SUB-SLAB DEPRESSURIZATION SYSTEM (SSDS) QUARTERLY MONITORING REPORT 520 Albany Avenue Kingston, Ulster County, New York April 7, 2015

1291 Old Post Road Ulster Park, New York 12487 (845) 658-3484 phone/(845) 658-3320 fax dtconsulting@hvc.rr.com

April 7, 2015

Krista Scibelli 111 Whalesback Road Red Hook, New York 12571

RE: SUB-SLAB DEPRESSURIZATION SYSTEM QUARTERLY MONITORING REPORT

520 Albany Avenue Kingston, Ulster County, New York

Dear Mrs. Scibelli:

DT Consulting Services, Inc. (DTCS) is pleased to present the attached Sub-slab Depressurization System (SSDS) Quarterly Monitoring Report as generated for the above referenced site. As required, a copy of this report will be forwarded to the New York State Department of Environmental Conservation (NYSDEC) for their review and comment. The necessity for further action is at the discretion of the NYSDEC.

If you have any questions regarding the enclosed, please feel free to contact me at (845) 658-3484. DTCS thanks you for the opportunity to work with you on this project.

Sincerely,

DT CONSULTING SERVICES, INC.

Deborah J. Thompson Senior Geologist / Project Manager

Cc: E. Moore, P.E./NYSDEC Region III

SUB-SLAB DEPRESSURIZATION SYSTEM (SSDS) QUARTERLY MONITORING REPORT

Pertaining to:

520 Albany Avenue Kingston, Ulster County, New York

Prepared for:

Krista Scibelli 111 Whalesback Road Red Hook, New York 12571

Prepared by:

Ms. Deborah J. Thompson Senior Geologist/Project Manager **DT CONSULTING SERVICES, INC.** 1291 Old Post Road Ulster Park, New York 12487

Date: April 7, 2015

TABLE OF CONTENTS

1.0	INTRODUCTION/SITE INFORMATION	1
2.0	SITE BACKGROUND/SSDS INATLLATION	2-3
3.0	SSDS OPERATION	3-4
4.0	AIR QUALITY SAMPLING	4-6
	4.1 FINDINGS	5-6
5.0	OPERATION, MAINTENANCE AND MONITORING	7
6.0	LIMITATIONS	7
	<u>FIGURES</u>	
	TE LOCATION PLAN	
	TE (BASE) MAP	
HIS	STORICAL PERC CONTAMINANT GRAPH	3
	TABLES	
ANA	ALYTICAL SUMMARY	1
	<u>ATTACHMENTS</u>	
Lai	BORATORY TECHNICAL REPORTS	A

1.0 INTRODUCTION/SITE INFORMATION

DT Consulting Services, Inc. (DTCS) was initially contracted by Krista Scibelli, property owner of 520 Albany Avenue, Kingston, Ulster County, New York (heretofore referenced as the Site or subject property) to perform investigative-remedial actions on-Site to quantify subsurface conditions and remediate previously detected soil contamination, respectively. Historically, the subject property was utilized as a dry cleaning establishment from the late 1950s – 1980s. The Site was renovated in 2004, having been completely updated as a used car service and sales outlet. According to facility representatives, no known underground storage tanks have ever been employed on-Site. A Site location map and a Site (base) plan (Figures 1 and 2, respectively) are included for your reference.

The approximate 0.66-acre property was improved with a single-story masonry construction office/retail building with approximately 2,579 square feet of space with paved parking areas. Up until its recent closure (November 1, 2013), the property was utilized by Eastchester Auto for retail automobile sales and service. April Between and August 2014 the property was sold, improvements/additions conducted, and is currently operating as Artcraft Camera & Digital and Fast Signs. Arteraft Camera & Digital and Fast Signs provide printing/photography services along with sign and graphic products.

The site is bounded by Albany Avenue and Quick Check Gasoline/Convenience Store the north-northwest, single family residences directly to the south, Wrentham Street and L. T. Begnal Motor Company to the east, while Tri-Star Auto Sales, Inc. - Auto Tech is present to the west. Town roadways adjoining the site include Albany Avenue to the north-northwest and Wrentham Street to the east. Site topography is generally level and at grade with Albany Avenue. Potable water and wastewater disposal are reportedly provided by the local municipality.

