | 0.70        |
| n-Propylbenzene           | ND                | ug/l               | 2.5         | 0.70        |
| 1,3,5-Trimethylbenzene    | ND                | ug/l               | 2.5         | 0.70        |
| 1,2,4-Trimethylbenzene    | ND                | ug/l               | 2.5         | 0.70        |

|                       |           | Accept          | tance |
|-----------------------|-----------|-----------------|-------|
| Surrogate             | %Recovery | Qualifier Crite | eria  |
| 1,2-Dichloroethane-d4 | 104       | 70-1            | 30    |
| Toluene-d8            | 97        | 70-1            | 30    |
| 4-Bromofluorobenzene  | 98        | 70-1            | 30    |
| Dibromofluoromethane  | 102       | 70-1            | 30    |



 Project Name:
 200 HAMILTON AVENUE
 Lab Number:
 L1805675

 Project Number:
 170029
 Report Date:
 02/22/18

# Method Blank Analysis Batch Quality Control

| Analytical Method: | 1,8260C        |
|--------------------|----------------|
| Analytical Date:   | 02/21/18 10:32 |
| Analyst:           | PD             |

| arameter                  | Result           | Qualifier Units  | s RL        | MDL                |
|---------------------------|------------------|------------------|-------------|--------------------|
| olatile Organics by GC/MS | - Westborough La | b for sample(s): | 01,03-06,08 | Batch: WG1091209-5 |
| Benzene                   | ND               | ug/l             | 0.50        | 0.16               |
| Toluene                   | ND               | ug/l             | 2.5         | 0.70               |
| Ethylbenzene              | ND               | ug/l             | 2.5         | 0.70               |
| Methyl tert butyl ether   | ND               | ug/l             | 2.5         | 0.70               |
| p/m-Xylene                | ND               | ug/l             | 2.5         | 0.70               |
| o-Xylene                  | ND               | ug/l             | 2.5         | 0.70               |
| Xylenes, Total            | ND               | ug/l             | 2.5         | 0.70               |
| n-Butylbenzene            | ND               | ug/l             | 2.5         | 0.70               |
| sec-Butylbenzene          | ND               | ug/l             | 2.5         | 0.70               |
| tert-Butylbenzene         | ND               | ug/l             | 2.5         | 0.70               |
| Isopropylbenzene          | ND               | ug/l             | 2.5         | 0.70               |
| p-Isopropyltoluene        | ND               | ug/l             | 2.5         | 0.70               |
| Naphthalene               | ND               | ug/l             | 2.5         | 0.70               |
| n-Propylbenzene           | ND               | ug/l             | 2.5         | 0.70               |
| 1,3,5-Trimethylbenzene    | ND               | ug/l             | 2.5         | 0.70               |
| 1,2,4-Trimethylbenzene    | ND               | ug/l             | 2.5         | 0.70               |

|                       |              | Acceptance       |
|-----------------------|--------------|------------------|
| Surrogate             | %Recovery Qu | alifier Criteria |
| 1,2-Dichloroethane-d4 | 107          | 70-130           |
| Toluene-d8            | 90           | 70-130           |
| 4-Bromofluorobenzene  | 85           | 70-130           |
| Dibromofluoromethane  | 104          | 70-130           |



