# SUPPLEMENTAL PHASE II ENVIRONMENTAL SITE ASSESSMENT INVESTIGATION REPORT

**PREPARED FOR** 

## **51-17 ROCKAWAY BEACH BOULEVARD** FAR ROCKAWAY, QUEENS, NEW YORK 11691

CEQR #18DCP124Q

**P**REPARED BY



An Olgoonik Company

909 MARCONI AVENUE RONKONKOMA, NY 11779

**FEBRUARY 2019** 

#### TABLE OF CONTENTS

| <u>Se</u> | <u>ction</u> | Description                                              | <u>Page No.</u> |
|-----------|--------------|----------------------------------------------------------|-----------------|
|           |              | Executive Summary                                        | iii             |
| 1.0       |              | Introduction and Purpose                                 | 1-1             |
|           | 1.1          | Property Location and Description                        | 1-1             |
|           | 1.2          | Property Environmental Setting                           | 1-1             |
|           | 1.3          | Property History                                         | 1-4             |
|           | 1.4          | Adjacent Property Usage                                  | 1-4             |
| 2.0       |              | Summary of Previous Investigations                       | 2-1             |
|           | 2.1          | 2018 Phase I Environmental Site Assessment               | 2-1             |
|           | 2.2          | 2018 Phase II Investigation                              | 2-2             |
|           | 2.2.1        | Geophysical Survey                                       | 2-2             |
|           | 2.2.2        | Soil                                                     | 2-2             |
|           | 2.2.3        | Groundwater                                              | 2-7             |
|           | 2.2.4        | Soil Vapor                                               | 2-8             |
|           | 2.3          | Anticipated Redevelopment                                | 2-8             |
| 3.0       |              | Supplemental Phase II ESA Investigation Procedures       | 3-1             |
|           | 3.1          | Supplemental Investigation Scope of Work                 | 3-1             |
|           | 3.2          | Sampling and Testing Procedures                          | 3-3             |
|           | 3.3          | Quality Assurance/Quality Control Procedures and Results | 3-5             |
| 4.0       |              | Supplemental Phase II ESA Investigation Results          | 4-1             |
|           | 4.1          | Soil Conditions                                          | 4-1             |
|           | 4.2          | Groundwater Conditions                                   | 4-26            |
|           | 4.3          | Nature and Extent of Contamination                       | 4-35            |
|           | 4.3.1        | Soil Conditions                                          | 4-35            |
|           | 4.3.2        | Groundwater Conditions                                   | 4-36            |
|           | 4.3.3        | Soil Vapor Conditions                                    | 4-36            |
|           | 4.4          | Potential Remedial Measures                              | 4-37            |
| 5.0       |              | References                                               | 5-1             |

#### TABLE OF CONTENTS (CONTINUED)

#### LIST OF FIGURES

#### Figure No. Title Page No. 1.1.1 Property Location......1-2 1.1.2 Property Survey ......1-3 2.2.1 2.3.1 Proposed Redevelopment Plan......2-9 3.1.1 4.1.1 4.2.1 4.2.2

#### LIST OF TABLES

Title

# 2.2.1Soil Chemical Analytical Results2-42.2.2Groundwater Chemical Analytical Data2-52.2.3Soil Vapor Sampling Results2-64.1.1Soil Chemical Analytical Results4-34.2.1Well Top of Casing and Groundwater Relative Elevations4-274.2.2Groundwater Chemical Analytical Results4-29

#### LIST OF APPENDICES

- A Previous Investigation Report and Correspondence
  - FPM Group, Phase II Investigation Report, March 28, 2018 (figs. & tables)
  - NYCDEP October 29, 2018 correspondence
- B Soil Boring Logs, Well Installation Logs, Well Development Forms, Well Sampling Forms
- C Laboratory Reports

Table No.



Page No.

ii

#### EXECUTIVE SUMMARY

FPM Group (FPM) has completed a Supplemental Phase II Environmental Site Assessment (ESA) Investigation for 51-17 Rockaway Beach Boulevard, Far Rockaway, Queens County, New York (Property), identified on the Queens Borough tax map as Block 15857 and Lot 1. This property is further identified as City Environmental Quality Review (CEQR) #18DCP124Q. The Property is owned by Peninsula Rockaway Housing Fund Development Corp. and is proposed to be redeveloped.

The Property was originally a marsh with an elevation near sea level. The Property was modified by placement of historic fill and initially developed between 1912 and 1933 with a wagon shed and a cold storage facility for the Borden Farm Products Company. By 1951 the Property used by the Hogan Paint and Chemical Company. Between 1981 and 2006 the buildings were used for unspecified warehouse/industrial purposes. The above-grade portions of the buildings were demolished between 2009 and 2010 and the Property has since been used for equipment parking/storage.

This investigation was conducted following a work plan developed in accordance with the procedures outlined in the CEQR Technical Manual (March 2014 edition) and conditionally approved by the New York City Department of Environmental Protection (DEP) on October 29, 2018. FPM previously conducted a Phase II Investigation of this property; the results of this earlier Phase II investigation are evaluated together with the data obtained during the Supplemental Phase II Investigation to assess subsurface conditions and the nature and extent of contamination.

#### Soil Conditions

- Historic fill consisting of sand containing angular gravel, slag, brick, concrete, and/or asphalt is present to an approximate depth of 3 feet beneath nearly the entire property. These materials are typical of historic fill in the greater New York metro area and this fill was likely placed to facilitate development of the property in the early 1900s;
- Soil impacted by chlorinated solvents and some petroleum volatile and semivolatile organic compounds (VOCs and SVOCs) is present in the B3 drywell area. The impacts exceed the unrestricted use and protection of groundwater Soil Cleanup Objectives (SCOs), with some of the SVOC detections also exceeding the restricted residential and/or commercial use SCOs. The impacts were generally noted in the interval to about 4 feet below grade, with some exceedances also noted in the 4 to 6-foot interval at B3N and B3E. This impacted area appears to be a source for groundwater VOC impacts noted at GW-15 and GW-16 and for soil vapor impacts;
- Soil impacted primarily by petroleum-related VOCs and SVOCs is present in the B9/B9N/CB-4 drywell area. The impacts appear to coincide with paint/petroleum odors in the interval from 2 to 8 feet below grade in the borings. This impacted area appears to be a source for VOC impacts to groundwater and soil vapor. No impacts were identified in the samples from the B9A, B9E, B9S, or B9W borings, which indicates that the source area is limited;



- Some petroleum-related VOC and SVOC impacts were noted in the shallow interval of boring B16. These results are consistent with the odor and organic vapor readings and indicate that an apparently limited amount of petroleum impact is present in soil the vicinity of this boring. The petroleum-related VOC impacts have not affected groundwater quality at the nearby GW-16 well;
- Some limited impacts were noted in other soil borings. These impacts are not associated with visual indications of potential contamination and do not appear to be indicative of significant contamination; and
- Catch basins (CB-1, CB-2, CB-3, CB-4 and CB-5) and drywells (B3, B4, and B9) all exhibited exceedances of SCOs for SVOCs, metals, pesticides, and/or PCBs typical of urban stormwater runoff, with CB-4 and B4 also showing indications of petroleum-related VOCs and trichloroethene (TCE). These catch basins and drywells may also be sources for VOC impacts to groundwater and soil vapor.

#### Groundwater Conditions

- Groundwater flow is to the north-northeast, consistent with the distribution of VOC contaminants in groundwater;
- A plume of petroleum-related VOCs and chlorinated solvents is present in groundwater at GW-7, GW-10, GW-13, and GW-2, with lesser impacts noted at GW-1 and GW-8. These impacts appear to originate from source materials in the B9/B9N/CB-4 area. As the plume migrates, TCE is breaking down into daughter products. Chlorinated solvents were not found at levels exceeding New York State Department of Environmental Conservation (NYSDEC) Standards at sampling locations located crossgradient from the centerline of the plume, upgradient of the plume, or downgradient of the plume, indicating that the plume of VOC-impacted groundwater is narrow, well-defined, and limited to the Property;
- A smaller plume chloroform-impacted groundwater is present downgradient of the B3 drywell area where several VOCs, including TCE and breakdown products, were found in soil. The breakdown of TCE to chloroform in the groundwater a short distance downgradient of the apparent source area suggests that this area of groundwater impact is limited;
- SVOCs and several metals (totals) were found in nearly all of the groundwater samples. These detections likely resulted from high turbidity in the groundwater samples are not representative of actual groundwater conditions at the Property. Results from samples that were filtered to remove turbidity generally do not show elevated levels of any metals other than sodium, which was found in most of the samples, consistent with the Property's location in proximity to the Atlantic Ocean. Iron, which is often found at elevated levels in Long Island groundwater, was found above its Standard in one well and does not present a concern; and
- Pesticides and PCBs did not exceed the NYSDEC Standards in any of the groundwater samples.



#### Soil Vapor Conditions

- Five VOCs for which the New York State Department of Health (NYSDOH) provides guidance were detected in at least one of the soil vapor samples and may pose a concern for soil vapor intrusion (SVI). Specifically, the results at several locations could trigger a monitor or mitigate response, and the levels of TCE at four locations would trigger a mitigate response. All of these VOCs were detected in the source material at the B9/B9N/CB-4 and B3 areas and/or in the groundwater beneath the Property and the soil vapor detections likely originated from these onsite sources; and
- Elevated concentrations of several petroleum compounds were detected at SV-7. These detections also appear related to the impacted soil noted in the nearby B9/B9N/CB-4 area.

#### Remedial Measures

It is proposed to redevelop the Property, together with other parcels, with mixed commercial and restricted residential uses. The preliminary redevelopment plan shows that the Property is to be completely covered by a new residential building and associated covered parking and pavement. No vegetated areas are proposed, with the exception of a stormwater management planter to be located to the north of the building.

Redevelopment activities will include removal of the existing former building infrastructure (walls, pavement, drywells, etc.) from the Property. Excavation is anticipated to be conducted to 4 feet below grade to accommodate grade beams for the new slab-on-grade building. No basement or other subsurface infrastructure is proposed, other than building foundation elements. Public water will be provided to the Property and no use of the Property groundwater is contemplated.

Based on the nature and extent of contamination at the Property and the anticipated redevelopment, a Remedial Action Plan (RAP) should be prepared. The RAP should include an evaluation of potential exposures under the contemplated redevelopment scenario and remedial measures to address the identified contamination and potential exposures.



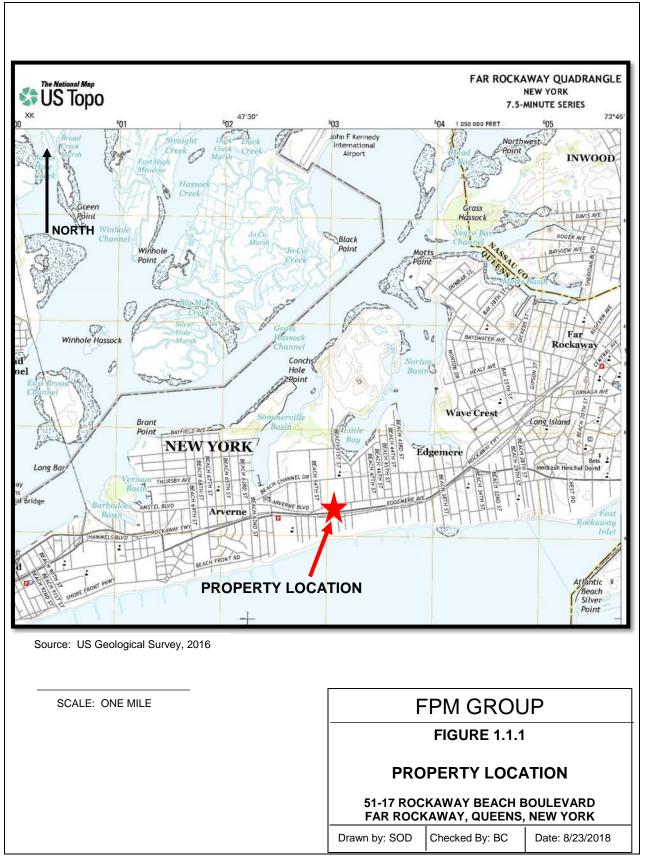
#### SECTION 1.0 INTRODUCTION AND PURPOSE

This Supplemental Phase II Environmental Site Assessment (ESA) Investigation Report has been prepared by FPM Group, Ltd. (FPM) for the property located at 51-17 Rockaway Beach Boulevard, Far Rockaway, Queens County, New York (Property), identified on the Queens Borough tax map as Block 15857 and Lot 1. This property is further identified as City Environmental Quality Review (CEQR) #18DCP124Q. This Report describes the procedures and results of the Supplemental Phase II ESA Investigation that was conducted to further evaluate the nature and extent of contamination associated with the Property. This investigation was conducted following a work plan that was developed in accordance with the procedures outlined in the CEQR Technical Manual (March 2014 edition) and conditionally approved by the New York City Department of Environmental Protection (DEP) on October 29, 2018 (copy in Appendix A).

FPM previously conducted a Phase II Investigation of this property, the procedures and results of which were documented in a March 28, 2018 report. The results of this earlier Phase II investigation are evaluated together with the data obtained during the Supplemental Phase II Investigation documented herein. Copies of pertinent portions of this older report are included in Appendix A for reference.

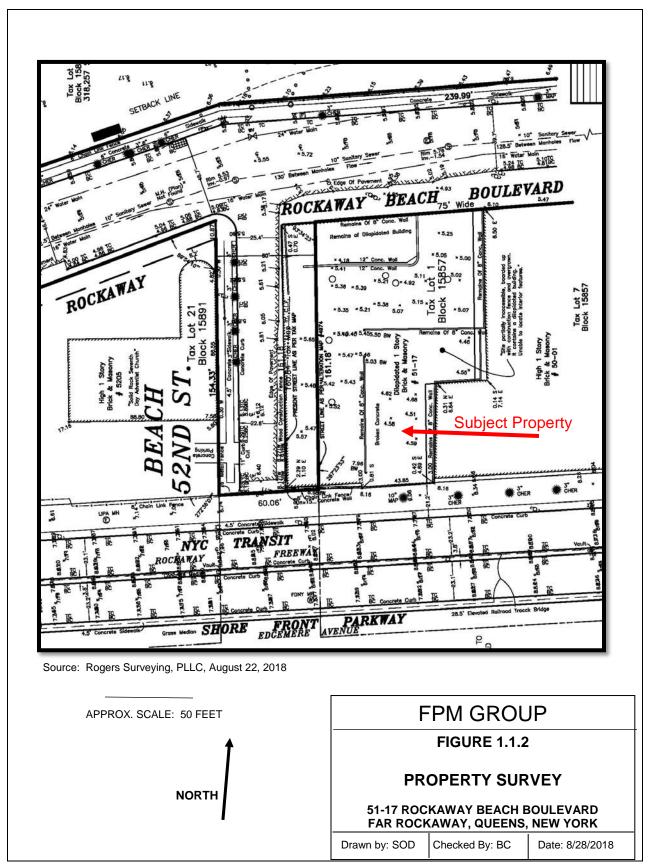
#### 1.1 **Property Location and Description**

The Property is located in Far Rockaway, Queens County, New York and occupies approximately 17,775 square feet on the southeast corner of the intersection of Rockaway Beach Boulevard and Beach 52<sup>nd</sup> Street. The general location of the Property is presented in Figure 1.1.1. The Property is owned by Peninsula Rockaway Housing Fund Development Corp. and is proposed to be redeveloped, together with other parcels, with mixed commercial and restricted residential uses.


The surface topography of the Property vicinity was obtained from the USGS Far Rockaway, New York Quadrangle (2016), a portion of which is shown in Figure 1.1.1. The topographic elevation in the Property vicinity generally ranges from approximately 5 to 10 feet above mean sea level (MSL) and the ground surface is relatively flat.

The current surface elevations of the Property were obtained from a November 20, 2015 topographic survey by Rogers Surveying, PLLC, a portion of which is shown on Figure 1.1.2. This survey shows that the Property surface generally ranges from 4 to 6 feet above MSL and slopes gently to the southeast. The Property includes the remnants of a former 13,000-square-foot commercial building and associated paved areas, as shown on the survey. Some overgrown vegetation is present, which partially obscures the visibility of the former features.

#### 1.2 Property Environmental Setting


The Property has been modified from its original configuration (former marsh with an elevation near sea level) by placement of historic fill and subsequent building and pavement construction. The historic fill was found to consist primarily of sand with variable amounts of gravel, slag, brick, and concrete fragments.





\\lisa11\Clients\PeninsulaRockaway-Arker\Far Rockaway\E Site\DEP Phase II\Fig111-topo.docx





\\lisa11\Clients\PeninsulaRockaway-Arker\Far Rockaway\E Site\DEP Phase II\Fig112-survey.docx



Beneath the historic fill, the Property is underlain successively by sand with organic marsh deposits in places, and by Upper Glacial Formation sand, silt, and clay outwash deposits (USGS, 1963). The Gardiners Clay, consisting of clay with interbedded silt and sand, is present below the Upper Glacial Formation. The top of the Gardiners Clay is present at an approximate elevation of between -50 and -100 feet MSL in the Property vicinity and acts as an aquitard between the Upper Glacial Formation and the deeper Magothy Formation.

The depth to groundwater beneath the Property was estimated at approximately 4 feet, based on information obtained during the previous Phase II investigation performed at the Property. Additional depth to groundwater information was obtained during the Supplemental investigation, as discussed in Section 4.2. The regional groundwater flow direction in the property vicinity (USGS, 2009) was anticipated to be generally to the north. The Property-specific groundwater flow direction was confirmed during the Supplemental investigation, as discussed in Section 4.2.

There are no surface water bodies on or adjoining the Property. The closest surface water bodies are the Atlantic Ocean at Rockaway Beach (about 0.25 miles south), Conch Bay of Little Bay (about 0.3 miles northeast), and Sommerville Basin (about 0.4 miles west). These areas are separated from the Property by one or more multi-lane streets and/or the MTA Subway A Line.

As noted in the Supplemental investigation work plan, no public water or other supply wells were identified within one-half mile of the Property. As documented by the US Geological Survey (USGS, 1963), very little (if any) fresh groundwater is anticipated to be present in the Upper Glacial or Magothy Aquifers in the Property vicinity due to the Property's location close to the Atlantic Ocean and Jamaica Bay. Based on the urban nature of the surrounding area, the availability of public water via the New York City water supply system, and the saline nature of the groundwater in the underlying Upper Glacial and Magothy Aquifers, water supply wells are unlikely to have been installed in the Property vicinity.

#### 1.3 Property History

Based on available historic records (Sanborn Fire Insurance maps, discussed in the January 2018 Phase I ESA Report), the Property was developed between 1912 and 1933 with a wagon shed and a cold storage facility for the Borden Farm Products Company. By 1951 the Property used by the Hogan Paint and Chemical Company. Between 1981 and 2006 the buildings were used for unspecified warehouse/industrial purposes. The above-grade portions of the buildings were demolished between 2009 and 2010 and the Property has been used for equipment parking/storage thereafter.

#### 1.4 Adjacent Property Usage

The Property is bounded to the north by Rockaway Beach Boulevard, as shown on Figure 1.1.2. The property across Rockaway Beach Boulevard to the north is presently vacant and was most recently occupied by a former hospital building. This property is to be redeveloped with mixed restricted residential and commercial uses. The Property is bounded to the west by Beach 52<sup>nd</sup> Street. Further to the west are a church and an electrical substation. The Property is bounded to the east by commercial buildings. The MTA Subway A Line and the Rockaway Freeway bound the Property to the south. Vacant lots are present further to the south.



#### SECTION 2.0 SUMMARY OF PREVIOUS INVESTIGATIONS

The Property was investigated in 2018 during a Phase I Environmental Site Assessment (ESA) and a Phase II investigation, the results of which were summarized in the Supplemental investigation work plan. A brief summary of these investigations is provided below in support of the evaluation of the Supplemental investigation results.

Environmental data from the Property are evaluated relative to applicable New York State standards, criteria, and guidance (SCGs). The applicable SCGs include the 6NYCRR Part 375-6 Soil Cleanup Objectives (SCOs) for soil, the 6 NYCRR Part 703.5 Class GA Ambient Water Quality Standards (Standards) for groundwater, and the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006, and May 2017 updated matrices). In particular, the soil data are compared to the SCOs for the planned use of the property.

Redevelopment of the property is planned and is anticipated to include restricted residential and commercial uses. Redevelopment is discussed below in Section 2.3.

#### 2.1 2018 Phase I Environmental Site Assessment

The Property was initially investigated during a Phase I ESA performed by FPM and documented in a January 2018 report. The historic use of the Property was evaluated using Sanborn Fire Insurance maps, which noted that in 1951 the property was used by the Hogan Paint and Chemical Company. This former use was identified as a Recognized Environmental Condition (REC).

Between 1981 and 2006 the property was used for unspecified warehouse/industrial purposes, including use by Natural Science Industries, which was identified on the Integrated Compliance Information System (ICIS) and Facility Index System (FINDS) databases. The ICIS database contains integrated enforcement and compliance information identified by the EPA. The Natural Science Industries (EPA ID #110010709439) listing appears to be related to a Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) compliance issue dating to 1988. This listing was identified as a REC.

Three subsurface structures of unknown purpose were visually identified on the subject property. These subsurface structures, in the context of the former property uses, were identified as a REC.

The adjoining property to the north, across Rockaway Beach Boulevard, was identified as a site with petroleum-contaminated soil and chlorinated solvents in soil vapor. The potential for migration of these contaminants onto the Property was identified as a REC.



#### 2.2 2018 Phase II Investigation

A Phase II investigation was conducted in 2018, with the procedures and results documented in a March 28, 2018 report. A copy of pertinent portions of this report is included in Appendix A. The sample locations are shown on Figure 2.2.1 and the summarized data are included on Tables 2.2.1, 2.2.2, and 2.2.3.

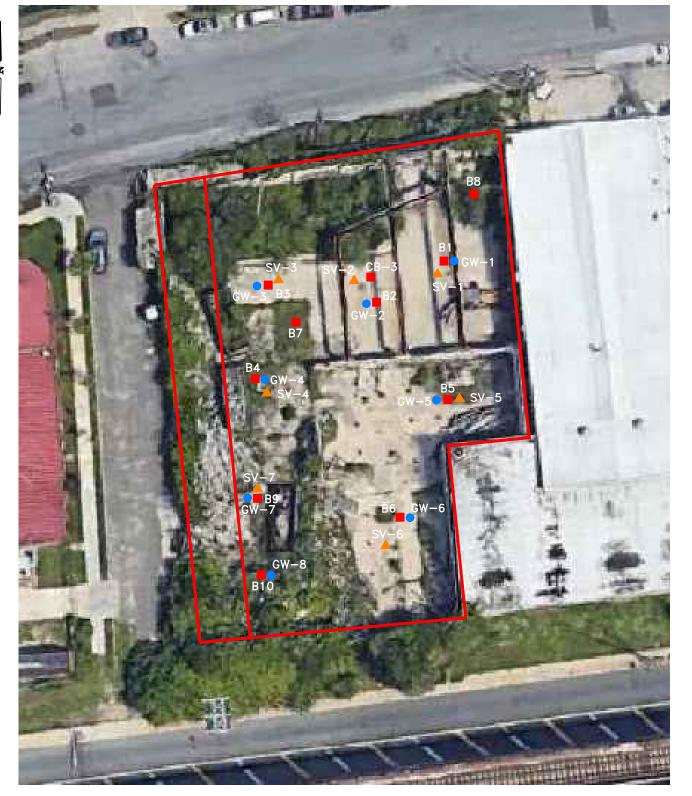
#### 2.2.1 Geophysical Survey

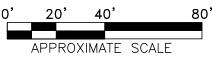
A geophysical survey was conducted on the accessible portions of the Property to locate subsurface obstructions that may be present. Five suspected catch basins containing sediments were noted on the Property. Three catch basins on the north side of the Property were observed to be connected in sequence and the piping appeared to lead toward one of the suspected sewer pits on the northwest corner of the property. The pipe connected to the eastern-most catch basin also appeared to lead toward the east; however, the detected signal ended just before the property boundary.

Three shallow solid-bottom square pits were observed on the northwest corner of the property; these features may have formerly served as sewer connections or cleanouts.

Two drywells that appeared to discharge to the subsurface were observed; one is located on the northwest portion of the property and one is located on the west-central portion of the property. No inlet or outlet pipes were observed inside these structures.

#### 2.2.2 <u>Soil</u>


Soil sampling methods included soil borings through the property surface (Locations B1, B2, and B5 through B10), soil borings through the drywells (B3 and B4), and sediment sampling in one catch basin (CB-2). Soils from just beneath the pavement at the property surface generally included historic fill composed of a gray/black fine to medium-grained sand containing angular gravel, slag, brick, and concrete to about 3 feet below grade. The historic fill was underlain by dark brown/gray-black fine to medium-grained sand with organics, gravel, and silt generally from 3 to 7 feet below grade. Soils from 7 feet below grade and deeper generally consisted of gray fine to medium grained sand. Groundwater was typically estimated at 4-5 feet below grade.


No photoionization detector (PID) responses, staining, odors, sheen, or other indications of potential contaminant releases were observed in the materials encountered in any of the borings, with the exception of boring B9. At boring B9, odors that appeared consistent with paint and petroleum were noted from 1 to 11 feet below grade; organic vapors were detected throughout this interval with a maximum PID response of 1,240 parts per million (ppm) detected at 5 feet below grade. Organic vapor concentrations decreased with depth and no significant PID response was noted below 11 feet.

The samples were tested and the analytical results compared to the NYSDEC Part 375 and CP-51 unrestricted use, restricted residential use, and commercial use SCOs, as shown in Table 2.2.1. The following observations were noted:

Several petroleum-related VOCs and one chlorinated solvent (trichloroethylene, or TCE) were detected in samples B4 and B9 (depths of 5 feet and 9 feet) at concentrations exceeding the NYSDEC unrestricted use SCOs. Two petroleum-related VOCs in the B9 sample from 5 feet also exceeded the restricted residential use SCOs. VOCs were not detected in any of the other samples at levels above the NYSDEC SCOs;







#### LEGEND:

- SOIL BORING LOCATION
- GROUNDWATER SAMPLE LOCATION
- SOIL VAPOR SAMPLE LOCATION

### FPM GROUP

FIGURE 2.2.1 PREVIOUS INVESTIGATION LOCATIONS

> 51-17 ROCKWAY BEACH BOULEVARD FAR ROCKWAY, QUEENS, NEW YORK

Drawn By:H.C. Checked By:S.D. Date: 8/27/18

| C                                                    | B1<br>Soil Boring           | B2                    | B3                    | B4                      | B5               | B7               | B8                  |                         | B9<br>Soil Boring      |             | B10<br>Soil Boring | CB-3                | 6 NYCRR Part<br>375      | 6 NYCRR Part<br>375 and CP-51 | 6 NYCRR Part<br>375 and CP-51 |
|------------------------------------------------------|-----------------------------|-----------------------|-----------------------|-------------------------|------------------|------------------|---------------------|-------------------------|------------------------|-------------|--------------------|---------------------|--------------------------|-------------------------------|-------------------------------|
| Sample Donth (fact)                                  |                             | Soil Boring           | 2 5-5 5               | Drywell                 | Soil Boring      | Soil Boring      | Soil Boring         | 2                       | -                      |             |                    | Catch Basin         | Unrestricted<br>Use Soil | Restricted<br>Residential Use | Commercial<br>Use Soil        |
| Sample Depth (feet)                                  | 1-3                         | 1-3                   | 2.5-5.5               | 2-5                     | 1-3              | 1-3              | 1-3                 | 2                       | 5                      | 9           | 1-3                | 0-2                 | Cleanup<br>Objectives    | Soil Cleanup<br>Objectives    | Cleanup<br>Objectives         |
| Sample Date                                          | do in miorogramo n          | or kilogram           |                       |                         |                  | 2/28/*           | 18                  |                         |                        |             |                    |                     |                          |                               |                               |
| CL Volatile Organic Compound<br>2,4-Trimethylbenzene | ND                          | ND                    | ND                    | 480 J                   | 8.8              | ND               | ND                  | ND                      | ND                     | 1,100       | 4.4 J              | NS                  | 3,600                    | 52,000                        | 190,000                       |
| ,3,5-Trimethylbenzene                                | ND<br>ND                    | ND<br>ND              | ND<br>ND              | ND<br>ND                | 4.4 J<br>ND      | ND<br>ND         | ND<br>16            | ND<br>ND                | ND<br>ND               | 480 J<br>ND | ND<br>ND           | NS<br>NS            | 8,400<br>1,800           | 52,000<br>13,000              | 190,000<br>130,000            |
|                                                      | 15 CCV-E, SCAL-E            | ND                    | ND                    | ND                      | 26 CCV-E, SCAL-E | 28 CCV-E, SCAL-E | ND                  | 16 CCV-E, SCAL-E        | ND                     | ND          | 35 CCV-E, SCAL-E   | NS                  | 50                       | 100,000                       | 500,000                       |
| arbon tetrachloride                                  | ND<br>4.6 J                 | ND<br>7.9             | ND<br>ND              | ND<br>ND                | ND<br>ND         | ND<br>ND         | ND<br>ND            | 7.7<br>ND               | ND<br>2,200 J          | ND<br>ND    | ND<br>ND           | NS<br>NS            | 760<br>370               | 2,400<br>49,000               | 22,000<br>350,000             |
| is-1,2-Dichlorothylene                               | 19                          | 42                    | ND                    | ND                      | ND               | 49               | ND                  | ND                      | ND                     | ND          | ND                 | NS                  | 250                      | 100,00                        | 500,000                       |
| thylbenzene                                          | ND<br>ND                    | 9.2<br>ND             | ND<br>ND              | 21,000<br>ND            | ND<br>ND         | ND<br>ND         | ND<br>ND            | 4.0 J<br>21 SCAL-E      | ND<br>24,000 SCAL-E    | ND<br>ND    | ND<br>ND           | NS<br>NS            | -<br>1,000               | - 41,000                      | -<br>390,000                  |
| opropylbenzene                                       | ND                          | ND                    | ND                    | 11,000                  | ND               | ND               | ND                  | 16                      | 10,000                 | ND          | ND                 | NS                  | -                        | -                             | -                             |
| lethyl Ethyl Ketone<br>lethylcyclohexane             | 5.7 J<br>ND                 | ND<br>26              | ND<br>ND              | ND<br>210,000           | ND<br>ND         | ND<br>4.4 J      | ND<br>ND            | 4.1 J,CCV-E<br>8.0      | ND<br>ND               | ND<br>ND    | 12<br>ND           | NS<br>NS            | - 120                    | - 100,000                     | - 500,000                     |
| lethylene chloride                                   | ND                          | 14 SCAL-E,B           | ND                    | 860 SCAL-E,J            | ND               | ND               | ND<br>ND            | ND                      | 29,000 SCAL-E          |             | ND<br>ND           | NS                  | 50                       | 100,000                       | 500,000                       |
| -Butylbenzene<br>-Propylbenzene                      | ND<br>ND                    | ND<br>ND              | ND<br>ND              | 26,000<br><b>30,000</b> | ND<br>ND         | ND<br>ND         | ND                  | ND<br>22                | ND<br>21,000           | ND<br>ND    | ND                 | NS<br>NS            | -<br>3,900               | - 100,000                     | - 500,000                     |
| -Xylene<br>- & m-Xylenes                             | ND<br>ND                    | ND<br>ND              | ND<br>ND              | ND<br>ND                | ND<br>ND         | ND<br>ND         | ND<br>ND            | 94 SCAL-E<br>120 SCAL-E | 110,000 SCAL-E         | ND<br>ND    | ND<br>ND           | NS<br>NS            | 260<br>260               | 100,000                       | 500,000<br>500,000            |
| -Isopropyltoluene                                    | ND                          | ND                    | ND                    | 3,300                   | ND               | ND               | ND                  | 18                      | 18,000                 | ND          | ND                 | NS                  | -                        | -                             | -                             |
| ec-Butylbenzene<br>tyrene                            | ND<br>ND                    | ND<br>ND              | ND<br>ND              | 10,000<br>ND            | ND<br>ND         | ND<br>ND         | ND<br>ND            | 14<br>ND                | 8,100<br>6,400 SCAL-E  | ND<br>ND    | ND<br>ND           | NS<br>NS            | - 11,000                 | 100,000                       | 500,000                       |
| ert-Butylbenzene                                     | ND                          | ND                    | ND                    | 2,200                   | ND               | ND               | ND                  | ND                      | ND                     | ND          | ND                 | NS                  | 5,900                    | 100,000                       | 500,000                       |
| oluene                                               | ND<br>12                    | 8.4<br>78             | ND<br>330 J           | ND<br>630 J             | ND<br>6.4 J      | ND<br>72         | 5.5 J<br>ND         | 13<br>ND                | 24,000<br>9,300        | ND<br>ND    | ND<br>ND           | NS<br>NS            | 700<br>470               | 100,000 21,000                | 500,000<br>200,000            |
| inyl Chloride                                        | ND                          | ND                    | ND                    | ND                      | ND               | 19               | ND                  | ND                      | ND                     | ND          | ND                 | NS                  | 20                       | 900                           | 13,000                        |
| CL Semivolatile Organic Comp<br>1-Biphenyl           | ND                          | ms per kilograr<br>ND | m<br>ND               | 773                     | ND               | ND               | ND                  | 194                     | 16,400                 | NS          | ND                 | ND                  | -                        | -                             | -                             |
| 4-Dichlorobenzene                                    | ND                          | ND                    | ND                    | ND                      | ND               | ND               | 2,080               | ND                      | ND                     | NS          | ND                 | ND                  | 1,800                    | 13,000                        | 130,000                       |
| ,4-Dimethylphenol<br>-Methylnaphthalene              | ND<br>ND                    | ND<br>ND              | ND<br>140             | ND<br>13,900            | ND<br>ND         | ND<br>53.6 J     | ND<br>152           | ND<br>2,770             | 566,000<br>241,000     | NS<br>NS    | ND<br>306          | ND<br>538           | -                        | -                             | -                             |
| -Methylphenol                                        | ND                          | ND                    | ND                    | ND                      | ND               | ND               | ND                  | 342                     | 290,000                | NS          | 419                | ND 225              | -                        | -                             | -                             |
| - & 4-Methylphenols<br>cenaphthene                   | ND<br>ND                    | ND<br>ND              | ND<br>677             | ND<br>4,800             | ND<br>ND         | ND<br>ND         | ND<br>516           | 1,190<br>ND             | 244,000<br>5,630       | NS<br>NS    | 1,270<br>ND        | 225<br>1,660        | - 20,000                 | -<br>100,000                  | - 500,000                     |
| cenaphthylene                                        | ND<br>ND                    | ND<br>ND              | 269<br>1,620          | 604 J<br>5,040          | ND<br>ND         | ND<br>91.0 J     | 350<br>1,570        | 98.7<br>86.1 J          | 1,600<br>1,860         | NS<br>NS    | ND<br>129          | 651<br>4,340        | 100,000                  | 100,000                       | 500,000<br>500,000            |
| nthracene<br>enzo[a]anthracene                       | ND                          | ND                    | 4,830                 | 11,800                  | ND               | 359              | 4,290               | 243                     | 5,250                  | NS          | 268                | 10,300              | 1,000                    | 1,000                         | 5,600                         |
| enzo[a]pyrene<br>enzo[b]fluoranthene                 | ND<br>ND                    | ND<br>ND              | 4,600<br>4,030        | 10,400<br>12,800        | ND<br>ND         | 470<br>412       | 4,470<br>4,450      | 336<br>323              | 4,160<br>5,030         | NS<br>NS    | ND<br>ND           | 5,990<br>9,260      | 1,000                    | 1,000                         | 1,000<br>5,600                |
| enzo[g,h,i]perylene                                  | ND                          | ND                    | 2,330                 | 6,440                   | ND               | 368              | 2,950               | 490                     | 4,190                  | NS          | 179                | 6,420               | 100,000                  | 100,000                       | 500,000                       |
| enzo[k]fluoranthene enzyl butyl phthalate            | ND<br>ND                    | ND<br>ND              | <b>3,440</b><br>1,520 | 8,770<br>ND             | ND<br>ND         | 381<br>ND        | 2,580<br>ND         | 349                     | 5,490<br>ND            | NS<br>NS    | ND<br>ND           | 8,840<br>ND         | 800                      | 3,900                         | - 56,000                      |
| is[2-ethylhexyl]phthalate                            | ND                          | ND                    | 2,190                 | 9,850                   | ND               | ND               | ND                  | ND                      | 156,000                | NS          | ND                 | 2,970               | -                        | -                             | -                             |
| hrysene                                              | ND<br>ND                    | ND<br>ND              | 784<br><b>4,770</b>   | 762                     | ND<br>ND         | ND<br>369        | 836<br>4,020        | 46.7 J<br>298           | 1,420<br>6,690         | NS<br>NS    | ND<br>262          | 2,340<br>9,320      | - 1,000                  | -<br>3,900                    | - 56,000                      |
| ibenzo[a,h]anthracene                                | ND                          | ND                    | 1,100                 | 3,290                   | ND               | 54.4 J           | 1,400               | 134                     | 1,610                  | NS          | ND                 | 2,220               | 330                      | 330                           | 560                           |
| ibenzofuran<br>i-n-butyl phthalate                   | ND<br>ND                    | ND<br>ND              | 390<br>ND             | ND<br>14,200            | ND<br>ND         | ND<br>ND         | 298<br>95.6 J       | 54.9 J<br>51.2 J        | 3,390<br>1,670         | NS<br>NS    | ND<br>ND           | 1,130<br>1,220      | -                        | -                             | -                             |
| i-n-octylphthalate                                   | ND                          | ND                    | 192                   | ND                      | ND               | ND               | ND                  | ND                      | ND                     | NS          | ND                 | ND                  | -                        | -                             | -                             |
| luoranthene                                          | ND<br>ND                    | ND<br>ND              | 11,300<br>651         | 32,200<br>5,120         | ND<br>ND         | 508<br>ND        | 9,950<br>472        | 476<br>ND               | 14,200<br>4,650        | NS<br>NS    | 547<br>73.2 J      | 24,600<br>1,600     | 100,000<br>30,000        | 100,000                       | 500,000<br>500,000            |
| ideno[1,2,3-cd]pyrene                                | ND<br>ND                    | ND<br>ND              | <b>2,290</b><br>248   | <b>6,310</b><br>10,700  | ND<br>ND         | 306<br>ND        | <b>2,690</b><br>214 | 347<br>3,410            | 3,670<br>139,000       | NS<br>NS    | 151<br>634         | <b>5,690</b><br>977 | 500<br>12,000            | 500<br>100,000                | 5,600<br>500,000              |
| itrobenzene                                          | ND                          | ND                    | ND                    | 4,440                   | ND               | ND               | ND                  | ND                      | ND                     | NS          | ND                 | ND                  | -                        | 15,000                        | 69,000                        |
| entachlorophenol<br>henanthrene                      | ND<br>ND                    | ND<br>ND              | ND<br>7,230           | ND<br>30,300            | ND<br>ND         | ND<br>202        | ND<br>6,040         | ND<br>299               | <b>4,540</b><br>15,100 | NS<br>NS    | ND<br>486          | ND<br>18,400        | 800                      | 6,700<br>100,000              | 6,700<br>500,000              |
| henol                                                | ND                          | ND                    | ND                    | ND                      | ND               | ND               | ND                  | ND                      | 26,600                 | NS          | ND                 | ND                  | 330                      | 100,000                       | 500,000                       |
| yrene<br>art 375 Pesticides/Herbicides i             | ND<br>in milligrams per kil | ND<br>ogram           | 8,730                 | 24,300                  | ND               | 583              | 7,540               | 485                     | 13,500                 | NS          | 523                | 19,400              | 100,000                  | 100,000                       | 500,000                       |
| 4'-DDE                                               | NS                          | NS                    | NS                    | NS                      | NS               | NS               | ND                  | NS                      | NS                     | NS          | ND                 | 0.0219              | 0.0033                   | 8.9                           | 62                            |
| ,4'-DDT<br>Ipha-Chlordane                            | NS                          | NS<br>NS              | NS                    | NS<br>NS                | NS               | NS               | 0.00271<br>0.00584  | NS<br>NS                | NS<br>NS               | NS<br>NS    | ND<br>ND           | 0.0176<br>0.0497    | 0.0033                   | 7.9                           | 47<br>24                      |
| ieldrin<br>AL Metals in milligrams per kild          | NS                          | NS                    | NS                    | NS                      | NS               | NS               | 0.0116              | NS                      | NS                     | NS          | ND                 | ND                  | 0.005                    | 0.2                           | 1.4                           |
|                                                      | 7,800                       | 7,950                 | 266                   | 3,040                   | 2,460            | 1,920            | 1,790               | 3,820                   | 2,310                  | NS          | 1,730              | ND                  | -                        | -                             | -                             |
| ntimony                                              | ND<br>1.76                  | ND<br>1.59            | ND<br>ND              | 38.0<br>12.9            | ND<br>6.80       | ND<br>4.49       | ND<br>8.01          | 0.634<br>3.53           | 6.12<br>5.66           | NS<br>NS    | ND<br>12.3         | ND<br>1.39          | -<br>13                  | -<br>16                       | - 16                          |
| arium                                                | 32.5                        | 31.6                  | 26.4                  | 484                     | 62.2             | 53.0             | 52.9                | 65.0                    | 276                    | NS          | 69.9               | ND                  | 350                      | 400                           | 400                           |
| eryllium<br>admium                                   | ND<br>ND                    | ND<br>0.330           | ND<br>ND              | ND<br>15.0              | ND<br>ND         | ND<br>ND         | 0.268<br>0.435      | ND<br>1.45              | ND<br>4.98             | NS<br>NS    | 0.430<br>ND        | 0.202<br>ND         | 7.2<br>2.5               | 14<br>4.3                     | 590<br>9.3                    |
| alcium                                               | 4,170                       | 4,570                 | 1,350                 | 7,050                   | 2,930            | 6,240            | 10,900              | 50,600                  | 6,930                  | NS          | 2,300              | ND                  | -                        | -                             | -                             |
| bromium                                              | 9.46                        | 10.1<br>9.08          | 3.20<br>0.789         | 688<br>29.9             | 8.72<br>3.85     | 4.19<br>4.05     | 7.57<br>5.88        | 24.0<br>4.04            | <b>162</b><br>4.00     | NS<br>NS    | 4.77               | ND<br>ND            | - 30                     | - 180                         | 1,500                         |
| opper                                                | 62.1                        | 51.1                  | 8.01                  | 200                     | 22.4             | 15.6             | 21.3                | 68.3                    | 279                    | NS          | 25.7               | ND                  | 50                       | 270                           | 270                           |
| on<br>ead                                            | 16,600                      | 15,100<br>17.3        | 1,930<br>16.7         | 177,000<br><b>1,420</b> | 6,550<br>9.80    | 5,030<br>6.73    | 6,060<br>47.3       | 8,990<br><b>78.3</b>    | 7,840                  | NS<br>NS    | 7,170              | ND<br>ND            | - 63                     | - 400                         | - 1,000                       |
| lagnesium                                            | 3,290                       | 3,450                 | 139                   | 2,030                   | 276              | 767              | 1,190               | 19,600                  | 10,100                 | NS          | 244                | ND                  | -                        | -                             | -                             |
| langanese<br>lercury                                 | 138<br>0.0582               | 95.2<br>ND            | 11.6<br>ND            | 689<br><b>4.69</b>      | 57.9<br>0.0402   | 105<br>ND        | 48.0<br>0.0362      | 128<br><b>0.676</b>     | 50.5<br>0.0992         | NS<br>NS    | 85.5<br>1.41       | ND<br>0.820         | 1,600<br>0.18            | 2,000<br>0.81                 | 10,000<br>2.80                |
| ickel                                                | 19.2                        | 20.2                  | 1.87                  | <b>107</b>              | 9.64<br>334      | 9.09             | 12.7                | 12.8<br>168             | 28.8                   | NS<br>NS    | 8.95               | 4.61<br>ND          | 30                       | 310                           | 310                           |
| otassium                                             | 990<br>ND                   | 1,110<br>ND           | 47.3<br>ND            | 96.4<br>ND              | 334<br>ND        | 320<br>ND        | 225<br>ND           | 168<br><b>6.30</b>      | 220<br>4.37            | NS<br>NS    | 143<br>ND          | ND<br>ND            | -<br>3.9                 | -<br>180                      | -<br>1,500                    |
| elenium                                              | ND<br>691 B                 | ND<br>753 B           | ND<br>69.9 B          | 9.44<br>106 B           | ND<br>129 B      | ND<br>118 B      | ND<br>135 B         | ND<br>31.6 B            | 1.62<br>780 B          | NS<br>NS    | ND<br>101 B        | 0.614<br>ND         | 2                        | 180                           | 1,500                         |
| ilver                                                |                             | 753 B<br>ND           | 69.9 B<br>ND          | 106 B<br>6.72           | 129 B<br>ND      | 118 B<br>ND      | 135 B<br>ND         | 31.6 B<br>ND            | 780 B<br>ND            | NS<br>NS    | 101 B<br>ND        | ND<br>4.26          | -                        | -                             | -                             |
|                                                      | ND                          |                       | -                     |                         | 12.1             | 9.48             | 7.61                | 14.1                    | 82.0                   | NS          | 7.80               | ND                  | -                        |                               | -                             |
| ilver dium                                           | 48.7<br>46.6                | 55.3<br>55.5          | 3.06<br>31.1          | 32.7<br>5,630           | 47.0             | 22.6             | 50.4                | 944                     | 1,050                  | NS          | 94.6               | ND                  | 109                      | 10,000                        | 10,000                        |

