Adelaar

(Former Concord Hotel and Resort) SULLIVAN COUNTY TOWN OF THOMPSON, NEW YORK

Periodic Review Report

NYSDEC Brownfield Cleanup Program Site Number: C353014

AKRF Project Number: 40376

Prepared for:

EPR Concord II, L.P. 909 Walnut Street, Suite 200 Kansas City, MO 64106

Prepared by:

TABLE OF CONTENTS

P.E. CERTIFICATION	11
EXECUTIVE SUMMARY	iv
1.0 Introduction	1
2.0 Site Management Requirements	2
2.1 Introduction	
2.2 Monitoring Requirements	2
2.2.1 OU2 Site Cover System	
2.2.2 Groundwater Monitoring and Sampling	
2.3 Monitoring Reporting Requirements	
3.0 Site Management Monitoring and Inspection Results	
3.1 OU2 Site Cover System	
3.2 Groundwater Sampling Observations and Analytical Results	
3.2.1 OU2 Groundwater Analytical Results	
3.2.2 OU3 Groundwater Analytical Results	
3.2.3 Groundwater Summary	
3.3 Health and Safety Monitoring	
4.0 IC/EC Certification	
5.0 Site Management Schedule	
5.1 Groundwater Monitoring	

AKRF Inc.	Adelaa
	Periodic Review Repor

TABLES/CHARTS IN TEXT

Table T1	Monitoring/Inspection Requirement Summary
Table T2	Groundwater Monitoring and Sampling Plan
Table T3	Future Monitoring/Inspection Plan

ATTACHED TABLES

Table I	Groundwater Analytical Results – VOCs
Table 2	Groundwater Analytical Results – SVOCs
Table 3	Groundwater Analytical Results – PCBs/Pesticides
Table 4	Groundwater Analytical Results – Metals

FIGURES

Figure I	Site Location
Figure 2A	OU-2 Site Cover System and Post-Remediation Groundwater Laboratory Results
Figure 2B	OU-3 Post-Remediation Groundwater Laboratory Results

APPENDICES

Appendix A	Site Inspection Form and Groundwater Sampling Logs
Appendix B	Laboratory Analytical Reports and Data Usability Summary (DUSR) Reports
Appendix C	Institutional Control and Engineering Control (IC-EC) Certification Form

P.E. CERTIFICATION

I, Michelle Lapin, am currently a registered professional engineer licensed by the State of New York. I had primary direct responsibility for implementation of the December 2017 Site Management Plan protocols, and I certify that the documentation of site management activities is accurately presented in this Periodic Review Report for the Adelaar (Former Concord Hotel and Resort) site, located in the Town of Thompson, New York (BCP Site No. C353014).

For each institutional or engineering control identified for the Site, I certify that all of the following statements are true:

- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and engineering controls employed at this Site are unchanged from the date the controls were put in place, or last approved by the NYSDEC;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the Site will continue to be provided to the NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of the engineering controls;
- If a financial assurance mechanism is required under the oversight document for the Site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the Site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- No new information has come to my attention, including groundwater monitoring data from wells located at the Site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Michelle Lapin of AKRF, Inc., am certifying Owner's Designated Site Representative and I have been authorized to sign this certification for the Site.

08/26/22

Date / Sign

sell f

EXECUTIVE SUMMARY

This Periodic Review Report (PRR) was prepared on behalf of the EPR Concord II, L.P. (the "Volunteer") as an element of the remedial program at the Adelaar Site located in the Town of Thompson, New York (the "Site") under the New York State (NYS) Brownfield Cleanup Program (BCP) administered by New York State Department of Environmental Conservation (NYSDEC). A Site location map is provided as Figure 1. The Site, owned by the Volunteer, includes four separate remediation areas or Operating Units (OUs), described as the following:

- OU-1B Former Gas Station Remediated to Track 1 Unrestricted Use, specific end use not yet determined.
- OU-1C International Club House Disposal Area Remediated to Track 1 Unrestricted Use, specific end use not yet determined.
- OU-2 Golf Maintenance Building and Disposal Area Maintenance Building and disposal area remediated to Track 2 Commercial Use. OU-2 was redeveloped as part of the Chalet Road realignment and includes a stormwater detention basin.
- OU-3 International Golf Course Disposal Area Remediated to Track 2 Commercial Use and was redeveloped as part of a Waterpark.

As reported to NYSDEC and the New York State Department of Health (NYSDOH), a Remedial Investigation (RI) completed at the Site between August and December 2008 confirmed that soil and groundwater contamination related to underground storage tanks (USTs) and/or unregulated landfills was present at the OUs. Each OU was remediated in accordance with the Brownfield Cleanup Agreement (BCA) for Site #C353014, which was executed on August 19, 2015. Remedial activities included soil removal at each OU, and utilization of a site cover system over the consolidated landfill area at OU-2. The remediation work was completed between June 2016 and August 2017. The NYSDEC-approved remediation plan for OU-2 and OU-3 included the use of Engineering and/or Institutional Controls (ECs/ICs) to achieve the Remedial Action Objectives (RAOs). NYSDEC approved the Final Engineering Report (FER) and Site Management Plan (SMP) and issued a Certificate of Completion (COC) to the Volunteer on December 28, 2017.

The purpose of this PRR is to document the site management activities associated with the Site's ECs/ICs and to certify that the controls have been implemented in accordance with the SMP.

In summary, the remedy remains effective and protective of human health and the environment with continued implementation of the SMP. A site cover inspection at OU-2, and annual groundwater sampling at OU-2 and OU-3, were performed to document Site conditions. As documented and certified herein, the Volunteer was fully compliant with the SMP for the reporting period from April 28, 2021 through April 28, 2022. The status of each of the remaining remedial program elements are summarized below.

Site Cover System

The permanent Site cover system over the consolidated landfill area at OU-2 was maintained in good condition to prevent contact with underlying soil and groundwater.

Groundwater Monitoring

Groundwater sampling results for OU-2 (VOCs, SVOCS, PCBs, pesticides, and metals) and OU-3 (metals) have shown that the remedy (i.e., soil source removal) has been effective in reducing contaminant concentrations in the remediation areas.

1.0 INTRODUCTION

This Periodic Review Report (PRR) was prepared for the Adelaar Site located in the Town of Thompson, New York (hereinafter referred to as the "Site") under the New York State (NYS) Brownfield Cleanup Program (BCP) administered by New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with the Brownfield Cleanup Agreement (BCA) for Site #C353014, which was executed on August 19, 2015.

EPR Concord II, LP entered into a BCA on August 19, 2015 with NYSDEC to remediate four separate areas or Operating Units (OUs) totaling approximately 12.5 acres within the Site. A figure showing the location of the Adelaar property, and the location of each OU, is provided as Figure 1. A Decision Document (DD) was prepared by NYSDEC at the start of the project to outline the approved remedy for each OU. The DD required that a Site Management Plan (SMP) be developed and implemented at OU-2 and OU-3. The boundaries of OU-2 and OU-3 are included on Figures 2A and 2B, respectively, and are more fully described in the metes and bounds site description that is part of the Environmental Easement in Appendix A of the SMP. The remedial excavation areas and site cap location at OU-2 are shown on Figure 2A, and the remedial excavation area at OU-3 is shown on Figure 2B for reference. The remediation of OU-1B and OU-1C did not rely on the use of ECs and ICs and, therefore, are not subject to the SMP.

After completion of the remedial work, some contamination was left at OU-2 and OU-3, which is hereafter referred to as "remaining contamination." ECs and ICs have been incorporated into the Site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement granted to NYSDEC, and recorded with the Sullivan County Clerk, requires compliance with the SMP and all ECs and ICs placed on the parcel areas included within the borders of OU-2 and OU-3.

A Final Engineering Report (FER) detailing Site remedial activities was submitted to and approved by NYSDEC, which resulted in the issuance of a Certificate of Completion (COC) on December 28, 2017. Ongoing Site management activities are being performed in accordance with the NYSDEC-approved December 2017 SMP. The SMP provides detailed descriptions of all procedures required to manage known and potential residual contamination. Activities conducted at the Site under the SMP during this reporting period have included:

- Annual monitoring well gauging and groundwater sampling
- Site Cover/Site Cap Inspection

The purpose of this PRR is to document the Site management activities associated with the Site's ECs and ICs and to certify that the controls have been implemented in accordance with the SMP. The reporting period on the EC/IC Certification form is from April 28, 2021 to April 28, 2022, and constitutes the fourth reporting year since receiving the COC.

2.0 SITE MANAGEMENT REQUIREMENTS

2.1 Introduction

For additional details related to the nature and extent of contamination and the remedial cleanup, please refer to the appropriate sections of the FER and SMP. The site management requirements for evaluating the performance and effectiveness of the remedy at the Site, the site cover system, and all affected Site media are summarized in Table T1 below (referenced from the December 2017 SMP) with an indication of what was completed this reporting period (fourth reporting year since receipt of the COC).

Table T1
Monitoring/Inspection Requirement Summary

Monitoring Program	Frequency*	Purpose	Analysis	Completed this Period?
Site Cover System	Annually. First inspection no more than 18 months after COC, then at least annually thereafter.	Site Conditions at OU-2 and OU-3, and Cover System Integrity at OU-2	Visual Inspection of Conditions	Yes
Groundwater Monitoring and Sampling at OU-2 and OU-3	Annually. First inspection no more than 18 months after COC, then at least annually thereafter.	Groundwater post- remediation performance sampling at OU-2 and OU-3	OU-2: VOCs, SVOCs, PCBs, Pesticides, and Metals by EPA Methods 8260, 8270, 8082, 8081, and 6020, respectively OU-3: Metals by EPA Method 6020	Yes

Notes: *The frequency of events was conducted as specified in the SMP.

COC - Certificate of Completion; VOCs - Volatile Organic Compounds; SVOCs - Semivolatile Organic

Compounds; PID – Photoionization Detector EPA – Environmental Protection Agency

2.2 Monitoring Requirements

This section describes the measures completed to satisfy the monitoring requirements of the SMP. The results of the Site monitoring program are described in Section 3.0.

2.2.1 OU2 Site Cover System

Exposure to landfill materials within the consolidated landfill area on the eastern side of the Site is prevented by an engineered site cover system made up of a 12-inch soil cap with an underlying demarcation layer that met the specific cleanup objectives.

The site cover system continues to remain intact 24 hours a day, 7 days a week, for 365 days a year. Disturbance of the site cover system or EC components is prohibited by the Environmental Easement. In the unlikely event of an unanticipated accidental or required disturbance of the site cover system, the response procedure is outlined in Section 4.3 of the SMP. Annual monitoring of the site cover system is required by the SMP, and

monitoring of the site cover system will continue on an annual basis as long as the Environmental Easement is in effect to ensure the system's integrity.

AKRF inspected the site cover during a site visit on December 1, 2021. The inspection consisted of observing the site conditions and associated soil cap at OU2. The location and details of the site cover system as maintained over the course of this reporting period are shown on Figure 2A. The landscaped and soil areas were inspected for erosion and signs of excavation. Results of the site cover system inspection are summarized in Section 3.1 of this PRR.

2.2.2 Groundwater Monitoring and Sampling

Groundwater monitoring is required on an annual basis after issuance of the COC to assess the performance of the remedy. A July 30, 2021 email from Michael Squire of NYSDEC confirmed a modification to the requirements for the groundwater sampling at OU2 and OU3 during the April 28, 2021 to April 28, 2022 period. The modification included the removal of two monitoring wells from OU2 and three monitoring wells from OU-3. The reduction in sampling was based on the performance sampling results over the first three years of annual monitoring, which confirmed that the remedy was effective relative to human health and the environment. Groundwater monitoring was performed on December 1, 2021. The approved sampling locations and analytical parameters for each OU are summarized in Table T2.

Table T2
Groundwater Monitoring and Sampling Plan

Location (OU)	Monitoring Well ID	Analytes			
OU2	OU2-MW1	VOCs, SVOCs, PCBs, Pesticides, and Metals by EPA Methods 8260, 8270, 8082, 8081, and 6020			
OU3	OU3-MW2	Metals by EPA Method 6020			

2.3 Monitoring Reporting Requirements

The SMP requirement for reporting to NYSDEC includes an annual PRR. The reporting requirements are maintained until the termination of the Environmental Easement. This PRR fulfills the annual reporting requirements for the April 28, 2021 to April 28, 2022 monitoring period.

3.0 SITE MANAGEMENT MONITORING AND INSPECTION RESULTS

The site management monitoring inspections completed during this reporting period are summarized in the following sections.

3.1 OU2 Site Cover System

The soil cap at OU-2 was found to be intact, with no observable signs of damage, excavation, or erosion that would affect the integrity and purpose of the site cover. The vegetative cover planted in 2017 has fully taken root and covers the site cap area. No additional corrective actions are recommended following the completion of this reporting period. A copy of the Site Inspection form is included in Appendix A.

3.2 Groundwater Sampling Observations and Analytical Results

Groundwater sampling logs documenting the general chemistry parameters collected during low flow sampling are included in Appendix A. Groundwater analytical results generated during the annual sampling event, as well as the sampling history for the approved wells, are included on Tables 1 to 4, and any NYSDEC GA Ambient Water Quality Standard (AWQS) exceedances during the April 28, 2021 to April 28, 2022 sampling period are shown on Figure 2A for OU-2 and Figure 2B for OU-3. The groundwater analytical report and the Data Usability Summary Report (DUSR) are provided in Appendix B. The DUSR confirmed that the laboratory analyses were completed in accordance with the method requirements and the data can be relied upon to draw conclusions related to the objectives of this PRR.

The analytical results documented in Tables 1 to 4 include updated laboratory qualifiers as reported in the DUSR. These updates are based on a review of the raw analytical data and the laboratory's minimum reporting requirement, and adjustments are made, where applicable, based on the updated EPA method standard requirements and guidelines for validation.

3.2.1 OU2 Groundwater Analytical Results

VOCs

The analytical results for VOCs are included in Table 1.

OU2-MW-1

1,2,4-trimethylbenzene, benzene, ethylbenzene, n-propylbenzene, sec-butylbenzene, n-butylbenzene, and total xylenes were detected at concentrations ranging from an estimated 0.8 micrograms per liter (μ g/l) of total xylenes to 9.5 μ g/l of n-propylbenzene. Concentrations of 1,2,4-trimethylbenzene (8.3 μ g/l), n-propylbenzene (6.5 μ g/l), and n-butylbenzene (9.5 μ g/l) were detected in excess of the NYSDEC GA AWQS of 5 μ g/l for each compound. The remaining VOC detections were below the GA AWQS.

Sample OUX-MW-X was a duplicate sample collected at OU2-MW-1. 1,2,4-TMB, benzene, ethylbenzene, n-propylbenzene, sec-butylbenzene, n-butylbenzene, and total xylenes were detected in OUX-MW-X at concentrations ranging from an estimated 0.81 μ g/l of total xylenes to 9.8 μ g/l of n-propylbenzene. Concentrations of 1,2,4-trimethylbenzene (8.5 μ g/l), n-propylbenzene (6.7 μ g/l), and n-butylbenzene (9.8 μ g/l) were detected in excess of the NYSDEC GA Ambient Water Quality Standard (AWQS) of 5 μ g/l for each compound. The remaining VOC detections were below the GA AWQS. The results were very consistent with OU2-MW-1, which supported the QA/QC review that confirmed reliable sampling results.

SVOCs

OU2-MW1

The analytical results for SVOCs are summarized in Table 2. Naphthalene was detected in OU2-MW-1 and the duplicate sample OUX-MW-X at a concentration of 1.4 and 1.1 μ g/l, respectively, which are below the GA Guidance Value of 10 μ g/l. No additional SVOCs were detected in the samples.

PCBs/Pesticides

OU2-MW1

PCB and pesticide results are summarized in Table 3. PCB analysis included the ultra-low 0.012 $\mu g/l$ method reporting limit, which was utilized to meet the 0.09 $\mu g/l$ Class GA AWQS. There were no PCBs or pesticides detected.

Metals

The analytical results for metals are summarized in Table 4.

OU2-MW1

Manganese was detected at a concentration of at $10,100 \, \mu g/l$, which exceeds its GA AWQS of $300 \, \mu g/l$. Mercury was detected at a concentration of $1.2 \, \mu g/l$, which exceeds its GA AWQS of $0.7 \, \mu g/l$. Arsenic, barium, beryllium, chromium, copper, and lead were detected at concentrations ranging from an estimated $0.13 \, \mu g/l$ of beryllium to $482 \, \mu g/l$ of barium, with each detection below the respective GA AWQS.

OUX-MWX

Manganese was detected in sample OUX-MWX (the duplicate sample for OU2-MW-1) at a concentration of at 8,550 μ g/l, which exceeds its GA AWQS of 300 μ g/l. Mercury was detected at a concentration of 1.4 μ g/l, which exceeds its GA AWQS of 0.7 μ g/l. Arsenic, barium, chromium, copper, and lead were detected in the duplicate sample at concentrations ranging from an 1.5 μ g/l of lead to 495 of barium, with each detection below the respective GA AWQS. The results were consistent with OU2-MW-1, which supported the QA/QC review that confirmed reliable sampling results.

3.2.2 OU3 Groundwater Analytical Results

The metals results for OU-3 are summarized in Table 4.

OU3-MW2

Manganese (32,400 μ g/l) and mercury (14 μ g/l) were detected at concentrations exceeding their GA AWQS of 300 μ g/l and 0.7 μ g/l respectively. Arsenic, barium, beryllium, cadmium, chromium, copper, lead, and silver were detected in the sample at concentrations ranging from an estimate 0.28 μ g/l (beryllium) to 849 μ g/l (barium), all of which were below the GA AWQS.

3.2.3 Groundwater Summary

OU-2

The OU2 contamination outlined in the NYSDEC Decision Document was identified as VOCs, pesticides, PCBs, and metals associated with the golf maintenance building on the northern side of the Site, and VOCs, PCBs, pesticides and metals associated with the landfill area on the southern side of the Site. The latest round of groundwater laboratory results indicated that the BCP remedy has been effective and protective of human health and the environment.

As documented in the FER, and prior to the remedial efforts, the area around monitoring well OU2-MW-1 included grossly contaminated soil and free phase petroleum. The groundwater sampling results for OU2-MW-1 confirmed that only three of the nine VOCs detected (1,2,4-trimethylbenzene, n-propylbenzene, and n-butlylbenzene) were present at concentrations just above their respective GA AWQS. These results show an approximately 50% reduction in total VOCS since sampling began and are a significant improvement over the pre-remediation conditions. This was the first sampling event where toluene was not detected, and the concentration of ethylbenzene is now below the GA AWQS. Only one SVOC (naphthalene) was detected, but at a concentration below the GA AWQS. PCBs and pesticides were not detected in any of the groundwater samples. Manganese and mercury were detected at OU2-MW-1 at generally consistent concentrations and may be a naturally occurring condition associated with sediment entrained in the sample. This and the remaining metals results were consistent with previous data and do not indicate any hot spots or continuing sources of contamination.

OU-3

OU3-MW-2

Manganese and mercury were detected at a concentration exceeding the GA AWQS, with the concentration of the remaining detected analytes below the GA AWQS. These detections, and the manganese and mercury exceedances that appear to be naturally occurring, are consistent with historical data and do not indicate any hot spots or continuing sources of contamination. These results indicate that the remedial efforts have been effective, the groundwater conditions have remained stable, and the remaining contamination is not a continuing source for groundwater contamination.

3.3 Health and Safety Monitoring

The Health and Safety Plan (HASP), a component of the SMP, includes requirements for personnel training, protocols for work zone air monitoring and community air monitoring, designated personal protection equipment, and decontamination procedures. The HASP also includes a Community Air Monitoring Plan (CAMP), which established protocols for VOC and particulate air monitoring to be conducted at the Site perimeter if work zone perimeter concentrations approach the applicable community action levels.

Because there was no soil disturbance or breaches of the site cover system during the reporting period, no air monitoring was performed. During groundwater monitoring, field personnel followed the HASP protocol using modified Level D personal protective equipment (PPE), including nitrile gloves and safety glasses.

4.0 IC/EC CERTIFICATION

A Site-wide inspection was conducted on December 1, 2021, as specified in the SMP, to ensure that all aspects of the remedy were in-place and effective. Based on the Site-wide inspection and the data evaluation summarized in this report, the following certification is made for the Site, as documented in the IC-EC Certification form provided in Appendix C:

- a) The institutional control and engineering controls employed at this Site are unchanged from the date the control was put in place, or last approved by the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER), with the exceptions cited in this Periodic Review Report;
- b) Nothing has occurred that would impair the ability of such control to protect public health and the environment;
- c) Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control; and
- d) Access to the Site will continue to be provided to the NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of this control.

5.0 SITE MANAGEMENT SCHEDULE

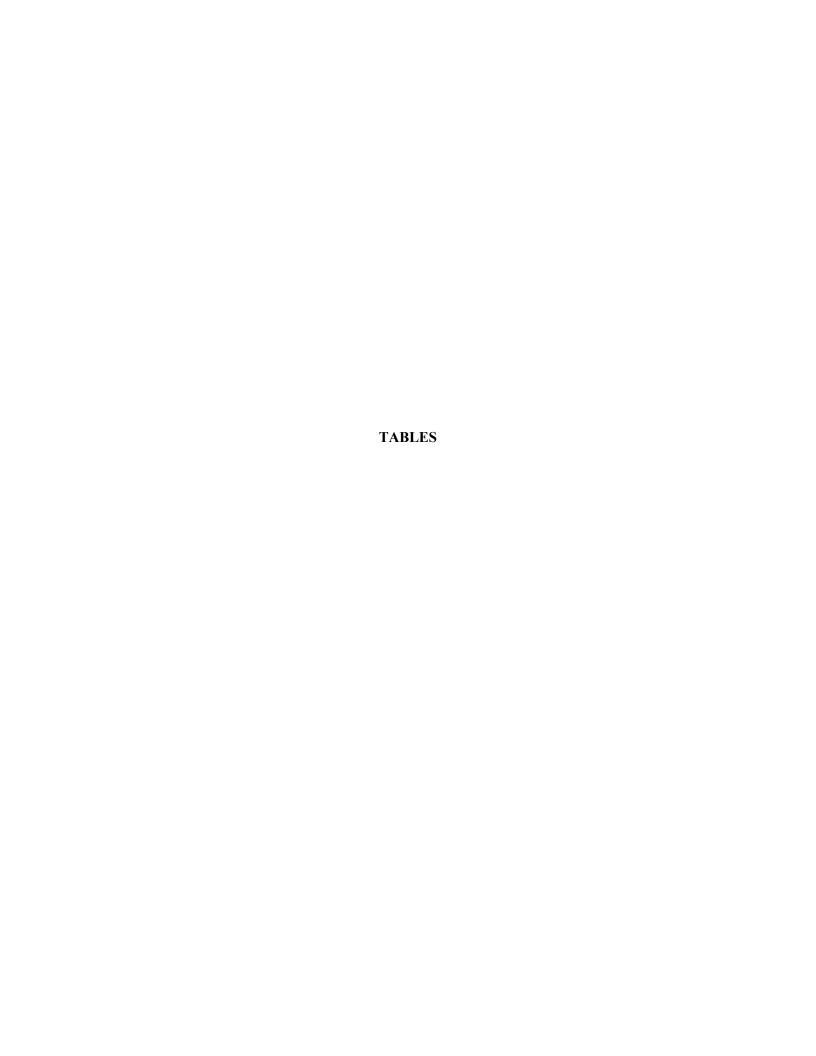

The site management requirements identified in the SMP for the April 28, 2022 through April 28, 2023 is outlined in Table T3.

Table T3
Future Monitoring/Inspection Plan

Monitoring Program	Next Scheduled Event	Frequency	Purpose	Analysis
Site Cover System	October 2022	Annually	Site Conditions at OU-2 and OU-3, and Cover System Integrity at OU-2	Visual Inspection of Conditions
Groundwater Monitoring and Sampling	October 2022	Annually	Groundwater	OU-2: VOCs, SVOCs, PCBs, Pesticides, and Metals by EPA Methods 8260, 8270, 8082, 8081, and 6020, respectively OU-3: Metals by EPA Method 6020

5.1 Groundwater Monitoring

In accordance with the existing site management schedule, the groundwater sampling frequency, wells, and analysis for the upcoming April 28, 2022 through April 28, 2023 monitoring period will remain as confirmed by NYSDEC (pursuant to the email from Michael Squire to AKRF dated July 30, 2021), and will be described in a Revised SMP.

Table 1 Adelaar

Thompson, NY

Periodic Review Report
Groundwater Analytical Results - Volatile Organic Compounds (VOCs)

Client ID	NYSDEC	OU-2-MW1-112018	OU-2-MW-1-123019	OU2-MW1_20201124	OU2-MW1_20211201	OUX-MWX_20211201	Field Blank-112018
Lab Sample ID	Class GA	460-169852-3	460-200012-1	460-223616-3	460-248245-1	460-248245-4	460-169852-2
Date Sampled	AWQSGV	11/20/2018	12/30/2019	11/24/2020	12/01/2021	12/01/2021	11/20/2018
Analyte	μg/L						
1,1,1-Trichloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene	5	33	47	36	8.3	8.5	1 U
1,2-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6	1 U	1 U	1 U	1 U	1 U	1 U
1,3,5-Trimethylbenzene	5	1.6	1.6	3.8	1 U	1 U	1 U
1,3-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dioxane	NS	50 U	50 U	50 U	50 U	50 U	50 U
2-Butanone (MEK)	50	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	5 U	5 U	5 U	5 U	5 U	7.9
Benzene	1	1 U	1 U	0.44 J	1 U	1 U	1 U
Carbon tetrachloride	5	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	7	6.5	5.6	3.7	3.6	1 U
Methyl tert-butyl ether	10	1 U	1 U	0.65 J	1 U	1 U	1 U
Methylene Chloride	5	1 U	1 U	1 U	1 U	1 U	1 U
n-Butylbenzene	5	4	7.9	6.4	6.5	6.7	1 U
N-Propylbenzene	5	10	15	17	9.5	9.8	1 U
sec-Butylbenzene	5	2.3	3.5	3.3	2.7	2.8	1 U
tert-Butylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	0.57 J	0.61 J	0.72 J	1 U	1 U	1 U
trans-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	2	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes, Total	NS	3.4	2.5	3.7	0.8 J	0.81 J	2 U
Total Conc	NS	61.87	84.61	77.61	31.5	32.21	7.9

Table 1 Adelaar

Thompson, NY

Periodic Review Report
Groundwater Analytical Results - Volatile Organic Compounds (VOCs)

Client ID	NYSDEC	Trip Blank-112018	TB-123119	FB-123119	FB_20201124	TB_20201124	FB_20211201	TB_20211201
Lab Sample ID	Class GA	460-169852-1	460-200012-8	460-200012-9	460-223616-7	460-223616-8	460-248245-3	460-248245-5
Date Sampled	AWQSGV	11/20/2018	12/31/2019	12/31/2019	11/24/2020	11/24/2020	12/01/2021	12/01/2021
Analyte	μg/L							
1,1,1-Trichloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3,5-Trimethylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dioxane	NS	50 U	50 U	50 U	50 U	50 U	50 U	50 U
2-Butanone (MEK)	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl tert-butyl ether	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene Chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
n-Butylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
N-Propylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
sec-Butylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
tert-Butylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes, Total	NS	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Total Conc	NS	0	0	0	0	0	0	0

Table 2 Adelaar

Thompson, NY Periodic Review Report

Groundwater Analytical Results - Semivolatile Organic Compounds (SVOCs)

Client ID	NYSDEC	OU-2-MW1-112018	OU-2-MW-1-123019	OU2-MW1 20201124	OU2-MW1 20211201
Lab Sample ID	Class GA	460-169852-3	460-200012-1	460-223616-3	460-248245-1
Date Sampled	AWQSGV	11/20/2018	12/30/2019	11/24/2020	12/01/2021
Analyte	μg/L				
2-Methylphenol	NS	10 U	10 U	10 U	10 U
3 & 4 Methylphenol	NS	10 U	10 U	10 U	10 U
Acenaphthene	20	10 U	10 U	10 U	10 U
Acenaphthylene	NS	10 U	10 U	10 U	10 U
Anthracene	50	10 U	10 U	10 U	10 U
Benzo[a]anthracene	0.002	1 U	1 U	1 UJ	1 U
Benzo[a]pyrene	ND	1 U	1 U	1 U	1 U
Benzo[b]fluoranthene	0.002	2 U	2 U	2 U	2 U
Benzo[g,h,i]perylene	NS	10 U	10 U	10 U	10 U
Benzo[k]fluoranthene	0.002	1 U	1 U	1 U	1 U
Chrysene	0.002	2 U	2 U	10 UJ	2 U
Dibenz(a,h)anthracene	NS	1 U	1 U	1 U	1 U
Dibenzofuran	NS	10 U	10 U	10 U	10 U
Fluoranthene	50	10 U	10 U	10 U	10 U
Fluorene	50	10 U	10 U	10 U	10 U
Hexachlorobenzene	0.04	1 U	1 U	1 U	1 U
Indeno[1,2,3-cd]pyrene	0.002	2 U	2 U	2 U	2 U
Naphthalene	10	3.2 J	10 U	4.7	1.4 J
Pentachlorophenol	NS	20 U	20 U	30 UJ	20 U
Phenanthrene	50	10 U	10 U	10 U	10 U
Phenol	NS	10 U	10 U	10 U	10 U
Pyrene	50	10 U	10 U	10 UJ	10 U
Total Conc	NS	3.2	0	4.7	1.4

Table 2 Adelaar

Thompson, NY Periodic Review Report

Groundwater Analytical Results - Semivolatile Organic Compounds (SVOCs)

Client ID	NYSDEC	OUX-MWX_20211201	Field Blank-112018	FB-123119	FB_20211201
Lab Sample ID	Class GA	460-248245-4	460-169852-2	460-200012-9	460-248245-3
Date Sampled	AWQSGV	12/01/2021	11/20/2018	12/31/2019	12/01/2021
•					
Analyte	μg/L				
2-Methylphenol	NS	10 U	10 U	10 U	10 U
3 & 4 Methylphenol	NS	10 U	10 U	10 U	10 U
Acenaphthene	20	10 U	10 U	10 U	10 U
Acenaphthylene	NS	10 U	10 U	10 U	10 U
Anthracene	50	10 U	10 U	10 U	10 U
Benzo[a]anthracene	0.002	1 U	1 U	1 U	1 U
Benzo[a]pyrene	ND	1 U	1 U	1 U	1 U
Benzo[b]fluoranthene	0.002	2 U	2 U	2 U	2 U
Benzo[g,h,i]perylene	NS	10 U	10 U	10 U	10 U
Benzo[k]fluoranthene	0.002	1 U	1 U	1 U	1 U
Chrysene	0.002	2 U	2 U	2 U	2 U
Dibenz(a,h)anthracene	NS	1 U	1 UJ	1 U	1 U
Dibenzofuran	NS	10 U	10 U	10 U	10 U
Fluoranthene	50	10 U	10 U	10 U	10 U
Fluorene	50	10 U	10 U	10 U	10 U
Hexachlorobenzene	0.04	1 U	1 U	1 U	1 U
Indeno[1,2,3-cd]pyrene	0.002	2 U	2 UJ	2 U	2 U
Naphthalene	10	1.1 J	10 U	10 U	2 U
Pentachlorophenol	NS	20 U	20 U	20 U	20 U
Phenanthrene	50	10 U	10 U	10 U	10 U
Phenol	NS	10 U	10 U	10 U	10 U
Pyrene	50	10 U	10 U	10 U	10 U
Total Conc	NS	1.1	0	0	0

Table 3 Adelaar

Thompson, NY
Periodic Review Report
Groundwater Analytical Results - Polychlorinated Biphenyls (PCBs) and Pesticides

Client ID	NYSDEC	OU-2-MW1-112018	OU-2-MW-1-123019	OU2-MW1 20201124	OU2-MW1 20211201
Lab Sample ID	Class GA	460-169852-3	460-200012-1	460-223616-3	460-248245-1
Date Sampled	AWQSGV	11/20/2018	12/30/2019	11/24/2020	12/01/2021
-					
PCBs	μg/L				
Aroclor 1016	NS	0.4 U	0.4 U	0.4 U	0.011 U
Aroclor 1221	NS	0.4 U	0.4 U	0.4 U	0.011 U
Aroclor 1232	NS	0.4 U	0.4 U	0.4 U	0.011 U
Aroclor 1242	NS	0.4 U	0.4 U	0.4 U	0.011 U
Aroclor 1248	NS	0.4 U	0.4 U	0.4 U	0.011 U
Aroclor 1254	NS	0.4 U	0.4 U	0.4 U	0.011 U
Aroclor 1260	NS	0.4 U	0.4 U	0.4 U	0.011 U
Aroclor-1262	NS	0.4 U	0.4 U	0.4 U	0.011 U
Aroclor 1268	NS	0.4 U	0.4 U	0.4 U	0.011 U
Polychlorinated biphenyls, Total	0.09	0.4 U	0.4 U	0.4 U	0.011 U
Pesticides	μg/L				
4,4'-DDD	0.3	0.02 U	0.02 U	0.02 U	0.02 U
4,4'-DDE	0.2	0.02 U	0.02 U	0.02 U	0.02 U
4,4'-DDT	0.2	0.02 U	0.02 U	0.02 U	0.02 U
Aldrin	ND	0.02 U	0.02 U	0.02 U	0.02 U
alpha-BHC	0.01	0.02 U	0.02 U	0.02 U	0.02 U
beta-BHC	0.04	0.02 U	0.02 U	0.02 U	0.02 U
Chlordane (technical)	NS	0.5 U	0.5 U	0.5 U	0.5 U
cis-Chlordane	NS	0.02 U	0.02 U	0.02 U	0.02 U
delta-BHC	0.04	0.02 U	0.02 U	0.02 U	0.02 U
Dieldrin	0.004	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan I	NS	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan II	NS	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan sulfate	NS	0.02 UJ	0.02 U	0.02 U	0.02 U
Endrin	ND	0.02 U	0.02 U	0.02 U	0.02 U
Endrin aldehyde	5	0.02 UJ	0.02 U	0.02 U	0.02 U
Endrin ketone	5	0.02 U	0.02 U	0.02 U	0.02 U
gamma-BHC (Lindane)	0.05	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor	0.04	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor epoxide	0.03	0.02 U	0.02 U	0.02 U	0.02 U
Methoxychlor	35	0.02 UJ	0.02 U	0.02 U	0.02 U
Toxaphene	0.06	0.5 U	0.5 U	0.5 U	0.5 U

