

Periodic Review Report

Lot 4 – Austin Ave. and Prior Place BCP Site BCP Site #C360116

November 4, 2016 to September 27, 2018

Reporting Period

Morris Westchester Retail Associates, LLC

Executive Summary

The Lot 4 – Austin Ave. and Prior Place Brownfield Cleanup Program (BCP) Site (BCP Site #C360116) consists of approximately 9.93 acres of land located at 45 Stew Leonard Drive in the City of Yonkers, Westchester County, New York. The Site is currently owned by Morris Westchester Retail Associates, LLC. The Site Remedial Party is Austin Avenue Brownfield Redevelopment II, LLC. This Periodic Review Report (PRR) is being submitted to the New York State Department of Environmental Conservation (NYSDEC) in accordance with the Site Management Plan (SMP) for the Site.

Site soil and groundwater were historically determined to have detected concentrations of metals, semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and pesticides.; In addition, Site soil vapor was considered to have the potential for accumulation of explosive gases associated with the historic landfill operations which would require the assessment of the potential for soil vapor intrusion in any future buildings constructed on-Site. The Site was remediated to commercial use cleanup standards and received a Certificate of Completion (COC) from the NYSDEC on November 4, 2016.

In accordance with the SMP, Site monitoring currently includes semi-annual groundwater sampling and Site inspections and an annual Site inspection. Semi-annual groundwater monitoring and Site inspections are currently being conducted on behalf of the Site owner, Morris Westchester Retail Associates, LLC, in May and November of each year. The annual Site inspection is also occurring and corresponds to the closure of the PRR certification period (September of each year). The institutional and engineering controls certification form, as issued by NYSDEC, has been completed and is included as Appendix A.

Based on the Site inspection conducted on September 21, 2018, the institutional controls and engineering controls for the Site remain in place and effective for protecting human health and the environment. The soil cover engineering controls remain in place, and no structures have been built on-Site. The Site is currently in the monitoring stage with groundwater samples being taken from on-Site and off-Site groundwater monitoring wells on a semi-annual basis. In general, stable or decreasing concentrations appear to be observed at the Site.

The requirements necessary to discontinue Site monitoring and Site engineering and institutional controls have not been met at this time. However, a request to modify the groundwater monitoring requirements to annually and to eliminate SVOCs, PCBs and pesticides from the parameter list was included in the spring 2018 groundwater monitoring report (GHD, August 10, 2018). Until the NYSDEC and NYSDOH approve the requested modification to the monitoring program, groundwater monitoring will continue on a semi-annual basis. Based on the observed stability of the soil cover system and the well-established vegetative cover, a request should be submitted to the NYSDEC to reduce Site inspections to annually. Until the NYSDEC and NYSDOH approve the requested modification, Site inspections will continue to be performed on a semi-annual basis. There is no need to revise the frequency of PRR submittals at this time.

Table of Contents

1.	Intro	duction		1
	1.1	Purpose	9	1
	1.2	Certifica	ation Period	1
	1.3	Scope a	and Limitations	2
2.	Site 0	Overview .		3
3.	Institu	utional an	nd Engineering Controls	6
	3.1	Institutio	onal Controls	6
		3.1.1 3.1.2 3.1.3 3.1.4	Environmental Easement Site Use Groundwater Excavations	7 7
	3.2	Enginee	ering Controls	7
		3.2.1 3.2.2	Soil Cover System	
4.	Oper	ations and	d Monitoring	8
	4.1	Groundy	water Monitoring Results	8
	4.2	Soil Vap	oor Mitigation	10
5.	Reco	mmendat	tions	11
ure	e In	dex		

Fig

Figure 1 Site Location Map

Figure 2 Site Layout

Figure 3 Soil Cover Areas

Figure 4 Groundwater Elevation and Exceedances of Groundwater Standards

Table Index

Table 1 **Groundwater Elevation Data**

Table 2 Summary of Groundwater Field Parameters

Table 3 Summary of Groundwater Laboratory Analytical Results

Appendix Index

Appendix A Institutional and Engineering Controls Certification Form

Appendix B Annual Site Inspection Form

Appendix C NYSDEC EQuIS Approvals

1. Introduction

1.1 Purpose

This Periodic Review Report (PRR) is being submitted on behalf of the Site Owner, Morris Westchester Retail Associates, LLC (MWRA), for the Lot 4 – Austin Ave. and Prior Place Brownfield Cleanup Program (BCP) Site (BCP Site No. C360116). According to the Certificate of Completion (COC), the Site is located on three (3) tax parcels in the City of Yonkers, Westchester County, New York (Figure 1), as follows: 3-3244-4 - 45 Stew Leonard Drive; 3-3244-7 - 65 Austin Avenue; and a portion of 3-8001-40 - 40 Stew Leonard Drive. The purpose of this PRR and attached documents is to document that institutional and engineering controls, as described in the New York State Department of Environmental Conservation (NYSDEC)-approved Site Management Plan (SMP) and Environmental Easement (EE), are in place in accordance with 6NYCRR Part 375-3. The following elements are included in this report:

- A description of all institutional and/or engineering controls employed at the Site.
- An evaluation of the plans developed for implementation of the engineering and institutional controls, regarding the continued effectiveness of any institutional and/or engineering controls required by the decision document for the Site.
- A certification prepared by a professional engineer or qualified environmental professional that the institutional controls and/or engineering controls employed at the Site during the period are:
 - Unchanged from the previous certification, unless approved by NYSDEC.
 - Consistent with the SMP.
 - o In place and effective.
 - Performing as designed and that nothing has occurred that would (1) impair the ability of the controls to protect public health and the environment, or (2) constitute a violation or failure to comply with any operation and maintenance plan for such controls.
- The institutional and engineering controls certification form, as issued by NYSDEC, has been completed and is included as Appendix A.
- Data tables and figures depicting results of semi-annual groundwater monitoring activities conducted on-Site.

1.2 Certification Period

This is the first Periodic Review Report (PRR) prepared for the Site following issuance of the COC. As a result, NYSDEC requested that this PRR cover the period between November 4, 2016 and March 4, 2018; however, MWRA requested that the end of the reporting period be extended to September 27, 2018 to coincide with the adjacent Austin Avenue Landfill BCP Site (#C360066). The request was approved by NYSDEC on November 7, 2017. MWRA retained GHD Consulting Services Inc. (GHD) to perform semi-annual groundwater monitoring, to perform semi-annual visual inspections of engineering controls on-Site, to perform an annual visual inspection of the Site, and to prepare this PRR in accordance with the SMP.

1.3 Scope and Limitations

This report has been prepared by GHD for Morris Westchester Retail Associates, LLC and may only be used and relied on by Morris Westchester Retail Associates, LLC for the purpose agreed to between GHD and Morris Westchester Retail Associates, LLC as set out in this report.

GHD otherwise disclaims responsibility to any person other than Morris Westchester Retail Associates, LLC arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report based in part on information provided by Morris Westchester Retail Associates, LLC and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the Site may be different from the Site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular Site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant Site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or Site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the Site conditions. GHD is also not responsible for updating this report if the Site conditions change without further authorization to do so by Morris Westchester Retail Associates, LLC.

2. Site Overview

The Site is located in the City of Yonkers, Westchester County, New York and encompasses three (3) parcels reportedly owned/operated by Morris Westchester Retail Associates, LLC, identified as Parcel 3-3244-4, Parcel 3-3244-7, and a portion of Parcel 3-8001-40 on the NYSDEC Institutional and Engineering Controls Certification Form, and is currently undeveloped. A tax map amendment was applied for by the Site Owner in June 2016, prior to issuance of the COC, which combined the Site into a single tax parcel (3-3244-4). The Site is bound by Austin Avenue to the north, Stew Leonard's parking lot to the south, an unimproved road and similar vacant land (Lot 1 – Austin Avenue Landfill BCP Site, Site #C360006) to the east, and Prior Place to the west (Figure 2).

The Site was initially investigated under two separate Brownfield Cleanup Agreements (BCAs) as two separate BCP Sites, as follows:

- Lot 4 Austin Ave. and Prior Place BCA Index #C360116-04-11 and BCP Site #C360116, which was executed in August 2011
- Lot 7 and Corporate Drive BCA Index #C360128-08-14 and BCP Site #C360128, which was executed in September 2014.

Since the two sites are adjacent to one another, have the same owner, were to be investigated and remediated by the same volunteer, have similar historical uses, and were to be remediated in the same manner with the same Site management requirements, the Applicant (Austin Avenue Brownfield Redevelopment II, LLC) requested that the BCA for Lot 4 be amended to include Lot 7. The request was approved by NYSDEC and the BCA for the Lot 7 and Corporate Drive BCP Site was officially terminated on September 17, 2015. The acreage of the former Lot 7 and Corporate Drive BCP Site was added to the Lot 4 – Austin Ave. and Prior Place BCP Site and the BCA was amended to include a total of approximately 9.93-acres.

The Remedial Investigation (RI), which was conducted under both BCAs during 2012 and 2013, as well as previous investigations conducted by others, characterized the nature and extent of contamination at the Site. The results of the RI, as reported in the *Remedial Investigation Report* (GHD Consulting Engineers, LLC, August 2012), the *Additional Surface and Subsurface Soil Sampling* report (GHD Consulting Engineers, LLC, February 11, 2013), and the *Surface and Subsurface Soil Sampling* report (GHD Consulting Engineers, LLC, April 26, 2013), determined that contaminants of potential concern are present in Site soil/historic fill, groundwater, and soil vapor. It was determined that Site surface and subsurface soil/historic fill contains metals, specifically arsenic, barium, lead, and mercury at concentrations that exceed the Commercial Use Soil Cleanup Objectives (SCOs) in at least one of the samples analyzed. Analytical results of Site groundwater samples identified several metals, including chromium, iron, lead, magnesium, manganese, sodium, and thallium at concentrations that exceed the Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA groundwater standards or guidance values. In addition, there was evidence of VOCs in soil vapor samples taken from the two (2) on-Site soil vapor wells, as well as the potential for explosive gases associated with historic site operations.

Remedial Work Plans (RWPs) and Remedial Design Documents (RDDs) were prepared by GHD Consulting Engineers, LLC for each of the BCP Sites. The remedial goals for the Site included:

- Eliminate or mitigate, to the extent practicable, on-Site environmental or public health exposures to on-Site metals contamination that may remain in soil/historic fill or groundwater.
- Eliminate or mitigate, to the extent practicable, the potential for concentrations of soil gases (i.e., explosive gases or volatile vapors) to enter future Site buildings, if any.

The proposed remedial approach was to remediate approximately 6.24-acres of the Site to a Track 4 Commercial Use by implementing engineering/institutional controls, including: placing either a minimum of 1 foot of clean fill underlain by a geotextile demarcation layer, a minimum of 3-feet of shot rock, or a minimum of 6-inches of asphalt pavement; requiring the evaluation and mitigation, if necessary, of soil vapor intrusion in any future buildings constructed on-Site; and implementing an Environmental Easement for the Site, which included Site use and groundwater use restrictions. Remedial activities were completed at the Site during April, May, and June 2016. Figure 2 depicts the location and extent of the BCP Site and engineering controls.

The engineering controls for the Site consist of maintaining the soil cover system and evaluating the potential for vapor intrusion for any building(s) developed on-Site, with any potential impacts that are identified being monitored or mitigated. The institutional controls include a Site groundwater use restriction, a Site use restriction restricting the use to commercial use or higher uses (i.e., industrial uses, subject to local zoning), and evaluating the potential for soil vapor intrusion in any future building(s) constructed on-Site.

An EE for the Site was filed with the Westchester County Clerk's Office on July 22, 2016. A SMP, which outlines Site restrictions and requirements of future maintenance and monitoring, was completed in August 2016. A Certificate of Completion allowing for commercial and industrial use of the Site was received from the NYSDEC on November 4, 2016.

The reader of this PRR may refer to previous reports for more detail, as needed. These reports include:

- Geraghty & Miller, Inc., June 1977. Hydrogeologic Investigations of Selected Landfills in Westchester County, New York.
- Melick-Tully and Associates, P.C., December 8, 1988. Soil and Foundation Investigations.
- Leggette, Brashears, & Graham, Inc., April 5, 1995. Austin Avenue Landfill Surface and Groundwater Investigations.
- Leggette, Brashears, & Graham, Inc., May 1995. Supplemental Investigation of Bedrock Groundwater Quality.
- Leggette, Brashears, & Graham Engineering Services, P.C., October 3, 2000. Supplemental Site Characterization Activities.
- S&W Redevelopment of North America, LLC, August 2007. Remedial Investigation Report.
- GHD Consulting Engineers, LLC, August 2012. Remedial Work Plan, Lot 4 Austin Avenue and Prior Place.

- GHD Consulting Engineers, LLC, October 26, 2012. Surface and Subsurface Soil Sampling Work Plan, Lot 7 – Corporate Drive Site.
- GHD Consulting Engineers, LLC, November 2012. Remedial Work Plan, Lot 7 and Corporate Drive.
- GHD Consulting Engineers, LLC, April 26, 2013. Surface and Subsurface Soil Sampling Report, Lot 7 and Corporate Drive Site.
- GHD Consulting Services Inc., March 2013, Revised: August 2014. Remedial Design Document.
- GHD Consulting Services Inc., August 2016. Final Engineering Report.
- GHD Consulting Services Inc., August 2016. Site Management Plan.
- GHD Consulting Services Inc., September 29, 2017. Semi-Annual Post-Remediation Groundwater Monitoring – Spring 2017.
- GHD Consulting Services Inc., February 27, 2018. Semi-Annual Post-Remediation Groundwater Monitoring Fall 2017.
- GHD Consulting Services Inc., August 10, 2018. Semi-Annual Post-Remediation Groundwater Monitoring – Spring 2018.

3. Institutional and Engineering Controls

Based on identified soil and groundwater contamination, the potential for soil vapor contamination and explosive gases from historic operations, and the Site's past, present, and reasonably anticipated future use, institutional and engineering controls are utilized at the Site to limit exposure risks. These institutional and engineering controls are described below.

3.1 Institutional Controls

The institutional controls (ICs) for this Site are outlined in the NYSDEC-approved SMP (GHD Consulting Services Inc., August 2016), and adherence to these ICs is required by the Environmental Easement. The ICs for the Site include the following:

- The Site may only be used for Track 4 Commercial or Industrial use provided that the long-term engineering and institutional controls included in the SMP are employed and local zoning laws allow the use.
- The Site may not be used for a higher level of use, such as Unrestricted Use, Residential Use, or Restricted-Residential Use without amendment of the Environmental Easement, and review and approval by the NYSDEC.
- All future activities on-Site that will disturb remaining potentially contaminated material must be conducted in accordance with the SMP.
- The use of groundwater underlying the Site is prohibited without treatment rendering it safe for the intended use and prior written approval from the NYSDEC.
- The potential for vapor intrusion must be evaluated for any building(s) developed on-Site, and any potential impacts that are identified must be monitored or mitigated.
- Vegetable gardens and farming on-Site are prohibited.
- The Site Owner or Remedial Party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Site are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitutes a violation or failure to comply with the SMP. NYSDEC retains the right to access the Site at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow, and will be made by an expert that the NYSDEC finds acceptable.

3.1.1 Environmental Easement

The Environmental Easement was filed with the Westchester County Clerk's office and remains unchanged.

3.1.2 Site Use

The Site use has not changed since the NYSDEC issued the COC. The Site is currently vacant and consists of a vegetated soil cover system with associated drainage control features.

3.1.3 Groundwater

Groundwater is not being used at the Site.

Semi-annual groundwater monitoring and Site inspections were conducted as outlined in the NYSDEC-approved SMP during this PRR's certification period, on May 23, 2017, November 14, 2017, and June 4 - 5, 2018. Additional information is provided in Section 4.