2.0 SITE BACKGROUND/SSDS INSTALLATION

On February 4, 2013, DTCS was on-Site to perform a subsurface investigation. While performing the field survey, soil contamination was encountered as displayed by stained soils, a petroleum film and positive field readings with a Photoionization Detector or PID. This material was documented along the southwest corner of the site structure, directly down gradient of several 55-gallon drums utilized by the historical tenant, Eastchester Auto, to store waste oil. On account of the contamination encountered, DTCS notified the New York State Department of Environmental Conservation (NYSDEC) and Spill Number 12-15279 was generated for the site. Upon review of field data with the NYSDEC, the Department requested remediation of the petroleum contaminated soils documented during the February 2013 survey. Subsequent remediation (April 22, 2013) of the source materials has been performed to remedy the impacts to soil and groundwater quality. The removal and ultimate off-site disposal of 34.82 tons of contaminated soils and 1,241 gallons of captured groundwater appears to have remediated this Site impact. The Department concurred, and officially closed the spill number on September 4, 2013.

While conducting further investigation on the subject parcel in June 2013, it became apparent that historical dry cleaning operations have had an impact to the subsurface environment. To further delineate and quantify the compounds of concern, additional borings were advanced for the purpose of defining the chlorinated solvent plume within subsurface materials including soil, soil gas and groundwater beneath the site. Based upon the results of this investigation, DTCS proposed and received approval from the Department for the installation of a Sub Slab Depressurization System or SSDS within the open garage space of the above referenced site (DTCS, SSDS Pilot Study and Design Report, December 17, 2013). Designed to create a negative pressure field directly beneath the site structure, two extraction points were installed below the concrete floor slab on January 7 & 8, 2014 (see Figure 2 for locations). These extraction points were

created by cutting through the concrete slab and excavating a six inch diameter hole, two feet deep. A two-inch diameter ten slot screen, eighteen inches long, connected to an appropriate length of solid riser pipe was then installed in the excavation. To provide the suction necessary to maintain the required vacuum under the floor slab, the two extraction points were interconnected to a single, sub-slab two-inch pipe traversing down the center of the garage. discharge piping was then attached to the suction side of a Rotron DR454M Regenerative Blower which was mounted to the outside of the building on the back wall. The exhaust stack for the sub-slab system was attached to the wall and extended to a height above the roof line of the building. Sampling ports and a fresh air bleed valve were also installed to facilitate the collection of air quality samples, routine monitoring of the system and to allow the introduction of diluted air into the system (as necessary). Note that all sub-slab excavations (extraction piping and discharge trench) were backfilled with \(\frac{1}{4}\)" washed stone and at completion, disturbed cement flooring was restored to create a tight seal. To finalize the SSDS installation, an alarm light was installed within the garage area of the site structure for a quick visual determination as to whether the system is operating. DTCS initiated the Sub-Slab Depressurization Remedial System on January 23, 2014.

3.0 SSDS OPERATION

As part of Site monitoring procedures, DTCS records vacuum measurements, PID readings, and performs analysis of indoor ambient and SSDS soil vapor discharge. Collected system information is as follows:

Date	Vacuum - Blower Discharge (cfm)	Vapor Concentrations (ppm)
January 23, 2014	110	115
March 7, 2014	121	1.2
April 25, 2014	115	65
August 8, 2014	112	12
November 22, 2014	111	1.4
March 13, 2015	112	1.2

During SSDS operation, the soil gas concentrations typically start at a maximum concentration and decrease asymptotically to steady state conditions. On account of the initial tetrachloroethylene or PERC soil gas concentration reported from the system effluent (20,000 μ g/m³ on January 23, 2014); the fresh air bleed valve was opened 25% to allow the introduction of diluted air into the system prior to discharge to the atmosphere. All system components were running within acceptable thresholds during this reporting period.