Table 3 Adelaar

Thompson, NY
Periodic Review Report
Groundwater Analytical Results - Polychlorinated Biphenyls (PCBs) and Pesticides

Client ID	NYSDEC	DUX-MWX_20211201	Field Blank-112018	FB-123119	FB_20211201
Lab Sample ID	Class GA	460-248245-4	460-169852-2	460-200012-9	460-248245-3
Date Sampled	AWQSGV	12/01/2021	11/20/2018	12/31/2019	12/01/2021
PCBs	μg/L				
Aroclor 1016	NS	0.012 U	0.4 U	0.4 U	0.01 U
Aroclor 1221	NS	0.012 U	0.4 U	0.4 U	0.01 U
Aroclor 1232	NS	0.012 U	0.4 U	0.4 U	0.01 U
Aroclor 1242	NS	0.012 U	0.4 U	0.4 U	0.01 U
Aroclor 1248	NS	0.012 U	0.4 U	0.4 U	0.01 U
Aroclor 1254	NS	0.012 U	0.4 U	0.4 U	0.01 U
Aroclor 1260	NS	0.012 U	0.4 U	0.4 U	0.01 U
Aroclor-1262	NS	0.012 U	0.4 U	0.4 U	0.01 U
Aroclor 1268	NS	0.012 U	0.4 U	0.4 U	0.01 U
Polychlorinated biphenyls, Total	0.09	0.012 U	0.4 U	0.4 U	0.01 U
Pesticides	μg/L				
4,4'-DDD	0.3	0.02 U	0.02 U	0.02 U	0.02 U
4,4'-DDE	0.2	0.02 U	0.02 U	0.02 U	0.02 U
4,4'-DDT	0.2	0.02 U	0.02 U	0.02 U	0.02 U
Aldrin	ND	0.02 U	0.02 U	0.02 U	0.02 U
alpha-BHC	0.01	0.02 U	0.02 U	0.02 U	0.02 U
beta-BHC	0.04	0.02 U	0.02 U	0.02 U	0.02 U
Chlordane (technical)	NS	0.5 U	0.5 U	0.5 U	0.5 U
cis-Chlordane	NS	0.02 U	0.02 U	0.02 U	0.02 U
delta-BHC	0.04	0.02 U	0.02 U	0.02 U	0.02 U
Dieldrin	0.004	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan I	NS	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan II	NS	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan sulfate	NS	0.02 U	0.02 U	0.02 U	0.02 U
Endrin	ND	0.02 U	0.02 U	0.02 U	0.02 U
Endrin aldehyde	5	0.02 U	0.02 UJ	0.02 U	0.02 U
Endrin ketone	5	0.02 U	0.02 U	0.02 U	0.02 U
gamma-BHC (Lindane)	0.05	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor	0.04	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor epoxide	0.03	0.02 U	0.02 U	0.02 U	0.02 U
Methoxychlor	35	0.02 U	0.02 UJ	0.02 U	0.02 U
Toxaphene	0.06	0.50 U	0.5 U	0.5 U	0.5 U

Table 4 Adelaar

Thompson, NY

Periodic Review Report

Groundwater Analytical Results - Metals

Client ID	NYSDEC	OU-2-MW1-112018	OU-3-MW2-112118	OU-2-MW-1-123019	OU-3-MW-2-123119
Lab Sample ID	Class GA	460-169852-3	460-169881-1	460-200012-1	460-200012-5
Date Sampled	AWQSGV	11/20/2018	11/21/2018	12/30/2019	12/31/2019
Dilution		1/2 †	1/2/10 †	1/2 †	1/2/10 †
Analyte	μg/L				
Arsenic	25	2.3	9	3.2	7.2
Barium	1,000	170	509	236	802
Beryllium	3	0.8 U	1.3	0.8 U	2.5
Cadmium	5	2 U	2 U	2 U	2 U
Chromium	50	4 U	34.3	4 U	34.9
Copper	200	3.6 J	51.6	4.1	74.8
Lead	25	3.3	24.9	1.9	53
Manganese	300	2,120	19,000	3,130	17,400
Mercury	0.7	0.2 U	0.2 U	0.2 U	0.2 U
Nickel	100	3.5 J	55.6	4 U	29.9
Selenium	10	10 U	10 U	10 U	10 U
Silver	50	2 U	2 U	2 U	2 U
Zinc	2,000	16 U	114	16 U	91.2

Table 4 Adelaar

Thompson, NY

Periodic Review Report

Groundwater Analytical Results - Metals

Client ID	NYSDEC	OU2-MW1_20201124	OU3-MW2_20201123	OU2-MW1_20211201	OUX-MWX_20211201
Lab Sample ID	Class GA	460-223616-3	460-223616-1	460-248245-1	460-248245-4
Date Sampled	AWQSGV	11/24/2020	11/23/2020	12/01/2021	12/01/2021
Dilution		1	1/5 †	1/10 †	1/10 †
Analyte	μg/L				
Arsenic	25	1.6 J	1.2 J	5	4.8
Barium	1,000	294	286	482	495
Beryllium	3	0.8 U	0.8 U	0.13 J	0.5 U
Cadmium	5	2 U	0.22 J	0.5 U	0.5 U
Chromium	50	1 J	4	0.6 J	1 J
Copper	200	4 U	6.8	1.4	2.1
Lead	25	1.3	3.1	1.1	1.5
Manganese	300	4,560	15,400	10100	8,550
Mercury	0.7	0.2 U	0.2 U	1.2	1.4
Nickel	100	4 U	5.5	1 U	1 U
Selenium	10	2.5 U	2.5 U	0.5 U	0.5 U
Silver	50	2 U	2 U	10 U	10 U
Zinc	2,000	6.3 J	23.7	0.2 U	0.2 U

Table 4 Adelaar

Thompson, NY
Periodic Review Report
Groundwater Analytical Results - Metals

Client ID	NYSDEC	OU3-MW2_20211201	Field Blank-112018	FB-123119	FB_20211201
Lab Sample ID	Class GA	460-248245-2	460-169852-2	460-200012-9	460-248245-3
Date Sampled	AWQSGV	12/01/2021	11/20/2018	12/31/2019	12/01/2021
Dilution		1/10 †	1/2 †	1/2 †	1/2 †
Analyte	μg/L				
Arsenic	25	1.8 J	2 U	2 U	2 U
Barium	1,000	849	4 U	4 U	2 U
Beryllium	3	0.28 J	0.8 U	0.8 U	0.5 U
Cadmium	5	0.86	2 U	2 U	0.5 U
Chromium	50	4.5	4 U	4 U	2 U
Copper	200	7.5	4 U	4 U	1 U
Lead	25	4.1	1.2 U	1.2 U	0.5 U
Manganese	300	32400	8 U	8 U	2 U
Mercury	0.7	14	0.2 U	0.2 U	1 U
Nickel	100	1 U	4 U	4 U	1 U
Selenium	10	0.5 U	10 U	10 U	0.5 U
Silver	50	18.8	2 U	2 U	10 U
Zinc	2,000	0.2 U	16 U	16 U	0.2 U

Tables 1-4

Adelaar

Thompson, NYPeriodic Review Report
Notes

DEFINITIONS

B: Compound was found in the blank and sample.

J: The concentration given is an estimated value.

NS: No standard.

ND: The standard is a non-detectable concentration by the approved analytical method.

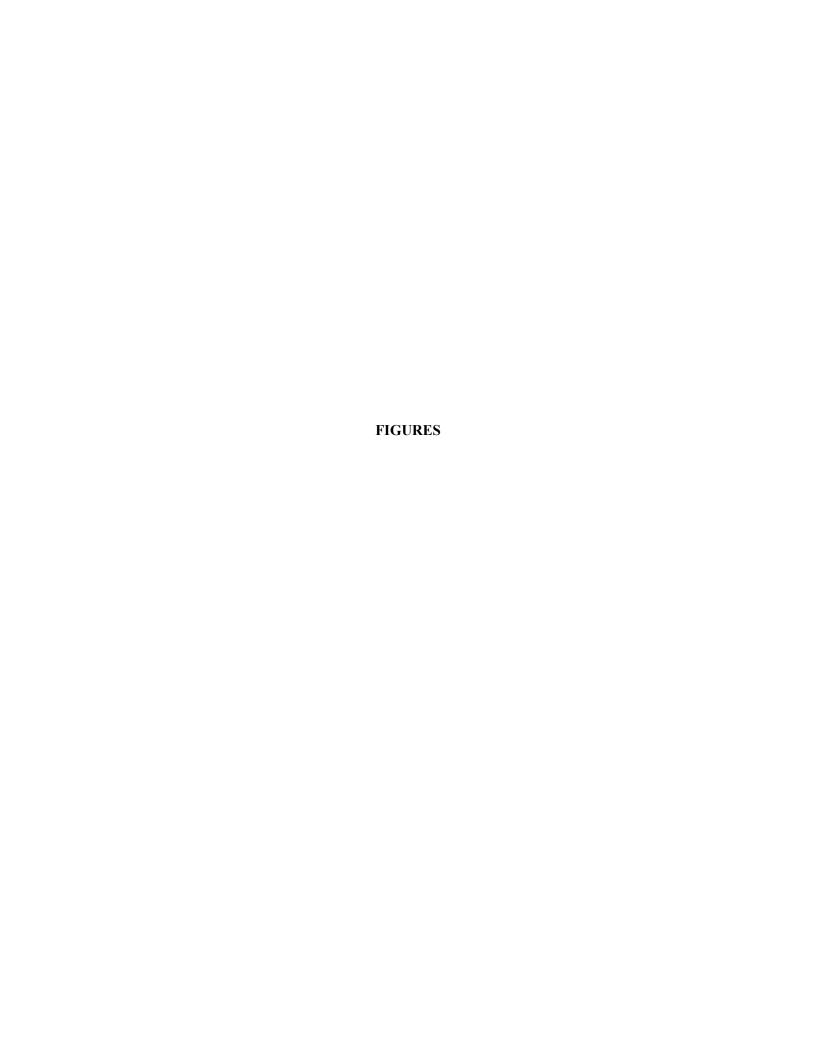
U: The analyte was not detected at the indicated concentration.

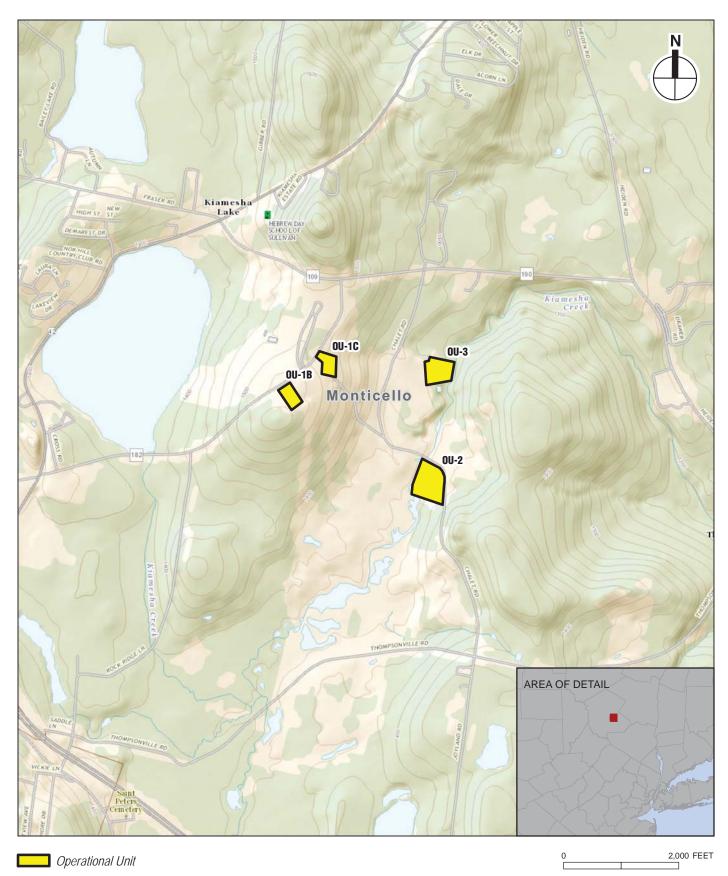
UJ: The analyte was analyzed for but was not detected.

*: LCS or LCSD is outside acceptable limits.

†: Dilution factor varies.

μg/L: micrograms per Liter = parts per billion (ppb)

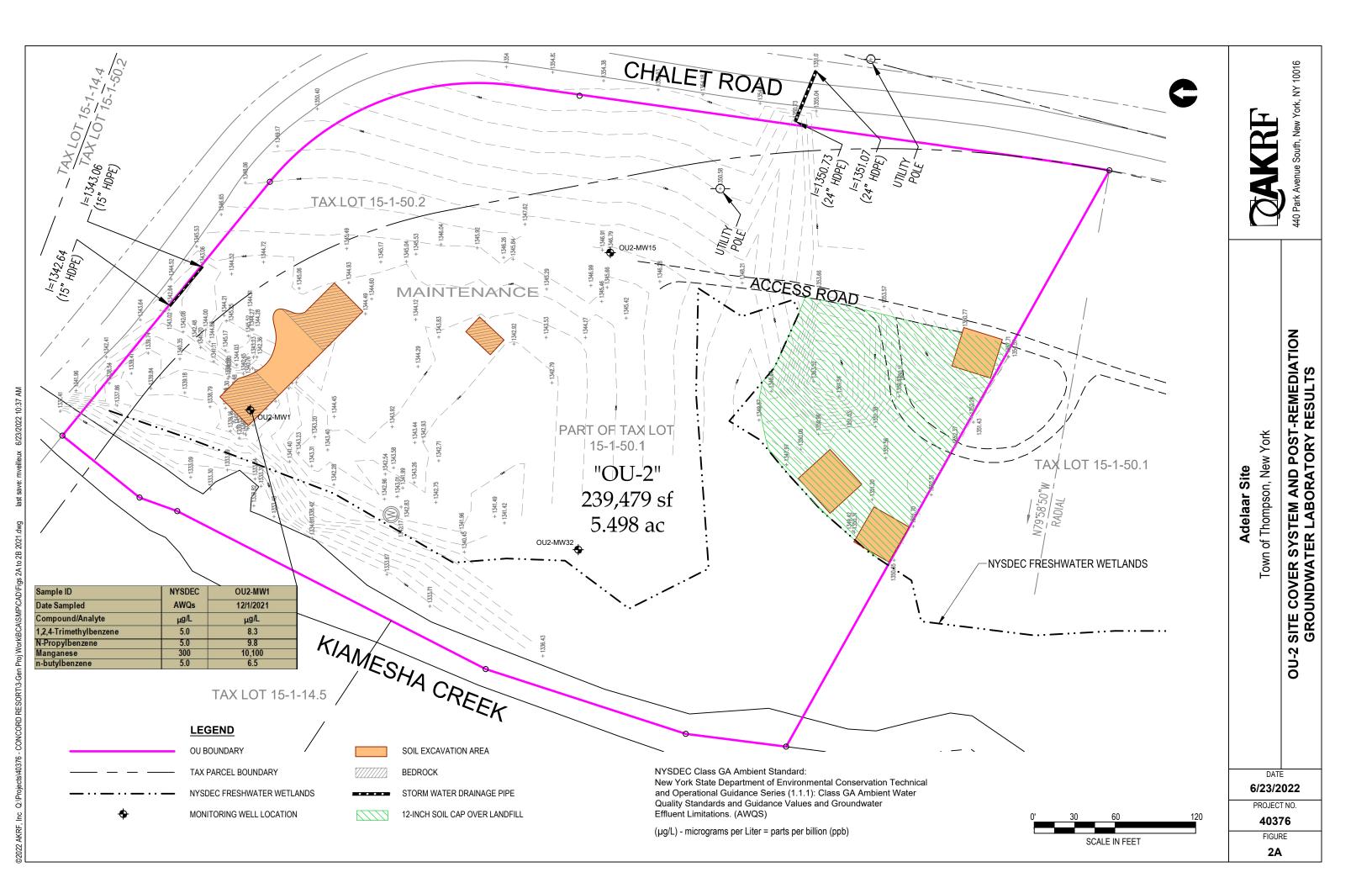

STANDARDS

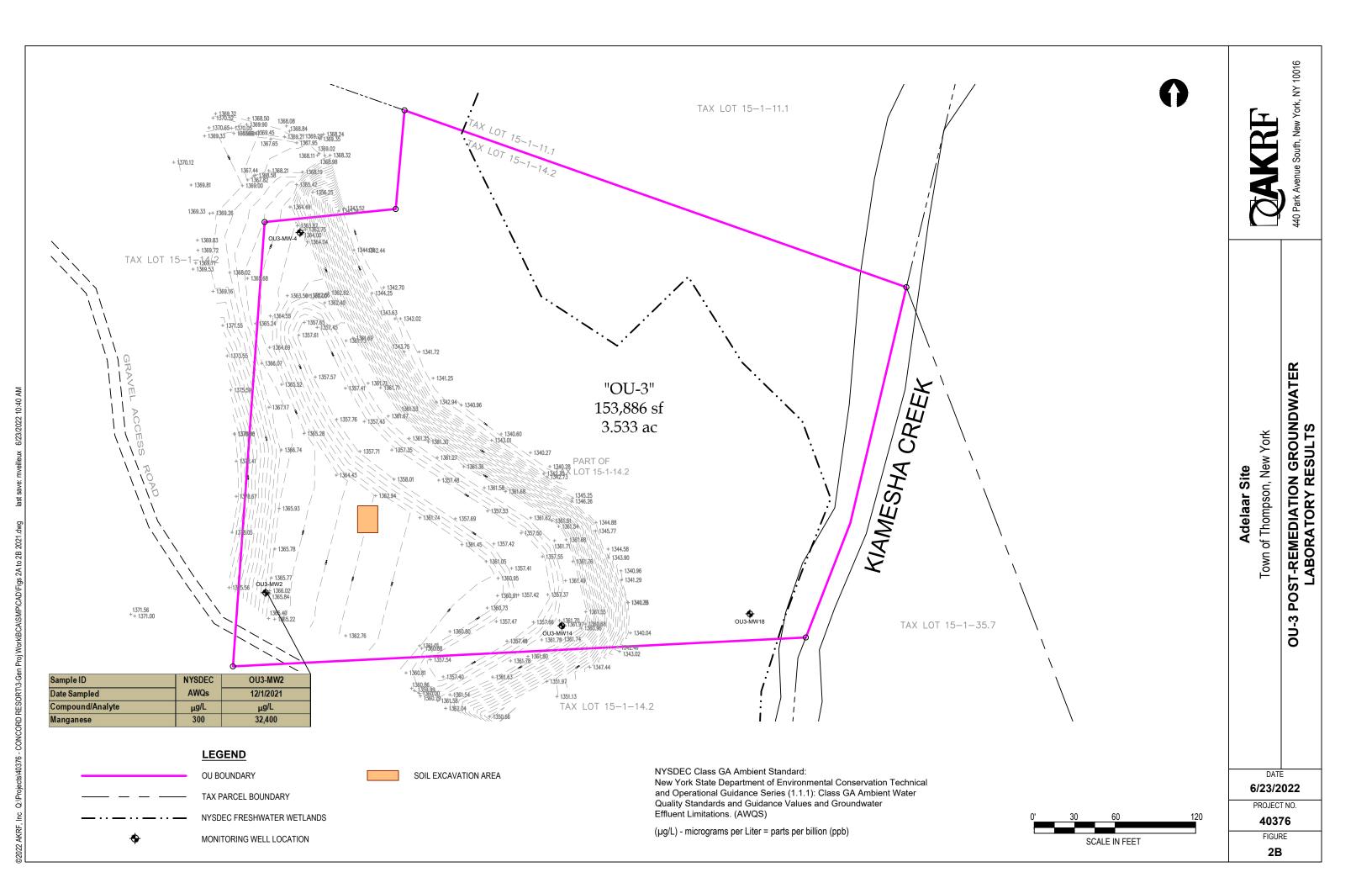

NYSDEC New York State Department of Environmental Conservation (NYSDEC) Technical and Operational

Class GA : Guidance Series (1.1.1): Class GA Ambient Water Quality Standards and Guidance Values

AWQSGVs (AWQSGVs).

Exceedances of NYSDEC Class GA AWQSGVs are highlighted in gray shading.






Approximate coordinates of Operational Units:

OU-1B: 41° 40' 28" N, 74° 39' 22" W OU-1C: 41° 40' 34" N, 74° 39' 14" W OU-2: 41° 40' 14" N, 74° 38' 51" W OU-3: 41° 40' 33" N, 74° 38' 49" W

ADEL**A**AR NYSDEC Site No. C353014 USGS 7.5 Minute Topographic Map Monticello Quad Figure 1

ADELAAR OU-2 AND OU3 SITE INSPECTION FORM TOWN OF THOMPSON, NEW YORK

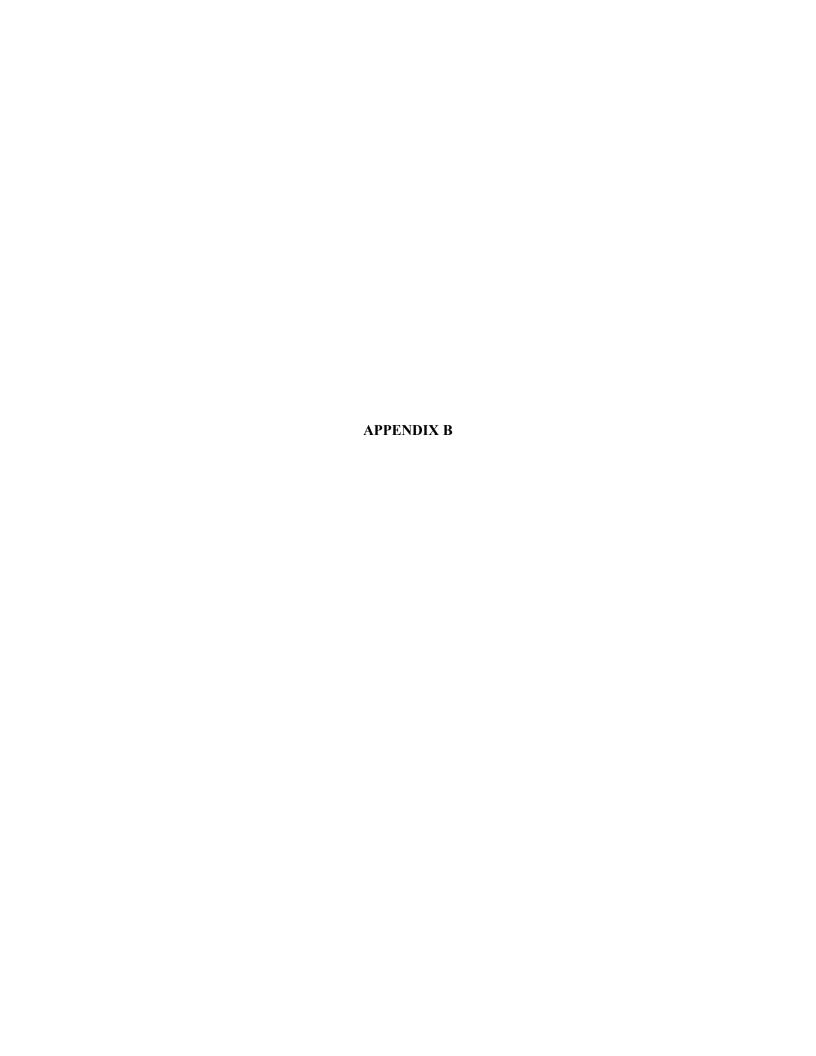
Inspector Name: JOHN SULECH Date: 12/1/2021 2021 Reviewed By: Date: 12 OU-2 Soil Cap over Landfill Area **Condition Observed** Site Cap - Soil Cover **Contingency Action** Maintenance Comments Good Required 1/ Required 2 Subsidence/Settling X X Erosion/ Soil Deposition X Vegetative cover X Seeps X Ponding

2/ - Immediately contact the Adelaar and AKRF Project Manager for contingency requirements. Notifiy NYSDEC within 24 hours and refer to Site Management Plan for contingency requirements.

	Emergency Contact Info	
Name	Title	Contact Numbers
Marc Godick	AKRF Project Director	914-922-2356
Bryan Zieroff	AKRF Project Manager	914-922-2382
Paul Roggeman	Adelaar Project Manager	845-794-6060
Paul Turvey	EPR Concord II	816-472-1700

^{1/ -} Contact the Adelaar Project Manager to coordinate maintenance activities. Document completed maintenance activities on this form.

Well Sampling Log


								in the same of the	
Job No: 40376						Client: Concord/A	Adelaar/EPR	V	Well No:
Project Locati	on: Concord/Ad	elaar/EPR				Sampled By: 33	1-		
Date:	- 1	12/121				Sampling Time: \	350		OU3-MW2
LEL at surfac	e: NA								000,000
PID at surface	e: ND								
Total Depth:	35,4	0		ft. below top of	casing	Water Column (W	(C):		= 0.163 * WC for 2" wells
Depth to Wat	er: 29,57	7		ft. below top of	casing	Well Volume*:		B	*= 0.653 * WC for 4" wells
Depth to Prod	luct: N	0		ft. below top of	casing	Volume Purged:		Barrons	*= 1.469 * WC for 6" wells
Depth to top o	of screen:			ft. below top of	casing	Well Diam.:		inches	Target maximum flow rate is
Depth to botto	om of screen:		,	ft. below top of	casing	Purging Device (p	ump type):		100 ml/min
Approx. Pum	p Intake:			ft. below top of			ORP	Turbidity	Comments
Time	Depth to Water	Purge Rate	Temp	Conductivity	DO (mg/L)	pН	(mV)	(NTU)	(problems, odor, sheen)
Time	(Ft.)	(ml/min)	(°C)	(mS/cm)	(mg/L)	117	97	776	
1245	20	4100	11.16		696	6.10	104	739	NODOB
250			12,05	QA35		6.05	12-	1000	NO ODER
1255			12:00	1112	6.59	110	122	901	NOACEN
1000			19.91	1103	1	12	127	1000	
1305			1930	1, 29	6.50	(10	0-	585	
1310			1912	1,9,8	6.15	617	130	471	V'
1315	T.		12.17	300	6.01	0.13	131	354	
1000			12.14	5:03	243	6.16	123	307	
1325			12.19	2110	200	6:11	13-	200	
1030			12,19	2.13	5.23	6.19	100	205	
1000	-		12.19	2.13	4.43	6,20	137	94.6	
1,00%			12.17	2:30	494	6.21	138	1	+
1,240			18,13	200	494	6.21	138	45.7	
1345			10110				1 - 4	0 = 0	
1350	SAME		10.17	221	4.95	6.21	139	32.9	nu de not
1355			13/1	0.01					If water quality parameters do not stabilize and/or turbidity is greater than
	Stabilization Criteria:			+/- 3 mS/cm	+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	50 NTU within two hours, discontinue purging and collect sample.
	Stabilizati	on Criteria.							

Groundwater samples analyzed for:

Well Sampling Log

Job No: 4037	76	PATE .				Cu	100		
Project Loca	tion: Concord/A	delaar/EPR				Client: Concord			Well No:
	2/1/2					Sampled By:	2		
LEL at surfa	ce: NA					Sampling Time:	1125		1 MM-600
PID at surfac	e: 3,7							- 9 1	
Total Depth:	11.	97		ft. below top of casing		Water Call (WG			
Depth to Wat	ter: 7,0	17		ft. below top of		Water Column (V		feet	*= 0.163 * WC for 2" wells
Depth to Proc	Depth to Product: THO ND				f casing	Well Volume*: Volume Purged:		gallons	*= 0.653 * WC for 4" wells
Depth to top	Depth to top of screen:				f casing	Well Diam.:		gallons	*= 1.469 * WC for 6" wells
Depth to bott	om of screen:			ft. below top of		Purging Device (numn type).	inches	Target maximum flow rate is
Approx. Pum	p Intake: N	2		ft. below top of		anging bevice (rump type).		100 ml/min
Time	Depth to Water	Purge Rate	Temp	Conductivity	DO	pII	ORP	Turbidity	Comments
Im	(Ft.)	(ml/min)	(°C)	(mS/cm)	(mg/L)	pH	(mV)	(NTU)	(problems, odor, sheen)
100	7,6	1100	197	239	810	5.67	145	920	11000
10,10			11204	0.946	7.62	5.65 121		37,1	NO GOOD
1045			11.69	0.366	6.77	5.82	22	25.9	NO COCR,
1050			11.50	0.424	6.28	5,94	64	19.2	
1062			11.59	0.538	6.46	6.01	50	13.6	DUPE:
llas			11,49	2537	6:35	6.09	28	12.6	
1100		Cent 1	1141	8.640	675	6,00	98	12.9	JOS11301 OUX-WUX-
1110		THE RESERVE	1141	29.62	6.33	6.06	22	10.3	2001.00
11/12			11:39	2.663	6.27	6.05	21	3.6	30:311:301
1130			11.38	0.671	6.24	6,004	90	フ、て	337 4376T
1124	JERMAZ		1 1 1 1 1 1		•				
1130			11.37	0.672	6.21	6.03	101	7.8	Carrie Co.
			"Add the	16.			4	-	
								-	7)
						De au			
	Stabilization Criteria:				+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.
Groundwater	samples analyz	ed for:			K				

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-248245-1

Client Project/Site: Adelaar Concord - Monticello, NY

For:

AKRF Inc 34 South Broadway Suite 314 White Plains, New York 10601

Attn: Mr. Bryan Zieroff

Authorized for release by: 12/15/2021 3:59:51 PM

Melissa Haas, Senior Project Manager (203)308-0880

Melissa.Haas@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: Adelaar Concord - Monticello, NY

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

helissa Haas

Melissa Haas Senior Project Manager 12/15/2021 3:59:51 PM

3

4

5

6

Q

10

13

14

15

Project/Site: Adelaar Concord - Monticello, NY

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Detection Summary	8
Client Sample Results	10
Surrogate Summary	
QC Sample Results	22
QC Association Summary	39
Lab Chronicle	43
Certification Summary	45
Method Summary	46
Sample Summary	47
Chain of Custody	48
Receint Checklists	51

4

R

9

11

12

14

1

Definitions/Glossary

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Qualifiers

GC/MS VOA

 Qualifier
 Qualifier Description

 J
 Indicates an estimated value.

 U
 Analyzed for but not detected.

GC/MS Semi VOA

 Qualifier
 Qualifier Description

 J
 Indicates an estimated value.

 U
 Analyzed for but not detected.

GC Semi VOA

Qualifier Qualifier Description

* Surrogate is outside acceptance limits.
 U Analyzed for but not detected.

Metals

Qualifier Qualifier Description

^ ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

J Sample result is greater than the MDL but below the CRDL

U Indicates analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

Eurofins TestAmerica, Edison

12/15/2021

Page 4 of 52

•

_

Α

5

8

11

12

4 [

Definitions/Glossary

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Glossary (Continued)

Abbreviation These commonly used abbreviations may or may not be present in this report.

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

•

3

4

5

_

10

111

13

14

Case Narrative

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Job ID: 460-248245-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

CASE NARRATIVE

Client: AKRF Inc

Project: Adelaar Concord - Monticello, NY

Report Number: 460-248245-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 12/2/2021 7:00 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 1.5° C and 2.1° C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples OU2-MW1_20211201 (460-248245-1), FB_20211201 (460-248245-3), OUX-MWX_20211201 (460-248245-4) and TB_20211201 (460-248245-5) were analyzed for Volatile Organic Compounds (GC/MS) in accordance with EPA SW-846 Method 8260D. The samples were analyzed on 12/04/2021.

No difficulties were encountered during the Volatiles analysis.

All quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples OU2-MW1_20211201 (460-248245-1), FB_20211201 (460-248245-3) and OUX-MWX_20211201 (460-248245-4) were analyzed for semivolatile organic compounds (GC/MS) in accordance with EPA SW-846 Methods 8270E. The samples were prepared on 12/04/2021 and 12/05/2021.

The continuing calibration verification (CCV) analyzed in batch 460-817005 was outside the method criteria for the following analyte(s): Acenaphthene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

No other difficulties were encountered during the semivolatiles analysis.

All other quality control parameters were within the acceptance limits.

4

F

a

7

ŏ

10

111

13

14

Case Narrative

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Job ID: 460-248245-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

PESTICIDES

Samples OU2-MW1_20211201 (460-248245-1), FB_20211201 (460-248245-3) and OUX-MWX_20211201 (460-248245-4) were analyzed for Pesticides in accordance with EPA SW-846 Methods 8081B. The samples were prepared on 12/04/2021 and analyzed on 12/06/2021.

No difficulties were encountered during the pesticides analysis.

All quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples OU2-MW1_20211201 (460-248245-1), FB_20211201 (460-248245-3) and OUX-MWX_20211201 (460-248245-4) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082A. The samples were prepared and analyzed on 12/08/2021.

Surrogate recovery (DCB Decachlorobiphenyl and DCB Decachlorobiphenyl) for the following sample was outside control limits: OUX-MWX_20211201 (460-248245-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Refer to the QC report for details.

No other difficulties were encountered during the PCBs analysis.

All other quality control parameters were within the acceptance limits.

TOTAL METALS (ICP/MS)

Samples OU2-MW1_20211201 (460-248245-1), OU3-MW2_20211201 (460-248245-2), FB_20211201 (460-248245-3) and OUX-MWX_20211201 (460-248245-4) were analyzed for Total Metals (ICP/MS) in accordance with EPA SW-846 Method 6020B. The samples were prepared on 12/12/2021 and analyzed on 12/13/2021 and 12/14/2021.

Manganese failed the recovery criteria high for the MS of sample OU3-MW2_20211201MS (460-248245-2) in batch 410-204841.

Manganese failed the recovery criteria low for the MSD of sample OU3-MW2_20211201MSD (460-248245-2) in batch 410-204841.

Copper exceeded the RPD limit for the duplicate of sample 410-65777-3. for the duplicate of sample OU3-MW2_20211201DU (460-248245-2). Refer to the QC report for details.

Samples OU2-MW1_20211201 (460-248245-1)[10X], OU3-MW2_20211201 (460-248245-2)[20X] and OUX-MWX_20211201 (460-248245-4)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Refer to the QC report for details.

No other difficulties were encountered during the Total Metals (ICP/MS) analysis.