# Lab Control Sample Analysis Batch Quality Control

Project Number: 170029 Lab Number: L1805675 Report Date: 02/22/18

| arameter                                | LCS<br>%Recovery | Qual       |       | LCSD<br>Recovery | Qual        | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|-----------------------------------------|------------------|------------|-------|------------------|-------------|---------------------|-----|------|---------------|
| platile Organics by GC/MS - Westborough | Lab Associated   | sample(s): | 02,07 | Batch:           | WG1091048-3 | WG1091048-4         |     |      |               |
| Benzene                                 | 100              |            |       | 96               |             | 70-130              | 4   |      | 20            |
| Toluene                                 | 100              |            |       | 96               |             | 70-130              | 4   |      | 20            |
| Ethylbenzene                            | 100              |            |       | 100              |             | 70-130              | 0   |      | 20            |
| Methyl tert butyl ether                 | 100              |            |       | 97               |             | 63-130              | 3   |      | 20            |
| p/m-Xylene                              | 105              |            |       | 100              |             | 70-130              | 5   |      | 20            |
| o-Xylene                                | 105              |            |       | 100              |             | 70-130              | 5   |      | 20            |
| n-Butylbenzene                          | 110              |            |       | 99               |             | 53-136              | 11  |      | 20            |
| sec-Butylbenzene                        | 110              |            |       | 99               |             | 70-130              | 11  |      | 20            |
| tert-Butylbenzene                       | 100              |            |       | 96               |             | 70-130              | 4   |      | 20            |
| Isopropylbenzene                        | 100              |            |       | 96               |             | 70-130              | 4   |      | 20            |
| p-Isopropyltoluene                      | 110              |            |       | 99               |             | 70-130              | 11  |      | 20            |
| Naphthalene                             | 140              | Q          |       | 130              |             | 70-130              | 7   |      | 20            |
| n-Propylbenzene                         | 100              |            |       | 98               |             | 69-130              | 2   |      | 20            |
| 1,3,5-Trimethylbenzene                  | 100              |            |       | 96               |             | 64-130              | 4   |      | 20            |
| 1,2,4-Trimethylbenzene                  | 100              |            |       | 96               |             | 70-130              | 4   |      | 20            |

| Surrogate             | LCS           | LCSD              | Acceptance |
|-----------------------|---------------|-------------------|------------|
|                       | %Recovery Qua | nl %Recovery Qual | Criteria   |
| 1,2-Dichloroethane-d4 | 103           | 102               | 70-130     |
| Toluene-d8            | 98            | 99                | 70-130     |
| 4-Bromofluorobenzene  | 97            | 99                | 70-130     |
| Dibromofluoromethane  | 101           | 101               | 70-130     |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** 200 HAMILTON AVENUE

Project Number: 170029 Lab Number: L1805675 Report Date: 02/22/18

|                                           | LCS           |              | LCSD            |           | %Recovery       |       |      | RPD    |
|-------------------------------------------|---------------|--------------|-----------------|-----------|-----------------|-------|------|--------|
| rameter                                   | %Recovery     | Qual         | %Recovery       | Qual      | Limits          | RPD   | Qual | Limits |
| platile Organics by GC/MS - Westborough L | ab Associated | sample(s): 0 | 1,03-06,08 Bate | ch: WG109 | 91209-3 WG10912 | 209-4 |      |        |
| Benzene                                   | 92            |              | 93              |           | 70-130          | 1     |      | 20     |
| Toluene                                   | 87            |              | 86              |           | 70-130          | 1     |      | 20     |
| Ethylbenzene                              | 92            |              | 92              |           | 70-130          | 0     |      | 20     |
| Methyl tert butyl ether                   | 94            |              | 93              |           | 63-130          | 1     |      | 20     |
| p/m-Xylene                                | 95            |              | 95              |           | 70-130          | 0     |      | 20     |
| o-Xylene                                  | 100           |              | 100             |           | 70-130          | 0     |      | 20     |
| n-Butylbenzene                            | 89            |              | 88              |           | 53-136          | 1     |      | 20     |
| sec-Butylbenzene                          | 86            |              | 86              |           | 70-130          | 0     |      | 20     |
| tert-Butylbenzene                         | 87            |              | 86              |           | 70-130          | 1     |      | 20     |
| Isopropylbenzene                          | 82            |              | 82              |           | 70-130          | 0     |      | 20     |
| p-lsopropyltoluene                        | 91            |              | 91              |           | 70-130          | 0     |      | 20     |
| Naphthalene                               | 100           |              | 94              |           | 70-130          | 6     |      | 20     |
| n-Propylbenzene                           | 82            |              | 82              |           | 69-130          | 0     |      | 20     |
| 1,3,5-Trimethylbenzene                    | 87            |              | 87              |           | 64-130          | 0     |      | 20     |
| 1,2,4-Trimethylbenzene                    | 88            |              | 88              |           | 70-130          | 0     |      | 20     |

| Surrogate             | LCS            | LCSD           | Acceptance |
|-----------------------|----------------|----------------|------------|
|                       | %Recovery Qual | %Recovery Qual | Criteria   |
| 1,2-Dichloroethane-d4 | 114            | 113            | 70-130     |
| Toluene-d8            | 89             | 89             | 70-130     |
| 4-Bromofluorobenzene  | 84             | 85             | 70-130     |
| Dibromofluoromethane  | 105            | 106            | 70-130     |