3.1.4 Excavations

No excavations that have penetrated the demarcation layer have occurred on-Site during this PRR's certification period.

3.2 Engineering Controls

The engineering controls (ECs) for this Site are outlined in the NYSDEC-approved SMP (GHD Consulting Services Inc., August 2016), and include the following:

3.2.1 Soil Cover System

Direct contact with potentially contaminated soil/historic fill at the Site is mitigated by a soil cover system in place over an approximately 6.24 acre portion of the larger approximately 9.93-acre BCP Site. This soil cover system is comprised of either a minimum of 1 foot of clean fill underlain by a geotextile demarcation layer and seeded to promote vegetative growth, a minimum of 3-feet of large diameter shot rock debris, or a minimum of 6-inches of asphalt pavement. The extent of the soil cover system is depicted in Figure 3.

An annual inspection was completed on September 21, 2018 by GHD Consulting Services Inc. personnel. There was no record of the soil cover system being breached during the reporting period. Based on field observations, the soil cover system was generally unchanged for the duration of this certification period, and no maintenance was required to amend the soil cover system. The vegetative cover on-Site is well established, and no substantive erosion was observed. In general, the soil cover system should be periodically mowed to discourage woody growth.

Additional information can be found in the Institutional and Engineering Controls Certification Form (Appendix A) and the Annual Site Inspection Form (Appendix B).

3.2.2 Soil Vapor Mitigation System

The potential for vapor intrusion must be evaluated for any building(s) developed on-Site and any potential impacts that are identified must be monitored or mitigated.

At the time of the annual Site inspection (September 21, 2018), no buildings had been constructed on-Site; therefore, no soil vapor intrusion investigation, monitoring, or mitigation is required at this time.

4. Operations and Monitoring

The NYSDEC-approved SMP (GHD Consulting Services Inc., August 2016) requires semi-annual groundwater monitoring and reporting, semi-annual soil cover system inspections, and annual Site inspection, as well as monitoring and reporting requirements for a future soil vapor mitigation or monitoring system, if applicable.

The semi-annual groundwater monitoring is intended to assess the performance of the remedy. Semi-annual groundwater monitoring and Site inspections were completed in accordance with the NYSDEC-approved SMP during this PRR's certification period, on May 23, 2017, November 14, 2017, and June 4 - 5, 2018 (Figure 4 and Tables 1 through 3). Semi-annual groundwater monitoring reports for each of these monitoring events were transmitted to the NYSDEC on September 29, 2017, February 27, 2018 and August 10, 2018, respectively. Groundwater monitoring results for the Spring 2017, fall 2017, and spring 2018 monitoring events were also uploaded in the NYSDEC EQuIS Database, were approved by the EQuIS Team, and are ready for use (Appendix C).

4.1 Groundwater Monitoring Results

Based on the laboratory analytical results, concentrations of contaminants of potential concern in groundwater have shown decreases over time as a result of the remedial action completed at the Site. The groundwater sample analytical results from this PRR's certification period (May 2017, November 2017, and June 2018 monitoring events, Tables 1 through 3) indicate:

- No polychlorinated biphenyls (PCBs) have been detected above Class GA standards in any of
 the groundwater samples taken. In addition, PCBs have not been detected above laboratory
 method detection limits in any of the groundwater samples taken, with the exception of Aroclor
 1242 in one (1) sample taken from MW-2B in November 2017 and Aroclor 1248 in the sample
 and duplicate sample taken in November 2017 from off-Site well SWR-MW1.
- No pesticides have been detected above Class GA standards or guidance values in any of the groundwater samples taken. In addition, pesticides have not been detected above laboratory method detection limits in any of the post-remediation groundwater samples taken, with the exception of the following:
 - 4,4'-DDD at an estimated concentration in the sample taken from MW-1 in June 2018
 - 4,4'-DDT at an estimated concentration in the sample taken from MW-1 in June 2018
 - trans-Chlordane at an estimated concentration in the sample taken from off-Site well SWR-MW-1 in May 2017
- Two (2) semi-volatile organic compounds (SVOCs), acenaphthene and bis(2-ethylhexyl)phthalate, are sporadically detected on-Site above laboratory detection limit. SVOCs that exceed the Class GA standards or guidance values on-Site are limited to one (1) sample taken from MW-2A in November 2017 for bis(2-ethylhexyl)phthalate. The samples taken from off-Site monitoring well SWR-MW1 identify several SVOCs above laboratory method detection limits, with the following exceeding Class GA standards or guidance values: benzo(a)anthracene (November 2017), benzo(b)fluoranthene (November 2017), and bis(2-ethylhexyl)phthalate (June 2018).

- Concentrations of various metals were detected above laboratory detection limits in each of the groundwater samples, of which the following exceeded Class GA standards or guidance values:
 - o Chromium SWR-MW1 (June 2018)
 - Iron MW-1 (May 2017 and June 2018), MW-2A (May 2017, November 2017, and June 2018), MW-2B (May 2017, November 2017, and June 2018), SWR-MW1 (May 2017, November 2017, and June 2018)
 - o Lead SWR-MW1 (June 2018)
 - Magnesium MW-2A (May 2017, November 2017, and June 2018), MW-2B (May 2017, November 2017, and June 2018), SWR-MW1 (November 2017 and June 2018)
 - Manganese MW-1 (May 2017 and June 2018), MW-2A (May 2017, November 2017, and June 2018), MW-2B (May 2017, November 2017, and June 2018), SWR-MW1 (May 2017, November 2017, and June 2018)
 - Selenium MW-2A (May 2017)
 - Sodium MW-1 (May 2017 and June 2018), MW-2A (May 2017, November 2017, and June 2018), MW-2B (May 2017, November 2017, and June 2018), SWR-MW1 (November 2017 and June 2018)

In general, PCBs and pesticides are not detected at concentrations that exceed Class GA standards in samples taken from any Site monitoring wells.

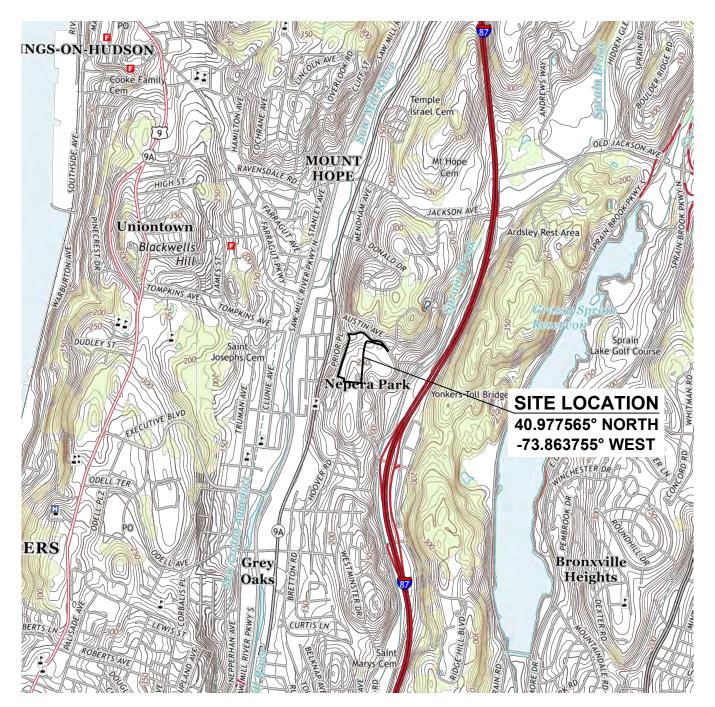
SVOC impacts appear minor in nature, with bis(2-ethylhexyl)phthalate being the only SVOC commonly detected, typically below Class GA standards, in groundwater samples taken from Site monitoring wells. To date, the only exceedance of Class GA standards for bis(2-ethylhexyl)phthalate was in the samples taken from MW-2A during the November 2017 monitoring event and off-site well SWRMW-1 during the June 2018 monitoring event. To date, only two (2) other identified SVOC concentrations have exceeded the applicable Class GA standards or guidance values during the November 2017 monitoring event and are limited to samples taken from off-site well SWRMW-1. The two identified SVOCs were non-detect during the June 2018 monitoring event. Future monitoring events will determine if the exceedances noted were transient occurrences or if trends can be discernible.

Identified concentrations of metals are highly variable across the Site and over-time, with the most recent round of monitoring (June 2018) generally identifying commonly occurring natural elements in excess of Class GA standards or guidance values on-Site. The exception to this is for a selenium concentration in the sample taken from MW-2A that was identified in excess of the Class GA standard during the May 2017 monitoring event. Concentrations of selenium have been identified in samples taken from MW-2A during each round of sampling; however, the May 2017 monitoring results have been the only ones to exceed Class GA standards to date.

Based on the groundwater data received to date, the qualitative exposure assessment assumptions regarding on-Site and off-Site contamination have not changed and are still valid. A request was submitted with the spring 2018 groundwater monitoring report (GHD, August 10, 2018) to reduce groundwater monitoring frequency to annual sampling occurring in the spring of each year and to reduce the sample analytical list to TAL metals analysis only. Until such time that the NYSDEC and NYSDOH approve this request, semi-annual groundwater monitoring, as outlined in the NYSDEC-approved SMP, will occur, with the next round of monitoring tentatively scheduled for November 2018.

4.2 Soil Vapor Mitigation

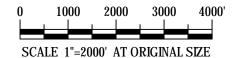
There are currently no structures located on-Site, and, as such, no soil vapor intrusion evaluation, mitigation, or monitoring was conducted. If structures are planned to be built in the future, a soil vapor intrusion evaluation will be conducted and reviewed, appropriate monitoring and/or mitigation measures will be implemented, and inspection of the soil vapor mitigation system and/or monitoring documentation will occur, as appropriate.


5. Recommendations

Based on a review of the semi-annual groundwater data, it is recommended that the ICs and ECs currently in place for the Site remain in place in order to ensure the continued effectiveness and protectiveness of the remedy; however, the following recommendations should be considered:

- The request for a reduction in groundwater monitoring frequency to annual sampling occurring during May of each year, which was submitted with the spring 2018 groundwater monitoring report, should be reviewed with NYSDEC and NYSDOH for their acceptance. The effectiveness of the remedy relative to contaminants of potential concern, which are predominantly metals, could continue to be effectively evaluated through the annual groundwater monitoring results, especially given the fact that groundwater monitoring is identifying fairly stable to generally decreasing contamination trends on-Site. If the frequency is approved by the NYSDEC, then the SMP should be revised accordingly to reflect the change.
- The request for the removal of SVOCs, PCBs, and pesticides from the groundwater sample analytical program (i.e., analyze future samples for TAL metals only), which was submitted with the spring 2018 groundwater monitoring report, should be reviewed with NYSDEC and NYSDOH for their acceptance. The analysis of future groundwater samples for only metals, which are the primary contaminants of potential concern for the Site, will continue to provide an effective evaluation of Site groundwater quality. If the modification to the analyte list is approved by the NYSDEC, then the SMP should be revised accordingly to reflect the change.
- Given the well-established nature of the vegetative cover at the Site and the documented stability of the cover system since placed in 2016, a request to reduce Site inspections to an annual frequency (corresponding with the end of the PRR certification period in September of each year) to ensure that the Site use has not changed and the engineering and institutional controls are in place and functioning as intended should be prepared and provided to NYSDEC for review and approval.

Periodic routine maintenance of the soil cover system should continue to be conducted, including the following:


- Mowing/brush hogging should be performed periodically to discourage woody growth on the soil cover system (excluding the shot rock pile).
- Woody vegetative growth that forms in areas of the Site soil cover system where steep slopes (excluding the large shot rock pile) preclude periodic mowing/brush hogging should be cut and removed on a periodic basis.
- Periodic trimming (i.e., annually) should also occur around the groundwater monitoring wells to
 provide free and easy access during future sampling events and to maintain the integrity of the
 monitoring points.
- The monitoring wells should be periodically inspected and maintained, including replacing locks
 or damaged covers. In addition, the location of the monitoring wells should be staked and
 flagged for ease of identification in the field.

MAP TAKEN FROM: USGS 7.5 MINUTE SERIES TOPOGRAPHIC QUADRANGLES: MOUNT VERNON, NY (2013) & YONKERS, NY-NJ (2013) (U.S. GEOLOGICAL SURVEY WEBSITE)

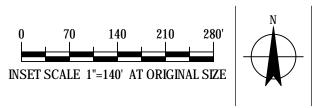
Morris Westchester Retail Associates, LLC Lot 4 - Austin Ave and Prior Place BCP Site Periodic Review Report Site Location Map Job Number | 11144127 Revision | A Date | 10.15.2018

LEGEND:

LOT 4 BCP SITE PROPERTY BOUNDARY

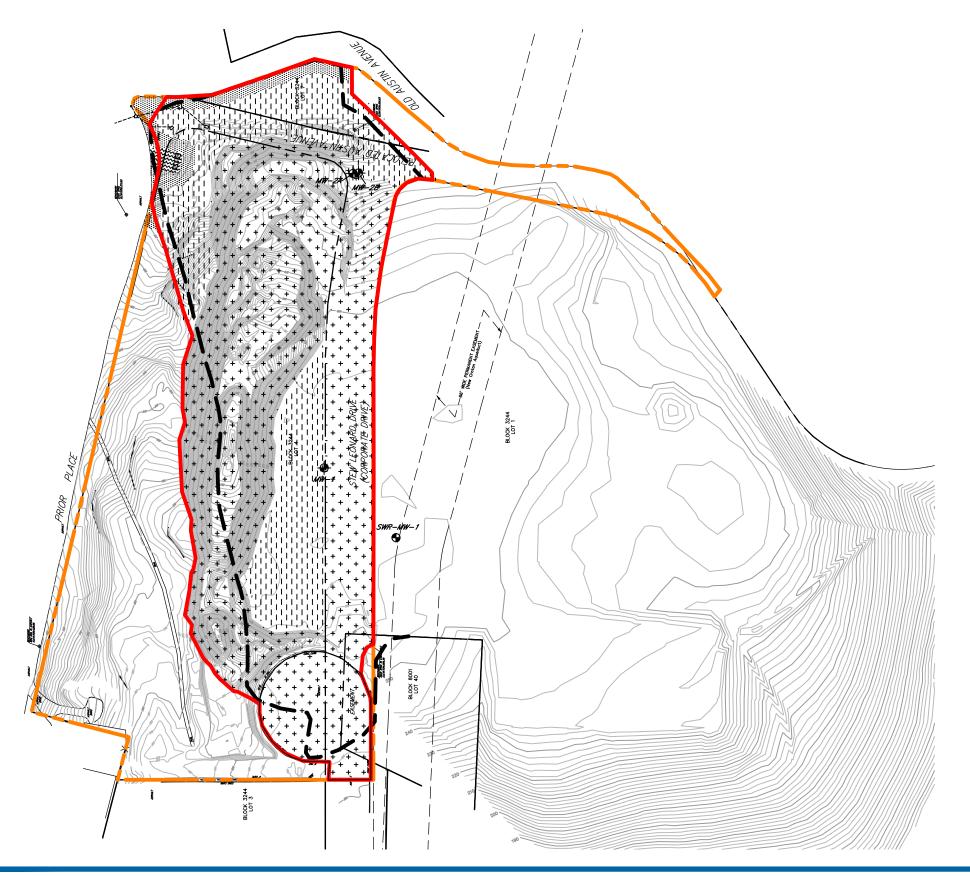
GROUNDWATER MONITORING WELL LOCATION AND ID (SURVEYED)

EXTENT OF ASH (APPROXIMATE)


EXTENT OF SOIL COVER ENGINEERING CONTROL (APPROXIMATE)

NOTES:

LOT 1 BASE MAP FROM A FIELD SURVEY CONDUCTED BY CONTRACTORS LINE AND GRADE SOUTH, LLC, MAY 11, 2011.