All other quality control parameters were within the acceptance limits.

TOTAL MERCURY

Samples OU2-MW1_20211201 (460-248245-1), OU3-MW2_20211201 (460-248245-2), FB_20211201 (460-248245-3) and OUX-MWX_20211201 (460-248245-4) were analyzed for total mercury in accordance with EPA SW-846 Methods 7470A. The samples were prepared on 12/07/2021 and analyzed on 12/07/2021 and 12/08/2021.

No difficulties were encountered during the Hg analysis.

All quality control parameters were within the acceptance limits.

4

5

8

9

11

4.0

14

15

Eurofins TestAmerica, Edison 12/15/2021

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: OU2-MW1_20211201

Lab Sample ID: 460-248245-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	thod	Prep Type
1,2,4-Trimethylbenzene	8.3		1.0	0.37	ug/L	1	826	60D	Total/NA
Ethylbenzene	3.7		1.0	0.30	ug/L	1	826	60D	Total/NA
n-Butylbenzene	6.5		1.0	0.32	ug/L	1	826	60D	Total/NA
N-Propylbenzene	9.5		1.0	0.32	ug/L	1	826	60D	Total/NA
sec-Butylbenzene	2.7		1.0	0.37	ug/L	1	826	60D	Total/NA
Xylenes, Total	0.80	J	2.0	0.65	ug/L	1	826	60D	Total/NA
Naphthalene	1.4	J	2.0	0.54	ug/L	1	827	70E	Total/NA
Arsenic	5.0		2.0	0.68	ug/L	1	602	20B	Total Recoverable
Barium	482		2.0	0.75	ug/L	1	602	20B	Total Recoverable
Beryllium	0.13	J	0.50	0.12	ug/L	1	602	20B	Total Recoverable
Chromium	0.60	J	2.0	0.33	ug/L	1	602	20B	Total Recoverable
Copper	1.4		1.0	0.36	ug/L	1	602	20B	Total Recoverable
Lead	1.1		0.50	0.071	ug/L	1	602	20B	Total Recoverable
Manganese	10100		20.0	6.3	ug/L	10	602	20B	Total Recoverable
Nickel	1.2		1.0	0.60	ug/L	1	602	20B	Total Recoverable

Client Sample ID: OU3-MW2_20211201

Lab Sample ID: 460-248245-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	1.8	J	2.0	0.68	ug/L	1	_	6020B	Total
									Recoverable
Barium	849		2.0	0.75	ug/L	1		6020B	Total
									Recoverable
Beryllium	0.28	J	0.50	0.12	ug/L	1		6020B	Total
									Recoverable
Cadmium	0.86		0.50	0.15	ug/L	1		6020B	Total
									Recoverable
Chromium	4.5		2.0	0.33	ug/L	1		6020B	Total
									Recoverable
Copper	7.5		1.0	0.36	ug/L	1		6020B	Total
									Recoverable
Lead	4.1		0.50	0.071	ug/L	1		6020B	Total
									Recoverable
Manganese	32400		40.0	12.7	ug/L	20		6020B	Total
									Recoverable
Nickel	14.0		1.0	0.60	ug/L	1		6020B	Total
									Recoverable
Zinc	18.8		10.0	6.2	ug/L	1		6020B	Total
									Recoverable

Client Sample ID: FB_20211201

Lab Sample ID: 460-248245-3

No Detections.

Client Sample ID: OUX-MWX_20211201

Lab Samp	عاد	ID:	460	-24	8245.	.4
Lab Gaille		10.	TUU		ULTU-	_

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	l Prep Type
1,2,4-Trimethylbenzene	8.5	1.0	0.37 ug/L	1 8260D	Total/NA
Ethylbenzene	3.6	1.0	0.30 ug/L	1 8260D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison

12/15/2021

Page 8 of 52

2

3

5

8

10

11

12

1 1

4 E

Detection Summary

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: OUX-MWX_20211201 (Continued)

Lab Sample ID: 460-248245-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
n-Butylbenzene	6.7		1.0	0.32	ug/L	1	_	8260D	Total/NA
N-Propylbenzene	9.8		1.0	0.32	ug/L	1		8260D	Total/NA
sec-Butylbenzene	2.8		1.0	0.37	ug/L	1		8260D	Total/NA
Xylenes, Total	0.81	J	2.0	0.65	ug/L	1		8260D	Total/NA
Naphthalene	1.1	J	2.0	0.54	ug/L	1		8270E	Total/NA
Arsenic	4.8		2.0	0.68	ug/L	1		6020B	Total
									Recoverable
Barium	495		2.0	0.75	ug/L	1		6020B	Total
									Recoverable
Chromium	1.0	J	2.0	0.33	ug/L	1		6020B	Total
									Recoverable
Copper	2.1		1.0	0.36	ug/L	1		6020B	Total
									Recoverable
Lead	1.5		0.50	0.071	ug/L	1		6020B	Total
									Recoverable
Manganese	8850		20.0	6.3	ug/L	10		6020B	Total
									Recoverable
Nickel	1.4		1.0	0.60	ug/L	1		6020B	Total
									Recoverable

Client Sample ID: TB_20211201

Lab Sample ID: 460-248245-5

No Detections.

This Detection Summary does not include radiochemical test results.

3

6

8

4 4

12

13

14

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: OU2-MW1_20211201

Date Collected: 12/01/21 11:25 Date Received: 12/01/21 16:20 Lab Sample ID: 460-248245-1

Matrix: Water

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			12/04/21 12:34	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			12/04/21 12:34	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			12/04/21 12:34	1
1,2,4-Trimethylbenzene	8.3		1.0	0.37	ug/L			12/04/21 12:34	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			12/04/21 12:34	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			12/04/21 12:34	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			12/04/21 12:34	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			12/04/21 12:34	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			12/04/21 12:34	1
1,4-Dioxane	50	U	50	28	ug/L			12/04/21 12:34	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			12/04/21 12:34	1
Acetone	5.0	U	5.0	4.4	ug/L			12/04/21 12:34	1
Benzene	1.0	U	1.0	0.20	ug/L			12/04/21 12:34	1
Carbon tetrachloride	1.0	U	1.0		ug/L			12/04/21 12:34	1
Chlorobenzene	1.0	U	1.0		ug/L			12/04/21 12:34	1
Chloroform	1.0	U	1.0	0.33	ug/L			12/04/21 12:34	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			12/04/21 12:34	1
Ethylbenzene	3.7		1.0	0.30	ug/L			12/04/21 12:34	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			12/04/21 12:34	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			12/04/21 12:34	1
n-Butylbenzene	6.5		1.0	0.32	ug/L			12/04/21 12:34	1
N-Propylbenzene	9.5		1.0		ug/L			12/04/21 12:34	1
sec-Butylbenzene	2.7		1.0	0.37	ug/L			12/04/21 12:34	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			12/04/21 12:34	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			12/04/21 12:34	1
Toluene	1.0	U	1.0	0.38	ug/L			12/04/21 12:34	1
trans-1,2-Dichloroethene	1.0	U	1.0		ug/L			12/04/21 12:34	1
Trichloroethene	1.0	U	1.0		ug/L			12/04/21 12:34	1
Vinyl chloride	1.0	U	1.0		ug/L			12/04/21 12:34	1
Xylenes, Total	0.80	J	2.0		ug/L			12/04/21 12:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75 - 123			-		12/04/21 12:34	1
4-Bromofluorobenzene	102		76 - 120					12/04/21 12:34	1
Dibromofluoromethane (Surr)	106		77 - 124					12/04/21 12:34	1
Toluene-d8 (Surr)	87		80 - 120					12/04/21 12:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	10	U	10	0.67	ug/L		12/04/21 09:29	12/04/21 23:35	1
3 & 4 Methylphenol	10	U	10	0.64	ug/L		12/04/21 09:29	12/04/21 23:35	1
Acenaphthene	10	U	10	1.1	ug/L		12/04/21 09:29	12/04/21 23:35	1
Acenaphthylene	10	U	10	0.82	ug/L		12/04/21 09:29	12/04/21 23:35	1
Anthracene	10	U	10	1.3	ug/L		12/04/21 09:29	12/04/21 23:35	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		12/04/21 09:29	12/04/21 23:35	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		12/04/21 09:29	12/04/21 23:35	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		12/04/21 09:29	12/04/21 23:35	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		12/04/21 09:29	12/04/21 23:35	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		12/04/21 09:29	12/04/21 23:35	1
Chrysene	2.0	U	2.0	0.91	ug/L		12/04/21 09:29	12/04/21 23:35	1

Eurofins TestAmerica, Edison

Page 10 of 52

12/15/2021

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: OU2-MW1_20211201

Lab Sample ID: 460-248245-1 Date Collected: 12/01/21 11:25

Date Received: 12/01/21 16:20

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Method: 8270E - Semivolat	ile Organic Co	mpounds	(GC/MS) (Co	ntinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		12/04/21 09:29	12/04/21 23:35	1
Dibenzofuran	10	U	10	1.1	ug/L		12/04/21 09:29	12/04/21 23:35	1
Fluoranthene	10	U	10	0.84	ug/L		12/04/21 09:29	12/04/21 23:35	1
Fluorene	10	U	10	0.91	ug/L		12/04/21 09:29	12/04/21 23:35	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		12/04/21 09:29	12/04/21 23:35	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		12/04/21 09:29	12/04/21 23:35	1
Naphthalene	1.4	J	2.0	0.54	ug/L		12/04/21 09:29	12/04/21 23:35	1
Pentachlorophenol	20	U	20	1.4	ug/L		12/04/21 09:29	12/04/21 23:35	1
Phenanthrene	10	U	10	1.3	ug/L		12/04/21 09:29	12/04/21 23:35	1
Phenol	10	U	10	0.29	ug/L		12/04/21 09:29	12/04/21 23:35	1
Pyrene	10	U	10	1.6	ug/L		12/04/21 09:29	12/04/21 23:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	86		33 - 150				12/04/21 09:29	12/04/21 23:35	1
2-Fluorobiphenyl	72		42 - 127				12/04/21 09:29	12/04/21 23:35	1
2-Fluorophenol (Surr)	37		18 - 72				12/04/21 09:29	12/04/21 23:35	1
Nitrobenzene-d5 (Surr)	84		46 - 137				12/04/21 09:29	12/04/21 23:35	1
Phenol-d5 (Surr)	23		10 - 50				12/04/21 09:29	12/04/21 23:35	1
Terphenyl-d14 (Surr)	49		39 - 150				12/04/21 09:29	12/04/21 23:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		12/04/21 09:58	12/06/21 05:20	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		12/04/21 09:58	12/06/21 05:20	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		12/04/21 09:58	12/06/21 05:20	1
Aldrin	0.020	U	0.020	0.0030	ug/L		12/04/21 09:58	12/06/21 05:20	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		12/04/21 09:58	12/06/21 05:20	1
beta-BHC	0.020	U	0.020	0.015	ug/L		12/04/21 09:58	12/06/21 05:20	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		12/04/21 09:58	12/06/21 05:20	1
cis-Chlordane	0.020	U	0.020	0.0020	ug/L		12/04/21 09:58	12/06/21 05:20	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		12/04/21 09:58	12/06/21 05:20	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		12/04/21 09:58	12/06/21 05:20	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		12/04/21 09:58	12/06/21 05:20	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		12/04/21 09:58	12/06/21 05:20	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		12/04/21 09:58	12/06/21 05:20	1
Endrin	0.020	U	0.020	0.0040	ug/L		12/04/21 09:58	12/06/21 05:20	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		12/04/21 09:58	12/06/21 05:20	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		12/04/21 09:58	12/06/21 05:20	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		12/04/21 09:58	12/06/21 05:20	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		12/04/21 09:58	12/06/21 05:20	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		12/04/21 09:58	12/06/21 05:20	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		12/04/21 09:58	12/06/21 05:20	1
Toxaphene	0.50	U	0.50	0.11	ug/L		12/04/21 09:58	12/06/21 05:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	<u></u>		10 - 150				12/04/21 09:58	12/06/21 05:20	1

12/04/21 09:58 12/06/21 05:20

12/04/21 09:58 12/06/21 05:20

12/04/21 09:58 12/06/21 05:20

Page 11 of 52

10 - 150

10 - 150

10 - 150

71

78

Matrix: Water

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: OU2-MW1_20211201 Lab Sample ID: 460-248245-1

Dat

ate Collected: 12/01/21 11:25	Matrix: Water
ate Received: 12/01/21 16:20	
	_

Method: 8082A - Polychloria	nated Bipheny	ls (PCBs)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.011	U	0.011	0.0087	ug/L		12/08/21 03:45	12/08/21 11:08	1
Aroclor 1221	0.011	U	0.011	0.0087	ug/L		12/08/21 03:45	12/08/21 11:08	1
Aroclor 1232	0.011	U	0.011	0.0087	ug/L		12/08/21 03:45	12/08/21 11:08	1
Aroclor 1242	0.011	U	0.011	0.0087	ug/L		12/08/21 03:45	12/08/21 11:08	1
Aroclor 1248	0.011	U	0.011	0.0087	ug/L		12/08/21 03:45	12/08/21 11:08	1
Aroclor 1254	0.011	U	0.011	0.0054	ug/L		12/08/21 03:45	12/08/21 11:08	1
Aroclor 1260	0.011	U	0.011	0.0054	ug/L		12/08/21 03:45	12/08/21 11:08	1
Aroclor-1262	0.011	U	0.011	0.0054	ug/L		12/08/21 03:45	12/08/21 11:08	1
Aroclor 1268	0.011	U	0.011	0.0054	ug/L		12/08/21 03:45	12/08/21 11:08	1
Polychlorinated biphenyls, Total	0.011	U	0.011	0.0087	ug/L		12/08/21 03:45	12/08/21 11:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	80		46 - 161				12/08/21 03:45	12/08/21 11:08	1
DCB Decachlorobiphenyl (Surr)	83		46 - 161				12/08/21 03:45	12/08/21 11:08	1
Tetrachloro-m-xylene	62		41 - 146				12/08/21 03:45	12/08/21 11:08	1
Tetrachloro-m-xylene	60		41 - 146				12/08/21 03:45	12/08/21 11:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.0		2.0	0.68	ug/L		12/12/21 10:08	12/13/21 17:32	1
Barium	482		2.0	0.75	ug/L		12/12/21 10:08	12/13/21 17:32	1
Beryllium	0.13	J	0.50	0.12	ug/L		12/12/21 10:08	12/13/21 17:32	1
Cadmium	0.50	U	0.50	0.15	ug/L		12/12/21 10:08	12/13/21 17:32	1
Chromium	0.60	J	2.0	0.33	ug/L		12/12/21 10:08	12/13/21 17:32	1
Copper	1.4		1.0	0.36	ug/L		12/12/21 10:08	12/13/21 17:32	1
Lead	1.1		0.50	0.071	ug/L		12/12/21 10:08	12/13/21 17:32	1
Manganese	10100		20.0	6.3	ug/L		12/12/21 10:08	12/13/21 20:26	10
Nickel	1.2		1.0	0.60	ug/L		12/12/21 10:08	12/13/21 17:32	1
Selenium	1.0	U	1.0	0.28	ug/L		12/12/21 10:08	12/13/21 17:32	1
Silver	0.50	U	0.50	0.17	ug/L		12/12/21 10:08	12/13/21 17:32	1
Zinc	10.0	U	10.0	6.2	ug/L		12/12/21 10:08	12/13/21 17:32	1
Method: 7470A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: OH3-MV	N2 20211201		Lab Sample ID: 460-24824	5_2
Client Sample ID: OU3-M\	V2_20211201		Lab Sample ID: 460-24824	5-2

Date Collected: 12/01/21 13:50 Date Received: 12/01/21 16:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.8	J	2.0	0.68	ug/L		12/12/21 10:08	12/13/21 16:19	1
Barium	849		2.0	0.75	ug/L		12/12/21 10:08	12/13/21 16:19	1
Beryllium	0.28	J	0.50	0.12	ug/L		12/12/21 10:08	12/13/21 16:19	1
Cadmium	0.86		0.50	0.15	ug/L		12/12/21 10:08	12/13/21 16:19	1
Chromium	4.5		2.0	0.33	ug/L		12/12/21 10:08	12/13/21 16:19	1
Copper	7.5		1.0	0.36	ug/L		12/12/21 10:08	12/13/21 16:19	1
Lead	4.1		0.50	0.071	ug/L		12/12/21 10:08	12/13/21 16:19	1
Manganese	32400		40.0	12.7	ug/L		12/12/21 10:08	12/13/21 19:34	20
Nickel	14.0		1.0	0.60	ug/L		12/12/21 10:08	12/13/21 16:19	1

Eurofins TestAmerica, Edison

Page 12 of 52

12/15/2021

Matrix: Water

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: OU3-MW2_20211201

Lab Sample ID: 460-248245-2

Date Collected: 12/01/21 13:50

Matrix: Water

Date Received: 12/01/21 16:20

Method: 6020B - Metals (ICP/M	S) - Total F	Recoverable	(Continued	1)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	1.0	U	1.0	0.28	ug/L		12/12/21 10:08	12/13/21 16:19	1
Silver	0.50	U	0.50	0.17	ug/L		12/12/21 10:08	12/13/21 16:19	1
Zinc	18.8		10.0	6.2	ug/L		12/12/21 10:08	12/13/21 16:19	1
Method: 7470A - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	0.079	ug/L		12/07/21 05:38	12/07/21 15:32	1

Client Sample ID: FB_20211201

Lab Sample ID: 460-248245-3 Date Collected: 12/01/21 11:35 **Matrix: Water**

Date Received: 12/01/21 16:20

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			12/04/21 09:23	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			12/04/21 09:23	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			12/04/21 09:23	1
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			12/04/21 09:23	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			12/04/21 09:23	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			12/04/21 09:23	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			12/04/21 09:23	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			12/04/21 09:23	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			12/04/21 09:23	1
1,4-Dioxane	50	U	50	28	ug/L			12/04/21 09:23	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			12/04/21 09:23	1
Acetone	5.0	U	5.0	4.4	ug/L			12/04/21 09:23	1
Benzene	1.0	U	1.0	0.20	ug/L			12/04/21 09:23	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			12/04/21 09:23	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			12/04/21 09:23	1
Chloroform	1.0	U	1.0	0.33	ug/L			12/04/21 09:23	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			12/04/21 09:23	1
Ethylbenzene	1.0	U	1.0	0.30	ug/L			12/04/21 09:23	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			12/04/21 09:23	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			12/04/21 09:23	1
n-Butylbenzene	1.0	U	1.0	0.32	ug/L			12/04/21 09:23	1
N-Propylbenzene	1.0	U	1.0	0.32	ug/L			12/04/21 09:23	1
sec-Butylbenzene	1.0	U	1.0	0.37	ug/L			12/04/21 09:23	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			12/04/21 09:23	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			12/04/21 09:23	1
Toluene	1.0	U	1.0	0.38	ug/L			12/04/21 09:23	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			12/04/21 09:23	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			12/04/21 09:23	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			12/04/21 09:23	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			12/04/21 09:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		75 - 123					12/04/21 09:23	1
4-Bromofluorobenzene	102		76 - 120					12/04/21 09:23	1
Dibromofluoromethane (Surr)	107		77 - 124					12/04/21 09:23	1

Eurofins TestAmerica, Edison

12/04/21 09:23

Page 13 of 52

80 - 120

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: FB_20211201

Date Collected: 12/01/21 11:35
Date Received: 12/01/21 16:20

Lab Sample ID: 460-248245-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol		U	10	0.67	ug/L		12/04/21 09:29	12/04/21 23:56	1
3 & 4 Methylphenol	10	U	10	0.64	ug/L		12/04/21 09:29	12/04/21 23:56	1
Acenaphthene	10	U	10	1.1	ug/L		12/04/21 09:29	12/04/21 23:56	1
Acenaphthylene	10	U	10	0.82	ug/L		12/04/21 09:29	12/04/21 23:56	1
Anthracene	10	U	10	1.3	ug/L		12/04/21 09:29	12/04/21 23:56	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		12/04/21 09:29	12/04/21 23:56	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		12/04/21 09:29	12/04/21 23:56	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		12/04/21 09:29	12/04/21 23:56	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		12/04/21 09:29	12/04/21 23:56	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		12/04/21 09:29	12/04/21 23:56	1
Chrysene	2.0	U	2.0	0.91	ug/L		12/04/21 09:29	12/04/21 23:56	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		12/04/21 09:29	12/04/21 23:56	1
Dibenzofuran	10	U	10	1.1	ug/L		12/04/21 09:29	12/04/21 23:56	1
Fluoranthene	10	U	10	0.84	ug/L		12/04/21 09:29	12/04/21 23:56	1
Fluorene	10	U	10	0.91	ug/L		12/04/21 09:29	12/04/21 23:56	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		12/04/21 09:29	12/04/21 23:56	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		12/04/21 09:29	12/04/21 23:56	1
Naphthalene	2.0	U	2.0	0.54	ug/L		12/04/21 09:29	12/04/21 23:56	1
Pentachlorophenol	20	U	20	1.4	ug/L		12/04/21 09:29	12/04/21 23:56	1
Phenanthrene	10	U	10	1.3	ug/L		12/04/21 09:29	12/04/21 23:56	1
Phenol	10	U	10	0.29	ug/L		12/04/21 09:29	12/04/21 23:56	1
Pyrene	10	U	10	1.6	ug/L		12/04/21 09:29	12/04/21 23:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	107		33 - 150				12/04/21 09:29	12/04/21 23:56	1
2-Fluorobiphenyl	87		42 - 127				12/04/21 09:29	12/04/21 23:56	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	107		33 - 150	12/04/21 09:29	12/04/21 23:56	1
2-Fluorobiphenyl	87		42 - 127	12/04/21 09:29	12/04/21 23:56	1
2-Fluorophenol (Surr)	44		18 - 72	12/04/21 09:29	12/04/21 23:56	1
Nitrobenzene-d5 (Surr)	100		46 - 137	12/04/21 09:29	12/04/21 23:56	1
Phenol-d5 (Surr)	29		10 - 50	12/04/21 09:29	12/04/21 23:56	1
Terphenyl-d14 (Surr)	93		39 - 150	12/04/21 09:29	12/04/21 23:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		12/04/21 09:58	12/06/21 05:35	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		12/04/21 09:58	12/06/21 05:35	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		12/04/21 09:58	12/06/21 05:35	1
Aldrin	0.020	U	0.020	0.0030	ug/L		12/04/21 09:58	12/06/21 05:35	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		12/04/21 09:58	12/06/21 05:35	1
beta-BHC	0.020	U	0.020	0.015	ug/L		12/04/21 09:58	12/06/21 05:35	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		12/04/21 09:58	12/06/21 05:35	1
cis-Chlordane	0.020	U	0.020	0.0020	ug/L		12/04/21 09:58	12/06/21 05:35	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		12/04/21 09:58	12/06/21 05:35	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		12/04/21 09:58	12/06/21 05:35	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		12/04/21 09:58	12/06/21 05:35	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		12/04/21 09:58	12/06/21 05:35	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		12/04/21 09:58	12/06/21 05:35	1
Endrin	0.020	U	0.020	0.0040	ug/L		12/04/21 09:58	12/06/21 05:35	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		12/04/21 09:58	12/06/21 05:35	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		12/04/21 09:58	12/06/21 05:35	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		12/04/21 09:58	12/06/21 05:35	1

Eurofins TestAmerica, Edison

Page 14 of 52

2

3

5

8

10

12

1 <u>/</u>

15

1,

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: FB_20211201

Date Collected: 12/01/21 11:35 Date Received: 12/01/21 16:20 Lab Sample ID: 460-248245-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlor	0.020	U	0.020	0.0030	ug/L		12/04/21 09:58	12/06/21 05:35	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		12/04/21 09:58	12/06/21 05:35	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		12/04/21 09:58	12/06/21 05:35	1
Toxaphene	0.50	U	0.50	0.11	ug/L		12/04/21 09:58	12/06/21 05:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	85		10 - 150				12/04/21 09:58	12/06/21 05:35	1
DCB Decachlorobiphenyl	85		10 - 150				12/04/21 09:58	12/06/21 05:35	1
Tetrachloro-m-xylene	88		10 - 150				12/04/21 09:58	12/06/21 05:35	1
Tetrachloro-m-xylene	84		10 - 150				12/04/21 09:58	12/06/21 05:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.010	U	0.010	0.0081	ug/L		12/08/21 03:45	12/08/21 11:23	1
Aroclor 1221	0.010	U	0.010	0.0081	ug/L		12/08/21 03:45	12/08/21 11:23	1
Aroclor 1232	0.010	U	0.010	0.0081	ug/L		12/08/21 03:45	12/08/21 11:23	1
Aroclor 1242	0.010	U	0.010	0.0081	ug/L		12/08/21 03:45	12/08/21 11:23	1
Aroclor 1248	0.010	U	0.010	0.0081	ug/L		12/08/21 03:45	12/08/21 11:23	1
Aroclor 1254	0.010	U	0.010	0.0051	ug/L		12/08/21 03:45	12/08/21 11:23	1
Aroclor 1260	0.010	U	0.010	0.0051	ug/L		12/08/21 03:45	12/08/21 11:23	1
Aroclor-1262	0.010	U	0.010	0.0051	ug/L		12/08/21 03:45	12/08/21 11:23	1
Aroclor 1268	0.010	U	0.010	0.0051	ug/L		12/08/21 03:45	12/08/21 11:23	1
Polychlorinated biphenyls, Total	0.010	U	0.010	0.0081	ug/L		12/08/21 03:45	12/08/21 11:23	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	86		46 - 161	12/08/21 03:45	12/08/21 11:23	1
DCB Decachlorobiphenyl (Surr)	88		46 - 161	12/08/21 03:45	12/08/21 11:23	1
Tetrachloro-m-xylene	79		41 - 146	12/08/21 03:45	12/08/21 11:23	1
Tetrachloro-m-xylene	77		41 - 146	12/08/21 03:45	12/08/21 11:23	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.0	U	2.0	0.68	ug/L		12/12/21 10:08	12/13/21 17:30	1
Barium	2.0	U	2.0	0.75	ug/L		12/12/21 10:08	12/13/21 17:30	1
Beryllium	0.50	U	0.50	0.12	ug/L		12/12/21 10:08	12/13/21 17:30	1
Cadmium	0.50	U	0.50	0.15	ug/L		12/12/21 10:08	12/13/21 17:30	1
Chromium	2.0	U	2.0	0.33	ug/L		12/12/21 10:08	12/13/21 17:30	1
Copper	1.0	U	1.0	0.36	ug/L		12/12/21 10:08	12/13/21 17:30	1
Lead	0.50	U	0.50	0.071	ug/L		12/12/21 10:08	12/13/21 17:30	1
Manganese	2.0	U	2.0	0.63	ug/L		12/12/21 10:08	12/14/21 19:21	1
Nickel	1.0	U	1.0	0.60	ug/L		12/12/21 10:08	12/13/21 17:30	1
Selenium	1.0	U	1.0	0.28	ug/L		12/12/21 10:08	12/13/21 17:30	1
Silver	0.50	U	0.50	0.17	ug/L		12/12/21 10:08	12/13/21 17:30	1
Zinc	10.0	U	10.0	6.2	ug/L		12/12/21 10:08	12/13/21 17:30	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	0.079	ug/L		12/07/21 05:49	12/08/21 12:47	1

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: OUX-MWX_20211201

Date Collected: 12/01/21 00:00

Date Received: 12/01/21 16:20

Toluene-d8 (Surr)

Lab Sample ID: 460-248245-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			12/04/21 12:55	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			12/04/21 12:55	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			12/04/21 12:55	1
1,2,4-Trimethylbenzene	8.5		1.0	0.37	ug/L			12/04/21 12:55	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			12/04/21 12:55	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			12/04/21 12:55	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			12/04/21 12:55	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			12/04/21 12:55	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			12/04/21 12:55	1
1,4-Dioxane	50	U	50	28	ug/L			12/04/21 12:55	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			12/04/21 12:55	1
Acetone	5.0	U	5.0	4.4	ug/L			12/04/21 12:55	1
Benzene	1.0	U	1.0	0.20	ug/L			12/04/21 12:55	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			12/04/21 12:55	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			12/04/21 12:55	1
Chloroform	1.0	U	1.0	0.33	ug/L			12/04/21 12:55	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			12/04/21 12:55	1
Ethylbenzene	3.6		1.0	0.30	ug/L			12/04/21 12:55	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			12/04/21 12:55	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			12/04/21 12:55	1
n-Butylbenzene	6.7		1.0	0.32	ug/L			12/04/21 12:55	1
N-Propylbenzene	9.8		1.0	0.32	ug/L			12/04/21 12:55	1
sec-Butylbenzene	2.8		1.0	0.37	ug/L			12/04/21 12:55	1
tert-Butylbenzene	1.0	U	1.0	0.34	ug/L			12/04/21 12:55	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			12/04/21 12:55	1
Toluene	1.0	U	1.0	0.38	ug/L			12/04/21 12:55	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			12/04/21 12:55	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			12/04/21 12:55	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			12/04/21 12:55	1
Xylenes, Total	0.81	J	2.0	0.65	ug/L			12/04/21 12:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		75 - 123			-		12/04/21 12:55	1
4-Bromofluorobenzene	102		76 - 120					12/04/21 12:55	1
Dibromofluoromethane (Surr)	104		77 - 124					12/04/21 12:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	10	U	10	0.67	ug/L		12/04/21 09:29	12/05/21 00:17	1
3 & 4 Methylphenol	10	U	10	0.64	ug/L		12/04/21 09:29	12/05/21 00:17	1
Acenaphthene	10	U	10	1.1	ug/L		12/04/21 09:29	12/05/21 00:17	1
Acenaphthylene	10	U	10	0.82	ug/L		12/04/21 09:29	12/05/21 00:17	1
Anthracene	10	U	10	1.3	ug/L		12/04/21 09:29	12/05/21 00:17	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		12/04/21 09:29	12/05/21 00:17	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		12/04/21 09:29	12/05/21 00:17	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		12/04/21 09:29	12/05/21 00:17	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		12/04/21 09:29	12/05/21 00:17	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		12/04/21 09:29	12/05/21 00:17	1
Chrysene	2.0	U	2.0	0.91	ug/L		12/04/21 09:29	12/05/21 00:17	1

80 - 120

Eurofins TestAmerica, Edison

12/15/2021

12/04/21 12:55

Page 16 of 52

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: OUX-MWX_20211201

Date Collected: 12/01/21 00:00 Date Received: 12/01/21 16:20 Lab Sample ID: 460-248245-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		12/04/21 09:29	12/05/21 00:17	1
Dibenzofuran	10	U	10	1.1	ug/L		12/04/21 09:29	12/05/21 00:17	1
Fluoranthene	10	U	10	0.84	ug/L		12/04/21 09:29	12/05/21 00:17	1
Fluorene	10	U	10	0.91	ug/L		12/04/21 09:29	12/05/21 00:17	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		12/04/21 09:29	12/05/21 00:17	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		12/04/21 09:29	12/05/21 00:17	1
Naphthalene	1.1	J	2.0	0.54	ug/L		12/04/21 09:29	12/05/21 00:17	1
Pentachlorophenol	20	U	20	1.4	ug/L		12/04/21 09:29	12/05/21 00:17	1
Phenanthrene	10	U	10	1.3	ug/L		12/04/21 09:29	12/05/21 00:17	1
Phenol	10	U	10	0.29	ug/L		12/04/21 09:29	12/05/21 00:17	1
Pyrene	10	U	10	1.6	ug/L		12/04/21 09:29	12/05/21 00:17	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	89	33 - 150	12/04/21 09:29	12/05/21 00:17	1
2-Fluorobiphenyl	73	42 - 127	12/04/21 09:29	12/05/21 00:17	1
2-Fluorophenol (Surr)	37	18 - 72	12/04/21 09:29	12/05/21 00:17	1
Nitrobenzene-d5 (Surr)	81	46 - 137	12/04/21 09:29	12/05/21 00:17	1
Phenol-d5 (Surr)	23	10 - 50	12/04/21 09:29	12/05/21 00:17	1
Terphenyl-d14 (Surr)	46	39 - 150	12/04/21 09:29	12/05/21 00:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		12/04/21 09:58	12/06/21 05:12	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		12/04/21 09:58	12/06/21 05:12	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		12/04/21 09:58	12/06/21 05:12	1
Aldrin	0.020	U	0.020	0.0030	ug/L		12/04/21 09:58	12/06/21 05:12	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		12/04/21 09:58	12/06/21 05:12	1
beta-BHC	0.020	U	0.020	0.015	ug/L		12/04/21 09:58	12/06/21 05:12	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		12/04/21 09:58	12/06/21 05:12	1
cis-Chlordane	0.020	U	0.020	0.0020	ug/L		12/04/21 09:58	12/06/21 05:12	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		12/04/21 09:58	12/06/21 05:12	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		12/04/21 09:58	12/06/21 05:12	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		12/04/21 09:58	12/06/21 05:12	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		12/04/21 09:58	12/06/21 05:12	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		12/04/21 09:58	12/06/21 05:12	1
Endrin	0.020	U	0.020	0.0040	ug/L		12/04/21 09:58	12/06/21 05:12	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		12/04/21 09:58	12/06/21 05:12	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		12/04/21 09:58	12/06/21 05:12	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		12/04/21 09:58	12/06/21 05:12	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		12/04/21 09:58	12/06/21 05:12	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		12/04/21 09:58	12/06/21 05:12	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		12/04/21 09:58	12/06/21 05:12	1
Toxaphene	0.50	U	0.50	0.11	ug/L		12/04/21 09:58	12/06/21 05:12	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Anaiyzea	DII Fac	
DCB Decachlorobiphenyl	91		10 - 150	12/04/21 09:58	12/06/21 05:12	1	
DCB Decachlorobiphenyl	106		10 - 150	12/04/21 09:58	12/06/21 05:12	1	
Tetrachloro-m-xylene	83		10 - 150	12/04/21 09:58	12/06/21 05:12	1	
Tetrachloro-m-xylene	95		10 - 150	12/04/21 09:58	12/06/21 05:12	1	