**FPM** 

#### TABLE 2.2.2 GROUNDWATER CHEMICAL ANALYTICAL DATA 51-17 ROCKAWAY BEACH BOULEVARD FAR ROCKAWAY, NEW YORK

| Analyte                        | GW-1                | GW-2                | GW-3                | GW-4                 | GW-5                | GW-6                | GW-7                  | GW-8                | NYSDEC Class GA<br>Ambient Water |
|--------------------------------|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|-----------------------|---------------------|----------------------------------|
|                                |                     |                     |                     | 2/28                 | /2018               |                     |                       | I                   | Quality Standards                |
| Volatile Organic Com           | pounds in mi        | crograms per        | liter               |                      |                     |                     |                       |                     |                                  |
| 1,1-Dichloroethane             | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 23                    | ND                  | 5                                |
| 1,1-Dichloroethylene           | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 16                    | ND                  | 5                                |
| 1,2,4-Trimethylbenzene         | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 3,100                 | 3.3                 | 5                                |
| 1,3,5-Trimethylbenzene         | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 1,300                 | 4.9                 | 5                                |
| 2-Butanone                     | 2.5                 | 2.9                 | 1.2                 | 0.70 J               | ND                  | 2.0 J               | ND                    | 1.3                 | 50                               |
| 4-Methyl-2-pentanone           | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 6.0 J                 | ND                  | -                                |
| Acetone                        | 12 ICV-E,<br>SCAL-E | 34 ICV-E,<br>SCAL-E | 11 ICV-E,<br>SCAL-E | 5.5 ICV-E,<br>SCAL-E | 16 ICV-E,<br>SCAL-E | 23 ICV-E,<br>SCAL-E | 27 J, ICV-E,<br>CCV-E | 11 ICV-E,<br>SCAL-E | 50                               |
| Benzene                        | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 42                    | ND                  | 0.7                              |
| Carbon disulfide               | 0.32 J              | ND                  | 0.44 J              | ND                   | ND                  | ND                  | 5.8 J                 | ND                  | 60                               |
| Chloroform                     | 3.6                 | 3.9                 | ND                  | ND                   | ND                  | ND                  | 120                   | ND                  | 7                                |
| cis-1,2-Dichloroethylene       | 7.4                 | 12                  | ND                  | 0.58 J               | ND                  | ND                  | ND                    | ND                  | 5                                |
| Cyclohexane                    | ND                  | 0.50 J              | ND                  | ND                   | ND                  | ND                  | ND                    | ND                  | -                                |
| Ethylbenzene                   | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 400                   | 0.48 J              | 5                                |
| Isopropylbenzene               | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 66                    | ND                  | 5                                |
| Methylcyclohexane              | ND                  | 1.2                 | ND                  | 0.78 J               | ND                  | ND                  | ND                    | ND                  | -                                |
| Methylene chloride             | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 800 CCV-E,<br>SCAL-E  | ND                  | 5                                |
| n-Butylbenzene                 | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 22                    | ND                  | 5                                |
| n-Propylbenzene                | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 100                   | ND                  | 5                                |
| o-Xylene                       | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 2,100                 | 5.4                 | 5                                |
| p- & m-Xylenes                 | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 2,800                 | 2.2                 | 5                                |
| p-Isopropyltoluene             | ND                  | ND                  | ND                  | ND                   | ND                  | ND                  | 110                   | ND                  | 5                                |
| tert-Butyl alcohol (TBA)       | 1.4 CCV-E, J        | 1.2 CCV-E, J        | 1.3 CCV-E, J        | ND                   | ND                  | 2.7 CCV-E, J        | ND                    | ND                  | -                                |
| Toluene                        | ND                  | 3.9                 | ND                  | ND                   | ND                  | ND                  | 550                   | 0.58 J              | 5                                |
| trans-1,2-<br>Dichloroethylene | ND                  | 0.60 J              | ND                  | ND                   | ND                  | ND                  | ND                    | ND                  | 5                                |
| Trichloroethylene              | 4.8                 | 6.8                 | ND                  | ND                   | ND                  | ND                  | 180                   | ND                  | 5                                |
| Vinyl chloride                 | ND                  | 4.4                 | ND                  | ND                   | ND                  | ND                  | ND                    | ND                  | 2                                |

Notes:

Only analytes detected in one or more samples are included herein. See laboratory report for a complete list of analytes.

CCV-E, ICV-E, Scale-E = Estimated concentration due to behavior during calibration.

J = Estimated concentration below the Reporting Limit but exceeding the Method Detection Limit.

ND = Not detected at or above the Method Detection Limit.

NYSDEC = New York State Department of Environmental Conservation - = Not established.

Bold shaded values exceed NYSDEC Class GA Ambient Water Quality Standards.



#### **TABLE 2.2.3** SOIL VAPOR SAMPLING RESULTS 51-17 BEACH CHANNEL DRIVE, FAR ROCKAWAY, NEW YORK

| Sample No.                    | SV-1              | SV-2  | SV-3  | SV-4    | SV-5  | SV-6  | SV-7  | Indoor Air<br>Background | Indoor Air<br>Background |
|-------------------------------|-------------------|-------|-------|---------|-------|-------|-------|--------------------------|--------------------------|
| Sample Date                   |                   |       |       | 2/28/18 |       |       |       | Levels,<br>Residential** | Levels,<br>Commercial*   |
| Volatile Organic Compounds in | ug/m <sup>3</sup> |       |       |         |       |       |       |                          |                          |
| 1,1-Dichloroethane            | ND                | ND    | 0.979 | ND      | ND    | ND    | 18.8  | <0.25 - <0.25            | <0.4 - <0.8              |
| 1,1-Dichloroethene            | ND                | ND    | ND    | ND      | ND    | ND    | 29.7  | <0.25 - 0.7              | <0.9 - <1.6              |
| 1,2,4-Trimethylbenzene        | 16.8              | 14.3  | 18.2  | 22.2    | 17.1  | 19.2  | 1,250 | <0.25 - 6.3              | 1.7 - 13.7               |
| 1,3,5-Trimethylbenzene        | 6.00              | 5.26  | 5.21  | 6.39    | 5.75  | 6.19  | 1,840 | 0.3 - 6.5                | <1.3 - 4.6               |
| 1,3-Butadiene                 | 1.49              | 3.65  | 80.3  | 47.3    | ND    | 0.553 | ND    | -                        | <2.3 - <7.5              |
| 1,4-Dichlorobenzene           | 1.36              | 3.54  | ND    | ND      | ND    | ND    | ND    | <0.25 - 2.6              | <0.8 - 12.5              |
| 2-Hexanone                    | ND                | ND    | 1.25  | 1.26    | 2.04  | 1.74  | ND    | -                        | -                        |
| 2,2,4-Trimethylpentane        | ND                | ND    | ND    | ND      | 1.19  | ND    | ND    | -                        | -                        |
| 4-Ethyltoluene                | 4.56              | 3.80  | 4.53  | 6.29    | 4.43  | 4.72  | 482   | -                        | <1.5 - 5.9               |
| 4-Methyl-2-pentanone          | ND                | ND    | ND    | 5.82    | ND    | ND    | ND    | -                        | <1.2 - 8.1               |
| Acetone                       | 68.2              | 117   | 79.8  | 53.2    | 71.5  | 41.6  | 220   | 9.9 - 140                | 32.4 - 120.2             |
| Benzene                       | 8.15              | 4.41  | 43.8  | 124     | 0.744 | 0.783 | 64.9  | 1.1 - 29                 | 2.1 - 12.5               |
| Carbon disulfide              | 7.82              | 9.53  | 7.94  | 2.99    | 12.5  | 14.4  | 32.4  | -                        | <0.8 - 6.4               |
| Carbon Tetrachloride          | 1.49              | ND    | 4.40  | ND      | 12.5  | ND    | 32.9  | <0.25 - 1.1              | <0.8 - 0.7               |
| cis-1,2-Dichloroethene        | 22.2              | 4.64  | 21.3  | ND      | 1.13  | ND    | ND    | <0.25 - 1.2              | <0.8 - <2.0              |
| Chloroform                    | 6.06              | 1.32  | 8.89  | ND      | 3.90  | 2.59  | 136   | <0.25 - 4.6              | <0.4 - 1.4               |
| Chloromethane                 | 0.522             | 0.502 | 0.558 | ND      | ND    | 0.580 | ND    | <0.25 - 5.2              | 2.1 - 4.4                |
| Cyclohexane                   | 3.42              | 4.41  | 3.48  | 3.86    | 3.48  | 5.65  | 97.4  | <0.25 - 19               | -                        |
| Ethyl Acetate                 | 2.61              | 3.56  | ND    | ND      | ND    | ND    | ND    | -                        | <1.0 - 9.5               |
| Ethyl Alcohol                 | 74.4              | 113   | ND    | ND      | ND    | ND    | ND    | 27 - 3,000               | -                        |
| Ethylbenzene                  | 8.86              | 7.30  | 6.56  | 8.60    | 4.95  | 4.86  | 1,210 | 0.4 - 13                 | <1.6 - 7.6               |
| Freon 11                      | ND                | 1.27  | 1.35  | ND      | 1.52  | 1.14  | ND    | 1.1 - 30                 | <3.7 - 54.0              |
| Freon 12                      | 1.94              | 2.01  | 2.00  | 1.87    | 2.19  | 1.94  | ND    | <0.25 - 26               | 4.8 - 32.9               |
| Heptane                       | 77.9              | 51.6  | 19.0  | 43.0    | 1.35  | 13.4  | 343   | 1 - 33                   | -                        |
| Hexane                        | 198               | 32.2  | 18.4  | 16.5    | 1.09  | 1.99  | 214   | 0.6 - 35                 | 1.6 - 15.2               |
| iso-Propyl alcohol            | ND                | 7.92  | 1.80  | 1.26    | ND    | ND    | ND    | -                        | -                        |
| m&p-xylene                    | 29.6              | 29.3  | 26.1  | 32.5    | 23.3  | 22.3  | 7,640 | 0.5 - 21                 | 4.1 - 28.5               |
| Methyl Ethyl Ketone           | 45.1              | 52.2  | 14.6  | 29.5    | 13.2  | 14.7  | 82.6  | 1.4 - 39                 | 3.3 - 13.5               |
| Methylene chloride            | ND                | ND    | ND    | ND      | ND    | ND    | 577   | 0.3 - 45                 | <1.7 - 16.0              |
| o-Xylene                      | 12.0              | 11.4  | 10.9  | 12.5    | 9.51  | 9.25  | 4,950 | 0.4 - 13                 | <2.4 - 11.2              |
| Styrene                       | 2.13              | 1.91  | 1.83  | 2.33    | 1.37  | 1.33  | 66.4  | <0.25 - 2.3              | <1.6 - 4.3               |
| tert-Butyl Alcohol            | 3.70              | 4.70  | ND    | 1.95    | ND    | ND    | ND    | -                        |                          |
| Tetrachloroethene             | 6.21              | 4.48  | 4.04  | 3.48    | 2.87  | 2.79  | ND    | <0.25 - 4.1              | <1.9 - 25.4              |
| Tetrahydrofuran               | 10.0              | 10.6  | 2.82  | 4.19    | 1.68  | 1.70  | ND    | <0.25 - 9.4              | -                        |
| Toluene                       | 27.7              | 43.0  | 29.1  | 70.8    | 8.67  | 8.67  | 1,610 | 3.5 - 110                | 10.7 - 70.8              |
| Trichloroethene               | 173.0             | 93.0  | 303   | 5.43    | 5.80  | 3.87  | 554   | <0.25 - 0.8              | <1.2 - 6.5               |

Notes:

All samples analyzed using Method TO-15. Only compounds detected in one or more samples are reported herein. See lab report for complete data. ug/m<sup>3</sup> = micrograms per cubic meter. Shaded compounds are those for which the NYSDOH has provided guidance. Yellow-shaded **bold** results indicate a monitor or mitigate response.

Pink-shaded **bold** results indicate a mitigate response.

ND = Not detected. \* = US EPA BASE Study 2001; 25th to 95th percentiles. \*\* = NYSDOH Study 2003; 25th to 95th percentiles.

FPM

- Several SVOCs were detected in samples B3, B4, B8, B9 (5 feet), and CB-3 at concentrations exceeding the NYSDEC unrestricted use SCOs and, in several cases, the restricted residential or commercial use SCOs. The highest concentrations of SVOCs and metals were identified in soil below the two drywells (B3 and B4) and in sediment within the catch basin (CB-3);
- One pesticide (dieldrin) was detected in the B8 sample at a concentration exceeding the NYSDEC unrestricted use SCO, and two pesticides (4,4'-DDE and 4,4'-DDT) were detected in the CB-3 sediment sample at concentrations exceeding the NYSDEC unrestricted use SCOs; and
- One or more metals, including copper, mercury, lead, cadmium, and/or others, were detected in samples B1, B2, B4, B8, B9 (depths of 2 feet and 5 feet), and B10 at concentrations exceeding the NYSDEC unrestricted use SCOs and, in several cases, the restricted residential or commercial use SCOs.

Based on these data it was concluded that historic fill is present in the shallow subsurface throughout the Property to a depth of about 3 feet and is generally impacted by SVOCs, metals, and/or pesticides at levels that are typical of historic fill. Several SVOC and/or metals detections exceed the restricted residential or commercial use SCOs, with the greatest impacts noted in the drywells and catch basin. These more elevated levels may reflect the concentration of impacted materials via collection and infiltration of stormwater runoff.

VOCs, including petroleum-related VOCs and the chlorinated solvent TCE, were identified at two locations on the Property (drywell B4 and soil boring B9, near the western side of the property) in exceedance of the NYSDEC's unrestricted use SCOs. Petroleum-related xylenes detections exceed the restricted residential use SCOs at the B9 location at a depth of 5 feet. These impacts are delineated vertically to less than about 11 feet below grade at B9. The observations and test results are indicative of a release of petroleum and chlorinated solvents at this location, perhaps in conjunction with the former use of the property by a paint and chemical company.

#### 2.2.3 Groundwater

Groundwater sampling was conducted at the GW-1 through GW-9 locations, as shown on Figure 2.2.1. At each location, groundwater was noted to be present at about 5 feet below grade no visible indications of potential contamination were noted, with the exception of GW-7 where a paint/petroleum odor was noted.

The samples were tested and the following observations were noted:

- Thirteen VOCs, including petroleum-related VOCs and TCE, were detected in the GW-7 sample at concentrations above the NYSDEC Standards, with several detections noted to be elevated. The GW-7 sample was collected in immediate proximity to the source material at B9 and these results indicate that the source material is resulting in groundwater contamination at the Property;
- One chlorinated VOC (cis-1,2-dichloroethylene, or cis-1,2-DCE) was detected at GW-1 and three chlorinated VOCs (cis-1,2-DCE, TCE, and vinyl chloride, or VC) were detected at GW-2 at concentrations slightly above the NYSDEC Standards. The GW-1 and GW-2 locations are on the northeastern portion of the property. VC and cis-1,2-DCE are breakdown products from TCE and their detection in these two locations suggests that the groundwater flow direction is likely to the northeast from the TCE-impacted source material at B9 and that TCE is breaking down as it migrates in groundwater;

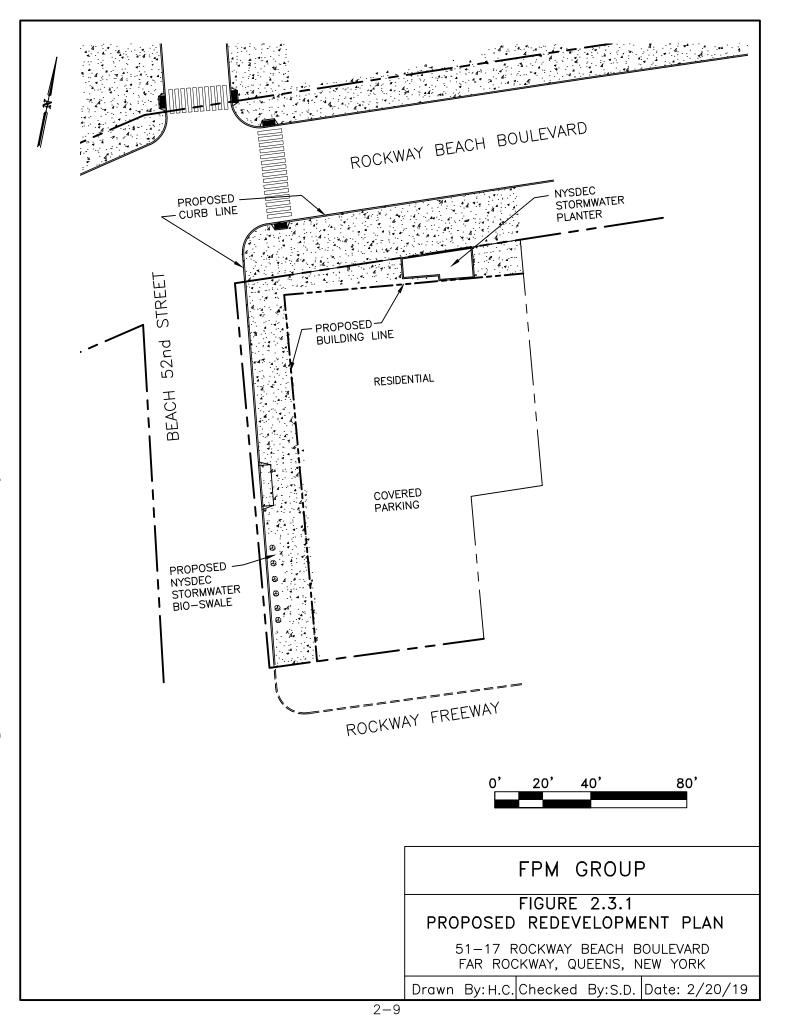


- One petroleum-related VOC (o-xylene) was detected at a level slightly above its NYSDEC Standard at GW-8. This location is about 20 feet south-southwest of the B9/GW-7 location; the absence of significant groundwater impacts in this direction further indicates that the groundwater flow direction appears to be to the northeast; and
- No impacts exceeding the NYSDEC Standards were detected at the GW-3 to GW-6 locations. This suggests that the plume of VOC-impacted groundwater originating from the B9/GW-7 area is narrow and well-defined.

#### 2.2.4 Soil Vapor

Soil vapor samples SV-1 through SV-7 were collected throughout the Property from beneath the concrete slab of the former buildings; the locations are shown on Figure 2.2.1. Each sample was collected and tested in accordance with NYSDOH protocols. The samples were evaluated in accordance with the October 2006 NYSDOH Soil Vapor Intrusion Guidance document and matrices updated in May 2017. Our review of these data indicates the following:

- Five VOCs for which the NYSDOH provides guidance, including carbon tetrachloride (CT), cis-1,2- DCE, TCE, 1,1-dichloroethene (1,1-DCE), and methylene chloride were detected in at least one of the soil vapor samples and may pose a concern for soil vapor intrusion (SVI). Based on a comparison to the NYSDOH guidance, the results for 1,1-DCE at SV-7, CT at SV-5 and SV-7, cis-1,2-DCE at SV-1 and SV-3, and methylene chloride at SV-7 could trigger a monitor or mitigate response, and the levels of TCE at SV-1, SV-2, SV-3, and SV-7 would trigger a mitigate response. All of these VOCs were detected in the source material at B9 and/or in the groundwater beneath the Property and, therefore, the soil vapor detections likely originated from this onsite source; and
- Elevated concentrations of several petroleum compounds were detected at SV-7. These detections also appear related to the impacted soil noted in nearby soil boring B9.


#### 2.3 Anticipated Redevelopment

It is proposed to redevelop the Property, together with other parcels, with mixed commercial and restricted residential uses. A preliminary redevelopment plan is presented in Figure 2.3.1 and shows that the Property is to be completely covered by a new residential building and associated covered parking and pavement. No vegetated areas are proposed, with the exception of a stormwater management planter to be located to the north of the building.

Redevelopment activities will include removal of the existing former building infrastructure (walls, pavement, drywells, etc.) from the Property. Excavation is anticipated to be conducted to 4 feet below grade to accommodate grade beams for the new slab-on-grade building. No basement or other subsurface infrastructure is proposed, other than building foundation elements.

The scope of the Supplemental Phase II ESA investigation was developed to provide additional information concerning the nature and extent of contaminants present onsite. In particular, sampling of the Property's surface soil, subsurface soils, and groundwater was conducted to provide additional information concerning soil and groundwater quality. The scope of work was formulated considering the existing data, the anticipated redevelopment, and the DEP's August 16, 2018 data requests.





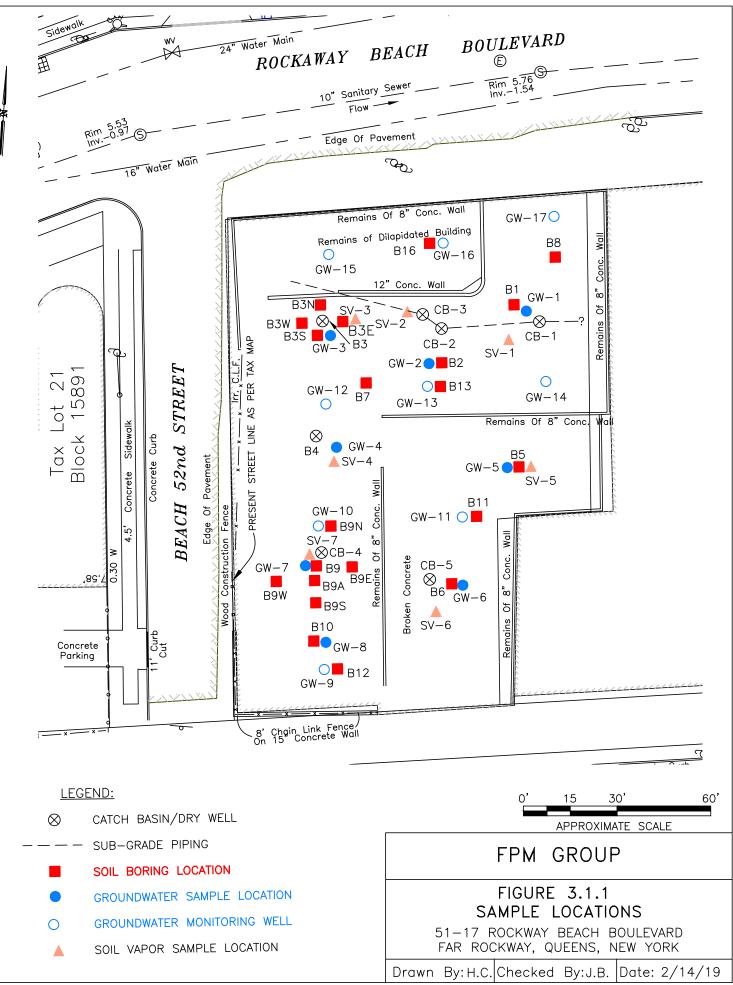
#### SECTION 3.0 SUPPLMENTAL PHASE II ESA INVESTIGATION PROCEDURES

The Supplemental Phase II ESA investigation was conducted to evaluate the nature and extent of contamination at the Property, with a focus on the requests in the DEP's August 16, 2018 correspondence and considering the proposed redevelopment plan. The investigation included further evaluations of suspect areas, including the apparent source area at B9, the B4 drywell, and the additional catch basins and drywells. Additional soil and groundwater assessments were also performed throughout the property. This scope of work was in accordance with the conditionally-approved work plan, including the conditions noted in the DEP's October 29, 2018 correspondence.

FPM conducted the Supplemental Phase II Investigation on behalf of the Property owner, Peninsula Rockaway Housing Fund Development Corp. All investigation work was overseen by a Qualified Environmental Professional (QEP).

All field work was performed using a site-specific Health and Safety Plan (HASP), a copy of which was included in the Supplemental Phase II ESA investigation work plan. FPM implemented the HASP during all intrusive activities at the property.

A Quality Assurance Project Plan (QAPP) was also implemented during this investigation. All field QA/QC, laboratory analyses, and data evaluation was performed following the QAPP.


#### 3.1 Supplemental Investigation Scope of Work

The Supplemental Phase II ESA Investigation sampling was conducted to further investigate and characterize the nature and extent of contamination that may be present at the Property, and included conducting sufficient sampling to fully characterize the onsite soil and groundwater conditions in relation to the proposed redevelopment. Soil vapor sampling was previously conducted throughout the Property and provided sufficient information to evaluate the potential for SVI. Therefore, no additional soil vapor sampling was conducted.

The Supplemental Phase II ESA sampling locations are shown on Figure 3.1.1, together with the previous sampling locations and other Property features. The scope of work included the following components:

- Additional soil sampling in the vicinity of the B9 location and B3 drywell to characterize the nature and extent of contamination previously identified at these locations;
- Sediment sampling in the remaining subsurface structures (catch basins) that were not previously sampled;
- Soil sampling from the upper two feet of soil throughout the Property to characterize shallow soil conditions, soil sampling from 2 to 4 feet to characterize soil to the maximum proposed excavation depth, and soil sampling from 4 to 6 feet below grade to characterize soil in the two-foot interval below the proposed maximum excavation depth. Where groundwater was encountered in this interval; and





• A network of 9 groundwater monitoring wells (GW-9 through GW-17) was installed onsite (shown as open blue circles on Figure 3.1.1); the network of wells was designed to include 1 well on the anticipated upgradient side of the Property (south), 3 wells on the anticipated downgradient side of the Property (north), and 5 wells in the more central portion of the Property. Using these wells, the Site-specific groundwater flow direction was determined and groundwater sampling was performed to further evaluate onsite groundwater conditions and the potential for Site-related groundwater contamination to extend offsite.

#### 3.2 Sampling and Testing Procedures

The procedures for each type of sampling shown on Figure 3.1.1 are described below. QA/QC procedures and results are presented in Section 3.3 and the sample results are discussed in Section 4.

Prior to intrusive work the One Call service was contacted to mark the utilities on the public streets adjoining the Site. The markings were reviewed by the QEP and drilling personnel to evaluate the potential for subsurface utilities in the work areas. No subsurface utilities were identified at any of the targeted locations and no utilities were encountered during the work.

#### Soil and Sediment Sampling

A soil boring was performed at each of the 13 targeted locations utilizing direct-push sampling equipment. The soil borings were each performed through the existing surface materials (concrete slab, pavement, etc.) and into the underlying soil. Visibly-impacted materials were encountered at several locations and these borings were extended through the visibly-impacted material and into underlying materials that exhibited little to no impact. The soil samples from each boring were obtained continuously, visually examined, screened by the QEP with a calibrated photoionization detector (PID), and classified using the Unified Soil Classification System (USCS). The soil observations were recorded on boring logs (copies included in Appendix B) and the boring locations were identified relative to fixed features on the Property plan. The completed borings were backfilled with soil cuttings and their surface locations were marked with surveyor's flags for future reference.