#### Project Name: 200 HAMILTON AVENUE Project Number: 170029

Serial\_No:02221816:22 Lab Number: L1805675 Report Date: 02/22/18

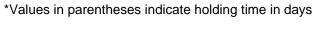
# Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

# **Cooler Information**

| Cooler | Custody Seal |
|--------|--------------|
| А      | Absent       |
| A1     | Absent       |


# Containar Information

| Container Info | ormation           |        | Initial | Final | Temp  |      |        | Frozen    |                   |
|----------------|--------------------|--------|---------|-------|-------|------|--------|-----------|-------------------|
| Container ID   | Container Type     | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)       |
| L1805675-01A   | Vial HCI preserved | А      | NA      |       | 2.7   | Y    | Absent |           | NYCP51-8260-G(14) |
| L1805675-01B   | Vial HCI preserved | А      | NA      |       | 2.7   | Y    | Absent |           | NYCP51-8260-G(14) |
| L1805675-01C   | Vial HCI preserved | А      | NA      |       | 2.7   | Y    | Absent |           | NYCP51-8260-G(14) |
| L1805675-02A   | Vial HCI preserved | А      | NA      |       | 2.7   | Υ    | Absent |           | NYCP51-8260-G(14) |
| L1805675-02B   | Vial HCI preserved | А      | NA      |       | 2.7   | Υ    | Absent |           | NYCP51-8260-G(14) |
| L1805675-02C   | Vial HCI preserved | А      | NA      |       | 2.7   | Υ    | Absent |           | NYCP51-8260-G(14) |
| L1805675-03A   | Vial HCI preserved | А      | NA      |       | 2.7   | Υ    | Absent |           | NYCP51-8260-G(14) |
| L1805675-03B   | Vial HCI preserved | А      | NA      |       | 2.7   | Υ    | Absent |           | NYCP51-8260-G(14) |
| L1805675-03C   | Vial HCI preserved | А      | NA      |       | 2.7   | Υ    | Absent |           | NYCP51-8260-G(14) |
| L1805675-04A   | Vial HCI preserved | А      | NA      |       | 2.7   | Υ    | Absent |           | NYCP51-8260-G(14) |
| L1805675-04B   | Vial HCI preserved | А      | NA      |       | 2.7   | Y    | Absent |           | NYCP51-8260-G(14) |
| L1805675-04C   | Vial HCI preserved | А      | NA      |       | 2.7   | Y    | Absent |           | NYCP51-8260-G(14) |
| L1805675-05A   | Vial HCI preserved | А      | NA      |       | 2.7   | Υ    | Absent |           | NYCP51-8260-G(14) |
| L1805675-05B   | Vial HCI preserved | А      | NA      |       | 2.7   | Y    | Absent |           | NYCP51-8260-G(14) |
| L1805675-05C   | Vial HCI preserved | А      | NA      |       | 2.7   | Y    | Absent |           | NYCP51-8260-G(14) |
| L1805675-06A   | Vial HCI preserved | А      | NA      |       | 2.7   | Y    | Absent |           | NYCP51-8260-G(14) |
| L1805675-06B   | Vial HCI preserved | А      | NA      |       | 2.7   | Y    | Absent |           | NYCP51-8260-G(14) |
| L1805675-06C   | Vial HCI preserved | А      | NA      |       | 2.7   | Υ    | Absent |           | NYCP51-8260-G(14) |
| L1805675-07A   | Vial HCI preserved | А      | NA      |       | 2.7   | Υ    | Absent |           | NYCP51-8260-G(14) |
| L1805675-07B   | Vial HCI preserved | А      | NA      |       | 2.7   | Y    | Absent |           | NYCP51-8260-G(14) |
| L1805675-08A   | Vial HCI preserved | A1     | NA      |       | 3.2   | Y    | Absent |           | NYCP51-8260-G(14) |
| L1805675-08B   | Vial HCl preserved | A1     | NA      |       | 3.2   | Y    | Absent |           | NYCP51-8260-G(14) |