4.0 AIR QUALITY SAMPLING

Upon initiation of the SSDS on January 23, 2014, collection and analysis of the effluent vapor was performed by DTCS. In addition to effluent sampling, indoor air within the building (office and garage areas) was sampled 24 hours after the initial startup of the system or on January 24, 2014 and monthly thereafter (March and April 2014). At the conclusion of three monthly monitoring events (January, March and April 2014), the NYSDEC has approved a quarterly sampling frequency. Since August 2014, the Site has undergone extensive renovations and is presently being operated by Artcraft Camera & Digital/Fast Signs. Sampling performed during the previous monitoring period (i.e., November 2014) was taken prior to normal business hours. While performing field activities and encountered during subsequent laboratory analysis, DTCS documented that copying and graphic services conducted at the facility utilize solvent based

machinery which resulted in the detection of numerous compounds not previously

reported within indoor ambient air samples collected. Based upon these

observations, DTCS contacted the NYSDEC to request a change in sampling

frequency which included quarterly vapor SSDS sampling with indoor air

sampling to be conducted on an annual basis. The Department approved the

request via electronic mail in December 2014.

All vapor sampling performed during this monitoring period was collected

employing a six liter SUMMA canister equipped with a laboratory-calibrated flow

control device to facilitate the collection of the samples for a 2-hour sample

duration time. During both purging and sampling, the flow rate was restricted to

less than (<) 0.2 liters per minute and connected directly to the dedicated tubing.

Samples collected in Summa canisters were certified clean by the laboratory and

analyzed by using USEPA Method TO-15. A sample log sheet was maintained

summarizing sample identification, date and time of sample collection, identity of

samplers, sampling methods and devices, soil vapor purge volumes, volume of the

soil vapor extracted, vacuum of canisters before and after the samples are

collected, and chain of custody protocols. Samples submitted for laboratory

analyses were denoted as follows:

Sample No. 001 = SSDS Effluent

The complete laboratory package may be found in Attachment A for your review.

4.1 Findings

The results of vapor sampling indicate that eighteen volatile organic compounds

or VOCs are present within the SSDS effluent air stream collected on-site during

this monitoring period. A summary table of data for all chemical analytical work

is included in Table 1. Based upon the comparison of reported sample

concentrations verses the USEPA OSWER Draft Guidance for Evaluating the

Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance) November 2002 and the NYS Department of Health (DOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006; none of the reported compounds exceeded regulatory guidelines with the exception of Tetrachloroethylene or PERC, cis-1,3-Dichloropropylene and Trichloroethylene within the SSDS effluent.

The VOC of concern, namely Tetrachloroethylene was reported at a concentration of 270 $\mu g/m^3$ within the SSDS effluent air stream which has decreased significantly from a high of 20,000 $\mu g/m^3$ as recorded during the January 2014 monitoring event. The SSDS has been efficient at mitigating the intrusion of potential vapors as the PERC concentrations recorded in the effluent air have decreased over time (see Figure 3 for comparison graph).

PERC and to a lesser extent trichloroethylene or TCE, are the main contaminants of concern. The estimated PERC removal rate was determined by multiplying a conversion factor, the measured VOC concentration, the flow rate, and the molecular weight (see equation). The actual removal rate is quantified by using the following equation:

$$R_{act} = MWQC_{act}$$

Where:

R_{act} = actual rate of removal (lb/hr),

MW = contaminant molecular weight (lb/lb-mole),

Q = vapor flow rate (ft^3 /min),

 1.581×10^{-7} = conversion factor (lb-mole-min./ft³-ppmv-hr)C_{act}

= measured vapor concentration (ppmv).

Vapor Contaminant	Total Mass Removed To Date
	(pounds)
VOCs by USEPA TO-15	
Tetrachloroethylene	6.41

5.0 OPERATION, MAINTENANCE AND MONITORING

Historical evaluation of vapor data suggested that the SSDS effluent could

potentially exceed the maximum permitted level for VOCs. As such; the fresh air

bleed was utilized to dilute the airstream until the initial purge of the system is

complete and discharge levels are within acceptable regulatory limitations.