Sediment samples were obtained from each of the four identified subsurface structures (CB-1, CB-2, CB-4 and CB-5 catch basins) that were not previously sampled. The sediment was sampled using a decontaminated stainless-steel hand auger and the samples were visually inspected by the QEP and screened for organic vapors with a calibrated PID. The sediment observations were recorded in the QEP's field log and the structure locations were identified relative to fixed property features.

The soil and sediment samples collected were submitted for laboratory analysis, as described below. The samples retained for VOC analysis were collected using Method 5035A preservation procedures. Upon completion of sampling, the sample containers were sealed, labeled, managed, transported, and tracked as described below.

#### Second Se

Monitoring wells were installed at each of the nine targeted locations (GW-9 through GW-17) by Aarco Environmental, an experienced well installation contractor. An FPM QEP observed each well installation and prepared a well installation log to document the well construction; copies of



the well installation logs are included in Appendix B. The monitoring well locations were identified relative to fixed property features and plotted in a property plan.

Each well includes a two-inch diameter 0.01-inch machine-slotted PVC screen approximately 7 feet long installed to a depth of approximately 5 feet into the water table. The annulus was backfilled with well gravel to the top of the screen, with an overlying one-foot bentonite seal. The top of each well casing was capped with an expansion-fit locking well cap and the casings are each protected with a bolt-down flush-mounted manhole cover set in concrete.

Following installation, the wells were developed by pumping until the parameters pH, temperature, and conductivity varied by less than 10 percent between removals of successive casing volumes of groundwater. Due to the presence of very fine-grained materials (silt and organics) in the saturated zone, the turbidity of the produced groundwater could not be reduced to clarity (less than 50 NTU). The FPM QEP documented the well development procedures; copies of the well development forms are included in Appendix B.

Following well installation, a survey was performed in which the relative elevation of the top of the PVC casing for each well was determined to the nearest 0.01 foot. The static water level for each of the wells was measured and used in conjunction with the surveyed well casing relative elevations to calculate the Property-specific groundwater flow direction, as discussed in Section 4.2.

Groundwater sampling was performed several weeks after the wells were installed to allow for groundwater conditions in proximity to the wells to stabilize. At each well the depth to the static water level and depth of the well was measured by the QEP with an interface probe. The potential presence of light or dense non-aqueous-phase liquid (LNAPLor DNAPL) was assessed using the interface probe results. Then a decontaminated low-flow submersible pump was used to purge each well until the parameters pH, temperature, and conductivity varied by less than 10 percent between removals of successive casing volumes of groundwater. Following the removal of each well volume, field parameters including pH, turbidity, specific conductivity, and temperature were monitored. When all stability parameters varied by less than 10 percent between the removal of successive well volumes, the well was sampled. It was noted that the turbidity of the produced water could not be reduced to less than 50 NTU during the purging process. Well sampling forms documenting the well purging and sampling procedures were completed and copies are included in Appendix B.

Following purging, groundwater sampling was performed. Samples for all analyses were obtained using dedicated disposable polyethylene bailers suspended from dedicated cotton or polypropylene lines. The retrieved samples were decanted into laboratory-supplied sample containers. The aliquot of each sample that was to be tested for dissolved metals was transmitted to the lab in an unpreserved container and filtered in the lab prior to preservation and analysis. Upon completion of sampling, the sample containers were sealed, labeled, managed, transported, and tracked as described below.

#### Sample Management and Analyses

Each sample container was labeled using a ball-point pen, and the labeled containers were placed into coolers with iceto depress the sample temperature. A chain of custody form was completed and kept with each of the coolers to document the sequence of sample possession. At the end



of each day, the filled coolers were transported to FPM's office and then picked up by the laboratory courier for delivery to the analytical laboratory.

The analytical laboratory for all soil and groundwater samples was Alpha Analytical of Westborough, Massachusetts, which is NYSDOH ELAP-certified for the analyses that were performed.

All of the soil and groundwater samples were analyzed for TCL VOCs using EPA Method 8260C; TCL SVOCs using Method 8270D, TAL metals (total and dissolved) using Method 6010D, mercury (total and dissolved) using Method 7471B, PCBs using Method 8082A, and pesticides using Method 8081B. As noted above, a separate aliquot of each groundwater sample was obtained, filtered to remove turbidity, and analyzed for TAL metals (dissolved) using Method 6010C and mercury using Method 7471B. The analytical methods used were as per NYS Analytical Services Protocol (ASP).

#### Data Evaluation

Following receipt of all sample results, data tables were prepared and the data were evaluated in relation to applicable regulatory criteria. The soil and sediment data were evaluated with respect to the NYSDEC SCOs for unrestricted use (Table 375-6(a)) and for protection of groundwater (Table 375-6(b)). As the planned use of the Property will be commercial and/or multi-family residential, the soil data were also compared to the NYSDEC SCOs for commercial and restricted residential uses (Table 375-6(b)). Groundwater results were compared to the NYSDEC Class GA Ambient Water Quality Standards.

#### 3.3 Quality Assurance/Quality Control Procedures and Results

The Supplemental Phase II ESA Investigation was conducted in accordance with the procedures in the approved QAPP for this Property.

#### Field Screening Procedures

Field screening was performed during all sampling activities and included monitoring for organic vapors in soil cuttings as they were generated and in the air in the work zone using a Photovac MicroTIP PID, and visual observations of soil and groundwater characteristics. All readings and observations were performed by the FPM QEP and recorded in his field notebook or on the appropriate field forms. The field screening results were reviewed together with the sample data during the data evaluation process.

#### Equipment Decontamination Procedures

All non-disposable downhole equipment (i.e., direct-push rods, hand auger, etc.) used during sampling activities was decontaminated by washing in a potable water and Alconox solution and rinsing in potable water prior to use at each location. All sampling equipment was either dedicated disposable equipment or was decontaminated prior to use at each location. The decontamination procedures utilized for all non-disposable sampling equipment were as per the QAPP.



#### QA/QC Samples

QA/QC samples were collected and utilized to evaluate the potential for field or laboratory contamination and to evaluate the laboratory's analytical precision and accuracy. The QA/QC samples collected included equipment (field) blanks, trip blanks (for VOCs), and duplicates.

Decontamination procedures were evaluated by the use of equipment blank samples, which consisted of aliquots of laboratory-supplied water that were poured over or through the dedicated or decontaminated sampling equipment and then submitted to the laboratory for analysis. An equipment blank sample was prepared for each day that soil or groundwater sampling was conducted at the Site and was analyzed for the same analytes as the primary environmental samples collected that day.

The analytical results from the equipment blank samples are included in the laboratory reports in Appendix C. These results were reviewed to evaluate the potential for cross-contamination from field procedures to have affected the laboratory results. The results of this review are summarized as follows:

- The equipment blank sample collected during the January 4, 2019 soil sampling event did not show any detections of pesticides or PCBs. Low estimated concentrations of one VOC and one SVOC were noted in the equipment blank; these detections were sufficiently low such that the associated data for the soil samples would not have been affected at significant levels. Low and generally estimated concentrations of several metals, including primarily sodium, calcium, and potassium, were noted in the equipment blank sample. These detections do not present a concern for significant cross-contamination of the associated soil sample results.
- The equipment blank sample collected during the January 17, 2019 soil sampling event did not show any detections of VOCs or PCBs. A low estimated concentration of one SVOC, two pesticides, and one metal were noted in the equipment blank; these detections were sufficiently low such that the associated data for the soil samples would not have been affected at significant levels. These detections do not present a concern for significant cross-contamination of the associated soil sample results.
- The equipment blank sample collected during the February 8, 2019 groundwater sampling event did not show any detections of VOCs, pesticides, or PCBs. Low and generally estimated concentrations of one SVOC and several metals were noted in the equipment blank; these detections were sufficiently low such that the associated data for the groundwater samples would not have been affected at significant levels. These detections do not present a concern for significant cross-contamination of the associated groundwater sample results.

Trip blank samples were utilized to evaluate the potential for VOC cross-contamination between samples in the same cooler. Trip blank samples consisted of laboratory-provided containers filled with laboratory water that are sealed in sample containers at the laboratory and transported to and in the field with the other sample containers. A trip blank was shipped with each group of soil and groundwater samples that were tested for VOCs and was managed in the field and analyzed in the laboratory in the same manner as the primary environmental samples.



The analytical results from the trip blank samples are included in the laboratory reports in Appendix C. These results were reviewed to evaluate the potential for cross-contamination between samples to have affected the laboratory results. The results of this review are summarized as follows:

- The trip blank sample used during the January 4, 2019 soil sampling event did not show any detections of VOCs. Therefore, there does not appear to be a potential for cross-contamination between the soil samples collected during this event.
- The trip blank sample used during the January 17, 2019 soil sampling event did not show any detections of VOCs. Therefore, there does not appear to be a potential for cross-contamination between the soil samples collected during this event.
- The trip blank sample used during the February 8, 2019 groundwater sampling event did not show any detections of VOCs. Therefore, there does not appear to be a potential for cross-contamination between the groundwater samples collected during this event.

Blind duplicate samples were obtained at a frequency of one per every 20 environmental samples and were used to attest to the precision of the laboratory. A blind duplicate consists of a separate aliquot of sample collected at the same time, in the same manner, and analyzed for the same parameters as the primary environmental sample. The blind duplicate sample results are compared to those of the primary environmental sample to evaluate laboratory analytical precision.

The analytical results from the blind duplicate samples are presented on the soil and groundwater data tables in Section 4 together with the data from the associated primary environmental samples. These results were reviewed to evaluate the precision of the laboratory results. The results of this review are summarized as follows:

- The results from primary environmental soil sample B3N(4-6) and duplicate sample B3N(4-6)D are very similar, indicating that the associated laboratory results are anticipated to be reasonably precise.
- The results from primary environmental soil sample B9N(4-6) and duplicate sample B9N(4-6)D are very similar, indicating that the associated laboratory results are anticipated to be reasonably precise.
- The results from primary environmental sediment sample CB-4 and duplicate sample CB-4D are very similar, indicating that the associated laboratory results are anticipated to be reasonably precise.
- The results from primary environmental groundwater sample GW-17 and duplicate sample GW-17D are very similar, indicating that the associated laboratory results for the groundwater samples are anticipated to be reasonably precise.
- Chain-of-Custody Procedures

For each day of sampling, chain-of-custody (COC) sheets were completed and submitted to the laboratory with the samples collected that day. A copy of each COC sheet was retained by the FPM QEP for sample tracking purposes. Each COC sheet included the project name, the



sampler's signature, the sampling locations and intervals, and the analytical parameters requested. The COC sheets were used during the data evaluation process to verify that all of the collected samples were analyzed as directed and that all of the analytical results were provided by the laboratory. No issues were identified during the COC review.

#### Data Usability Evaluations

All chemical analytical results were evaluated using the sample data packages, sample data summary packages, and case narratives provided by the analytical laboratory. The data evaluation was performed for each laboratory report to verify that the analytical results are of sufficient quality to be relied upon to assess the potential presence of contaminants in the groundwater and soil samples. The results of the data usability evaluation for each laboratory report are as follows:

- For laboratory report L1900818 (soil samples collected January 4, 2019), method blanks (MBs) were generally non-detect for all constituents and laboratory control sample (LCS) results were generally within acceptance ranges. Some low-level exceedances of acceptance criteria were noted, but not at levels that would significantly affect the associated data. Some samples required dilution due to the sample matrix; elevated detection limits are noted for these samples. Surrogate recoveries were outside of acceptance criteria for one sample for VOCs and one sample for SVOCs. Re-analysis of these samples produced similar results and both sets of analyses are reported. These minor issues do not materially affect the analytical results for the primary environmental samples and the lab results are of sufficient quality to be used for their intended purpose.
- For laboratory report L1902518 (soil samples collected January 17, 2019), MBs were nondetect for nearly all constituents and LCS results were generally within acceptance ranges. Some low-level exceedances of LCS acceptance criteria were noted, but not at levels that would significantly affect the associated data. Some samples required dilution due to the sample matrix; elevated detection limits are noted for these samples. Surrogate recoveries were outside of acceptance criteria for several samples for SVOCs, one sample for PCBs, and several samples for pesticides. Re-analysis produced similar results and, where available, both sets of analyses are reported. These minor issues do not materially affect the analytical results for the primary environmental samples and the lab results are of sufficient quality to be used for their intended purpose.
- For laboratory report L1905396 (groundwater samples collected February 8, 2019), MBs were non-detect for nearly all constituents and LCS results were generally within acceptance ranges. Some low-level exceedances of LCS acceptance criteria were noted, but not at levels that would significantly affect the associated data. Some samples required dilution for SVOC analyses due to the sample matrix; elevated detection limits are noted for these samples. The matrix spike recoveries were outside of acceptance criteria for several samples due to elevated concentrations of select metals in the parent samples. The matrix spike recovery for mercury was outside of acceptance criteria, but a post-digestion spike was performed and was within acceptance criteria. These minor issues do not materially affect the analytical results for the primary environmental samples and the lab results are of sufficient quality to be used for their intended purpose.



#### SECTION 4.0 SUPPLMENTAL PHASE II ESA INVESTIGATION RESULTS

The results of the Supplemental Phase II ESA Investigation are presented below and are reviewed together with the existing environmental data discussed in Section 2 to evaluate the nature and extent of contamination at the Property. This evaluation considers the proposed redevelopment of the Property with restricted residential and commercial uses.

#### 4.1 Soil Conditions

#### Soil Observations

The soil boring logs presented in Appendix B document that historic fill is present at nearly all locations from beneath the pavement at the property surface to about 3 feet below grade. Historic fill was not identified in the B9N, B9S, or B9W borings. The historic fill is generally composed of a gray/black to brown fine to medium-grained sand containing angular gravel, slag, brick, concrete, and/or asphalt. The historic fill is underlain by dark brown/gray-black fine to medium-grained sand with organics, gravel, and silt generally from 3 to 7 feet below grade. Soils from 7 feet below grade and deeper generally consisted of gray fine to medium grained sand with gravel. Groundwater was typically encountered at about 4 feet below grade. This information is consistent with the prior boring log data for the Property, as discussed in Section 2.

No PID responses, staining, odors, sheen, or other indications of potential contaminant releases were observed in the materials encountered in any of the borings, with the following exceptions:

- Organic vapors were recorded in the interval from about 2 to 6 feet below grade in the four borings (B3N, B3E, B3S and B3W) surrounding the B3 drywell location. No odors, staining or other visible indications suggestive of potential contamination were noted in these materials;
- Organic vapors and a petroleum/paint odor were recorded in the interval generally ranging from 2 to 8 feet below grade in the five borings (B9A, B9N, B9E, B9S, and B9W) surrounding the former B9 location. As discussed in Section 2, at boring B9 odors that appeared consistent with paint and petroleum had been noted from 1 to 11 feet below grade; organic vapors were detected throughout this interval with a maximum PID response of 1,240 ppm detected at 5 feet below grade. Organic vapor concentrations decreased with depth and no significant PID response was noted below 11 feet. For the five borings surrounding former boring B9 (B9A, B9N, B9E, B9S, and B9W) indications of contamination were noted but generally to a lesser extent. At the B9N location, the odors and PID readings increased downward to 4 feet below grade and then decreased at greater depths. The greatest amounts of odor and organic vapors were noted in boring B9N at about 4 feet below grade, where the PID indicated 665 ppm of organic vapors. Lower indications of potential contamination noted in the other borings. The impacts noted at B9N were less than the impacts previously noted at B9; and
- A slight petroleum odor was noted in the historic fill interval in boring B16 and organic vapor readings were noted between 2 and 5 feet below grade, with the highest reading (45.6 ppm) at 2 feet below grade.

The four sampled subsurface catch basins (CB-1, CB-2, CB-4 and CB-5) were found to be solidbottom structures. CB-1, CB-2 and CB-4 were approximately 3 feet deep and CB-5 was approximately 1 foot deep. The sediments in these structures generally consisted of fine to coarse



sand with fragments of brick, concrete and asphalt. No odors, staining or other indications of potential contamination were noted in any of these samples, with the exception of CB-4, where a strong paint/petroleum odor and elevated PID readings (greater than 2,000 ppm) were noted. CB-4 is located in the area of boring B9 where similar indications of impacts were noted.

#### Soil Chemical Analytical Results

The soil and sediment samples were tested and the analytical results compared to the NYSDEC Part 375 and CP-51 unrestricted use, restricted residential use, commercial use and protection of groundwater SCOs, as shown in Table 4.1.1. The following observations were noted:

- In the borings in the B3 drywell area (borings B3N, B3E, B3S and B3W), several VOCs, including TCE, cis-1,2-DCE, methylene chloride, toluene, and acetone, were noted to be present in the historic fill generally at depths of up to 4 feet below grade at levels exceeding the NYSDEC unrestricted use and/or protection of groundwater SCOs. None of these detections exceeded either the restricted residential or commercial use SCOs. Several SVOCs were found primarily in the historic fill to 2 feet below grade at B3N, B3E and B3S at levels that exceeded the restricted residential use, commercial use, and/or protection of groundwater SCOs. Some of these SVOCs were also found in the native soil at 4 to 6 feet below grade at B3N and B3E at levels that exceeded the restricted residential use SCOs. The exceedances were all for polycyclic aromatic hydrocarbons (PAHs) and are typically associated with petroleum-impacted materials. No PCBs were detected in the B3 area borings and none of the detected pesticides exceeded any of the SCOs. One metal detection (zinc in historic fill at 2 to 4 feet below grade in B3W) exceeded its unrestricted use SCO; none of the other metal detections exceeded any SCOs. These results are consistent with the observations of soil conditions in the B3 area, which included organic vapors in the interval from about 2 to 6 feet below grade.
- For the borings in the B9 drywell area (borings B9A, B9N, B9E, B9S and B9W), several petroleum-related VOCs, including toluene, ethylbenzene, xylenes, isopropylbenzene, naphthalene, and trimethylbenzenes were noted to be present in all of the soil samples from boring B9N at levels exceeding the NYSDEC unrestricted use, protection of groundwater, restricted residential use and/or commercial use SCOs. No exceedances of SCOs were noted for VOCs in any of the other borings from the B9 area and no chlorinated VOCs were noted to exceed the SCOs in these samples. Several PAH SVOCs were also found in all of the samples from boring B9N at levels that exceeded multiple SCOs. No SVOCs exceeded the SCOs in any of the other soil samples from the B9 area and none of the PCB, pesticide or metals detections in these other borings exceeded any SCOs. PCBs, one pesticide, and two metals (lead and zinc) were detected in samples from the B9N boring at levels exceeding SCOs. These results are consistent with the observations of soil conditions in the B9 area, which included organic vapors and paint/petroleum odors in the interval from about 2 to 8 feet below grade.
- At boring B10 the VOC acetone slightly exceeded its unrestricted use and protection of groundwater SCO in the 4 to 6-foot interval and zinc exceeded its unrestricted use SCO in the 0 to 2-foot interval. No other exceedances were noted in the samples from this boring and the materials in this boring did not exhibit any visual indications of potential impacts;



| Sample No.                                     |              | B3N          |             | B3N DUPLICATE   |              | B3E         |            |                                      | 6 NYCR Part 375               |                                    |                              |
|------------------------------------------------|--------------|--------------|-------------|-----------------|--------------|-------------|------------|--------------------------------------|-------------------------------|------------------------------------|------------------------------|
| Sample Depth (feet)                            | 0-2          | 2-4          | 4-6         | 4-6             | 0-2          | 2-4         | 4-6        | 6 NYCRR Part 375<br>Unrestricted Use | Restricted<br>Residential Use | 6 NYCRR Part 375<br>Commercial Use | 6 NYCRR Par<br>375/CP-51     |
| Sample Type                                    | Fill         | Fill/Native  | Native      | Native          | Fill         | Fill/Native | Native     | Soil Cleanup<br>Objectives           | Soil Cleanup<br>Objectives    | Soil Cleanup<br>Objectives         | Protection of<br>Groundwater |
| Sample Date                                    |              |              |             | 1/17/19         |              |             |            |                                      |                               |                                    |                              |
| CL Volatile Organic Compounds i                | n micrograms | per kilogram |             |                 |              |             |            |                                      |                               |                                    |                              |
| Methylene chloride                             | 440          | 290 J        | ND          | ND              | ND           | 600         | ND         | 50                                   | 100,000                       | 500,000                            | 50                           |
| 1,1-Dichloroethane                             | ND           | ND           | ND          | ND              | ND           | 17 J        | ND         | 270                                  | 26,000                        | 240,00                             | 270                          |
| Chloroform<br>Carbon tetrachloride             | ND<br>ND     | 270<br>ND    | 1.3 J<br>ND | 2.0 J<br>ND     | 0.78 J<br>ND | 400<br>ND   | 23 J<br>ND | 370<br>760                           | 49,000                        | 350,000<br>22,000                  | 370<br>760                   |
| 1,2-Dichloropropane                            | ND           | ND           | ND          | ND              | ND           | ND          | ND         |                                      | 2,400                         |                                    | -                            |
| Dibromochloromethane                           | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| 1,1,2-Trichloroethane                          | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| Fetrachloroethene                              | ND           | 19 J         | ND          | ND              | ND           | 19 J        | ND         | 1,300                                | 19,000                        | 150,000                            | 1,300                        |
| Chlorobenzene                                  | ND           | ND           | ND          | ND              | ND           | ND          | ND         | 1,100                                | 100,000                       | 500,000                            | 1,100                        |
| Trichlorofluoromethane                         | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND        | ND<br>ND     | ND<br>21 J  | ND<br>ND   | -                                    | -                             | -                                  | 20                           |
| I,2-Dichloroethane                             | ND           | ND           | ND          | ND              | ND           | ND          | ND         | 20<br>680                            | 3,100<br>100,000              | 30,000<br>500,000                  | 680                          |
| Bromodichloromethane                           | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| rans-1,3-Dichloropropene                       | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| sis-1,3-Dichloropropene                        | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| ,3-Dichloropropene, Total                      | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| ,1-Dichloropropene                             | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND        | ND<br>ND     | ND<br>ND    | ND<br>ND   | -                                    | -                             | -                                  | -                            |
| 3romoform<br>,1,2,2-Tetrachloroethane          | ND           | ND<br>ND     | ND          | ND<br>ND        | ND           | ND          | ND         | -                                    | -                             | -                                  | 600                          |
| Benzene                                        | ND           | 26 J         | ND          | 0.56 J          | 0.31 J       | 20 J        | ND         | 60                                   | 4,800                         | 44,000                             | 60                           |
| Toluene                                        | ND           | 1,900        | 1.6 J       | 4.5             | 0.77 J       | 420         | ND         | 700                                  | 100,000                       | 500,000                            | 700                          |
| thylbenzene                                    | ND           | 15 J         | ND          | ND              | ND           | ND          | ND         | 1,000                                | 41,000                        | 390,000                            | 1,000                        |
| Chloromethane                                  | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| Bromomethane                                   | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | - 20                         |
| /inyl chloride<br>Chloroethane                 | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND        | ND<br>ND     | 160<br>ND   | ND<br>ND   | 20                                   | 900                           | 13,000                             | 20                           |
| .1-Dichloroethene                              | ND           | ND           | ND          | ND              | ND           | ND          | ND         | 330                                  | 100,000                       | 500,000                            | 330                          |
| rans-1,2-Dichloroethene                        | ND           | 52 J         | ND          | ND              | ND           | 80 J        | ND         | 190                                  | 100,000                       | 500,000                            | 190                          |
| richloroethene                                 | 910          | 10,000       | 8.8         | 30              | 28           | 7,300       | 370        | 470                                  | 21,000                        | 200,000                            | 470                          |
| ,2-Dichlorobenzene                             | ND           | ND           | ND          | ND              | ND           | ND          | ND         | 1,100                                | 100,000                       | 500,000                            | 1,100                        |
| ,3-Dichlorobenzene                             | ND           | ND           | ND          | ND              | ND           | ND          | ND         | 2,400                                | 49,000                        | 280,000                            | 2,400                        |
| ,4-Dichlorobenzene<br>Methyl tert butyl ether  | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND        | ND<br>ND     | ND<br>ND    | ND<br>ND   | 1,800<br>930                         | 13,000<br>100,000             | 130,000<br>500,000                 | 930                          |
| /m-Xylene                                      | ND           | 82 J         | ND          | ND              | ND           | 51 J        | ND         | -                                    | -                             | -                                  | -                            |
| -Xylene                                        | ND           | 66 J         | ND          | ND              | ND           | 24 J        | ND         | -                                    | -                             | -                                  | -                            |
| (ylenes, Total                                 | ND           | 150 J        | ND          | ND              | ND           | 75 J        | ND         | 260                                  | 100,000                       | 500,000                            | 1,600                        |
| cis-1,2-Dichloroethene                         | 940          | 950          | 1.7 J       | 5.3             | 0.79 J       | 5,100       | 210        | 250                                  | 100,000                       | 500,000                            | 250                          |
| I,2-Dichloroethene, Total                      | 940          | 1,000 J      | 1.7 J       | 5.3             | 0.79 J       | 5,200 J     | 210        | -                                    | -                             | -                                  | -                            |
| Dibromomethane<br>Styrene                      | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND        | ND<br>ND     | ND<br>ND    | ND<br>ND   | -                                    | -                             | -                                  | -                            |
| Dichlorodifluoromethane                        | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| Acetone                                        | ND           | ND           | 40          | 86              | 16           | ND          | ND         | 50                                   | 100,000                       | 500,000                            | 50                           |
| Carbon disulfide                               | ND           | ND           | 16 J        | 41              | ND           | ND          | ND         | -                                    | -                             | -                                  | 2,700                        |
| 2-Butanone                                     | ND           | ND           | ND          | 5.1 J           | ND           | ND          | ND         | 120                                  | 100,000                       | 500,000                            | 300                          |
| /inyl acetate                                  | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| 4-Methyl-2-pentanone<br>1,2,3-Trichloropropane | ND           | ND           | ND<br>ND    | ND<br>ND        | ND<br>ND     | ND<br>ND    | ND<br>ND   | -                                    | -                             | -                                  | -                            |
| 2-Hexanone                                     | ND<br>ND     | ND<br>ND     | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  |                              |
| Bromochloromethane                             | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| 2,2-Dichloropropane                            | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| ,2-Dibromoethane                               | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| ,3-Dichloropropane                             | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | 300                          |
| ,1,1,2-Tetrachloroethane<br>Bromobenzene       | ND           | ND           | ND<br>ND    | ND<br>ND        | ND<br>ND     | ND<br>ND    | ND<br>ND   | -                                    | -                             | -                                  | -                            |
| -Butylbenzene                                  | ND<br>ND     | ND<br>ND     | ND          | ND<br>ND        | ND           | ND<br>ND    | ND         | - 12,000                             | 100,000.00                    | 500,000.00                         | - 12,000                     |
| ec-Butylbenzene                                | ND           | 34 J         | ND          | ND              | ND           | ND          | ND         | 11,000                               | 100,000                       | 500,000                            | 11,000                       |
| ert-Butylbenzene                               | ND           | 160          | 0.23 J      | 0.38 J          | ND           | ND          | ND         | 5,900                                | 100,000                       | 500,000                            | 5,900                        |
| -Chlorotoluene                                 | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| -Chlorotoluene                                 | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| ,2-Dibromo-3-chloropropane                     | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| lexachlorobutadiene<br>sopropylbenzene         | ND<br>ND     | ND<br>26 J   | ND<br>ND    | ND<br>ND        | ND<br>ND     | ND<br>ND    | ND<br>ND   | - 2,300                              | -                             | -                                  | -                            |
| -Isopropyltoluene                              | ND           | 26 J<br>100  | ND          | ND              | ND           | 10 J        | ND         | 10,000                               |                               | -                                  |                              |
| laphthalene                                    | 740          | 87 J         | 19          | 41              | 1.6 J        | 65 J        | 680        | 12,000                               | 100,000                       | 500,000                            | 12,000                       |
| crylonitrile                                   | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| -Propylbenzene                                 | ND           | ND           | ND          | ND              | ND           | ND          | ND         | 3,900                                | 100,000                       | 500,000                            | 3,900                        |
| ,2,3-Trichlorobenzene                          | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| ,2,4-Trichlorobenzene                          | ND<br>ND     | ND 270       | ND          | ND<br>0.49 J    | ND           | ND<br>ND    | ND         | - 8,400                              | -                             | -                                  | -<br>8,400                   |
| ,3,5-Trimethylbenzene<br>,2,4-Trimethylbenzene | ND<br>ND     | 370<br>220   | ND<br>ND    | 0.49 J<br>1.2 J | ND<br>0.54 J | ND<br>ND    | ND<br>ND   | 8,400<br>3,600                       | 52,000<br>52,000              | 190,000<br>190,000                 | 3,600                        |
| ,4-Dioxane                                     | ND           | ND           | ND          | ND              | 0.34 3<br>ND | ND          | ND         | 100                                  | 13,000                        | 130,000                            | 100                          |
| Diethylbenzene                                 | ND           | 1,100        | ND          | 1.3 J           | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| -Ethyltoluene                                  | ND           | 140          | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
|                                                | ND           | 240          | ND          | 0.61 J          | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |
| ,2,4,5-Tetramethylbenzene<br>thyl ether        | ND           | ND           | ND          | ND              | ND           | ND          | ND         | -                                    | -                             | -                                  | -                            |

Notes: ND = Not detected. J = Estimated concentration below the RL but above the MDL. Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives. Bold boxed values exceed NYSDEC Part 375/CP-51 Protection of Groundwater.



| Sample No.                                           |                  | B3N            |                | <b>B3N DUPLICATE</b> |                       | B3E         |                |                                      |                                 |                                    |                           |
|------------------------------------------------------|------------------|----------------|----------------|----------------------|-----------------------|-------------|----------------|--------------------------------------|---------------------------------|------------------------------------|---------------------------|
| Sample Depth (feet)                                  | 0-2              | 2-4            | 4-6            | 4-6                  | 0-2                   | 2-4         | 4-6            | 6 NYCRR Part 375<br>Unrestricted Use | 6 NYCR Part 375<br>Restricted   | 6 NYCRR Part 375<br>Commercial Use | 6 NYCRR Part<br>375/CP-51 |
| Sample Type                                          | Fill             | Fill/Native    | Native         | Native               | Fill                  | Fill/Native | Native         | Soil Cleanup                         | Residential Use<br>Soil Cleanup | Soil Cleanup                       | Protection of             |
| Sample Type                                          | ••••             | Thirtdative    | Huive          | 1/17/19              | ••••                  | Thirtdarve  | Hauve          | Objectives                           | Objectives                      | Objectives                         | Groundwater               |
| TCL Semivolatile Organic Compou                      | nde in micro     | arame nor kilo | aram           | 1/1/13               |                       |             |                |                                      |                                 |                                    |                           |
| Acenaphthene                                         | 24,000           | ND             | 940            | 54 J                 | 9,100                 | ND          | 2,000          | 20,000                               | 100,000                         | 500,000                            | 98,000                    |
| 1,2,4-Trichlorobenzene                               | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| Hexachlorobenzene                                    | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | 330                                  | 1,200                           | 6,000                              | 1,400                     |
| Bis(2-chloroethyl)ether                              | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| 2-Chloronaphthalene                                  | ND<br>ND         | ND<br>ND       | ND<br>ND       | ND<br>ND             | ND<br>ND              | ND<br>ND    | ND<br>ND       | -                                    | -                               | -                                  | - 1,000                   |
| 1,2-Dichlorobenzene<br>1,3-Dichlorobenzene           | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | 1,000<br>2,400                       | 100,000<br>49,000               | 500,000<br>280000                  | 2,400                     |
| 1,4-Dichlorobenzene                                  | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | 1,800                                | 13,000                          | 130,000                            | 1,800                     |
| 3,3'-Dichlorobenzidine                               | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| 2,4-Dinitrotoluene                                   | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| 2,6-Dinitrotoluene                                   | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | 1,000                     |
| Fluoranthene<br>4-Chlorophenyl phenyl ether          | 94,000<br>ND     | ND<br>ND       | 3,800<br>ND    | 260 J<br>ND          | 49,000<br>ND          | 850 J<br>ND | 7,500<br>ND    | 100,000                              | 100,000                         | 500,000                            | -                         |
| 4-Bromophenyl phenyl ether                           | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| Bis(2-chloroisopropyl)ether                          | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| Bis(2-chloroethoxy)methane                           | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| Hexachlorobutadiene                                  | ND               | ND             | ND             | ND                   | ND<br>ND              | ND<br>ND    | ND<br>ND       | -                                    | -                               | -                                  | -                         |
| Hexachlorocyclopentadiene<br>Hexachloroethane        | ND<br>ND         | ND<br>ND       | ND<br>ND       | ND<br>ND             | ND<br>ND              | ND<br>ND    | ND<br>ND       | -                                    | -                               | -                                  |                           |
| Isophorone                                           | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| Naphthalene                                          | 19,000           | ND             | 720            | ND                   | 6,700                 | ND          | 1,200          | 12,000                               | 100,000                         | 500,000                            | 12,000                    |
| Nitrobenzene                                         | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | 15,000                          | 69,000                             | 17,000                    |
| NDPA/DPA                                             | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| n-Nitrosodi-n-propylamine                            | ND<br>ND         | ND<br>ND       | ND<br>ND       | ND<br>ND             | ND<br>ND              | ND<br>ND    | ND<br>ND       | -                                    | -                               | -                                  | - 435,000                 |
| Bis(2-ethylhexyl)phthalate<br>Butyl benzyl phthalate | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| Di-n-butylphthalate                                  | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | 8,100                     |
| Di-n-octylphthalate                                  | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | 120,000                   |
| Diethyl phthalate                                    | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | 27,000                    |
| Dimethyl phthalate                                   | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | - 1,000                   |
| Benzo(a)anthracene<br>Benzo(a)pyrene                 | 34,000<br>32,000 | ND<br>ND       | 1,300<br>1,000 | 94 J<br>ND           | 14,000<br>12,000      | 650 J<br>ND | 2,800<br>2,500 | 1,000<br>1,000                       | 1,000                           | 5,600<br>1,000                     | 22,000                    |
| Benzo(b)fluoranthene                                 | 37,000           | ND             | 1,300          | 100 J                | 18,000                | ND          | 3,000          | 1,000                                | 1,000                           | 5,600                              | 1,700                     |
| Benzo(k)fluoranthene                                 | 13,000           | ND             | 390            | ND                   | 3,700                 | ND          | 1,100          | 800                                  | 3,900                           | 56,000                             | 1,700                     |
| Chrysene                                             | 29,000           | ND             | 990            | 80 J                 | 11,000                | 560 J       | 2,500          | 1,000                                | 3,900                           | 56,000                             | 1,000                     |
| Acenaphthylene                                       | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | 100,000                              | 100,000                         | 500,000                            | 107,000                   |
| Anthracene<br>Benzo(ghi)perylene                     | 36,000<br>18,000 | ND<br>ND       | 1,500<br>590   | ND<br>ND             | 13,000<br>8,300       | ND<br>ND    | 3,000<br>1,200 | 100,000 100,000                      | 100,000 100,000                 | 500,000<br>500,000                 | 1,000,000                 |
| Fluorene                                             | 23,000           | ND             | 920            | 51 J                 | 9,800                 | ND          | 2,200          | 30,000                               | 100,000                         | 500,000                            | 386,000                   |
| Phenanthrene                                         | 110,000          | ND             | 4,600          | 270 J                | 65,000                | 590 J       | 9,400          | 100,000                              | 100,000                         | 500,000                            | 1,000,000                 |
| Dibenzo(a,h)anthracene                               | 3,800            | ND             | 130 J          | ND                   | 1,700                 | ND          | 330            | 330                                  | 330                             | 560                                | 1,000,000                 |
| Indeno(1,2,3-cd)pyrene                               | 19,000           | ND             | 640            | ND                   | 9,100                 | ND          | 1,400          | 500                                  | 500                             | 5,600                              | 8,200                     |
| Pyrene<br>Biphenyl                                   | 77,000<br>3,000  | ND<br>ND       | 3,000<br>120 J | 200 J<br>ND          | 41,000<br>1,400       | 890 J<br>ND | 5,700<br>210 J | 100,000                              | 100,000                         | 500,000                            | 1,000,000                 |
| 4-Chloroaniline                                      | 3,000<br>ND      | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | 220                       |
| 2-Nitroaniline                                       | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| 3-Nitroaniline                                       | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| 4-Nitroaniline                                       | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| Dibenzofuran<br>2-Methylnaphthalene                  | 18,000<br>9,700  | ND<br>ND       | 720<br>390 J   | ND<br>ND             | <b>7,400</b><br>4,300 | ND<br>ND    | 1,500<br>700   | 7,000                                | 59,000                          | 350,000                            | -<br>36,400               |
| 1,2,4,5-Tetrachlorobenzene                           | 9,700<br>ND      | ND             | 390 J<br>ND    | ND                   | 4,300<br>ND           | ND          | ND             | -                                    | -                               | -                                  | -                         |
| Acetophenone                                         | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| 2,4,6-Trichlorophenol                                | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| p-Chloro-m-cresol                                    | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| 2-Chlorophenol                                       | ND               | ND<br>ND       | ND<br>ND       | ND ND                | ND                    | ND<br>ND    | ND             | -                                    | -                               | -                                  |                           |
| 2,4-Dichlorophenol<br>2,4-Dimethylphenol             | ND<br>300 J      | ND<br>ND       | ND<br>ND       | ND<br>ND             | ND<br>ND              | ND<br>ND    | ND<br>ND       | -                                    | -                               | -                                  | -                         |
| 2-Nitrophenol                                        | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  |                           |
| 4-Nitrophenol                                        | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| 2,4-Dinitrophenol                                    | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| 4,6-Dinitro-o-cresol                                 | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| Pentachlorophenol<br>Phenol                          | ND<br>ND         | ND<br>ND       | ND<br>ND       | ND<br>ND             | ND<br>ND              | ND<br>ND    | ND<br>ND       | 800<br>330                           | 6,700<br>100,000                | 6,700<br>500,000                   | 800<br>330                |
| 2-Methylphenol                                       | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | 330                                  | 100,000                         | 500,000                            | -                         |
| 3-Methylphenol/4-Methylphenol                        | 320 J            | ND             | ND             | ND                   | 130 J                 | ND          | ND             | 330                                  | 100,000                         | 500,000                            | -                         |
| 2,4,5-Trichlorophenol                                | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| Benzoic Acid                                         | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| Benzyl Alcohol                                       | ND               | ND             | ND             | ND                   | ND                    | ND          | ND             | -                                    | -                               | -                                  | -                         |
| Carbazole                                            | 14,000           | ND             | 580            | ND                   | 5,600                 | ND          | 1,400          | -                                    | -                               | -                                  | -                         |

Notes:

ND = Not detected.