LOT 4 BASE MAP FROM A FIELD SURVEY CONDUCTED BY JOHN MEYER CONSULTING, P.C. JUNE 30, 2011.

EXTENT OF ASH FROM EXISTING CONDITIONS, PLATE 1, MORRIS WESTCHESTER CONSTRUCTION COMPANY, L.L.P. HISTORIC AUSTIN AVENUE LANDFILL CLOSURE PLAN, LEGGETTE, BRASHEARS, & GRAHAM ENGINEERING SERVICES, P.C. MARCH 1988. REVISED BY S&W REDEVELOPMENT OF NORTH AMERICA, LLC, MAY 2011. FURTHER REVISED BY GHD CONSULTING ENGINEERS, LLC, DECEMBER 2012.

Morris Westchester Retail Associates, LLC Lot 4 - Austin Ave and Prior Place BCP Site Periodic Review Report Site Layout Job Number | 11144127 Revision | A Date | 10.15.2018

LEGEND:

LOT 4 BCP SITE PROPERTY BOUNDARY

♦ • MW-1 SWR-MW-1

GROUNDWATER MONITORING WELL LOCATION AND ID (SURVEYED)

AND ID (SURVE

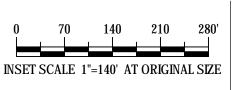
EXTENT OF ASH (APPROXIMATE)

EXTENT OF SOIL COVER ENGINEERING CONTROL (APPROXIMATE)

AREA WHERE THE SOIL COVER ENGINEERING CONTROL WILL BE TRANSITIONED TO THE EXISTING ROADWAY. THE SOIL COVER WILL CONSIST OF A GEOTEXTILE DEMARCATION LAYER AND A MINIMUM OF 1-FOOT OF CLEAN SOIL FILL. (APPROXIMATELY 11,000 SQUARE FEET)

TWO SEPARATE AREAS WHERE A SOIL COVER ENGINEERING CONTROL WILL BE ESTABLISHED. THE SOIL COVER WILL CONSIST OF A GEOTEXTILE DEMARCATION LAYER AND A MINIMUM OF 1-FOOT OF 6-INCH MINUS CRUSHED SHOT ROCK. (APPROXIMATELY 72,000 SQUARE FEET)

AREA WHERE THE SOIL COVER ENGINEERING CONTROL WILL BE TRANSITIONED TO THE EXISTING SHOT ROCK STOCKPILE. THE TRANSITION AREA WILL CONSIST OF A GEOTEXTILE DEMARCATION LAYER OVERLAPPED ONTO THE STOCKPILE AND COVERED WITH SHOT ROCK FROM THE STOCKPILE. (APPROXIMATELY 6,000 SQUARE FEET)

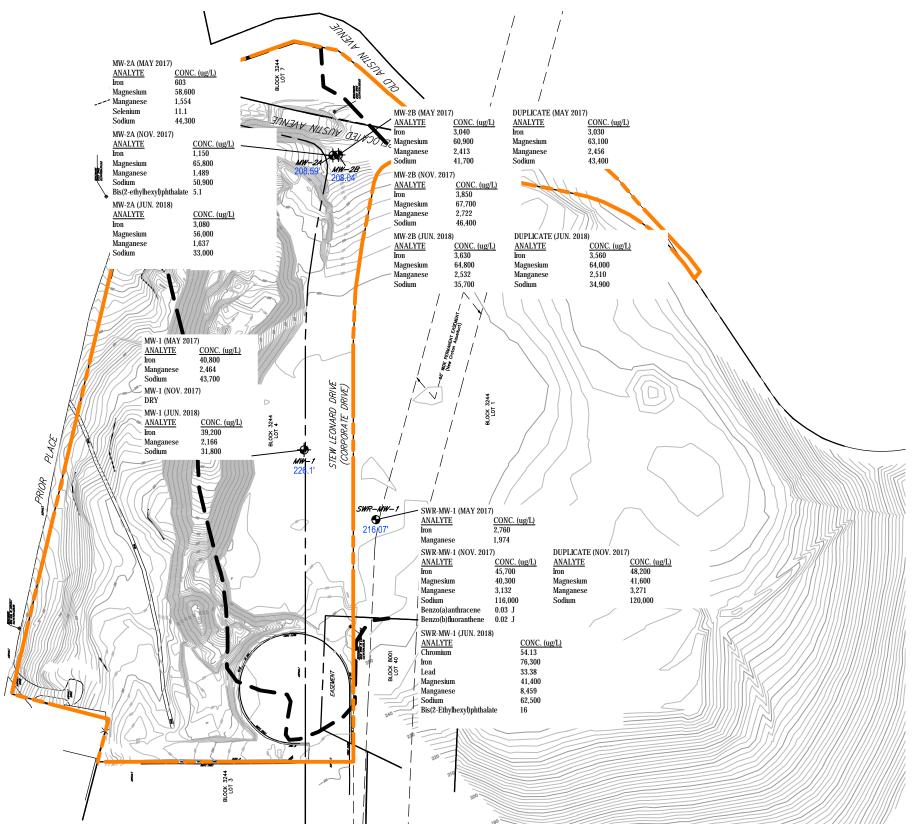


AREA WHERE A SOIL COVER ENGINEERING CONTROL WILL BE ESTABLISHED. THE SOIL COVER WILL CONSIST OF A MINIMUM OF 6-INCHES OF ASPHALT PAVEMENT. (APPROXIMATELY 1,000 SQUARE FEET)

AREAS WHERE EXISTING GROUND COVER WILL BE USED TO ESTABLISH A SOIL COVER ENGINEERING CONTROL. THE GROUND COVER IN THESE AREAS CURRENTLY CONSISTS OF EITHER:

- 1. A GEOTEXTILE DEMARCATION LAYER AND A MINIMUM OF 2-FEET OF CLEAN SOIL FILL. (APPROXIMATELY 44,000 SQUARE FEET).
- 2. ASPHALT PAVEMENT. (APPROXIMATELY 19,000 SQUARE FEET).
- 3. SHOT ROCK STOCKPILE WHERE THE THICKNESS IS GREATER THAN 3 FEET. (APPROXIMATELY 119,000 SQUARE FEET).

NOTES:


LOT 1 BASE MAP FROM A FIELD SURVEY CONDUCTED BY CONTRACTORS LINE AND GRADE SOUTH, LLC, MAY 11, 2011.

LOT 4 BASE MAP FROM A FIELD SURVEY CONDUCTED BY JOHN MEYER CONSULTING, P.C. JUNE 30, 2011.

EXTENT OF ASH FROM EXISTING CONDITIONS, PLATE 1, MORRIS WESTCHESTER CONSTRUCTION COMPANY, LL.P. HISTORIC AUSTIN AVENUE LANDFILL CLOSURE PLAN, LEGGETTE, BRASHEARS, & GRAHAM ENGINEERING SERVICES, P.C. MARCH 1988. REVISED BY S&W REDEVELOPMENT OF NORTH AMERICA, LLC, MAY 2011. FURTHER REVISED BY GHD CONSULTING ENGINEERS, LLC, DECEMBER 2012.

Morris Westchester Retail Associates, LLC Lot 4 - Austin Ave and Prior Place BCP Site Periodic Review Report Soil Cover Areas Job Number | 11144127 Revision | A Date | 10.15.2018

LEGEND:

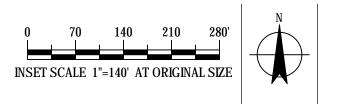
LOT 4 BCP SITE PROPERTY BOUNDARY (SURVEYED)

EXTENT OF ASH (APPROXIMATE)

♦ ♦ MW-1 SWR-MW-1

GROUNDWATER MONITORING WELL LOCATION AND ID (SURVEYED)

207.48'


GROUNDWATER ELEVATION (JUNE 2018 MONITORING EVENT)

LABORATORY ANALYTICAL RESULTS

WELL ID (SAMPLE DATE)
ANALYTE CONC. (L

NOTES:

- ONLY ANALYTES THAT EXCEED CLASS GA GROUNDWATER STANDARDS ARE SHOWN HERE. REFER TO TABLES FOR A COMPLETE SUMMARY OF LABORATORY ANALYTICAL RESULTS.
- 2. LOT 1 BASE MAP FROM A FIELD SURVEY CONDUCTED BY CONTRACTORS LINE AND GRADE SOUTH, LLC, MAY 11, 2011.
- LOT 4 BASE MAP FROM A FIELD SURVEY CONDUCTED BY JOHN MEYER CONSULTING, P.C. JUNE 30, 2011.
- 4. EXTENT OF ASH FROM EXISTING CONDITIONS, PLATE 1, MORRIS WESTCHESTER CONSTRUCTION COMPANY, L.L.P. HISTORIC AUSTIN AVENUE LANDFILL CLOSURE PLAN, LEGGETTE, BRASHEARS, & GRAHAM ENGINEERING SERVICES, P.C. MARCH 1988. REVISED BY S&W REDEVELOPMENT OF NORTH AMERICA, LLC, MAY 2011. FURTHER REVISED BY GHD CONSULTING ENGINEERS, LLC, DECEMBER 2012.

Morris Westchester Retail Associates, LLC Lot 4 - Austin Ave and Prior Place BCP Site Periodic Review Report

Groundwater Elevation and Exceedances of Groundwater Standards

Job Number | 11144127 Revision | A Date | 10.16.2018

Tables

Table 1 (Page 1 of 1): Groundwater Elevation Data. Lot 4 - Austin Avenue and Prior Place BCP Site. Yonkers, NY.

Monitoring Well I.D.	Date	Reference Point	Reference Elevation (feet)	DTW (feet)	DOW (feet)	Water Elevation (feet)	Volume (gallons)
	4/19/2012			Dry	28.42	Dry	Dry
MW-1	5/23/2017	Top of PVC	253.30	26.17	28.70	227.13	0.41
10100-1	11/14/2017	TOP OF TVO	200.00	Dry	28.70	Dry	Dry
	6/4/2018			27.20	28.70	226.10	0.24
	4/19/2012			25.32	35.95	207.71	1.72
MW-2A	5/23/2017	Top of PVC	233.03	25.55	36.30	207.48	1.74
IIIII-ZA	11/14/2017	l lob oil vo	200.00	27.23	36.20	205.80	1.45
	6/4/2018			24.44	36.20	208.59	1.91
	4/19/2012			25.93	55.05	207.03	4.72
MW-2B	5/23/2017	Top of PVC	232.96	24.10	55.30	208.86	5.05
WW-25	11/14/2017	l lob oil vo	202.00	27.68	55.30	205.28	4.47
	6/4/2018			24.92	55.30	208.04	4.92
	4/19/2012			38.80	44.82	214.74	0.98
SWR-MW-1	5/23/2017	Top of PVC	253.54	36.92	42.65	216.62	0.93
OTTICINITY-1	11/14/2017	Top of PVC	200.04	39.87	42.90	213.67	0.49
	6/4/2018			37.47	42.90	216.07	0.88

DTW - Depth to Water

DOW - Depth of Well

Table 2 (Page 1 of 2): Summary of Groundwater Field Parameters. Lot 4 - Austin Avenue and Prior Place BCP Site. Yonkers, NY.

Table 2 (Fage I	oi 2). Suillillary	7 OI GIOUITAV	water Fleid	Parameters. Lot 4	- Austin Avenue a	Ind Phot Place B	oce site. It	TIKEIS, INT.			T
Monitoring Well I.D.	Date	Time	Temp (°C)	Conductivity (mmhos/cm)	Salinity (%)	Dissolved Oxygen (mg/L)	pH (units)	ORP (mV)	Turbidity (NTU)	Amount Purged (liters)	Comments
		9:15	14.7	1.150	-	1.18	6.73	-98.2	-		
		9:20	14.4	1.117	-	0.36	6.73	-103.4	22.2		
		9:25	14.5	1.123	-	0.24	6.74	-105.8	13.6		
		9:30	-	-	-	-	-	-	-		
	5/23/2017	9:35	15.2	1.140	-	0.29	6.74	-104.7	9.0	2.00	
	5/23/2017	9:40	15.2	1.144	-	0.26	6.74	-103.3	6.1	2.00	
		9:45	15.3	1.142	-	0.23	6.74	-102.1	5.5		
		9:50	15.0	1.137	-	0.18	6.74	-101.4	4.9		
MW-1		9:55	15.1	1.139	-	0.11	6.74	-104.3	5.4		
		10:00	15.7	1.156	-	0.08	6.74	-105.1	5.8		
	11/14/2017	-	-	-	-	-	-	-	-	-	Well was dry and not sampled.
		14:40	12.6	1.690	-	1.19	6.19	76	100		,
		14:45	12.5	1.640	-	0.41	6.22	79	192		Well dry after purging 4.0 liters, shut down well to
	6/4/2018	14:50	12.4	1.630	-	0.40	6.14	82	66	6.00	let recharge, purged an additional 2.0 liters. Cloudy
		14:55	-	-	-	-	-	-	-		brown water. No odor.
		18:00	12.2	1.700	-	0.41	6.19	90.0	79		
		14:25	14.6	1.337	-	0.41	6.50	65.0	93.2		
		14:30	13.7	1.310	-	0.18	6.51	87.1	21.4		
	5/23/2017	14:35	13.7	1.311	-	0.14	6.51	90.9	16.2	3.00	MS/MSD taken at this location.
		14:40	14.1	1.322	-	0.08	6.52	95.9	16.5		
		14:45	14.2	1.325	-	0.05	6.52	97.4	16.5		
		12:22	-	-	-	-	-	-	-		
		12:30	11.08	1.92	-	5.24	6.58	173	80		
		12:45	11.13	1.91	-	0	6.56	168	49.1		
		12:50	11.13	1.91	_	0	6.56	166	40.3		
		12:55	11.16	1.92	_	0	6.58	166	26.3		
	11/14/2017	13:00	11.12	1.92	_	0	6.57	165	25.8	-	
		13:10	11.14	1.92	-	0	6.58	165	19.4		
MW-2A		13:15	11.12	1.92	-	0	6.59	164	16.3		
		13:20	11.13	1.92	-	0	6.58	165	13.9		
		13:25	11.13	1.92	-	0	6.57	166	13.5		
		13:10	15.8	1.820	-	2.48	6.22	148	376		
		13:15	12.9	1.790	-	0.96	6.19	153	211		
		13:20	12.6	1.770	-	0.32	6.14	166	196		
		13:25	12.5	1.780	-	0.29	6.15	167	169		
	0/4/0045	13:30	12.5	1.780	-	0.22	6.15	164	164	10.00	
	6/4/2018	13:35	12.6	1.780	-	0.17	6.15	168	168	18.00	Slightly cloudy water. No odor.
		13:40	12.6	1.780	-	0.15	6.15	169	169		
		13:45	12.6	1.780	-	0.14	6.15	167	167		
		13:50	12.6	1.790	_	0.13	6.15	165	165		
		13:55	12.6	1.780	-	0.13	6.15	165	165		

Table 2 (Page 2 of 2): Summary of Groundwater Field Parameters. Lot 4 - Austin Avenue and Prior Place BCP Site. Yonkers, NY.