Eurofins TestAmerica, Edison

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: OUX-MWX_20211201

Lab Sample ID: 460-248245-4 Date Collected: 12/01/21 00:00 **Matrix: Water**

Date Received: 12/01/21 16:20

Date Received: 12/01/21 16:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.012	U	0.012	0.0095	ug/L		12/08/21 03:45	12/08/21 11:38	1
Aroclor 1221	0.012	U	0.012	0.0095	ug/L		12/08/21 03:45	12/08/21 11:38	1
Aroclor 1232	0.012	U	0.012	0.0095	ug/L		12/08/21 03:45	12/08/21 11:38	1
Aroclor 1242	0.012	U	0.012	0.0095	ug/L		12/08/21 03:45	12/08/21 11:38	1
Aroclor 1248	0.012	U	0.012	0.0095	ug/L		12/08/21 03:45	12/08/21 11:38	1
Aroclor 1254	0.012	U	0.012	0.0059	ug/L		12/08/21 03:45	12/08/21 11:38	1
Aroclor 1260	0.012	U	0.012	0.0059	ug/L		12/08/21 03:45	12/08/21 11:38	1
Aroclor-1262	0.012	U	0.012	0.0059	ug/L		12/08/21 03:45	12/08/21 11:38	1
Aroclor 1268	0.012	U	0.012	0.0059	ug/L		12/08/21 03:45	12/08/21 11:38	1
Polychlorinated biphenyls, Total	0.012	U	0.012	0.0095	ug/L		12/08/21 03:45	12/08/21 11:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	39	*	46 - 161				12/08/21 03:45	12/08/21 11:38	1
DCB Decachlorobiphenyl (Surr)	39	*	46 - 161				12/08/21 03:45	12/08/21 11:38	1
Tetrachloro-m-xylene	42		41 - 146				12/08/21 03:45	12/08/21 11:38	1
Tetrachloro-m-xylene	42		41_146				12/08/21 03:45	12/08/21 11:38	1

Method: 6020B - Metals (I Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.8		2.0		ug/L		12/12/21 09:43	12/13/21 18:22	1
Barium	495		2.0	0.75	ug/L		12/12/21 09:43	12/13/21 18:22	1
Beryllium	0.50	U	0.50	0.12	ug/L		12/12/21 09:43	12/13/21 18:22	1
Cadmium	0.50	U	0.50	0.15	ug/L		12/12/21 09:43	12/13/21 18:22	1
Chromium	1.0	J	2.0	0.33	ug/L		12/12/21 09:43	12/14/21 13:16	1
Copper	2.1		1.0	0.36	ug/L		12/12/21 09:43	12/13/21 18:22	1
Lead	1.5		0.50	0.071	ug/L		12/12/21 09:43	12/13/21 18:22	1
Manganese	8850		20.0	6.3	ug/L		12/12/21 09:43	12/13/21 19:26	10
Nickel	1.4		1.0	0.60	ug/L		12/12/21 09:43	12/14/21 13:16	1
Selenium	1.0	U	1.0	0.28	ug/L		12/12/21 09:43	12/13/21 18:22	1
Silver	0.50	U	0.50	0.17	ug/L		12/12/21 09:43	12/13/21 18:22	1
Zinc	10.0	U	10.0	6.2	ug/L		12/12/21 09:43	12/13/21 18:22	1
Method: 7470A - Mercury	(CVAA)				٠				
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

<u>12/07/21 05:49</u> <u>12/08/21 12:49</u> Mercury 0.20 U 0.20 0.079 ug/L Client Sample ID: TB_20211201 Lab Sample ID: 460-248245-5 Date Collected: 12/01/21 00:00 **Matrix: Water**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			12/04/21 09:44	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			12/04/21 09:44	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			12/04/21 09:44	1
1,2,4-Trimethylbenzene	1.0	U	1.0	0.37	ug/L			12/04/21 09:44	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			12/04/21 09:44	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			12/04/21 09:44	1
1,3,5-Trimethylbenzene	1.0	U	1.0	0.33	ug/L			12/04/21 09:44	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			12/04/21 09:44	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			12/04/21 09:44	1

Eurofins TestAmerica, Edison

Page 18 of 52

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: TB 20211201

Toluene-d8 (Surr)

Lab Sample ID: 460-248245-5 Date Collected: 12/01/21 00:00

87

Matrix: Water Date Received: 12/01/21 16:20

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued) **MDL** Unit Dil Fac **Analyte** Result Qualifier RL D Prepared Analyzed 50 U 50 1,4-Dioxane 28 ug/L 12/04/21 09:44 5.0 U 5.0 2-Butanone (MEK) 1.9 ug/L 12/04/21 09:44 Acetone 5.0 U 5.0 4.4 ug/L 12/04/21 09:44 Benzene 0.20 ug/L 1.0 U 1.0 12/04/21 09:44 Carbon tetrachloride 1.0 U 1.0 0.21 ug/L 12/04/21 09:44 Chlorobenzene 10 U 1.0 0.38 ug/L 12/04/21 09:44 Chloroform 1.0 U 1.0 0.33 ug/L 12/04/21 09:44 cis-1,2-Dichloroethene 1.0 U 1.0 0.22 ug/L 12/04/21 09:44 Ethylbenzene 1.0 U 1.0 0.30 ug/L 12/04/21 09:44 Methyl tert-butyl ether 1.0 U 1.0 0.22 ug/L 12/04/21 09:44 Methylene Chloride 1.0 U 1.0 0.32 ug/L 12/04/21 09:44 n-Butylbenzene 1.0 U 1.0 0.32 ug/L 12/04/21 09:44 N-Propylbenzene 1.0 U 1.0 0.32 ug/L 12/04/21 09:44 sec-Butylbenzene 1.0 U 1.0 0.37 ug/L 12/04/21 09:44 tert-Butylbenzene 1.0 U 1.0 0.34 ug/L 12/04/21 09:44 Tetrachloroethene 1.0 U 1.0 0.25 ug/L 12/04/21 09:44 Toluene 1.0 U 1.0 0.38 ug/L 12/04/21 09:44 trans-1,2-Dichloroethene 1.0 U 1.0 0.24 ug/L 12/04/21 09:44 Trichloroethene 1.0 U 1.0 0.31 ug/L 12/04/21 09:44 Vinyl chloride 1.0 U 1.0 0.17 ug/L 12/04/21 09:44 Xylenes, Total 2.0 U 2.0 0.65 ug/L 12/04/21 09:44 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 12/04/21 09:44 1,2-Dichloroethane-d4 (Surr) 106 75 - 123 4-Bromofluorobenzene 102 76 - 120 12/04/21 09:44 Dibromofluoromethane (Surr) 108 77 - 124 12/04/21 09:44

80 - 120

6

12/04/21 09:44

Project/Site: Adelaar Concord - Monticello, NY

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(75-123)	(76-120)	(77-124)	(80-120)
460-248245-1	OU2-MW1_20211201	102	102	106	87
460-248245-3	FB_20211201	105	102	107	85
460-248245-4	OUX-MWX_20211201	103	102	104	87
460-248245-5	TB_20211201	106	102	108	87
LCS 460-816929/3	Lab Control Sample	103	101	103	87
LCSD 460-816929/4	Lab Control Sample Dup	102	102	103	87
MB 460-816929/7	Method Blank	103	101	105	87

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix: Water**

			Pe	rcent Surr	ogate Recov	very (Acce	ptance Lin
		ТВР	FBP	2FP	NBZ	PHL	TPHL
Lab Sample ID	Client Sample ID	(33-150)	(42-127)	(18-72)	(46-137)	(10-50)	(39-150)
460-248245-1	OU2-MW1_20211201	86	72	37	84	23	49
460-248245-3	FB_20211201	107	87	44	100	29	93
460-248245-4	OUX-MWX_20211201	89	73	37	81	23	46
LCS 460-816959/2-A	Lab Control Sample	94	72	40	82	27	77
LCSD 460-816959/3-A	Lab Control Sample Dup	94	72	42	82	28	80
MB 460-816959/1-A	Method Blank	88	73	44	86	27	74

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(10-150)	(10-150)	(10-150)	(10-150)
460-248245-1	OU2-MW1_20211201	64	76	78	71
460-248245-3	FB_20211201	85	85	84	88
460-248245-4	OUX-MWX_20211201	106	91	95	83
LCS 460-816778/2-A	Lab Control Sample	89	95	91	92
LCSD 460-816778/3-A	Lab Control Sample Dup	92	94	90	93
MB 460-816778/1-A	Method Blank	77	84	81	84
Surrogate Legend					

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Page 20 of 52

Surrogate Summary

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC)

Prep Type: Total/NA **Matrix: Water**

		Percent Surrogate Recovery (Acceptance Limits)						
		DCB1	DCB2	TCX1	TCX2			
Lab Sample ID	Client Sample ID	(46-161)	(46-161)	(41-146)	(41-146)			
460-248245-1	OU2-MW1_20211201	80	83	62	60			
460-248245-3	FB_20211201	86	88	79	77			
460-248245-4	OUX-MWX_20211201	39 *	39 *	42	42			
LCS 410-202710/2-A	Lab Control Sample	95	94	70	66			
LCSD 410-202710/3-A	Lab Control Sample Dup	95	99	68	66			
MB 410-202710/1-A	Method Blank	89	91	71	68			
Surrogate Legend								
DCB = DCB Decachlor	obiphenyl (Surr)							
TCX = Tetrachloro-m-x	ylene							

Project/Site: Adelaar Concord - Monticello, NY

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 460-816929/7

Matrix: Water

Analysis Batch: 816929

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed 1,1,1-Trichloroethane 1.0 U 1.0 0.24 ug/L 12/04/21 08:19 1,1-Dichloroethane 1.0 U 1.0 0.26 ug/L 12/04/21 08:19 1 1.0 U 1,1-Dichloroethene 1.0 0.26 ug/L 12/04/21 08:19 1 1,2,4-Trimethylbenzene 1.0 U 1.0 0.37 ug/L 12/04/21 08:19 1,2-Dichlorobenzene 10 U 1.0 0.21 ug/L 12/04/21 08:19 0.43 ug/L 1,2-Dichloroethane 1.0 U 1.0 12/04/21 08:19 1,3,5-Trimethylbenzene 1.0 U 1.0 0.33 ug/L 12/04/21 08:19 1,3-Dichlorobenzene 1.0 U 1.0 0.34 ug/L 12/04/21 08:19 1,4-Dichlorobenzene 10 U 1.0 0.33 ug/L 12/04/21 08:19 1,4-Dioxane 50 U 50 28 ug/L 12/04/21 08:19 2-Butanone (MEK) 5.0 U 5.0 1.9 ug/L 12/04/21 08:19 Acetone 5.0 U 5.0 4.4 ug/L 12/04/21 08:19 Benzene 1.0 U 1.0 0.20 ug/L 12/04/21 08:19 Carbon tetrachloride 1.0 U 1.0 0.21 ug/L 12/04/21 08:19 Chlorobenzene 1.0 U 1.0 0.38 ug/L 12/04/21 08:19 Chloroform 1.0 U 0.33 ug/L 1.0 12/04/21 08:19 cis-1,2-Dichloroethene 1.0 U 1.0 0.22 ug/L 12/04/21 08:19 0.30 ug/L Ethylbenzene 1.0 U 1.0 12/04/21 08:19 Methyl tert-butyl ether 1.0 U 1.0 0.22 ug/L 12/04/21 08:19 Methylene Chloride 1.0 U 1.0 0.32 ug/L 12/04/21 08:19 n-Butylbenzene 1.0 U 1.0 0.32 ug/L 12/04/21 08:19 N-Propylbenzene 10 U 1.0 0.32 ug/L 12/04/21 08:19 sec-Butylbenzene 1.0 U 1.0 0.37 ug/L 12/04/21 08:19 tert-Butylbenzene 1.0 U 1.0 12/04/21 08:19 0.34 ug/L Tetrachloroethene 1.0 U 1.0 0.25 ug/L 12/04/21 08:19 Toluene 1.0 U 1.0 0.38 ug/L 12/04/21 08:19 trans-1,2-Dichloroethene 0.24 ug/L 1.0 U 1.0 12/04/21 08:19 Trichloroethene 1.0 U 1.0 0.31 ug/L 12/04/21 08:19 Vinyl chloride 1.0 U 1.0 0.17 ug/L 12/04/21 08:19 Xylenes, Total 2.0 U 2.0 0.65 ug/L 12/04/21 08:19

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	103		75 - 123		12/04/21 08:19	1	
4-Bromofluorobenzene	101		76 - 120		12/04/21 08:19	1	
Dibromofluoromethane (Surr)	105		77 - 124		12/04/21 08:19	1	
Toluene-d8 (Surr)	87		80 - 120		12/04/21 08:19	1	

Lab Sample ID: LCS 460-816929/3

Matrix: Water

Analysis Batch: 816929

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	22.4		ug/L		112	68 - 128	
1,1-Dichloroethane	20.0	20.0		ug/L		100	73 - 130	
1,1-Dichloroethene	20.0	21.3		ug/L		106	68 - 133	
1,2,4-Trimethylbenzene	20.0	17.5		ug/L		87	75 - 125	
1,2-Dichlorobenzene	20.0	19.2		ug/L		96	79 - 122	
1,2-Dichloroethane	20.0	20.9		ug/L		104	75 - 121	

Eurofins TestAmerica, Edison

Page 22 of 52

2

3

0

_

10

12

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-816929/3

Matrix: Water

Analysis Batch: 816929

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Re	ec Limits	
1,3,5-Trimethylbenzene	20.0	17.3		ug/L			5
1,3-Dichlorobenzene	20.0	19.1		ug/L	(96 80 - 12	1
1,4-Dichlorobenzene	20.0	18.8		ug/L	(94 80 - 11	8
1,4-Dioxane	400	374		ug/L	(93 70 - 14	2
2-Butanone (MEK)	100	103		ug/L	10	03 69 - 12	8
Acetone	100	93.2		ug/L	(93 61 - 13	4
Benzene	20.0	18.4		ug/L	(92 78 - 12	6
Carbon tetrachloride	20.0	22.2		ug/L	1	11 56 - 13	1
Chlorobenzene	20.0	19.2		ug/L	(96 80 - 11	9
Chloroform	20.0	21.2		ug/L	10	06 78 - 12	5
cis-1,2-Dichloroethene	20.0	20.9		ug/L	10	04 78 - 12	1
Ethylbenzene	20.0	19.0		ug/L	9	95 78 - 12	0
Methyl tert-butyl ether	20.0	19.8		ug/L	(99 65 - 13	1
Methylene Chloride	20.0	19.5		ug/L	(97 74 - 12	7
m-Xylene & p-Xylene	20.0	18.5		ug/L	9	93 78 - 12	3
n-Butylbenzene	20.0	18.7		ug/L	(94 69 - 13	5
N-Propylbenzene	20.0	16.9		ug/L	8	34 74 - 12	9
o-Xylene	20.0	18.5		ug/L	9	93 78 - 12	2
sec-Butylbenzene	20.0	17.7		ug/L		39 73 - 12	9
tert-Butylbenzene	20.0	17.8		ug/L	8	39 72 - 12	4
Tetrachloroethene	20.0	20.8		ug/L	10	04 70 - 12	7
Toluene	20.0	18.2		ug/L	(91 78 - 11	9
trans-1,2-Dichloroethene	20.0	21.0		ug/L	10	05 74 - 12	6
Trichloroethene	20.0	20.3		ug/L	10	01 71 - 12	1
Vinyl chloride	20.0	22.5		ug/L	1	13 61 - 14	4
Xylenes, Total	40.0	37.1		ug/L	(93 78 - 12	2

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		75 - 123
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	103		77 - 124
Toluene-d8 (Surr)	87		80 - 120

LCS LCS

Lab Sample ID: LCSD 460-816929/4

Matrix: Water

Analysis Batch: 816929

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	20.0	22.6		ug/L		113	68 - 128	1	30
1,1-Dichloroethane	20.0	21.5		ug/L		108	73 - 130	7	30
1,1-Dichloroethene	20.0	22.0		ug/L		110	68 - 133	3	30
1,2,4-Trimethylbenzene	20.0	17.7		ug/L		89	75 - 125	1	30
1,2-Dichlorobenzene	20.0	19.3		ug/L		96	79 - 122	0	30
1,2-Dichloroethane	20.0	21.2		ug/L		106	75 - 121	2	30
1,3,5-Trimethylbenzene	20.0	17.4		ug/L		87	75 - 125	1	30
1,3-Dichlorobenzene	20.0	19.4		ug/L		97	80 - 121	2	30
1,4-Dichlorobenzene	20.0	19.2		ug/L		96	80 - 118	2	30
1,4-Dioxane	400	397		ug/L		99	70 - 142	6	30

Eurofins TestAmerica, Edison

Project/Site: Adelaar Concord - Monticello, NY

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-816929/4

Matrix: Water

Analysis Batch: 816929

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Butanone (MEK)	100	107		ug/L		107	69 - 128	3	30
Acetone	100	96.1		ug/L		96	61 - 134	3	30
Benzene	20.0	18.4		ug/L		92	78 - 126	0	30
Carbon tetrachloride	20.0	22.6		ug/L		113	56 - 131	2	30
Chlorobenzene	20.0	19.4		ug/L		97	80 - 119	1	30
Chloroform	20.0	21.5		ug/L		108	78 - 125	1	30
cis-1,2-Dichloroethene	20.0	20.9		ug/L		104	78 - 121	0	30
Ethylbenzene	20.0	19.1		ug/L		95	78 - 120	0	30
Methyl tert-butyl ether	20.0	20.1		ug/L		101	65 - 131	1	30
Methylene Chloride	20.0	19.7		ug/L		99	74 - 127	1	30
m-Xylene & p-Xylene	20.0	18.5		ug/L		93	78 - 123	0	30
n-Butylbenzene	20.0	18.6		ug/L		93	69 - 135	1	30
N-Propylbenzene	20.0	17.1		ug/L		86	74 - 129	1	30
o-Xylene	20.0	18.8		ug/L		94	78 - 122	1	30
sec-Butylbenzene	20.0	17.8		ug/L		89	73 - 129	1	30
tert-Butylbenzene	20.0	18.1		ug/L		91	72 - 124	2	30
Tetrachloroethene	20.0	21.0		ug/L		105	70 - 127	1	30
Toluene	20.0	18.5		ug/L		93	78 - 119	2	30
trans-1,2-Dichloroethene	20.0	21.2		ug/L		106	74 - 126	1	30
Trichloroethene	20.0	20.3		ug/L		102	71 - 121	0	30
Vinyl chloride	20.0	22.6		ug/L		113	61 - 144	0	30
Xylenes, Total	40.0	37.3		ug/L		93	78 - 122	1	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		75 - 123
4-Bromofluorobenzene	102		76 - 120
Dibromofluoromethane (Surr)	103		77 - 124
Toluene-d8 (Surr)	87		80 - 120

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-816959/1-A

Matrix: Water

Analysis Batch: 817005

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 816959**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol		U	10	0.67	ug/L		12/04/21 09:29	12/04/21 17:18	1
3 & 4 Methylphenol	10	U	10	0.64	ug/L		12/04/21 09:29	12/04/21 17:18	1
Acenaphthene	10	U	10	1.1	ug/L		12/04/21 09:29	12/04/21 17:18	1
Acenaphthylene	10	U	10	0.82	ug/L		12/04/21 09:29	12/04/21 17:18	1
Anthracene	10	U	10	1.3	ug/L		12/04/21 09:29	12/04/21 17:18	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		12/04/21 09:29	12/04/21 17:18	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		12/04/21 09:29	12/04/21 17:18	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		12/04/21 09:29	12/04/21 17:18	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		12/04/21 09:29	12/04/21 17:18	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		12/04/21 09:29	12/04/21 17:18	1
Chrysene	2.0	U	2.0	0.91	ug/L		12/04/21 09:29	12/04/21 17:18	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		12/04/21 09:29	12/04/21 17:18	1
Dibenzofuran	10	U	10	1.1	ug/L		12/04/21 09:29	12/04/21 17:18	1

Eurofins TestAmerica, Edison

Page 24 of 52

Project/Site: Adelaar Concord - Monticello, NY

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 460-816959/1-A

Matrix: Water

Analysis Batch: 817005

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 816959

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	10	U	10	0.84	ug/L		12/04/21 09:29	12/04/21 17:18	1
Fluorene	10	U	10	0.91	ug/L		12/04/21 09:29	12/04/21 17:18	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		12/04/21 09:29	12/04/21 17:18	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		12/04/21 09:29	12/04/21 17:18	1
Naphthalene	2.0	U	2.0	0.54	ug/L		12/04/21 09:29	12/04/21 17:18	1
Pentachlorophenol	20	U	20	1.4	ug/L		12/04/21 09:29	12/04/21 17:18	1
Phenanthrene	10	U	10	1.3	ug/L		12/04/21 09:29	12/04/21 17:18	1
Phenol	10	U	10	0.29	ug/L		12/04/21 09:29	12/04/21 17:18	1
Pyrene	10	U	10	1.6	ug/L		12/04/21 09:29	12/04/21 17:18	1

MB MB

Surrogate	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	88	33 - 150	12/04/21 09:29	12/04/21 17:18	1
2-Fluorobiphenyl	73	42 - 127	12/04/21 09:29	12/04/21 17:18	1
2-Fluorophenol (Surr)	44	18 - 72	12/04/21 09:29	12/04/21 17:18	1
Nitrobenzene-d5 (Surr)	86	46 - 137	12/04/21 09:29	12/04/21 17:18	1
Phenol-d5 (Surr)	27	10 - 50	12/04/21 09:29	12/04/21 17:18	1
Terphenyl-d14 (Surr)	74	39 - 150	12/04/21 09:29	12/04/21 17:18	1

Lab Sample ID: LCS 460-816959/2-A

Matrix: Water

Analysis Batch: 817005

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 816959

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2-Methylphenol	80.0	50.8		ug/L		63	48 - 88
3 & 4 Methylphenol	80.0	40.2		ug/L		50	43 - 78
Acenaphthene	80.0	49.9		ug/L		62	60 - 110
Acenaphthylene	80.0	56.9		ug/L		71	64 - 109
Anthracene	80.0	63.2		ug/L		79	65 - 109
Benzo[a]anthracene	80.0	63.1		ug/L		79	62 - 106
Benzo[a]pyrene	80.0	71.5		ug/L		89	66 - 127
Benzo[b]fluoranthene	80.0	73.6		ug/L		92	66 - 125
Benzo[g,h,i]perylene	80.0	70.3		ug/L		88	49 - 149
Benzo[k]fluoranthene	80.0	71.7		ug/L		90	64 - 125
Chrysene	80.0	64.9		ug/L		81	63 - 108
Dibenz(a,h)anthracene	80.0	70.4		ug/L		88	55 - 150
Dibenzofuran	80.0	59.4		ug/L		74	66 - 109
Fluoranthene	80.0	71.0		ug/L		89	65 - 113
Fluorene	80.0	60.1		ug/L		75	65 - 111
Hexachlorobenzene	80.0	66.4		ug/L		83	61 - 117
Indeno[1,2,3-cd]pyrene	80.0	74.8		ug/L		93	54 - 150
Naphthalene	80.0	49.0		ug/L		61	58 - 105
Pentachlorophenol	160	118		ug/L		74	54 - 131
Phenanthrene	80.0	62.7		ug/L		78	65 - 108
Phenol	80.0	25.7		ug/L		32	20 - 50
Pyrene	80.0	56.8		ug/L		71	54 - 114

LCS LCS

%Recovery Qualifier Surrogate Limits 2,4,6-Tribromophenol (Surr) 94 33 - 150

Eurofins TestAmerica, Edison

Page 25 of 52

Client: AKRF Inc Job ID: 460-248245-1

Limits

Project/Site: Adelaar Concord - Monticello, NY

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-816959/2-A

Lab Sample ID: LCSD 460-816959/3-A

Matrix: Water

Analysis Batch: 817005

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 816959

LCS LCS Surrogate %Recovery Qualifier 2-Fluorobiphenyl 72

42 - 127 2-Fluorophenol (Surr) 40 18 - 72 Nitrobenzene-d5 (Surr) 82 46 - 137 Phenol-d5 (Surr) 27 10 - 50 77 39 - 150

Client Sample ID: Lab Control Sample Dup

63

58 - 105

Matrix: Water

Dibenz(a,h)anthracene

Hexachlorobenzene

Indeno[1,2,3-cd]pyrene

Dibenzofuran

Fluoranthene

Naphthalene

Fluorene

Terphenyl-d14 (Surr)

Analysis Batch: 817005

Prep Type: Total/NA

Prep Batch: 816959 %Rec. **RPD**

30

30

30

30

30

30

30

3

Spike LCSD LCSD Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec 2-Methylphenol 80.0 51.8 ug/L 65 48 - 88 2 30 3 & 4 Methylphenol 80.0 42.2 ug/L 53 43 - 78 5 30 80.0 49.1 61 30 Acenaphthene ug/L 60 - 110 2 80.0 56.2 70 64 - 109 30 Acenaphthylene ug/L Anthracene 80.0 63.0 ug/L 79 65 - 109 0 30 80.0 67.4 84 62 - 106 30 Benzo[a]anthracene ug/L 30 80.0 74.1 ug/L 93 66 - 127 Benzo[a]pyrene Benzo[b]fluoranthene 80.0 71.8 ug/L 90 66 - 125 2 30 Benzo[g,h,i]perylene 80.0 72.9 ug/L 91 49 - 149 30 Benzo[k]fluoranthene 80.0 74.1 93 64 - 125 30 ug/L 80.0 63.1 79 63 - 108 30 Chrysene ug/L 3

> 80.0 72.7 ug/L 91 55 - 150 80.0 59.8 75 66 - 109 ug/L 80.0 71.5 ug/L 89 65 - 113 80.0 60.5 ug/L 76 65 - 111 80.0 66.8 84 ug/L 61 - 11780.0 65.2 ug/L 81 54 - 150

> > 50.3

ug/L

Pentachlorophenol 160 113 ug/L 71 54 - 131 30 80.0 62.0 78 30 Phenanthrene ug/L 65 - 108Phenol 80.0 26.2 ug/L 33 20 - 50 30 80.0 58.8 74 54 - 114 30 Pyrene ug/L

80.0

LCSD LCSD %Recovery Qualifier Surrogate Limits 2,4,6-Tribromophenol (Surr) 94 33 - 150 2-Fluorobiphenyl 72 42 - 127 2-Fluorophenol (Surr) 42 18 - 72 Nitrobenzene-d5 (Surr) 82 46 - 137 Phenol-d5 (Surr) 28 10 - 50 Terphenyl-d14 (Surr) 80 39 - 150

12/15/2021

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 460-816778/1-A

Matrix: Water

Surrogate

DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Tetrachloro-m-xylene

Analysis Batch: 817175

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 816778

•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		12/03/21 10:26	12/06/21 01:11	1
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		12/03/21 10:26	12/06/21 01:11	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		12/03/21 10:26	12/06/21 01:11	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		12/03/21 10:26	12/06/21 01:11	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		12/03/21 10:26	12/06/21 01:11	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		12/03/21 10:26	12/06/21 01:11	1
Aldrin	0.020	U	0.020	0.0030	ug/L		12/03/21 10:26	12/06/21 01:11	1
Aldrin	0.020	U	0.020	0.0030	ug/L		12/03/21 10:26	12/06/21 01:11	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		12/03/21 10:26	12/06/21 01:11	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		12/03/21 10:26	12/06/21 01:11	1
beta-BHC	0.020	U	0.020	0.015	ug/L		12/03/21 10:26	12/06/21 01:11	1
beta-BHC	0.020	U	0.020	0.015	ug/L		12/03/21 10:26	12/06/21 01:11	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		12/03/21 10:26	12/06/21 01:11	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		12/03/21 10:26	12/06/21 01:11	1
cis-Chlordane	0.020	U	0.020	0.0020	ug/L		12/03/21 10:26	12/06/21 01:11	1
cis-Chlordane	0.020	U	0.020	0.0020	ug/L		12/03/21 10:26	12/06/21 01:11	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		12/03/21 10:26	12/06/21 01:11	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		12/03/21 10:26	12/06/21 01:11	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		12/03/21 10:26	12/06/21 01:11	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		12/03/21 10:26	12/06/21 01:11	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		12/03/21 10:26	12/06/21 01:11	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		12/03/21 10:26	12/06/21 01:11	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		12/03/21 10:26	12/06/21 01:11	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		12/03/21 10:26	12/06/21 01:11	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		12/03/21 10:26	12/06/21 01:11	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		12/03/21 10:26	12/06/21 01:11	1
Endrin	0.020	U	0.020	0.0040	ug/L		12/03/21 10:26	12/06/21 01:11	1
Endrin	0.020	U	0.020	0.0040	ug/L		12/03/21 10:26	12/06/21 01:11	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		12/03/21 10:26	12/06/21 01:11	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		12/03/21 10:26	12/06/21 01:11	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		12/03/21 10:26	12/06/21 01:11	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		12/03/21 10:26	12/06/21 01:11	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		12/03/21 10:26	12/06/21 01:11	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		12/03/21 10:26	12/06/21 01:11	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		12/03/21 10:26	12/06/21 01:11	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		12/03/21 10:26	12/06/21 01:11	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		12/03/21 10:26	12/06/21 01:11	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		12/03/21 10:26	12/06/21 01:11	1
Methoxychlor	0.020	U	0.020	0.0040	-		12/03/21 10:26	12/06/21 01:11	1
Methoxychlor	0.020	U	0.020	0.0040			12/03/21 10:26	12/06/21 01:11	1
Toxaphene	0.50		0.50		ug/L		12/03/21 10:26		1
Toxaphene	0.50	U	0.50		ug/L		12/03/21 10:26	12/06/21 01:11	1
	МВ	MB							

Eurofins TestAmerica, Edison

Analyzed

Prepared

12/03/21 10:26 12/06/21 01:11

12/03/21 10:26 12/06/21 01:11

12/03/21 10:26 12/06/21 01:11

12/03/21 10:26 12/06/21 01:11

Page 27 of 52

Limits

10 - 150

10 - 150

10 - 150

10 - 150

%Recovery Qualifier

84

77

84

81

2

3

4

6

8

10

12

4 4

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: LCS 460-816778/2-A

Matrix: Water

Analysis Batch: 817175

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA
Prep Batch: 816778
%Rec.
Limits

Analysis Daton. 017173	Spike	LCS	LCS			%Rec.
Analyte	Added			nit	D %Rec	Limits
4,4'-DDD	0.800	0.741		g/L	93	67 - 135
4,4'-DDD	0.800	0.642		g/L	80	67 - 135
4,4'-DDE	0.800	0.725		g/L	91	65 - 135
4,4'-DDE	0.800	0.671		g/L	84	65 - 135
4,4'-DDT	0.800	0.719		g/L	90	62 - 136
4,4'-DDT	0.800	0.643		g/L	80	62 - 136
Aldrin	0.800	0.712		g/L	89	53 - 142
Aldrin	0.800	0.657		g/L	82	53 - 142
alpha-BHC	0.800	0.707	u	g/L	88	65 - 134
alpha-BHC	0.800	0.696		g/L	87	65 - 134
beta-BHC	0.800	0.759	u	g/L	95	72 - 141
beta-BHC	0.800	0.719	u	g/L	90	72 - 141
cis-Chlordane	0.800	0.689	u	g/L	86	64 - 130
cis-Chlordane	0.800	0.640		g/L	80	64 - 130
delta-BHC	0.800	0.568	u	g/L	71	41 - 147
delta-BHC	0.800	0.554	u	g/L	69	41 - 147
Dieldrin	0.800	0.732	u	g/L	91	66 - 133
Dieldrin	0.800	0.642	u	g/L	80	66 - 133
Endosulfan I	0.800	0.692	u	g/L	86	64 - 132
Endosulfan I	0.800	0.643	u	g/L	80	64 - 132
Endosulfan II	0.800	0.721	u	g/L	90	67 - 134
Endosulfan II	0.800	0.651	u	g/L	81	67 - 134
Endosulfan sulfate	0.800	0.704	u	g/L	88	47 - 158
Endosulfan sulfate	0.800	0.622	u	g/L	78	47 - 158
Endrin	0.800	0.682	u	g/L	85	67 - 132
Endrin	0.800	0.621	u	g/L	78	67 - 132
Endrin aldehyde	0.800	0.728	u	g/L	91	54 - 132
Endrin aldehyde	0.800	0.632	u	g/L	79	54 - 132
Endrin ketone	0.800	0.762	u	g/L	95	68 - 132
Endrin ketone	0.800	0.623	u	g/L	78	68 - 132
gamma-BHC (Lindane)	0.800	0.725	u	g/L	91	65 - 134
gamma-BHC (Lindane)	0.800	0.697	u	g/L	87	65 - 134
Heptachlor	0.800	0.667	u	g/L	83	63 - 128
Heptachlor	0.800	0.650	u	g/L	81	63 - 128
Heptachlor epoxide	0.800	0.704	u	g/L	88	66 - 128
Heptachlor epoxide	0.800	0.653	u	g/L	82	66 - 128
Methoxychlor	0.800	0.713	u	g/L	89	42 - 151
Methoxychlor	0.800	0.601	u	g/L	75	42 - 151
Methoxyonioi	0.000	0.001	u	g/L	73	72 - 101

•	CS	LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	95		10 - 150
DCB Decachlorobiphenyl	89		10 - 150
Tetrachloro-m-xylene	92		10 - 150
Tetrachloro-m-xylene	91		10 - 150