ND = Not detected. J = Estimated concentration below the RL but above the MDL. **Bold** yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives. **Bold** orange-shaded values exceed NYSDEC Restricted Residential Use Soil Cleanup Objectives. **Bold** pink-shaded values exceed NYSDEC Commercial Use Cleanup Objectives. **Bold boxed** values exceed NYSDEC Part 375/CP-51 Protection of Groundwater.

| Sample No.                                                                                   |              | B3N         |            | B3N DUPLICATE |                 | B3E         |             | 6 NYCRR Part 375                 | 6 NYCR Part 375               | 6 NYCRR Part 375               | 6 NYCRR Part               |
|----------------------------------------------------------------------------------------------|--------------|-------------|------------|---------------|-----------------|-------------|-------------|----------------------------------|-------------------------------|--------------------------------|----------------------------|
| Sample Depth (feet)                                                                          | 0-2          | 2-4         | 4-6        | 4-6           | 0-2             | 2-4         | 4-6         | Unrestricted Use<br>Soil Cleanup | Restricted<br>Residential Use | Commercial Use<br>Soil Cleanup | 375/CP-51<br>Protection of |
| Sample Type                                                                                  | Fill         | Fill/Native | Native     | Native        | Fill            | Fill/Native | Native      | Objectives                       | Soil Cleanup<br>Objectives    | Objectives                     | Groundwater                |
| Metals in milligrams per kilogram                                                            |              |             |            |               |                 |             |             |                                  |                               |                                |                            |
| Aluminum, Total                                                                              | 3,030        | 1,350       | 377        | 471           | 1,310           | 3,830       | 1,410       | -                                | -                             | -                              | -                          |
| Antimony, Total                                                                              | ND           | ND          | ND         | ND            | ND              | 2.23 J      | 1.60 J      | -                                | -                             | -                              | -                          |
| Arsenic, Total                                                                               | 1.30         | 2.44        | 1.69 J     | 1.55 J        | 1.57            | 0.721 J     | 0.613 J     | 13                               | 16                            | 16                             | 16                         |
| Barium, Total                                                                                | 23.4         | 34.2        | 13.4       | 13.2          | 7.22            | 21.2        | 11.2        | 350                              | 400                           | 400                            | 820                        |
| Beryllium, Total                                                                             | 0.131 J      | 0.107 J     | ND         | ND            | 0.550           | ND          | 0.088 J     | 7.2                              | 72                            | 590                            | 47                         |
| Cadmium, Total                                                                               | 0.105 J      | 0.190 J     | ND         | ND            | ND              | ND          | ND          | 2.5                              | 4.3                           | 9.3                            | 7.5                        |
| Calcium, Total                                                                               | 38,300       | 3,130       | 2,410      | 652           | 9,370           | 2,290       | 10,300      | -                                | -                             | -                              | -                          |
| Chromium, Total                                                                              | 12.4         | 4.61        | 4.48       | 5.86          | 6.48            | 8.03        | 4.84        | 30                               | 180                           | 1,500                          |                            |
| Cobalt, Total                                                                                | 2.90         | 2.46        | 0.988 J    | 1.44 J        | 0.833 J         | 6.02        | 1.72 J      | -                                | -                             | -                              | -                          |
| Copper, Total                                                                                | 10.9         | 22.6        | 1.84       | 1.09 J        | 1.11            | 31.2        | 5.64        | 50                               | 270                           | 270                            | 1,720                      |
| Iron, Total                                                                                  | 6,440        | 5,500       | 2,150      | 2,360         | 4,890           | 9,640       | 3,200       | -                                | -                             | -                              | -                          |
| Lead, Total                                                                                  | 5.18         | 14.5        | 8.95       | 9.11 J        | 4,030<br>3.60 J | 8.17        | 5.69        | 63                               | 400                           | 1,000                          | 450                        |
|                                                                                              |              |             |            |               | 327             | 2,430       | 2,440       | -                                | 400                           | -                              |                            |
| Magnesium, Total                                                                             | 9,210        | 745         | 255        | 128           | 46.0            | 2,430       | 2,440       | - 1,600                          | 2,000                         | - 10,000                       | 2,000                      |
| Manganese, Total                                                                             | 112<br>ND    | 48.0        | 23.1<br>ND | 25.8          | 46.0<br>ND      | 0.085       | 40.0<br>ND  | 0.18                             | 0.81                          | 2.8                            | 0.73                       |
| Mercury, Total                                                                               | ND           | ND          |            | ND            | ND<br>1.44 J    | 8.92        | 2.16 J      | 30                               | 310                           |                                | 130                        |
| Nickel, Total                                                                                | 5.46         | 5.61        | 0.900 J    | 1.06 J        | 1.44 J<br>262   |             |             |                                  |                               | 310                            | -                          |
| Potassium, Total                                                                             | 477          | 116 J       | 59.6 J     | 152 J         | 262<br>ND       | 613<br>ND   | 185 J<br>ND | -                                | - 180                         |                                | - 4                        |
| Selenium, Total                                                                              | ND           | 0.272 J     | ND         | ND            |                 |             |             | 3.9                              |                               | 1,500                          | 8.3                        |
| Silver, Total                                                                                | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 2                                | 180                           | 1,500                          | - 0.3                      |
| Sodium, Total                                                                                | 176          | 61.4 J      | 25.6 J     | 54.0 J        | 51.8 J          | 226         | 83.0 J      | -                                | -                             | -                              |                            |
| Thallium, Total                                                                              | ND           | ND          | ND         | ND            | ND              | ND          | ND          | -                                | -                             | -                              | -                          |
| Vanadium, Total                                                                              | 14.0         | 12.2        | 4.45       | 6.35          | 3.70            | 27.4        | 5.27        | -                                | -                             | -                              | -                          |
| Zinc, Total                                                                                  | 18.7         | 43.3        | 4.25 J     | 1.60 J        | 16.0            | 27.1        | 12.4        | 109                              | 10,000                        | 10,000                         | 2,480                      |
| Pesticides in micrograms per kilog                                                           |              | 1           |            |               |                 | 1           |             |                                  |                               |                                |                            |
| Delta-BHC                                                                                    | 0.568 JIP    | ND          | ND         | ND            | ND              | ND          | ND          | 40                               | 100,000                       | 500,000                        | 250                        |
| Lindane                                                                                      | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 100                              | 1,300                         | 9,200                          | 100                        |
| Alpha-BHC                                                                                    | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 20                               | 480                           | 3,400                          | 20                         |
| Beta-BHC                                                                                     | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 36                               | 360                           | 3,000                          | 90                         |
| Heptachlor                                                                                   | 2.68 IP      | ND          | ND         | ND            | 0.768 JP        | ND          | ND          | 42                               | 2,100                         | 15,000                         | 380                        |
| Aldrin                                                                                       | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 5                                | 97                            | 680                            | 190                        |
| Heptachlor epoxide                                                                           | ND           | ND          | ND         | ND            | ND              | ND          | ND          | -                                | -                             | -                              | 20                         |
| Endrin                                                                                       | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 14                               | 11,000                        | 89,000                         | 60                         |
| Endrin aldehyde                                                                              | ND           | ND          | ND         | ND            | ND              | ND          | ND          | -                                | -                             | -                              | -                          |
| Endrin ketone                                                                                | ND           | ND          | ND         | ND            | ND              | ND          | ND          | -                                | -                             | -                              | -                          |
| Dieldrin                                                                                     | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 5                                | 200                           | 1,400                          | 100                        |
| 4,4'-DDE                                                                                     | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 3.3                              | 8,900                         | 62,000                         | 17,000                     |
| 4,4'-DDD                                                                                     | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 3.3                              | 13,000                        | 92,000                         | 14,000                     |
| 4,4'-DDT                                                                                     | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 3.3                              | 7,900                         | 47,000                         | 136,000                    |
| Endosulfan I                                                                                 | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 2,400                            | 24,000                        | 200,000                        | 102,000                    |
| Endosulfan II                                                                                | 4.63 IP      | ND          | ND         | ND            | 0.626 JIP       | ND          | ND          | 2,400                            | 24,000                        | 200,000                        | 102,000                    |
| Endosulfan sulfate                                                                           | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 2,400                            | 24,000                        | 200,000                        | 1,000,000                  |
| Methoxychlor                                                                                 | ND           | ND          | ND         | ND            | ND              | ND          | ND          | -                                | -                             | -                              | 900,000                    |
| Toxaphene                                                                                    | ND           | ND          | ND         | ND            | ND              | ND          | ND          | -                                | -                             | -                              | -                          |
| cis-Chlordane                                                                                | ND           | ND          | 1.73 J     | ND            | ND              | ND          | ND          | 94                               | 4,200                         | 24,000                         | 2,900                      |
| trans-Chlordane                                                                              | ND           | ND          | 4.48       | ND            | 0.892 JIP       | ND          | 1.17 JP     | -                                | -                             | -                              | -                          |
| Chlordane                                                                                    | ND           | ND          | ND         | ND            | ND              | ND          | ND          | -                                | -                             | -                              | -                          |
| Polychlorinated Biphenyls in micro                                                           | ograms per k | ilogram     |            |               |                 |             |             |                                  |                               |                                |                            |
| Aroclor 1016                                                                                 | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 100                              | 1,000                         | 1,000                          | 3,200                      |
|                                                                                              | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 100                              | 1,000                         | 1,000                          | 3,200                      |
| Aroclor 1221                                                                                 | ND           | ND          | ND         | ND            | ND              | ND          | ND          | 100                              | 1,000                         | 1,000                          | 3,200                      |
|                                                                                              |              |             | ND         | ND            | ND              | ND          | ND          | 100                              | 1,000                         | 1,000                          | 3,200                      |
| Aroclor 1232                                                                                 | ND           | ND          | ND         |               |                 | 1           |             |                                  |                               |                                |                            |
| Aroclor 1232<br>Aroclor 1242                                                                 |              |             |            |               | ND              | ND          | ND          | 100                              | 1,000                         | 1,000                          | 3.200                      |
| Aroclor 1232<br>Aroclor 1242<br>Aroclor 1248                                                 | ND           | ND          | ND         | ND            | ND<br>ND        | ND<br>ND    | ND<br>ND    | 100                              | 1,000                         | 1,000                          | 3,200                      |
| Aroclor 1221<br>Aroclor 1232<br>Aroclor 1242<br>Aroclor 1248<br>Aroclor 1254<br>Aroclor 1254 | ND<br>ND     | ND<br>ND    | ND<br>ND   | ND<br>ND      | ND              | ND          | ND          | 100                              | 1,000                         | 1,000                          | 3,200                      |
| Aroclor 1232<br>Aroclor 1242<br>Aroclor 1248                                                 | ND           | ND          | ND         | ND            |                 |             |             |                                  |                               |                                |                            |

Notes:

ND = Not detected.

J = Estimated concentration below the RL but above the MDL.

I = Lower value reported due to obvious interference.

P = The RPD between the results exceeds the method-specified criteria.
Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives.

FPM

| Sample No.                                        |              | B3S          |              |          | B3W         |                 | 6 NYCRR Part 375                 | 6 NYCR Part 375               | 6 NYCRR Part 375               | 6 NYCRR Par                |
|---------------------------------------------------|--------------|--------------|--------------|----------|-------------|-----------------|----------------------------------|-------------------------------|--------------------------------|----------------------------|
| Sample Depth (feet)                               | 0-2          | 2-4          | 4-6          | 0-2      | 2-4         | 4-6             | Unrestricted Use<br>Soil Cleanup | Restricted<br>Residential Use | Commercial Use<br>Soil Cleanup | 375/CP-51<br>Protection of |
| Sample Type                                       | Fill         | Fill/Native  | Native       | Fill     | Fill/Native | Native          | Objectives                       | Soil Cleanup<br>Objectives    | Objectives                     | Groundwater                |
| Sample Date                                       |              |              | 1/1          | 7/19     |             |                 |                                  |                               |                                |                            |
| ICL Volatile Organic Compounds in                 | -            |              |              |          |             |                 |                                  |                               | 1                              |                            |
| Nethylene chloride                                | ND           | ND           | ND           | ND       | ND          | 5.0 J           | 50                               | 100,000                       | 500,000                        | 50                         |
| ,1-Dichloroethane                                 | ND           | ND<br>0.84 J | ND<br>0.83 J | ND<br>ND | ND<br>13 J  | 0.27 J<br>2.4 J | 270<br>370                       | 26,000                        | 240,00                         | 270<br>370                 |
| Chloroform<br>Carbon tetrachloride                | 1.2 J<br>ND  | 0.84 J<br>ND | 0.83 J<br>ND | ND       | 13 J<br>ND  | Z.4 J<br>ND     | 760                              | 49,000<br>2,400               | 350,000<br>22,000              | 760                        |
| ,2-Dichloropropane                                | ND           | ND           | ND           | ND       | ND          | ND              |                                  | 2,400                         | -                              | -                          |
| Dibromochloromethane                              | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| 1,1,2-Trichloroethane                             | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| Tetrachloroethene                                 | ND           | ND           | ND           | ND       | ND          | ND              | 1,300                            | 19,000                        | 150,000                        | 1,300                      |
| Chlorobenzene                                     | ND           | ND           | ND           | ND       | ND          | ND              | 1,100                            | 100,000                       | 500,000                        | 1,100                      |
| Frichlorofluoromethane                            | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| ,2-Dichloroethane                                 | ND           | ND           | ND           | ND       | ND          | ND              | 20                               | 3,100                         | 30,000                         | 20                         |
| 1,1,1-Trichloroethane                             | ND           | ND           | ND           | ND       | ND          | ND              | 680                              | 100,000                       | 500,000                        | 680                        |
| Bromodichloromethane                              | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| rans-1,3-Dichloropropene                          | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| is-1,3-Dichloropropene                            | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| ,3-Dichloropropene, Total                         | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| ,1-Dichloropropene                                | ND           | ND           | ND           | ND       | ND          | ND<br>ND        | -                                | -                             | -                              | -                          |
| 3 2 2-Tetrachloroethane                           | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND | ND<br>ND    | ND              | -                                | -                             | -                              | 600                        |
| ,1,2,2-Tetrachloroethane<br>Benzene               | ND           | 2.0          | ND           | ND       | ND<br>51    | 1.1             | 60                               | 4,800                         | 44,000                         | 60                         |
| oluene                                            | 2.2          | 11           | ND           | ND       | 410         | 1.1             | 700                              | 100,000                       | 500,000                        | 700                        |
| Ethylbenzene                                      | 0.21 J       | 4.2          | ND           | ND       | 22 J        | 1.2 J           | 1,000                            | 41,000                        | 390,000                        | 1,000                      |
| Chloromethane                                     | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| Bromomethane                                      | 0.77 J       | ND           | 1.6 J        | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| /inyl chloride                                    | 0.55 J       | ND           | ND           | ND       | ND          | ND              | 20                               | 900                           | 13,000                         | 20                         |
| Chloroethane                                      | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              |                            |
| ,1-Dichloroethene                                 | ND           | ND           | ND           | ND       | ND          | ND              | 330                              | 100,000                       | 500,000                        | 330                        |
| rans-1,2-Dichloroethene                           | 0.23 J       | ND           | ND           | ND       | 24 J        | 0.34 J          | 190                              | 100,000                       | 500,000                        | 190                        |
| richloroethene                                    | 27           | 16           | 0.19 J       | 2.0      | 1,000       | 56              | 470                              | 21,000                        | 200,000                        | 470                        |
| ,2-Dichlorobenzene                                | ND           | ND           | ND           | ND       | ND          | ND              | 1,100                            | 100,000                       | 500,000                        | 1,100                      |
| ,3-Dichlorobenzene                                | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND | ND<br>ND    | ND<br>ND        | 2,400<br>1,800                   | 49,000                        | 280,000<br>130,000             | 2,400<br>1,800             |
| ,4-Dichlorobenzene<br>/lethyl tert butyl ether    | ND           | ND           | ND           | ND       | ND          | ND              | 930                              | 13,000                        | 500,000                        | 930                        |
| /m-Xylene                                         | 0.70 J       | 64           | ND           | ND       | 140         | 6.5             | -                                | -                             | -                              | -                          |
| p-Xylene                                          | 0.43 J       | 6.9          | ND           | ND       | 26 J        | 4.2             | -                                | -                             | -                              | -                          |
| (ylenes, Total                                    | 1.1 J        | 71           | ND           | ND       | 170 J       | 11              | 260                              | 100,000                       | 500,000                        | 1,600                      |
| cis-1,2-Dichloroethene                            | 7.6          | 7.3          | ND           | 0.26 J   | 1,000       | 16              | 250                              | 100,000                       | 500,000                        | 250                        |
| ,2-Dichloroethene, Total                          | 7.8 J        | 7.3          | ND           | 0.26 J   | 1,000 J     | 16 J            | -                                | -                             | -                              | -                          |
| Dibromomethane                                    | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| Styrene                                           | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| Dichlorodifluoromethane                           | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| Acetone                                           | 24           | 180          | 32           | 19       | ND          | 34              | 50                               | 100,000                       | 500,000                        | 50                         |
| Carbon disulfide                                  | ND           | ND           | 8.8 J        | ND       | ND          | ND              | -                                | -                             | -                              | 2,700<br>300               |
| 2-Butanone                                        | ND           | 27 J         | ND           | ND       | ND          | ND              | 120                              | 100,000                       | 500,000                        | - 300                      |
| /inyl acetate<br>-Methyl-2-pentanone              | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND | ND<br>ND    | ND<br>ND        | -                                |                               | -                              | -                          |
| ,2,3-Trichloropropane                             | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              |                            |
| -Hexanone                                         | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| Bromochloromethane                                | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| 2,2-Dichloropropane                               | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| ,2-Dibromoethane                                  | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| ,3-Dichloropropane                                | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | 300                        |
| ,1,1,2-Tetrachloroethane                          | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| Bromobenzene                                      | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| -Butylbenzene                                     | ND           | ND           | ND           | ND       | 13 J        | ND              | 12,000                           | 100,000.00                    | 500,000                        | 12,000                     |
| ec-Butylbenzene                                   | ND           | 0.79 J       | ND           | 0.18 J   | 15 J        | ND              | 11,000                           | 100,000                       | 500,000                        | 11,000                     |
| ert-Butylbenzene                                  | 0.52 J       | 5.3 J        | ND           | 0.16 J   | 50 J        | 0.29 J          | 5,900                            | 100,000                       | 500,000                        | 5,900                      |
| o-Chlorotoluene                                   | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND | ND<br>ND    | ND<br>ND        | -                                | -                             | -                              | -                          |
| -Chlorotoluene<br>,2-Dibromo-3-chloropropane      | ND<br>ND     | ND<br>ND     | ND           | ND<br>ND | ND<br>ND    | ND              | -                                | -                             | -                              | -                          |
| ,2-Dibromo-3-chioropropane<br>lexachlorobutadiene | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| sopropylbenzene                                   | ND           | 4.4          | ND           | ND       | 22 J        | 0.39 J          | 2,300                            | -                             | -                              | -                          |
| -Isopropyltoluene                                 | 0.74 J       | 1.6 J        | ND           | 0.15 J   | 11 J        | 0.23 J          | 10,000                           | -                             | -                              | -                          |
| laphthalene                                       | 0.88 J       | ND           | ND           | 2.5 J    | ND          | 6.2 J           | 12,000                           | 100,000                       | 500,000                        | 12,000                     |
| crylonitrile                                      | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| -Propylbenzene                                    | ND           | 1.8 J        | ND           | ND       | 20 J        | 0.44 J          | 3,900                            | 100,000                       | 500,000                        | 3,900                      |
| ,2,3-Trichlorobenzene                             | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| ,2,4-Trichlorobenzene                             | ND           | ND           | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |
| ,3,5-Trimethylbenzene                             | 0.74 J       | 8.6          | ND           | 0.77 J   | 35 J        | 2.2 J           | 8,400                            | 52,000                        | 190,000                        | 8,400                      |
| ,2,4-Trimethylbenzene                             | 0.58 J       | 16           | ND           | 1.1 J    | 50 J        | 3.3 J           | 3,600                            | 52,000                        | 190,000                        | 3,600                      |
| ,4-Dioxane                                        | ND           | ND           | ND           | ND       | ND          | ND              | 100                              | 13,000                        | 130,000                        | 100                        |
| -Diethylbenzene                                   | 2.3 J        | 4.4 J        | ND           | 1.3 J    | 25 J        | 1.5 J           | -                                | -                             | -                              | -                          |
| -Ethyltoluene                                     | 0.62 J       | 4.3 J        | ND           | 0.75 J   | 44 J        | 2.9 J           | -                                | -                             | -                              | -                          |
| ,2,4,5-Tetramethylbenzene                         | 0.44 J<br>ND | 2.2 J<br>ND  | ND           | 0.33 J   | 56 J        | ND              | -                                | -                             | -                              | -                          |
| Ethyl ether                                       | INI )        | I INI )      | ND           | ND       | ND          | ND              | -                                | -                             | -                              | -                          |

Notes: ND = Not detected. J = Estimated concentration Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives. Bold boxed values exceed NYSDEC Part 375/CP-51 Protection of Groundwater.

| Sample No.                                        |               | B3S            |            |             | B3W         |            |                                      |                                                  |                                    |                              |
|---------------------------------------------------|---------------|----------------|------------|-------------|-------------|------------|--------------------------------------|--------------------------------------------------|------------------------------------|------------------------------|
| Sample Depth (feet)                               | 0-2           | 2-4            | 4-6        | 0-2         | 2-4         | 4-6        | 6 NYCRR Part 375<br>Unrestricted Use | 6 NYCR Part 375<br>Restricted<br>Residential Use | 6 NYCRR Part 375<br>Commercial Use | 6 NYCRR Part<br>375/CP-51    |
| Sample Type                                       | Fill          | Fill/Native    | Native     | Fill        | Fill/Native | Native     | Soil Cleanup<br>Objectives           | Soil Cleanup                                     | Soil Cleanup<br>Objectives         | Protection of<br>Groundwater |
| Sample Date                                       |               | 1              | 1/1        | 7/19        |             |            |                                      | Objectives                                       |                                    |                              |
| TCL Semivolatile Organic Compou                   | nds in microg | grams per kilo | gram       |             |             |            |                                      |                                                  |                                    |                              |
| Acenaphthene                                      | ND            | ND             | ND         | 140         | ND          | ND         | 20,000                               | 100,000                                          | 500,000                            | 98,000                       |
| 1,2,4-Trichlorobenzene                            | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| Hexachlorobenzene                                 | ND            | ND             | ND         | ND          | ND          | ND         | 330                                  | -                                                | -                                  | 1,400                        |
| Bis(2-chloroethyl)ether<br>2-Chloronaphthalene    | ND<br>ND      | ND<br>ND       | ND<br>ND   | ND<br>ND    | ND<br>ND    | ND<br>ND   | -                                    | -                                                | -                                  | -                            |
| 1,2-Dichlorobenzene                               | ND            | ND             | ND         | ND          | ND          | ND         | 1,000                                | -                                                | -                                  | 1,000                        |
| 1,3-Dichlorobenzene                               | ND            | ND             | ND         | ND          | ND          | ND         | 2,400                                | -                                                | -                                  | 2,400                        |
| 1,4-Dichlorobenzene                               | ND            | ND             | ND         | ND          | ND          | ND         | 1,800                                | -                                                | -                                  | 1,800                        |
| 3,3'-Dichlorobenzidine                            | ND            | ND<br>ND       | ND<br>ND   | ND<br>ND    | ND<br>ND    | ND<br>ND   | -                                    | -                                                | -                                  | -                            |
| 2,4-Dinitrotoluene<br>2,6-Dinitrotoluene          | ND<br>ND      | ND             | ND         | ND          | ND          | ND         | -                                    |                                                  | -                                  | 1,000                        |
| Fluoranthene                                      | 4,000 J       | ND             | 65 J       | 800         | ND          | 110 J      | 100,000                              | 100,000                                          | 500,000                            | 1,000,000                    |
| 4-Chlorophenyl phenyl ether                       | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| 4-Bromophenyl phenyl ether                        | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| Bis(2-chloroisopropyl)ether                       | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| Bis(2-chloroethoxy)methane<br>Hexachlorobutadiene | ND<br>ND      | ND<br>ND       | ND<br>ND   | ND<br>ND    | ND<br>ND    | ND<br>ND   |                                      | -                                                | -                                  |                              |
| Hexachlorocyclopentadiene                         | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| Hexachloroethane                                  | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| Isophorone                                        | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| Naphthalene                                       | ND            | ND             | ND         | 170 J       | ND          | ND         | 12,000                               | 100,000                                          | 500,000                            | 12,000                       |
| Nitrobenzene<br>NDPA/DPA                          | ND<br>ND      | ND<br>ND       | ND<br>ND   | ND<br>ND    | ND<br>ND    | ND<br>ND   | -                                    |                                                  | -                                  | 17,000                       |
| n-Nitrosodi-n-propylamine                         | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| Bis(2-ethylhexyl)phthalate                        | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | 435,000                      |
| Butyl benzyl phthalate                            | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| Di-n-butylphthalate                               | ND            | ND             | 160 J      | ND          | ND          | ND         | -                                    | -                                                | -                                  | 8,100                        |
| Di-n-octylphthalate                               | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | 120,000                      |
| Diethyl phthalate<br>Dimethyl phthalate           | ND<br>ND      | ND<br>ND       | ND<br>ND   | ND<br>ND    | ND<br>ND    | ND<br>ND   | -                                    | -                                                | -                                  | 27,000                       |
| Benzo(a)anthracene                                | 2,800 J       | ND             | 35 J       | 280         | ND          | 58 J       | 1,000                                | 1,000                                            | 5,600                              | 1,000                        |
| Benzo(a)pyrene                                    | 3,900 J       | ND             | ND         | 270         | ND          | ND         | 1,000                                | 1,000                                            | 1,000                              | 22,000                       |
| Benzo(b)fluoranthene                              | 4,500 J       | ND             | 51 J       | 300         | ND          | 99 J       | 1,000                                | 1,000                                            | 5,600                              | 1,700                        |
| Benzo(k)fluoranthene                              | 1,800 J       | ND             | ND         | 120         | ND          | ND         | 800                                  | 3,900                                            | 56,000                             | 1,700                        |
| Chrysene<br>Acenaphthylene                        | 2,600 J<br>ND | ND<br>ND       | 31 J<br>ND | 240<br>ND   | ND<br>ND    | 55 J<br>ND | 1,000                                | 3,900                                            | 56,000<br>500,000                  | 1,000                        |
| Anthracene                                        | ND            | ND             | ND         | 230         | ND          | ND         | 100,000                              | 100,000                                          | 500,000                            | 1,000,000                    |
| Benzo(ghi)perylene                                | 2,900 J       | ND             | 29 J       | 160         | ND          | 60 J       | 100,000                              | 100,000                                          | 500,000                            | 1,000,000                    |
| Fluorene                                          | ND            | ND             | ND         | 120 J       | ND          | ND         | 30,000                               | 100,000                                          | 500,000                            | 386,000                      |
| Phenanthrene                                      | 1,500 J       | ND             | 48 J       | 760         | ND          | 110 J      | 100,000                              | 100,000                                          | 500,000                            | 1,000,000                    |
| Dibenzo(a,h)anthracene<br>Indeno(1,2,3-cd)pyrene  | ND<br>2,700 J | ND<br>ND       | ND<br>30 J | 36 J<br>170 | ND<br>ND    | ND<br>61 J | 330<br>500                           | 330                                              | 560                                | 8,200                        |
| Pyrene                                            | 4,000 J       | ND             | 60 J       | 690         | ND          | 90 J       | 100,000                              | 500                                              | 5,600<br>500,000                   | 1,000,000                    |
| Biphenyl                                          | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| 4-Chloroaniline                                   | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | 220                          |
| 2-Nitroaniline                                    | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| 3-Nitroaniline<br>4-Nitroaniline                  | ND<br>ND      | ND<br>ND       | ND<br>ND   | ND<br>ND    | ND<br>ND    | ND<br>ND   | -                                    | · ·                                              | -                                  | -                            |
| Dibenzofuran                                      | ND            | ND             | ND         | 130 J       | ND          | ND         | 7,000                                | -                                                | -                                  | -                            |
| 2-Methylnaphthalene                               | ND            | ND             | ND         | 84 J        | ND          | ND         | -                                    | -                                                | -                                  | 36,400                       |
| 1,2,4,5-Tetrachlorobenzene                        | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| Acetophenone                                      | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| 2,4,6-Trichlorophenol<br>p-Chloro-m-cresol        | ND<br>ND      | ND<br>ND       | ND<br>ND   | ND<br>ND    | ND<br>ND    | ND<br>ND   | -                                    | -                                                | -                                  | -                            |
| 2-Chlorophenol                                    | ND            | ND             | ND         | ND          | ND          | ND         | -                                    |                                                  | -                                  |                              |
| 2,4-Dichlorophenol                                | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  | -                            |
| 2,4-Dimethylphenol                                | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  |                              |
| 2-Nitrophenol                                     | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  |                              |
| 4-Nitrophenol<br>2,4-Dinitrophenol                | ND<br>ND      | ND<br>ND       | ND<br>ND   | ND<br>ND    | ND<br>ND    | ND<br>ND   | -                                    | -                                                | -                                  | -                            |
| 4,6-Dinitrophenol                                 | ND            | ND             | ND         | ND<br>ND    | ND          | ND         | -                                    | -                                                | -                                  |                              |
| Pentachlorophenol                                 | ND            | ND             | ND         | ND          | ND          | ND         | 800                                  | 6,700                                            | 6,700                              | 800                          |
| Phenol                                            | ND            | ND             | ND         | ND          | ND          | ND         | 330                                  | 100,000                                          | 500,000                            | 330                          |
| 2-Methylphenol                                    | ND            | ND             | ND         | ND          | ND          | ND         | 330                                  | -                                                | -                                  | -                            |
| 3-Methylphenol/4-Methylphenol                     | ND            | ND             | ND         | ND          | ND          | ND         | 330                                  | -                                                | -                                  | -                            |
| 2,4,5-Trichlorophenol<br>Benzoic Acid             | ND<br>ND      | ND<br>ND       | ND<br>ND   | ND<br>ND    | ND<br>ND    | ND<br>ND   |                                      |                                                  | -                                  | -                            |
| Benzyl Alcohol                                    | ND            | ND             | ND         | ND          | ND          | ND         | -                                    | -                                                | -                                  |                              |
| Carbazole                                         | ND            | ND             | ND         | 98 J        | ND          | ND         | -                                    | -                                                | -                                  | -                            |
|                                                   |               |                |            |             |             |            |                                      |                                                  |                                    |                              |

Notes:

ND = Not detected.

 ND = Not detected.

 J = Estimated concentration

 Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives.

 Bold orange-shaded values exceed NYSDEC Restricted Residential Use Soil Cleanup Objectives.

 Bold pink-shaded values exceed NYSDEC Commercial Use Cleanup Objectives.