Monitoring Well I.D.	Date	Time	Temp (°C)	Conductivity (mmhos/cm)	Salinity (%)	Dissolved Oxygen (mg/L)	pH (units)	ORP (mV)	Turbidity (NTU)	Amount Purged (liters)	Comments
		12:20	14.5	1.296	-	1.37	6.43	57.7	55.2		
		12:25	15.3	1.297	-	0.87	6.51	28.3	48.1		
	5/23/2017	12:30	15	1.312	-	0.62	6.54	18.1	47.4	2.15	Blind field duplicate taken at this location.
	3/23/2017	12:35	15	1.316	-	0.63	6.54	14.4	18.8	2.10	Billia field dupileate takeri at tills location.
		12:40	15.1	1.332	-	0.37	6.54	13.4	17.6		
		12:45	15.1	1.336	-	0.33	6.54	13.7	18.9		
		9:35	-	-	-	-	-	-	-		
		10:00	9.05	1.68	-	4.08	6.53	66	30		
		10:05	8.98	1.72	-	2.56	6.4	99	28.5		
		10:10	8.98	1.75	-	1.35	6.36	104	21.2		
		10:15	8.83	1.76	-	1.08	6.32	104	17.1		
	11/14/2017	10:20	8.82	1.77	-	0.73	6.39	103	14.2	-	
		10:25	8.99	1.79	-	0.16	6.38	101	9.1		
MW-2B		10:30	9.15	1.79	-	0.03	6.39	98	5.9		
		10:40	9.54	1.81	-	0.0	6.39	92	2.5		
		10:45	9.49	1.81	-	0.0	6.4	88	2.1		
		10:50	9.34	1.51	-	0.0	6.4	85	0.0		
		14:15	13.3	1.720	-	1.48	6.22	93	136		
		14:20	12.9	1.710	-	0.61	6.20	93	122		
		14:25	12.8	1.680	-	0.33	6.14	93	119		
		14:30	12.8	1.690	-	0.24	6.14	88	92		
	6/4/2018	14:35	12.8	1.720	-	0.21	6.14	71	82	18.00	Clear water. No odor.
		14:40	12.7	1.740	-	0.19	6.14	59	82		
		14:45	12.7	1.740	-	0.15	6.14	54	79		
		14:50	12.7	1.750	-	0.14	6.15	49	83		
		14:55	12.7	1.750	-	0.13	6.13	48	92		
		15:00	12.7	1.740	-	0.12	6.13	46	90		
		10:50	14.9	0.306	0.18	0.58	6.84	66.0	14.8		Well dry after purging 1.9 liters.
	5/23/2017	10:56	15	0.313	0.19	0.42	6.85	69.3	18.1	1.9	Water yellowish tint, slightly turbid with some
		11:01	15.3	0.317	0.19	0.34	6.86	74.3	24.7		sediment, no sheen, slight odor.
		11:13	16.2	0.327	0.19	0.57	6.86	58.7	49.7		
		8:35	-	-	-	-	-	-	-		Water level was at a level below the meter's ability
	11/14/2017	8:50	8.63	1.05	-	1.62	6.09	59	105	-	to read so shut down well to let recharge. MS/MSD and blind field duplicate taken at this location.
OME MAN		8:55	8.96	1.02		0.99	6.08	0.0	87.1		and blind field duplicate taken at this location.
SWR-MW-1		12:50	12.7	1.960	-	1.96	6.19	119	823		
		12:55	12.6	1.980	-	0.96	6.23	102	811		
		13:00	12.5	1.990	-	0.19	6.31	100	614		Well dry after purging 3.0 liters, shut down well to
	6/4/2018	13:05	12.3	1.980	-	0.22	6.31	96	510	5	let recharge, purged an additional 2.0 liters. Cloudy
		13:10	-	-	-	-	-	-	-		brown water. No odor.
		17:10	12.3	1.960	-	0.22	6.39	101	410		
		17:15	12.4	1.990	-	0.21	6.40	96	519		
		17:20	12.5	1.920	-	0.23	6.42	101	631		

Analyte	GW StdA	GW Std^ Sample Identification												
(ug/L)	(ug/L)													
Date Sampled		Apr-1	2	Ma	y-17		No	v-17	Jun-18					
SVOCs by EPA Method 8270D			R.L.			R.L.		R.L.		R.L.				
1,2,4,5-Tetrachlorobenzene	5	NS			U	10	NS		U	9.6				
1,2,4-Trichlorobenzene	5	NS		-		į	NS		-					
1,2-Dichlorobenzene	3	NS		-		į	NS		-					
1,3-Dichlorobenzene	3	NS		-		į	NS		-					
1,4-Dichlorobenzene	3	NS		-		:	NS		-					
2,3,4,6-TETRACHLOROPHENOL		NS			U	5	NS		U	4.8				
2,4,5-Trichlorophenol		NS			U	5	NS		U	4.8				
2,4,6-Trichlorophenol	1	NS NS			U	5 5	NS NS		U	4.8				
2,4-Dichlorophenol 2,4-Dimethylphenol	50	NS NS			U	5	NS		U	4.8				
2,4-Dinitrophenol	10	NS			U	20	NS		U	19				
2,4-Dinitrotoluene	5	NS			U	5	NS		U	4.8				
2,6-Dinitrotoluene	5	NS			Ü	5	NS		Ü	4.8				
2-Chloronaphthalene	10	NS			U	0.2	NS	ı	U	0.19				
2-Chlorophenol		NS			U	2	NS		U	1.9				
2-Methylnaphthalene		NS			U	0.1	NS		U	0.1				
2-Methylphenol		NS		-		į	NS							
2-Nitroaniline	5	NS			U	5	NS		U	4.8				
2-Nitrophenol	1	NS			U	10	NS		U	9.6				
3,3'-Dichlorobenzidine	5	NS			U	5	NS	I	U	4.8				
3-Methylphenol/4-Methylphenol	1	NS			U	5	NS	- 1	U	4.8				
3-Nitroaniline	5	NS			U	5	NS		U	4.8				
4,6-Dinitro-o-cresol		NS			U	10	NS		U	9.6				
4-Bromophenyl phenyl ether		NS			U	2	NS		U	1.9				
4-Chloroaniline	5	NS			U	5	NS		U	4.8				
4-Chlorophenyl phenyl ether		NS			U	2	NS	ı	U	1.9				
4-Nitroaniline	5	NS			U	5	NS		U	4.8				
4-Nitrophenol		NS			U	10	NS		U	9.6				
Acenaphthene	20	NS		0.06	J	į	NS		U	0.1				
Acenaphthylene		NS			U	0.1	NS		U	0.1				
Acetophenone	50	NS			U	5	NS		U	4.8				
Anthracene	50	NS			U	0.1	NS		U	0.1				
ATRAZINE BENZALDEHYDE		NS NS			U	10 5	NS NS	ı	U	9.6 4.8				
Benzo(a)anthracene	0.002	NS			U	0.1	NS		U	0.1				
Benzo(a)pyrene	0.002	NS			U	0.1	NS		U	0.1				
Benzo(b)fluoranthene	0.002	NS			U	0.1	NS		U	0.1				
Benzo(ghi)perylene	0.002	NS			U	0.1	NS		Ü	0.1				
Benzo(k)fluoranthene	0.002	NS			U	0.1	NS	ı	Ü	0.1				
Benzoic Acid		NS		-	-		NS	ı						
Benzyl Alcohol		NS		-		:	NS							
Biphenyl		NS			U	2	NS		U	1.9				
Bis(2-chloroethoxy)methane	5	NS			U	5	NS		U	4.8				
Bis(2-chloroethyl)ether	1	NS			U	2	NS	ı	U	1.9				
Bis(2-chloroisopropyl)ether	5	NS			U	2	NS		U	1.9				
Bis(2-Ethylhexyl)phthalate	5	NS		1.3	J	į	NS		U	2.9				
Butyl benzyl phthalate	50	NS			U	5	NS		U	4.8				
CAPROLACTAM		NS			U	10	NS	ı	U	9.6				
Carbazole		NS			U	2	NS		U	1.9				
Chrysene	0.002	NS			U	0.1	NS		U	0.1				
Dibenzo(a,h)anthracene		NS			U	0.1	NS		U	0.1				
Dibenzofuran		NS			U	2	NS	ı	U	1.9				
Diethyl phthalate	50	NS			U	5	NS		U	4.8				
Dimethyl phthalate	50	NS			U	5	NS		U	4.8				
Di-n-butylphthalate	50	NS			U	5	NS	ı	U	4.8				
Di-n-octylphthalate	50	NS			U	5	NS	ı	U	4.8				
Fluoranthene	50	NS			U	0.1	NS		U	0.1				
Fluorene	50	NS			U	0.1	NS	I	U	0.1				
Hexachlorobenzene Hexachlorobutadiene	0.04	NS			U	0.8	NS		U	0.77				
	0.5 5	NS NS			U	0.5 20	NS NS		U	0.48				
Hexachlorocyclopentadiene Hexachloroethane	5	NS NS			U	0.8	NS NS	1	U	0.77				
Indeno(1,2,3-cd)Pyrene	0.002	NS NS			U	0.8	NS	I	U	0.77				
Isophorone	50	NS			U	5	NS		U	4.8				
Naphthalene	10	NS NS			U	0.1	NS		U	0.1				
Nitrobenzene	0.4	NS			U	2	NS	I	U	1.9				
NitrosoDiPhenylAmine(NDPA)/DPA	50	NS			U	2	NS		U	1.9				
n-Nitrosodi-n-propylamine	"	NS			U	5	NS		U	4.8				
P-Chloro-M-Cresol	1	NS			U	2	NS	I	U	1.9				
Pentachlorophenol	1	NS			U	0.8	NS		U	0.77				
Phenanthrene	50	NS			U	0.1	NS		U	0.1				
Phenol	1	NS			Ü	5	NS	I	Ü	4.8				
Pyrene	50	NS			Ü	0.1	NS		Ü	0.1				

Phenol 1

Pyrene 50

All values reported as ug/L (parts per billion)

- New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS- No sample collected because well was dry during sampling event

^{(-) -} Indicates analyte was not analyzed for

R.L. - Laboratory reporting limit

U - Analyzed for but not detected above laboratory detection limit

Analyte	GW Std^											
(ug/L)	(ug/L)		M	W-2A								
Date Sampled		Apr-12	May-17	Nov-17	Jun-18							
SVOCs by EPA Method 8270D		R.L	. R.L	R.L.	R.I							
1,2,4,5-Tetrachlorobenzene	5	U 10	U 10	U 9.9	U 10							
1,2,4-Trichlorobenzene	5	U 5	-	1 - 1	-							
1,2-Dichlorobenzene	3	U 2	-		-							
1,3-Dichlorobenzene	3	U 2	-	-	-							
1,4-Dichlorobenzene	3	U 2	-	- 1	-							
2,3,4,6-TETRACHLOROPHENOL			U 5	U 4.9	U 5							
2,4,5-Trichlorophenol		U 5	U 5	U 4.9	U 5							
2,4,6-Trichlorophenol		U 5	U 5	U 4.9	U 5							
2,4-Dichlorophenol	1	U 5	U 5	U 4.9	U 5							
2,4-Dimethylphenol	50	U 5	U 5	: :	U 5							
2,4-Dinitrophenol	10	U 20	U 20		U 20							
2,4-Dinitrotoluene	5	U 5	U 5	U 4.9	U 5							
2,6-Dinitrotoluene	5	U 5	U 5	: :	U 5							
2-Chloronaphthalene	10	U 0.2			U 0.2							
2-Chlorophenol			1	: :								
2-Methylnaphthalene		U 0.2 U 5	U 0.1	1 U 0.1	U 0.							
2-Methylphenol 2-Nitroaniline	5	U 5	- U 5	- U 4.9	- U 5							
2-Nitroaniine 2-Nitrophenol	э	U 5	U 10		U 5							
2-Nitroprierioi 3,3'-Dichlorobenzidine	5	U 10	U 10	U 4.9	U 10							
3-Methylphenol/4-Methylphenol	3	U 5	U 5	U 4.9	U 5							
3-Nitroaniline	5	U 5	U 5	U 4.9	U 5							
4,6-Dinitro-o-cresol	9	U 10	U 10		U 10							
4-Bromophenyl phenyl ether		U 2	U 2	: · · · · · · · · · · · · · · · · · · ·	U 2							
4-Chloroaniline	5	U 5	U 5	U 4.9	U 5							
4-Chlorophenyl phenyl ether		U 2	U 2		U 2							
4-Nitroaniline	5	U 5	U 5	U 4.9	U 5							
4-Nitrophenol		U 10	U 10	U 9.9	U 10							
Acenaphthene	20	U 0.2	U 0.1	1 U 0.1	U 0.							
Acenaphthylene		U 0.2	U 0.1	1 U 0.1	U 0.							
Acetophenone		U 5	U 5	U 4.9	U 5							
Anthracene	50	U 0.2	U 0.1	1 U 0.1	U 0.							
ATRAZINE			U 10	U 9.9	U 10							
BENZALDEHYDE			U 5	U 4.9	U 5							
Benzo(a)anthracene	0.002	U 0.2	U 0.1	1 U 0.1	U 0.1							
Benzo(a)pyrene	0.002	U 0.2	U 0.1	1 U 0.1	U 0.							
Benzo(b)fluoranthene	0.002	U 0.2	U 0.1	1 U 0.1	U 0.							
Benzo(ghi)perylene		U 0.2	U 0.1	1 U 0.1	U 0.							
Benzo(k)fluoranthene	0.002	U 0.2	U 0.1	1 U 0.1	U 0.							
Benzoic Acid		U 50	-	1 - 1	-							
Benzyl Alcohol		U 2	-	- 1	-							
Biphenyl		U 2	U 2	: :	U 2							
Bis(2-chloroethoxy)methane	5	U 5	U 5		U 5							
Bis(2-chloroethyl)ether	1	U 2	U 2		U 2							
Bis(2-chloroisopropyl)ether	5	U 2 U 3	U 2		U 2 U 3							
Bis(2-Ethylhexyl)phthalate	5		1									
Butyl benzyl phthalate CAPROLACTAM	50	U 5	U 5	U 4.9	U 5							
		U 2	U 10	U 9.9 U 2	U 10							
Carbazole Chrysene	0.002		1	: :								
Dibenzo(a,h)anthracene	0.002	U 0.2 U 0.2			U 0. ⁻							
Dibenzo(a,n)anthracene Dibenzofuran		U 0.2	U 0.1		U 0.							
Diethyl phthalate	50	U 5	U 5	U 4.9	U 5							
Dimethyl phthalate			1									
Di-n-butylphthalate	50	U 5	U 5	U 4.9 U 4.9	U 5							
Di-n-octylphthalate	50	U 5	U 5	: E	U 5							
Fluoranthene	50	U 0.2	1	: :	U 0.							
Fluorene	50	U 0.2	5	: :	U 0.							
Hexachlorobenzene	0.04	U 0.8			U 0.							
Hexachlorobutadiene	0.5	U 0.5	:		U 0.							
Hexachlorocyclopentadiene	5	U 20	3	1	U 20							
Hexachloroethane	5	U 0.8	1	· i	U 0.							
Indeno(1,2,3-cd)Pyrene	0.002	U 0.2	U 0.1	1 U 0.1	U 0.							
Isophorone	50	U 5	U 5	U 4.9	U 5							
Naphthalene	10	U 0.2	1		U 0.							
Nitrobenzene	0.4	U 2	U 2		U 2							
NitrosoDiPhenylAmine(NDPA)/DPA	50	U 2	U 2	: · · · · · · · · · · · · · · · · · · ·	U 2							
n-Nitrosodi-n-propylamine		U 5	U 5	U 2	U 5							
P-Chloro-M-Cresol		U 2	U 2		U 2							
Pentachlorophenol	1	U 0.8			U 0.							
Phenanthrene	50	U 0.2	U 0.1	1 U 0.1	U 0.							
Phenol	1	U 5	U 5	U 4.9	U 5							
Pyrene	50	U 0.2	U 0.1	1 U 0.1	U 0.							