Eurofins TestAmerica, Edison

Page 28 of 52

2

4

4

6

8

10

12

4

4 5

1,

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 460-816778/3-A

Matrix: Water

Analysis Batch: 817175

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 816778

Analyte	Spike Added		LCSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
4,4'-DDD	0.800	0.760		ug/L	— <u>-</u>	95	67 - 135	3	30
4,4'-DDD	0.800	0.651		ug/L		81	67 - 135	1	30
4,4'-DDE	0.800	0.758		ug/L		95	65 - 135	5	30
4,4'-DDE	0.800	0.681		ug/L		85	65 - 135	2	30
4,4'-DDT	0.800	0.736		ug/L		92	62 - 136	2	30
4,4'-DDT	0.800	0.660		ug/L		82	62 - 136	2	30
Aldrin	0.800	0.726		ug/L		91	53 - 142	2	30
Aldrin	0.800	0.664		ug/L		83	53 - 142	1	30
alpha-BHC	0.800	0.723		ug/L		90	65 - 134	2	30
alpha-BHC	0.800	0.703		ug/L		88	65 - 134	1	30
beta-BHC	0.800	0.780		ug/L		98	72 - 141	3	30
beta-BHC	0.800	0.727		ug/L		91	72 - 141	1	30
cis-Chlordane	0.800	0.717		ug/L		90	64 - 130	4	30
cis-Chlordane	0.800	0.647		ug/L		81	64 - 130	1	30
delta-BHC	0.800	0.587		ug/L		73	41 - 147	3	30
delta-BHC	0.800	0.563		ug/L		70	41 - 147	2	30
Dieldrin	0.800	0.754		ug/L		94	66 - 133	3	30
Dieldrin	0.800	0.650		ug/L		81	66 - 133	1	30
Endosulfan I	0.800	0.720		ug/L		90	64 - 132	4	30
Endosulfan I	0.800	0.648		ug/L		81	64 - 132	1	30
Endosulfan II	0.800	0.741		ug/L		93	67 - 134	3	30
Endosulfan II	0.800	0.662		ug/L		83	67 - 134	2	30
Endosulfan sulfate	0.800	0.722		ug/L		90	47 - 158	3	30
Endosulfan sulfate	0.800	0.633		ug/L		79	47 - 158	2	30
Endrin	0.800	0.698		ug/L		87	67 - 132	2	30
Endrin	0.800	0.630		ug/L		79	67 - 132	1	30
Endrin aldehyde	0.800	0.745		ug/L		93	54 - 132	2	30
Endrin aldehyde	0.800	0.641		ug/L		80	54 - 132	1	30
Endrin ketone	0.800	0.768		ug/L		96	68 - 132	1	30
Endrin ketone	0.800	0.635		ug/L		79	68 - 132	2	30
gamma-BHC (Lindane)	0.800	0.745		ug/L		93	65 - 134	3	30
gamma-BHC (Lindane)	0.800	0.703		ug/L		88	65 - 134	1	30
Heptachlor	0.800	0.677		ug/L		85	63 - 128	1	30
Heptachlor	0.800	0.656		ug/L		82	63 - 128	1	30
Heptachlor epoxide	0.800	0.716		ug/L		90	66 - 128	2	30
Heptachlor epoxide	0.800	0.657		ug/L		82	66 - 128	1	30
Methoxychlor	0.800	0.722		ug/L		90	42 - 151	1	30
Methoxychlor	0.800	0.614		ug/L		77	42 - 151	2	30

Surrogate	%Recovery	Qualitier	Limits
DCB Decachlorobiphenyl	94		10 - 150
DCB Decachlorobiphenyl	92		10 - 150
Tetrachloro-m-xylene	93		10 - 150
Tetrachloro-m-xylene	90		10 - 150

Project/Site: Adelaar Concord - Monticello, NY

Method: 8082A - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 410-202710/1-A

Matrix: Water

Analysis Batch: 202946

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 202710

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.010	U	0.010	0.0080	ug/L		12/08/21 03:45	12/08/21 10:23	1
Aroclor 1221	0.010	U	0.010	0.0080	ug/L		12/08/21 03:45	12/08/21 10:23	1
Aroclor 1232	0.010	U	0.010	0.0080	ug/L		12/08/21 03:45	12/08/21 10:23	1
Aroclor 1242	0.010	U	0.010	0.0080	ug/L		12/08/21 03:45	12/08/21 10:23	1
Aroclor 1248	0.010	U	0.010	0.0080	ug/L		12/08/21 03:45	12/08/21 10:23	1
Aroclor 1254	0.010	U	0.010	0.0050	ug/L		12/08/21 03:45	12/08/21 10:23	1
Aroclor 1260	0.010	U	0.010	0.0050	ug/L		12/08/21 03:45	12/08/21 10:23	1
Aroclor-1262	0.010	U	0.010	0.0050	ug/L		12/08/21 03:45	12/08/21 10:23	1
Aroclor 1268	0.010	U	0.010	0.0050	ug/L		12/08/21 03:45	12/08/21 10:23	1
Polychlorinated biphenyls, Total	0.010	U	0.010	0.0080	ug/L		12/08/21 03:45	12/08/21 10:23	1

MB MB

MR MR

Surrogate	%Recovery Qualif	ier Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	89	46 - 161	12/08/21 03:45	12/08/21 10:23	1
DCB Decachlorobiphenyl (Surr)	91	46 - 161	12/08/21 03:45	12/08/21 10:23	1
Tetrachloro-m-xylene	71	41 - 146	12/08/21 03:45	12/08/21 10:23	1
Tetrachloro-m-xylene	68	41 - 146	12/08/21 03:45	12/08/21 10:23	1

Lab Sample ID: LCS 410-202710/2-A

Matrix: Water

Analysis Batch: 202946

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 202710

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Un	it D	%Rec	Limits	
Aroclor 1016	0.502	0.371	ug	/L	74	60 - 117	
Aroclor 1260	0.504	0.429	ug	/L	85	81 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	95		46 - 161
DCB Decachlorobiphenyl (Surr)	94		46 - 161
Tetrachloro-m-xylene	70		41 - 146
Tetrachloro-m-xylene	66		41 - 146

Lab Sample ID: LCSD 410-202710/3-A

Matrix: Water

Analysis Batch: 202946

Client Sam	ple ID:	Lab Contro	ol Sample	e Dup
-------------------	---------	------------	-----------	-------

Prep Type: Total/NA Prep Batch: 202710

LCSD LCSD %Rec. **RPD** Spike RPD Limit Added Limits Analyte Result Qualifier Unit D %Rec 0.502 Aroclor 1016 0.363 60 - 117 30 ug/L 72 Aroclor 1260 0.504 0.426 ug/L 81 - 130

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	95		46 - 161
DCB Decachlorobiphenyl (Surr)	99		46 - 161
Tetrachloro-m-xylene	68		41 - 146
Tetrachloro-m-xylene	66		41 - 146

Eurofins TestAmerica, Edison

Project/Site: Adelaar Concord - Monticello, NY

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 410-204306/1-A

Analysis Batch: 204832

Matrix: Water

Client Sample ID: Method Blank **Prep Type: Total Recoverable** Prep Batch: 204306

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte Arsenic 2.0 U 2.0 0.68 ug/L 12/12/21 09:43 12/13/21 17:17 Barium 2.0 U 2.0 0.75 ug/L 12/12/21 09:43 12/13/21 17:17 Beryllium 0.50 U 0.50 0.12 ug/L 12/12/21 09:43 12/13/21 17:17 0.15 ug/L Cadmium 0.50 U 0.50 12/12/21 09:43 12/13/21 17:17 Chromium 20 U 2.0 0.33 ug/L 12/12/21 09:43 12/13/21 17:17 1.0 U 0.36 ug/L 12/12/21 09:43 12/13/21 17:17 Copper 1.0 Lead 0.50 U 0.50 0.071 ug/L 12/12/21 09:43 12/13/21 17:17 Manganese 2.0 U 2.0 0.63 ug/L 12/12/21 09:43 12/13/21 17:17 Nickel 10 U 1.0 0.60 ug/L 12/12/21 09:43 12/13/21 17:17 Selenium 1.0 U 1.0 0.28 ug/L 12/12/21 09:43 12/13/21 17:17 12/12/21 09:43 12/13/21 17:17 Silver 0.50 U 0.50 0.17 ug/L Zinc 10.0 U 10.0 6.2 ug/L 12/12/21 09:43 12/13/21 17:17

Lab Sample ID: LCS 410-204306/2-A

Matrix: Water

Analysis Batch: 204832

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable** Prep Batch: 204306

Spike LCS LCS %Rec. Added Limits **Analyte** Result Qualifier Unit D %Rec Arsenic 500 438.8 ug/L 88 85 - 120 Barium 500 515.5 ug/L 80 - 120 103 Beryllium 50.0 48.40 ug/L 97 90 - 112 Cadmium 50.0 52.43 86 - 113 ug/L 105 Copper 500 441.8 ug/L 88 80 - 120 Lead 50.0 49.00 ug/L 98 90 - 115 500 449.4 90 89 - 120 Manganese ug/L 100 98.55 Selenium ug/L 99 80 - 120 50.0 50.55 Silver ug/L 101 88 - 113 Zinc 500 449.6 ug/L 90 90 - 115

Lab Sample ID: LCS 410-204306/2-A

Matrix: Water

Analysis Batch: 205243

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 204306

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Chromium	500	467.9	ug/L		94	90 - 115	
Nickel	500	481.8	ug/L		96	90 - 114	

Lab Sample ID: 410-65777-H-3-A MS

Matrix: Water

Analysis Batch: 204832

Client Sample ID: Matrix Spike Prep Type: Total Recoverable Prep Batch: 204306

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	3.0		500	444.2		ug/L		88	75 - 125	
Barium	113		500	624.2		ug/L		102	75 - 125	
Beryllium	0.21	J	50.0	48.97		ug/L		98	75 - 125	
Cadmium	0.41	J	50.0	52.83		ug/L		105	75 - 125	
Chromium	4.5	N	500	446.1		ug/L		88	75 - 125	
Copper	3.1		500	435.2		ug/L		86	75 - 125	
Lead	3.5		50.0	53.38		ug/L		100	75 - 125	

Eurofins TestAmerica, Edison

Page 31 of 52

Project/Site: Adelaar Concord - Monticello, NY

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 410-65777-H-3-A MS

Matrix: Water

Analysis Batch: 204832

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable** Prep Batch: 204306

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Manganese	172		500	613.3		ug/L		88	75 - 125	
Selenium	0.91	J	100	103.6		ug/L		103	75 - 125	
Silver	0.50	U	50.0	49.78		ug/L		100	75 - 125	
Zinc	64.9		500	510.9		ug/L		89	75 - 125	

Lab Sample ID: 410-65777-H-3-A MS

Matrix: Water

Analysis Ratch: 205243

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable**

Prep Batch: 204306

Analysis Batch: 205245	_		_						Prep Batch: 204300
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	2.9		500	488.7		ug/L		97	75 - 125
Barium	113		500	634.4		ug/L		104	75 - 125
Beryllium	0.18	J	50.0	50.50		ug/L		101	75 - 125
Cadmium	0.47	J	50.0	51.78		ug/L		103	75 - 125
Chromium	4.6		500	477.8		ug/L		95	75 - 125
Copper	3.4		500	463.2		ug/L		92	75 - 125
Lead	3.6		50.0	54.28		ug/L		101	75 - 125
Nickel	4.8		500	483.4		ug/L		96	75 - 125
Selenium	0.93	J	100	102.9		ug/L		102	75 - 125
Silver	0.50	U	50.0	50.01		ug/L		100	75 - 125
Zinc	69.6		500	563.9		ug/L		99	75 - 125

Lab Sample ID: 410-65777-H-3-A MS ^5

Matrix: Water

Analysis Batch: 204832

Client Sample ID: Matrix Spike Prep Type: Total Recoverable Prep Batch: 204306

Analysis Daton. 204032									r rep Daten. 204000
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	10.0	U	500	445.6		ug/L		89	75 - 125
Barium	110		500	620.3		ug/L		102	75 - 125
Cadmium	2.5	U	50.0	50.52		ug/L		101	75 - 125
Chromium	4.2	JN	500	445.8		ug/L		88	75 - 125
Copper	3.1	J	500	448.1		ug/L		89	75 - 125
Lead	3.4		50.0	52.89		ug/L		99	75 - 125
Manganese	163		500	617.8		ug/L		91	75 - 125
Selenium	5.0	U	100	99.54		ug/L		100	75 - 125
Silver	2.5	U	50.0	47.84		ug/L		96	75 - 125
Zinc	58.6		500	513.1		ug/L		91	75 ₋ 125

Lab Sample ID: 410-65777-I-3-A MSD

Matrix: Water

Analysis Batch: 204832

Client Sample ID: Matrix Spike Duplicate Prep Type: Total Recoverable Prep Batch: 204306

	RPD
RPD	Limit
	20
1	20
0	20
2	20
0	20
0	20
	1 1 0 2 0

Eurofins TestAmerica, Edison

Page 32 of 52

Project/Site: Adelaar Concord - Monticello, NY

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 410-65777-I-3-A MSD

Matrix: Water

Analysis Batch: 204832

Client Sample ID: Matrix Spike Duplicate Prep Type: Total Recoverable

Prep Batch: 204306

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	3.5		50.0	52.71		ug/L		98	75 - 125	1	20
Manganese	172		500	609.8		ug/L		88	75 - 125	1	20
Selenium	0.91	J	100	100.2		ug/L		99	75 - 125	3	20
Silver	0.50	U	50.0	50.13		ug/L		100	75 - 125	1	20
Zinc	64.9		500	509.9		ug/L		89	75 - 125	0	20

Lab Sample ID: 410-65777-I-3-A MSD

Matrix: Water

Analysis Batch: 205243

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total Recoverable

Prep Batch: 204306

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	2.9		500	483.7		ug/L		96	75 - 125	1	20
Barium	113		500	624.7		ug/L		102	75 - 125	2	20
Beryllium	0.18	J	50.0	49.84		ug/L		99	75 - 125	1	20
Cadmium	0.47	J	50.0	51.62		ug/L		102	75 - 125	0	20
Chromium	4.6		500	478.9		ug/L		95	75 - 125	0	20
Copper	3.4		500	458.6		ug/L		91	75 - 125	1	20
Lead	3.6		50.0	53.46		ug/L		100	75 - 125	2	20
Nickel	4.8		500	480.8		ug/L		95	75 - 125	1	20
Selenium	0.93	J	100	101.2		ug/L		100	75 - 125	2	20
Silver	0.50	U	50.0	49.81		ug/L		100	75 - 125	0	20
Zinc	69.6		500	561.2		ug/L		98	75 - 125	0	20

Lab Sample ID: 410-65777-I-3-A MSD ^5

Matrix: Water

Analysis Batch: 204832

Client Sample ID: Matrix Spike Duplicate Prep Type: Total Recoverable

Prep Batch: 204306

Spike	MSD	MCD						
		MOD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
500	384.8		ug/L		77	75 - 125	15	20
500	567.4		ug/L		91	75 - 125	9	20
50.0	45.24		ug/L		91	75 - 125	11	20
500	395.0		ug/L		78	75 - 125	12	20
500	394.6		ug/L		78	75 - 125	13	20
50.0	46.47		ug/L		86	75 - 125	13	20
500	551.8		ug/L		78	75 - 125	11	20
100	90.59		ug/L		91	75 - 125	9	20
50.0	44.04		ug/L		88	75 - 125	8	20
500	444.5		ug/L		77	75 - 125	14	20
	500 50.0 500 500 50.0 500 100 50.0	500 384.8 500 567.4 50.0 45.24 500 395.0 500 394.6 50.0 46.47 500 551.8 100 90.59 50.0 44.04	500 384.8 500 567.4 50.0 45.24 500 395.0 500 394.6 50.0 46.47 500 551.8 100 90.59 50.0 44.04	500 384.8 ug/L 500 567.4 ug/L 50.0 45.24 ug/L 500 395.0 ug/L 500 394.6 ug/L 50.0 46.47 ug/L 500 551.8 ug/L 100 90.59 ug/L 50.0 44.04 ug/L	500 384.8 ug/L 500 567.4 ug/L 50.0 45.24 ug/L 500 395.0 ug/L 500 394.6 ug/L 50.0 46.47 ug/L 500 551.8 ug/L 100 90.59 ug/L 50.0 44.04 ug/L	500 384.8 ug/L 77 500 567.4 ug/L 91 50.0 45.24 ug/L 91 500 395.0 ug/L 78 500 394.6 ug/L 78 50.0 46.47 ug/L 86 500 551.8 ug/L 78 100 90.59 ug/L 91 50.0 44.04 ug/L 88	500 384.8 ug/L 77 75 - 125 500 567.4 ug/L 91 75 - 125 50.0 45.24 ug/L 91 75 - 125 500 395.0 ug/L 78 75 - 125 500 394.6 ug/L 78 75 - 125 50.0 46.47 ug/L 86 75 - 125 500 551.8 ug/L 78 75 - 125 100 90.59 ug/L 91 75 - 125 50.0 44.04 ug/L 88 75 - 125	500 384.8 ug/L 77 75 - 125 15 500 567.4 ug/L 91 75 - 125 9 50.0 45.24 ug/L 91 75 - 125 11 500 395.0 ug/L 78 75 - 125 12 500 394.6 ug/L 78 75 - 125 13 50.0 46.47 ug/L 86 75 - 125 13 500 551.8 ug/L 78 75 - 125 11 100 90.59 ug/L 91 75 - 125 9 50.0 44.04 ug/L 88 75 - 125 8

Lab Sample ID: 410-65777-J-3-A DU

Matrix: Water

Analysis Batch: 204832

Client Sample ID: Duplicate Prep Type: Total Recoverable

Prep Batch: 204306

						i rep Dateii. Ze	J-1000
Sample	Sample	DU	DU				RPD
Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
3.0		2.82		ug/L			20
113		117.3		ug/L		4	20
0.21	J	0.205	J	ug/L		0	20
0.41	J	0.412	J	ug/L		0.7	20
3.1		3.23		ug/L		4	20
	Result 3.0 113 0.21 0.41	113 0.21 J 0.41 J	Result Qualifier Result 3.0 2.82 113 117.3 0.21 J 0.205 0.41 J 0.412	Result Qualifier Result Qualifier 3.0 2.82 113 117.3 0.21 J 0.205 J 0.41 J 0.412 J	Result Qualifier Result Qualifier Unit 3.0 2.82 ug/L 113 117.3 ug/L 0.21 J 0.205 J ug/L 0.41 J 0.412 J ug/L	Result Qualifier Result Qualifier Unit D 3.0 2.82 ug/L 113 117.3 ug/L 0.21 J 0.205 J ug/L 0.41 J 0.412 J ug/L	Sample Result Sample Qualifier DU DU Properation of the properation of t

Eurofins TestAmerica, Edison

Page 33 of 52

Project/Site: Adelaar Concord - Monticello, NY

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 410-65777-J-3-A DU

Matrix: Water

Analysis Batch: 204832

Client Sample ID: Duplicate Prep Type: Total Recoverable

Prep Batch: 204306

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Lead	3.5		3.51		ug/L		 0.5	20
Manganese	172		170.8		ug/L		0.7	20
Selenium	0.91	J	0.856	J	ug/L		7	20
Silver	0.50	U	0.50	U	ug/L		NC	20
Zinc	64.9		69.23		ug/L		6	20

Lab Sample ID: 410-65777-J-3-A DU

Matrix: Water

Analysis Batch: 205243

Client Sample ID: Duplicate Prep Type: Total Recoverable

Prep Batch: 204306

	Sample	Sample	DU	DU			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	2.9		2.97		ug/L		1	20
Barium	113		115.1		ug/L		2	20
Beryllium	0.18	J	0.209	J	ug/L		15	20
Cadmium	0.47	J	0.423	J	ug/L		11	20
Chromium	4.6		4.73		ug/L		2	20
Copper	3.4		3.34		ug/L		1	20
Lead	3.6		3.62		ug/L		1	20
Nickel	4.8		5.10		ug/L		5	20
Selenium	0.93	J	0.952	J	ug/L		3	20
Silver	0.50	U	0.50	U	ug/L		NC	20
Zinc	69.6		69.22		ug/L		0.6	20

Lab Sample ID: 410-65777-J-3-A DU ^5

Matrix: Water

Analysis Batch: 204832

Client Sample ID: Duplicate Prep Type: Total Recoverable

Prep Batch: 204306

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	10.0	<u>U</u>	10.0	U	ug/L		NC	20
Barium	110		126.1		ug/L		13	20
Beryllium	2.5	U ^	2.5	U ^	ug/L		NC	20
Cadmium	2.5	U	2.5	U	ug/L		NC	20
Copper	3.1	J	4.01	J	ug/L		25	20
Lead	3.4		3.49		ug/L		3	20
Manganese	163		178.2		ug/L		9	20
Selenium	5.0	U	5.0	U	ug/L		NC	20
Silver	2.5	U	2.5	U	ug/L		NC	20
Zinc	58.6		62.29		ug/L		6	20

Lab Sample ID: MB 410-204310/1-A

Matrix: Water

Analysis Batch: 204841

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 204310

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.0	U	2.0	0.68	ug/L		12/12/21 10:08	12/13/21 16:04	1
Barium	2.0	U	2.0	0.75	ug/L		12/12/21 10:08	12/13/21 16:04	1
Beryllium	0.50	U	0.50	0.12	ug/L		12/12/21 10:08	12/13/21 16:04	1
Cadmium	0.50	U	0.50	0.15	ug/L		12/12/21 10:08	12/13/21 16:04	1
Chromium	2.0	U	2.0	0.33	ug/L		12/12/21 10:08	12/13/21 16:04	1

Eurofins TestAmerica, Edison

Page 34 of 52

Project/Site: Adelaar Concord - Monticello, NY

Method: 6020B - Metals (ICP/MS) (Continued)

MB MB

Lab Sample ID: MB 410-204310/1-A

Matrix: Water

Analysis Batch: 204841

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 204310**

I and the second									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	1.0	U	1.0	0.36	ug/L		12/12/21 10:08	12/13/21 16:04	1
Lead	0.50	U	0.50	0.071	ug/L		12/12/21 10:08	12/13/21 16:04	1
Manganese	2.0	U	2.0	0.63	ug/L		12/12/21 10:08	12/13/21 16:04	1
Nickel	1.0	U	1.0	0.60	ug/L		12/12/21 10:08	12/13/21 16:04	1
Selenium	1.0	U	1.0	0.28	ug/L		12/12/21 10:08	12/13/21 16:04	1
Silver	0.50	U	0.50	0.17	ug/L		12/12/21 10:08	12/13/21 16:04	1
Zinc	10.0	U	10.0	6.2	ug/L		12/12/21 10:08	12/13/21 16:04	1

Lab Sample ID: LCS 410-204310/2-A

Matrix: Water

Analysis Batch: 204841

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 204310

7 maryolo Batom 20-10-11							i iop Batoin zo	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	500	450.7		ug/L		90	85 - 120	
Barium	500	520.4		ug/L		104	80 - 120	
Beryllium	50.0	50.15		ug/L		100	90 - 112	
Cadmium	50.0	51.50		ug/L		103	86 - 113	
Chromium	500	512.8		ug/L		102	90 - 115	
Copper	500	465.1		ug/L		93	80 - 120	
Lead	50.0	51.37		ug/L		103	90 - 115	
Manganese	500	526.9		ug/L		105	89 - 120	
Nickel	500	471.0		ug/L		94	90 - 114	
Selenium	100	98.33		ug/L		98	80 - 120	
Silver	50.0	50.47		ug/L		101	88 - 113	
Zinc	500	462.5		ug/L		92	90 - 115	
ZINC -	500	402.5		ug/L		92	90-115	

Lab Sample ID: 460-248245-2 MS

Matrix: Water

Analysis Batch: 204841

Client Sample ID: OU3-MW2 20211201 **Prep Type: Total Recoverable**

Prep Batch: 204310

Alialysis Balcii. 20404 i									Prep Batch. 2043 10
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	1.8	J	500	457.0		ug/L		91	75 - 125
Barium	849		500	1343		ug/L		99	75 - 125
Beryllium	0.28	J	50.0	48.95		ug/L		97	75 - 125
Cadmium	0.86		50.0	50.20		ug/L		99	75 - 125
Chromium	4.5		500	479.7		ug/L		95	75 - 125
Copper	7.5		500	455.9		ug/L		90	75 - 125
Lead	4.1		50.0	53.25		ug/L		98	75 - 125
Nickel	14.0		500	466.8		ug/L		91	75 - 125
Selenium	1.0	U	100	98.20		ug/L		98	75 - 125
Silver	0.50	U	50.0	47.90		ug/L		96	75 - 125
Zinc	18.8		500	472.7		ug/L		91	75 ₋ 125

Lab Sample ID: 460-248245-2 MS

Matrix: Water

Analysis Batch: 204841

Client Sample ID: OU3-MW2_20211201 **Prep Type: Total Recoverable** Prep Batch: 204310

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Manganese	32400		500	33510	4	ug/L		221	75 - 125

Eurofins TestAmerica, Edison

Page 35 of 52

Matrix: Water

Project/Site: Adelaar Concord - Monticello, NY

Lab Sample ID: 460-248245-2 MSD

Method: 6020B - Metals (ICP/MS) (Continued)

Client Sample ID: OU3-MW2_20211201

Prep Type: Total Recoverable

Prep Batch: 204310

Analysis Batch: 204841									Prep Ba	atch: 20	04310
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	1.8	J	500	460.8		ug/L		92	75 - 125	1	20
Barium	849		500	1346		ug/L		100	75 - 125	0	20
Beryllium	0.28	J	50.0	49.68		ug/L		99	75 - 125	1	20
Cadmium	0.86		50.0	52.01		ug/L		102	75 - 125	4	20
Chromium	4.5		500	480.0		ug/L		95	75 - 125	0	20
Copper	7.5		500	455.0		ug/L		89	75 - 125	0	20
Lead	4.1		50.0	53.91		ug/L		100	75 - 125	1	20
Nickel	14.0		500	467.1		ug/L		91	75 - 125	0	20
Selenium	1.0	U	100	98.19		ug/L		98	75 - 125	0	20
Silver	0.50	U	50.0	48.47		ug/L		97	75 - 125	1	20
Zinc	18.8		500	477.0		ug/L		92	75 - 125	1	20

Client Sample ID: OU3-MW2_20211201

Prep Type: Total Recoverable

Prep Batch: 204310

Analysis Batch: 204841 Sample Sample Spike MSD MSD %Rec. **RPD** Analyte **Result Qualifier** Added Result Qualifier Unit %Rec Limits RPD Limit Manganese 32400 500 31970 4 75 - 125 ug/L

Lab Sample ID: 460-248245-2 DU

Lab Sample ID: 460-248245-2 MSD

Matrix: Water

Matrix: Water

Analysis Batch: 204841

Analysis Batch: 204841

Client Sample ID: OU3-MW2_20211201 **Prep Type: Total Recoverable**

Prep Batch: 204310

Alialysis Datell. 204041							i rep Baten. 20	U-10 10
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	1.8	J	1.95	J	ug/L		6	20
Barium	849		864.5		ug/L		2	20
Beryllium	0.28	J	0.275	J	ug/L		3	20
Cadmium	0.86		0.814		ug/L		6	20
Chromium	4.5		4.07		ug/L		10	20
Copper	7.5		7.60		ug/L		2	20
Lead	4.1		4.12		ug/L		0.9	20
Nickel	14.0		14.36		ug/L		3	20
Selenium	1.0	U	1.0	U	ug/L		NC	20
Silver	0.50	U	0.50	U	ug/L		NC	20
Zinc	18.8		19.06		ug/L		1	20

Lab Sample ID: 460-248245-2 DU Client Sample ID: OU3-MW2_20211201 **Matrix: Water Prep Type: Total Recoverable**

Prep Batch: 204310

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Manganese	32400		33050		ug/L			2	20

Eurofins TestAmerica, Edison

12/15/2021

Project/Site: Adelaar Concord - Monticello, NY

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 410-202182/1-A

Matrix: Water

Analysis Batch: 202553

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 0.20 <u>12/07/21 05:38</u> <u>12/07/21 15:28</u> Mercury 0.20 U 0.079 ug/L

Lab Sample ID: LCS 410-202182/2-A

Matrix: Water

Analysis Batch: 202553

Analyte Mercury

Spike

Added 1.00

Result Qualifier 1 01

LCS LCS

MS MS

MSD MSD

DU DU

0.20 U

RL

0.20

Result Qualifier

MDL Unit

0.079 ug/L

LCS LCS

0.990

Result Qualifier

0.990

Result Qualifier

Unit ug/L D %Rec 101

Client Sample ID: OU3-MW2_20211201

Client Sample ID: Lab Control Sample

Limits 80 - 118

%Rec.

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 202182

Prep Type: Total/NA

Prep Batch: 202182

Prep Type: Total/NA

Prep Batch: 202182

Prep Type: Total/NA

Prep Batch: 202182

Prep Type: Total/NA

Prep Batch: 202182

Prep Type: Total/NA

Prep Batch: 202184

Prep Type: Total/NA

Prep Batch: 202184

Prep Type: Total/NA

Prep Batch: 202184

Analyzed

RPD

NC

RPD

Lab Sample ID: 460-248245-2 MS

Matrix: Water

Analysis Batch: 202553

Analyte

Sample Sample

Spike Result Qualifier 0.20 U

Sample Sample

Sample Sample

0.20 U

Result Qualifier

MB MB Result Qualifier

0.20 U

0.20 U

Result Qualifier

Added 1.00

Spike

Added

1 00

0.991

Result Qualifier Unit ug/L

Unit

ug/L

Unit

ug/L

%Rec

%Rec

Prepared

D %Rec

99

Limits

Client Sample ID: OU3-MW2_20211201

Client Sample ID: OU3-MW2_20211201

80 - 120

%Rec.

Limits

80 - 120

Client Sample ID: Method Blank

12/07/21 05:49 12/08/21 12:21

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 118

%Rec.

Client Sample ID: Matrix Spike

%Rec.

Lab Sample ID: 460-248245-2 MSD

Matrix: Water

Mercury

Analysis Batch: 202553

Analyte Mercury

Lab Sample ID: 460-248245-2 DU

Matrix: Water Analysis Batch: 202553

Analyte Mercury

Lab Sample ID: MB 410-202184/1-A **Matrix: Water**

Analysis Batch: 202949

Analyte Mercury

Lab Sample ID: LCS 410-202184/2-A **Matrix: Water**

Analysis Batch: 202949

Lab Sample ID: 410-65616-O-2-B MS **Matrix: Water**

Analyte

Mercury

Analysis Batch: 202949

Analyte

Sample Sample Mercury

Result Qualifier 0.20 U

Spike Added 1.00

Spike

Added

1 00

Result Qualifier 0.946

MS MS

Unit ug/L

Unit

ug/L

%Rec

Limits 95 80 - 120

Eurofins TestAmerica, Edison

12/15/2021

RPD

Limit

RPD

Limit

Dil Fac

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Method: 7470A - Mercury (CVAA)

Lab Sample ID: 410-65616-O-2-C MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water** Prep Type: Total/NA Analysis Batch: 202949 Prep Batch: 202184 MSD MSD RPD Sample Sample Spike %Rec.