As previously discussed, the recommended monitoring locations, frequency and

analytical parameters are as follows (as approved by the NYSDEC):

• Continuing quarterly monitoring of the SSDS effluent air stream to

determine when dilution and/or treatment of extracted vapor are no longer

necessary and to support adjustments to the SSDS extraction rate based

upon contaminant concentrations. Indoor air quality has been approved to

be conducted on an annual basis. Monitoring would include sampling for

VOCs using SUMMA type air canisters, as well as recording of PID

readings and vacuum measurements of the system. Samples collected in

Summa canisters will be certified clean by the laboratory and analyzed by

using USEPA Method TO-15. At the completion of sampling and

laboratory testing, a quarterly monitoring report will be submitted for

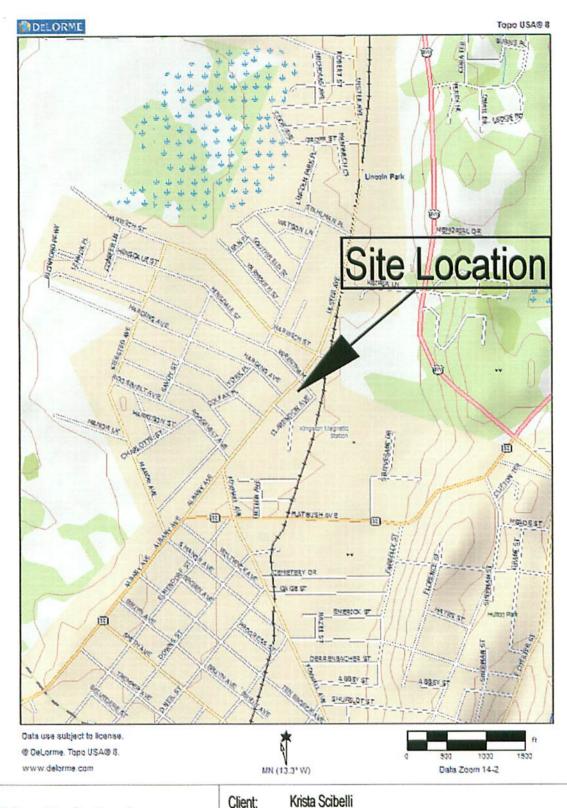
review and approval.

6.0 LIMITATIONS

DTCS has prepared this assessment using reasonable efforts in each phase of its

work to determine the extent of contamination within the locations of potential

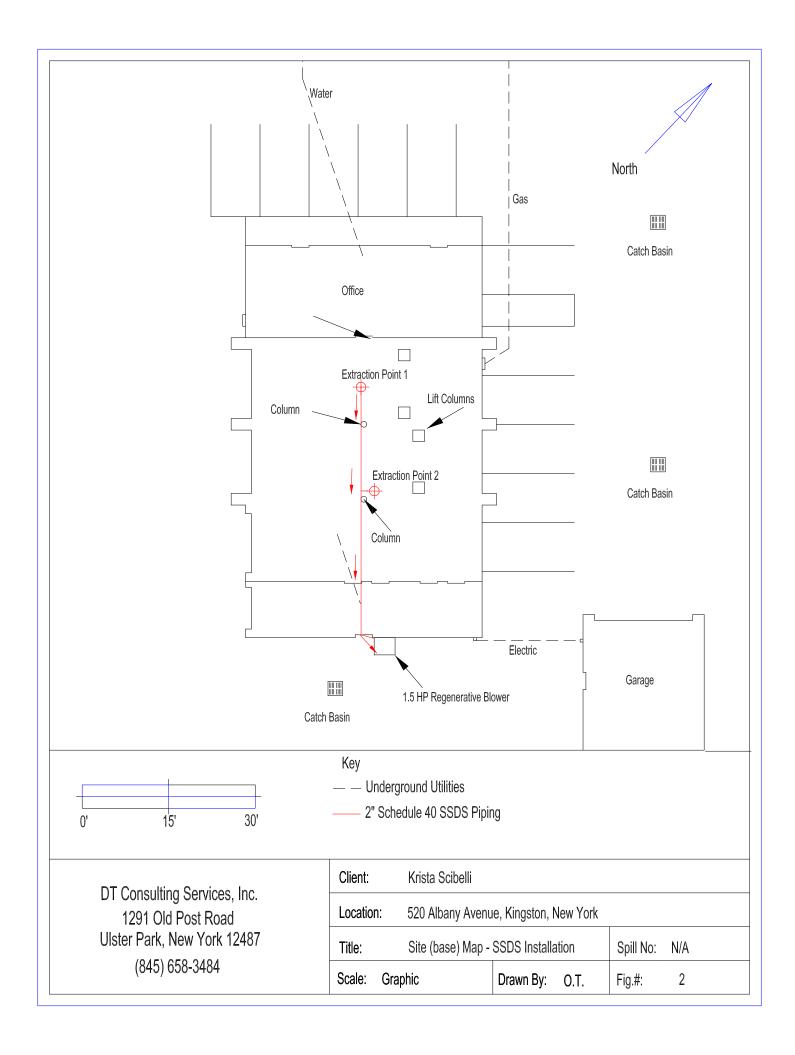
environmental concern. This report is not definitive, and should not be assumed