Project Name: 200 HAMILTON AVENUE
Project Number: 170029

| Container Information |                    |        | Initial | Final | Temp  |      |        | Frozen    |                   |  |
|-----------------------|--------------------|--------|---------|-------|-------|------|--------|-----------|-------------------|--|
| Container ID          | Container Type     | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)       |  |
| L1805675-08C          | Vial HCl preserved | A1     | NA      |       | 3.2   | Y    | Absent |           | NYCP51-8260-G(14) |  |





# Project Name: 200 HAMILTON AVENUE

Project Number: 170029

# Lab Number: L1805675

#### **Report Date:** 02/22/18

#### GLOSSARY

#### Acronyms

| EDL      | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA      | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS      | <ul> <li>Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of<br/>analytes or a material containing known and verified amounts of analytes.</li> </ul>                                                                                                                                                                                                                                   |
| LCSD     | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB      | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| MDL      | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS       | - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.                                                                                                                                                                                                                                                  |
| MSD      | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA       | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NC       | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
| NDPA/DPA | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI       | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP       | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| RL       | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                                                                                                                                  |
| RPD      | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM      | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP     | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
| TIC      | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound                                                                                                                                                                                                                                                                                                                               |

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

#### Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after

adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers



# Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1805675 Report Date: 02/22/18

#### Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.



Project Name: 200 HAMILTON AVENUE Project Number: 170029 
 Lab Number:
 L1805675

 Report Date:
 02/22/18

### REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



# **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine. EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate EPA 9010: <u>NPW</u> and SCM: Amenable Cyanide Distillation SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. **Mansfield Facility** 

SM 2540D: TSS EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

#### **Mansfield Facility:**

Drinking Water EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: AI, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