 Bold boxed values exceed NYSDEC Part 375/CP-51 Protection of Groundwater.



| Sample No.                          |              | B3S         |          |          | B3W         |          |                                      | 6 NYCR Part 375               |                                    |                              |
|-------------------------------------|--------------|-------------|----------|----------|-------------|----------|--------------------------------------|-------------------------------|------------------------------------|------------------------------|
| Sample Depth (feet)                 | 0-2          | 2-4         | 4-6      | 0-2      | 2-4         | 4-6      | 6 NYCRR Part 375<br>Unrestricted Use | Restricted<br>Residential Use | 6 NYCRR Part 375<br>Commercial Use | 6 NYCRR Part<br>375/CP-51    |
| Sample Type                         | Fill         | Fill/Native | Native   | Fill     | Fill/Native | Native   | Soil Cleanup<br>Objectives           | Soil Cleanup                  | Soil Cleanup<br>Objectives         | Protection of<br>Groundwater |
| Sample Date                         |              |             | 1/13     | 7/19     |             |          |                                      | Objectives                    |                                    |                              |
| Metals in milligrams per kilogram   |              |             |          |          |             |          |                                      |                               |                                    |                              |
| Aluminum, Total                     | 2,870        | 4,210       | 237      | 2,120    | 4,400       | 1,810    | -                                    | -                             | -                                  | -                            |
| Antimony, Total                     | 0.342 J      | ND          | ND       | 0.326 J  | 0.721 J     | ND       | -                                    | -                             | -                                  | -                            |
| Arsenic, Total                      | 3.04         | 1.79 J      | 0.391 J  | 1.32     | 4.28        | 0.805 J  | 13                                   | 16                            | 16                                 | 16                           |
| Barium, Total                       | 33.2         | 15.7        | 2.02     | 29.2     | 31.8        | 21.1     | 350                                  | 400                           | 400                                | 820                          |
| Beryllium, Total                    | 0.114 J      | 0.125 J     | ND       | 0.167 J  | 0.094 J     | 0.115 J  | 7.2                                  | 72                            | 590                                | 47                           |
| Cadmium, Total                      | ND           | ND          | ND       | ND       | ND          | ND       | 2.5                                  | 4.3                           | 9.3                                | 7.5                          |
| Calcium, Total                      | 27,100       | 5,050       | 140      | 12,800   | 3,890       | 15,900   | -                                    | -                             | -                                  | -                            |
| Chromium, Total                     | 5.61         | 12.4        | 1.26     | 6.58     | 7.60        | 8.79     | 30                                   | 180                           | 1,500                              | -                            |
| Cobalt, Total                       | 2.37         | 1.81 J      | 0.223 J  | 1.95     | 4.62        | 1.66 J   | -                                    | -                             | -                                  | -                            |
| Copper, Total                       | 6.05         | 3.77        | ND       | 4.82     | 28.5        | 4.37     | 50                                   | 270                           | 270                                | 1,720                        |
| Iron, Total                         | 6,750        | 4,610       | 864      | 5,550    | 8,010       | 4,170    | -                                    | -                             | -                                  | -                            |
| Lead, Total                         | 12.1         | 6.64 J      | 0.866 J  | 17.3     | 20.1        | 8.90     | 63                                   | 400                           | 1,000                              | 450                          |
| Magnesium, Total                    | 3,090        | 1,530       | 82.3     | 987      | 1,550       | 2,930    | -                                    | -                             | -                                  | -                            |
| Manganese, Total                    | 116          | 53.5        | 5.45     | 84.9     | 46.1        | 77.0     | 1,600                                | 2,000                         | 10,000                             | 2,000                        |
| Mercury, Total                      | ND           | ND          | ND       | ND       | ND          | ND       | 0.18                                 | 0.81                          | 2.8                                | 0.73                         |
| Nickel, Total                       | 4.56         | 5.77        | 0.335 J  | 4.26     | 8.89        | 3.17 J   | 30                                   | 310                           | 310                                | 130                          |
| Potassium, Total                    | 450          | 870         | 65.1 J   | 411      | 491         | 276 J    | -                                    | -                             | -                                  | -                            |
| Selenium, Total                     | ND           | ND          | ND       | ND       | 0.365 J     | ND       | 3.9                                  | 180                           | 1,500                              | 4                            |
| Silver, Total                       | ND           | ND          | ND       | ND       | ND          | ND       | 2                                    | 180                           | 1,500                              | 8.3                          |
| Sodium, Total                       | 102 J        | 207 J       | 24.2 J   | 70.9 J   | 204         | 108 J    | -                                    | -                             | -                                  | -                            |
| Thallium, Total                     | ND           | ND          | ND       | ND       | ND          | ND       | -                                    | -                             | -                                  | -                            |
| Vanadium, Total                     | 10.1         | 19.0        | 1.09     | 7.28     | 23.0        | 6.85     | -                                    | -                             | -                                  | -                            |
| Zinc, Total                         | 32.9         | 17.5        | 1.70 J   | 34.8     | 116         | 19.2     | 109                                  | 10,000                        | 10,000                             | 2,480                        |
| Pesticides in micrograms per kilogr |              |             |          |          |             |          |                                      |                               |                                    | 050                          |
| Delta-BHC                           | ND           | ND          | ND       | ND       | ND          | 2.15 J   | 40                                   | 100,000                       | 500,000                            | 250                          |
| Lindane                             | ND           | ND          | ND       | ND       | ND          | ND       | 100                                  | 1,300                         | 9,200                              | 100<br>20                    |
| Alpha-BHC                           | ND           | ND          | ND       | ND       | ND          | ND       | 20                                   | 480<br>360                    | 3,400                              | 20<br>90                     |
| Beta-BHC                            | ND           | ND<br>ND    | ND       | ND       | ND          | ND<br>ND | 36                                   |                               | 3,000                              | 380                          |
| Heptachlor<br>Aldrin                | ND<br>ND     | ND          | ND<br>ND | ND<br>ND | ND<br>ND    | ND       | 42<br>5                              | 2,100<br>97                   | 15,000<br>680                      | 190                          |
| Heptachlor epoxide                  | ND           | ND          | ND       | ND       | ND          | ND       | -                                    | 97                            | -                                  | 20                           |
| Endrin                              | ND           | ND          | ND       | ND       | ND          | ND       | 14                                   | 11,000                        | 89,000                             | 60                           |
| Endrin aldehyde                     | ND           | ND          | ND       | ND       | ND          | ND       | -                                    | -                             | -                                  | -                            |
| Endrin ketone                       | ND           | ND          | ND       | ND       | ND          | ND       | -                                    | -                             |                                    | -                            |
| Dieldrin                            | ND           | ND          | ND       | ND       | ND          | ND       | 5                                    | 200                           | 1,400                              | 100                          |
| 4,4'-DDE                            | ND           | ND          | 0.735 JP | ND       | ND          | ND       | 3.3                                  | 8,900                         | 62,000                             | 17,000                       |
| 4,4'-DDD                            | ND           | ND          | ND       | ND       | ND          | ND       | 3.3                                  | 13,000                        | 92,000                             | 14,000                       |
| 4,4'-DDT                            | ND           | ND          | ND       | ND       | ND          | ND       | 3.3                                  | 7,900                         | 47,000                             | 136,000                      |
| Endosulfan I                        | ND           | ND          | ND       | ND       | ND          | ND       | 2,400                                | 24,000                        | 200,000                            | 102,000                      |
| Endosulfan II                       | ND           | ND          | ND       | ND       | ND          | ND       | 2,400                                | 24,000                        | 200,000                            | 102,000                      |
| Endosulfan sulfate                  | ND           | ND          | ND       | ND       | ND          | ND       | 2,400                                | 24,000                        | 200,000                            | 1,000,000                    |
| Methoxychlor                        | ND           | ND          | ND       | ND       | ND          | ND       | -                                    | -                             | -                                  | 900,000                      |
| Toxaphene                           | ND           | ND          | ND       | ND       | ND          | ND       | -                                    | -                             | -                                  | -                            |
| cis-Chlordane                       | ND           | ND          | ND       | ND       | ND          | ND       | 94                                   | 4,200                         | 24,000                             | 2,900                        |
| trans-Chlordane                     | ND           | ND          | ND       | ND       | ND          | ND       | -                                    | -                             | -                                  | -                            |
| Chlordane                           | ND           | ND          | ND       | ND       | ND          | ND       | -                                    | -                             | -                                  | -                            |
| Polychlorinated Biphenyls in microc | grams per ki | logram      |          |          |             |          |                                      |                               |                                    |                              |
| Aroclor 1016                        | ND           | ND          | ND       | ND       | ND          | ND       | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1221                        | ND           | ND          | ND       | ND       | ND          | ND       | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1232                        | ND           | ND          | ND       | ND       | ND          | ND       | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1242                        | ND           | ND          | ND       | ND       | ND          | ND       | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1248                        | ND           | ND          | ND       | ND       | ND          | ND       | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1254                        | ND           | ND          | ND       | ND       | ND          | ND       | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1260                        | ND           | ND          | ND       | ND       | ND          | ND       | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1262                        | ND           | ND          | ND       | ND       | ND          | ND       | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1268                        | ND           | ND          | ND       | ND       | ND          | ND       | 100                                  | 1,000                         | 1,000                              | 3,200                        |

Notes:

ND = Not detected.

J = Estimated concentration below the RL but above the MDL.

Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives.



| Sample No.                                         |                  | B9A            |              |                    | B9N               |                   | B9N DUPLICATE      |               | B9E              |              |                                      | 6 NYCR Part 375                                  |                                    |                              |
|----------------------------------------------------|------------------|----------------|--------------|--------------------|-------------------|-------------------|--------------------|---------------|------------------|--------------|--------------------------------------|--------------------------------------------------|------------------------------------|------------------------------|
| Sample Depth (feet)                                | 0-2              | 2-4            | 4-6          | 0-2                | 2-4               | 4-6               | 4-6                | 0-2           | 2-4              | 4-6          | 6 NYCRR Part 375<br>Unrestricted Use | 6 NYCK Part 3/5<br>Restricted<br>Residential Use | 6 NYCRR Part 375<br>Commercial Use | 6 NYCRR Part<br>375/CP-51    |
| Sample Type                                        | Fill             | Fill/Native    | Native       | Native             | Native            | Native            | Native             | Fill          | Fill/Native      | Native       | Soil Cleanup<br>Objectives           | Soil Cleanup<br>Objectives                       | Soil Cleanup<br>Objectives         | Protection of<br>Groundwater |
| Sample Date                                        |                  | 1/4/19         |              |                    |                   |                   | 1/17/19            |               |                  |              |                                      | ,                                                |                                    |                              |
| TCL Volatile Organic Compounds                     | in microgra      | ms per kilogra | ım           |                    |                   |                   |                    |               |                  |              |                                      |                                                  |                                    |                              |
| Methylene chloride                                 | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | 50                                   | 100,000                                          | 500,000                            | 50                           |
| 1,1-Dichloroethane<br>Chloroform                   | ND<br>ND         | ND<br>ND       | ND<br>ND     | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>0.18 J  | ND<br>0.31 J     | ND<br>ND     | 270<br>370                           | 26,000<br>49,000                                 | 240,00<br>350,000                  | 270                          |
| Carbon tetrachloride                               | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | 760                                  | 2,400                                            | 22,000                             | 760                          |
| 1,2-Dichloropropane                                | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| Dibromochloromethane                               | ND<br>ND         | ND<br>ND       | ND<br>ND     | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>ND      | ND<br>ND         | ND<br>ND     | -                                    | -                                                | -                                  | -                            |
| 1,1,2-Trichloroethane<br>Tetrachloroethene         | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | 1,300                                | 19,000                                           | 150,000                            | 1,300                        |
| Chlorobenzene                                      | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | 1,100                                | 100,000                                          | 500,000                            | 1,100                        |
| Trichlorofluoromethane                             | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| 1,2-Dichloroethane                                 | ND<br>ND         | ND<br>ND       | ND<br>ND     | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>ND      | ND<br>ND         | ND<br>ND     | 20<br>680                            | 3,100<br>100,000                                 | 30,000<br>500,000                  | 20<br>680                    |
| Bromodichloromethane                               | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| trans-1,3-Dichloropropene                          | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| cis-1,3-Dichloropropene                            | ND<br>ND         | ND             | ND           | ND<br>ND           | ND                | ND<br>ND          | ND                 | ND            | ND               | ND<br>ND     | -                                    | -                                                | -                                  | -                            |
| 1,3-Dichloropropene, Total<br>1,1-Dichloropropene  | ND               | ND<br>ND       | ND<br>ND     | ND                 | ND<br>ND          | ND                | ND<br>ND           | ND<br>ND      | ND<br>ND         | ND           | -                                    | -                                                | -                                  | -                            |
| Bromoform                                          | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| 1,1,2,2-Tetrachloroethane                          | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | 600                          |
| Benzene<br>Toluene                                 | ND<br>1.4        | ND<br>ND       | ND<br>ND     | ND<br>2,300 J      | ND<br>4,200       | ND<br>710 J       | ND<br>ND           | 0.44 J<br>3.1 | 0.96             | ND<br>ND     | 60<br>700                            | 4,800                                            | 44,000<br>500,000                  | 60<br>700                    |
| Ethylbenzene                                       | 1.4<br>ND        | ND             | ND           | 2,300 3            | 26,000            | 5,800             | 2,900              | 0.29 J        | 0.45 J           | ND           | 1,000                                | 41,000                                           | 390,000                            | 1,000                        |
| Chloromethane                                      | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  |                              |
| Bromomethane                                       | ND               | ND<br>ND       | ND<br>ND     | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>ND      | ND<br>ND         | ND<br>ND     | - 20                                 | - 900                                            | - 13,000                           | - 20                         |
| Vinyl chloride<br>Chloroethane                     | ND<br>ND         | ND             | ND<br>ND     | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>ND      | ND<br>ND         | ND<br>ND     | - 20                                 | 900                                              | -                                  | 20                           |
| 1,1-Dichloroethene                                 | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | 330                                  | 100,000                                          | 500,000                            | 330                          |
| trans-1,2-Dichloroethene                           | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | 190                                  | 100,000                                          | 500,000                            | 190                          |
| Trichloroethene<br>1.2-Dichlorobenzene             | 0.90<br>ND       | ND<br>ND       | 0.21 J<br>ND | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | 1.6<br>ND     | 3.5<br>ND        | ND<br>ND     | 470<br>1,100                         | 21,000<br>100,000                                | 200,000 500,000                    | 470                          |
| 1,3-Dichlorobenzene                                | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | 2,400                                | 49,000                                           | 280,000                            | 2,400                        |
| 1,4-Dichlorobenzene                                | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | 0.42 J        | ND               | 0.61 J       | 1,800                                | 13,000                                           | 130,000                            | 1,800                        |
| Methyl tert butyl ether                            | ND               | ND<br>ND       | ND           | ND<br>13,000       | ND<br>170,000     | ND<br>19,000      | ND<br>18,000       | ND<br>1.7 J   | ND<br>2.80       | ND<br>ND     | 930                                  | 100,000                                          | 500,000                            | 930                          |
| p/m-Xylene<br>o-Xylene                             | 0.94 J<br>ND     | ND             | ND<br>ND     | 9,000              | 170,000           | 19,000            | 18,000             | 1.7 J<br>ND   | 2.80<br>0.60 J   | ND           | -                                    | -                                                | -                                  | -                            |
| Xylenes, Total                                     | 0.94 J           | ND             | ND           | 22,000             | 280,000           | 29,000            | 30,000             | 1.7 J         | 3.4 J            | ND           | 260                                  | 100,000                                          | 500,000                            | 1,600                        |
| cis-1,2-Dichloroethene                             | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | 0.35 J        | 0.62 J           | ND           | 250                                  | 100,000                                          | 500,000                            | 250                          |
| 1,2-Dichloroethene, Total<br>Dibromomethane        | ND<br>ND         | ND<br>ND       | ND<br>ND     | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | 0.35 J<br>ND  | 0.62 J<br>ND     | ND<br>ND     | -                                    | -                                                | -                                  | -                            |
| Styrene                                            | ND               | ND             | ND           | ND                 | 1,300 J           | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| Dichlorodifluoromethane                            | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| Acetone<br>Carbon disulfide                        | 10 J<br>ND       | 6.4 J<br>ND    | 11<br>ND     | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | 34<br>ND      | 27<br>ND         | 41<br>ND     | 50                                   | 100,000                                          | 500,000                            | 50<br>2,700                  |
| 2-Butanone                                         | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | 120                                  | 100,000                                          | 500,000                            | 300                          |
| Vinyl acetate                                      | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| 4-Methyl-2-pentanone                               | ND<br>ND         | ND             | ND           | ND                 | ND                | ND<br>ND          | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| 1,2,3-Trichloropropane<br>2-Hexanone               | ND               | ND<br>ND       | ND<br>ND     | ND<br>ND           | ND<br>ND          | ND                | ND<br>ND           | ND<br>ND      | ND<br>ND         | ND<br>ND     | -                                    | -                                                | -                                  | -                            |
| Bromochloromethane                                 | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| 2,2-Dichloropropane                                | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| 1,2-Dibromoethane<br>1,3-Dichloropropane           | ND<br>ND         | ND<br>ND       | ND<br>ND     | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>ND      | ND<br>ND         | ND<br>ND     | -                                    | -                                                | -                                  | 300                          |
| 1,1,1,2-Tetrachloroethane                          | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | •                            |
| Bromobenzene                                       | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| n-Butylbenzene<br>sec-Butylbenzene                 | ND<br>ND         | ND<br>ND       | ND<br>ND     | 4,000<br>7,100     | 32,000<br>58,000  | 1,400<br>2,900    | 3,400<br>6,700     | ND<br>ND      | ND<br>0.24 J     | ND<br>ND     | 12,000<br>11,000                     | 100,000.00<br>100,000                            | 500,000<br>500,000                 | 12,000                       |
| tert-Butylbenzene                                  | ND               | ND             | ND           | 910 J              | ND                | 2,900<br>ND       | 550 J              | ND            | 0.24 J<br>ND     | ND           | 5,900                                | 100,000                                          | 500,000                            | 5,900                        |
| o-Chlorotoluene                                    | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| p-Chlorotoluene                                    | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| 1,2-Dibromo-3-chloropropane<br>Hexachlorobutadiene | ND<br>ND         | ND<br>ND       | ND<br>ND     | ND<br>ND           | ND<br>ND          | ND<br>ND          | ND<br>ND           | ND<br>ND      | ND<br>ND         | ND<br>ND     | -                                    | -                                                | -                                  | -                            |
| Isopropylbenzene                                   | ND               | ND             | ND           | 2,800              | 34,000            | 2,400             | 3,300              | ND            | ND               | ND           | 2,300                                | -                                                | -                                  | -                            |
| p-Isopropyltoluene                                 | ND               | ND             | ND           | 14,000             | 66,000            | 3,600             | 8,200              | ND            | 0.20 J           | ND           | 10,000                               | -                                                | -                                  | -                            |
| Naphthalene<br>Acrylonitrile                       | ND<br>ND         | ND<br>ND       | ND<br>ND     | 26,000<br>ND       | 210,000<br>ND     | 21,000<br>ND      | 26,000<br>ND       | ND<br>ND      | ND<br>ND         | 3.1 J<br>ND  | 12,000                               | 100,000                                          | 500,000                            | 12,000                       |
| n-Propylbenzene                                    | ND               | ND             | ND           | 5,300              | 69,000            | 4,200             | 6,500              | ND<br>ND      | ND               | ND           | 3,900                                | 100,000                                          | 500,000                            | 3,900                        |
| 1,2,3-Trichlorobenzene                             | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| 1,2,4-Trichlorobenzene                             | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           | -                                    | -                                                | -                                  | -                            |
| 1,3,5-Trimethylbenzene<br>1,2,4-Trimethylbenzene   | 0.32 J<br>0.56 J | ND<br>ND       | ND<br>ND     | 160,000<br>290,000 | 1,000,000         | 58,000<br>130,000 | 110,000<br>230,000 | ND<br>0.35 J  | 1.9 J<br>1.6 J   | ND<br>2.4 J  | 8,400<br>3,600                       | 52,000<br>52,000                                 | 190,000<br>190,000                 | 8,400<br>3,600               |
| 1,4-Dioxane                                        | ND               | ND             | ND           | 230,000<br>ND      | ND                | ND                | 230,000<br>ND      | ND            | ND               | 2.4 J<br>ND  | 100                                  | 13,000                                           | 130,000                            | 100                          |
| p-Diethylbenzene                                   | ND               | ND             | ND           | 100,000            | 340,000           | 17,000            | 42,000             | ND            | 2.20             | ND           | -                                    | -                                                | -                                  | -                            |
| p-Ethyltoluene<br>1,2,4,5-Tetramethylbenzene       | ND<br>ND         | ND<br>ND       | ND<br>ND     | 79,000<br>20,000   | 640,000<br>71,000 | 34,000<br>3,600   | 67,000<br>8,700    | ND<br>ND      | 0.42 J<br>0.30 J | ND<br>0.32 J | -                                    | -                                                | -                                  | -                            |
| 1,2,4,5-Tetramethylbenzene<br>Ethyl ether          | ND<br>ND         | ND             | ND<br>ND     | 20,000<br>ND       | 71,000<br>ND      | 3,600<br>ND       | 8,700<br>ND        | ND<br>ND      | 0.30 J<br>ND     | 0.32 J<br>ND | -                                    | -                                                | -                                  | -                            |
|                                                    | ND               | ND             | ND           | ND                 | ND                | ND                | ND                 | ND            | ND               | ND           |                                      | -                                                | -                                  |                              |

 Notes:

 ND = Not detected.

 J = Estimated concentration below the RL but above the MDL.

 Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives.

 Bold prink-shaded values exceed NYSDEC Commercial Use Cleanup Objectives.

 Bold prink-shaded values exceed NYSDEC Commercial Use Cleanup Objectives.

 Bold boxed values exceed NYSDEC Commercial Use Cleanup Objectives.

 Bold boxed values exceed NYSDEC Part 375/CP-51 Protection of Groundwater.



| Sample Depth (feet) Sample Type Sample Date TCL Semivolatile Organic Compound Acenaphthene 1,2,4-Trichlorobenzene Bis(2-chloroethyl)ether 2-Chloronethyl)ether 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene                                                                                                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND                       | 2-4<br>Fill/Native<br>1/4/19<br>rams per kilog<br>ND<br>ND | 4-6<br>Native<br>gram | 0-2<br>Native     | 2-4<br>Native | 4-6<br>Native | 4-6          | 0-2        | 2-4         | 4-6      | 6 NYCRR Part 375<br>Unrestricted Use | 6 NYCR Part 375<br>Restricted<br>Residential Use | 6 NYCRR Part 375<br>Commercial Use | 6 NYCRR Part<br>375/CP-51    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|-----------------------|-------------------|---------------|---------------|--------------|------------|-------------|----------|--------------------------------------|--------------------------------------------------|------------------------------------|------------------------------|
| Sample Type Sample Date TCL Semivolatile Organic Compound Acenaphthene 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroathyl)ether 2Chloroanphthalene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzene 2,4-Dinitrotoluene                                                                                                                                                                 | ds in microg<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | 1/4/19<br>rams per kilog<br>ND<br>ND                       | gram                  | Native            | Native        | Native        |              |            |             |          |                                      | Residential Use                                  |                                    |                              |
| Sample Date TCL Semivolatile Organic Compound Acenaphthene 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzene 2,4-Dinitrotoluene                                                                                                                                                                             | ND<br>ND<br>ND<br>ND<br>ND<br>ND                       | rams per kilog<br>ND<br>ND                                 | -                     |                   |               |               | Native       | Fill       | Fill/Native | Native   | Soil Cleanup<br>Objectives           | Soil Cleanup                                     | Soil Cleanup                       | Protection of<br>Groundwater |
| TCL Semivolatile Organic Compound         Acenaphthene       1,2,4-Trichlorobenzene         Hexachlorobenzene       1,2,4-Trichlorobenzene         Bis(2-chloroethyl)ether       2.         2-Chloronaphthalene       1,2-Dichlorobenzene         1,3-Dichlorobenzene       1,4-Dichlorobenzene         3.3-Dichlorobenzene       3,3-Dichlorobenzene         2,4-Dinitrotoluene       2,4-Dinitrotoluene | ND<br>ND<br>ND<br>ND<br>ND<br>ND                       | rams per kilog<br>ND<br>ND                                 | -                     |                   |               |               | 1/17/19      |            |             |          | Objectives                           | Objectives                                       | Objectives                         | Gioundwater                  |
| Acenaphthene 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroathyl)ether 2.Chloroaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4-Dinitrotoluene                                                                                                                                                                                                                           | ND<br>ND<br>ND<br>ND<br>ND<br>ND                       | ND<br>ND                                                   | -                     |                   |               |               |              |            |             |          |                                      |                                                  |                                    |                              |
| 1,2,4-Trichlorobenzene       Hexachlorobenzene       Bis(2-chloroethyl)ether       2-Chloroaphthalene       1,2-Dichlorobenzene       1,3-Dichlorobenzene       1,4-Dichlorobenzene       3,3-Dichlorobenzidine       2,4-Dinitrotoluene                                                                                                                                                                  | ND<br>ND<br>ND<br>ND<br>ND                             | ND                                                         |                       | 4,300             | 1,100 J       | 220 J         | 180 J        | ND         | ND          | ND       | 20,000                               | 100,000                                          | 500,000                            | 98,000                       |
| Bis(2-chloroethyl)ether<br>2-Chloronaphthalene<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>3,3-Dichlorobenzidine<br>2,4-Dinitrotoluene                                                                                                                                                                                                                                        | ND<br>ND<br>ND                                         | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| 2-Chloronaphthalene<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>3,3-Dichlorobenzidine<br>2,4-Dinitrotoluene                                                                                                                                                                                                                                                                   | ND<br>ND                                               |                                                            | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | 330                                  | 1,200                                            | 6,000                              | 1,400                        |
| 1,2-Dichlorobenzene<br>1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>3,3'-Dichlorobenzidine<br>2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                         | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| 1,3-Dichlorobenzene       1,4-Dichlorobenzene       3,3'-Dichlorobenzidine       2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                       |                                                        | ND<br>ND                                                   | ND<br>ND              | ND<br>ND          | ND<br>ND      | ND<br>ND      | ND<br>ND     | ND<br>ND   | ND<br>ND    | ND<br>ND | - 1,000                              | - 100,000                                        | -<br>500,000                       | - 1,000                      |
| 1,4-Dichlorobenzene<br>3,3-Dichlorobenzidine<br>2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                        | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | 2,400                                | 49,000                                           | 280000                             | 2,400                        |
| 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | 1,800                                | 13,000                                           | 130,000                            | 1,800                        |
|                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | 1,000                        |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                              | 39 J                                                   | ND                                                         | 48 J                  | 20,000<br>ND      | 3,600<br>ND   | 1,000<br>ND   | 890<br>ND    | 22 J<br>ND | 69 J<br>ND  | ND<br>ND | 100,000                              | 100,000                                          | 500,000                            | 1,000,000                    |
| 4-Chlorophenyl phenyl ether<br>4-Bromophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                 | ND<br>ND                                               | ND<br>ND                                                   | ND<br>ND              | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| Bis(2-chloroisopropyl)ether                                                                                                                                                                                                                                                                                                                                                                               | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| Bis(2-chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  |                              |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                 | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND<br>ND     | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| Isophorone<br>Naphthalene                                                                                                                                                                                                                                                                                                                                                                                 | ND<br>91 J                                             | ND<br>ND                                                   | ND<br>ND              | ND<br>52,000      | ND<br>80,000  | ND<br>10,000  | ND<br>10,000 | ND<br>ND   | ND<br>ND    | ND<br>ND | 12,000                               | - 100,000                                        | 500,000                            | - 12,000                     |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | 15,000                                           | 69,000                             | 17,000                       |
| NDPA/DPA                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| n-Nitrosodi-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                 | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| Bis(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | 435,000                      |
| Butyl benzyl phthalate                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | - 8,100                      |
| Di-n-butylphthalate<br>Di-n-octylphthalate                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND                                               | ND<br>ND                                                   | ND<br>ND              | ND<br>ND          | ND<br>ND      | ND<br>ND      | ND<br>ND     | ND<br>ND   | ND<br>ND    | ND<br>ND | -                                    | -                                                | -                                  | 120,000                      |
| Diethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | 27,000                       |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                        | 29 J                                                   | ND                                                         | ND                    | 9,100             | 1,700 J       | 480           | 430          | ND         | 50 J        | ND       | 1,000                                | 1,000                                            | 5,600                              | 1,000                        |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                     | ND                                                         | ND                    | 7,100             | 1,100 J       | 400           | 360          | ND         | 49 J        | ND       | 1,000                                | 1,000                                            | 1,000                              | 22,000                       |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                      | 41 J                                                   | ND                                                         | ND                    | 9,600             | 1,500 J       | 520           | 480          | ND         | 61 J        | ND       | 1,000                                | 1,000                                            | 5,600                              | 1,700                        |
| Benzo(k)fluoranthene<br>Chrysene                                                                                                                                                                                                                                                                                                                                                                          | ND<br>48 J                                             | ND<br>ND                                                   | ND<br>ND              | 2,400 J<br>8,100  | ND<br>1,400 J | 160 J<br>440  | 130 J<br>380 | ND<br>21 J | ND<br>51 J  | ND<br>ND | 800<br>1,000                         | 3,900                                            | 56,000<br>56,000                   | 1,000                        |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | 100,000                              | 100,000                                          | 500,000                            | 107,000                      |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                     | ND                                                         | ND                    | 7,100             | 1,400 J       | 350           | 310          | ND         | ND          | ND       | 100,000                              | 100,000                                          | 500,000                            | 1,000,000                    |
| Benzo(ghi)perylene                                                                                                                                                                                                                                                                                                                                                                                        | 25 J                                                   | ND                                                         | ND                    | 4,100             | 670 J         | 250 J         | 210 J        | ND         | 46 J        | ND       | 100,000                              | 100,000                                          | 500,000                            | 1,000,000                    |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                                     | ND                                                         | ND                    | 4,800             | 1,600 J       | 290 J         | 260 J        | ND         | ND          | ND       | 30,000                               | 100,000                                          | 500,000                            | 386,000                      |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                              | 42 J<br>ND                                             | ND<br>ND                                                   | 63 J<br>ND            | 21,000<br>1,200 J | 4,500<br>ND   | 1,100<br>64 J | 960<br>55 J  | ND<br>ND   | 37 J<br>ND  | ND<br>ND | 100,000<br>330                       | 100,000<br>330                                   | 500,000<br>560                     | 1,000,000                    |
| Dibenzo(a,h)anthracene<br>Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                          | ND                                                     | ND                                                         | ND                    | 4,500             | 720 J         | 250 J         | 220 J        | ND         | 39 J        | ND       | 500                                  | 500                                              | 5,600                              | 8,200                        |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                    | 41 J                                                   | ND                                                         | 33 J                  | 21,000            | 3,700         | 1,100         | 980          | 25 J       | 73 J        | ND       | 100,000                              | 100,000                                          | 500,000                            | 1,000,000                    |
| Biphenyl                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                                     | 56 J                                                       | ND                    | 3,300 J           | 3,700 J       | 550 J         | 480 J        | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| 4-Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | 220                          |
| 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| 3-Nitroaniline<br>4-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                          | ND<br>ND                                               | ND<br>ND                                                   | ND<br>ND              | ND<br>ND          | ND<br>ND      | ND<br>ND      | ND<br>ND     | ND<br>ND   | ND<br>ND    | ND<br>ND |                                      | -                                                | -                                  | -                            |
| Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                     | ND                                                         | ND                    | 2,900 J           | 710 J         | 120 J         | 100 J        | ND         | ND          | ND       | 7,000                                | 59,000                                           | 350,000                            | -                            |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                     | ND                                                         | ND                    | 28,000            | 44,000        | 6,000         | 5,500        | ND         | ND          | ND       | -                                    | -                                                | -                                  | 36,400                       |
| 1,2,4,5-Tetrachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| Acetophenone                                                                                                                                                                                                                                                                                                                                                                                              | 30 J                                                   | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND                                               | ND                                                         | ND                    | ND<br>ND          | ND<br>ND      | ND<br>ND      | ND<br>ND     | ND<br>ND   | ND<br>ND    | ND<br>ND | -                                    | -                                                | -                                  | -                            |
| p-Chloro-m-cresol<br>2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND                                               | ND<br>ND                                                   | ND<br>ND              | ND<br>ND          | ND<br>ND      | ND<br>ND      | ND           | ND         | ND          | ND<br>ND | -                                    | -                                                | -                                  | -                            |
| 2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                     | ND                                                         | ND                    | 8,600             | 6,900         | 12,000        | 7,600        | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| 2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                         | ND<br>ND                                               | ND<br>ND                                                   | ND<br>ND              | ND<br>ND          | ND<br>ND      | ND<br>ND      | ND<br>ND     | ND<br>ND   | ND<br>ND    | ND<br>ND | -                                    | -                                                | -                                  | -                            |
| 4,6-Dinitro-o-cresol<br>Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                 | ND<br>ND                                               | ND                                                         | ND<br>ND              | ND<br>ND          | ND<br>ND      | ND<br>ND      | ND           | ND         | ND          | ND<br>ND | - 800                                | 6,700                                            | - 6,700                            | 800                          |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | 330                                  | 100,000                                          | 500,000                            | 330                          |
| 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                            | 46 J                                                   | ND                                                         | ND                    | ND                | ND            | 880           | 680          | ND         | ND          | ND       | 330                                  | 100,000                                          | 500,000                            | -                            |
| 3-Methylphenol/4-Methylphenol                                                                                                                                                                                                                                                                                                                                                                             | 190 J                                                  | ND                                                         | ND                    | 8,700             | 5,300 J       | 3,500         | 2,600        | ND         | ND          | ND       | 330                                  | 100,000                                          | 500,000                            | -                            |
| 2,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | =                                                | -                                  | -                            |
| Benzoic Acid                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                     | ND                                                         | ND                    | ND                | ND            | ND            | ND           | ND         | ND          | ND       | -                                    | -                                                | -                                  | -                            |
| Benzyl Alcohol<br>Carbazole                                                                                                                                                                                                                                                                                                                                                                               | ND<br>ND                                               | ND<br>ND                                                   | ND<br>ND              | ND<br>1,900 J     | ND<br>ND      | ND<br>ND      | ND<br>ND     | ND<br>ND   | ND<br>ND    | ND<br>ND | -                                    | -                                                | -                                  | -                            |

Notes:

ND = Not detected.

 ND = Not detected.

 J = Estimated concentration below the RL but above the MDL.

 Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives.

 Bold orange-shaded values exceed NYSDEC Restricted Residential Use Soil Cleanup Objectives.

 Bold pink-haded values exceed NYSDEC Commercial Use Cleanup Objectives.

 Bold pink-haded values exceed NYSDEC Commercial Use Cleanup Objectives.