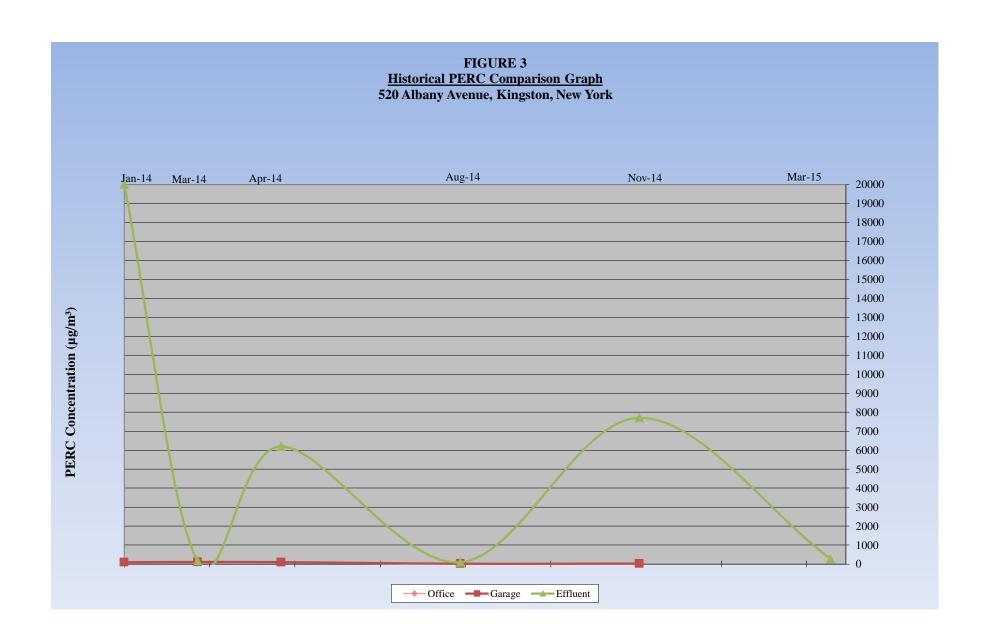

to be a complete or specific definition of all conditions above or below grade. The

conclusions/recommendations set forth herein are applicable only to the facts and

conditions described at the time of this report.

FIGURES




DT Consulting Services, Inc. 1291 Old Post Road Ulster Park, New York 12487 (845) 658-3484 Client: Krista Scibelli

Location: 520 Albany Avenue, Kingston, New York

Title: Site Location Map Spill No: N/A

Scale: Graphic Drawn By: O.T. Fig.#: 1

DT Consulting Services, Inc.

PERC Comparison

	Π.	A .	D	T		9
- 1	<i> </i>		K		. Н.	
- 1	l 🔏	- 30.				L J

TABLE 1:

SUMMARY OF TO-15 VOLATILES IN AIR SAMPLES

Page 1 of 1

Site: Krista Scibelli
Address: 520 Albany Avenue, Kingston, New York
NYSDEC Spill Number N/A

Client: Krista Scibelli Address: 111 Whalesback Road Red Hook, New York 12571

Contractor: DT Consulting Services, Inc. Laboratory: York Analytical Laboratories, Inc. Stratford, CT 06615