| NEW YORK         Service Centers           ALPHA         CHAIN OF         Mahwah, NJ 07430: 35 Whitney           CUSTODY         Albany, NY 12205: 14 Walker Watter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | er Way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105                                                  | Pag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ge l<br>of 1                                                                                                    | D                     | ate Rec'd<br>in Lab | 2                                   | (16/18-                                                                              | ALF                                                                                                             | ALPHA JOD #<br>L 1805675 |                                              |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|-------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------|-----------------|
| Westborough, MA 01581<br>8 Walkup Dr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mansfield, MA 02048<br>320 Forbes Blvd    | Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | Deliver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ables                                                                                                           |                       |                     |                                     | g Information                                                                        |                                                                                                                 |                          |                                              |                 |
| TEL: 508-898-9220 TEL: 508-822-9300 Project Name: 200 Housilton Queenal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | XA                    |                     |                                     | ASP-B                                                                                | the second se | Same as Client Info      |                                              |                 |
| FAX: 508-898-9193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FAX: 508-822-3288                         | Project Location: 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Location: 200 Hamilton Ave, White Plains, NY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                       |                     |                                     | ř-                                                                                   | EQuIS (4 File)                                                                                                  |                          | Same as Client Into                          | 5               |
| Client Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-10 million                             | Project # 1700 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99                                                   | (1400)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | w.unerr                                                                                                         | 1-101                 |                     | QuIS (1 File)                       | 7                                                                                    | 1 Latin (4)                                                                                                     | File) PO#                |                                              |                 |
| Client: AKRF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INC.                                      | (Use Project name as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                       | CONTRACTOR OF       | tory Requirem                       | ent (                                                                                |                                                                                                                 | Disc                     |                                              |                 |
| Address: 34 Sou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rebecca k                                 | Sincl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A DESCRIPTION OF THE OWNER.                                                                                     | Y TOGS                | 1                   | NY Part 375                         |                                                                                      | osal Site Information                                                                                           |                          |                                              |                 |
| White Pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | eseccia i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ingi                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                       | WQ Standards        | 6 8                                 | r nueae                                                                              | Please identify below location of<br>applicable disposal facilities.                                            |                          |                                              |                 |
| Phone: 914-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | ALPHAQuote #:<br>Turn-Around Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and the local division of the                        | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |                       | -                   | Y Restricted Us                     | e []                                                                                 |                                                                                                                 |                          |                                              |                 |
| Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | Standa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X have                                               | Due Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |                       |                     | Y Unirestricted U                   |                                                                                      | Other                                                                                                           |                          | sal Facility:                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | @ AKZE COM                                | Rush (only if pre approv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      | # of Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                       | 100000              | and here a subsection of the second |                                                                                      |                                                                                                                 |                          | NJ NY                                        |                 |
| and the local diversities in the Westmann and the South of the South o | been previously analyz                    | and the second se |                                                      | # OI Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.                                                                                                              |                       | Statement Streement | YC Sewer Discl                      | narge                                                                                | _                                                                                                               |                          | _ Other:                                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c requirements/comn                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                       | ANAL                | SIS                                 | -                                                                                    |                                                                                                                 | Samp                     | ole Filtration                               |                 |
| Please specify Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sorTAL                                    | open &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                       | 360)                |                                     |                                                                                      |                                                                                                                 | Prese<br>La              | ab to do<br>ervation<br>ab to do             |                 |
| ALPHA Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Coll                                                 | ection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                               |                       | 10-70               |                                     |                                                                                      |                                                                                                                 | (Pleas                   | se Specify below)                            |                 |
| (Lab Use Only) Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | mple ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date                                                 | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample<br>Matrix                                                                                                | Sampler's<br>Initials | CP                  |                                     |                                                                                      |                                                                                                                 |                          |                                              | _               |