Phenol 1
Pyrene 50

All values reported as ug/L (parts per billion)

- New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS- No sample collected because well was dry during sampling event

(·) - Indicates analyte was not analyzed for
R.L. - Laboratory reporting limit

U - Analyzed for but not detected above laboratory detection limit

Analyte	GW Std^				Samp	le Ider	ntificatio	on		
(ug/L)	(ug/L)					MW-	2B			
Date Sampled		Apr-12	2	М	ay-17		Nov	-17	Jun-1	В
SVOCs by EPA Method 8270D			R.L.			R.L.		R.L.		R.L.
1,2,4,5-Tetrachlorobenzene	5	U	10		U	9.6		U 10	L	10
1,2,4-Trichlorobenzene	5	U	5	-			-		-	
1,2-Dichlorobenzene	3	U	2	-		1	-		-	
1,3-Dichlorobenzene	3	U	2	-			-		-	
1,4-Dichlorobenzene	3	U	2	-			-		-	
2,3,4,6-TETRACHLOROPHENOL					U	4.8		U 5	L	
2,4,5-Trichlorophenol		U	5		U	4.8		U 5	L	
2,4,6-Trichlorophenol		U	5		U	4.8		U 5	L	
2,4-Dichlorophenol	1	U	5		U	4.8		U 5	L	
2,4-Dimethylphenol	50 10	U	5 20		U	4.8 19		U 5	L	
2,4-Dinitrophenol 2,4-Dinitrotoluene	5	U	5		U	19		U 5	L	
2,6-Dinitrotoluene	5	U	5		U	4.8		U 5	L	
2-Chloronaphthalene	10	U	0.2		U	0.19		U 0.2	L	
2-Chlorophenol	10	U	2		U	1.9		U 2	Ĺ	
2-Methylnaphthalene		U	0.2		U	0.1		U 0.1	Ĺ	
2-Methylphenol		Ü	5	-	Ŭ	0.1	_	0 0		0.1
2-Nitroaniline	5	U	5		U	4.8		U 5	L	5
2-Nitrophenol	1	U	10		U	9.6		U 10	Ĺ	
3,3'-Dichlorobenzidine	5	U	5		Ü	4.8		U 5	i	
3-Methylphenol/4-Methylphenol		Ü	5		U	4.8		U 5	Ĺ	
3-Nitroaniline	5	U	5		U	4.8		U 5	L	5
4,6-Dinitro-o-cresol		U	10		U	9.6		U 10	L	10
4-Bromophenyl phenyl ether		U	2		U	1.9		U 2	L	2
4-Chloroaniline	5	U	5		U	4.8		U 5	L	5
4-Chlorophenyl phenyl ether		U	2		U	1.9		U 2	L	2
4-Nitroaniline	5	U	5		U	4.8		U 5	L	5
4-Nitrophenol		U	10		U	9.6		U 10	L	10
Acenaphthene	20	U	0.2		U	0.1		U 0.1	L	
Acenaphthylene		U	0.2		U	0.1		U 0.1	L	
Acetophenone		U	5		U	4.8		U 5	L	
Anthracene	50	U	0.2		U	0.1		U 0.1	L	
ATRAZINE					U	9.6		U 10	L	
BENZALDEHYDE	0.000				U	4.8		U 5	L	
Benzo(a)anthracene	0.002	U	0.2		U	0.1		U 0.1	L	
Benzo(a)pyrene	0.002	U	0.2		U	0.1		U 0.1	L	
Benzo(b)fluoranthene	0.002	U	0.2		U	0.1		U 0.1	L	
Benzo(ghi)perylene	0.000	U	0.2		U	0.1		U 0.1	L	
Benzo(k)fluoranthene Benzoic Acid	0.002	U	0.2 50		U	0.1		U 0.1	L	0.1
		U	2			-	-		-	
Benzyl Alcohol Biphenyl		U	2	-	U	1.9	-	U	- ل	2
Bis(2-chloroethoxy)methane	5	U	5		U	4.8		U 5	L	
Bis(2-chloroethyl)ether	1	U	2		U	1.9			L	
Bis(2-chloroisopropyl)ether	5	U	2		Ü	1.9		U 2 U 2	Ĺ	
Bis(2-Ethylhexyl)phthalate	5	Ü	3	1.1	J	1.0		U 3	ū	
Butvl benzyl phthalate	50	U	5		U	4.8		U 5	Ĺ	
CAPROLACTAM					U	9.6		U 10	ū	
Carbazole		U	2		Ū	1.9		U 2	ū	
Chrysene	0.002	U	0.2		U	0.1		U 0.1	L	0.1
Dibenzo(a,h)anthracene		U	0.2		U	0.1		U 0.1	L	0.1
Dibenzofuran		U	2		U	1.9		U 2	L	2
Diethyl phthalate	50	U	5		U	4.8		U 5	L	5
Dimethyl phthalate	50	U	5		U	4.8		U 5	L	5
Di-n-butylphthalate	50	U	5		U	4.8		U 5	L	5
Di-n-octylphthalate	50	U	5		U	4.8		U 5	L	5
Fluoranthene	50	0.08 J			U	0.1		U 0.1	L	0.1
Fluorene	50	U	0.2		U	0.1		U 0.1	L	
Hexachlorobenzene	0.04	U	8.0		U	0.76		U 0.8	L	
Hexachlorobutadiene	0.5	U	0.5		U	0.48		U 0.5	L	
Hexachlorocyclopentadiene	5	U	20		U	19		U 20	L	
Hexachloroethane	5	U	0.8		U	0.76		U 0.8	L	
Indeno(1,2,3-cd)Pyrene	0.002	U	0.2		U	0.1		U 0.1	L	
Isophorone	50	U	5		U	4.8		U 5	L	
Naphthalene	10	U	0.2		U	0.1		U 0.1	L	
Nitrobenzene	0.4	U	2		U	1.9		U 2	L	
NitrosoDiPhenylAmine(NDPA)/DPA	50	U			U	1.9		U 2	L	
n-Nitrosodi-n-propylamine		U	5		U	4.8		U 5	L	
P-Chloro-M-Cresol	1	U	2		U	1.9		U 2	L	
Pentachlorophenol Phenanthrene	1	0.16 J	8.0		U	0.76		U 0.8	L	
Phenanthrene Phenol	50 1	0.16 J U	5		U	0.1 4.8		U 0.1 U 5	L	
r rieriol	50	U			U	4.8 0.1		U 5.1	L.	

Pyrene 50

All values reported as ug/L (parts per billion)

^ New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS- No sample collected because well was dry during sampling event

(·) - Indicates analyte was not analyzed for

R.L. - Laboratory reporting limit

U - Analyzed for but not detected above laboratory detection limit

Analyte	GW Std^			- 5			entifica	tion				_
(ug/L)	(ug/L)					SWR-	MW-1					
Date Sampled		Apr-12		М	ay-17	•	N	ov-17	'	Ju	n-18	
SVOCs by EPA Method 8270D			R.L.			R.L.			R.L.			R.L
1,2,4,5-Tetrachlorobenzene	5	U	10		U	10		U	9.7		U	10
1,2,4-Trichlorobenzene	5	U	5	-			-	U		-		
1,2-Dichlorobenzene	3	U	2	-			-	U		-		
1,3-Dichlorobenzene	3	U	2	-			-	U		-		
1,4-Dichlorobenzene	3	U	2	-			-	U		-		
2,3,4,6-TETRACHLOROPHENOL					U	5		U	4.9		U	5
2,4,5-Trichlorophenol		U	5		U	5		U	4.9		U	5
2,4,6-Trichlorophenol		U	5		U	5		U	4.9		U	5
2,4-Dichlorophenol	1	U	5		U	5		U	4.9		U	5
2,4-Dimethylphenol	50	U	5		U	5		U	4.9		U	5
2,4-Dinitrophenol	10	U	20		U	20		U	19		U	20
2,4-Dinitrotoluene	5	U	5		U	5		U	4.9		U	5
2,6-Dinitrotoluene	5	U	5		U	5		U	4.9		U	5
2-Chloronaphthalene	10	U	0.2		U	0.2		U	0.19		U	0.:
2-Chlorophenol		U	2		U	2		U	1.9		U	2
2-Methylnaphthalene		U	0.2		U	0.1		U	0.1		U	0.
2-Methylphenol		U	5	-			-	U		-		
2-Nitroaniline	5	U	5		U	5		U	4.9		U	5
2-Nitrophenol	_	U	10		U	10		U	9.7		U	10
3,3'-Dichlorobenzidine	5	U	5		U	5		U	4.9		U	5
3-Methylphenol/4-Methylphenol	_	U	5		U	5	5.4				U	5
3-Nitroaniline	5	U	5		U	5		U	4.9		U	5
4,6-Dinitro-o-cresol		U	10		U	10		U	9.7		U	10
4-Bromophenyl phenyl ether	_	U	2		U	2		U	1.9		U	2
4-Chloroaniline	5	U	5		U	5		U	4.9		U	5
4-Chlorophenyl phenyl ether	_	U	2		U	2		U	1.9		U	2
4-Nitroaniline	5	U	5		U	5		U	4.9		U	5
4-Nitrophenol		U	10		U	10		U	9.7		U	10
Acenaphthene	20	U	0.2		U	0.1		U	0.1		U	0.
Acenaphthylene		U	0.2		U	0.1		U	0.1		U	0.
Acetophenone		U	5		U	5		U	4.9		U	5
Anthracene	50	U	0.2		U	0.1		U	0.1		U	0.
ATRAZINE BENZALDEHYDE					U	10 5		U	9.7 4.9		U	10
Benzo(a)anthracene	0.002	U	0.2		U	0.1	0.03	J	0.1		U	0.
Benzo(a)pyrene	0.002	U	0.2		U	0.1	0.03	U	0.1		U	0.
Benzo(b)fluoranthene	0.002	U	0.2		U	0.1	0.02	J	0.1		U	0.
Benzo(ghi)perylene	0.002	U	0.2		U	0.1	0.02	U	0.1		U	0.
Benzo(k)fluoranthene	0.002	U	0.2		U	0.1		U	0.1		U	0.
Benzoic Acid	0.002	U	50		U	0.1		U	0.1		U	0.
Benzyl Alcohol		U	2									
Biphenyl		U	2		U	2		U	1.9		U	2
Bis(2-chloroethoxy)methane	5	U	5		U	5		U	4.9		U	5
Bis(2-chloroethyl)ether	1	U	2		U	2		U	1.9		U	2
Bis(2-chloroisopropyl)ether	5	Ü	2		Ü	2		Ü	1.9		Ü	2
Bis(2-Ethylhexyl)phthalate	5	Ū	3	2.5	J	3		Ū	2.9	16	Ť	3
Butyl benzyl phthalate	50	U	5		U	5		U	4.9		U	5
CAPROLACTAM	00	Ĭ	ŭ		U	10		U	9.7		U	10
Carbazole		U	2		Ü	2		Ü	1.9		Ü	2
Chrysene	0.002	U	0.2		U	0.1		U	0.1		U	0.
Dibenzo(a,h)anthracene		U	0.2		U	0.1		U	0.1		U	0.
Dibenzofuran		U	2		U	2		U	1.9		U	2
Diethyl phthalate	50	U	5		U	5		U	4.9		U	5
Dimethyl phthalate	50	U	5		Ü	5		Ü	4.9		Ü	5
Di-n-butylphthalate	50	U	5		U	5		U	4.9		U	5
Di-n-octylphthalate	50	U	5		U	5		U	4.9		U	5
Fluoranthene	50	0.05 J			U	0.1		U	0.1		U	0.
Fluorene	50	U	0.2		U	0.1		U	0.1		U	0.
Hexachlorobenzene	0.04	U	0.8		U	0.8		U	0.78		U	0.
Hexachlorobutadiene	0.5	U	0.5		U	0.5		U	0.49		U	0.
Hexachlorocyclopentadiene	5	U	20		U	20		U	19		U	2
Hexachloroethane	5	U	0.8		U	0.8		U	0.78		U	0.
ndeno(1,2,3-cd)Pyrene	0.002	U	0.2		U	0.1		U	0.1		U	0.
sophorone	50	U	5		U	5		U	4.9		U	5
Naphthalene	10	U	0.2		U	0.1		U	0.1		U	0.
Nitrobenzene	0.4	U	2		U	2		U	1.9		U	2
NitrosoDiPhenylAmine(NDPA)/DPA	50	U	2		U	2		U	1.9		U	2
n-Nitrosodi-n-propylamine		U	5		U	5		U	4.9		U	5
P-Chloro-M-Cresol		U	2		U	2		U	1.9		U	2
Pentachlorophenol	1	U	0.8		U	0.8		U	0.78		U	0.
Phenanthrene	50	U	0.2		U	0.1	0.02	J	0.1	0.11		0.
Phenol	1	U	5		U	5		U	4.9		U	5
Pyrene	50	U	0.2		U	0.1		U	0.1	0.11		0.

Phenol 1
Pyrene 50

All values reported as ug/L (parts per billion)

- New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS- No sample collected because well was dry during sampling event