 Bold boxed values exceed NYSDEC Part 375/CP-51 Protection of Groundwater.

| Sample No.                         |          | B9A         |          |          | B9N      |            | B9N DUPLICATE |          | B9E          |          |                                      |                                 |                                    |                              |
|------------------------------------|----------|-------------|----------|----------|----------|------------|---------------|----------|--------------|----------|--------------------------------------|---------------------------------|------------------------------------|------------------------------|
| Sample Depth (feet)                | 0-2      | 2-4         | 4-6      | 0-2      | 2-4      | 4-6        | 4-6           | 0-2      | 2-4          | 4-6      | 6 NYCRR Part 375<br>Unrestricted Use | 6 NYCR Part 375<br>Restricted   | 6 NYCRR Part 375<br>Commercial Use | 6 NYCRR Part<br>375/CP-51    |
| Sample Type                        | Fill     | Fill/Native | Native   | Native   | Native   | Native     | Native        | Fill     | Fill/Native  | Native   | Soil Cleanup<br>Objectives           | Residential Use<br>Soil Cleanup | Soil Cleanup<br>Objectives         | Protection of<br>Groundwater |
| Sample Date                        |          | 1/4/19      |          |          |          |            | 1/17/19       |          | 1            |          |                                      | Objectives                      | ,                                  |                              |
| Metals in milligrams per kilogram  |          |             |          |          |          |            |               |          |              |          |                                      |                                 |                                    |                              |
| Aluminum, Total                    | 419      | 124         | 202      | 1.700    | 203      | 405        | 881           | 791      | 684          | 384      | _                                    | -                               | -                                  | -                            |
| Antimony, Total                    | ND       | ND          | ND       | 0.432 J  | ND       | ND         | ND            | ND       | ND           | ND       |                                      | -                               | -                                  | -                            |
| Arsenic, Total                     | 1.70     | 0.387 J     | 0.546 J  | 2.22     | 1.90     | 1.15       | 1.12          | 1.83     | 1.03         | 1.17 J   | 13                                   | 16                              | 16                                 | 16                           |
| Barium, Total                      | 9.17     | 2.13        | 3.82     | 20.0     | 5.24     | 5.18       | 7.76          | 10.6     | 10.5         | 3.5      | 350                                  | 400                             | 400                                | 820                          |
| Beryllium, Total                   | ND       | ND          | ND       | 0.165 J  | ND       | ND         | 0.039 J       | 0.048 J  | 0.037 J      | ND       | 7.2                                  | 72                              | 590                                | 47                           |
| Cadmium, Total                     | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 2.5                                  | 4.3                             | 9.3                                | 7.5                          |
| Calcium, Total                     | 534      | 87.4        | 223      | 1,090    | 88.4     | 1,080      | 2,710         | 1,570    | 2,620        | 193      | -                                    | -                               | -                                  | -                            |
| Chromium, Total                    | 2.73     | 1.22        | 4.44     | 7.34     | 4.20     | 3.23       | 4.63          | 3.73     | 4.38         | 2.07     | 30                                   | 180                             | 1,500                              | -                            |
| Cobalt, Total                      | 0.699 J  | 0.189 J     | 0.386 J  | 2.22     | 2.87     | 1.20 J     | 1.48 J        | 1.22 J   | 0.748 J      | 0.377 J  | -                                    | -                               | -                                  | -                            |
| Copper, Total                      | 6.60     | ND          | 0.508 J  | 29.9     | 1.21     | 1.37       | 2.53          | 7.40     | 3.16         | ND       | 50                                   | 270                             | 270                                | 1,720                        |
| Iron, Total                        | 950      | 310         | 724      | 2,350    | 796      | 1,280      | 1,680         | 9,670    | 1,560        | 1,200    | -                                    | -                               | -                                  | -                            |
| Lead, Total                        | 13.0     | 1.05 J      | 1.77 J   | 83.4     | 3.70 J   | 3.46 J     | 5.03          | 8.52     | 8.16         | 1.22 J   | 63                                   | 400                             | 1,000                              | 450                          |
| Magnesium, Total                   | 78.8     | 37.6        | 59.0     | 291      | 51       | 157        | 443           | 348      | 361          | 166      | -                                    | -                               | -                                  | -                            |
| Manganese, Total                   | 7.13     | 4.23        | 10.0     | 10.5     | 12.4     | 11.9       | 19.3          | 46.2     | 40.8         | 8.23     | 1,600                                | 2,000                           | 10,000                             | 2,000                        |
| Mercury, Total                     | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 0.18                                 | 0.81                            | 2.8                                | 0.73                         |
| Nickel, Total                      | 1.69 J   | ND          | 0.377 J  | 6.17     | 1.87 J   | 1.23 J     | 2.09 J        | 2.57     | 1.22 J       | 0.489 J  | 30                                   | 310                             | 310                                | 130                          |
| Potassium, Total                   | 54.6 J   | 21.6 J      | 33.4 J   | 81.0 J   | 26.7 J   | 71.3 J     | 151 J         | 63.8 J   | 118 J        | 109 J    | -                                    | -                               | -                                  | -                            |
| Selenium, Total                    | ND       | ND          | ND       | 0.731 J  | ND       | ND         | ND            | ND       | ND           | ND       | 3.9                                  | 180                             | 1,500                              | 4                            |
| Silver, Total                      | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 2                                    | 180                             | 1,500                              | 8.3                          |
| Sodium, Total                      | 61.1 J   | 64.6 J      | 77.3 J   | 80.0 J   | 39.2     | 158 J      | 219           | 28.3 J   | 40.2 J       | 237 J    | -                                    | -                               | -                                  | -                            |
| Thallium, Total                    | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | -                                    | -                               | -                                  | -                            |
| Vanadium, Total                    | 3.68     | 1.24        | 2.32     | 11.5     | 4.94     | 2.91       | 4.90          | 3.61     | 3.81         | 2.19     | -                                    | -                               | -                                  | -                            |
| Zinc, Total                        | 14.1     | 0.604 J     | 5.04     | 208      | 178      | 125        | 122           | 38       | 24           | 1.82 J   | 109                                  | 10,000                          | 10,000                             | 2,480                        |
| Pesticides in micrograms per kilog |          | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 40                                   | 400.000                         | 500.000                            | 250                          |
| Delta-BHC<br>Lindane               | ND<br>ND | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 100                                  | 100,000                         | 500,000<br>9,200                   | 100                          |
| Alpha-BHC                          | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 20                                   | 480                             | 3,400                              | 20                           |
| Beta-BHC                           | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 36                                   | 360                             | 3,000                              | 90                           |
| Heptachlor                         | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 42                                   | 2,100                           | 15,000                             | 380                          |
| Aldrin                             | ND       | ND          | ND       | ND       | ND       | 1.59 JIP   | 1.08 JIP      | ND       | ND           | ND       | 5                                    | 97                              | 680                                | 190                          |
| Heptachlor epoxide                 | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | -                                    | -                               | -                                  | 20                           |
| Endrin                             | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 14                                   | 11,000                          | 89,000                             | 60                           |
| Endrin aldehyde                    | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | -                                    | -                               | -                                  | -                            |
| Endrin ketone                      | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | -                                    | -                               | -                                  | -                            |
| Dieldrin                           | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 5                                    | 200                             | 1,400                              | 100                          |
| 4,4'-DDE                           | ND       | ND          | ND       | 11.2 IP  | ND       | 6.24       | 5.12          | ND       | ND           | ND       | 3.3                                  | 8,900                           | 62,000                             | 17,000                       |
| 4,4'-DDD                           | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 3.3                                  | 13,000                          | 92,000                             | 14,000                       |
| 4,4'-DDT                           | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 3.3                                  | 7,900                           | 47,000                             | 136,000                      |
| Endosulfan I                       | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 2,400                                | 24,000                          | 200,000                            | 102,000                      |
| Endosulfan II                      | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 2,400                                | 24,000                          | 200,000                            | 102,000                      |
| Endosulfan sulfate                 | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 2,400                                | 24,000                          | 200,000                            | 1,000,000                    |
| Methoxychlor                       | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | -                                    | -                               | -                                  | 900,000                      |
| Toxaphene                          | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | -                                    | -                               | -                                  | -                            |
| cis-Chlordane                      | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 94                                   | 4,200                           | 24,000                             | 2,900                        |
| trans-Chlordane                    | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | -                                    | -                               | -                                  | -                            |
| Chlordane                          | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | -                                    | -                               | -                                  | -                            |
| Polychlorinated Biphenyls in micro |          |             | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 100                                  | 1.000                           | 1.000                              | 3,200                        |
| Aroclor 1016<br>Aroclor 1221       | ND<br>ND | ND<br>ND    | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND   | ND<br>ND      | ND<br>ND | ND<br>ND     | ND<br>ND | 100                                  | 1,000                           | 1,000                              | 3,200                        |
|                                    | ND       | ND<br>ND    | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND   | ND<br>ND      | ND       | ND<br>ND     | ND<br>ND | 100                                  | 1,000                           |                                    | 3,200                        |
| Aroclor 1232<br>Aroclor 1242       | ND       | ND<br>ND    | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND   | ND            | ND<br>ND | ND           | ND<br>ND | 100                                  |                                 | 1,000                              | 3,200                        |
| Aroclor 1242<br>Aroclor 1248       | ND       | ND<br>ND    | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND   | ND<br>ND      | ND<br>ND | ND           | ND<br>ND | 100                                  | 1,000                           | 1,000                              | 3,200                        |
| Aroclor 1248<br>Aroclor 1254       | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND<br>13.8 J | ND       | 100                                  | 1,000                           | 1,000                              | 3,200                        |
| Aroclor 1254<br>Aroclor 1260       | ND       | ND          | ND       | 1,070    | ND       | ND<br>75.3 | 146           | ND       | 13.8 J<br>ND | ND       | 100                                  | 1,000                           | 1,000                              | 3,200                        |
| Aroclor 1260<br>Aroclor 1262       | ND       | ND          | ND       | ND       | 519      | 75.3<br>ND | ND            | ND       | ND           | ND       | 100                                  | 1,000                           | 1,000                              | 3,200                        |
| Aroclor 1268                       | ND       | ND          | ND       | ND       | ND       | ND         | ND            | ND       | ND           | ND       | 100                                  | 1,000                           | 1,000                              | 3,200                        |
| ,                                  |          |             |          |          |          | ne .       | ND            |          | no.          |          | 100                                  | 1,000                           | 1,000                              | -,                           |

4-11

Notes:

ND = Not detected.

D = Estimated concentration
 P = the RPD between the results for the two columns exceeds the method-specific criteria.

P = the RVD between the results for the two columns exceeds the method-specific criteria. I = the lower value for the two columns has been reported due to interference. Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives. Bold prink-shaded values exceed NYSDEC Restricted Residential Use Soil Cleanup Objectives. Bold prink-shaded values exceed NYSDEC Commercial Use Cleanup Objectives. Bold boxed values exceed NYSDEC Part 375/CP-51 Protection of Groundwater.

| Sample No.                                        |               | B9S          |          |          | B9W      |          |                                      |                                               |                                    |                              |
|---------------------------------------------------|---------------|--------------|----------|----------|----------|----------|--------------------------------------|-----------------------------------------------|------------------------------------|------------------------------|
| Sample Depth (feet)                               | 0-2           | 2-4          | 4-6      | 0-2      | 2-4      | 4-6      | 6 NYCRR Part 375<br>Unrestricted Use | 6 NYCR Part 375<br>Restricted                 | 6 NYCRR Part 375<br>Commercial Use | 6 NYCRR Part<br>375/CP-51    |
| Sample Type                                       | Native        | Native       | Native   | Native   | Native   | Native   | Soil Cleanup<br>Objectives           | Residential Use<br>Soil Cleanup<br>Objectives | Soil Cleanup<br>Objectives         | Protection of<br>Groundwater |
| Sample Date                                       |               | 1/17/19      |          |          | 1/4/19   |          |                                      | Objectives                                    |                                    |                              |
| TCL Volatile Organic Compounds ir                 | micrograms pe | er kilogram  |          |          |          |          |                                      |                                               |                                    |                              |
| Methylene chloride                                | ND            | ND           | ND       | ND       | ND       | ND       | 50                                   | 100,000                                       | 500,000                            | 50                           |
| 1,1-Dichloroethane                                | ND<br>0.99 J  | ND<br>ND     | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | 270<br>370                           | 26,000<br>49,000                              | 240,00<br>350,000                  | 270<br>370                   |
| Chloroform<br>Carbon tetrachloride                | 0.99 J<br>ND  | ND           | ND       | ND       | ND       | ND       | 760                                  | 2,400                                         | 22,000                             | 760                          |
| 1,2-Dichloropropane                               | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| Dibromochloromethane                              | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| 1,1,2-Trichloroethane                             | ND            | ND<br>ND     | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | - 1,300                      |
| Tetrachloroethene<br>Chlorobenzene                | ND<br>ND      | ND           | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | 1,300<br>1,100                       | 19,000<br>100,000                             | 150,000<br>500,000                 | 1,300                        |
| Trichlorofluoromethane                            | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| 1,2-Dichloroethane                                | ND            | ND           | ND       | ND       | ND       | ND       | 20                                   | 3,100                                         | 30,000                             | 20                           |
| 1,1,1-Trichloroethane                             | ND            | ND           | ND       | ND       | ND       | ND       | 680                                  | 100,000                                       | 500,000                            | 680                          |
| Bromodichloromethane<br>trans-1,3-Dichloropropene | ND<br>ND      | ND<br>ND     | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | -                                    | -                                             | -                                  | -                            |
| cis-1,3-Dichloropropene                           | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| 1,3-Dichloropropene, Total                        | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| 1,1-Dichloropropene                               | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| Bromoform                                         | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| 1,1,2,2-Tetrachloroethane<br>Benzene              | ND<br>ND      | ND<br>ND     | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | - 60                                 | - 4,800                                       | - 44,000                           | 600<br>60                    |
| Toluene                                           | 0.87 J        | ND           | ND       | ND       | ND       | ND       | 700                                  | 100,000                                       | 500,000                            | 700                          |
| Ethylbenzene                                      | ND            | ND           | 0.14 J   | ND       | ND       | ND       | 1,000                                | 41,000                                        | 390,000                            | 1,000                        |
| Chloromethane                                     | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| Bromomethane                                      | 1 J           | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| Vinyl chloride<br>Chloroethane                    | ND<br>ND      | ND<br>ND     | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | 20                                   | 900                                           | 13,000                             | 20                           |
| 1,1-Dichloroethene                                | ND            | ND           | ND       | ND       | ND       | ND       | 330                                  | 100,000                                       | 500,000                            | 330                          |
| trans-1,2-Dichloroethene                          | ND            | ND           | ND       | ND       | ND       | ND       | 190                                  | 100,000                                       | 500,000                            | 190                          |
| Trichloroethene                                   | 0.75 J        | ND           | ND       | ND       | ND       | ND       | 470                                  | 21,000                                        | 200,000                            | 470                          |
| 1,2-Dichlorobenzene                               | ND            | ND           | ND       | ND       | ND       | ND       | 1,100                                | 100,000                                       | 500,000                            | 1,100                        |
| 1,3-Dichlorobenzene                               | ND<br>0.56 J  | ND<br>0.43 J | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | 2,400<br>1,800                       | 49,000<br>13,000                              | 280,000<br>130,000                 | 2,400                        |
| 1,4-Dichlorobenzene<br>Methyl tert butyl ether    | 0.56 J        | 0.43 J<br>ND | ND       | ND       | ND       | ND       | 930                                  | 100,000                                       | 500,000                            | 930                          |
| p/m-Xylene                                        | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| o-Xylene                                          | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| Xylenes, Total                                    | ND            | ND           | ND       | ND       | ND       | ND       | 260                                  | 100,000                                       | 500,000                            | 1,600                        |
| cis-1,2-Dichloroethene                            | ND<br>ND      | ND<br>ND     | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | 250                                  | 100,000                                       | 500,000                            | 250                          |
| 1,2-Dichloroethene, Total<br>Dibromomethane       | ND            | ND           | ND       | ND       | ND       | ND       | -                                    |                                               | -                                  | -                            |
| Styrene                                           | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| Dichlorodifluoromethane                           | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| Acetone                                           | 20            | 14           | 11       | ND       | 8.3 J    | 10       | 50                                   | 100,000                                       | 500,000                            | 50                           |
| Carbon disulfide<br>2-Butanone                    | ND<br>ND      | ND<br>ND     | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | - 120                                | - 100,000                                     | - 500,000                          | 2,700<br>300                 |
| Vinyl acetate                                     | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             |                                    | -                            |
| 4-Methyl-2-pentanone                              | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| 1,2,3-Trichloropropane                            | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| 2-Hexanone                                        | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| Bromochloromethane                                | ND            | ND<br>ND     | ND<br>ND | ND<br>ND | ND       | ND<br>ND | -                                    | -                                             | -                                  | -                            |
| 2,2-Dichloropropane<br>1,2-Dibromoethane          | ND<br>ND      | ND<br>ND     | ND       | ND       | ND<br>ND | ND       | -                                    | -                                             | -                                  | -                            |
| 1,3-Dichloropropane                               | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | 300                          |
| 1,1,1,2-Tetrachloroethane                         | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| Bromobenzene                                      | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| n-Butylbenzene<br>sec-Butylbenzene                | ND<br>ND      | ND<br>ND     | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | 12,000<br>11,000                     | 100,000.00<br>100,000                         | 500,000<br>500,000                 | 12,000                       |
| sec-Butylbenzene<br>tert-Butylbenzene             | ND            | ND           | ND<br>ND | ND       | ND       | ND<br>ND | 5,900                                | 100,000                                       | 500,000                            | 5,900                        |
| o-Chlorotoluene                                   | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| p-Chlorotoluene                                   | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| 1,2-Dibromo-3-chloropropane                       | ND            | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| Hexachlorobutadiene                               | ND<br>ND      | ND<br>ND     | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | - 2,300                              | -                                             | -                                  | -                            |
| Isopropylbenzene<br>p-Isopropyltoluene            | ND            | ND<br>ND     | ND<br>ND | ND       | ND       | ND<br>ND | 2,300                                | -                                             | -                                  | -                            |
| Naphthalene                                       | ND            | ND           | ND       | ND       | ND       | ND       | 12,000                               | 100,000                                       | 500,000                            | 12,000                       |
| Acrylonitrile                                     | ND            | ND           | ND       | ND       | ND       | ND       | -                                    |                                               | -                                  | -                            |
| n-Propylbenzene                                   | ND            | ND           | ND       | ND       | ND       | ND       | 3,900                                | 100,000                                       | 500,000                            | 3,900                        |
| 1,2,3-Trichlorobenzene                            | ND            | ND<br>ND     | ND       | ND<br>ND | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| 1,2,4-Trichlorobenzene<br>1,3,5-Trimethylbenzene  | ND<br>ND      | ND<br>ND     | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | - 8,400                              | - 52,000                                      | - 190,000                          | - 8,400                      |
| 1,2,4-Trimethylbenzene                            | ND            | ND           | ND       | ND       | ND       | ND       | 3,600                                | 52,000                                        | 190,000                            | 3,600                        |
|                                                   | ND            | ND           | ND       | ND       | ND       | ND       | 100                                  | 13,000                                        | 130,000                            | 100                          |
| 1,4-Dioxane                                       | 110           |              |          |          |          | 10       | -                                    | -                                             | -                                  | -                            |
| 1,4-Dioxane<br>p-Diethylbenzene                   | ND            | ND           | ND       | ND       | ND       | ND       |                                      |                                               |                                    |                              |
| 1,4-Dioxane<br>p-Diethylbenzene<br>p-Ethyltoluene | ND<br>ND      | ND           | ND       | ND       | ND       | ND       | -                                    | -                                             | -                                  | -                            |
| 1,4-Dioxane<br>p-Diethylbenzene                   | ND            |              |          |          |          |          |                                      |                                               |                                    | -                            |

$$\label{eq:Notes:ND} \begin{split} & \underline{Notes:} \\ & ND = Not \mbox{ detected}. \\ & J \ = \ \mbox{Estimated concentration below the RL but above the MDL}. \end{split}$$

| Sample No.                                        |              | B9S            |          |               | B9W      |          |                                      |                                                  |                                    |                              |
|---------------------------------------------------|--------------|----------------|----------|---------------|----------|----------|--------------------------------------|--------------------------------------------------|------------------------------------|------------------------------|
| Sample Depth (feet)                               | 0-2          | 2-4            | 2-4      | 0-2           | 2-4      | 2-4      | 6 NYCRR Part 375<br>Unrestricted Use | 6 NYCR Part 375<br>Restricted<br>Residential Use | 6 NYCRR Part 375<br>Commercial Use | 6 NYCRR Part<br>375/CP-51    |
| Sample Type                                       | Native       | Native         | Native   | Native        | Native   | Native   | Soil Cleanup<br>Objectives           | Soil Cleanup<br>Objectives                       | Soil Cleanup<br>Objectives         | Protection of<br>Groundwater |
| Sample Date                                       |              | 1/17/19        |          |               | 1/4/19   |          |                                      | Objectives                                       |                                    |                              |
| TCL Semivolatile Organic Compoun                  | ds in microg | rams per kilog | gram     |               |          |          |                                      |                                                  |                                    |                              |
| Acenaphthene                                      | ND           | ND             | ND       | ND            | ND       | ND       | 20,000                               | 100,000                                          | 500,000                            | 98,000                       |
| 1,2,4-Trichlorobenzene                            | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| Hexachlorobenzene<br>Bis(2-chloroethyl)ether      | ND<br>ND     | ND<br>ND       | ND<br>ND | ND<br>ND      | ND<br>ND | ND<br>ND | 330                                  | 1,200                                            | 6,000                              | 1,400                        |
| 2-Chloronaphthalene                               | ND           | ND             | ND       | ND            | ND       | ND       | -                                    |                                                  | -                                  | -                            |
| 1,2-Dichlorobenzene                               | ND           | ND             | ND       | ND            | ND       | ND       | 1,000                                | 100,000                                          | 500,000                            | 1,000                        |
| 1,3-Dichlorobenzene                               | ND           | ND             | ND       | ND            | ND       | ND       | 2,400                                | 49,000                                           | 280000                             | 2,400                        |
| 1,4-Dichlorobenzene                               | ND           | ND             | ND       | ND            | ND       | ND       | 1,800                                | 13,000                                           | 130,000                            | 1,800                        |
| 3,3'-Dichlorobenzidine<br>2,4-Dinitrotoluene      | ND<br>ND     | ND<br>ND       | ND<br>ND | ND<br>ND      | ND<br>ND | ND<br>ND | -                                    | -                                                | -                                  |                              |
| 2,6-Dinitrotoluene                                | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | 1,000                        |
| Fluoranthene                                      | 56 J         | ND             | ND       | 110 J         | ND       | ND       | 100,000                              | 100,000                                          | 500,000                            | 1,000,000                    |
| 4-Chlorophenyl phenyl ether                       | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| 4-Bromophenyl phenyl ether                        | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| Bis(2-chloroisopropyl)ether                       | ND           | ND<br>ND       | ND<br>ND | ND<br>ND      | ND       | ND<br>ND | -                                    | -                                                | -                                  | -                            |
| Bis(2-chloroethoxy)methane<br>Hexachlorobutadiene | ND<br>ND     | ND             | ND       | ND            | ND<br>ND | ND       | -                                    |                                                  | -                                  | -                            |
| Hexachlorocyclopentadiene                         | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| Hexachloroethane                                  | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| Isophorone                                        | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| Naphthalene                                       | 78 J         | ND             | ND       | 47 J          | ND       | ND       | 12,000                               | 100,000                                          | 500,000                            | 12,000                       |
| Nitrobenzene<br>NDPA/DPA                          | ND<br>ND     | ND<br>ND       | ND<br>ND | ND<br>ND      | ND<br>ND | ND<br>ND | -                                    | 15,000                                           | 69,000                             | 17,000                       |
| n-Nitrosodi-n-propylamine                         | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                |                                    | -                            |
| Bis(2-ethylhexyl)phthalate                        | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | 435,000                      |
| Butyl benzyl phthalate                            | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| Di-n-butylphthalate                               | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | 8,100                        |
| Di-n-octylphthalate                               | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | 120,000                      |
| Diethyl phthalate<br>Dimethyl phthalate           | ND<br>ND     | ND<br>ND       | ND<br>ND | ND<br>ND      | ND<br>ND | ND<br>ND | -                                    |                                                  | -                                  | 27,000                       |
| Benzo(a)anthracene                                | 68 J         | ND             | ND       | 83 J          | ND       | ND       | 1,000                                | 1,000                                            | 5,600                              | 1,000                        |
| Benzo(a)pyrene                                    | ND           | ND             | ND       | 63 J          | ND       | ND       | 1,000                                | 1,000                                            | 1,000                              | 22,000                       |
| Benzo(b)fluoranthene                              | 79 J         | ND             | ND       | 99 J          | ND       | ND       | 1,000                                | 1,000                                            | 5,600                              | 1,700                        |
| Benzo(k)fluoranthene                              | ND           | ND             | ND       | ND            | ND       | ND       | 800                                  | 3,900                                            | 56,000                             | 1,700                        |
| Chrysene                                          | 130<br>ND    | ND<br>ND       | ND<br>ND | 130<br>ND     | ND       | ND<br>ND | 1,000                                | 3,900                                            | 56,000                             | 1,000                        |
| Acenaphthylene<br>Anthracene                      | ND           | ND             | ND       | ND            | ND<br>ND | ND       | 100,000 100,000                      | 100,000                                          | 500,000<br>500,000                 | 1,000,000                    |
| Benzo(ghi)perylene                                | 37 J         | ND             | ND       | 59 J          | ND       | ND       | 100,000                              | 100,000                                          | 500,000                            | 1,000,000                    |
| Fluorene                                          | ND           | ND             | ND       | ND            | ND       | ND       | 30,000                               | 100,000                                          | 500,000                            | 386,000                      |
| Phenanthrene                                      | 99 J         | ND             | ND       | 140           | ND       | ND       | 100,000                              | 100,000                                          | 500,000                            | 1,000,000                    |
| Dibenzo(a,h)anthracene                            | ND           | ND             | ND       | 24 J          | ND       | ND       | 330                                  | 330                                              | 560                                | 1,000,000                    |
| Indeno(1,2,3-cd)pyrene<br>Pyrene                  | ND<br>65 J   | ND<br>ND       | ND<br>ND | 53 J<br>110 J | ND<br>ND | ND<br>ND | 500<br>100,000                       | 500<br>100,000                                   | 5,600<br>500,000                   | 8,200                        |
| Biphenyl                                          | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| 4-Chloroaniline                                   | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | 220                          |
| 2-Nitroaniline                                    | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| 3-Nitroaniline                                    | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| 4-Nitroaniline<br>Dibenzofuran                    | ND<br>ND     | ND<br>ND       | ND<br>ND | ND<br>ND      | ND<br>ND | ND<br>ND | -<br>7,000                           | - 59,000                                         | -<br>350,000                       |                              |
| 2-Methylnaphthalene                               | 55 J         | ND             | ND       | 60 J          | ND       | ND       | -                                    | - 59,000                                         | -                                  | - 36,400                     |
| 1,2,4,5-Tetrachlorobenzene                        | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| Acetophenone                                      | 37 J         | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| 2,4,6-Trichlorophenol                             | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| p-Chloro-m-cresol                                 | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| 2-Chlorophenol<br>2,4-Dichlorophenol              | ND<br>ND     | ND<br>ND       | ND<br>ND | ND<br>ND      | ND<br>ND | ND<br>ND | -                                    | -                                                | -                                  | -                            |
| 2,4-Dimethylphenol                                | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| 2-Nitrophenol                                     | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  |                              |
| 4-Nitrophenol                                     | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| 2,4-Dinitrophenol                                 | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| 4,6-Dinitro-o-cresol                              | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| Pentachlorophenol                                 | ND<br>ND     | ND<br>ND       | ND<br>ND | ND<br>ND      | ND<br>ND | ND<br>ND | 800<br>330                           | 6,700<br>100,000                                 | 6,700<br>500,000                   | 800<br>330                   |
| Phenol<br>2-Methylphenol                          | ND           | ND             | ND       | ND            | ND       | ND       | 330                                  | 100,000                                          | 500,000                            | -                            |
| 3-Methylphenol/4-Methylphenol                     | 54 J         | ND             | ND       | 120 J         | ND       | ND       | 330                                  | 100,000                                          | 500,000                            | -                            |
| 2,4,5-Trichlorophenol                             | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| Benzoic Acid                                      | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  |                              |
| Benzyl Alcohol                                    | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |
| Carbazole                                         | ND           | ND             | ND       | ND            | ND       | ND       | -                                    | -                                                | -                                  | -                            |

Notes:

ND = Not detected. J = Estimated concentration below the RL but above the MDL.

S:\PeninsulaRockaway-Arker\Far Rockaway\E Site\DEP Phase II\Table 411 Soil data.xlsx

| Sample No.                                         |             | B9S       |           |           | B9W        |            |                                      |                                 |                                    |                              |
|----------------------------------------------------|-------------|-----------|-----------|-----------|------------|------------|--------------------------------------|---------------------------------|------------------------------------|------------------------------|
| Sample Depth (feet)                                | 0-2         | 2-4       | 4-6       | 0-2       | 2-4        | 4-6        | 6 NYCRR Part 375<br>Unrestricted Use | 6 NYCR Part 375<br>Restricted   | 6 NYCRR Part 375<br>Commercial Use | 6 NYCRR Part<br>375/CP-51    |
| Sample Type                                        | Native      | Native    | Native    | Native    | Native     | Native     | Soil Cleanup<br>Objectives           | Residential Use<br>Soil Cleanup | Soil Cleanup<br>Objectives         | Protection of<br>Groundwater |
| Sample Date                                        |             | 1/17/19   |           |           | 1/4/19     |            | Objectives                           | Objectives                      | Objectives                         | Groundwater                  |
| •                                                  |             |           |           |           | 11-11-10   |            |                                      |                                 |                                    |                              |
| Metals in milligrams per kilogram                  | 4 000       | 450       | 404       | 507       | 455        | 474        |                                      |                                 |                                    |                              |
| Aluminum, Total                                    | 1,090<br>ND | 156<br>ND | 184<br>ND | 597<br>ND | 155<br>ND  | 174<br>ND  | -                                    | -                               | -                                  | -                            |
| Antimony, Total<br>Arsenic, Total                  | 7.46        | 0.447 J   | ND        | 1.60      | 0.371 J    | 0.421 J    | - 13                                 | - 16                            | - 16                               | - 16                         |
| Barium, Total                                      | 32.5        | 3.70      | 3.11      | 12.5      | 4.65       | 4.13       | 350                                  | 400                             | 400                                | 820                          |
| Beryllium, Total                                   | 0.325 J     | ND        | ND        | ND        | 4.05<br>ND | 4.13<br>ND | 7.2                                  | 72                              | 590                                | 47                           |
| Cadmium, Total                                     | ND          | ND        | ND        | 0.137 J   | ND         | ND         | 2.5                                  | 4.3                             | 9.3                                | 7.5                          |
| Calcium, Total                                     | 2,460       | 116       | 279       | 1,260     | 133        | 160        | -                                    | -                               | -                                  | -                            |
| Chromium, Total                                    | 6.33        | 1.94      | 2.71      | 3.73      | 1.84       | 2.63       | 30                                   | 180                             | 1,500                              | -                            |
| Cobalt, Total                                      | 2.26        | 0.311 J   | 0.241 J   | 0.685 J   | 0.276 J    | 0.297 J    | -                                    | -                               | -                                  | -                            |
| Copper, Total                                      | 20.5        | ND        | 0.309 J   | 14.4      | 0.247      | ND         | 50                                   | 270                             | 270                                | 1,720                        |
| Iron, Total                                        | 3,200       | 501       | 536       | 1,120     | 508        | 574        | -                                    | -                               | -                                  | -                            |
| Lead, Total                                        | 29.0        | 2.30 J    | 1.86 J    | 61.6      | 1.74 J     | 1.68 J     | 63                                   | 400                             | 1,000                              | 450                          |
| Magnesium, Total                                   | 220         | 60.1      | 68.8      | 225       | 47.3       | 61.4       | -                                    | -                               | -                                  | -                            |
| Manganese, Total                                   | 20.0        | 6.70      | 6.73      | 10.6      | 7.08       | 8.70       | 1,600                                | 2,000                           | 10,000                             | 2,000                        |
| Mercury, Total                                     | 0.091 J     | ND        | ND        | 0.047 J   | ND         | ND         | 0.18                                 | 0.81                            | 2.8                                | 0.73                         |
| Nickel, Total                                      | 5.29        | 0.253 J   | 0.290 J   | 4.36      | ND         | ND         | 30                                   | 310                             | 310                                | 130                          |
| Potassium, Total                                   | 115 J       | 39.9 J    | 52.4 J    | 68.7 J    | 30.6 J     | 31.8 J     | -                                    | -                               | -                                  | -                            |
| Selenium, Total                                    | ND          | ND        | ND        | 0.519 J   | ND         | ND         | 3.9                                  | 180                             | 1,500                              | 4                            |
| Silver, Total                                      | ND          | ND        | ND        | ND        | ND         | ND         | 2                                    | 180                             | 1,500                              | 8.3                          |
| Sodium, Total                                      | 97.2 J      | 120 J     | 155 J     | 98.2 J    | 74.2 J     | 112 J      | -                                    | -                               | -                                  | -                            |
| Thallium, Total                                    | ND          | ND        | ND        | ND        | ND         | ND         | -                                    | -                               | -                                  | -                            |
| Vanadium, Total                                    | 6.33        | 1.86      | 1.59      | 3.79      | 2.12       | 1.99       | -                                    | -                               | -                                  | -                            |
| Zinc, Total                                        | 30.6        | 3.77 J    | 3.98 J    | 54.5      | 9.48       | 6.12       | 109                                  | 10,000                          | 10,000                             | 2,480                        |
| Pesticides in micrograms per kilog                 | gram        |           |           |           |            |            |                                      |                                 |                                    |                              |
| Delta-BHC                                          | ND          | ND        | ND        | ND        | ND         | ND         | 40                                   | 100,000                         | 500,000                            | 250                          |
| Lindane                                            | ND          | ND        | ND        | ND        | ND         | ND         | 100                                  | 1,300                           | 9,200                              | 100                          |
| Alpha-BHC                                          | ND          | ND        | ND        | ND        | ND         | ND         | 20                                   | 480                             | 3,400                              | 20                           |
| Beta-BHC                                           | ND          | ND        | ND        | ND        | ND         | ND         | 36                                   | 360                             | 3,000                              | 90                           |
| Heptachlor                                         | ND          | ND        | ND        | ND        | ND         | ND         | 42                                   | 2,100                           | 15,000                             | 380                          |
| Aldrin                                             | ND          | ND        | ND        | ND        | ND         | ND         | 5                                    | 97                              | 680                                | 190                          |
| Heptachlor epoxide                                 | ND          | ND        | ND        | ND        | ND         | ND         | -                                    | -                               | -                                  | 20                           |
| Endrin                                             | ND          | ND        | ND        | ND        | ND         | ND         | 14                                   | 11,000                          | 89,000                             | 60                           |
| Endrin aldehyde                                    | ND          | ND        | ND        | ND        | ND         | ND         | -                                    | -                               | -                                  | -                            |
| Endrin ketone                                      | ND          | ND        | ND        | ND        | ND         | ND         | -                                    | -                               | -                                  | -                            |
| Dieldrin                                           | ND          | ND        | ND        | ND        | ND         | ND         | 5                                    | 200                             | 1,400                              | 100                          |
| 4,4'-DDE                                           | ND          | ND        | ND        | ND        | ND         | ND         | 3.3                                  | 8,900                           | 62,000                             | 17,000                       |
| 4,4'-DDD                                           | ND          | ND        | ND        | ND        | ND         | ND         | 3.3                                  | 13,000                          | 92,000                             | 14,000                       |
| 4,4'-DDT                                           | ND          | ND        | ND        | ND        | ND         | ND         | 3.3                                  | 7,900                           | 47,000                             | 136,000                      |
| Endosulfan I                                       | ND          | ND        | ND        | ND        | ND         | ND         | 2,400                                | 24,000                          | 200,000                            | 102,000                      |
| Endosulfan II                                      | ND          | ND        | ND        | ND        | ND         | ND         | 2,400                                | 24,000                          | 200,000                            | 102,000                      |
| Endosulfan sulfate                                 | ND          | ND        | ND        | ND        | ND         | ND         | 2,400                                | 24,000                          | 200,000                            | 1,000,000                    |
| Methoxychlor                                       | ND          | ND        | ND        | ND        | ND         | ND         | -                                    | -                               | -                                  | 900,000                      |
| Toxaphene                                          | ND          | ND        | ND        | ND        | ND         | ND         | -                                    | -                               | -                                  | -                            |
| cis-Chlordane                                      | ND          | ND        | ND        | ND        | ND         | ND         | 94                                   | 4,200                           | - 24,000                           | 2,900                        |
| trans-Chlordane                                    | ND<br>ND    | ND<br>ND  | ND<br>ND  | ND<br>ND  | ND<br>ND   | ND         | -                                    | -                               | -                                  |                              |
| Chlordane<br>Relychloringtod Binhonylo in migr     |             |           | ND        | ND        | ND         | ND         | -                                    | -                               | -                                  | -                            |
| Polychlorinated Biphenyls in micro<br>Aroclor 1016 | ND          | ND        | ND        | ND        | ND         | ND         | 100                                  | 1,000                           | 1,000                              | 3,200                        |
| Aroclor 1016<br>Aroclor 1221                       | ND          | ND<br>ND  | ND        | ND<br>ND  | ND         | ND<br>ND   | 100                                  | 1,000                           | 1,000                              | 3,200                        |
| Aroclor 1221<br>Aroclor 1232                       | ND          | ND        | ND        | ND        | ND         | ND         | 100                                  | 1,000                           | 1,000                              | 3,200                        |
| Aroclor 1232<br>Aroclor 1242                       | ND          | ND        | ND        | ND        | ND         | ND         | 100                                  | 1,000                           | 1,000                              | 3,200                        |
| Aroclor 1242<br>Aroclor 1248                       | ND          | ND        | ND        | ND        | ND         | ND         | 100                                  | 1,000                           | 1,000                              | 3,200                        |
| Aroclor 1248<br>Aroclor 1254                       | ND          | ND        | ND        | ND        | ND         | ND         | 100                                  | 1,000                           | 1,000                              | 3,200                        |
| Aroclor 1254<br>Aroclor 1260                       | ND          | ND        | ND        | ND        | ND         | ND         | 100                                  | 1,000                           | 1,000                              | 3,200                        |
|                                                    | ND          | ND        | ND        | ND        | ND         | ND         | 100                                  | 1,000                           | 1,000                              | 3,200                        |
| Aroclor 1262                                       |             |           |           |           |            |            |                                      |                                 |                                    |                              |

Notes:

ND = Not detected.

J = Estimated concentration

P = the RPD between the results for the two columns exceeds the method-specific criteria.