| 05675- 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mw-1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/16/18                                              | 1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | CP                    |                     |                                     | -                                                                                    |                                                                                                                 | Sample                   | e Specific Comments                          |                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mw-5                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/16/18                                              | Contraction of the local division of the loc | GW                                                                                                              | 102.7/8               | X                   | _                                   | -                                                                                    |                                                                                                                 |                          |                                              |                 |
| 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mw-6                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21618                                                | 1145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                             | The                   | X                   |                                     | -                                                                                    |                                                                                                                 | _                        | *                                            |                 |
| ov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MW-7                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/16/18                                              | 1.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GW                                                                                                              | TM                    | X                   |                                     |                                                                                      |                                                                                                                 |                          |                                              |                 |
| of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mw-a                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GW                                                                                                              | CP                    | 7                   |                                     |                                                                                      |                                                                                                                 | -                        |                                              |                 |
| O <sub>b</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MW-9                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/16/18                                              | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GW                                                                                                              | TM                    | X                   |                                     |                                                                                      |                                                                                                                 |                          |                                              |                 |
| 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/16/18                                              | 1647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GW                                                                                                              | CP                    | X                   |                                     |                                                                                      |                                                                                                                 |                          |                                              |                 |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TB-1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/16/16                                              | LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | water                                                                                                           | LAB                   | ×                   |                                     |                                                                                      |                                                                                                                 |                          |                                              | T               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                       |                     | _                                   |                                                                                      |                                                                                                                 |                          |                                              | T               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                       |                     |                                     |                                                                                      |                                                                                                                 |                          |                                              | T               |
| reservative Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Container Corte                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                       |                     |                                     |                                                                                      |                                                                                                                 |                          |                                              | T               |
| Preservative Code:         Container Code         Westboro: Certification M           A = None         P = Plastic         Westboro: Certification M           B = HCI         A = Amber Glass         Mansfield: Certification M           C = HNO3         V = Vial         Vestboro: Certification M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Container Type                                                                                                  |                       |                     | and                                 | Please print clearly, legibly<br>and completely. Samples can<br>not be logged in and |                                                                                                                 |                          |                                              |                 |
| = H <sub>2</sub> SO <sub>4</sub><br>= NaOH<br>= MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G = Glass<br>B = Bacteria Cup<br>C = Cube | Preservativ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                       | B                   |                                     |                                                                                      |                                                                                                                 | turna                    | around time clock wi<br>until any ambiguitie | ll not<br>s are |
| = NaHSO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O = Other                                 | Relinquished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      | Date/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second second                                                                                           | 2                     | Received            | By                                  |                                                                                      | Date/Time                                                                                                       | resol                    | ved, BY EXECUTIN                             | IG              |
| = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>E = Zn Ac/NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E = Encore<br>D = BOD Bottle              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second se | 8 1717 /20            |                     | 5 AACa                              |                                                                                      | 18 17;                                                                                                          |                          | COC, THE CLIENT                              |                 |
| = Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10000000000                               | 1151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AAC                                                  | 2/16/18 19:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |                       | -                   | SAR                                 | 11                                                                                   | 6/19 14                                                                                                         | / TO B                   | HAS READ AND AGREES                          |                 |
| on Ity is proteine on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                    | AIIKIN/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -23,                                                                                                            | au                    | 1                   | N                                   | 0/110                                                                                | 1/4 232                                                                                                         | TERM                     | MS & CONDITIONS                              |                 |
| rm No: 01-25 HC (rev. 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-Sept-2013)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                       |                     |                                     |                                                                                      | 1.                                                                                                              | (See                     | reverse side.)                               |                 |