(·) - Indicates analyte was not analyzed for
R.L. - Laboratory reporting limit

U - Analyzed for but not detected above laboratory detection limit

Analyte	GW Std^		Sample Ide										
(ug/L)	(ug/L)												
Date Sampled		Apr-12 (MW-2A)	May-17 (MW-2B)	Nov-17 (SRW-MW1)	Jun-18 (MW-2B)								
		(IVIVV-ZA)	(IVIVV-2D)	(SKVV-IVIVVI)	(IVIVV-2D)								
SVOCs by EPA Method 8270D		R.L.	R.L.	R.L.									
1,2,4,5-Tetrachlorobenzene	5	U 10	U 10	U 9.9	U 10								
1,2,4-Trichlorobenzene	5	U 5	-	-	-								
1,2-Dichlorobenzene	3	U 2	-	-	-								
1,3-Dichlorobenzene	3	U 2	-	-	-								
1,4-Dichlorobenzene	3	U 2	-		- U 5								
2,3,4,6-TETRACHLOROPHENOL			U 5 U 5	U 4.9 U 4.9	U 5								
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol		U 5 U 5			U 5								
2,4,6-1 inchiorophenol	1	U 5 U 5	U 5 U 5	U 4.9 U 4.9	U 5								
2,4-Dichlorophenol	50	U 5	U 5	U 4.9	U 5								
2,4-Dinitrophenol	10	U 20	U 20	U 20	U 20								
2,4-Dinitrotoluene	5	U 5	U 5	U 4.9	U 5								
2,6-Dinitrotoluene	5	U 5	U 5	U 4.9	U 5								
2-Chloronaphthalene	10	U 0.2	U 0.2	U 0.2	U 0.:								
2-Chlorophenol	10	U 2	U 2	U 2	U 2								
2-Methylnaphthalene		U 0.2	U 0.1	U 0.1	U 0.								
2-Methylphenol		U 5	- 5	- 0 0	-								
2-Nitroaniline	5	U 5	U 5	U 4.9	U 5								
2-Nitrophenol		U 10	U 10	U 9.9	U 10								
3,3'-Dichlorobenzidine	5	U 5	U 5	U 4.9	U 5								
3-Methylphenol/4-Methylphenol		U 5	U 5	2.8 J 4.9	U 5								
3-Nitroaniline	5	U 5	U 5	U 4.9	U 5								
4,6-Dinitro-o-cresol		U 10	U 10	U 9.9	U 10								
4-Bromophenyl phenyl ether		U 2	U 2	U 2	U 2								
4-Chloroaniline	5	U 5	U 5	U 4.9	U 5								
4-Chlorophenyl phenyl ether		U 2	U 2	U 2	U 2								
4-Nitroaniline	5	U 5	U 5	U 4.9	U 5								
4-Nitrophenol		U 10	U 10	U 9.9	U 10								
Acenaphthene	20	U 0.2	U 0.1	U 4.9	U 0.								
Acenaphthylene		U 0.2	U 0.1	U 0.1	U 0.								
Acetophenone		U 5	U 5	U 4.9	U 5								
Anthracene	50	U 0.2	U 0.1	U 0.1	U 0.								
ATRAZINE			U 10	U 9.9	U 10								
BENZALDEHYDE			U 5	U 4.9	U 5								
Benzo(a)anthracene	0.002	U 0.2	U 0.1	U 0.1	U 0.								
Benzo(a)pyrene	0.002	U 0.2	U 0.1	U 0.1	U 0.								
Benzo(b)fluoranthene	0.002	U 0.2	U 0.1	U 0.1	U 0.								
Benzo(ghi)perylene		U 0.2	U 0.1	U 0.1	U 0.								
Benzo(k)fluoranthene	0.002	U 0.2	U 0.1	U 0.1	U 0.								
Benzoic Acid		U 50	- 5	- 1	-								
Benzyl Alcohol		U 2	- 10										
Biphenyl		U 2	U 2	U 2	U 2								
Bis(2-chloroethoxy)methane	5	U 5	U 5	U 4.9	U 5								
Bis(2-chloroethyl)ether	1	U 2	U 2	U 2 U 2	U 2								
Bis(2-chloroisopropyl)ether	5	U 2	U 2	:	U 2								
Bis(2-Ethylhexyl)phthalate	5	U 3	1.4 J 3	U 3	U 3								
Butyl benzyl phthalate	50	U 5	U 5	U 4.9	U 5								
CAPROLACTAM			U 10	U 9.9	U 10								
Carbazole	0.002	U 2	U 2	U 2									
Chrysene Dibonzo(a b)onthrocono	0.002	U 0.2	U 0.1	U 0.1									
Dibenzo(a,h)anthracene Dibenzofuran		U 0.2	U 0.1	U 0.1									
		U 2	U 2	U 2									
Diethyl phthalate	50	U 5	U 5	U 4.9	U 5								
Dimethyl phthalate Di-n-butylphthalate	50 50	U 5	U 5	U 4.9	U 5								
* *	50	U 5	U 5	U 4.9	U 5								
Di-n-octylphthalate	50 50	U 5 U 0.2	U 5 U 0.1	U 4.9	U 5								
Fluoranthene	50 50			U 0.1	U 0.								
Fluorene Hexachlorobenzene	50 0.04	U 0.2 U 0.8	U 0.1 U 0.8	U 0.1 U 0.79	U 0.								
Hexachlorobenzene Hexachlorobutadiene	0.04	U 0.8	U 0.8	U 0.79	U 0.								
Hexachloroputadiene Hexachlorocyclopentadiene	0.5 5	U 0.5 U 20	U 0.5 U 20	U 0.49 U 20	U 0.								
Hexachlorocyclopentadiene Hexachloroethane	5	U 20 U 0.8	U 20 U 0.8	U 20 U 0.79	U 0.								
ndeno(1,2,3-cd)Pyrene	0.002	U 0.8 U 0.2	U 0.8 U 0.1	U 0.79 U 0.1	U 0.								
Isophorone	50	U 0.2	U 0.1	U 4.9	U 5								
Isopnorone Naphthalene	10	U 5 U 0.2	U 5 U 0.1	U 4.9 U 0.1	U 0.								
·	0.4	U 0.2 U 2	U 0.1 U 2	U 0.1 U 2	U 2								
Nitrobenzene NitrosoDiPhenylAmine(NDPA)/DPA	50		-		U 2								
	30	U 2 U 5	U 2 U 5	U 2 U 4.9	U 5								
n-Nitrosodi-n-propylamine P-Chloro-M-Cresol					U s								
P-Chloro-M-Cresol Pentachlorophenol	_	U 2	U 2	0 2	U 2								
Pentachlorophenol Phenanthrene	1 50	U 0.8	U 0.8 U 0.1	U 0.79	U 0.								
Phenol	1	U 0.2 U 5	U 0.1 U 5	0.02 J 0.1 U 4.9	U 5								
Pyrene	50	U 0.2	U 5 U 0.1	U 4.9 U 0.1	U 0.								

Phenol 1
Pyrene 50

All values reported as ug/L (parts per billion)

- New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS- No sample collected because well was dry during sampling event

(·) - Indicates analyte was not analyzed for
R.L. - Laboratory reporting limit

U - Analyzed for but not detected above laboratory detection limit

Table 3
Summary of Groundwater Laboratory Analytical Results

Analyte	GW Std [^]				Sam	ple Ide	entification								
(ug/L)	(ug/L)														
Date Sampled		Apr-12		May	y-17		Nov-	17	Jur	n-18					
Metals by EPA Methods 6020A/7470A			R.L.			R.L.		R.L.			R.L.				
Aluminum, Total		NS		64.5			NS		883		10				
Antimony, Total	3	NS		0.72	J		NS		0.75	J	4				
Arsenic, Total	25	NS		3.36			NS		2.96		0.5				
Barium, Total	1,000	NS		287.2			NS		264.5		0.5				
Beryllium, Total	3	NS			U	0.5	NS			U	0.5				
Cadmium, Total	5	NS			U	0.2	NS			U	0.2				
Calcium, Total		NS		191,000			NS		175,000		100				
Chromium, Total	50	NS		2.49			NS		4.32		1				
Cobalt, Total		NS		1.07			NS		1.48		0.5				
Copper, Total	200	NS		0.5	J	_	NS		3.04		1				
Iron, Total	300	NS		40,800			NS		39,200		50				
Lead, Total	25	NS			U	0.5	NS		4.02		1				
Magnesium, Total	35,000	NS		25,900		_	NS		23,800		70				
Manganese, Total	300	NS		2,464		Ī	NS		2,166		1				
Mercury, Total	0.7	NS			U	0.2	NS			U	0.2				
Nickel, Total	100	NS		1.25	J		NS		1.86	J	2				
Potassium, Total		NS		22,300			NS		19,200		100				
Selenium, Total	10	NS			U	5	NS			U	5				
Silver, Total	50	NS			U	0.4	NS		0.59	J	1				
Sodium, Total	20,000	NS		43,700		I	NS		31,800		200				
Thallium, Total	0.5	NS	!!		U	0.5	NS			U	0.5				
Vanadium, Total		NS		1.93	J		NS		3.88	J	5				
Zinc, Total	2,000	NS			U	10	NS		9.11	J	10				

R.L. - Laboratory reporting limit

^{^ -} New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS - No sample collected because well was dry during sampling event

^{(-) -} Indicates analyte was not analyzed for

U - Analyzed for but not detected above laboratory detection limit

J - Estimated value

Table 3
Summary of Groundwater Laboratory Analytical Results

Analyte	GW Std^	Sample Identification											
(ug/L)	(ug/L)						MW	/-2A					
Date Sampled		Арі	r-12		May	y-17		Nov-17			Jun	-18	
Metals by EPA Methods 6020A/7470A				R.L.			R.L.			R.L.			R.L.
Aluminum, Total		11,000			354			706			1,910		10
Antimony, Total	3	1.5			0.82	J		1.61	J		2.43	J	4
Arsenic, Total	25		U	5	0.38	J		0.58			0.45	J	0.5
Barium, Total	1,000	151			38.45			50.26			57.44		0.5
Beryllium, Total	3	0.3	J			U	0.5		U	0.5		U	0.5
Cadmium, Total	5		U	5	0.11	J		0.08	J		0.1	J	0.2
Calcium, Total		250,000			300,000			378,000			296,000		100
Chromium, Total	50	30			1.35			2.63			5.71		1
Cobalt, Total		25			19.48			18.70			22.34		0.5
Copper, Total	200	81			14.05		_	12.23		_	30.18		1
Iron, Total	300	16,000			603		I	1,150			3,080		50
Lead, Total	25	44			1.67		_	1.89		_	12.63		1
Magnesium, Total	35,000	52,000			58,600		I	65,800			56,000		70
Manganese, Total	300	2,530			1,554		I	1,489			1,637		1
Mercury, Total	0.7		U	0.2		U	0.2		U	0.2		U	0.2
Nickel, Total	100	34			6.9			7.95			11.09		2
Potassium, Total		26,000			23,000		_	23,600			20,500		100
Selenium, Total	10	5	J		11.1		I	8.37			8.42		5
Silver, Total	50		U	7		U	0.4		U	0.4	0.91	J	1
Sodium, Total	20,000	43,000			44,300		I	50,900			33,000		200
Thallium, Total	0.5	0.2	J			U	0.5		U	0.5	0.18	J	0.5
Vanadium, Total		35				U	5	3.09	J		6.19		5
Zinc, Total	2,000	95			3.43	J		6.33	J		15.79		10

^{^ -} New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS - No sample collected because well was dry during sampling event

R.L. - Laboratory reporting limit

^{(-) -} Indicates analyte was not analyzed for

U - Analyzed for but not detected above laboratory detection limit

J - Estimated value

Table 3
Summary of Groundwater Laboratory Analytical Results

Analyte	GW Std^	V Std^ Sample Identification											
(ug/L)	(ug/L)						MW	/-2B					
Date Sampled		Арі	r-12		May	y-17		Nov	/-17		Jur	ı-18	
Metals by EPA Methods 6020A/7470A				R.L.			R.L.			R.L.			R.L.
Aluminum, Total		400			6.06	J		9.80	J		28.3		10
Antimony, Total	3	0.6			0.46	J			U	4	0.45	J	4
Arsenic, Total	25		U	5	0.52			0.63			0.29	J	0.5
Barium, Total	1,000	81			37.16			47.21			42.25		0.5
Beryllium, Total	3		U	0.5		U	0.5		U	0.5		U	0.5
Cadmium, Total	5		U	5		U	0.2		U	0.2		U	0.2
Calcium, Total		260,000			260,000			296,000			269,000		100
Chromium, Total	50		U	10	0.33	J		0.49	J		0.62	J	1
Cobalt, Total		6	J		5.07			6.18			5.31		0.5
Copper, Total	200		U	10	1.49			0.86	J		1.36		1
Iron, Total	300	8,300			3,040		Ī	3,850			3,630		50
Lead, Total	25		U	10		U	0.5		U	1		U	1
Magnesium, Total	35,000	65,000			60,900		I	67,700			64,800		70
Manganese, Total	300	3,040			2,413		I	2,722			2,532		1
Mercury, Total	0.7		U	0.2		U	0.2		U	0.2		U	0.2
Nickel, Total	100	17	J		14.64			16.06			16.21		2
Potassium, Total		37,000			26,200			27,700			24,500		100
Selenium, Total	10		U	10		U	5		U	5		U	5
Silver, Total	50		U	7		U	0.4		U	0.4	0.35	J	1
Sodium, Total	20,000	46,000			41,700		I	46,400			35,700		200
Thallium, Total	0.5		U	0.5		U	0.5		U	0.5		U	0.5
Vanadium, Total			U	10		U	5		U	5		U	5
Zinc, Total	2,000	16	J		4.22	J		4.55	J			U	10

R.L. - Laboratory reporting limit

^{^ -} New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS - No sample collected because well was dry during sampling event

^{(-) -} Indicates analyte was not analyzed for

U - Analyzed for but not detected above laboratory detection limit

J - Estimated value

Table 3
Summary of Groundwater Laboratory Analytical Results

Analyte	GW Std^	·											
(ug/L)	(ug/L)												
Date Sampled		Apr-12		May-17		Nov-17			Jun-18				
Metals by EPA Methods 6020A/7470A				R.L.			R.L.			R.L.			R.L.
Aluminum, Total		25,000			1,260			33			13,600		10
Antimony, Total	3	0.6			0.69	J			U	4		U	4
Arsenic, Total	25		U	5	1.51			1.11			3.85		0.5
Barium, Total	1,000	424			67.49			304.7			410.5		0.5
Beryllium, Total	3	0.7				U	0.5		U	0.5		U	0.5
Cadmium, Total	5		U	5	0.21				U	0.2	0.88		0.2
Calcium, Total		120,000		_	62,200			197,000			204,000		100
Chromium, Total	50	70			3.32			1.95			54.13		1
Cobalt, Total		26		_	4.04			2.15			22.25		0.5
Copper, Total	200	89		_	11.52		_	0.59	J	_	96.06		1
Iron, Total	300	80,000			2,760			45,700			76,300		50
Lead, Total	25	54			5.21				U	1	33.38		1
Magnesium, Total	35,000	24,000			9,370		_	40,300			41,400		70
Manganese, Total	300	1,600			1,974			3,132			8,459		1
Mercury, Total	0.7	0.2				U	0.2	0.1	J	_		U	0.2
Nickel, Total	100	52			10.94			2.17			56.1		2
Potassium, Total		40,000			11,300			46,100			40,800		100
Selenium, Total	10		U	10		U	5		U	5		U	5
Silver, Total	50		U	7		U	0.4		U	0.4	1.61		1
Sodium, Total	20,000	88,000]	6,550			116,000			62,500		200
Thallium, Total	0.5	0.6]		U	0.5		U	0.5		U	0.5
Vanadium, Total		74		-	3.82	J		1.69	J		42.73		5
Zinc, Total	2,000	155			20.74				U		169.6		10

R.L. - Laboratory reporting limit

^{^ -} New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS - No sample collected because well was dry during sampling event

^{(-) -} Indicates analyte was not analyzed for

U - Analyzed for but not detected above laboratory detection limit

J - Estimated value

Table 3
Summary of Groundwater Laboratory Analytical Results

Analyte	GW Std^	Sample Identification											
(ug/L)	(ug/L)												
Date Sampled		Apr		17-May			Nov-17			Jun-18			
		(MW-2A)		(MW-2B)			(SRW-MW1)			(MW-2B)			
Metals by EPA Methods													
6020A/7470A				R.L.			R.L.			R.L.			R.L.
Aluminum, Total		11,000			5.38	J		37.1			25.9		10
Antimony, Total	3	1.5				U	4		U	4	0.44	J	4
Arsenic, Total	25		U	5	0.53			1.27			0.26	J	0.5
Barium, Total	1,000	164			36.87			314.5			41.61		0.5
Beryllium, Total	3	0.3	J			U	0.5		U	0.5		U	0.5
Cadmium, Total	5		U	5		U	0.2		U	0.2		U	0.2
Calcium, Total		300,000			274,000			206,000			266,000		100
Chromium, Total	50	30			0.48	J		2.03			0.58	J	1
Cobalt, Total		28	`		5.25			2.21			5.28		0.5
Copper, Total	200	94		_	1.2		_		U	_ 1	1.1		_ 1
Iron, Total	300	16,000			3,030			48,200			3,560		50
Lead, Total	25	49				U	0.5		U	1		U	1
Magnesium, Total	35,000	61,000			63,100		Ī	41,600			64,000		70
Manganese, Total	300	3,020			2,456			3,271			2,510		1
Mercury, Total	0.7		U	0.2		U	0.2		U	0.2		U	0.2
Nickel, Total	100	37			15.09			1.97	J	2	16.29		2
Potassium, Total		30,000			27,100			48,100			24,400		100
Selenium, Total	10	5	J			U	5		U	5		U	5
Silver, Total	50		U	7		U	0.4		U	0.4	0.28	J	1
Sodium, Total	20,000	51,000			43,400			120,000]	34,900		200
Thallium, Total	0.5	0.2	J			U	0.5		U	0.5		U	0.5
Vanadium, Total		35				U	5	1.58	J	5		U	5
Zinc, Total	2,000	104			4.1	J			U	10		U	10

R.L. - Laboratory reporting limit

- () Indicates analyte was not analyzed for
- U Analyzed for but not detected above laboratory detection limit
- J Estimated value

^{^ -} New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS - No sample collected because well was dry during sampling event