		Stratford, CT 0661)
	NYSDOH	USEPA	SSDS Effluent
Sample ID:		TARGET SHALLOW GAS	
Location:	Air Guideline	CONCENTRATIONS(1)	
Depth (ft.):	Values		Discharge
Date:			3/13/2015
Lab Sample ID:			15C0430
Units:	μg/m³		$\mu \mathrm{g}/\mathrm{m}^3$
Analysis: EPA Method TO-15 Volatiles i	in Air		
1.1.1 T.:	NC	22000	NID.
1,1,1-Trichloroethane	NS	22000	ND ND
1,1,2,2-Tetrachloroethane	NS	42 NG	ND ND
1,1,2-Trichloro-1,2,2-trifluoroethane	NS	NS 150	ND ND
1,1,2-Trichloroethane	NS	150	ND ND
1,1-Dichloroethane 1,1-Dichloroethylene	NS NS	5000 NS	ND ND
1,2,4-Trichlorobenzene	NS NS	2000	ND ND
1,2,4-Trimethylbenzene	NS NS	60	1.2
1.2-Dibromoethane	NS NS	2	ND
1,2-Dichlorobenzene	NS	2000	ND ND
1,2-Dichloroethane	NS NS	94	ND ND
1,2-Dichloropropane	NS NS	40	ND ND
1,2-Dichloroptopane 1,2-Dichlorotetrafluoroethane	NS NS	NS	ND ND
1,3,5-Trimethylbenzene	NS NS	60	ND ND
1,3-Butadiene	NS NS	8.7	ND ND
1,3-Dichlorobenzene	NS NS	1100	ND ND
1.4-Dichlorobenzene	NS	8000	ND
1,4-Dioxane	NS	NS	ND
2-Butanone	NS	10000	2.5
2-Hexanone	NS	NS	ND
4-Methyl-2-pentanone	NS	800	ND
Acetone	NS	3500	23
Benzene	NS	310	0.81
Benzyl chloride	NS	50	ND
Bromodichloromethane	NS	140	ND
Bromoform	NS	2200	ND
Bromomethane	NS	NS	ND
Carbon Disulfide	NS	7000	ND
Carbon Tetrachloride	NS	160	ND
Chlorobenzene	NS	600	ND
Chloroethane	NS	10000	ND
Chloroform	NS	110	ND
Chloromethane	NS	NS	1.7
cis-1,2-Dichloroethylene	NS	350	15
cis-1,3-Dichloropropylene	NS	200	<u>290</u>
Cyclohexane	NS	NS	1.2
Dibromochloromethane	NS	100	ND
Dichlorodifluoromethane	NS	2000	2.6
Ethyl acetate	NS	32000	ND
Ethyl Benzene	NS	2200	ND
Hexachlorobutadiene	NS	110	ND
Isopropanol	NS	NS	41
MTBE	NS	30000	ND
Methylene chloride	60	5200 NG	1.4
n-Heptane	NS	NS 2000	ND
n-Hexane	NS NS	2000 70000	0.65
o-Xylene p-&m- Xylenes	NS NS	70000	0.88 2.3
p-&m- Ayienes p-Ethyltoluene	NS NS	70000 NS	0.91
Propylene	NS NS	NS NS	ND
Styrene	NS NS	NS	ND
Tetrachloroethylene	100	810	270
Tetrahydrofuran	NS	NS	ND
Toluene	NS	4000	2.3
trans-1,2-Dichloroethylene	NS	700	ND
trans-1,3-Dichloropropylene	NS	200	ND
Trichloroethylene	5	220	6.9
Trichlorofluoromethane	NS	7000	1.4
Vinyl acetate	NS	200	ND
Vinyl Chloride	NS	280	ND
1		4-4-	-10

Notes:

1. Those analytes which exceeded NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 are presented in bold type as such: 100.

2. USEPA OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance)

November 2002: Table 2A Target Shallow Soil Gas Concentration - Corresponding to Target Indoor Air Concentration Where the Soil Gas to Indoor Air Attenuation Factor = 0.1.

^{3.} ND = Non-detect. 4. NS = No Standard.