I = the lower value for the two columns has been reported due to interference.

| Sample No.                                  |                | B10            |             |              | B11          |              |            | B12          |          |                                      | 6 NYCR Part 375               |                                    |                              |
|---------------------------------------------|----------------|----------------|-------------|--------------|--------------|--------------|------------|--------------|----------|--------------------------------------|-------------------------------|------------------------------------|------------------------------|
| Sample Depth (feet)                         | 0-2            | 2-4            | 4-6         | 0-2          | 2-4          | 4-6          | 0-2        | 2-4          | 4-6      | 6 NYCRR Part 375<br>Unrestricted Use | Restricted<br>Residential Use | 6 NYCRR Part 375<br>Commercial Use | 6 NYCRR Part<br>375/CP-51    |
| Sampe Type                                  | Fill           | Fill/Native    | Native      | Fill         | Fill/Native  | Native       | Fill       | Fill/Native  | Native   | Soil Cleanup<br>Objectives           | Soil Cleanup<br>Objectives    | Soil Cleanup<br>Objectives         | Protection of<br>Groundwater |
| Sample Date                                 |                | 1/17/19        |             |              | 1/4/19       |              |            | 1/17/19      |          |                                      |                               |                                    |                              |
| TCL Volatile Organic Compounds i            | n microgram    | s per kilogram | n           |              |              |              |            |              |          |                                      |                               |                                    |                              |
| Methylene chloride                          | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 50                                   | 100,000                       | 500,000                            | 50                           |
| 1,1-Dichloroethane                          | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 270                                  | 26,000                        | 240,00                             | 270                          |
| Chloroform                                  | ND             | ND             | ND          | 0.91 J       | 0.20 J       | 2.4          | ND         | ND           | ND       | 370                                  | 49,000                        | 350,000                            | 370<br>760                   |
| Carbon tetrachloride                        | ND<br>ND       | ND<br>ND       | ND<br>ND    | 0.57 J<br>ND | ND<br>ND     | 0.58 J<br>ND | ND<br>ND   | ND<br>ND     | ND<br>ND | 760                                  | 2,400                         | 22,000                             | 760                          |
| 1,2-Dichloropropane<br>Dibromochloromethane | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    |                               | -                                  | -                            |
| 1,1,2-Trichloroethane                       | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| Tetrachloroethene                           | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 1,300                                | 19,000                        | 150,000                            | 1,300                        |
| Chlorobenzene                               | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 1,100                                | 100,000                       | 500,000                            | 1,100                        |
| Trichlorofluoromethane                      | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| 1,2-Dichloroethane                          | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 20                                   | 3,100                         | 30,000                             | 20                           |
| 1,1,1-Trichloroethane                       | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 680                                  | 100,000                       | 500,000                            | 680                          |
| Bromodichloromethane                        | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | •                            |
| rans-1,3-Dichloropropene                    | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| cis-1,3-Dichloropropene                     | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| 1,3-Dichloropropene, Total                  | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| 1,1-Dichloropropene                         | ND<br>ND       | ND<br>ND       | ND<br>ND    | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND   | ND<br>ND     | ND<br>ND |                                      |                               |                                    | -                            |
| Bromoform<br>1,1,2,2-Tetrachloroethane      | ND             | ND             | ND<br>ND    | ND<br>ND     | ND           | ND           | ND<br>ND   | ND           | ND       |                                      |                               | -                                  | 600                          |
| 1,1,2,2-Tetrachloroethane<br>Benzene        | 29 J           | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 60                                   | 4,800                         | - 44,000                           | 60                           |
| Toluene                                     | 520            | ND             | 0.73 J      | ND           | 0.79 J       | ND           | ND         | ND           | ND       | 700                                  | 100,000                       | 500,000                            | 700                          |
| Ethylbenzene                                | 110            | 31 J           | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 1,000                                | 41,000                        | 390,000                            | 1,000                        |
| Chloromethane                               | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| Bromomethane                                | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  |                              |
| Vinyl chloride                              | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 20                                   | 900                           | 13,000                             | 20                           |
| Chloroethane                                | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  |                              |
| 1,1-Dichloroethene                          | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 330                                  | 100,000                       | 500,000                            | 330                          |
| trans-1,2-Dichloroethene                    | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 190                                  | 100,000                       | 500,000                            | 190                          |
| Trichloroethene                             | ND             | ND             | ND          | 0.59         | 0.53 J       | 0.84         | ND         | ND           | ND       | 470                                  | 21,000                        | 200,000                            | 470<br>1,100                 |
| 1,2-Dichlorobenzene                         | ND<br>ND       | ND<br>ND       | ND<br>ND    | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND   | ND<br>ND     | ND<br>ND | 1,100<br>2,400                       | 100,000<br>49,000             | 500,000<br>280,000                 | 2,400                        |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene  | 39 J           | 30 J           | 0.21 J      | ND           | ND           | ND           | ND         | 0.68 J       | 1.2 J    | 1,800                                | 13,000                        | 130,000                            | 1,800                        |
| Methyl tert butyl ether                     | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 930                                  | 100,000                       | 500,000                            | 930                          |
| p/m-Xylene                                  | 690            | 150            | 0.64 J      | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| p-Xylene                                    | 120            | 23 J           | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| Xylenes, Total                              | 810            | 170 J          | 0.64 J      | ND           | ND           | ND           | ND         | ND           | ND       | 260                                  | 100,000                       | 500,000                            | 1,600                        |
| cis-1,2-Dichloroethene                      | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 250                                  | 100,000                       | 500,000                            | 250                          |
| 1,2-Dichloroethene, Total                   | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| Dibromomethane                              | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| Styrene                                     | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| Dichlorodifluoromethane                     | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| Acetone                                     | ND<br>ND       | ND             | 54<br>ND    | 9.1 J        | 26           | 33<br>ND     | 100        | 20<br>ND     | 6.8 J    | 50                                   | 100,000                       | 500,000                            | 50<br>2,700                  |
| Carbon disulfide<br>2-Butanone              | ND             | ND<br>ND       | ND<br>3.5 J | ND<br>ND     | 9.7 J<br>ND  | ND           | ND<br>14 J | ND           | ND<br>ND | - 120                                | - 100,000                     | - 500,000                          | 300                          |
| Vinyl acetate                               | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             |                                    | -                            |
| 4-Methyl-2-pentanone                        | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| 1,2,3-Trichloropropane                      | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| 2-Hexanone                                  | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| Bromochloromethane                          | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| 2,2-Dichloropropane                         | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  |                              |
| 1,2-Dibromoethane                           | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| 1,3-Dichloropropane                         | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | 300                          |
| 1,1,1,2-Tetrachloroethane                   | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | •                            |
| Bromobenzene                                | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| n-Butylbenzene                              | ND             | 24 J           | ND          | ND           | ND           | ND           | ND         | 0.27 J       | ND       | 12,000                               | 100,000.00                    | 500,000                            | 12,000                       |
| sec-Butylbenzene<br>ert-Butylbenzene        | ND<br>ND       | 33 J<br>ND     | ND<br>ND    | ND<br>ND     | 0.18 J<br>ND | ND<br>ND     | ND<br>ND   | 0.57 J<br>ND | ND<br>ND | 11,000<br>5,900                      | 100,000 100,000               | 500,000<br>500,000                 | 5,900                        |
| o-Chlorotoluene                             | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 5,900                                | -                             | -                                  | 5,900                        |
| p-Chlorotoluene                             | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| ,2-Dibromo-3-chloropropane                  | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| lexachlorobutadiene                         | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| sopropylbenzene                             | ND             | 18 J           | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 2,300                                | -                             | -                                  | •                            |
| o-Isopropyltoluene                          | 18 J           | 15 J           | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 10,000                               | -                             | -                                  | -                            |
| Naphthalene                                 | ND             | 120 J          | ND          | ND           | ND           | ND           | ND         | 17           | ND       | 12,000                               | 100,000                       | 500,000                            | 12,000                       |
| Acrylonitrile                               | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | •                             | -                                  | -                            |
| n-Propylbenzene                             | ND             | 42 J           | ND          | ND           | ND           | ND           | ND         | ND           | ND       | 3,900                                | 100,000                       | 500,000                            | 3,900                        |
| ,2,3-Trichlorobenzene                       | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |
| ,2,4-Trichlorobenzene                       | ND             | ND 04          | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  |                              |
| ,3,5-Trimethylbenzene                       | 110 J<br>140 J | 81 J<br>270    | ND<br>ND    | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND   | ND           | ND<br>ND | 8,400<br>3,600                       | 52,000                        | 190,000<br>190,000                 | 8,400<br>3,600               |
| I,2,4-Trimethylbenzene<br>I,4-Dioxane       | 140 J<br>ND    | 270<br>ND      | ND<br>ND    | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND   | 5.8<br>ND    | ND<br>ND | 3,600<br>100                         | 52,000<br>13,000              | 190,000<br>130,000                 | 3,600                        |
| p-Diethylbenzene                            | ND<br>84 J     | ND<br>38 J     | ND<br>ND    | ND<br>ND     | ND           | ND<br>ND     | ND<br>ND   | ND           | ND       | 100                                  | 13,000                        | 130,000                            | -                            |
| p-Ethyltoluene                              | 58 J           | 38 J<br>54 J   | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    |                               | -                                  | -                            |
| 1,2,4,5-Tetramethylbenzene                  | 17 J           | 26 J           | ND          | ND           | ND           | ND           | ND         | 1.2 J        | ND       | -                                    | -                             | -                                  | -                            |
| thyl ether                                  | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    |                               | -                                  | -                            |
| rans-1,4-Dichloro-2-butene                  | ND             | ND             | ND          | ND           | ND           | ND           | ND         | ND           | ND       | -                                    | -                             | -                                  | -                            |

Notes: ND = Not detected. J = Estimated concentration below the RL but above the MDL. Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives.



| Bange bay         Pick         No.         Pick         No.         Pick         No.         Pick         No.         Pick         No.         No.        No.         No.        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample No.                      |               | B10         |        |      | B11         |        |      | B12         |        |                  | 6 NYCR Part 375 |                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------|-------------|--------|------|-------------|--------|------|-------------|--------|------------------|-----------------|------------------------------------|
| bit         bit <th>Sample Depth (feet)</th> <th>0-2</th> <th>2-4</th> <th>4-6</th> <th>0-2</th> <th>2-4</th> <th>4-6</th> <th>0-2</th> <th>2-4</th> <th>4-6</th> <th>Unrestricted Use</th> <th>Restricted</th> <th>6 NYCRR Part 375<br/>Commercial Use</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Depth (feet)             | 0-2           | 2-4         | 4-6    | 0-2  | 2-4         | 4-6    | 0-2  | 2-4         | 4-6    | Unrestricted Use | Restricted      | 6 NYCRR Part 375<br>Commercial Use |
| CharacterUTNUTNUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sampe Type                      | Fill          | Fill/Native | Native | Fill | Fill/Native | Native | Fill | Fill/Native | Native |                  |                 | Objectives                         |
| xixxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample Date                     |               | 1/17/19     |        |      | 1/4/19      |        |      | 1/17/19     |        |                  |                 |                                    |
| 12.1         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 </td <td>TCL Semivolatile Organic Compou</td> <td>unds in micro</td> <td>-</td> <td>ogram</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TCL Semivolatile Organic Compou | unds in micro | -           | ogram  |      |             |        |      |             |        |                  |                 |                                    |
| incontropy<br>incontropy<br>incontropy<br>incontropy<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |               |             |        |      |             |        |      |             |        |                  | 100,000         | 500,000                            |
| bic)-discongringNONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |               |             |        |      |             |        |      |             |        |                  | -               | -                                  |
| SchwarenerNONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONO<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |               |             |        |      |             |        |      |             |        |                  | 1,200           |                                    |
| 12.0400000000000NONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |               |             |        |      |             |        |      |             |        |                  | -               |                                    |
| LADiomotogenceNONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONO </td <td></td> <td>1,000</td> <td>100,000</td> <td>500,000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |               |             |        |      |             |        |      |             |        | 1,000            | 100,000         | 500,000                            |
| 3)-DiscloseduileNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,3-Dichlorobenzene             | ND            | ND          | ND     | ND   | ND          | ND     | ND   | ND          | ND     | 2,400            | 49,000          | 280000                             |
| 2.4.0medsubueneN0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0N0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,4-Dichlorobenzene             |               |             |        |      |             |        |      |             |        | 1,800            | 13,000          | 130,000                            |
| 2 homeshameNONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| picacamben440140140180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180180 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| chongenge/pand<br>becompand<br>pand<br>becompand<br>pand<br>becompand<br>pand<br>becompand<br>pand<br>becompand<br>pand<br>becompand<br>pand<br>becompand<br>pand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>becompand<br>b |                                 |               |             |        |      |             |        |      |             |        | -                |                 |                                    |
| decomposing interv<br>decomposing interv<br>material end<br>sectorNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Bigle-deconstrymentaneHDHDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |               |             |        |      |             |        |      |             |        | -                | -               | -                                  |
| meadedNONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONONO <td>Bis(2-chloroisopropyl)ether</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bis(2-chloroisopropyl)ether     | ND            | ND          | ND     | ND   | ND          | ND     | ND   | ND          | ND     | -                | -               | -                                  |
| machacopyopendigeneNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |               |             |        |      |             |        |      |             |        |                  | -               |                                    |
| maxmaxNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| inchardoneNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Naphalasher170.134.0NDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |               |             |        |      |             |        |      |             |        | -                | -               | -                                  |
| Ninobexnere         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |               |             |        |      |             |        |      |             |        | 12.000           | 100.000         | 500,000                            |
| NDPADPANDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| BaleStyleNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |               | ND          |        | ND   | ND          | ND     |      | ND          | ND     | -                |                 | -                                  |
| Bight Bargy phrilatate         ND         ND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 17                            |               |             |        |      |             |        |      |             |        | -                | -               | -                                  |
| Dis-dsypphinalise         190 J         ND         ND <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Dis-drightPhilatie         ND         ND <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Dentry primate         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Dmmshy phalaite         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Back gammacene         280         ND         ND         ND         49.1         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Benzelicitaroanthene         260         ND         ND </td <td></td> <td></td> <td>ND</td> <td>ND</td> <td>ND</td> <td>49 J</td> <td>ND</td> <td>67 J</td> <td>ND</td> <td>ND</td> <td>1,000</td> <td>1,000</td> <td>5,600</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |               | ND          | ND     | ND   | 49 J        | ND     | 67 J | ND          | ND     | 1,000            | 1,000           | 5,600                              |
| Benzoki/Hozanthene         93.J         ND         ND <td>Benzo(a)pyrene</td> <td>200</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>1,000</td> <td>1,000</td> <td>1,000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzo(a)pyrene                  | 200           | ND          | ND     | ND   | ND          | ND     | ND   | ND          | ND     | 1,000            | 1,000           | 1,000                              |
| Chrysene         250         ND         ND         ND         ND         42.J         22.J         160         ND         ND         1,000         3,900         56,000           Acenaphtylene         ND         00,000         500,000           Benzor(h)perylene         13.J         ND         ND <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Accessphilylene         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Anthracene         83 J         ND         ND         ND         ND         ND         ND         ND         ND         100.000         100.000         500.000           Benze(n)perylene         130 J         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                               |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Benzelghiperylene         130 J         ND         230 J         ND         28 J         ND         52 J         ND         ND         ND         100,000         100,000         500,000           Fluorene         MD         ND         S00,000         500,000         500,000         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00         560,00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Placene         ND         100,000         550,000           Phenanthrene         400         ND         ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>500,000</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |               |             |        |      |             |        |      |             |        |                  |                 | 500,000                            |
| Dibenzo(a,h)anthracene         37 J         ND         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | ND            | ND          |        | ND   |             | ND     |      | ND          | ND     |                  |                 | 500,000                            |
| Indenci (1,2,3-cd)pyrene         140 J         ND         ND         ND         ND         ND         ND         ND         ND         S00         500         5,600           Pyrene         370         ND         330 J         ND         94 J         24 J         93 J         ND         ND         100,000         100,000         500,000           Biphenyl         ND         ND         ND         ND         ND         ND         ND         ND         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <td>Phenanthrene</td> <td>400</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>110 J</td> <td>ND</td> <td>170</td> <td>ND</td> <td>ND</td> <td>100,000</td> <td>100,000</td> <td>500,000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phenanthrene                    | 400           | ND          | ND     | ND   | 110 J       | ND     | 170  | ND          | ND     | 100,000          | 100,000         | 500,000                            |
| Pyrene         370         ND         330 J         ND         94 J         24 J         93 J         ND         ND         100,000         100,000         500,000           Biphenyl         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| BiphenylNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| 4-Chloroanlline         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                               |               |             |        |      |             |        |      |             |        | 100,000          | 100,000         | 500,000                            |
| 2-NitroanilineNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND <td></td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |               |             |        |      |             |        |      |             |        | -                | -               | -                                  |
| 3-Nitroaniline         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Dibenzofuran39 JNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND <td></td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |               |             |        |      |             |        |      |             |        | -                | -               | -                                  |
| 2-Methylnaphthalene63 JNDNDNDNDNDNDNDNDNDNDND12,4,5-TeitachlorobenzeneNDNDNDNDNDNDNDNDNDNDNDNDNDNDAcetophenone560NDNDNDNDNDNDNDNDNDNDNDNDAcetophenolNDNDNDNDNDNDNDNDNDAcetophenolNDNDNDNDNDNDNDNDNDNDNDAcetophenolNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND <td>4-Nitroaniline</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-Nitroaniline                  |               |             |        |      |             |        |      |             |        | -                |                 | -                                  |
| 1.2.4.5-Tetrachlorobenzene         ND         ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7,000</td><td>59,000</td><td>350,000</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |               |             |        |      |             |        |      |             |        | 7,000            | 59,000          | 350,000                            |
| Acetophenone         560         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |               |             |        |      |             |        |      |             |        | -                | -               | -                                  |
| 2.4.6-Trichlorophenol         ND         ND </td <td></td> <td>-</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |               |             |        |      |             |        |      |             |        |                  | -               |                                    |
| p-Chloro-m-cresol         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |               |             |        |      |             |        |      |             |        |                  | -               |                                    |
| 2-Chlorophenol         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| 2.4-Dichlorophenol         ND         ND <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| 2-Nitrophenol         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |               |             |        |      |             |        |      |             |        | -                | -               | -                                  |
| 4-Nitrophenol         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| 2.4-Dinitrophenol         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| 4.6-Dinitro-o-cresol         ND         ND <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Pentachiorophenol         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Phenol         ND         ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| 2-Methylphenol         ND         State           3-Methylphenol/4-Methylphenol         50 J         ND         ND         ND         ND         ND         ND         ND         ND         State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |               |             |        |      |             |        |      |             |        |                  |                 | 500,000                            |
| 3-Methylphenol/4-Methylphenol         50 J         ND         ND         ND         ND         ND         ND         State           2,4,5-Trichlorophenol         ND         ND         ND         ND         ND         ND         State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |               |             |        |      |             |        |      |             |        |                  |                 | 500,000                            |
| Benzoic Acid         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |               |             | ND     | ND   | ND          |        | ND   |             | ND     |                  | 100,000         | 500,000                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |               |             |        |      |             |        |      |             |        |                  | -               | -                                  |
| jBenzyl Alcohol ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |
| Carbazole ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |               |             |        |      |             |        |      |             |        |                  |                 |                                    |

Notes: ND = Not detected. J = Estimated concentration below the RL but above the MDL. Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives.

| Sample No.                          |              | B10         |         |         | B11         |         |         | B12         |         |                                      | 6 NYCR Part 375               |                                    |                              |
|-------------------------------------|--------------|-------------|---------|---------|-------------|---------|---------|-------------|---------|--------------------------------------|-------------------------------|------------------------------------|------------------------------|
| Sample Depth (feet)                 | 0-2          | 2-4         | 4-6     | 0-2     | 2-4         | 4-6     | 0-2     | 2-4         | 4-6     | 6 NYCRR Part 375<br>Unrestricted Use | Restricted<br>Residential Use | 6 NYCRR Part 375<br>Commercial Use | 6 NYCRR Part<br>375/CP-51    |
| Sampe Type                          | Fill         | Fill/Native | Native  | Fill    | Fill/Native | Native  | Fill    | Fill/Native | Native  | Soil Cleanup<br>Objectives           | Soil Cleanup                  | Soil Cleanup<br>Objectives         | Protection of<br>Groundwater |
| Sample Date                         |              | 1/17/19     |         |         | 1/4/19      |         |         | 1/17/19     |         |                                      | Objectives                    | ,                                  |                              |
| Metals in milligrams per kilogram   |              |             |         |         |             |         |         |             |         |                                      |                               |                                    |                              |
| Aluminum, Total                     | 1,720        | 242         | 806     | 3,090   | 456         | 1,730   | 909     | 151         | 162     | -                                    | -                             | -                                  | -                            |
| Antimony, Total                     | ND           | ND          | ND      | ND      | ND          | ND      | 2.68 J  | ND          | ND      | -                                    | -                             | -                                  | -                            |
| Arsenic, Total                      | 2.54         | 1.31        | 1.14    | 0.317 J | 0.241 J     | 2.34    | 5.12    | 0.399 J     | 0.371 J | 13                                   | 16                            | 16                                 | 16                           |
| Barium, Total                       | 39.9         | 6.42        | 11.2    | 20.2    | 4.83        | 30.1    | 25.2    | 2.26        | 2.69    | 350                                  | 400                           | 400                                | 820                          |
| Beryllium, Total                    | 0.268 J      | ND          | 0.035 J | ND      | ND          | ND      | 0.166 J | ND          | ND      | 7.2                                  | 72                            | 590                                | 47                           |
| Cadmium, Total                      | 0.308 J      | ND          | ND      | 0.520 J | ND          | 0.239 J | ND      | ND          | ND      | 2.5                                  | 4.3                           | 9.3                                | 7.5                          |
| Calcium, Total                      | 1,800        | 206         | 5,890   | 1,640   | 1,800       | 9,460   | 1,340   | 123         | 142     | -                                    | -                             | -                                  | -                            |
| Chromium, Total                     | 6.30         | 3.34        | 4.40    | 8.37    | 3.51        | 9.55    | 7.33    | 1.52        | 1.56    | 30                                   | 180                           | 1,500                              | -                            |
| Cobalt, Total                       | 2.11         | 0.584 J     | 0.782 J | 3.88    | 0.55        | 2.00    | 2.04 J  | 0.171 J     | 0.181 J | -                                    | -                             |                                    | -                            |
| Copper, Total                       | 24.2         | 0.938 J     | 4.63    | 40.8    | 2.80        | 13.9    | 16.4    | 0.323 J     | ND      | 50                                   | 270                           | 270                                | 1,720                        |
| Iron, Total                         | 4,900        | 1,170       | 1,650   | 7,300   | 1,150       | 3,810   | 2,820   | 498         | 449     | -                                    |                               | -                                  | -                            |
| Lead, Total                         | 79.0         | 5.20        | 10.7    | 43.9    | 3.92 J      | 12.8    | 43.6    | 1.28 J      | 2.26 J  | 63                                   | 400                           | 1,000                              | 450                          |
| Magnesium, Total                    | 381          | 70.2        | 466     | 1,550   | 167         | 703     | 180     | 57.8        | 66.1    | -                                    | -                             | -                                  | -                            |
| Manganese, Total                    | 15.7         | 12.0        | 17.8    | 43.5    | 11.8        | 36.9    | 13.7    | 3.94        | 4.76    | 1,600                                | 2,000                         | 10,000                             | 2,000                        |
| Mercury, Total                      | ND           | ND          | 0.027 J | 0.063 J | ND          | 0.018 J | 0.048 J | ND          | ND      | 0.18                                 | 0.81                          | 2.8                                | 0.73                         |
| Nickel, Total                       | 6.32         | 0.794 J     | 1.65 J  | 6.05    | 0.835 J     | 4.09    | 4.13    | ND          | ND      | 30                                   | 310                           | 310                                | 130                          |
| Potassium, Total                    | 80.3 J       | 37.2 J      | 65.1    | 589     | 84.4        | 253     | 97.5 J  | 44.5 J      | 47.6 J  | -                                    | -                             | -                                  | -                            |
| Selenium, Total                     | ND           | ND          | ND      | 0.256 J | ND          | ND      | ND      | ND          | ND      | 3.9                                  | 180                           | 1,500                              | 4                            |
| Silver, Total                       | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 2                                    | 180                           | 1,500                              | 8.3                          |
| Sodium, Total                       | 66.1 J       | 31.1 J      | 68.0 J  | 268     | 94.6 J      | 175 J   | 115 J   | 108 J       | 172 J   |                                      | -                             |                                    | -                            |
| Thallium, Total                     | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | -                                    | -                             | -                                  | -                            |
| Vanadium, Total                     | 7.16         | 4.25        | 3.92    | 29.4    | 2.86        | 8.79    | 6.01    | 1.23        | 1.39    |                                      | -                             | -                                  | -                            |
| Zinc, Total                         | 169          | 36.3        | 43.1    | 134     | 15.7        | 39.5    | 35.4    | 3.12 J      | 3.73 J  | 109                                  | 10,000                        | 10,000                             | 2,480                        |
| Pesticides in micrograms per kilogr | am           | <b>.</b>    |         | 1       |             |         |         |             |         |                                      |                               |                                    |                              |
| Delta-BHC                           | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 40                                   | 100,000                       | 500,000                            | 250                          |
| Lindane                             | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 100                                  | 1,300                         | 9,200                              | 100                          |
| Alpha-BHC                           | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 20                                   | 480                           | 3,400                              | 20                           |
| Beta-BHC                            | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 36                                   | 360                           | 3,000                              | 90                           |
| Heptachlor                          | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 42                                   | 2,100                         | 15,000                             | 380                          |
| Aldrin                              | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 5                                    | 97                            | 680                                | 190                          |
| Heptachlor epoxide                  | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      |                                      | -                             | -                                  | 20                           |
| Endrin                              | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 14                                   | 11,000                        | 89,000                             | 60                           |
| Endrin aldehyde                     | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | -                                    | -                             | -                                  | -                            |
| Endrin ketone                       | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | -                                    | -                             | -                                  | -                            |
| Dieldrin                            | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 5                                    | 200                           | 1,400                              | 100                          |
| 4,4'-DDE                            | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 3.3                                  | 8,900                         | 62,000                             | 17,000                       |
| 4,4'-DDD                            | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 3.3                                  | 13,000                        | 92,000                             | 14,000                       |
| 4,4'-DDT                            | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 3.3                                  | 7,900                         | 47,000                             | 136,000                      |
| Endosulfan I                        | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 2,400                                | 24,000                        | 200,000                            | 102,000                      |
| Endosulfan II                       | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 2,400                                | 24,000                        | 200,000                            | 102,000                      |
| Endosulfan sulfate                  | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 2,400                                | 24,000                        | 200,000                            | 1,000,000                    |
| Methoxychlor                        | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | -                                    | -                             | -                                  | 900,000                      |
| Toxaphene                           | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | -                                    | -                             | -                                  | -                            |
| cis-Chlordane                       | ND           | ND          | ND      | ND      | 0.84 JP     | ND      | ND      | ND          | ND      | 94                                   | 4,200                         | 24,000                             | 2,900                        |
| trans-Chlordane                     | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | -                                    | -                             | -                                  | -                            |
| Chlordane                           | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | -                                    | -                             | -                                  | -                            |
| Polychlorinated Biphenyls in micro  | grams per ki | ilogram     |         |         |             |         |         |             |         |                                      |                               |                                    |                              |
| Aroclor 1016                        | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1221                        | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1232                        | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1242                        | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1248                        | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1254                        | ND           | ND          | 6.6 JP  | ND      | ND          | ND      | ND      | ND          | ND      | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1260                        | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 100                                  | 1,000                         | 1,000                              | 3,200                        |
|                                     |              | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 100                                  | 1,000                         | 1 000                              | 3,200                        |
| Aroclor 1262                        | ND           | ND          | ND      | ND      | ND          | ND      | ND      | ND          | ND      | 100                                  | 1,000                         | 1,000                              | 0,200                        |

Notes:

| Sample No.                                       |                  | B13          | r            |                | B16          | 1                | _                                    | 6 NYCR Part 375               |                                    |
|--------------------------------------------------|------------------|--------------|--------------|----------------|--------------|------------------|--------------------------------------|-------------------------------|------------------------------------|
| Sample Depth (feet)                              | 0-2              | 2-4          | 4-6          | 0-2            | 2-4          | 4-6              | 6 NYCRR Part 375<br>Unrestricted Use | Restricted<br>Residential Use | 6 NYCRR Part 375<br>Commercial Use |
| Sample Type                                      | Fill             | Fill/Native  | Native       | Fill           | Fill/Native  | Native           | Soil Cleanup<br>Objectives           | Soil Cleanup<br>Objectives    | Soil Cleanup<br>Objectives         |
| Sample Date                                      |                  | 1/4/19       |              |                | 1/17/19      |                  |                                      | ,                             |                                    |
| TCL Volatile Organic Compounds i                 | n micrograms per | kilogram     |              |                |              |                  |                                      |                               |                                    |
| Methylene chloride                               | ND               | ND           | ND           | ND             | ND           | ND               | 50                                   | 100,000                       | 500,000                            |
| 1,1-Dichloroethane                               | ND               | ND           | ND           | ND             | ND           | ND               | 270                                  | 26,000                        | 240,00                             |
| Chloroform<br>Carbon tetrachloride               | 0.5 J<br>ND      | ND<br>ND     | ND<br>ND     | ND<br>33 J     | 44 J<br>ND   | 0.2 J<br>ND      | 370<br>760                           | 49,000<br>2,400               | 350,000<br>22,000                  |
| 1,2-Dichloropropane                              | ND               | ND           | ND           | ND ND          | ND           | ND               |                                      | - 2,400                       | -                                  |
| Dibromochloromethane                             | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| 1,1,2-Trichloroethane                            | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| Tetrachloroethene                                | ND               | ND           | ND           | ND             | ND           | ND               | 1,300                                | 19,000                        | 150,000                            |
| Chlorobenzene                                    | ND               | ND           | ND           | ND             | ND           | ND               | 1,100                                | 100,000                       | 500,000                            |
| Trichlorofluoromethane<br>1.2-Dichloroethane     | ND<br>ND         | ND<br>ND     | ND<br>ND     | ND<br>ND       | ND<br>ND     | ND<br>ND         | - 20                                 | -                             | -                                  |
| 1,2-Dichloroethane                               | ND               | ND           | ND           | ND             | ND           | ND               | 680                                  | 3,100<br>100,000              | 30,000<br>500,000                  |
| Bromodichloromethane                             | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| trans-1,3-Dichloropropene                        | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| cis-1,3-Dichloropropene                          | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| 1,3-Dichloropropene, Total                       | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| 1,1-Dichloropropene                              | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| Bromoform<br>1,1,2,2-Tetrachloroethane           | ND<br>ND         | ND<br>ND     | ND<br>ND     | ND<br>ND       | ND<br>ND     | ND<br>ND         | -                                    | -                             | -                                  |
| 1,1,2,2-1 etrachioroethane<br>Benzene            | ND               | ND           | ND           | ND<br>33 J     | ND           | ND               | 60                                   | 4,800                         | 44,000                             |
| Toluene                                          | 2.6              | ND           | 1.8          | 190            | ND           | ND               | 700                                  | 100,000                       | 500,000                            |
| Ethylbenzene                                     | ND               | ND           | 0.19 J       | 64 J           | 17 J         | 0.38 J           | 1,000                                | 41,000                        | 390,000                            |
| Chloromethane                                    | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| Bromomethane                                     | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| Vinyl chloride<br>Chloroethane                   | ND<br>ND         | ND<br>ND     | ND<br>ND     | ND<br>ND       | ND<br>ND     | ND<br>ND         | 20                                   | 900                           | 13,000                             |
| 1,1-Dichloroethene                               | ND               | ND           | ND           | ND             | ND           | ND               | 330                                  | 100,000                       | 500,000                            |
| trans-1,2-Dichloroethene                         | ND               | ND           | ND           | ND             | ND           | ND               | 190                                  | 100,000                       | 500,000                            |
| Trichloroethene                                  | 36               | 0.62         | 9.5          | 83             | 330          | 0.3 J            | 470                                  | 21,000                        | 200,000                            |
| 1,2-Dichlorobenzene                              | ND               | ND           | ND           | ND             | ND           | ND               | 1,100                                | 100,000                       | 500,000                            |
| 1,3-Dichlorobenzene                              | ND               | ND           | ND           | ND             | ND           | ND               | 2,400                                | 49,000                        | 280,000                            |
| 1,4-Dichlorobenzene                              | 0.23 J<br>ND     | 0.28 J<br>ND | 0.24 J<br>ND | 390<br>ND      | 60 J<br>ND   | 1.3 J<br>ND      | 1,800<br>930                         | 13,000                        | 130,000<br>500,000                 |
| Methyl tert butyl ether<br>p/m-Xylene            | ND               | ND           | 0.68 J       | 320            | 81 J         | 2.1 J            | -                                    | -                             | -                                  |
| o-Xylene                                         | ND               | ND           | ND           | 130            | 47 J         | 1.3              | -                                    | -                             | -                                  |
| Xylenes, Total                                   | ND               | ND           | 0.68 J       | 450            | 130 J        | 3.4 J            | 260                                  | 100,000                       | 500,000                            |
| cis-1,2-Dichloroethene                           | 8.4              | ND           | 1.8          | ND             | 89           | ND               | 250                                  | 100,000                       | 500,000                            |
| 1,2-Dichloroethene, Total                        | 8.4              | ND           | 1.8          | ND             | 89           | ND               | -                                    | -                             | -                                  |
| Dibromomethane<br>Styrene                        | ND<br>ND         | ND<br>ND     | ND<br>ND     | ND<br>ND       | ND<br>ND     | ND<br>ND         | -                                    | -                             | -                                  |
| Dichlorodifluoromethane                          | ND               | ND           | ND           | ND             | ND           | ND               |                                      | -                             | -                                  |
| Acetone                                          | 20               | 26           | 33           | ND             | ND           | 6.5 J            | 50                                   | 100,000                       | 500,000                            |
| Carbon disulfide                                 | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| 2-Butanone                                       | ND               | ND           | 3 J          | ND             | ND           | ND               | 120                                  | 100,000                       | 500,000                            |
| Vinyl acetate                                    | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| 4-Methyl-2-pentanone                             | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| 1,2,3-Trichloropropane<br>2-Hexanone             | ND<br>ND         | ND<br>ND     | ND<br>ND     | 63 J<br>ND     | ND<br>ND     | ND<br>ND         | -                                    | -                             | -                                  |
| Bromochloromethane                               | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| 2,2-Dichloropropane                              | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| 1,2-Dibromoethane                                | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| 1,3-Dichloropropane                              | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| 1,1,1,2-Tetrachloroethane                        | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| Bromobenzene<br>n-Butylbenzene                   | ND<br>ND         | ND<br>ND     | ND<br>ND     | ND<br>86 J     | ND<br>ND     | ND<br>0.35 J     | - 12,000                             | - 100,000.00                  | -<br>500,000                       |
| sec-Butylbenzene                                 | ND               | ND           | ND           | 130            | 17 J         | 0.35 J<br>0.75 J | 11,000                               | 100,000                       | 500,000                            |
| tert-Butylbenzene                                | ND               | ND           | ND           | ND             | ND           | ND               | 5,900                                | 100,000                       | 500,000                            |
| o-Chlorotoluene                                  | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| p-Chlorotoluene                                  | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| 1,2-Dibromo-3-chloropropane                      | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| Hexachlorobutadiene<br>Isopropylbenzene          | ND<br>ND         | ND<br>ND     | ND<br>ND     | ND<br>44 J     | ND<br>13 J   | ND<br>0.31 J     | - 2,300                              | -                             | -                                  |
| p-lsopropyltoluene                               | ND               | ND           | ND           | 44 J<br>190    | 13 J<br>18 J | 0.31 J<br>0.74 J | 10,000                               | -                             | -                                  |
| Naphthalene                                      | ND               | ND           | 13           | 1,200          | 64 J         | 1.9 J            | 12,000                               | 100,000                       | 500,000                            |
| Acrylonitrile                                    | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| n-Propylbenzene                                  | ND               | ND           | ND           | 120            | 24 J         | 0.69 J           | 3,900                                | 100,000                       | 500,000                            |
| 1,2,3-Trichlorobenzene                           | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |
| 1,2,4-Trichlorobenzene                           | ND               | ND           | ND           | ND             | ND<br>200    | ND<br>12         | -                                    | -                             | -                                  |
| 1,3,5-Trimethylbenzene<br>1,2,4-Trimethylbenzene | ND<br>ND         | ND<br>ND     | ND<br>ND     | 1,900<br>4,000 | 300<br>580   | 13<br>26         | 8,400<br>3,600                       | 52,000<br>52,000              | 190,000<br>190,000                 |
| 1,4-Dioxane                                      | ND               | ND           | ND           | 4,000<br>ND    | ND           | 20<br>ND         | 100                                  | 13,000                        | 130,000                            |
| p-Diethylbenzene                                 | ND               | ND           | ND           | 1,100          | 86 J         | 4.5              | -                                    | -                             | -                                  |
| p-Ethyltoluene                                   | ND               | ND           | ND           | 1,200          | 200          | 7.3              | -                                    | -                             | -                                  |
| 1,2,4,5-Tetramethylbenzene                       | ND               | ND           | ND           | 230            | 15 J         | 0.68 J           | -                                    | -                             | -                                  |
| Ethyl ether                                      | ND               | ND           | ND           | ND             | ND           | ND               | -                                    | -                             | -                                  |

Notes: ND = Not detected. J = Estimated concentration below the RL but above the MDL. Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives.