Table 3Summary of Groundwater Laboratory Analytical Results

Analyte	GW Std^	GW Std [^] Sample Identification										
(ug/L)	(ug/L)	MW-1										
Date Sampled		Apr-12	May-17		Nov-17		Jun-18					
PCBs by EPA Method 8082A		R.L.		R.L.	F	R.L.		R.L.				
Aroclor 1016		NS	U	0.083	NS		U	0.2				
Aroclor 1221		NS	U	0.083	NS		U	0.2				
Aroclor 1232		NS	U	0.083	NS		U	0.2				
Aroclor 1242		NS	U	0.083	NS		U	0.2				
Aroclor 1248		NS	U	0.083	NS		U	0.2				
Aroclor 1254		NS	U	0.083	NS		U	0.2				
Aroclor 1260		NS	U	0.083	NS		U	0.2				
Aroclor 1262		NS	U	0.083	NS		U	0.2				
Aroclor 1268		NS	U	0.083	NS		U	0.2				
Total PCBs	0.09	NS	ND		NS	ND						

All values reported as ug/L (parts per billion)

^ - New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS - No sample collected because well was dry during sampling event

R.L. - Laboratory reporting limit

ND - Not detected

- () Indicates analyte was not analyzed for
- U Analyzed for but not detected above laboratory detection limit
- J Estimated value

Table 3Summary of Groundwater Laboratory Analytical Results

Analyte	GW Std [^]	Sample Identification											
(ug/L)	(ug/L)				N-2A								
Date Sampled	Sampled Apr-12 May-17		7	Nov-17			18						
PCBs by EPA Method 8082A			R.L.		R.L.		R.L.		R.L.				
Aroclor 1016		U	0.083	U	0.083	U	0.083	U	0.083				
Aroclor 1221		U	0.083	U	0.083	U	0.083	U	0.083				
Aroclor 1232		U	0.083	U	0.083	U	0.083	U	0.083				
Aroclor 1242		U	0.083	U	0.083	U	0.083	U	0.083				
Aroclor 1248		U	0.083	U	0.083	U	0.083	U	0.083				
Aroclor 1254		U	0.083	U	0.083	U	0.083	U	0.083				
Aroclor 1260		U	0.083	U	0.083	U	0.083	U	0.083				
Aroclor 1262		U	0.083	U	0.083	U	0.083	U	0.083				
Aroclor 1268		U	0.083	U	0.083	U	0.083	U	0.083				
Total PCBs	0.09	ND		ND		ND		ND					

All values reported as ug/L (parts per billion)

^ - New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS - No sample collected because well was dry during sampling event

R.L. - Laboratory reporting limit

ND - Not detected

(-) - Indicates analyte was not analyzed for

U - Analyzed for but not detected above laboratory detection limit

J - Estimated value

Analyte	GW Std [^]		Sample Identification								
(ug/L)	(ug/L)				M	W-2B					
Date Sampled		Apr-12)	May-1	17	١	Nov-1	7		Jun-18	}
PCBs by EPA Method 8082A			R.L.		R.L.			R.L.			R.L.
Aroclor 1016		U	0.083	U	0.083		U	0.083		U	0.083
Aroclor 1221		U	0.083	U	0.083		U	0.083		U	0.083
Aroclor 1232		U	0.083	U	0.083		U	0.083		U	0.083
Aroclor 1242		U	0.083	U	0.083	0.052	J	0.083		U	0.083
Aroclor 1248		U	0.083	U	0.083		U	0.083		U	0.083
Aroclor 1254		U	0.083	U	0.083		U	0.083		U	0.083
Aroclor 1260		U	0.083	U	0.083		U	0.083		U	0.083
Aroclor 1262		U	0.083	U	0.083		U	0.083		U	0.083
Aroclor 1268		U	0.083	U	0.083		U	0.083		U	0.083
Total PCBs	0.09	ND		ND		0.052			ND		

All values reported as ug/L (parts per billion)

^ - New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS - No sample collected because well was dry during sampling event

R.L. - Laboratory reporting limit

ND - Not detected

(-) - Indicates analyte was not analyzed for

U - Analyzed for but not detected above laboratory detection limit

J - Estimated value

Analyte	GW Std [^]			S	ample Id	entificatio	n				,
(ug/L)	(ug/L)		SWR-MW-1								
Date Sampled		Apr-1	2	May-1	17	٨	lov-1	7	Jui	า-18	}
PCBs by EPA Method 8082A			R.L.		R.L.			R.L.			R.L.
Aroclor 1016		U	0.083	U	0.083		U	0.083		U	0.083
Aroclor 1221		U	0.083	U	0.083		U	0.083		U	1.083
Aroclor 1232		U	0.083	U	0.083		U	0.083		U	2.083
Aroclor 1242		U	0.083	U	0.083		U	0.083		U	3.083
Aroclor 1248		U	0.083	U	0.083	0.053	J	0.083		U	4.083
Aroclor 1254		U	0.083	U	0.083		U	0.083		U	5.083
Aroclor 1260		U	0.083	U	0.083		U	0.083		U	6.083
Aroclor 1262		U	0.083	U	0.083		U	0.083		U	7.083
Aroclor 1268		U	0.083	U	0.083		U	0.083		U	8.083
Total PCBs	0.09	ND		ND		0.053			ND		

All values reported as ug/L (parts per billion)

^ - New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS - No sample collected because well was dry during sampling event

R.L. - Laboratory reporting limit

ND - Not detected

(-) - Indicates analyte was not analyzed for

U - Analyzed for but not detected above laboratory detection limit

J - Estimated value

Analyte	GW Std [^]			S	ample Ide	entificatio	n			
(ug/L)	(ug/L)		DUPLICATE							
Date Sampled		Apr-12	<u> </u>	May-1	17	N	ov-1	7	Jun-1	8
·		(MW-2A	A)	(MW-2	2B)	(SR\	W-M\	W1)	(MW-2	2B)
PCBs by EPA Method 8082A			R.L.		R.L.			R.L.		R.L.
Aroclor 1016		U	0.083	U	0.083		U	0.083	U	0.083
Aroclor 1221		U	0.083	U	0.083		U	0.083	U	0.083
Aroclor 1232		U	0.083	U	0.083		U	0.083	U	0.083
Aroclor 1242		U	0.083	U	0.083		U	0.083	U	0.083
Aroclor 1248		U	0.083	U	0.083	0.056	J	0.083	U	0.083
Aroclor 1254		U	0.083	U	0.083		U	0.083	U	0.083
Aroclor 1260		U	0.083	U	0.083		U	0.083	U	0.083
Aroclor 1262		U	0.083	U	0.083		U	0.083	U	0.083
Aroclor 1268		U	0.083	U	0.083		U	0.083	U	0.083
Total PCBs	0.09	ND		ND		0.056			ND	

All values reported as ug/L (parts per billion)

^ - New York TOGS 111 Ambient Water Quality Standards (reflects all addendum to criteria through June 2004)

NS - No sample collected because well was dry during sampling event

R.L. - Laboratory reporting limit

ND - Not detected

(-) - Indicates analyte was not analyzed for

U - Analyzed for but not detected above laboratory detection limit

J - Estimated value

Analyte	GW Std^		Sar	nple Ide	entification						
(ug/L)	(ug/L)	MW-1									
Date Sampled		Apr-12	May-17		Nov-17		Jun-18				
Pesticides by EPA Method 8081B		R.L.		R.L.	R.L.			R.I.			
4,4'-DDD	0.3	NS	U	0.042	NS	0.011	J	0.029			
4,4'-DDE	0.2	NS	U	0.042	NS		U	0.029			
4,4'-DDT	0.2	NS	U	0.042	NS	0.011	J	0.029			
Aldrin	ND	NS	U	0.021	NS		U	0.014			
Alpha-BHC	0.01	NS	U	0.021	NS		U	0.014			
Beta-BHC	0.04	NS	U	0.021	NS		U	0.014			
Chlordane	0.05	NS	U	0.208	NS		U	0.143			
Delta-BHC	0.04	NS	U	0.021	NS		U	0.014			
Dieldrin	0.004	NS	U	0.042	NS		U	0.029			
Endosulfan I		NS	U	0.021	NS		U	0.014			
Endosulfan II		NS	U	0.042	NS		U	0.029			
Endosulfan sulfate		NS	U	0.042	NS		U	0.029			
Endrin aldehyde							U	0.029			
Endrin	ND	NS	U	0.042	NS		U	0.029			
Endrin ketone	5	NS	U	0.042	NS		U	0.029			
Heptachlor	0.04	NS	U	0.021	NS		U	0.014			
Heptachlor epoxide	0.03	NS	U	0.021	NS		U	0.014			
Lindane	0.05	NS	U	0.021	NS		U	0.014			
Methoxychlor	35	NS	U	0.208	NS		U	0.143			
Toxaphene	0.06	NS	U	0.208	NS		U	0.143			
cis-Chlordane			-				U	0.014			
trans-Chlordane		NS	U	0.021	NS		U	0.014			

All values reported as ug/L (parts per billion)

Standards (reflects all addendum to criteria through June 2004)

NS - No sample collected because well was dry during sampling event

R.L. - Laboratory reporting limit

ND - Non-Detect

(-) - Indicates analyte was not analyzed for

U - Analyzed for but not detected above laboratory detection limit

J - Estimated value

Table 3
Summary of Groundwater Laboratory Analytical Results

Analyte	GW Std^			San	nple Ide	entification					
(ug/L)	(ug/L)		MW-2A								
Date Sampled		Apr-12		May-17	,	Nov-17		Jun-1	8		
Pesticides by EPA Method 8081B			R.L.		R.L.		R.L.		R.L.		
4,4'-DDD	0.3	U	0.04	U	0.04	U	0.04	U	0.029		
4,4'-DDE	0.2	U	0.04	U	0.04	U	0.04	U	0.029		
4,4'-DDT	0.2	UJ	0.04	U	0.04	U	0.04	U	0.029		
Aldrin	ND	U	0.02	U	0.02	U	0.02	U	0.014		
Alpha-BHC	0.01	U	0.02	U	0.02	U	0.02	U	0.014		
Beta-BHC	0.04	U	0.02	U	0.02	U	0.02	U	0.014		
Chlordane	0.05	UJ	0.2	U	0.2	U	0.2	U	0.143		
Delta-BHC	0.04	U	0.02	U	0.02	U	0.02	U	0.014		
Dieldrin	0.004	U	0.04	U	0.04	U	0.04	U	0.029		
Endosulfan I		U	0.02	U	0.02	U	0.02	U	0.014		
Endosulfan II		U	0.04	U	0.04	U	0.04	U	0.029		
Endosulfan sulfate		UJ	0.04	U	0.04	U	0.04	U	0.029		
Endrin aldehyde								U	0.029		
Endrin	ND	U	0.04	U	0.04	U	0.04	U	0.029		
Endrin ketone	5	U	0.04	U	0.04	U	0.04	U	0.029		
Heptachlor	0.04	UJ	0.02	U	0.02	U	0.02	U	0.014		
Heptachlor epoxide	0.03	U	0.02	U	0.02	U	0.02	U	0.014		
Lindane	0.05	U	0.02	U	0.02	U	0.02	U	0.014		
Methoxychlor	35	UJ	0.2	U	0.2	U	0.2	U	0.143		
Toxaphene	0.06	U	0.2	U	0.2	U	0.2	U	0.143		
cis-Chlordane								U	0.014		
trans-Chlordane		U	0.02	U	0.02	U	0.02	U	0.014		

All values reported as ug/L (parts per billion)

June 2004)

NS - No sample collected because well was dry during sampling event

Standards (reflects all addendum to criteria through

R.L. - Laboratory reporting limit

ND - Non-Detect

(-) - Indicates analyte was not analyzed for

U - Analyzed for but not detected above laboratory detection limit

J - Estimated value

Table 3
Summary of Groundwater Laboratory Analytical Results

Analyte	GW Std^			San	nple Ide	entification			
(ug/L)	(ug/L)				MW	-2B			
Date Sampled		Apr-12		May-17	,	Nov-17		Jun-18	3
Pesticides by EPA Method 8081B			R.L.		R.L.		R.L.		R.L.
4,4'-DDD	0.3	U	0.04	U	0.044	U	0.043	U	0.029
4,4'-DDE	0.2	U	0.04	U	0.044	U	0.043	U	0.029
4,4'-DDT	0.2	UJ	0.04	U	0.044	U	0.043	U	0.029
Aldrin	ND	U	0.02	U	0.022	U	0.021	U	0.014
Alpha-BHC	0.01	U	0.02	U	0.022	U	0.021	U	0.014
Beta-BHC	0.04	U	0.02	U	0.022	U	0.021	U	0.014
Chlordane	0.05	UJ	0.2	U	0.217	U	0.213	U	0.143
Delta-BHC	0.04	U	0.02	U	0.022	U	0.021	U	0.014
Dieldrin	0.004	U	0.04	U	0.044	U	0.043	U	0.029
Endosulfan I		0.025		U	0.022	U	0.021	U	0.014
Endosulfan II		U	0.04	U	0.044	U	0.043	U	0.029
Endosulfan sulfate		UJ	0.04	U	0.044	U	0.043	U	0.029
Endrin aldehyde								U	0.029
Endrin	ND	U	0.04	U	0.044	U	0.043	U	0.029
Endrin ketone	5	U	0.04	U	0.044	U	0.043	U	0.029
Heptachlor	0.04	UJ	0.02	U	0.022	U	0.021	U	0.014
Heptachlor epoxide	0.03	U	0.02	U	0.022	U	0.021	U	0.014
Lindane	0.05	U	0.02	U	0.022	U	0.021	U	0.014
Methoxychlor	35	UJ	0.2	U	0.217	U	0.213	U	0.143
Toxaphene	0.06	U	0.2	U	0.217	U	0.213	U	0.143
cis-Chlordane								U	0.014
trans-Chlordane		U	0.02	U	0.022	U	0.021	U	0.014

All values reported as ug/L (parts per billion)

Standards (reflects all addendum to criteria through June 2004)

NS - No sample collected because well was dry during sampling event

R.L. - Laboratory reporting limit

ND - Non-Detect

(-) - Indicates analyte was not analyzed for

U - Analyzed for but not detected above laboratory detection limit

J - Estimated value

Table 3
Summary of Groundwater Laboratory Analytical Results

Analyte	GW Std^				San	iple Ide	entification			
(ug/L)	(ug/L)					SWR-	MW-1			
Date Sampled		Apr-12		Ма	ıy-17		Nov-17		Jun-1	8
Pesticides by EPA Method										
8081B			R.L.			R.L.		R.L.		R.L.
4,4'-DDD	0.3	UJ	0.04		U	0.045	U	0.04	U	1.43
4,4'-DDE	0.2	UJ	0.04		U	0.045	U	0.04	U	1.43
4,4'-DDT	0.2	U	0.04		U	0.045	U	0.04	U	1.43
Aldrin	ND	UJ	0.02		U	0.023	U	0.02	U	0.714
Alpha-BHC	0.01	UJ	0.02		U	0.023	U	0.02	U	0.714
Beta-BHC	0.04	U	0.02		U	0.023	U	0.02	U	0.714
Chlordane	0.05	U	0.2		U	0.227	U	0.2	U	7.14
Delta-BHC	0.04	U	0.02		U	0.023	U	0.02	U	0.714
Dieldrin	0.004	UJ	0.04		U	0.045	U	0.04	U	1.43
Endosulfan I		UJ	0.02		U	0.023	U	0.02	U	0.714
Endosulfan II		UJ	0.04		U	0.045	U	0.04	U	1.43
Endosulfan sulfate		UJ	0.04		U	0.045	U	0.04	U	1.43
Endrin aldehyde									U	1.43
Endrin	ND	U	0.04		U	0.045	U	0.04	U	1.43
Endrin ketone	5	UJ	0.04		U	0.045	U	0.04	U	1.43
Heptachlor	0.04	U	0.02		U	0.023	U	0.02	U	0.714
Heptachlor epoxide	0.03	UJ	0.02		U	0.023	U	0.02	U	0.714
Lindane	0.05	UJ	0.02		U	0.023	U	0.02	U	0.714
Methoxychlor	35	U	0.2		U	0.227	U	0.2	U	7.14
Toxaphene	0.06	U	0.2		U	0.227	U	0.2	U	7.14
cis-Chlordane									U	0.714
trans-Chlordane		U	0.02	0.011	J	0.023	U	0.02	U	0.714