Result Qualifier Added RPD Limit Analyte Result Qualifier Unit D %Rec Limits 0.20 U 1.00 80 - 120 Mercury 0.887 ug/L 89 6 20

Lab Sample ID: 410-65616-C-2-A DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 202949

DU DU Sample Sample **RPD Analyte Result Qualifier** Result Qualifier Unit D RPD Limit 0.20 U 0.20 U NC 20 Mercury ug/L

Prep Batch: 202184

QC Association Summary

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

GC/MS VOA

Analysis Batch: 816929

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-1	OU2-MW1_20211201	Total/NA	Water	8260D	
460-248245-3	FB_20211201	Total/NA	Water	8260D	
460-248245-4	OUX-MWX_20211201	Total/NA	Water	8260D	
460-248245-5	TB_20211201	Total/NA	Water	8260D	
MB 460-816929/7	Method Blank	Total/NA	Water	8260D	
LCS 460-816929/3	Lab Control Sample	Total/NA	Water	8260D	
LCSD 460-816929/4	Lab Control Sample Dup	Total/NA	Water	8260D	

GC/MS Semi VOA

Prep Batch: 816959

Lab Sample ID 460-248245-1	Client Sample ID OU2-MW1 20211201	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
460-248245-3	FB_20211201	Total/NA	Water	3510C	
460-248245-4	OUX-MWX_20211201	Total/NA	Water	3510C	
MB 460-816959/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-816959/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-816959/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 817005

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-1	OU2-MW1_20211201	Total/NA	Water	8270E	816959
460-248245-3	FB_20211201	Total/NA	Water	8270E	816959
460-248245-4	OUX-MWX_20211201	Total/NA	Water	8270E	816959
MB 460-816959/1-A	Method Blank	Total/NA	Water	8270E	816959
LCS 460-816959/2-A	Lab Control Sample	Total/NA	Water	8270E	816959
LCSD 460-816959/3-A	Lab Control Sample Dup	Total/NA	Water	8270E	816959

GC Semi VOA

Prep Batch: 202710

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-1	OU2-MW1_20211201	Total/NA	Water	3510C	
460-248245-3	FB_20211201	Total/NA	Water	3510C	
460-248245-4	OUX-MWX_20211201	Total/NA	Water	3510C	
MB 410-202710/1-A	Method Blank	Total/NA	Water	3510C	
LCS 410-202710/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 410-202710/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 202946

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-1	OU2-MW1_20211201	Total/NA	Water	8082A	202710
460-248245-3	FB_20211201	Total/NA	Water	8082A	202710
460-248245-4	OUX-MWX_20211201	Total/NA	Water	8082A	202710
MB 410-202710/1-A	Method Blank	Total/NA	Water	8082A	202710
LCS 410-202710/2-A	Lab Control Sample	Total/NA	Water	8082A	202710
LCSD 410-202710/3-A	Lab Control Sample Dup	Total/NA	Water	8082A	202710

Prep Batch: 816778

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-1	OU2-MW1_20211201	Total/NA	Water	3510C	
460-248245-3	FB_20211201	Total/NA	Water	3510C	

Eurofins TestAmerica, Edison

QC Association Summary

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

GC Semi VOA (Continued)

Prep Batch: 816778 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-4	OUX-MWX_20211201	Total/NA	Water	3510C	
MB 460-816778/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-816778/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-816778/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 817169

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-4	OUX-MWX 20211201	Total/NA	Water	8081B	816778

Analysis Batch: 817175

Lab Sample ID 460-248245-1	Client Sample ID OU2-MW1_20211201	Prep Type Total/NA	Matrix Water	Method 8081B	Prep Batch 816778
460-248245-3	FB_20211201	Total/NA	Water	8081B	816778
MB 460-816778/1-A	Method Blank	Total/NA	Water	8081B	816778
LCS 460-816778/2-A	Lab Control Sample	Total/NA	Water	8081B	816778
LCSD 460-816778/3-A	Lab Control Sample Dup	Total/NA	Water	8081B	816778

Metals

Prep Batch: 202182

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-2	OU3-MW2_20211201	Total/NA	Water	7470A	
MB 410-202182/1-A	Method Blank	Total/NA	Water	7470A	
LCS 410-202182/2-A	Lab Control Sample	Total/NA	Water	7470A	
460-248245-2 MS	OU3-MW2_20211201	Total/NA	Water	7470A	
460-248245-2 MSD	OU3-MW2_20211201	Total/NA	Water	7470A	
460-248245-2 DU	OU3-MW2 20211201	Total/NA	Water	7470A	

Prep Batch: 202184

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-1	OU2-MW1_20211201	Total/NA	Water	7470A	
460-248245-3	FB_20211201	Total/NA	Water	7470A	
460-248245-4	OUX-MWX_20211201	Total/NA	Water	7470A	
MB 410-202184/1-A	Method Blank	Total/NA	Water	7470A	
LCS 410-202184/2-A	Lab Control Sample	Total/NA	Water	7470A	
410-65616-O-2-B MS	Matrix Spike	Total/NA	Water	7470A	
410-65616-O-2-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	
410-65616-C-2-A DU	Duplicate	Total/NA	Water	7470A	

Analysis Batch: 202553

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-2	OU3-MW2_20211201	Total/NA	Water	7470A	202182
MB 410-202182/1-A	Method Blank	Total/NA	Water	7470A	202182
LCS 410-202182/2-A	Lab Control Sample	Total/NA	Water	7470A	202182
460-248245-2 MS	OU3-MW2_20211201	Total/NA	Water	7470A	202182
460-248245-2 MSD	OU3-MW2_20211201	Total/NA	Water	7470A	202182
460-248245-2 DU	OU3-MW2_20211201	Total/NA	Water	7470A	202182

Analysis Batch: 202949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-1	OU2-MW1_20211201	Total/NA	Water	7470A	202184

Eurofins TestAmerica, Edison

Page 40 of 52 12/15/2021

3

4

5

Ţ

8

3

12

1 4

15

QC Association Summary

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Metals (Continued)

Analysis Batch: 202949 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-3	FB_20211201	Total/NA	Water	7470A	202184
460-248245-4	OUX-MWX_20211201	Total/NA	Water	7470A	202184
MB 410-202184/1-A	Method Blank	Total/NA	Water	7470A	202184
LCS 410-202184/2-A	Lab Control Sample	Total/NA	Water	7470A	202184
410-65616-O-2-B MS	Matrix Spike	Total/NA	Water	7470A	202184
410-65616-O-2-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	202184
410-65616-C-2-A DU	Duplicate	Total/NA	Water	7470A	202184

Prep Batch: 204306

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-4	OUX-MWX_20211201	Total Recoverable	Water	3005A	
MB 410-204306/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 410-204306/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
410-65777-H-3-A MS	Matrix Spike	Total Recoverable	Water	3005A	
410-65777-H-3-A MS ^5	Matrix Spike	Total Recoverable	Water	3005A	
410-65777-I-3-A MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	
410-65777-I-3-A MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	3005A	
410-65777-J-3-A DU	Duplicate	Total Recoverable	Water	3005A	
410-65777-J-3-A DU ^5	Duplicate	Total Recoverable	Water	3005A	

Prep Batch: 204310

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-1	OU2-MW1_20211201	Total Recoverable	Water	3005A	
460-248245-2	OU3-MW2_20211201	Total Recoverable	Water	3005A	
460-248245-3	FB_20211201	Total Recoverable	Water	3005A	
MB 410-204310/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 410-204310/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
460-248245-2 MS	OU3-MW2_20211201	Total Recoverable	Water	3005A	
460-248245-2 MSD	OU3-MW2_20211201	Total Recoverable	Water	3005A	
460-248245-2 DU	OU3-MW2 20211201	Total Recoverable	Water	3005A	

Analysis Batch: 204832

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-4	OUX-MWX_20211201	Total Recoverable	Water	6020B	204306
460-248245-4	OUX-MWX_20211201	Total Recoverable	Water	6020B	204306
MB 410-204306/1-A	Method Blank	Total Recoverable	Water	6020B	204306
LCS 410-204306/2-A	Lab Control Sample	Total Recoverable	Water	6020B	204306
410-65777-H-3-A MS	Matrix Spike	Total Recoverable	Water	6020B	204306
410-65777-H-3-A MS ^5	Matrix Spike	Total Recoverable	Water	6020B	204306
410-65777-I-3-A MSD	Matrix Spike Duplicate	Total Recoverable	Water	6020B	204306
410-65777-I-3-A MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	6020B	204306
410-65777-J-3-A DU	Duplicate	Total Recoverable	Water	6020B	204306
410-65777-J-3-A DU ^5	Duplicate	Total Recoverable	Water	6020B	204306

Analysis Batch: 204841

Lab Sample ID 460-248245-1	Client Sample ID OU2-MW1_20211201	Prep Type Total Recoverable	Matrix Water	Method 6020B	Prep Batch 204310
460-248245-1	OU2-MW1_20211201	Total Recoverable	Water	6020B	204310
460-248245-2	OU3-MW2_20211201	Total Recoverable	Water	6020B	204310
460-248245-2	OU3-MW2_20211201	Total Recoverable	Water	6020B	204310
460-248245-3	FB_20211201	Total Recoverable	Water	6020B	204310

Eurofins TestAmerica, Edison

QC Association Summary

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Metals (Continued)

Analysis Batch: 204841 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 410-204310/1-A	Method Blank	Total Recoverable	Water	6020B	204310
LCS 410-204310/2-A	Lab Control Sample	Total Recoverable	Water	6020B	204310
460-248245-2 MS	OU3-MW2_20211201	Total Recoverable	Water	6020B	204310
460-248245-2 MS	OU3-MW2_20211201	Total Recoverable	Water	6020B	204310
460-248245-2 MSD	OU3-MW2_20211201	Total Recoverable	Water	6020B	204310
460-248245-2 MSD	OU3-MW2_20211201	Total Recoverable	Water	6020B	204310
460-248245-2 DU	OU3-MW2_20211201	Total Recoverable	Water	6020B	204310
460-248245-2 DU	OU3-MW2_20211201	Total Recoverable	Water	6020B	204310

Analysis Batch: 205243

Lab Sample ID 460-248245-4	Client Sample ID OUX-MWX_20211201	Prep Type Total Recoverable	Matrix Water	Method 6020B	Prep Batch 204306
LCS 410-204306/2-A	Lab Control Sample	Total Recoverable	Water	6020B	204306
410-65777-H-3-A MS	Matrix Spike	Total Recoverable	Water	6020B	204306
410-65777-I-3-A MSD	Matrix Spike Duplicate	Total Recoverable	Water	6020B	204306
410-65777-J-3-A DU	Duplicate	Total Recoverable	Water	6020B	204306

Analysis Batch: 205374

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-248245-3	FB_20211201	Total Recoverable	Water	6020B	204310

45-1

3

--

6

7

9

10

46

13

14

15

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: OU2-MW1_20211201

Lab Sample ID: 460-248245-1

Date Collected: 12/01/21 11:25 Date Received: 12/01/21 16:20

Client: AKRF Inc

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			816929	12/04/21 12:34	SZD	TAL EDI
Total/NA	Prep	3510C			816959	12/04/21 09:29	ZEH	TAL EDI
Total/NA	Analysis	8270E		1	817005	12/04/21 23:35	YAH	TAL EDI
Total/NA	Prep	3510C			816778	12/04/21 09:58	ZEH	TAL EDI
Total/NA	Analysis	8081B		1	817175	12/06/21 05:20	FAM	TAL EDI
Total/NA	Prep	3510C			202710	12/08/21 03:45	UKQ8	ELLE
Total/NA	Analysis	8082A		1	202946	12/08/21 11:08	JC94	ELLE
Total Recoverable	Prep	3005A			204310	12/12/21 10:08	UAMX	ELLE
Total Recoverable	Analysis	6020B		1	204841	12/13/21 17:32	UCIG	ELLE
Total Recoverable	Prep	3005A			204310	12/12/21 10:08	UAMX	ELLE
Total Recoverable	Analysis	6020B		10	204841	12/13/21 20:26	UCIG	ELLE
Total/NA	Prep	7470A			202184	12/07/21 05:49	UAMX	ELLE
Total/NA	Analysis	7470A		1	202949	12/08/21 12:45	UEFS	ELLE

Client Sample ID: OU3-MW2_20211201 Lab Sample ID: 460-248245-2

Date Collected: 12/01/21 13:50 Date Received: 12/01/21 16:20

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			204310	12/12/21 10:08	UAMX	ELLE
Total Recoverable	Analysis	6020B		1	204841	12/13/21 16:19	UCIG	ELLE
Total Recoverable	Prep	3005A			204310	12/12/21 10:08	UAMX	ELLE
Total Recoverable	Analysis	6020B		20	204841	12/13/21 19:34	UCIG	ELLE
Total/NA	Prep	7470A			202182	12/07/21 05:38	UAMX	ELLE
Total/NA	Analysis	7470A		1	202553	12/07/21 15:32	UEFS	ELLE

Lab Sample ID: 460-248245-3 Client Sample ID: FB_20211201 **Matrix: Water**

Date Collected: 12/01/21 11:35 Date Received: 12/01/21 16:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	816929	12/04/21 09:23	SZD	TAL EDI
Total/NA	Prep	3510C			816959	12/04/21 09:29	ZEH	TAL EDI
Total/NA	Analysis	8270E		1	817005	12/04/21 23:56	YAH	TAL EDI
Total/NA	Prep	3510C			816778	12/04/21 09:58	ZEH	TAL EDI
Total/NA	Analysis	8081B		1	817175	12/06/21 05:35	FAM	TAL EDI
Total/NA	Prep	3510C			202710	12/08/21 03:45	UKQ8	ELLE
Total/NA	Analysis	8082A		1	202946	12/08/21 11:23	JC94	ELLE
Total Recoverable	Prep	3005A			204310	12/12/21 10:08	UAMX	ELLE
Total Recoverable	Analysis	6020B		1	204841	12/13/21 17:30	UCIG	ELLE
Total Recoverable	Prep	3005A			204310	12/12/21 10:08	UAMX	ELLE
Total Recoverable	Analysis	6020B		1	205374	12/14/21 19:21	UCIG	ELLE
Total/NA	Prep	7470A			202184	12/07/21 05:49	UAMX	ELLE
Total/NA	Analysis	7470A		1	202949	12/08/21 12:47	UEFS	ELLE

Lab Chronicle

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Client Sample ID: OUX-MWX_20211201

Lab Sample ID: 460-248245-4

Date Collected: 12/01/21 00:00 **Matrix: Water** Date Received: 12/01/21 16:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	816929	12/04/21 12:55	SZD	TAL EDI
Total/NA	Prep	3510C			816959	12/04/21 09:29	ZEH	TAL EDI
Total/NA	Analysis	8270E		1	817005	12/05/21 00:17	YAH	TAL EDI
Total/NA	Prep	3510C			816778	12/04/21 09:58	ZEH	TAL EDI
Total/NA	Analysis	8081B		1	817169	12/06/21 05:12	FAM	TAL EDI
Total/NA	Prep	3510C			202710	12/08/21 03:45	UKQ8	ELLE
Total/NA	Analysis	8082A		1	202946	12/08/21 11:38	JC94	ELLE
Total Recoverable	Prep	3005A			204306	12/12/21 09:43	UAMX	ELLE
Total Recoverable	Analysis	6020B		1	205243	12/14/21 13:16	UPJE	ELLE
Total Recoverable	Prep	3005A			204306	12/12/21 09:43	UAMX	ELLE
Total Recoverable	Analysis	6020B		1	204832	12/13/21 18:22	UCIG	ELLE
Total Recoverable	Prep	3005A			204306	12/12/21 09:43	UAMX	ELLE
Total Recoverable	Analysis	6020B		10	204832	12/13/21 19:26	UCIG	ELLE
Total/NA	Prep	7470A			202184	12/07/21 05:49	UAMX	ELLE
Total/NA	Analysis	7470A		1	202949	12/08/21 12:49	UEFS	ELLE

Client Sample ID: TB_20211201

Date Collected: 12/01/21 00:00

Date Received: 12/01/21 16:20

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260D		1	816929	12/04/21 09:44	SZD	TAL EDI	_

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300 TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Matrix: Water

Lab Sample ID: 460-248245-5

Accreditation/Certification Summary

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
New York	NE	ELAP	11452	04-01-22
	•	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
the following analytes the agency does not of Analysis Method	•	rt, but the laboratory is r Matrix	not certified by the governing authority. Analyte	This list may include analytes for which

Laboratory: Eurofins Lancaster Laboratories Env, LLC

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
New York	NE	ELAP	10670	04-01-22
The fellowing and had				
,	•	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
the agency does not o	•	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
,	•	ort, but the laboratory is r Matrix	not certified by the governing authority. Analyte	I his list may include analytes for whic

4

6

R

9

11

12

15

Method Summary

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	TAL EDI
8270E	Semivolatile Organic Compounds (GC/MS)	SW846	TAL EDI
8081B	Organochlorine Pesticides (GC)	SW846	TAL EDI
8082A	Polychlorinated Biphenyls (PCBs) (GC)	SW846	ELLE
6020B	Metals (ICP/MS)	SW846	ELLE
7470A	Mercury (CVAA)	SW846	ELLE
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	ELLE
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	ELLE
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL EDI
5030C	Purge and Trap	SW846	TAL EDI
7470A	Preparation, Mercury	SW846	ELLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300 TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins TestAmerica, Edison

12/15/2021

Sample Summary

Client: AKRF Inc Job ID: 460-248245-1

Project/Site: Adelaar Concord - Monticello, NY

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
460-248245-1	OU2-MW1_20211201	Water	12/01/21 11:25	12/01/21 16:20
460-248245-2	OU3-MW2_20211201	Water	12/01/21 13:50	12/01/21 16:20
460-248245-3	FB_20211201	Water	12/01/21 11:35	12/01/21 16:20
460-248245-4	OUX-MWX_20211201	Water	12/01/21 00:00	12/01/21 16:20
460-248245-5	TB 20211201	Water	12/01/21 00:00	12/01/21 16:20

💸 eurofins Chain of Custody Record 471265

Address:

Environment Testing TestAmerica

16:20 BYCLUDED EXTRA UDI Sample Specific Notes: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month For Lab Use Only ab Sampling: Job / SDG No.: Walk-in Client: Pate/Time: 12-1-21 ō Therm ID No. Date/Time Date/Time: COC No Archive for Corr'd: Company: Company Date: VAVID Company Disposal by Lab Carrier: Cooler Temp. (°C): Obs'd: 460-248245 Chain of Custody Site Contact: A SULECA Received in Laboratory メメメメメ XXXXX Other: Return to Client Lab Contact: RCRA Filtered Sample (Y/N)
Perform MS/MSD (Y/N) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Regulatory Program: Dw Dw # of Cont. 12-2-3) / Date/Time: Date/Time: Date/Time: WORKING DAYS Project Manager: U フェルムの Matrix 500 STATE OF THE PERSON CATAS. STAN STAN 5 **Analysis Turnaround Time** Unknown Type (C=Comp, G=Grab) Sample TAT if different from Below 2 weeks 1 week 2 days 1 day EDO 350 Sample COO Time 100 CALENDAR DAYS Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Custody Seal No. Company Company: Poison B SUD! Tel/Email Sample Date Company Special Instructions/QC Requirements & Comments: Comments Section if the lab is to dispose of the sample OCK-WIX JOS SUIDO 10011000-8 Sample Identification Yes - Soal Par Client Contact 1001 1000 AKROP Possible Hazard Identification: Ja-my S-M Custody Seals Intact: Company Name: Relinquished by: Relinduished by Non-Hazard Project Name: City/State/Zip: 0 Address: Phone: # O d Fax: Site:

Page 48 of 52

Bary

N

* Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.

12

Initials:

					ပိ	Cooler Temperatures	empera	stures						
	RAW	СОВИВСТВО				RAW	CONTRICTED				ROW	CONNECTED		
Cooler #1:	Mec	7		•	Cooler #4:	9	S		0	Cooler #7:	Q	Q		
Cooler #2:	Doc	25.7		G	Cooler #5:	Ç	S		0	Cooler #8:	υ υ	S		
Cooler #3:	S	υ υ		O	Cooler #6:	ę,	ပ္		0	Cooler #9:	S)	y		
	Ammonia	COD	Nitrate Nitrite	Metals	Hardness	Pest	CAM	Phenois	Sulfide	TKN	T0C	Total Cyanide	Total Phos	Other
TALS Sample Number	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH 5-9)	(pH<2)	(pH<2)	(pH>9)	(pH<2)	(pH<2)	(pH>12)	(pH<2)	
/				77										
7				27										
7				N										
	M pH adi	f bH adjustments are required record the information below.	are requir	ed recor	d the info	mation	.wo							
Sample No(s). adjusted:	adjusted:					ų.								
Preservative Name/Conc.:	me/Conc.					Volu	me of Pre	Volume of Preservative used (ml):	:(Im) pesr					
1 of # of Draconnetting(e):	(-)													

٦

Page

Eurofins TestAmerica Edison Receipt Temperature and pH Log

SHIR

Job Number:

EDS-WI-038, Rev 4.1 10/22/2019

Eurofins TestAmerica, Edison

777 New Durham Road Edison, NJ 08817

Chain of Custody Record

🔅 eurofins

Environment Testing America

Phone: 732-549-3900 Fax: 732-549-3679									_										_
Client Information (Sub Contract Lab)	Sampler:			Lab F Haa	PM: is, Me	elissa	3					Carri	er Traci	ing No(s)	:		COC No: 460-63547.1		
Client Contact: Shipping/Receiving	Phone:			E-Ma Meli		laas	@Eu	rofins	et.con	n			of Orig	in:			Page: Page 1 of 1		
Company:				1	Accre	editati	ons R	pquired				1	-				Job #:		_
Eurofins Lancaster Laboratories Environm	Due Date Requests	al.			NEL	AP -	New	/ York			_						460-248245-1 Preservation Cod	don.	_
2425 New Holland Pike, ,	12/13/2021								A	nalys	is Re	que	sted				A - HCL	M - Hexane	
City: Lancaster	TAT Requested (da	ys):			ď.					П			П				B - NaOH C - Zn Acetate	N - None O - AsNaO2	
State, Zip:	_															73	D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3	
PA, 17601	PO#:				-11											160	F - MeOH	R - Na2S2O3	
717-656-2300(Tel)					9											1	G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate	
mail:	WO#:				8	<u>ş</u>											I - ice J - Di Water	U - Acetone V - MCAA	
Project Name:	Project #:				اعًا	4	88	uny an								aine.	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)	
Adelaar Concord - Monticello, NY	46018216 ssow#:				튛	٤	L PCBs	Mercury								T OC	Other:		
					Sas	8	2 2	Prep Me								9			_
			Dampie	Matrix	Ž.	3	6082A_LL/3510C_LL	7470A/7470A_Prep								Number			
		Sample	1,0-1	W=water, S=eolid, =waste/oil.	밀	Perform	6082A_LL/35	0874								Ž			
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) BT=1	lesue, A=Air		å	2 3	7 2					\sqcup			Total	Special In	nstructions/Note:	_
	<u> </u>	11:25	Preservation	Code:	X	XL.										$\perp \times$			
OU2-MW1_20211201 (460-248245-1)	12/1/21	Eastern		Water	Ш		X :	x x		Ш						3			
OU3-MW2_20211201 (460-248245-2)	12/1/21	13:50 Eastern		Water	Ш			x x								4			
OU3-MW2_20211201 (460-248245-2MS)	12/1/21	13:50 Eastern	MS	Water	Ш			x x								1			
OU3-MW2_20211201 (460-248245-2MSD)	12/1/21	13:50 Eastern	MSD	Water				x x								1			
FB_20211201 (460-248245-3)	12/1/21	11:35 Eastern		Water	Ш		x :	x x								3			
OUX-MWX_20211201 (460-248245-4)	12/1/21	Eastern		Water	Ш		x :	x x								3			
					Ш														
Note: Since laboratory accreditations are subject to change, Eurofina TestAm maintain accreditation in the State of Origin listed above for analysis/tests/ma TestAmerica attention immediately. If all requested accreditations are curren	trix being analyzed, the s	amples must b	e shipped back to t	he Eurofin	s Test/	Americ	ca labo	oratory	or other										
Possible Hazard Identification					- 15	Sami	ple D	ispos	al (A	fee n	ay be	8550	ssed i	fsampl	es are	retain	ed longer than 1	month)	-
Unconfirmed							7	urn To					sal B			7	nive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	1		5	Spec	ial In	structi	ons/C	C Re	quirem	ents:							
Empty Kit Relinquished by:	-	Date:			Tim	e:							Metho	d of Shipn	nent:		•		_
Relinquished by:	Date/Time: /6/	21 1	700 E	TAE	· (R	ecente	y by:						Date	12/4	hi	1700	Company	
Relinquished by:	Date Time:		1025 Con	npany 1		R	eceive	d dy.	_					Date	/Tijhe:	/		Company	_
Relinquished by:	Date/Time			прапу	<u></u>	R	eceive	d by	11	1	1	$\overline{}$		Date	7/79/1	on	1 20139	Company	_
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						C	ooler	Temper	ature(s) °C and	Other	Remark	8:		<i>y y y y</i>	~ / -	0.7-3	3.2	-
4 169 A 140																		-	

Client: AKRF Inc Job Number: 460-248245-1

Login Number: 248245 List Source: Eurofins TestAmerica, Edison

List Number: 1

Creator: Haas. Melissa

Creator: Haas, Melissa		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Edison

Client: AKRF Inc Job Number: 460-248245-1

Login Number: 248245 List Source: Eurofins Lancaster Laboratories Env, LLC List Number: 2

List Creation: 12/06/21 09:25 PM

Creator: Metzger, Katherine A

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	Not present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	

Eurofins TestAmerica, Edison

DATA USABILITY SUMMARY REPORT – DUSR DATA VALIDATION SUMMARY

ORGANIC/INORGANIC ANALYSES

VOLATILES BY GC/MS SEMIVOLATILES BY GC/MS PESTICIDES/PCBs BY GC TOTAL METALS BY ICPMS/CV

For Groundwater Samples Collected
December 01, 2021
Adelaar Concord
Monticello, New York
Project #40376
Collected by AKRF, Inc.

SAMPLE DELIVERY GROUP NUMBER: 460-248245-1 BY EUROFINS TESTAMERICA EDISON - NJ (ELAP #11452) EUROFINS TESTAMERICA LANCASTER, PA (ELAP #10670)

SUBMITTED TO:

Mr. Bryan Zieroff AKRF, Inc. 34 South Broadway, Suite 314 White Plains, NY 10601

July 04, 2022

PREPARED BY:

Concord/Adelaar EPR - Data Usability Summary Report (Data Validation): December 2021 Groundwater Sampling Event Volatiles, Semivolatiles, Pesticides, PCBs, and Total TAL Metals. Table of Contents: Introduction Data Qualifier Definitions Sample Receipt 1.0 Volatile Organics by GC/MS SW846 Method 8260D Holding Time 1.1 1.2 System Monitoring Compound (Surrogate) Recovery 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD) Laboratory Control Sample/Laboratory Control Duplicate 1.4 1.5 Blank Contamination 1.6 GC/MS Instrument Performance Check (Tuning) 1.7 Initial and Continuing Calibrations 1.8 Internal Standards 1.9 Field Duplicates Target Compound List Identification 1.10 Compound Quantification and Reported Detection Limits 1.11 1.12 Overall System Performance 2.0 Semivolatile Organics by GC/MS SW846 Method 8270E Holding Time 2.1

- 2.2 Surrogate Recovery
- 2.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
- 2.4 Laboratory Control Sample/Laboratory Control Duplicate
- 2.5 Method Blanks
- 2.6 GC/MS Instrument Performance Check (Tuning)
- 2.7 Initial and Continuing Calibrations
- 2.8 Internal Standards
- 2.9 Field Duplicates
- 2.10 Target Compound List Identification
- 2.11 Compound Quantification and Reported Detection Limits
- 2.12 Overall System Performance
- 3.0 Pesticides by GC Method 8081B, PCBs by GC SW846 Method 8082A
 - 3.1 Holding Time
 - 3.2 Surrogate Recovery
 - 3.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 3.4 Laboratory Control Sample/Laboratory Control Duplicate
 - 3.5 Blanks
 - 3.6 Calibration Verification
 - 3.7 Field Duplicates
 - 3.8 Target Compound Identification
 - 3.9 Compound Quantification and Reported Detection Limits
 - 3.10 Overall Assessment of Data

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

- 4.0 Metals by ICPMS/Cold Vapor SW846 Methods 6020B/7470A
 - 4.1 Holding Times
 - 4.2 Calibration (Initial and Continuing Calibration Verifications)
 - 4.3 Blanks
 - 4.4 Spiked Sample Recovery
 - 4.5 Laboratory/Field Duplicates
 - 4.6 Laboratory Control Sample
 - 4.7 Interference Check Sample
 - 4.8 ICP/MS Serial Dilution
 - 4.9 Sample Results Verification
 - 4.10 Overall Assessment of Data

APPENDICES:

- A. Chain of Custody Documents and Sample Receipt Checklists
- B. Case Narrative
- C. Data Summary Form Is with Qualifications

Introduction:

A validation was performed on groundwater samples and the associated quality control samples (MS/MSD/Field Duplicate/Field Blank/Trip Blank) for organic/inorganic analysis for samples collected under chain of custody documentation by AKRF, Inc. and submitted to Eurofins TestAmerica Edison for subsequent analysis. This report contains the laboratory and validation results for the field samples itemized below. Analysis was performed in accordance with requested tests per the chain of custody document. PCBs and Metals were performed at Eurofins TestAmerica Lancaster, PA.

The samples were analyzed by Eurofins TestAmerica Edison and Lancaster, utilizing SW846 Methods and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodologies employed. The analytical testing for groundwater samples consisted of the Part 375 analyte lists for Volatile Organics, Semivolatile Organics, Pesticides, PCBs, and Total Metals.

The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic and Inorganic Data Review and EPA Region II SOPs for 8260, 8270, 8081, 8082 and Metals and in conjunction with the analytical methodologies for which the samples were analyzed, where applicable and relevant.

Sample ID	Lab ID	Analysis	Date Collected/Received
OU2-MW1_20211201	460-248245-1	Volatiles, Semivolatiles, Pesticides, PCBs, Total Metals	12/01/2021
OU3-MW2_20211201 [Plus, MS/MSD]	460-248245-2	Total Metals	12/01/2021
FB_20211201	460-248245-3	Volatiles, Semivolatiles, Pesticides, PCBs, Total Metals	12/01/2021
OUX-MWX_20211201 [Field Duplicate of OU2-MW1_20211201]	460-248245-4	Volatiles, Semivolatiles, Pesticides, PCBs, Total Metals	12/01/2021
TB_20211201	460-248245-5	Volatiles	12/01/2021

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.
- J+ The result is an estimated quantity, but the result may be biased high. (Equis Qualified, JK)
- J- The result is an estimated quantity, but the result may be biased low. (Equis Qualified, JL)
- D Analyte concentration is from diluted analysis.

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

Sample Receipt:

The Chain of Custody document indicates that the samples were received at Eurofins TestAmerica Laboratories via laboratory courier upon completion of the sampling event on December 01, 2021. Sample login notes were generated. The cooler temperature for the aqueous sample receipt was recorded upon receipt at Eurofins TestAmerica and determined to be acceptable (<6.0 degrees C) for the coolers (1.5 and 2.1 degrees C). The actual temperatures are recorded on the chain of custody document in addition to the Case Narrative provided in Appendix B of this report.

No problems and/or discrepancies were noted, consequently, the integrity of the groundwater samples has been assumed to be good.

The data summary Form I's included in Appendix C and Equis deliverable includes all usable (qualified) and unusable (rejected) results for the samples identified above. The Form I's summarize the detailed narrative section of the report. All data validation qualifications have been reported on the Form I's and onto the excel spreadsheet for ease of review and verification.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Volatile Organics by GC/MS SW846 Method 8260D

The following method criteria were reviewed: holding times, SMCs, MS, MSD, LCS, Laboratory Spiked Blanks, Method Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and Overall System Performance. The Volatile results are valid and useable as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J." The non-detects (sample quantitation limits) are required to be flagged as estimated, "J," or unusable, "R," if the holding times are grossly exceeded.

Samples were analyzed within the Method required holding times as well as the technical holding times for data validation of 14 days from collection to analysis for HCL preserved vials. No data validation qualifiers were required based upon holding time.

1.2 System Monitoring Compound (Surrogate) Recovery

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specification, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) for Dibromofluoromethane, 1,2-Dichloroethane-d4, Toluene-d8 and 4-Bromofluorobenzene were found to be within acceptable limits for surrogate compounds for all analyses.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

MS/MSD data was not provided in the lab report. Sample results could not be evaluated based on matrix spike data.

The National Functional Guidelines and EPA Region 2 SOPs state that "No qualifications to the data are necessary based on MS data alone."

1.4 Laboratory Control Sample/Laboratory Control Duplicate

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/LCS Duplicate was analyzed with the analytical sequence. Recovery values were acceptable for all spiked analytes.

1.5 Blank Contamination

Quality assurance (QA) blanks, i.e., method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples
Method, Storage,	Detects	Not Detected	No qualification required
field, Trip,	<crql*< td=""><td><crql*< td=""><td>Report CRQL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CRQL value with a U</td></crql*<>	Report CRQL value with a U
Instrument		>/= CRQL* and $<2x$	No qualification required
		the CRQL**	
	>CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>/=CRQL* and =</td <td>Report blank value for sample</td>	Report blank value for sample
		blank concentration	concentration with a U
		>/= CRQL* and >	No qualification required
		blank concentration	
	=CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>CRQL*	No qualification required
	Gross	Detects	Report blank value for sample
	Contamination**		concentration with a U

^{*2}x the CRQL for methylene chloride, 2-butanone, and acetone.

A) Method Blank Contamination:

No target analytes were detected in the method blank associated with sample analysis.

B) Field Blank Contamination:

No target analytes were detected in FB 20211201

C) Trip Blank Contamination:

Target analytes were not detected in TB_20211201.

^{**4}x the CRQL for methylene chloride, 2-butanone, and acetone

^{***}Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L. Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency for (once prior to ICAL for 8260D) Bromofluorobenzene (BFB) for all analyses.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial calibration demonstrates that the instrument can produce acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. Initial calibration verifications were acceptable (<30%).

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity): Analytes detected in the sample will be qualified as estimated, "J." All non-detects for that compound in the corresponding samples will be rejected, "R." Method 8260D allows for a minimum response factor of 0.1 for Acetone and 2-Butanone. Validation criteria allows response factor to be /=>0.01 for poor responders (Acetone, MEK, Carbon Disulfide, Chloroethane, Chloromethane, Cyclohexane, 1,2-Dibromoethane, Dichlorodifluoromethane, cis-1,2-Dichloroethene, 1,2-Dichloropropane, 1,2-Dibromo-3-chloropropane, Isopropylbenzene, Methyl Acetate, Methylene Chloride, Methylcyclohexane, MTBE, trans-1,2-Dichloroethene, 4-Methyl-2-Pentanone, 2-Hexanone, Trichlorofluoromethane, 1,1,2-Trichloro-1,2,2-Trifluoroethane.

The response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) and (>/= 0.01 for poor responders) and minimum response criteria in Table 4 of Method 8260D, for the initial and continuing calibrations for all reported analytes.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <20% and %D must be <20%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ." If %RSD and %D grossly exceed QC criteria, non-detect data may be qualified, "R," unusable. Additionally, in cases where the %RSD is >20% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 20% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-level results will be qualified, "J" in the portion of the curve where non-linearity exists. Closing CCV must meet 30% criteria. Poor responders must be </= 40%.

*Method 8260D allows for several analytes to be outside requirements due to the large number of compounds.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (20%) and (40% for poor responders) for all reported compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (20%) and (40% for poor responders) for all reported compounds.

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than \pm 30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to \pm 100%) range of the associated standard, all the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

Samples were spiked with the internal standards 1,4-Dioxane-d8, Chlorobenzene-d5, 1,4-Dichlorobenzene-d4, TBA-d9, 2-Butanone-d5 and Fluorobenzene prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples.

1.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Acceptable RPD is 25%. Field Duplicate analysis was conducted on OU2-MW1_20211201 as OUX-MWX_20211201. Precision is acceptable for detected analytes 1,2,4-Trimethylbenzne, Ethylbenzene, n-Butylbenzene, N-Propylbenzene, sec-Butylbenzene and Xylene (total).

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. All retention times were within required specifications.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is acceptable. Correct internal standards per SW846 and response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

Groundwater samples were analyzed undiluted. Sample chromatogram for OU2-MW1_20211201 and the field duplicate (OUX-MWX_20211201) demonstrates elevated nontarget analyte presence. Tentatively Identified Compounds (TICs) were not required.

1.12 Overall System Performance

Good resolution and chromatographic performance were observed.

2.0 Semivolatile Organics by GC/MS SW846 Method 8270E

The following method criteria were reviewed: holding times, Surrogates, MS, MSD, LCS, Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits, and overall system performance. The Semivolatile results are valid and usable as noted within the following text:

2.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J." The non-detects (sample quantitation limits) are required to be flagged as estimated, "J," or unusable, "R," if the holding times are grossly exceeded.

Samples were extracted and analyzed within the method required holding times and the technical holding times (7 days from collection to extraction for groundwater samples and 40 days from extraction to analysis) required for data validation.

2.2 Surrogate Recovery

All samples are spiked with surrogate compounds prior to sample preparation/extraction to evaluate overall laboratory performance and efficiency of the analytical technique. Additionally, the sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the evaluation of the data is dependent upon reextraction and/or reanalysis to confirm/negate laboratory error or matrix related problems. Discussion of surrogate recoveries that fell outside (above/below) QC guidelines is itemized below:

Samples were spiked with six (6) surrogate standards at the sample extraction portion of analysis. Acceptable recoveries were observed. Method allows for one (1) base neutral and one (1) acid recovery to be outside acceptance limits without requiring reextraction/reanalysis.

2.3 Matrix Spikes (MS)/Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

MS/MSD data was not provided in the lab report. Sample results could not be evaluated based on matrix spike data.

The National Functional Guidelines and EPA Region 2 SOPs state that "No qualifications to the data are necessary based on MS data alone."

2.4 Laboratory Control Sample/Laboratory Control Duplicate

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/LCS Duplicate was extracted and analyzed with the analytical batch. Recovery values and RPD was acceptable.