ATTACHMENTS

ATTACHMENT A

Technical Report

prepared for:

DT Consulting Services

1291 Old Post Road Ulster Park NY, 12487

Attention: Deborah Thompson

Report Date: 03/23/2015

Client Project ID: 520 Albany Ave Kingston, NY

York Project (SDG) No.: 15C0430

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005

New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 6

Report Date: 03/23/2015

Client Project ID: 520 Albany Ave Kingston, NY

York Project (SDG) No.: 15C0430

DT Consulting Services

1291 Old Post Road Ulster Park NY, 12487

Attention: Deborah Thompson

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on March 16, 2015 and listed below. The project was identified as your project: **520 Albany Ave Kingston, NY**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
15C0430-01	SS0S Effluent	Vapor Extraction	03/13/2015	03/16/2015

General Notes for York Project (SDG) No.: 15C0430

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Benjamin Gulizia

Laboratory Director

03/23/2015

Date:

Sample Information

Client Sample ID: SS0S Effluent York Sample ID: 15C0430-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received15C0430520 Albany Ave Kingston, NYVapor ExtractionMarch 13, 20153:00 pm03/16/2015

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS No.	. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.58	1.2	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.92	0.92	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	1.2	1.2	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.3	1.3	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.92	0.92	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.68	0.68	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.67	0.67	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	1.2	1.2	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
95-63-6	1,2,4-Trimethylbenzene	1.2		ug/m³	0.83	0.83	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.3	1.3	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	1.0	1.0	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.68	0.68	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.78	0.78	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	1.2	1.2	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.83	0.83	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
106-99-0	1,3-Butadiene	ND		ug/m³	0.73	0.73	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	1.0	1.0	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.78	0.78	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	1.0	1.0	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
123-91-1	1,4-Dioxane	ND		ug/m³	0.61	0.61	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
78-93-3	2-Butanone	2.5		ug/m³	0.50	0.50	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
591-78-6	* 2-Hexanone	ND		ug/m³	1.4	1.4	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
107-05-1	* 3-Chloropropene	ND		ug/m³	0.53	0.53	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
108-10-1	4-Methyl-2-pentanone	ND		ug/m³	0.69	0.69	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
67-64-1	Acetone	23		ug/m³	0.40	0.40	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
107-13-1	* Acrylonitrile	ND		ug/m³	0.36	0.36	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
71-43-2	Benzene	0.81		ug/m³	0.54	0.54	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
100-44-7	Benzyl chloride	ND		ug/m³	0.87	0.87	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
75-27-4	Bromodichloromethane	ND		ug/m³	1.0	1.0	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
75-25-2	Bromoform	ND		ug/m³	1.7	1.7	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
74-83-9	Bromomethane	ND		ug/m³	0.65	0.65	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
75-15-0	Carbon disulfide	ND		ug/m³	0.52	0.52	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
56-23-5	Carbon tetrachloride	ND		ug/m³	0.26	0.26	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
108-90-7	Chlorobenzene	ND		ug/m³	0.77	0.77	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
75-00-3	Chloroethane	ND		ug/m³	0.44	0.44	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
67-66-3	Chloroform	ND		ug/m³	0.82	0.82	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
74-87-3	Chloromethane	1.7		ug/m³	0.35	0.35	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 3 of 6

Sample Information

Client Sample ID: SS0S Effluent **York Sample ID:** 15C0430-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 15C0430 520 Albany Ave Kingston, NY March 13, 2015 3:00 pm 03/16/2015 Vapor Extraction

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes: Sample Notes:

CAS No	. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
156-59-2	cis-1,2-Dichloroethylene	15		ug/m³	0.67	0.67	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.76	0.76	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
110-82-7	Cyclohexane	1.2		ug/m³	0.58	0.58	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
124-48-1	Dibromochloromethane	ND		ug/m³	1.3	1.3	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
75-71-8	Dichlorodifluoromethane	2.6		ug/m³	0.83	0.83	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
141-78-6	* Ethyl acetate	ND		ug/m³	1.2	1.2	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
100-41-4	Ethyl Benzene	ND		ug/m³	0.73	0.73	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
87-68-3	Hexachlorobutadiene	ND		ug/m³	1.8	1.8	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
67-63-0	Isopropanol	41		ug/m³	0.83	0.83	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
80-62-6	Methyl Methacrylate	ND		ug/m³	0.69	0.69	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.60	0.60	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
75-09-2	Methylene chloride	1.4		ug/m³	1.2	1.2	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
142-82-5	n-Heptane	ND		ug/m³	0.69	0.69	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
110-54-3	n-Hexane	0.65		ug/m³	0.59	0.59	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
95-47-6	o-Xylene	0.88		ug/m³	0.73	0.73	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
179601-23-1	p- & m- Xylenes	2.3		ug/m³	1.5	1.5	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
622-96-8	* p-Ethyltoluene	0.91		ug/m³	0.83	0.83	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
115-07-1	* Propylene	ND		ug/m³	0.29	0.29	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
100-42-5	Styrene	ND		ug/m³	0.72	0.72	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
127-18-4	Tetrachloroethylene	270		ug/m³	0.28	0.28	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
109-99-9	* Tetrahydrofuran	ND		ug/m³	0.50	0.50	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
108-88-3	Toluene	2.3		ug/m³	0.63	0.63	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.67	0.67	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.76	0.76	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
79-01-6	Trichloroethylene	6.9		ug/m³	0.23	0.23	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
75-69-4	Trichlorofluoromethane (Freon 11)	1.4		ug/m³	0.94	0.94	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
108-05-4	Vinyl acetate	ND		ug/m³	0.59	0.59	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
593-60-2	Vinyl bromide	ND		ug/m³	0.73	0.73	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
75-01-4	Vinyl Chloride	ND		ug/m³	0.11	0.11	1.68	EPA TO-15	03/21/2015 08:56	03/21/2015 12:36	ALD
	Surrogate Recoveries	Result		Acc	eptance Ran	ge					
460-00-4	Surrogate: p-Bromofluorobenzene	96.3 %			72-118						

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Notes and Definitions

*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
---	--

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is

based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably

detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA

600 and 200 series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located

above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and

semi-volatile target compounds only.

NR Not reported

Diphenylamine.

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note

that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take

note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Field Chain-of-Custody Record - AIR

York Project No. 1 5 C 0430 Sampling Media Report Type/Deliverables Special Instructions Tedlar Bag 6 Liter canister Regulatory Comparison Excel Tedlar Bag 6 Liter canister 6 Liter canister 6 Liter canister 6 Liter canister Tedlar Bag Tedlar Bag Tedlar Bag Tedlar Bag Summary W/ QA Sum EDD (Specify Type) Standard Excel Date/Time NY ASP B/CLP Pkg NY ASP A Package Electronic Deliverables: CT RCP Package Summary Report NJDEP Reduced Canister ID Flow Cont.ID ANALYSES REQUESTED Sarphes Received in LAB by Samples Received By **Turn-Around Time** Detection Limits Required NYSDEC VI Limits Standard(5-7 Days) RUSH - Three Day RUSH - Same Day RUSH - Four Day RUSH - Next Day RUSH - Two Day (VI =vapor instrusion)
NJDEP low level Routine Survey <1 ug/m3 Other This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions unless superseded by written contract. 520 41252 FM Please enter the following Field Data Samples from: CT NY 1/2 NJ Monoster, 23 Purchase Order No. YOUR Project ID Date/Time 210 tefore Sampling (in. Hg) After Sampling (in. Hg) Canister Vacuum Samples Relinquished By Samples Relinquished by Print Clearly and Legibly. All Information must be complete, Additional Notes: Invoice To: Canister Vacuum 30 E-Mail Address: Company: Phone No. Attention: Samples will NOT be logged in and the turn-around time clock will not begin until any questions by York are resolved. Address: Vapor Extraction Well/ INDOOR Ambient Air OUTDOOR Amb. Air Process Gas/Effluent SOIL Vapor/Sub-Slab **AIR Matrix** Air Matrix Codes AE Report To: AI-Date Sampled 3/3/5 E-Mail Address: Samples Collected/Authorized By Signature) Phone No. Attention: Address: Donoul 1 insutting STYMENT Sample Identification YOUR Information 20100 Name (printed) Comments Contact Person: SOSS Company: Phone No. Address:

Page 6 of 6