All values reported as ug/L (parts per billion)
Standards (reflects all addendum to criteria through

June 2004)

NS - No sample collected because well was dry during sampling event

R.L. - Laboratory reporting limit

ND - Non-Detect

(-) - Indicates analyte was not analyzed for

U - Analyzed for but not detected above laboratory detection limit

J - Estimated value

Analyte	GW Std^			S	ample	Identification					
(ug/L)	(ug/L)		DUPLICATE								
Date Sampled		Apr-12 (MW-2A)	May-17 (MW-2E		Nov-17 (SRW-MV		Jun-1 (MW-2			
Pesticides by EPA Method 8081B			R.L.		R.L.		R.L.		R.L.		
4.4'-DDD	0.3	U	0.04	U	0.041	U	0.042	U	0.029		
4,4'-DDE	0.2	U	0.04	U	0.041	U	0.042	U	0.029		
4,4'-DDT	0.2	UJ	0.04	U	0.041	U	0.042	U	0.029		
Aldrin	ND	U	0.02	U	0.02	U	0.021	U	0.014		
Alpha-BHC	0.01	U	0.02	U	0.02	U	0.021	U	0.014		
Beta-BHC	0.04	U	0.02	U	0.02	U	0.021	U	0.014		
Chlordane	0.05	UJ	0.2	U	0.204	U	0.208	U	0.143		
Delta-BHC	0.04	U	0.02	U	0.02	U	0.021	U	0.014		
Dieldrin	0.004	U	0.04	U	0.041	U	0.042	U	0.029		
Endosulfan I		0.121		U	0.02	U	0.021	U	0.014		
Endosulfan II		U	0.04	U	0.041	U	0.042	U	0.029		
Endosulfan sulfate		UJ	0.04	U	0.041	U	0.042	U	0.029		
Endrin aldehyde								U	0.029		
Endrin	ND	U	0.04	U	0.041	U	0.042	U	0.029		
Endrin ketone	5	U	0.04	U	0.041	U	0.042	U	0.029		
Heptachlor	0.04	UJ	0.02	U	0.02	U	0.021	U	0.014		
Heptachlor epoxide	0.03	U	0.02	U	0.02	U	0.021	U	0.014		
Lindane	0.05	U	0.02	U	0.02	U	0.021	U	0.014		
Methoxychlor	35	UJ	0.2	U	0.204	U	0.208	U	0.143		
Toxaphene	0.06	U	0.2	U	0.204	U	0.208	U	0.143		
cis-Chlordane								U	0.014		
trans-Chlordane		U	0.02	U	0.02	U	0.021	U	0.014		

All values reported as ug/L (parts per billion), Standards (reflects all addendum to criteria through June 2004)

NS - No sample collected because well was dry during sampling event

R.L. - Laboratory reporting limit

ND - Non-Detect

(-) - Indicates analyte was not analyzed for

U - Analyzed for but not detected above laboratory detection limit

J - Estimated value

Appendices

Appendix A Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C360116	Site Details		Box 1	
Sit	e Name Lo	t 4 - Austin Ave and Prio	r Place			
Cit Co Sit	y/Town: Yo unty: Westch e Acreage:	nester	September 27, 2018	Zip Code: 10710		
					YES	NO
1.	Is the inform	mation above correct?				X
	If NO, inclu	de handwritten above or o	on a separate sheet.			
2.		or all of the site property b nendment during this Repo		nerged, or undergone a		X
3.		peen any change of use at RR 375-1.11(d))?	the site during this Rep	porting Period		X
4.	•	ederal, state, and/or local per property during this Repo	. ,	discharge) been issued		X
	-	wered YES to questions nentation has been previous				
5.	Is the site of	currently undergoing devel	opment?			X
					Box 2	
					YES	NO
6.		ent site use consistent with al and Industrial	the use(s) listed below	?	X	
7.	Are all ICs/	ECs in place and functioni	ing as designed?		X	
	IF TI	HE ANSWER TO EITHER O DO NOT COMPLETE THE		•	ınd	
A	Corrective M	easures Work Plan must I	be submitted along wit	h this form to address th	nese iss	ues.
Sig	inature of Ow	ner, Remedial Party or Des	signated Representative	Date		

		Box 2	A
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITE	E NO. C360116	Во	x 3
	Description of Institutional Controls		

<u>Parcel</u>	<u>Owner</u>	Institutional Control
3-3244-4	Morris Westchester Retail Associates LLC	
		Ground Water Use Restriction
		Soil Management Plan
		Landuse Restriction

Controls at the site include:

- 1. Construction and maintenance of a cover system consisting of either a geotextile demarcation layer overlain by a minimum of 12-inches of crushed shot rock seeded to promote vegetative growth a minimum of 3-feet of shot rock, or a minimum of 6-inches of asphalt pavement to prevent human exposure to remaining contaminated soil/fill at the site;
- 2. End use restrictions at the Site limited to Commercial uses, unless there is an expressed written waiver from an appropriate New York State Department;
- 3. Execution and recording of an Environmental Easement to restrict land use, restrict the use of groundwater underlying the site, and prevent future exposure to any contamination remaining at the site;
- 4. Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting. The SMP also include a requirement for the installation of a sub-slab depressurization system in any future structures constructed on-site, to preclude the potential for soil vapor intrusion; and
- 5. Periodic certification of the institutional and engineering controls listed above.

3-3244-7 Morris Westchester Retail Associates LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan

Monitoring Plan Site Management Plan

IC/EC Plan

Controls at the site include:

- 1. Construction and maintenance of a cover system consisting of either a geotextile demarcation layer overlain by a minimum of 12-inches of crushed shot rock seeded to promote vegetative growth a minimum of 3-feet of shot rock, or a minimum of 6-inches of asphalt pavement to prevent human exposure to remaining contaminated soil/fill at the site;
- 2. End use restrictions at the Site limited to Commercial uses, unless there is an expressed written waiver from an appropriate New York State Department;
- 3. Execution and recording of an Environmental Easement to restrict land use, restrict the use of groundwater underlying the site, and prevent future exposure to any contamination remaining at the site;
- 4. Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting. The SMP also include a requirement for the installation of a sub-slab depressurization system in any future structures constructed on-site, to preclude the potential for soil vapor intrusion; and
- 5. Periodic certification of the institutional and engineering controls listed above.

3-8001-40 (p/o) Morris Westchester Retail Associates LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

Controls at the site include:

- 1. Construction and maintenance of a cover system consisting of either a geotextile demarcation layer overlain by a minimum of 12-inches of crushed shot rock seeded to promote vegetative growth a minimum of 3-feet of shot rock, or a minimum of 6-inches of asphalt pavement to prevent human exposure to remaining contaminated soil/fill at the site;
- 2. End use restrictions at the Site limited to Commercial uses, unless there is an expressed written waiver from an appropriate New York State Department;
- 3. Execution and recording of an Environmental Easement to restrict land use, restrict the use of groundwater underlying the site, and prevent future exposure to any contamination remaining at the site;
- 4. Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting. The SMP also include a requirement for the installation of a sub-slab depressurization system in any future structures constructed on-site, to preclude the potential for soil vapor intrusion; and
- 5. Periodic certification of the institutional and engineering controls listed above.

Box 4

Description of Engineering Controls

Parcel <u>Engineering Control</u>

3-3244-4

Cover System

3-3244-7

Cover System

3-8001-40 (p/o)

Cover System

Box	5
-----	---

Date

	Periodic Review Report (PRR) Certification Statements				
1.	I certify by checking "YES" below that:				
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;				
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. 				
	YES NO				
	X				
2.	. If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutiona or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:				
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;				
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;				
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;				
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and				
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.				
	YES NO				
	X				
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.				
,	A Corrective Measures Work Plan must be submitted along with this form to address these issues.				

Signature of Owner, Remedial Party or Designated Representative

IC CERTIFICATIONS SITE NO. C360116

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210,45 of the Penal Law.

Keith Morris		Morris Westchester Retail Associates, LLC at 350 Veterans Boulevard, Rutherford, New Jersey 07070		
print name	9	print business address		
am certifying as	Owner and Desig	nated Representative	(Owner or Remedial Party)	
for the Site named in t Signature of Owner, R Rendering Certification	emedial Party, or De	Keith E. Morris	11/8/18 Date	

IC/EC CERTIFICATIONS

Box 7

Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. **GHD** Consulting Services Inc. at One Remington Park Drive, Cazenovia, New York 13035 Damian J. Vanetti, P.E. print name print business address am certifying as a for the Owner and Designated Representative Remedial Party) Signature of , for the Owner or Remedial Party, Stamp Rendering Certification (Required for PE)

Appendix B Site Inspection Form

SITE INSPECTION FORM Inspections to be conducted at least semi-annually Austin Avenue and Prior Place (Lot 4) DATE/TIME: SITE: **WEATHER:** BCP# C3-60-116 **INSPECTORS NAME:** site Visit **COMPANY NAME: GENERAL SITE CONDITIONS:** Site Access Control Change in Use **Unauthorized Activities** turn-aroud **ENGINEERING CONTROLS** SOIL COVER Soil Cover Condition Vegetative Cover Breach of the Soil Cover Woody Growth Surface Settling **Burrowing Animals** Sediment/Erosion Controls Surface Erosion Off-site Sediment Transport SOIL VAPOR MITIGATION System In Place System Operating Component Conditions Damaged Equipment **ENVIRONMENTAL MONITORING GROUNDWATER MONITORING WELLS** Condition of Monitoring Wells 6000 Well Caps In Place Locks In Place and Secure Identify Groundwater Samples Taken: None **Identify Photos Taken: OTHER COMMENTS:**

INSPECTOR SIGNATURE:

Appendix C NYSDEC EQuIS Approvals

Ian McNamara

From: dec.sm.NYENVDATA <NYENVDATA@dec.ny.gov>

Sent: Friday, August 25, 2017 11:09 AM

To: Ian McNamara

Cc: Verrigni, Jamie L (DEC)

Subject: RE: EDDs for Lot 4 - Austin Avenue and Prior Place BCP Site (Site #C360116)

CompleteRepository: 011144127

Description: MORRIS WESTCHESTER RETAIL ASSOC

JobNo: 11441 OperatingCentre: 01

RepoEmail: 011144127@ghd.com

RepoType: Proposal **SubJob:** 27

lan,

EDDs 20170823 1642.C360116.NYSDEC, 20170823 1641.C360116.NYSDEC and 20170725 1357.C360116.NYSDEC were successfully uploaded. The data is available for use within the NYSDEC system.

Thank you, Alison

NYSDEC EIMS Team

From: Ian McNamara [mailto:Ian.McNamara@ghd.com]

Sent: Wednesday, August 23, 2017 4:45 PM

To: dec.sm.NYENVDATA < NYENVDATA@dec.ny.gov>
Cc: Verrigni, Jamie L (DEC) < jamie.verrigni@dec.ny.gov>

Subject: EDDs for Lot 4 - Austin Avenue and Prior Place BCP Site (Site #C360116)

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Hello,

Attached are 3 EDDs for the above referenced site, an initial EDD to revise the elevation for well SWR-MW-1 since it was repaired and a field measurement EDD and a chemistry results EDD for the recent sampling conducted on-site. Please let me know if revisions are needed for successful upload.

Thanks,

lan

Ian McNamara, GIT (PA)

Scientist III

GHD

T: 1 315 679 5732 | M: 1 315 368 8432 | V: 865732 | E: <u>ian.mcnamara@ghd.com</u> One Remington Park Drive Cazenovia New York 13035 USA | <u>www.qhd.com</u>

Melissa Warshauer

From: dec.sm.NYENVDATA <NYENVDATA@dec.ny.gov>

Sent: Tuesday, February 06, 2018 5:28 PM

To: Melissa Warshauer
Cc: Omorogbe, Amen (DEC)

Subject: RE: EDDs for Lot 4 - Austin Avenue and Prior Place BCP Site (Site #C360116)

Melissa,

Thank you for your EDD submission. NYSDEC has successfully uploaded the data from the EDDs "20180124 1037.C360116.NYSDEC" and "20180124 1042.C360116.NYSDEC" to Lot 4 - Austin Ave and Prior Place in the NYSDEC database and the data is available for use within the system.

Aaron

From: Melissa Warshauer [mailto:Melissa.Warshauer@ghd.com]

Sent: Wednesday, January 24, 2018 10:48 AM

To: dec.sm.NYENVDATA < NYENVDATA@dec.ny.gov>

Cc: Omorogbe, Amen (DEC) <amen.omorogbe@dec.ny.gov>

Subject: EDDs for Lot 4 - Austin Avenue and Prior Place BCP Site (Site #C360116)

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Hello,

Attached are 2 EDDs for the above referenced site, a field measurement EDD and a chemistry results EDD for the recent sampling conducted on-site. Please let me know if revisions are needed for successful upload.

Thanks,

Melissa

Melissa L. Warshauer Engineer

GHD

T: 1 315 679 5775 | V: 865775 | F: 1 315 679 5801 | E: Melissa.Warshauer@ghd.com
One Remington Park Drive Cazenovia NY 13035 USA| www.ghd.com
WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the

Ian McNamara

From: dec.sm.NYENVDATA <NYENVDATA@dec.ny.gov>

Sent: Friday, August 03, 2018 11:18 AM

To: Dyson Sprouse

Cc: Whitcher, Randy J (DEC)

Subject: RE: EDDs for Lot 4 - Austin Avenue and Prior Place BCP Site (Site #C360116)

CompleteRepository: 011144127

Description: MORRIS WESTCHESTER RETAIL ASSOC

JobNo: 11441 OperatingCentre: 01

RepoEmail: 011144127@ghd.com

RepoType: Proposal **SubJob:** 27

Dyson,

EDDs 20180727 0920.C360116.NYSDEC and 20180727 0956.C360116.NYSDEC were successfully uploaded and the data is available for use within the NYSDEC system.

Thank you, Alison

NYSDEC EIMS Team

From: Dyson.Sprouse@ghd.com [mailto:Dyson.Sprouse@ghd.com]

Sent: Friday, July 27, 2018 10:07 AM

To: dec.sm.NYENVDATA < NYENVDATA@dec.ny.gov> **Cc:** Verrigni, Jamie L (DEC) < jamie.verrigni@dec.ny.gov>

Subject: EDDs for Lot 4 - Austin Avenue and Prior Place BCP Site (Site #C360116)

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Hello,

Attached are the Field Measurements and Chemistry Results EDDs for the Lot 4- Austin Avenue and Prior Place BCP Site (Site #C360116).

Please let me know if revisions are needed for successful upload.

Thanks,

Dyson Sprouse

Engineer – Environment

GHD

T: 1 315 679 5763 | M: 1 607 423 7156 | V: 865763 | E: dyson.sprouse@ghd.com One Remington Park Drive Cazenovia New York 13035 USA | www.ghd.com

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Damian Vanetti, P.E. damian.vanetti@ghd.com 315.679.5838

lan McNamara ian.mcnamara@ghd.com 315.679.5732

www.ghd.com