2.5 Method Blanks

Quality assurance (QA) blanks, i.e., method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

activity. Method blanks measure laboratory contamination. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result	Report CRQL &	No Qualification is
	with a "U" when:	Qualify "U" when:	Needed when:
Phthalates (common	Sample Conc. is	Sample Conc. Is	Sample Conc. is
laboratory	>CRQL, but $>CRQL and >5x blank$	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x blank</td></crql>	>CRQL and >5x blank
contaminants)	blank value	blank value	value
Other Contaminants	Sample Conc. is	Sample Conc. Is	Sample Conc. is
	>CRQL, but =1x</td <td><crql <="" =1x<="" and="" td=""><td>>CRQL and >1x blank</td></crql></td>	<crql <="" =1x<="" and="" td=""><td>>CRQL and >1x blank</td></crql>	>CRQL and >1x blank
	blank value	blank value	value

Below is a summary of the compounds in the sample and the associated qualification that have been applied:

A) Method Blank Contamination:

Target analytes were not detected in the method blank.

B) Field Blank Contamination:

No target analytes were detected in FB 20211201.

2.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for semivolatile organics is decafluorotriphenylphosphine (DFTPP).

Instrument performance was generated within acceptable limits and frequency (once prior to ICAL for SW846 Method 8270E) for decafluorotriphenylphosphine (DFTPP) for all analyses.

2.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial calibration demonstrates that the instrument can give acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J." All non-detects for that compound in the corresponding samples will be rejected, "R."

The response factors for the target analytes reported were found to be within acceptable limits (>/=0.05), for the initial (average RRF) and continuing calibrations.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <20% and %D

must be <20%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ." If %RSD and %D grossly exceed QC criteria, non-detect data may be qualified, "R," unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 20% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-level results will be qualified, "J" in the portion of the curve where non-linearity exists. Due to the large number of analytes in this method, it is expected for some analytes to fall outside acceptance criteria and the calibration is still considered valid. Acceptable Initial Calibration Verifications were performed (<30%).

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (20%) for all reported compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (20%) for all reported compounds except for Acenaphthene (21.9%) in the CCV. Non-detects for all this analyte in all samples has been qualified, "UJ."

2.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

Area responses and retention times fell within established QC ranges for sample analysis.

2.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. An acceptable RPD is 25%. Field duplicate analysis was conducted on OU2-MW1_20211201 as OUX_MWX_20211201. Precision is acceptable for detected analyte Naphthalene (1.4 ug/L vs. 1.1 ug/L).

2.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

Mass spectra meet the qualitative criteria for identification.

Although Tentatively Identified Compounds (TICs) were not required, the sample chromatograms for OU2-MW1 20211201 demonstrates early eluting non-target presence.

2.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is acceptable. Correct internal standards and response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP). Samples were analyzed undiluted. Groundwater samples were extracted by Method 3510C and extracted with an initial volume of 250mls and concentrated to 2ml final volume.

2.12 Overall System Performance

Acceptable system performance was maintained throughout the analysis. All sample analysis was conducted without dilutions (250ml/2ml).

Pesticides by GC SW846 Method 8081B, PCBs by SW846 Method 8082A

The following method criteria were reviewed: holding times, Surrogates, MS, MSD, LCS, Blanks, Analytical Sequences, Calibrations, Target Component Identification, Quantitation, Reported Quantitation Limits, and overall system performance. The Pesticide and PCB results are valid and usable as noted within the following text:

3.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability; degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J." The non-detects (sample quantitation limits) are required to be flagged as estimated, "J," or unusable, "R," if the holding times are grossly exceeded.

Samples were extracted and analyzed within the method required holding times and the technical holding times required for data validation (7 days for liquid samples) for extraction. Extracts were analyzed within forty (40) days in accordance with the analytical method requirements.

3.2 Surrogate Recovery

All samples are spiked with surrogate compounds prior to sample preparation/extraction to evaluate overall laboratory performance and efficiency of the analytical technique. Additionally, the sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the evaluation of the data is dependent upon reextraction and/or reanalysis to confirm/negate laboratory error or matrix related problems. No qualifications were applied if one of the spiked surrogates is above acceptance limits on one of the two columns. Discussion of surrogate recoveries that fell outside (above/below) QC guidelines is itemized below:

Pesticides:

Acceptable surrogate recovery values for TCX and DCB were observed for all analyses.

PCBs:

Acceptable surrogate recovery values for TCX were observed for all analyses. DCB recovered below laboratory in-house established limits in OUX-MWX_20211201 on both columns (39%/39%). Validation criteria allows limits of 30-150%. No qualifiers were applied based on these outliers.

3.3 Matrix Spikes (MS)/Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

MS/MSD data was not provided in the lab report. Sample results could not be evaluated based on matrix spike data.

The National Functional Guidelines and EPA Region 2 SOPs state that "No qualifications to the data are necessary based on MS data alone."

3.4 Laboratory Control Sample/Laboratory Control Duplicate

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/LCS Duplicates were analyzed for the analytical extraction batches for Pesticides and PCBs. Recovery values and RPD were acceptable for Pesticides and PCBs.

3.5 Blanks

Quality assurance (QA) blanks, i.e., method, instrument, trip, and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Instrument blanks measure carryover for cross contamination. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

For:	Flag Sample Result	Report CRQL &	No Qualification is
	with a "U" when:	Qualify "U" when:	Needed when:
Any Contaminant	Sample Conc. is	Sample Conc. Is	Sample Conc. is
	>CRQL, but =5x</td <td><crql <="" =5x<="" and="" td=""><td>>CRQL and >5x blank</td></crql></td>	<crql <="" =5x<="" and="" td=""><td>>CRQL and >5x blank</td></crql>	>CRQL and >5x blank
	blank value	blank value	value

Extraction and Instrument blanks were performed at the appropriate frequency. Below is a summary of blank contamination:

A) Method Blank Contamination:

No target analytes were detected in the associated method blanks. No data validation qualifiers were required based upon method blank data.

B) Field Blank Contamination:

No target analytes were detected in FB_20211201.

3.6 Calibration Verification

Initial and continuing calibration sequence was performed as required for individual and multi-component Pesticide and PCB standards. Acceptable DDT and Endrin breakdown percent difference (<20%) was observed. Acceptable retention times were obtained for all analysis and GC resolution is acceptable for both columns. Resolution check met criteria and performance evaluation mixture met acceptance criteria. Linearity criteria for the initial standards have been satisfied for both columns as detailed below:

%RSD </= 20% for single component compounds except alpha-BHC and delta-BHC

%RSD </=30% for Toxaphene peaks

%RSD </= 30% for surrogates (TCX and DCB)

%RSD <20% for PCB aroclors

Continuing calibration verifications:

For Pesticide analysis, acceptable percent difference for any pesticide is 20% and for PCB analysis, the acceptable limit is 15%. Calibrations met method requirements for Pesticide/PCBs on either Channel A or B.

3.7 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. An acceptable RPD is 25%. Field duplicate analysis was conducted on OU2-MW1_2021120 as OUX-MWX_20211201. Precision is acceptable. No target Pesticide or PCB analytes were detected in either analysis.

3.8 Target Compound Identification

Qualitative criteria for compound identification have been established to minimize the number of false positives and false negatives. The retention times of all target analytes have been verified in the samples to that of the analyzed reference standards.

Acceptable DDT/Endrin breakdown was observed.

Positive Pesticide and PCB sample results are compared and where %Difference >25% when quantitated on the two columns the qualifications below are applied. Sample chromatograms were reviewed for the presence of interference. The following qualifications were applied where neither column shows interference:

%Difference	Qualifier
0-25%	None
26-70%	"J"
71-100%	"JN"
101-200% (no interference)	"R"
101-200% (interference detected) *	"JN"
>50% (Pesticide value is <crql)**< td=""><td>"U"</td></crql)**<>	"U"
>201%	"R"

^{*}When the reported %D is 101-200%, but interference is determined on either column, the results shall be qualified, "JN"

Acceptable percent difference was obtained for all detected analytes in the LCS/LCS Duplicate/MS/MSD. No target compounds were detected in field groundwater samples.

3.9 Compound Quantification and Reported Detection Limits

TCL compounds are identified on the GC by using the analyte's relative retention time (RRT) and by comparison to the primary column and the secondary confirmation column data. The laboratory reported the lower of the concentrations for primary/confirmatory column results as required.

Samples were analyzed undiluted. Samples were analyzed via the internal standard method using 1-Bromo-2-nitrobenzene. Acceptable area responses and retention time was observed for all samples.

^{**} When the reported pesticide value is lower than the CRQL, and the %D is >50%, raise the value to the CRQL and qualify "U", undetected.

3.10 Overall System Performance

Acceptable system performance was maintained throughout the analysis of all samples. Good resolution and chromatographic performance were observed.

Groundwater samples were concentrated to 1ml for Pesticides from an initial volume of 250mls by Method 3510C and concentrated to 1ml final volume. Low-level PCB analysis was extracted from 1000ml and concentrated to 5ml to achieve lower reporting levels. This is acceptable practice and method compliant. The laboratory reporting levels reflect the appropriate extraction concentration volumes.

4.0 Metals by ICPMS/Cold Vapor SW846 Methods 6020B/7470A

The following method criteria were reviewed: holding times, CRDL standards, calibration, blanks, MS, laboratory duplicates, LCS, interference check sample, ICPMS serial dilutions and sample results verification. Metals results are valid and usable with the appropriate qualifiers as notated in the following text:

4.1 Holding Times

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J." The non-detects (sample quantitation limits) are required to be flagged as estimated, "J," or unusable, "R," if the holding times are grossly exceeded.

Groundwater samples were digested and analyzed for Metals within the method required holding times and the technical holding times for data validation. No qualifications were applied based upon holding time criteria.

4.2 Calibration (ICV/CCV)

Satisfactory instrument calibration is established to ensure that the instruments can produce acceptable quantitative data. An initial calibration

demonstrates that the instruments can give acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instruments are giving satisfactory sequential performance and that the initial calibration is still valid.

The ICPMS and Mercury instruments were calibrated utilizing a minimum of a four-point curve in addition to blanks at the beginning of each analytical run. The calibrations have been determined to be acceptable, yielding correlation coefficients of 0.995 or greater.

For ICPMS analysis, satisfactory instrument performance near the Contract Required Detection Limit (CRDL) was demonstrated by analyzing a CRDL standard at the beginning and end of the analytical run. The instruments were calibrated properly by analyzing the CRDL solution at the correct levels and analyzed at the required frequency at the beginning and end of each analytical run. All recoveries were within acceptable limits of 90-110 % for initial calibration pertaining to field samples. Continuing calibrations were within acceptable limits of 90-110% recovery of the true values for ICPMS and Mercury (80-120%) for all field samples. Acceptable low level ICV/CCV was analyzed. No qualifications were applied based upon ICV/CCV analysis.

4.3 Blanks

Quality assurance (QA) blanks, i.e., method, field or preparation blanks are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Preparation blanks measure laboratory contamination. Field blanks measure crosscontamination of samples during field operations.

All digestion/prep/ICB/CCB blanks were generated within acceptable limits yielding final concentrations less than the CRDL (J qualified by the laboratory). CCB 410-205243/64 yielded low concentration of Lead (0.170 ug/L) and Manganese (0.636 ug/L). CCB 410-205243/73 (Lead – 0.137 ug/L), CCB 410-205243/85 (Lead – 0.100 ug/L and Manganese 1.19 ug/L), CCB 410-204841/150 (Manganese 0.705 ug/L), CCB 410-204841/169 (Lead 0.154 ug/L) and CCB 410-204841/162 (Manganese – 0.990 ug/L) also yielded acceptable detections.

No target elements were detected in the method blanks or FB_20211201. No qualifiers were required. Sample results are greater than the CCB blank levels.

4.4 Spiked Sample Recovery

The spike data are generated to determine the long terms precision and accuracy of the analytical method in various matrices.

Aqueous spike recoveries are qualified based on the criteria below:

<30% - "R" all detects and non-detects

Between 30%-74% - results >/=MDL "J" and non-detects "UJ"

Between 126-150% - results >/=MDL "J" and

>150% - results >/= MDL "R"

Aqueous MS/MSD was performed on OU3-MW2_20211201. Acceptable recovery values were obtained where the sample concentration was >4x the spike level (Manganese). Acceptable post digestion spike was analyzed. Recovery values for Manganese (84%), and Silver (83%) was outside 85-115%. Results for Manganese have been qualified, "J" and Silver; "UJ." No additional qualifications to the data were required.

Batch MS/MSD was also provided in the lab report. Data was not qualified based on samples collected from a different site.

4.5 Laboratory/Field Duplicates

The laboratory uses duplicate sample determinations to demonstrate acceptable method precision at the time of analysis. Duplicate analyses are also performed to generate data to determine the long-term precision of the analytical method on various matrices.

Laboratory Duplicates:

RPD >20% but <100% - J detected concentrations

RPD >/=100% - R all detected and non-detected concentrations

Laboratory duplicate of OU3-MW2_20211201 resulted in acceptable RPD for all reported elements.

Field Duplicates:

RPD >/=35% but <120% - qualify sample and duplicate results >/= CRQL "J" RPD >/= 120% - rejected sample and duplicate results >/= CRQL "R"

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Field duplicate analysis was conducted on OU2-MW1_20211201 as OUX-MWX_20211201. Precision is acceptable for detected metals. Low concentration of Beryllium (0.13 ug/L) – "J" qualified by the laboratory was detected in the parent sample and not in the field duplicate (0.50 U). No additional qualifiers were applied.

4.6 Laboratory Control Sample

The laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous and solid Laboratory Control samples shall be analyzed for each analyte utilizing the same sample preparation, analytical methods and QA/QC procedures as employed for the samples.

The LCS was analyzed and reported for ICPMS and Mercury. Recoveries were within the acceptable limits for Metals analyses (80-120%).

4.7 Interference Check Sample

The interference check sample (ICS) verifies the laboratory's interelement and background correction factors. The ICS consists of two solutions A and AB. Solution A consists of interference, and solution AB consists of the analytes mixed with interferents.

SW846 Method 6020 requires solution A and solution AB to be analyzed separately. The recoveries for the ICPMS interference check sample were all within the acceptable limits of 80-120%. No data qualifications were made based upon ICS analysis.

4.8 ICPMS Serial Dilution

The serial dilution of samples quantitated by ICP determines whether significant physical or chemical interferences exist due to sample matrix. An ICP serial dilution analysis must be performed on a sample for each group of samples with a similar matrix type and concentration, or for each Sample Delivery Group (SDG), whichever is more frequent.

Acceptable ICPMS serial dilutions were performed at a 5-fold dilution as required by the method where the initial concentration is equal or greater than 50x MDL. All serial dilution analyses on OU3-MW2_20211201 agrees within a 10% difference of the original determination after correction for dilution for all reported elements.

4.9 Sample Results Verification

Analyte quantitation was generated in accordance with protocols. The raw data was verified and found within the linear range of each instrument used for quantitation. Raw data supplied corresponds with reported values. Verification of the calculations yielded reported results. Acceptable internal standard intensity was observed. Samples were reanalyzed to obtained Manganese within the instruments linear calibration range as follows:

OU2-MW1_20211201 - 1:10 OU3-MW2_20211201 - 1:20 OUX-MWX_20211201 - 1:10

4.10 Overall Assessment of Data

The data generated were of acceptable quality. Results are usable at the concentrations presented in the validated spreadsheet and on the Form I's.

Reviewer's Signature Foll' O. Bly Date 07/04/2022

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

Appendix A
Chain of Custody Documents
And Sample Receipt Checklists

💸 eurofins 471265 Chain of Custody Record

Environment Testing TestAmerica

16:20 TAL-8210 TOCHOCO EXAMP UDE Sample Specific Notes: COCs Sample Disposal (A fee may be assessed if samples are retained longer than 1 month For Lab Use Only Job / SDG No.: V ab Sampling: Walk-in Client: Pate/Time. 12-1-2 Therm ID No. Date/Time: Date/Time Archive for Corrd Date: 10/1134 FU Company Disposal by Lab Cooler Temp. (°C), Obs'd: 460-248245 Chain of Custody Site Contact: 5 5 CLECA Received in Labyraton 27/7/ メメメメメ 火 火 3 Filtered Sample (Y/N)
Perform MS/MSD (Y/N)
Portor
Portor
Portor
Portor
Portor
Portor Return to Client XXX Lab Contact: 00 RCRA 16:0 Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the NPDES # of Cont. Date/Time: Date/Time: WORKING DAYS Project Manager: U フスパムの CARCES 12-2-3) LUNGS I CHAN Matrix Sign 33 Analysis Turnaround Time Regulatory Program: Dw Type (C=Comp, G=Grab) Sample TAT if different from Balow 2 weeks 1 week 2 days 1 day 13.75 STS EXX Sample Time Most in COOC CALENDAR DAYS Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Company Custody Seal No. Poison B Company: 21/21 Tel/Email: Sample Date DOOL Special Instructions/QC Requirements & Comments: Comments Section if the lab is to dispose of the sample OCHOCI XTW-XTO 00000 1 Desulbal Sample Identification 10011000 Client Contact 001000 RKRAP Possible Hazard Identification: CUM-りいかしいいの Custody Seals Intact Company Name: Relincatished by: Non-Hazard City/State/Zip. Project Name: 0 vddress: ##: O Fax ite 12/15/2021 Page 3530 of 3534

\$900 B 5/1/2

Address:

Eurofins TestAmerica, Edison

777 New Durham Road Edison, NJ 08817

Phone: 732-549-3900 Fax: 732-549-3679

Chain of Custody Record

🔆 eurofins

Enghooment Testing

N - None
O - AANBOZ
P - NAZO4S
O - NAZO4S
O - NAZO503
R - NAZS203
S - HZSC4
I - TSP Dodecahydrale
U - Acelone
W - PH 4.5
Z - other (specify) Special Instructions/Note: Preservation Codes: A - HCL
B - NaOH
B - NaOH
B - Ninc Acid
D - Ninc Acid
F - NeGH
F - MeGH
F - Amchlor
I - Ice
J - DI Water
K - EDTA
L - EDA 460-248245-1 Page 1 of 1 Job ≆: 460-63547.1 খ n Total Number of compliners 67 m State of Origin: New York **Analysis Requested** Haas, Melissa
E-Mait
Melissa. Haas@E-urofinset.com
Accreditations : required (See note):
NELAP - New York × × × YNDSM Ger9_A014T/A014T × × × × × × SOCCHOOSE NY PART 375 Metals × × × BOSZA_LUJS10C_LL PCBs (off to eat) GSM/Bid myohe's Field Fillered Sample (Yes or No) Preservation Code: Water Water Water Water Waler Water Matrix (С=сошр, G=grab) Sample Type MSD S Eastern 13:50 Eastern 11:35 Sample 13:50 Eastern 13:50 Eastern Eastern TIMe TAT Requested (days): Due Date Requested: 12/13/2021 Sample Date 12/1/21 12/1/21 12/1/21 12/1/21 12/1/21 12/1/21 Project #* 46018216 WOR Client Information (Sub Contract Lab) OU3-MW2_20211201 (460-248245-2MSD) Sample Identification - Client ID (Lab ID) Eurofins Lancaster Laboratories Environm DU3-MW2_20211201 (460-248245-2MS) OUX-MWX_20211201 (460-248245-4) OU2-MW1_20211201 (460-248245-1) OU3-MW2_20211201 (460-248245-2) Adelaar Concord - Monticello, NY FB_20211201 (460-248245-3) 2425 New Holland Pike, Shipping/Receiving 717-656-2300(Tel) State, Zip: PA, 17601 ancaster

Note: Since abonatory accreditations are subject to change, Eurofina TeatAmerica places the ownership of method, analysis & accreditation compliance upon out subcortact laboratory or other in the State of Organ islated above for analysis/rests/metric being alrests/anethre must be shipped back to the Eurofina TestAmerica Islonatory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofina TestAmerica TestAmerica.

Possible Hazard Identification	6	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	samples are retained longer than 1 month)	
Unconfirmed		Return To Client Disposel By Lab	Lab Archive For Months	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Doliverable Rank: 1	Special Instructions/QC Requirements:		
Empty Kit Relinquished by:	Date: Time:		Method of Shipmant.	
Relinquished by:	Battiffer Company STACK	Racerity by	Date Times 6/2 1700 Company	
Reinquished by.	DaidTime 6/2 3025 Company	Received &y.	Воја Тубо 7	
Relinquished by:	Овівтине	Received by MC	Dail Malle M 20138 July	
Custody Seals Intact: Custody Seal No.:		Coom; Temperatore(s) "C and Other Remarks:	7.5-4.0	

Page 3532 of 3534

Login Sample Receipt Checklist

Client: AKRF Inc Job Number: 460-248245-1

Login Number: 248245

List Source: Eurofins TestAmerica, Edison

List Number: 1

Creator: Haas, Melissa

	Question	Answer	Comment
	Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
	The cooler's custody seal, if present, is intact.	True	
	Sample custody seals, if present, are intact.	True	
	The cooler or samples do not appear to have been compromised or tampered with.	True	
	Samples were received on ice.	True	
	Cooler Temperature is acceptable.	True	
	Cooler Temperature is recorded.	True	
	COC is present.	True	
	COC is filled out in ink and legible.	True	
	COC is filled out with all pertinent information.	True	
	Is the Field Sampler's name present on COC?	True	
1. 2	There are no discrepancies between the containers received and the COC,	True	SECTION ASSESSMENT OF THE PROPERTY.
	Samples are received within Holding Time (excluding tests with immediate HTs)	True	
	Sample containers have legible labels.	True	
	Containers are not broken or leaking.	True	
	Sample collection date/times are provided.	True	
	Appropriate sample containers are used,	True	
	Sample bottles are completely filled.	True	
	Sample Preservation Verified.	True	
	There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
	Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
	Multiphasic samples are not present.	True	
	Samples do not require splitting or compositing.	True	
	Residual Chlorine Checked.	N/A	

Login Sample Receipt Checklist

Client: AKRF Inc Job Number: 460-248245-1

Login Number: 248245 List Source: Eurofins Lancaster Laboratories Env, LLC List Number: 2

List Creation: 12/06/21 09:25 PM

Creator: Metzger, Katherine A

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	Not present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	CONTRACTOR WAS DULY ASSET OF THE CONTRACTOR
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	

Appendix B Case Narrative

CASE NARRATIVE

Client: AKRF Inc

Project: Adelaar Concord - Monticello, NY

Report Number: 460-248245-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 12/2/2021 7:00 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 1.5° C and 2.1° C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples OU2-MW1_20211201 (460-248245-1), FB_20211201 (460-248245-3), OUX-MWX_20211201 (460-248245-4) and TB_20211201 (460-248245-5) were analyzed for Volatile Organic Compounds (GC/MS) in accordance with EPA SW-846 Method 8260D. The samples were analyzed on 12/04/2021.

No difficulties were encountered during the Volatiles analysis.

All quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples OU2-MW1_20211201 (460-248245-1), FB_20211201 (460-248245-3) and OUX-MWX_20211201 (460-248245-4) were analyzed for semivolatile organic compounds (GC/MS) in accordance with EPA SW-846 Methods 8270E. The samples were prepared on 12/04/2021 and analyzed on 12/04/2021 and 12/05/2021.

The continuing calibration verification (CCV) analyzed in batch 460-817005 was outside the method criteria for the following analyte(s): Acenaphthene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

No other difficulties were encountered during the semivolatiles analysis.

All other quality control parameters were within the acceptance limits.

PESTICIDES

Samples OU2-MW1_20211201 (460-248245-1), FB_20211201 (460-248245-3) and OUX-MWX_20211201 (460-248245-4) were analyzed for Pesticides in accordance with EPA SW-846 Methods 8081B. The samples were prepared on 12/04/2021 and analyzed on 12/06/2021.

No difficulties were encountered during the pesticides analysis.

All quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples OU2-MW1_20211201 (460-248245-1), FB_20211201 (460-248245-3) and OUX-MWX_20211201 (460-248245-4) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082A. The samples were prepared and analyzed on 12/08/2021.

for 713/m 12/15/2021

Surrogate recovery (DCB Decachlorobiphenyl and DCB Decachlorobiphenyl) for the following sample was outside control limits: OUX-MWX_20211201 (460-248245-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Refer to the QC report for details.

No other difficulties were encountered during the PCBs analysis.

All other quality control parameters were within the acceptance limits.

TOTAL METALS (ICP/MS)

Samples OU2-MW1_20211201 (460-248245-1), OU3-MW2_20211201 (460-248245-2), FB_20211201 (460-248245-3) and OUX-MWX_20211201 (460-248245-4) were analyzed for Total Metals (ICP/MS) in accordance with EPA SW-846 Method 6020B. The samples were prepared on 12/12/2021 and analyzed on 12/13/2021 and 12/14/2021.

Manganese failed the recovery criteria high for the MS of sample OU3-MW2_20211201MS (460-248245-2) in batch 410-204841.

Manganese failed the recovery criteria low for the MSD of sample OU3-MW2 20211201MSD (460-248245-2) in batch 410-204841.

Copper exceeded the RPD limit for the duplicate of sample 410-65777-3. for the duplicate of sample OU3-MW2_20211201DU (460-248245-2). Refer to the QC report for details.

Samples OU2-MW1_20211201 (460-248245-1)[10X], OU3-MW2_20211201 (460-248245-2)[20X] and OUX-MWX_20211201 (460-248245-4)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Refer to the QC report for details.

No other difficulties were encountered during the Total Metals (ICP/MS) analysis.

All other quality control parameters were within the acceptance limits.

TOTAL MERCURY

Samples OU2-MW1_20211201 (460-248245-1), OU3-MW2_20211201 (460-248245-2), FB_20211201 (460-248245-3) and OUX-MWX_20211201 (460-248245-4) were analyzed for total mercury in accordance with EPA SW-846 Methods 7470A. The samples were prepared on 12/07/2021 and analyzed on 12/07/2021 and 12/08/2021.

No difficulties were encountered during the Hg analysis.

All quality control parameters were within the acceptance limits.

for 7131m

partitions of Physics and Country and Country and Country Coun

making a street system bulker

Job Number: 460-248245-1

Job Description: Adelaar Concord - Monticello, NY

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Approved for release. Melissa Haas Senior Project Manager 12/15/2021 3:59 PM

Melissa Haas

Appendix C Validated Form I's With Qualifications

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-248245-1 SDG No.: Client Sample ID: OU2-MW1 20211201 Lab Sample ID: 460-248245-1 Matrix: Water Lab File ID: T58945.D Analysis Method: 8260D Date Collected: 12/01/2021 11:25 Sample wt/vol: 5(mL) Date Analyzed: 12/04/2021 12:34 Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm) % Moisture: Level: (low/med) Low

Units: ug/L

CAS NO. COMPOUND NAME RESULT 0 RL MDL 71-55-6 1.0 U 1.0 0.24 1,1,1-Trichloroethane 75-34-3 1,1-Dichloroethane 1.0 1.0 0.26 75-35-4 1,1-Dichloroethene 1.0 U 1.0 0.26 95-63-6 1.0 0.37 1,2,4-Trimethylbenzene 8.3 95-50-1 0.21 1,2-Dichlorobenzène 1.0 U 1.0 107-06-2 0.43 1,2-Dichloroethane 1.0 U 1.0 0.33 108-67-8 1,3,5-Trimethylbenzene 1.0 U 1.0 541-73-1 0.34 1,3-Dichlorobenzene 1.0 1.0 0.33 106-46-7 1.0 1,4-Dichlorobenzene 1.0 U 123-91-1 1,4-Dioxane 50 U 50 28 78-93-3 2-Butanone (MEK) 5.0 U 5.0 1.9 67-64-1 Acetone 5.0 U 5.0 4.4 71-43-2 Benzene 1.0 1.0 0.20 56-23-5 Carbon tetrachloride 1.0 1.0 0.21 108-90-7 1.0 0.38 Chlorobenzene 1.0 67-66-3 Chloroform 1.0 1.0 0.33 156-59-2 cis-1,2-Dichloroethene 1.0 U 0.22 1.0 100-41-4 3.7 0.30 Ethylbenzene 1.0 1634-04-4 Methyl tert-butyl ether 0.22 1.0 1.0 75-09-2 Methylene Chloride 0.32 1.0 1.0 104-51-8 0.32 n-Butylbenzene 6.5 1.0 103-65-1 N-Propylbenzene 9.5 1.0 0.32 135-98-8 2.7 0.37 sec-Butylbenzene 1.0 98-06-6 tert-Butylbenzene 1.0 1.0 0.34 127-18-4 Tetrachloroethene 1.0 U 1.0 0.25 108-88-3 0.38 Toluene 1.0 IJ 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 1.0 0.24 79-01-6 Trichloroethene 1.0 U 1.0 0.31 75-01-4 Vinyl chloride U 0.17 1.0 1.0 1330-20-7 Xylenes, Total 0.80 J 2.0 0.65

Analysis Batch No.: 816929

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-248245-1 SDG No.: Client Sample ID: FB 20211201 Lab Sample ID: 460-248245-3 Matrix: Water Lab File ID: T58936.D Analysis Method: 8260D Date Collected: 12/01/2021 __11:35 Sample wt/vol: 5(mL) Date Analyzed: 12/04/2021 09:23 Soil Aliquot Vol: Dilution Factor: 1 GC Column: DB-624 ID: 0.18 (mm) Soil Extract Vol.: % Moisture: Level: (low/med) Low Analysis Batch No.: 816929 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.26
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.26
95-63-6	1,2,4-Trimethylbenzene	1.0	U	1.0	0.37
95-50-1	1,2-Dichlorobenzene	1.0	Ü	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.43
108-67-8	1,3,5-Trimethylbenzene	1.0	U	1.0	0.33
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.34
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.33
123-91-1	1,4-Dioxane	50	U	50	28
78-93-3	2-Butanone (MEK)	5.0	U	5.0	1.9
67-64-1	Acetone	5.0	U	5.0	4.4
71-43-2	Benzene	1.0	U	1.0	0.20
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.21
108-90-7	Chlorobenzene	1.0	U	1.0	0.38
67-66-3	Chloroform	1.0	U	1.0	0.33
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.22
100-41-4	Ethylbenzene	1.0	U	1.0	0.30
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.22
75-09-2	Methylene Chloride	1.0	U	1.0	0.32
104-51-8	n-Butylbenzene	1.0	U	1.0	0.32
103-65-1	N-Propylbenzene	1.0	U	1.0	0.32
135-98-8	sec-Butylbenzene	1.0	U	1.0	0.37
98-06-6	tert-Butylbenzene	1.0	U	1.0	0.34
127-18-4	Tetrachloroethene	1.0	U	1.0	0.25
108-88-3	Toluene	1.0	U	1.0	0.38
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.24
79-01-6	Trichloroethene	1.0	U	1.0	0.31
75-01-4	Vinyl chloride	1.0	U	1.0	0.17
1330-20-7	Xylenes, Total	2.0	U	2.0	0.65

35 1

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-248245-1

SDG No.:

Client Sample ID: OUX-MWX 20211201

Lab Sample ID: 460-248245-4

Matrix: Water OU2-MUI_2021(201 Lab File ID: T58946.D

Analysis Method: 8260D

Date Collected: 12/01/2021 00:00

Sample wt/vol: 5(mL)

Date Analyzed: 12/04/2021 12:55

Soil Aliquot Vol: Soil Extract Vol.: Dilution Factor: 1

GC Column: DB-624

ID: 0.18 (mm)

RL

1.0

MDL

0.24

0.26

100

% Moisture:

Level: (low/med) Low

2.8

1.0

1.0 U

1.0 U

1.0 U

1.0 U

1.0 U

0.81 J

Units: ug/L

Analysis Batch No.: 816929

sec-Butylbenzene

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

Toluene

CAS NO. COMPOUND NAME RESULT 71-55-6 1.0 U 1,1,1-Trichloroethane 75-34-3 1,1-Dichloroethane 1.0 U

75-35-4 1,1-Dichloroethene 1.0 U 1.0 0.26 95-63-6 1,2,4-Trimethylbenzene 8.5 1.0 0.37 1.0" U 95-50-1 1,2-Dichloropenzène 0.21 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 0.43 1.0 U 0.33 108-67-8 1,3,5-Trimethylbenzene 1.0 541-73-1 1.0 0.34 1,3-Dichlorobenzene 1.0 106-46-7 1.0 U 1.0 0.33 1,4-Dichlorobenzene 123-91-1 1,4-Dioxane 50 U 50 28 78-93-3 5.0 U 1.9 2-Butanone (MEK) 5.0 67-64-1 5.0 U 4.4 Acetone 5.0 71-43-2 Benzene 1.0 U 1.0 0.20 56-23-5 Carbon tetrachloride 1.0 U 1.0 0.21 108-90-7 Chlorobenzene 1.0 U 1.0 0.38 67-66-3 Chloroform 1.0 U 1.0 0.33 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.22 100-41-4 3.6 0.30 Ethylbenzene 1.0 1634-04-4 Methyl tert-butyl ether 1.0 U 1.0 0.22 75-09-2 Methylene Chloride 1.0 1.0 0.32 104-51-8 6.7 0.32 n-Butylbenzene 1.0 103-65-1 N-Propylbenzene 9.8 1.0 0.32

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

135-98-8

98-06-6

127-18-4

108-88-3

156-60-5

79-01-6

75-01-4

1330-20-7

0.37

0.34

0.25

0.38

0.24

0.31

0.17

0.65

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-248245-1 SDG No.: Client Sample ID: TB 20211201 Lab Sample ID: 460-248245-5 Matrix: Water Lab File ID: T58937.D Analysis Method: 8260D Date Collected: 12/01/2021 00:00 Sample wt/vol: 5(mL) Date Analyzed: 12/04/2021 09:44 Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: DB-624 ID: 0.18(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 816929 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.26
75-35-4	1,1-Dichloroethene	1.0	Ū	1.0	0.26
95-63-6	1,2,4-Trimethylbenzene	1.0	U	1.0	0.37
95-50-1	1,2-Dichlorobenzène	1.0	Ü	1.0	0.21
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.43
108-67-8	1,3,5-Trimethylbenzene	1.0	U	1.0	0.33
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.34
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.33
123-91-1	1,4-Dioxane	50	U	50	28
78-93-3	2-Butanone (MEK)	5.0	U	5.0	1.9
67-64-1	Acetone	5.0	U	5.0	4.4
71-43-2	Benzene	1.0	U	1.0	0.20
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.21
108-90-7	Chlorobenzene	1.0	U	1.0	0.38
67-66-3	Chloroform	1.0	U	1.0	0.33
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.22
100-41-4	Ethylbenzene	1.0	U	1.0	0.30
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.22
75-09-2	Methylene Chloride	1.0	U	1.0	0.32
104-51-8	n-Butylbenzene	1.0	U	1.0	0.32
103-65-1	N-Propylbenzene	1.0	U	1.0	0.32
135-98-8	sec-Butylbenzene	1.0	U	1.0	0.37
98-06-6	tert-Butylbenzene	1.0	U	1.0	0.34
127-18-4	Tetrachloroethene	1.0	U	1.0	0.25
108-88-3	Toluene	1.0	U	1.0	0.38
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.24
79-01-6	Trichloroethene	1.0	U	1.0	0.31
75-01-4	Vinyl chloride	1.0	U	1.0	0.17
1330-20-7	Xylenes, Total	2.0	U	2.0	0.65