|                                                                                        | NEW YORK<br>CHAIN OF<br>CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Service Centers<br>Mahwah, NJ 07430: 35 Whitn<br>Albany, NY 12205: 14 Walker<br>Tonawanda, NY 14150: 275 C | Way                               | 105           | Pag      | je l<br>of l |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in Lab                    |                     | 9/18                                                      |            | ALPHA Job #                                                                     |               |  |  |  |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|-----------------------------------------------------------|------------|---------------------------------------------------------------------------------|---------------|--|--|--|
| Westborough, MA 01581                                                                  | Mansfield, MA 02048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Project Information                                                                                        | Project Information               |               |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     | Déliverables                                              |            |                                                                                 |               |  |  |  |
| 8 Walkup Dr.<br>TEL: 508-898-9220                                                      | 320 Forbes Blvd<br>TEL: 508-822-9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            | Project Name: 200 Hamilton Avenue |               |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     | X ASP-A ASP-B                                             |            |                                                                                 |               |  |  |  |
| FAX: 508-898-9193 FAX: 508-822-3288 Project Location: 200 Hawilton Ave White Plains NY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                   |               |          | -            | EQuIS (1 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | Same as Client Info |                                                           |            |                                                                                 |               |  |  |  |
| Client Information                                                                     | the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project # 1700                                                                                             |                                   |               | 1.511    | 101          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Other                     | 0.07 <b>b</b>       |                                                           | S (4 File) |                                                                                 |               |  |  |  |
| Client: AKRF, I                                                                        | NC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Use Project name as F                                                                                     |                                   |               |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atory Requi               | rement              | and the second                                            | A. 2       | Disposal Site Information                                                       |               |  |  |  |
| Address: 34 South Breadway Project Manager: Rebecca                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                   |               |          | _            | ALC: NO. OF CONTRACTOR OF CONT | Y TOGS                    |                     | NY Pa                                                     | 1 375      | Please identify below location of                                               |               |  |  |  |
| White Plains NY ALPHAQuote #:                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                   |               |          |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WQ Standa                 | nds [               | riease identity below local                               |            |                                                                                 |               |  |  |  |
| Phone: 914-922.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turn-Around Time                                                                                           |                                   | 1000          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y Restricted              |                     | Other                                                     |            | Disposal Facility:                                                              |               |  |  |  |
| Fax:                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standa                                                                                                     | N N                               | Due Date      | é.       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y Unrestrict              |                     | 0.0000000                                                 |            |                                                                                 |               |  |  |  |
| Email: RKINAL                                                                          | @AKRE.w.u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            |                                   | # of Days     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NYC Sewer Discharge Other |                     |                                                           |            |                                                                                 |               |  |  |  |
| These samples have t                                                                   | and the second state of th |                                                                                                            |                                   |               | <u>.</u> |              | ANAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                     |                                                           |            | Sample Filtration                                                               | 15            |  |  |  |
| Other project specific                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                   |               |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     |                                                           |            |                                                                                 | - 0           |  |  |  |
| R                                                                                      | Please CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ose SDG                                                                                                    | ×                                 |               |          |              | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                     |                                                           |            | Done<br>Lab to do<br>Preservation                                               | :<br>a<br>- 1 |  |  |  |
| Please specify Metals                                                                  | s or TAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            |                                   |               |          |              | (oo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                     |                                                           |            | Lab to do                                                                       | В             |  |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                   |               |          |              | 636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                     |                                                           |            | (Please Specify below)                                                          | 0             |  |  |  |
| ALPHA Lab ID                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | emala ID                                                                                                   | Coll                              | ection        | Sample   | Sampler's    | (mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                     |                                                           |            |                                                                                 | 1             |  |  |  |
| (Lab Use Only)                                                                         | San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample ID                                                                                                  | Date                              | Time          | Matrix   | Initials     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                     |                                                           |            | Sample Specific Comments                                                        |               |  |  |  |
| 05675-08                                                                               | MW-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            | 2/16/18                           | 1807          | GW       | CP           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                     |                                                           |            |                                                                                 | T             |  |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                   |               |          | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     |                                                           |            |                                                                                 | +             |  |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                   |               |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     |                                                           | _          |                                                                                 | +             |  |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                   |               |          |              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                     | + +                                                       | -          |                                                                                 | +             |  |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                   |               |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     | +                                                         |            |                                                                                 | +             |  |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                   |               |          |              | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                     | +                                                         |            |                                                                                 | +             |  |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | -                                 |               |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     | +                                                         |            |                                                                                 | +             |  |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                   |               |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | _                   | +                                                         | _          |                                                                                 | +             |  |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                   |               |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     | ++                                                        |            |                                                                                 | +             |  |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | -                                 |               |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     | +                                                         |            |                                                                                 | ⊢             |  |  |  |
| Preservative Code:                                                                     | Container Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Westboro: Certification I                                                                                  | No: MA02E                         |               |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     | +                                                         |            |                                                                                 | L             |  |  |  |
| A = None<br>B = HCI<br>C = HNO <sub>3</sub>                                            | P = Plastic<br>A = Amber Glass<br>V = Vial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mansfield: Certification I                                                                                 |                                   | Container Typ |          | ntainer Type | $\vee$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                     | $\square$                                                 |            | Please print clearly, legibl<br>and completely. Samples<br>not be logged in and |               |  |  |  |
| D = H <sub>2</sub> SO <sub>4</sub><br>E = NaOH                                         | G = Glass<br>B = Bacteria Cup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            |                                   |               | B        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     | turnaround time clock will<br>start until any ambiguities |            |                                                                                 |               |  |  |  |
| F = MeOH<br>G = NaHSO <sub>4</sub>                                                     | C = Cube<br>O = Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Relinquished                                                                                               | By:                               | Date/Time     |          |              | Receive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d By:                     |                     | Date/T                                                    |            | resolved. BY EXECUTING                                                          |               |  |  |  |
| $H = Na_2S_2O_3$                                                                       | E = Encore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | all'China                                                                                                  | F                                 |               |          |              | 13x A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AL                        | - 31                | 17/1                                                      | 512:49     | HAS READ AND AGREE                                                              |               |  |  |  |
| K/E = Zn Ac/NaOH                                                                       | D = BOD Bottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -Brade ene                                                                                                 | 5350                              | 2/1           | x        | TA           | 4/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1911                      | g KC                | TO BE BOUND BY ALPH                                       |            |                                                                                 |               |  |  |  |
| 0 = Other                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112-                                                                                                       | 2 7/19/16/03/11                   |               |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 21                  | 9/18                                                      | 210        | TERMS & CONDITIONS.                                                             |               |  |  |  |
| Form No: 01-25 HC (rev. 3)                                                             | 0-Sent-2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | 0                                 | 1111          | - m      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     |                                                           |            | (See reverse side.)                                                             |               |  |  |  |