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-248245-1

SDG No.:

Client Sample ID: OU2-MW1_20211201 Lab Sample ID: 460-248245-1

Matrix: Water Lab File ID: A184540.D

Analysis Method: 8270E Date Collected: 12/01/2021 11:25

Extract. Method: 3510C Date Extracted: 12/04/2021 09:29

Sample wt/vol: 250(mL) Date Analyzed: 12/04/2021 23:35

Con. Extract Vol.: 2(mL) Dilution Factor: 1

Injection Volume: 5(uL) Level: (low/med) Low % Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 817005 Units: ug/L

CAS NO	COMPOUND NAME	RESULT	Q	RL	MDL
95-48-7	2-Methylphenol	10	U	10	0.67
15831-10-4	3 & 4 Methylphenol	10	U	10	0.64
83-32-9	Acenaphthene	10	# 11-	10	1.1
208-96-8	Acenaphthylene	10	U	10	0.82
120-12-7	Anthracene	10	U	10	1.3
56-55-3	Benzo[a]anthracene	1.0	U	1.0	0.59
50-32-8	Benzo[a]pyrene	1.0	U	1.0	0.41
205-99-2	Benzo[b]fluoranthene	2.0	U	2.0	0.68
191-24-2	Benzo[g,h,i]perylene	10	Ŭ	10	0.70
207-08-9	Benzo[k]fluoranthene	1.0	U	1.0	0.67
218-01-9	Chrysene	2.0	U	2.0	0.91
53-70-3	Dibenz(a,h)anthracene	1.0	U	1.0	0.72
132-64-9	Dibenzofuran	10	U	10	1.1
206-44-0	Fluoranthene	10	U	10	0.84
86-73-7	Fluorene	10	U	10	0.91
118-74-1	Hexachlorobenzene	1.0	U	1.0	0.40
193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94
91-20-3	Naphthalene	1.4	J	2.0	0.54
87-86-5	Pentachlorophenol	20	U	20	1.4
85-01-8	Phenanthrene	10	U	10	1.3
108-95-2	Phenol	10	U	10	0.29
129-00-0	Pyrene	10	U	10	1.6

CAS NO.	SURROGATE	%REC	Q	LIMITS
118-79-6	2,4,6-Tribromophenol (Surr)	86		33-150
321-60-8	2-Fluorobiphenyl	72		42-127
367-12-4	2-Fluorophenol (Surr)	37		18-72
4165-60-0	Nitrobenzene-d5 (Surr)	84		46-137
4165-62-2	Phenol-d5 (Surr)	23		10-50
1718-51-0	Terphenyl-d14 (Surr)	49		39-150

gor7BM

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-248245-1

SDG No.:

Client Sample ID: FB 20211201 Lab Sample ID: 460-248245-3

Matrix: Water Lab File ID: A184541.D

Analysis Method: 8270E Date Collected: 12/01/2021 11:35

Extract. Method: 3510C Date Extracted: 12/04/2021 09:29

Sample wt/vol: 250(mL) Date Analyzed: 12/04/2021 23:56

Con. Extract Vol.: 2(mL) Dilution Factor: 1

Injection Volume: 5(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 817005 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-48-7	2-Methylphenol	10	U	10	0.67
15831-10-4	3 & 4 Methylphenol	10	U	10	0.64
83-32-9	Acenaphthene	10	4-1	10	1.1
208-96-8	Acenaphthylene	10	U	10	0.82
120-12-7	Anthracene	10	U	10	1.3
56-55-3	Benzo[a]anthracene	1.0	U	1.0	0.59
50-32-8	Benzo[a]pyrene	1.0	U	1.0	0.41
205-99-2	Benzo[b]fluoranthene	2.0	U	2.0	0.68
191-24-2	Benzo[g,h,i]perylene	10	U	10	0.70
207-08-9	Benzo[k]fluoranthene	1.0	U	1.0	0.67
218-01-9	Chrysene	2.0	U	2.0	0.91
53-70-3	Dibenz(a,h)anthracene	1.0	U	1.0	0.72
132-64-9	Dibenzofuran	10	U	10	1.1
206-44-0	Fluoranthene	10	U	10	0.84
86-73-7	Fluorene	10	U	10	0.91
118-74-1	Hexachlorobenzene	1.0	U	1.0	0.40
193-39-5	<pre>Indeno[1,2,3-cd]pyrene</pre>	2.0	U	2.0	0.94
91-20-3	Naphthalene	2.0	U	2.0	0.54
87-86-5	Pentachlorophenol	20	U	20	1.4
85-01-8	Phenanthrene	10	U	10	1.3
108-95-2	Phenol	10	U	10	0.29
129-00-0	Pyrene	10	U	10	1.6

CAS NO.	SURROGATE	%REC	Q	LIMITS
118-79-6	2,4,6-Tribromophenol (Surr)	107		33-150
321-60-8	2-Fluorobiphenyl	87		42-127
367-12-4	2-Fluorophenol (Surr)	44		18-72
4165-60-0	Nitrobenzene-d5 (Surr)	100		46-137
4165-62-2	Phenol-d5 (Surr)	29		10-50
1718-51-0	Terphenyl-d14 (Surr)	93		39-150

8017BIM

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-248245-1

SDG No.:

Client Sample ID: OUX-MWX 20211201

Matrix: Water 002-4w1-20211201

Analysis Method: 8270E

Extract. Method: 3510C

Sample wt/vol: 250(mL)

Con. Extract Vol.: 2(mL)

Injection Volume: 5(uL)

% Moisture:

Analysis Batch No.: 817005

Lab Sample ID: 460-248245-4

Lab File ID: A184542.D

Date Collected: 12/01/2021 00:00

Date Extracted: 12/04/2021 09:29

Date Analyzed: 12/05/2021 00:17

Dilution Factor: 1

Level: (low/med) Low

GPC Cleanup: (Y/N) N

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-48-7	2-Methylphenol	10	U	10	0.67
15831-10-4	3 & 4 Methylphenol	10	U	10	0.64
83-32-9	Acenaphthene	10	-or ()	10	1.1
208-96-8	Acenaphthylene	10	U	10	0.82
120-12-7	Anthracene	10	U	10	1.3
56-55-3	Benzo[a]anthracene	1.0	U	1.0	0.59
50-32-8	Benzo[a]pyrene	1.0	U	1.0	0.41
205-99-2	Benzo[b]fluoranthene	2.0	U	2.0	0.68
191-24-2	Benzo[g,h,i]perylene	10	U	10	0.70
207-08-9	Benzo[k]fluoranthene	1.0	U	1.0	0.67
218-01-9	Chrysene	2.0	U	2.0	0.91
53-70-3	Dibenz(a,h)anthracene	1.0	U	1.0	0.72
132-64-9	Dibenzofuran	10	U	10	1.1
206-44-0	Fluoranthene	10	U	10	0.84
86-73-7	Fluorene	10	U	10	0.91
118-74-1	Hexachlorobenzene	1.0	U	1.0	0.40
193-39-5	Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94
91-20-3	Naphthalene	1.1	J	2.0	0.54
87-86-5	Pentachlorophenol	20	U	20	1.4
85-01-8	Phenanthrene	10	Ü	10	1.3
108-95-2	Phenol	10	U	10	0.29
129-00-0	Pyrene	10	U	10	1.6

CAS NO.	SURROGATE	%REC	Q	LIMITS
118-79-6	2,4,6-Tribromophenol (Surr)	89		33-150
321-60-8	2-Fluorobiphenyl	73		42-127
367-12-4	2-Fluorophenol (Surr)	37		18-72
4165-60-0	Nitrobenzene-d5 (Surr)	81		46-137
4165-62-2	Phenol-d5 (Surr)	23		10-50
1718-51-0	Terphenyl-d14 (Surr)	46		39-150

for 7/3/2

FORM I PESTICIDES ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-248245-1

SDG No.:

Client Sample ID: 0U2-MW1 20211201 Lab Sample ID: 460-248245-1

Matrix: Water Lab File ID: 5F956332.D

Analysis Method: 8081B Date Collected: 12/01/2021 11:25

Extraction Method: 3510C Date Extracted: 12/04/2021 09:58

Sample wt/vol: 250(mL) Date Analyzed: 12/06/2021 05:20

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 1(uL) GC Column: Rtx-CLP ID: 0.53(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 817175 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	0.020	U	0.020	0.0060
72-55-9	4,4'-DDE	0.020	U	0.020	0.0020
50-29-3	4,4'-DDT	0.020	U	0.020	0.0040
309-00-2	Aldrin	0.020	U	0.020	0.0030
319-84-6	alpha-BHC	0.020	U	0.020	0.0070
319-85-7	beta-BHC	0.020	U	0.020	0.015
12789-03-6	Chlordane (technical)	0.50	U	0.50	0.055
5103-71-9	cis-Chlordane	0.020	U	0.020	0.0020
319-86-8	delta-BHC	0.020	U	0.020	0.0050
60-57-1	Dieldrin	0.020	U	0.020	0.0030
959-98-8	Endosulfan I	0.020	U	0.020	0.0020
33213-65-9	Endosulfan II	0.020	U	0.020	0.0040
1031-07-8	Endosulfan sulfate	0.020	U	0.020	0.0060
72-20-8	Endrin	0.020	Ū	0.020	0.0040
7421-93-4	Endrin aldehyde	0.020	U	0.020	0.0080
53494-70-5	Endrin ketone	0.020	U	0.020	0.0080
58-89-9	gamma-BHC (Lindane)	0.020	U	0.020	0.012
76-44-8	Heptachlor	0.020	U	0.020	0.0030
1024-57-3	Heptachlor epoxide	0.020	U	0.020	0.0050
72-43-5	Methoxychlor	0.020	U	0.020	0.0040
8001-35-2	Toxaphene	0.50	U	0.50	0.11

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	64		10-150
877-09-8	Tetrachloro-m-xylene	78		10-150

FORM I PESTICIDES ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-248245-1

SDG No.:

Client Sample ID: FB 20211201 Lab Sample ID: 460-248245-3

Matrix: Water Lab File ID: 5F956333.D

Analysis Method: 8081B Date Collected: 12/01/2021 11:35

Extraction Method: 3510C Date Extracted: 12/04/2021 09:58

Sample wt/vol: 250(mL) Date Analyzed: 12/06/2021 05:35

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 1(uL) GC Column: Rtx-CLP ID: 0.53(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 817175 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	0.020	U	0.020	0.0060
72-55-9	4,4'-DDE	0.020	U	0.020	0.0020
50-29-3	4,4'-DDT	0,020	U	0.020	0.0040
309-00-2	Aldrin	0.020	U	0.020	0.0030
319-84-6	alpha-BHC	0.020	U	0.020	0.0070
319-85-7	beta-BHC	0.020	Ū	0.020	0.015
12789-03-6	Chlordane (technical)	0.50	U	0.50	0.055
5103-71-9	cis-Chlordane	0.020	U	0.020	0.0020
319-86-8	delta-BHC	0.020	U	0.020	0.0050
60-57-1	Dieldrin	0.020	U	0.020	0.0030
959-98-8	Endosulfan I	0.020	U	0.020	0.0020
33213-65-9	Endosulfan II	0.020	U	0.020	0.0040
1031-07-8	Endosulfan sulfate	0.020	U	0.020	0.0060
72-20-8	Endrin	0.020	U	0.020	0.0040
7421-93-4	Endrin aldehyde	0.020	U	0.020	0.0080
53494-70-5	Endrin ketone	0.020	U	0.020	0.0080
58-89-9	gamma-BHC (Lindane)	0.020	U	0.020	0.012
76-44-8	Heptachlor	0.020	U	0.020	0.0030
1024-57-3	Heptachlor epoxide	0.020	U	0.020	0.0050
72-43-5	Methoxychlor	0.020	U	0.020	0.0040
8001-35-2	Toxaphene	0.50	U	0.50	0.11

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	85		10-150
877-09-8	Tetrachloro-m-xylene	84		10-150

FORM I PESTICIDES ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-248245-1

SDG No.:

Client Sample ID: OUX-MWX 20211201

Matrix: Water OUL-HWI-204120

Analysis Method: 8081B

Extraction Method: 3510C

Sample wt/vol: 250(mL)

Con. Extract Vol.: 1(mL)

Injection Volume: 1(uL)

% Moisture:

Analysis Batch No.: 817169

Lab Sample ID: 460-248245-4

Lab File ID: PEST0033130.D

Date Collected: 12/01/2021 00:00

Date Extracted: 12/04/2021 09:58

Date Analyzed: 12/06/2021 05:12

Dilution Factor: 1

GC Column: Rtx-CLP ID: 0.53(mm)

GPC Cleanup: (Y/N) N

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
72-54-8	4,4'-DDD	0.020	U	0.020	0.0060
72-55-9	4,4'-DDE	0.020	U	0.020	0.0020
50-29-3	: 4,4'-DDT	0.020	L U	0.020	0.0040
309-00-2	Aldrin	0.020	U	0.020	0.0030
319-84-6	alpha-BHC	0.020	U	0.020	0.0070
319-85-7	beta-BHC	0.020	U	0.020	0.015
12789-03-6	Chlordane (technical)	0.50	U	0.50	0.055
5103-71-9	cis-Chlordane	0.020	U	0.020	0.0020
319-86-8	delta-BHC	0.020	U	0.020	0.0050
60-57-1	Dieldrin	0.020	U	0.020	0.0030
959-98-8	Endosulfan I	0.020	U	0.020	0.0020
33213-65-9	Endosulfan II	0.020	U	0.020	0.0040
1031-07-8	Endosulfan sulfate	0.020	U	0.020	0.0060
72-20-8	Endrin	0.020	U	0.020	0.0040
7421-93-4	Endrin aldehyde	0.020	U	0.020	0.0080
53494-70-5	Endrin ketone	0.020	U	0.020	0.0080
58-89-9	gamma-BHC (Lindane)	0.020	U	0.020	0.012
76-44-8	Heptachlor	0.020	U	0.020	0.0030
1024-57-3	Heptachlor epoxide	0.020	U	0.020	0.0050
72-43-5	Methoxychlor	0.020	U	0.020	0.0040
8001-35-2	Toxaphene	0.50	U	0.50	0.11

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	106		10-150
877-09-8	Tetrachloro-m-xylene	95		10-150

gor 7/3/12

FORM I PCBS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Lancaster Laboratories E Job No.: 460-248245-1

SDG No.:

Client Sample ID: OU2-MW1 20211201

Matrix: Water

Analysis Method: 8082A

Extraction Method: 3510C

Sample wt/vol: 923.1(mL)

Con. Extract Vol.: 5(mL)

Injection Volume: 1(uL)

% Moisture:

Analysis Batch No.: 202946

Lab Sample ID: 460-248245-1

Lab File ID: 14PCBL210327002.009.D

Date Collected: 12/01/2021 11:25

Date Extracted: 12/08/2021 03:45

Date Analyzed: 12/08/2021 11:08

Dilution Factor: 1

GC Column: DB CLP1 ID: 0.32(mm)

GPC Cleanup: (Y/N) N

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
12674-11-2	Aroclor 1016	0.011	U	0.011	0.0087
11104-28-2	Aroclor 1221	0.011	U	0.011	0.0087
11141-16-5	Aroclor 1232	0.011	U	0.011	0.0087
53469-21-9	Aroclor 1242	0.011	U	0.011	0.0087
12672-29-6	Aroclor 1248	0.011	U	0.011	0.0087
11097-69-1	Aroclor 1254	0.011	U	0.011	0.0054
11096-82-5	Aroclor 1260	0.011	U	0.011	0.0054
37324-23-5	Aroclor-1262	0.011	U	0.011	0.0054
11100-14-4	Aroclor 1268	0.011	U	0.011	0.0054
1336-36-3	Polychlorinated biphenyls, Total	0.011	Ū	0.011	0.0087

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl (Surr)	80		46-161
877-09-8	Tetrachloro-m-xylene	62		41-146

FORM I PCBS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Lancaster Laboratories E Job No.: 460-248245-1

SDG No.:

Matrix: Water

Client Sample ID: FB 20211201

ID: FR_50511501

Analysis Method: 8082A

Extraction Method: 3510C

Sample wt/vol: 984(mL)

Con. Extract Vol.: 5(mL)

Injection Volume: 1(uL)

% Moisture:

Analysis Batch No.: 202946

Lab Sample ID: 460-248245-3

Lab File ID: 14PCBL210327002.010.D

Date Collected: 12/01/2021 11:35

Date Extracted: 12/08/2021 03:45

Date Analyzed: 12/08/2021 11:23

Dilution Factor: 1

GC Column: DB CLP1 ID: 0.32(mm)

GPC Cleanup: (Y/N) N

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
12674-11-2	Aroclor 1016	0.010	U	0.010	0.0081
11104-28-2	Aroclor 1221	0.010	U	0.010	0.0081
11141-16-5	Aroclor 1232	0.010	U	0.010	0.0081
53469-21-9	Aroclor 1242	0.010	U	0.010	0.0081
12672-29-6	Aroclor 1248	0.010	U	0.010	0.0081
11097-69-1	Aroclor 1254	0.010	U	0.010	0.0051
11096-82-5	Aroclor 1260	0.010	U	0.010	0.0051
37324-23-5	Aroclor-1262	0.010	U	0.010	0.0051
11100-14-4	Aroclor 1268	0.010	U	0.010	0.0051
1336-36-3	Polychlorinated biphenyls, Total	0.010	U	0.010	0.0081

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl (Surr)	86		46-161
877-09-8	Tetrachloro-m-xylene	79		41-146

FORM I PCBS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Lancaster Laboratories E Job No.: 460-248245-1

SDG No.:

Client Sample ID: OUX-MWX 20211201

Matrix: Water 001-HWI -2021/201

Analysis Method: 8082A

Extraction Method: 3510C

Sample wt/vol: 842.5(mL)

Con. Extract Vol.: 5(mL)

Injection Volume: 1(uL)

% Moisture:

Analysis Batch No.: 202946

Lab Sample ID: 460-248245-4

Lab File ID: 14PCBL210327002.011.D

Date Collected: 12/01/2021 00:00

Date Extracted: 12/08/2021 03:45

Date Analyzed: 12/08/2021 11:38

Dilution Factor: 1

GC Column: DB CLP1 ID: 0.32(mm)

GPC Cleanup: (Y/N) N

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
12674-11-2	Aroclor 1016	0.012	U	0.012	0.0095
11104-28-2	Aroclor 1221	0.012	U	0.012	0.0095
11141-16-5	Aroclor 1232	0.012	U	0.012	0.0095
53469-21-9	Aroclor 1242	0.012	U	0.012	0.0095
12672-29-6	Aroclor 1248	0.012	U	0.012	0.0095
11097-69-1	Aroclor 1254	0.012	U	0.012	0.0059
11096-82-5	Aroclor 1260	0.012	U	0.012	0.0059
37324-23-5	Aroclor-1262	0.012	U	0.012	0.0059
11100-14-4	Aroclor 1268	0.012	U	0.012	0.0059
1336-36-3	Polychlorinated biphenyls, Total	0.012	U	0.012	0.0095

CAS NO.	SURROGATE	%REC	Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl (Surr)	39	*	46-161
877-09-8	Tetrachloro-m-xylene	42		41-146

for 7/3/2

1A-IN INORGANIC ANALYSIS DATA SHEET METALS - TOTAL RECOVERABLE

Client Sample ID: OU2-MW1_20211201

Lab Sample ID: 460-248245-1

Lab Name: Eurofins Lancaster Laboratories Env, LLC

Job No.: 460-248245-1

SDG ID.:

Matrix: Water

Date Sampled: 12/01/2021 11:25

Reporting Basis: WET

Date Received: 12/01/2021 16:20

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7440-38-2	Arsenic	5.0	2.0	0.68	ug/L			1	6020B
7440-39-3	Barium	482	2.0	0.75	ug/L			1	6020B
7440-41-7	Beryllium	0.13	0.50	0.12	ug/L	J		1	6020B
7440-43-9	Cadmium	0.50	0.50	0.15	ug/L	U		1	6020B
7440-47-3	Chromium	0.60	2.0	0.33	ug/L	J		1	6020B
7440-50-8	Copper	1.4	1.0	0.36	ug/L			1	6020B
7439-92-1	Lead	1.1	0.50	0.071	ug/L			1	6020B
7439-96-5	Manganese	10100	20.0	6.3	ug/L			10	6020B
7440-02-0	Nickel	1.2	1.0	0.60	ug/L			1	6020B
7782-49-2	Selenium	1.0	1.0	0.28	ug/L	U		1	6020B
7440-22-4	Silver	0.50	0.50	0.17	ug/L	U		1	6020B
7440-66-6	Zinc	10.0	10.0	6.2	ug/L	U		1	6020B

1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: OU2-MW1_20211201

Lab Sample ID: 460-248245-1

Lab Name: Eurofins Lancaster Laboratories Env, LLC

Job No.: 460-248245-1

SDG ID.:

Matrix: Water

Date Sampled: 12/01/2021 11:25

Reporting Basis: WET

Date Received: 12/01/2021 16:20

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-97-6	Mercury	0.20	0.20	0.079	ug/L	U		1	7470A

Bridge Alle to the

1A-IN INORGANIC ANALYSIS DATA SHEET METALS - TOTAL RECOVERABLE

Client Sample ID: OU3-MW2_20211201

Lab Sample ID: 460-248245-2

Lab Name: Eurofins Lancaster Laboratories Env, LLC

Job No.: 460-248245-1

SDG ID.:

Matrix: Water

Date Sampled: 12/01/2021 13:50

Reporting Basis: WET

Date Received: 12/01/2021 16:20

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7440-38-2	Arsenic	1.8	2.0	0.68	ug/L	J		1	6020B
7440-39-3	Barium	849	2.0	0.75	ug/L			1	6020B
7440-41-7	Beryllium	0.28	0.50	0.12	ug/L	J		1	6020B
7440-43-9	Cadmium	0.86	0.50	0.15	ug/L			1	6020B
7440-47-3	Chromium	4.5	2.0	0.33	ug/L			1	6020B
7440-50-8	Copper	7.5	1.0	0.36	ug/L			1	6020B
7439-92-1	Lead	4.1	0.50	0.071	ug/L			1	6020B
7439-96-5	Manganese	32400	40.0	12.7	ug/L	J		20	6020B
7440-02-0	Nickel	14.0	1.0	0.60	ug/L			1	6020B
7782-49-2	Selenium	1.0	1.0	0.28	ug/L	Ū		1	6020B
7440-22-4	Silver	0.50	0.50	0.17	ug/L	T (1	6020B
7440-66-6	Zinc	18.8	10.0	6.2	ug/L			1	6020B

1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: OU3-MW2_20211201

Lab Sample ID: 460-248245-2

Lab Name: Eurofins Lancaster Laboratories Env, LLC

Job No.: 460-248245-1

SDG ID.:

Matrix: Water

Date Sampled: 12/01/2021 13:50

Reporting Basis: WET

Date Received: 12/01/2021 16:20

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-97-6	Mercury	0.20	0.20	0.079	ug/L	Ü		1	7470A

1A-IN INORGANIC ANALYSIS DATA SHEET METALS - TOTAL RECOVERABLE

Lab Name: Eurofins Lancaster Laboratories Env, LLC Job No.: 460-248245-1

SDG ID.:

Matrix: Water Date Sampled: 12/01/2021 11:35

Reporting Basis: WET Date Received: 12/01/2021 16:20

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7440-38-2	Arsenic	2.0	2.0	0.68	ug/L	Ü		1	6020B
7440-39-3	Barium	2.0	2.0	0.75	ug/L	U		1	6020B
7440-41-7	Beryllium	0.50	0.50	0.12	ug/L	U		1	6020B
7440-43-9	Cadmium	0.50	0.50	0.15	ug/L	U		1	6020B
7440-47-3	Chromium	2.0	2.0	0.33	ug/L	U		1	6020B
7440-50-8	Copper	1.0	1.0	0.36	ug/L	U		1	6020B
7439-92-1	Lead	0.50	0.50	0.071	ug/L	U		1	6020B
7439-96-5	Manganese	2.0	2.0	0.63	ug/L	U		1	6020B
7440-02-0	Nickel	1.0	1.0	0.60	ug/L	U		1	6020B
7782-49-2	Selenium	1.0	1.0	0.28	ug/L	U		1	6020B
7440-22-4	Silver	0.50	0.50	0.17	ug/L	U		1	6020B
7440-66-6	Zinc	10.0	10.0	6.2	ug/L	U		1	6020B

1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: FB_20211201

Lab Sample ID: 460-248245-3

Lab Name: Eurofins Lancaster Laboratories Env, LLC

Job No.: 460-248245-1

SDG ID.:

Matrix: Water

Date Sampled: 12/01/2021 11:35

Reporting Basis: WET

Date Received: 12/01/2021 16:20

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-97-6	Mercury	0.20	0.20	0.079	ug/L	U		1	7470A

12/15/2021

1A-IN INORGANIC ANALYSIS DATA SHEET METALS - TOTAL RECOVERABLE

Client Sample ID: OUX-MWX 20211201

Lab Sample ID: 460-248245-4

Lab Name: Eurofins Lancaster Laboratories Env, LLC

Job No.: 460-248245-1

SDG ID.:

Matrix: Water

Date Sampled: 12/01/2021 00:00

Reporting Basis: WET

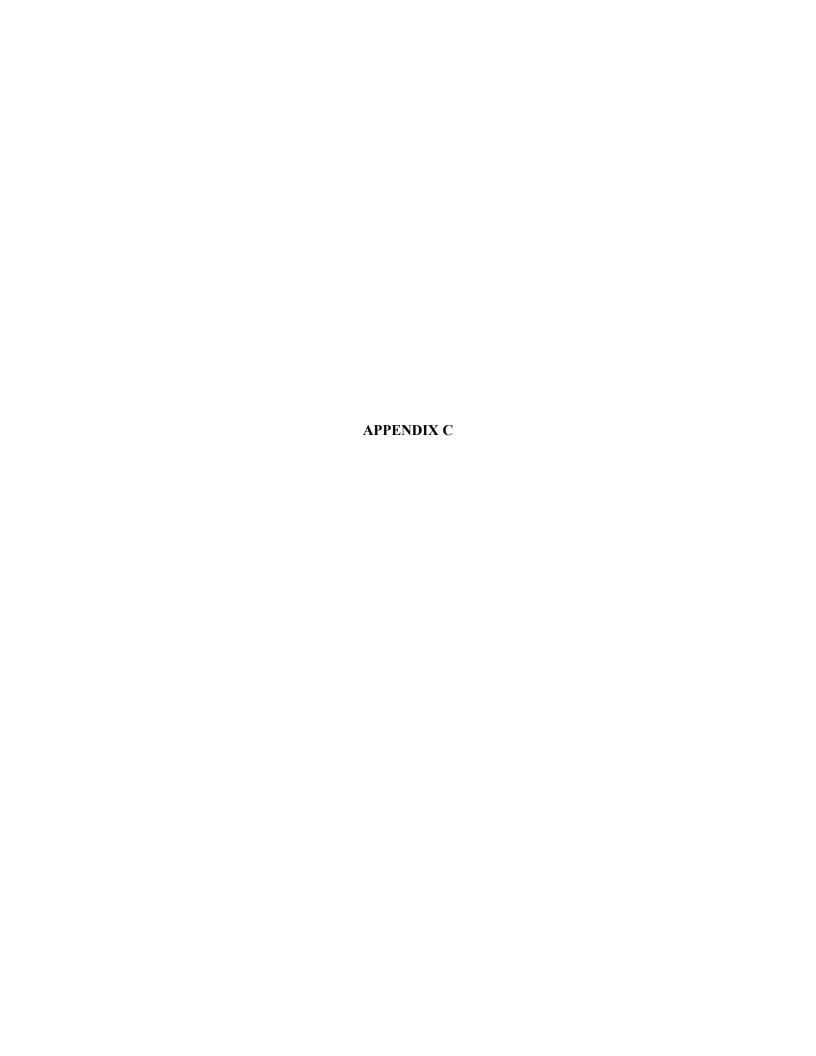
Date Received: 12/01/2021 16:20

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7440-38-2	Arsenic	4.8	2.0	0.68	ug/L			1	6020B
7440-39-3	Barium	495	2.0	0.75	ug/L			1	6020B
7440-41-7	Beryllium	0.50	0.50	0.12	ug/L	U		1	6020B
7440-43-9	Cadmium	0.50	0.50	0.15	ug/L	U		1	6020B
7440-47-3	Chromium	1.0	2.0	0.33	ug/L	J		1	6020B
7440-50-8	Copper	2.1	1.0	0.36	ug/L			1	6020B
7439-92-1	Lead	1.5	0.50	0.071	ug/L			1	6020B
7439-96-5	Manganese	8850	20.0	6.3	ug/L			10	6020B
7440-02-0	Nickel	1.4	1.0	0.60	ug/L			1	6020B
7782-49-2	Selenium	1.0	1.0	0.28	ug/L	U		1	6020B
7440-22-4	Silver	0.50	0.50	0.17	ug/L	U		1	6020B
7440-66-6	Zinc	10.0	10.0	6.2	ug/L	U		1	6020B

for 7/3/m

1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Lab Name: Eurofins Lancaster Laboratories Env, LLC Job No.: 460-248245-1


SDG ID.:

Matrix: Water Date Sampled: 12/01/2021 00:00

Reporting Basis: WET Date Received: 12/01/2021 16:20

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-97-6	Mercury	0.20	0.20	0.079	ug/L	Ū		1	7470A

for 7137m

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice

Institutional and Engineering Controls Certification Form **Site Details** Box 1 Site No. C353014 Site Name Adelaar Site Address: Concord Road Zip Code: 12751 City/Town: Kiamesha Lake County: Sullivan Site Acreage: 12.534 Reporting Period: April 28, 2021 to April 28, 2022 YES NO 1. Is the information above correct? X If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? X 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? X 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued X for or at the property during this Reporting Period? If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? X Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? X 7. Are all ICs in place and functioning as designed? X IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues. Signature of Owner, Remedial Party or Designated Representative Date

		Box 2	A
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITI	E NO. C353014	Во	k 3
	Description of Institutional Controls		

Parcel	Owner	Institutional Control
15-1-14.4	EPR Concord II, L.P.	
		Ground Water Use Restriction
		Landuse Restriction
		Building Use Restriction
		Monitoring Plan
		Site Management Plan

The controlled property may be used for Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2) (ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv). The controlled property is not to be used for Residential purposes as define in 6 NYCRR Part 375-1.8(g)(2)(i).

The use of groundwater beneath the property is prohibited without necessary water quality treatment as determined by the NYSDOH or Sullivan County Department of Health, and prior written notification and permission from the Department.

All future development of the controlled property must be conducted in accordance with the Department-approved Site Management Plan.

Reporting of required site monitoring to the Department as outlined in the Site Management Plan. This includes an annual site-wide inspection to assess basic site conditions; inspection of the cover system at OU-2; and groundwater monitoring at OU-2 and OU-3.

15-1-50.1 EPR Concord II, L.P.

Ground Water Use Restriction Landuse Restriction Building Use Restriction Monitoring Plan Site Management Plan IC/EC Plan

IC/EC Plan

The controlled property may be used for Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2) (ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv). The controlled property is not to be used for Residential purposes as define in 6 NYCRR Part 375-1.8(g)(2)(i).

The use of groundwater beneath the property is prohibited without necessary water quality treatment as determined by the NYSDOH or Sullivan County Department of Health, and prior written notification and permission from the Department.

All future development of the controlled property must be conducted in accordance with the Department-approved Site Management Plan.

Reporting of required site monitoring to the Department as outlined in the Site Management Plan. This includes an annual site-wide inspection to assess basic site conditions; inspection of the cover system at OU-2; and groundwater monitoring at OU-2 and OU-3.

15-1-50.2 EPR Concord II, L.P.

Ground Water Use Restriction Landuse Restriction Building Use Restriction Monitoring Plan Site Management Plan IC/EC Plan

The controlled property may be used for Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2) (ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv). The controlled property is not to be used for Residential purposes as define in 6 NYCRR Part 375-1.8(g)(2)(i).

The use of groundwater beneath the property is prohibited without necessary water quality treatment as determined by the NYSDOH or Sullivan County Department of Health, and prior written notification and

permission from the Department.

All future development of the controlled property must be conducted in accordance with the Department-approved Site Management Plan.

Reporting of required site monitoring to the Department as outlined in the Site Management Plan. This includes an annual site-wide inspection to assess basic site conditions; inspection of the cover system at OU-2; and groundwater monitoring at OU-2 and OU-3.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

15-1-14.4

Monitoring Wells

15-1-50.1

Cover System Monitoring Wells

A cover system is in place at OU-2 over the consolidated landfill area in the southern portion of the site. The cover system consists of a minimum 12 inches of clean soil placed over an orange demarcation layer. The cover system is in place only on a portion of tax lot 15-1-50.1.

15-1-50.2

Monitoring Wells

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
	\mathbf{X}
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	\mathbf{X}
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C353014

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I <u>Craig L. E vans</u> print nar		Kansas City, MO 64106, ddress
am certifying as	Vice President of EPR TRS Holdings, Inc., general partner of EPR Concord II, L.P.	(Owner or Remedial Party)
for the Site named in	the Site Details Section of this form.	
Signature of Owner, Rendering Certificati	Remedial Party, or Designated Representative on	

EC CERTIFICATIONS

Box 7

Signature

I certify that all information in Boxes 4 and 5 are true.	I understand that a false statement made herein is
punishable as a Class "A" misdemeanor, pursuant to	Section 210.45 of the Penal Law.

at _909 Walnut, Suite 200, Kansas City, MO 64106

(Required for PE)

print business address

am certifying as a for the Vice President of EPR TRS Hogeneral partner of EPR Concor	oldings, Inc., rd II, L.P ₍ Owner or Reme	edial Party)
Signature of , for the Owner or Remedial Party,	<u>J</u> Stamp	une 28, 2022 Date

Craig L. Evans

Rendering Certification

print name