| Sample No.                                                |                   | B13          |             |           | B16         |            |                                      |                                                  |                                    |
|-----------------------------------------------------------|-------------------|--------------|-------------|-----------|-------------|------------|--------------------------------------|--------------------------------------------------|------------------------------------|
| Sample Depth (feet)                                       | 0-2               | 2-4          | 4-6         | 0-2       | 2-4         | 4-6        | 6 NYCRR Part 375<br>Unrestricted Use | 6 NYCR Part 375<br>Restricted<br>Residential Use | 6 NYCRR Part 375<br>Commercial Use |
| Sample Type                                               | Fill              | Fill/Native  | Native      | Fill      | Fill/Native | Native     | Soil Cleanup<br>Objectives           | Soil Cleanup                                     | Soil Cleanup<br>Objectives         |
| Sample Date                                               |                   | 1/4/19       |             |           | 1/17/19     |            |                                      | Objectives                                       |                                    |
| TCL Semivolatile Organic Compou                           | nds in micrograms | per kilogram |             |           |             |            |                                      |                                                  |                                    |
| Acenaphthene                                              | ND                | ND           | 76 J        | 100 J     | ND          | ND         | 20,000                               | 100,000                                          | 500,000                            |
| 1,2,4-Trichlorobenzene                                    | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Hexachlorobenzene                                         | ND                | ND           | ND          | ND        | ND          | ND         | 330                                  | 1,200                                            | 6,000                              |
| Bis(2-chloroethyl)ether                                   | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| 2-Chloronaphthalene<br>1,2-Dichlorobenzene                | ND<br>ND          | ND<br>ND     | ND<br>ND    | ND<br>ND  | ND<br>ND    | ND<br>ND   | - 1,000                              | - 100,000                                        | -<br>500,000                       |
| 1,2-Dichlorobenzene                                       | ND                | ND           | ND          | ND        | ND          | ND         | 2,400                                | 49,000                                           | 280000                             |
| 1.4-Dichlorobenzene                                       | ND                | ND           | ND          | ND        | ND          | ND         | 1,800                                | 13,000                                           | 130,000                            |
| 3,3'-Dichlorobenzidine                                    | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| 2,4-Dinitrotoluene                                        | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| 2,6-Dinitrotoluene                                        | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Fluoranthene                                              | 840 J             | 150 J        | 350         | 2,100     | ND          | 57 J       | 100,000                              | 100,000                                          | 500,000                            |
| 4-Chlorophenyl phenyl ether                               | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| 4-Bromophenyl phenyl ether                                | ND                | ND<br>ND     | ND<br>ND    | ND<br>ND  | ND<br>ND    | ND<br>ND   | -                                    | -                                                | -                                  |
| Bis(2-chloroisopropyl)ether<br>Bis(2-chloroethoxy)methane | ND<br>ND          | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Hexachlorobutadiene                                       | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Hexachlorocyclopentadiene                                 | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Hexachloroethane                                          | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Isophorone                                                | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Naphthalene                                               | ND                | ND           | 60 J        | 90 J      | ND          | ND         | 12,000                               | 100,000                                          | 500,000                            |
| Nitrobenzene                                              | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | 15,000                                           | 69,000                             |
| NDPA/DPA                                                  | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| n-Nitrosodi-n-propylamine                                 | ND                | ND           | ND          | ND<br>ND  | ND<br>ND    | ND<br>ND   | -                                    | -                                                | -                                  |
| Bis(2-ethylhexyl)phthalate<br>Butyl benzyl phthalate      | ND<br>ND          | ND<br>ND     | ND<br>ND    | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Di-n-butylphthalate                                       | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Di-n-octylphthalate                                       | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Diethyl phthalate                                         | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Dimethyl phthalate                                        | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Benzo(a)anthracene                                        | 540 J             | 100 J        | 150         | 1,100     | ND          | 27 J       | 1,000                                | 1,000                                            | 5,600                              |
| Benzo(a)pyrene                                            | ND                | ND           | 120 J       | 1,100     | ND          | ND         | 1,000                                | 1,000                                            | 1,000                              |
| Benzo(b)fluoranthene                                      | 580 J             | 86 J         | 130 J       | 1,300     | ND          | ND         | 1,000                                | 1,000                                            | 5,600                              |
| Benzo(k)fluoranthene                                      | ND                | ND           | 50 J        | 460       | ND          | ND         | 800                                  | 3,900                                            | 56,000                             |
| Chrysene                                                  | 810 J             | 110 J        | 130 J       | 890<br>ND | ND<br>ND    | 23 J<br>ND | 1,000                                | 3,900<br>100,000                                 | 56,000<br>500,000                  |
| Acenaphthylene<br>Anthracene                              | ND<br>ND          | ND<br>ND     | ND<br>130 J | 330       | ND          | ND         | 100,000                              | 100,000                                          | 500,000                            |
| Benzo(ghi)perylene                                        | 460 J             | ND           | 73 J        | 840       | ND          | ND         | 100,000                              | 100,000                                          | 500,000                            |
| Fluorene                                                  | ND                | ND           | 71 J        | 83 J      | ND          | ND         | 30,000                               | 100,000                                          | 500,000                            |
| Phenanthrene                                              | 530 J             | ND           | 440         | 1,200     | ND          | 47 J       | 100,000                              | 100,000                                          | 500,000                            |
| Dibenzo(a,h)anthracene                                    | ND                | ND           | ND          | 160       | ND          | ND         | 330                                  | 330                                              | 560                                |
| Indeno(1,2,3-cd)pyrene                                    | 340 J             | ND           | 70 J        | 800       | ND          | ND         | 500                                  | 500                                              | 5,600                              |
| Pyrene                                                    | 930 J             | 150 J        | 320         | 1,900     | 190 J       | 55 J       | 100,000                              | 100,000                                          | 500,000                            |
| Biphenyl                                                  | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| 4-Chloroaniline                                           | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| 2-Nitroaniline<br>3-Nitroaniline                          | ND<br>ND          | ND<br>ND     | ND<br>ND    | ND<br>ND  | ND<br>ND    | ND<br>ND   | -                                    | -                                                | -                                  |
| 4-Nitroaniline                                            | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Dibenzofuran                                              | ND                | ND           | 48 J        | 55 J      | ND          | ND         | 7,000                                | 59,000                                           | 350,000                            |
| 2-Methylnaphthalene                                       | ND                | ND           | 29 J        | 39 J      | ND          | ND         | -                                    | -                                                | -                                  |
| 1,2,4,5-Tetrachlorobenzene                                | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Acetophenone                                              | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| 2,4,6-Trichlorophenol                                     | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| p-Chloro-m-cresol                                         | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| 2-Chlorophenol                                            | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| 2,4-Dichlorophenol                                        | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| 2,4-Dimethylphenol<br>2-Nitrophenol                       | ND<br>ND          | ND<br>ND     | ND<br>ND    | ND<br>ND  | ND<br>ND    | ND<br>ND   | -                                    | -                                                | -                                  |
| 2-Nitrophenol<br>4-Nitrophenol                            | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| 2,4-Dinitrophenol                                         | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| 4,6-Dinitro-o-cresol                                      | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Pentachlorophenol                                         | ND                | ND           | ND          | ND        | ND          | ND         | 800                                  | 6,700                                            | 6,700                              |
| Phenol                                                    | ND                | ND           | ND          | ND        | ND          | ND         | 330                                  | 100,000                                          | 500,000                            |
| 2-Methylphenol                                            | ND                | ND           | ND          | ND        | ND          | ND         | 330                                  | 100,000                                          | 500,000                            |
| 3-Methylphenol/4-Methylphenol                             | ND                | ND           | ND          | ND        | ND          | ND         | 330                                  | 100,000                                          | 500,000                            |
| 2,4,5-Trichlorophenol                                     | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Benzoic Acid                                              | ND                | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
| Benzyl Alcohol<br>Carbazole                               | ND<br>ND          | ND           | ND          | ND        | ND          | ND         | -                                    | -                                                | -                                  |
|                                                           |                   | ND           | 48 J        | 95 J      | ND          | ND         | -                                    | -                                                | -                                  |

Notes:

Notes. ND = Not detected. J = Estimated concentration below the RL but above the MDL. Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives. Bold orange-shaded values exceed NYSDEC Commercial Use Cleanup Objectives. Bold boxed values exceed NYSDEC Commercial Use Cleanup Objectives. Bold boxed values exceed NYSDEC Part 375/CP-51 Protection of Groundwater.

| Sample No.                           |                | B13            |               |             | B16            |               | -                                    | 6 NYCR Part 375               |                                    |                              |
|--------------------------------------|----------------|----------------|---------------|-------------|----------------|---------------|--------------------------------------|-------------------------------|------------------------------------|------------------------------|
| Sample Depth (feet)                  | 0-2            | 2-4            | 4-6           | 0-2         | 2-4            | 4-6           | 6 NYCRR Part 375<br>Unrestricted Use | Restricted<br>Residential Use | 6 NYCRR Part 375<br>Commercial Use | 6 NYCRR Part<br>375/CP-51    |
| Sample Type                          | Fill           | Fill/Native    | Native        | Fill        | Fill/Native    | Native        | Soil Cleanup<br>Objectives           | Soil Cleanup<br>Objectives    | Soil Cleanup<br>Objectives         | Protection of<br>Groundwater |
| Sample Date                          |                | 1/4/19         |               |             | 1/17/19        |               |                                      | Objectives                    |                                    |                              |
| Metals in milligrams per kilogram    |                |                |               |             |                |               |                                      |                               |                                    |                              |
| Aluminum, Total                      | 5,570          | 144            | 1,740         | 1,960       | 5,770          | 366           | -                                    | -                             | -                                  | -                            |
| Antimony, Total                      | ND             | ND             | ND            | ND          | ND             | ND            | -                                    | -                             | -                                  | -                            |
| Arsenic, Total                       | 0.254 J        | 0.289 J        | 0.885 J       | 1.43        | 1.55           | 0.324 J       | 13                                   | 16                            | 16                                 | 16                           |
| Barium, Total                        | 25.0           | 1.76           | 10.6          | 16.0        | 25.9           | 2.10          | 350                                  | 400                           | 400                                | 820                          |
| Beryllium, Total                     | ND             | ND             | ND            | 0.117 J     | ND             | ND            | 7.2                                  | 72                            | 590                                | 47                           |
| Cadmium, Total                       | 0.509 J        | ND             | 0.128 J       | ND          | ND             | ND            | 2.5                                  | 4.3                           | 9.3                                | 7.5                          |
| Calcium, Total                       | 2,590          | 86.4           | 8,780         | 4,020       | 3,350          | 1,220         | -                                    | -                             | -                                  | -                            |
| Chromium, Total                      | 7.55           | 2.07           | 7.53          | 4.62        | 6.08           | 1.35          | 30                                   | 180                           | 1,500                              | -                            |
| Cobalt, Total                        | 7.58           | 0.241 J        | 1.61 J        | 2.40        | 8.84           | 0.491 J       | -                                    | -                             | -                                  | -<br>1,720                   |
| Copper, Total                        | 39.5           | ND<br>270      | 5.31          | 6.31        | 58.5           | 2.14          | 50                                   | 270                           | 270                                | 1,720                        |
| Iron, Total                          | 14,900<br>7.50 | 379<br>2.74 J  | 3,210<br>5.88 | 5,860       | 14,200<br>12.2 | 776<br>2.95 J | - 63                                 | - 400                         | -                                  | 450                          |
| Lead, Total                          | 2,600          | 2.74 J<br>25.9 | 5.88          | 6.49<br>851 | 3,170          | 2.95 J<br>654 |                                      | 400                           | 1,000                              | 400                          |
| Magnesium, Total<br>Manganese, Total | 2,600          | 7.74           | 42.6          | 82.8        | 94.7           | 7.67          | - 1,600                              | 2,000                         | - 10,000                           | 2,000                        |
| Mercury, Total                       | ND             | ND             | 42.0<br>ND    | ND          | ND             | ND            | 0.18                                 | 0.81                          | 2.8                                | 0.73                         |
| Nickel, Total                        | 13.0           | ND             | 3.09          | 6.64        | 12.0           | 0.677 J       | 30                                   | 310                           | 310                                | 130                          |
| Potassium, Total                     | 942            | 36.5 J         | 236 J         | 419         | 878            | 77.5 J        | -                                    | -                             | -                                  | -                            |
| Selenium, Total                      | ND             | ND             | 0.416 J       | ND          | 0.515 J        | ND            | 3.9                                  | 180                           | 1,500                              | 4                            |
| Silver, Total                        | ND             | ND             | ND            | ND          | ND             | ND            | 2                                    | 180                           | 1,500                              | 8.3                          |
| Sodium, Total                        | 432            | 14.1 J         | 175 J         | 33.8 J      | 464            | 34.1 J        | -                                    | -                             | -                                  | -                            |
| Thallium, Total                      | ND             | ND             | ND            | ND          | ND             | ND            | -                                    | -                             | -                                  | -                            |
| Vanadium, Total                      | 49.8           | 1.86           | 7.58          | 5.99        | 59.2           | 1.89          | -                                    | -                             | -                                  | -                            |
| Zinc, Total                          | 36.2           | ND             | 15.5          | 18.4        | 47.9           | 7.60          | 109                                  | 10,000                        | 10,000                             | 2,480                        |
| Pesticides in micrograms per kilogr  | am             |                |               |             |                |               |                                      |                               |                                    |                              |
| Delta-BHC                            | ND             | ND             | ND            | ND          | ND             | ND            | 40                                   | 100,000                       | 500,000                            | 250                          |
| Lindane                              | ND             | ND             | ND            | ND          | ND             | ND            | 100                                  | 1,300                         | 9,200                              | 100                          |
| Alpha-BHC                            | ND             | ND             | ND            | ND          | ND             | ND            | 20                                   | 480                           | 3,400                              | 20                           |
| Beta-BHC                             | ND             | ND             | ND            | ND          | ND             | ND            | 36                                   | 360                           | 3,000                              | 90                           |
| Heptachlor                           | ND             | ND             | ND            | ND          | ND             | ND            | 42                                   | 2,100                         | 15,000                             | 380                          |
| Aldrin                               | ND             | ND             | ND            | ND          | ND             | ND            | 5                                    | 97                            | 680                                | 190                          |
| Heptachlor epoxide                   | ND             | ND             | ND            | ND          | ND             | ND            | -                                    | -                             | -                                  | 20                           |
| Endrin                               | ND             | ND             | ND            | ND          | ND             | ND            | 14                                   | 11,000                        | 89,000                             | 60                           |
| Endrin aldehyde                      | ND             | ND             | ND            | ND          | ND             | ND            | -                                    | -                             | -                                  | -                            |
| Endrin ketone                        | ND             | ND             | ND            | ND          | ND             | ND            | -                                    | -                             | -                                  | -                            |
| Dieldrin                             | ND             | ND             | ND            | ND          | ND             | ND            | 5                                    | 200                           | 1,400                              | 100                          |
| 4,4'-DDE                             | ND             | ND             | ND            | ND          | ND             | ND            | 3.3                                  | 8,900                         | 62,000                             | 17,000                       |
| 4,4'-DDD                             | ND             | ND             | ND            | ND          | ND             | ND            | 3.3                                  | 13,000                        | 92,000                             | 14,000                       |
| 4,4'-DDT                             | ND<br>ND       | ND<br>ND       | ND<br>ND      | ND<br>ND    | ND<br>ND       | ND<br>ND      | 3.3                                  | 7,900<br>24,000               | 47,000<br>200,000                  | 102,000                      |
| Endosulfan I<br>Endosulfan II        | ND             | ND             | ND            | ND          | ND             | ND            | 2,400                                | 24,000                        | 200,000                            | 102,000                      |
| Endosulfan sulfate                   | ND             | ND             | ND            | ND          | ND             | ND            | 2,400                                | 24,000                        | 200,000                            | 1,000,000                    |
| Methoxychlor                         | ND             | ND             | ND            | ND          | ND             | ND            | -                                    | 24,000                        | 200,000                            | 900,000                      |
| Toxaphene                            | ND             | ND             | ND            | ND          | ND             | ND            |                                      |                               |                                    | -                            |
| cis-Chlordane                        | ND             | ND             | ND            | ND          | ND             | ND            | 94                                   | 4,200                         | 24,000                             | 2,900                        |
| trans-Chlordane                      | ND             | ND             | ND            | ND          | ND             | ND            | -                                    | -                             |                                    | -                            |
| Chlordane                            | ND             | ND             | ND            | ND          | ND             | ND            | -                                    | -                             | -                                  |                              |
| Polychlorinated Biphenyls in microg  |                |                |               | 1           | ı              |               | 1                                    |                               | 1                                  |                              |
| Aroclor 1016                         | ND             | ND             | ND            | ND          | ND             | ND            | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1221                         | ND             | ND             | ND            | ND          | ND             | ND            | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1232                         | ND             | ND             | ND            | ND          | ND             | ND            | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1242                         | ND             | ND             | ND            | ND          | ND             | ND            | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1248                         | ND             | ND             | ND            | ND          | ND             | ND            | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1254                         | ND             | ND             | ND            | ND          | ND             | ND            | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1260                         | ND             | ND             | ND            | 8.15 J      | ND             | ND            | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1262                         | ND             | ND             | ND            | ND          | ND             | ND            | 100                                  | 1,000                         | 1,000                              | 3,200                        |
| Aroclor 1268                         | ND             | ND             | ND            | ND          | ND             | ND            | 100                                  | 1,000                         | 1,000                              | 3,200                        |

Notes:

ND = Not detected.

J = Estimated concentration below the RL but above the MDL. Bold yellow-shaded values exceed NYSDEC Vinterkticed Residential Use Soil Cleanup Objectives. Bold grange-shaded values exceed NYSDEC Restricted Residential Use Soil Cleanup Objectives. Bold pink-shaded values exceed NYSDEC Commercial Use Cleanup Objectives.

| Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CB-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CB-4                                                                                                                                                                                                                                                                                         | CB-4 DUPLICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CB-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             | 6 NYCR Part 375                                                                             |                                                                                             |                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Sample Depth (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-2                                                                                                                                                                                                                                                                                          | 0-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 NYCRR Part 375<br>Unrestricted Use                                                        | Restricted<br>Residential Use                                                               | 6 NYCRR Part 375<br>Commercial Use                                                          | 6 NYCRR Part<br>375/CP-51                                                                   |
| Sample Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sediment                                                                                                                                                                                                                                                                                     | Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Soil Cleanup<br>Objectives                                                                  | Soil Cleanup<br>Objectives                                                                  | Soil Cleanup<br>Objectives                                                                  | Protection of<br>Groundwater                                                                |
| Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/17/19                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             | ,                                                                                           |                                                                                             |                                                                                             |
| TCL Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in micrograms pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r kilogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                             |                                                                                             |                                                                                             |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                          | 100,000                                                                                     | 500,000                                                                                     | 50                                                                                          |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 270                                                                                         | 26,000                                                                                      | 240,00                                                                                      | 270                                                                                         |
| Chloroform<br>Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.4 J<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND<br>ND                                                                                                                                                                                                                                                                                     | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 370<br>760                                                                                  | 49,000<br>2,400                                                                             | 350,000<br>22,000                                                                           | 370<br>760                                                                                  |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,300                                                                                       | 19,000                                                                                      | 150,000                                                                                     | 1,300                                                                                       |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,100                                                                                       | 100,000                                                                                     | 500,000                                                                                     | 1,100                                                                                       |
| Trichlorofluoromethane<br>1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND                                                                                                                                                                                                                                                                                     | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 20                                                                                        | - 3,100                                                                                     | - 30,000                                                                                    | 20                                                                                          |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 680                                                                                         | 100,000                                                                                     | 500,000                                                                                     | 680                                                                                         |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| 1,3-Dichloropropene, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| 1,1-Dichloropropene<br>Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND                                                                                                                                                                                                                                                                                     | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                           |                                                                                             | -                                                                                           | -                                                                                           |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           | 600                                                                                         |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.17 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                          | 4,800                                                                                       | 44,000                                                                                      | 60                                                                                          |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80,000                                                                                                                                                                                                                                                                                       | 52,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 700                                                                                         | 100,000                                                                                     | 500,000                                                                                     | 700                                                                                         |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110,000                                                                                                                                                                                                                                                                                      | 70,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.64 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,000                                                                                       | 41,000                                                                                      | 390,000                                                                                     | 1,000                                                                                       |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| Bromomethane<br>Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND                                                                                                                                                                                                                                                                                     | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 20                                                                                        | - 900                                                                                       | - 13,000                                                                                    | - 20                                                                                        |
| Vinyl chloride<br>Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           | 20                                                                                          |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 330                                                                                         | 100,000                                                                                     | 500,000                                                                                     | 330                                                                                         |
| trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 190                                                                                         | 100,000                                                                                     | 500,000                                                                                     | 190                                                                                         |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36,000                                                                                                                                                                                                                                                                                       | 27,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 470                                                                                         | 21,000                                                                                      | 200,000                                                                                     | 470                                                                                         |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,100                                                                                       | 100,000                                                                                     | 500,000                                                                                     | 1,100                                                                                       |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND                                                                                                                                                                                                                                                                                     | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,400<br>1,800                                                                              | 49,000                                                                                      | 280,000<br>130.000                                                                          | 2,400                                                                                       |
| Methyl tert butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 930                                                                                         | 100,000                                                                                     | 500,000                                                                                     | 930                                                                                         |
| p/m-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,000,000                                                                                                                                                                                                                                                                                    | 620,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 760,000                                                                                                                                                                                                                                                                                      | 450,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| Xylenes, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,800,000                                                                                                                                                                                                                                                                                    | 1,100,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 260                                                                                         | 100,000                                                                                     | 500,000                                                                                     | 1,600                                                                                       |
| cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 250                                                                                         | 100,000                                                                                     | 500,000                                                                                     | 250                                                                                         |
| 1,2-Dichloroethene, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25 J<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.0<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND                                                                                                                                                                                                                                                                                     | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| Dibromomethane<br>Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35,000                                                                                                                                                                                                                                                                                       | 18,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           |                                                                                             |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                          | 100,000                                                                                     | 500,000                                                                                     | 50                                                                                          |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.7 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           | 2,700                                                                                       |
| 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120                                                                                         | 100,000                                                                                     | 500,000                                                                                     | 300                                                                                         |
| Vinyl acetate<br>4-Methyl-2-pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N IB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                                                                             |                                                                                             |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| 1,2,3-Trichloropropane<br>2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             | -<br>-<br>-<br>-                                                                            |                                                                                             |                                                                                             |
| 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND                                                                                                                                                                                                                                                                                     | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                           | -                                                                                           | -                                                                                           | -                                                                                           |
| 1,2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                   | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>-<br>-                                                                                 | -<br>-<br>-<br>-                                                                            | -                                                                                           | -                                                                                           |
| 1,2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                             | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -<br>-<br>-<br>-                                                                            | -<br>-<br>-<br>-<br>-                                                                       | -<br>-<br>-<br>-<br>-                                                                       | -<br>-<br>-<br>-<br>-<br>-                                                                  |
| 1.2.3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2.2-Dichloropropane<br>1.2-Dibromoethane<br>1.3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -<br>-<br>-<br>-<br>-                                                                       | -<br>-<br>-<br>-<br>-<br>-                                                                  | -<br>-<br>-<br>-<br>-<br>-                                                                  |                                                                                             |
| 1.2.3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                 | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -<br>-<br>-<br>-                                                                            | -<br>-<br>-<br>-<br>-                                                                       | -<br>-<br>-<br>-<br>-                                                                       | -<br>-<br>-<br>-<br>-<br>-                                                                  |
| 1,2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane<br>Bromobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-                                                             | -<br>-<br>-<br>-<br>-<br>-<br>-                                                             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                         | -<br>-<br>-<br>-<br>-<br>-                                                                  |
| 1.2.3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                           | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>-<br>-<br>-<br>-                                                                       | -<br>-<br>-<br>-<br>-<br>-                                                                  | -<br>-<br>-<br>-<br>-<br>-                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1.2.3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2.2-Dichloropropane<br>1.2-Dibromoethane<br>1.3-Dichloropropane<br>1.1.1.2-Tetrachloroethane<br>Bromobenzene<br>n-Butylbenzene<br>seo-Butylbenzene<br>tert-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.31 J<br>0.58 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>22,000<br>5,200 J                                                                                                                                                                                                                                  | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>13,000<br>3,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.54 J<br>1.1 J<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>100,000.00                                                              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1,2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane<br>Bromobenzene<br>n-Butylbenzene<br>sec-Butylbenzene<br>ter-Butylbenzene<br>o-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                                                                | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>22,000<br>47,000<br>5,200 J<br>ND                                                                                                                                                                                                                  | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>13,000<br>28,000<br>3,000<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1.2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane<br>Bromobenzene<br>n-Butylbenzene<br>sec-Butylbenzene<br>tert-Butylbenzene<br>o-Chlorotoluene<br>p-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND           0.58 J           ND           ND                                                                                                                                                                                                                                                                                                                | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>22,000<br>47,000<br>5,200 J<br>ND<br>ND                                                                                                                                                                                                      | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>3,000<br>3,000<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                                                                                                                                                                                                                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1.2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane<br>Bromobenzene<br>n-Butylbenzene<br>sec-Butylbenzene<br>tert-Butylbenzene<br>o-Chlorotoluene<br>pChlorotoluene<br>1,2-Dibromo-3-chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>22,000<br>5,200 J<br>ND<br>ND<br>ND                                                                                                                                                                                                                | ND           ND           ND           ND           ND           ND           13,000           28,000           3,000           ND           ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1.2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane<br>Bromobenzene<br>n-Butylbenzene<br>sec-Butylbenzene<br>tert-Butylbenzene<br>o-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND           0.58 J           ND           ND                                                                                                                                                                                                                                                                                                                | ND           ND           ND           ND           ND           ND           22,000           47,000           5,200 J           ND           ND                                                                                                                                            | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>3,000<br>3,000<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                                                                                                                                                                                                                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1,2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane<br>Bromobenzene<br>sec-Butylbenzene<br>sec-Butylbenzene<br>tert-Butylbenzene<br>o-Chlorotoluene<br>p-Chlorotoluene<br>1,2-Dibromo-3-chloropropane<br>Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                | ND           47,000           5,200 J           ND           ND           ND           ND | ND           ND           ND           ND           ND           ND           ND           3,000           ND           ND           ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1.2.3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2.2-Dichloropropane<br>1.2-Dibromoethane<br>1.3-Dichloropropane<br>1.1.1.2-Tetrachloroethane<br>Bromobenzene<br>sec-Butylbenzene<br>sec-Butylbenzene<br>tert-Butylbenzene<br>o-Chlorotoluene<br>p-Chlorotoluene<br>1.2-Dibromo-3-chloropropane<br>Hexachlorobutadiene<br>Isopropylbenzene<br>p-Isopropylbenzene<br>p-Isopropylbuene<br>Naphthalene                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                            | ND           3.3 J                                                                                                                                                                                            | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>22,000<br>47,000<br>5,200 J<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>48,000<br>490,000                                                                                                                                                         | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>13,000<br>28,000<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>28,000<br>27,000<br>380,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND           1.1 J           11                                                                                                                                                                                                                                                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1,2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane<br>Bromobenzene<br>n-Butylbenzene<br>sec-Butylbenzene<br>ter-Butylbenzene<br>0-Chlorotoluene<br>p-Chlorotoluene<br>1,2-Dibromo-3-chloropropane<br>Hexachlorobutadiene<br>Isopropylbenzene<br>p-Isopropylbulene<br>Naphthalene<br>Acrylonitrile                                                                                                                                                                                                                                                                                                                                                                                                    | ND           ND | ND                                                                                                                                                                                               | ND           42,000           48,000           48,000           490,000           ND                   | ND           3000           ND           ND | ND                                                                                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1,2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane<br>Bromobenzene<br>n-Butylbenzene<br>ter-Butylbenzene<br>ter-Butylbenzene<br>0-Chlorotoluene<br>p-Chlorotoluene<br>1,2-Dibromo-3-chloropropane<br>Hexachlorobutadiene<br>Isopropylbenzene<br>p-Isopropyltoluene<br>Naphthalene<br>Acrylonitrile<br>n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                | ND           ND | ND                                                                                                                                                                                               | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>5,200 J<br>5,200 J<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>100,000                                                                                                                                                    | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>3,000<br>3,000<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>S28,000<br>27,000<br>380,000<br>80,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND           11.1 J           11           ND           1.2 J                                                                                                                                                                                                          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1.2.3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2.2-Dichloropropane<br>1.2-Dibromoethane<br>1.3-Dichloropropane<br>1.3-Jichloropropane<br>1.1.1.2-Tetrachloroethane<br>Bromobenzene<br>o-Sharylbenzene<br>sec-Butylbenzene<br>o-Chlorotoluene<br>1.2-Dibromo-3-chloropropane<br>Hexachlorobutadiene<br>Isopropylbenzene<br>p-Isopropylbenzene<br>p-Isopropylbenzene<br>n-Propylbenzene<br>1.2.3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                              | ND                                                                                                                              | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>22,000<br>47,000<br>5,200 J<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>13,000<br>28,000<br>3,000<br>ND<br>ND<br>ND<br>ND<br>28,000<br>27,000<br>380,000<br>ND<br>3,000<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND           1.1 J           ND           ND           ND           ND           ND           ND           ND           ND           ND                                                                                                                                                                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1,2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane<br>Bromobenzene<br>n-Butylbenzene<br>sec-Butylbenzene<br>tet-Butylbenzene<br>0-Chlorotoluene<br>p-Chlorotoluene<br>1,2-Dibromo-3-chloropropane<br>Hexachlorobutadiene<br>Isopropylbenzene<br>p-Isopropylbenzene<br>p-Isopropylbenzene<br>1,2,3-Trichlorobenzene<br>1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                   | ND                                                | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>5,200 J<br>5,200 J<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>100,000                                                                                                                                                    | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>3,000<br>3,000<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>S28,000<br>27,000<br>380,000<br>80,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND           ND | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1.2.3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2.2-Dichloropropane<br>1.2-Dibromoethane<br>1.3-Dichloropropane<br>1.1.1.2-Tetrachloroethane<br>Bromobenzene<br>n-Butylbenzene<br>sec-Butylbenzene<br>tert-Butylbenzene<br>0-Chlorotoluene<br>1.2-Dibromo-3-chloropropane<br>Hexachlorobutadiene<br>Isopropylbenzene<br>p-Isopropyltoluene<br>Naphthalene<br>Acrylonitrile<br>n-Propylbenzene<br>1.2.3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                              | ND                                                                                                                              | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>5,200 J<br>5,200 J<br>5,200 J<br>ND<br>ND<br>ND<br>ND<br>48,000<br>48,000<br>490,000<br>ND<br>ND<br>ND                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>28,000<br>3,000<br>ND<br>ND<br>ND<br>ND<br>28,000<br>27,000<br>380,000<br>ND<br>ND<br>27,000<br>380,000<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND           1.1 J           ND           ND           ND           ND           ND           ND           ND           ND           ND                                                                                                                                                                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1,2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane<br>Bromobenzene<br>n-Butylbenzene<br>sec-Butylbenzene<br>ter-Butylbenzene<br>0-Chlorotoluene<br>p-Chlorotoluene<br>p-Chlorotolutene<br>1,2-Dibromo-3-chloropropane<br>Hexachlorobutadiene<br>Isopropylbenzene<br>p-Isopropyltoluene<br>Naphthalene<br>Acrylonitrile<br>n-Progylbenzene<br>1,2,3-Trichlorobenzene<br>1,2,3-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                    | ND                                                                                                                                                             | ND                                                                                                                 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>5.200 J<br>ND<br>ND<br>ND<br>ND<br>ND<br>46,000<br>46,000<br>46,000<br>100,000<br>ND<br>100,000<br>ND<br>1,300,000                                                                                                                           | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>3,000<br>3,000<br>ND<br>ND<br>ND<br>28,000<br>27,000<br>38,000<br>ND<br>63,000<br>ND<br>ND<br>780,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND           1.1 J           11           ND           1.2 J           ND           22                                                                                                                                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1,2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,3-Dichloropropane<br>1,3-Dichloropropane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane<br>Bromobenzene<br>sec-Butylbenzene<br>sec-Butylbenzene<br>ter-Butylbenzene<br>0-Chlorotoluene<br>p-Chlorotoluene<br>1,2-Dirbrono-S-chloropropane<br>Hexachlorobutadiene<br>Isopropylbenzene<br>p-Isopropylbenzene<br>1,2,3-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene | ND                                                                                                                                   | ND           0.81 J           ND           0.68 J | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>3,2000<br>47,000<br>5,200 J<br>ND<br>ND<br>ND<br>ND<br>48,000<br>48,000<br>489,000<br>ND<br>100,000<br>ND<br>1,300,000<br>3,400,000<br>ND<br>260,000                                                                                         | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br><b>13,000</b><br><b>28,000</b><br>3,000<br>ND<br>ND<br>ND<br><b>28,000</b><br><b>27,000</b><br><b>380,000</b><br>ND<br><b>63,000</b><br>ND<br><b>160,000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND           11           ND           1.1 J           ND           1.1 J           ND           1.1 J           ND           2.2           4.6           ND           7.9                                                                                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1.2.3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2.2-Dichloropropane<br>1.2-Dibromoethane<br>1.3-Dichloropropane<br>1.3-Dichloropropane<br>1.3-Dichloroptone<br>Bromobenzene<br>n-Butylbenzene<br>sec-Butylbenzene<br>tert-Butylbenzene<br>o-Chlorotoluene<br>0-Chlorotoluene<br>1.2-Dibromo-3-chloropropane<br>Hexachlorobutadiene<br>Isopropylbenzene<br>p-Isopropylbenzene<br>0-plsopropylbenzene<br>1.2.3-Trichlorobenzene<br>1.2.3-Trichlorobenzene<br>1.2.4-Trichlorobenzene<br>1.2.4-Trimethylbenzene<br>1.4-Dioxane<br>p-Diethylbenzene<br>0-Diethylbenzene                                                                                                                                                                                                                             | ND                           | ND           0.88 J           0.58 J                           | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>22,000<br>47,000<br>5,200 J<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                    | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>3,000<br>3,000<br>ND<br>ND<br>ND<br>ND<br>ND<br>28,000<br>27,000<br>380,000<br>380,000<br>380,000<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>160,000<br>570,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND           111           ND           ND           ND           22           46           ND           7.9           11                                                                                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1,2,3-Trichloropropane<br>2-Hexanone<br>Bromochloromethane<br>2,2-Dichloropropane<br>1,2-Dibromoethane<br>1,3-Dichloropropane<br>1,1,1,2-Tetrachloroethane<br>Bromobenzene<br>sec-Butylbenzene<br>sec-Butylbenzene<br>tert-Butylbenzene<br>0-Chlorotoluene<br>p-Chlorotoluene<br>1,2-Diormo-3-chloropropane<br>Hexachlorobutadiene<br>Isopropylbenzene<br>p-Isopropylbenzene<br>p-Isopropylbenzene<br>1,2,3-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2,4-Trichlorobenzene                                                                                   | ND                                                                                                                                   | ND           0.81 J           ND           0.68 J | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>3,2000<br>47,000<br>5,200 J<br>ND<br>ND<br>ND<br>ND<br>48,000<br>48,000<br>489,000<br>ND<br>100,000<br>ND<br>1,300,000<br>3,400,000<br>ND<br>260,000                                                                                         | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br><b>13,000</b><br><b>28,000</b><br>3,000<br>ND<br>ND<br>ND<br><b>28,000</b><br><b>27,000</b><br><b>380,000</b><br>ND<br><b>63,000</b><br>ND<br><b>160,000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND           11           ND           1.1 J           ND           1.1 J           ND           1.1 J           ND           2.2           4.6           ND           7.9                                                                                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |

 Notes:

 ND = Not detected.

 J = Estimated concentration below the RL but

 Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives.

 Bold range-shaded values exceed NYSDEC Commercial Use Cleanup Objectives.

 Bold pink-shaded values exceed NYSDEC Commercial Use Cleanup Objectives.

 Bold pink-shaded values exceed NYSDEC Commercial Use Cleanup Objectives.

 Bold boxed values exceed NYSDEC Part 375/CP-51 Protection of Groundwater.

| Sample No.                                                                                                                                      | CB-1                             | CB-2                       | CB-4                                     | CB-4 DUPLICATE                                    | CB-5                 |                                      | 6 NVCD Dark 275                 |                                                                  |                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|------------------------------------------|---------------------------------------------------|----------------------|--------------------------------------|---------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|
| Sample Depth (feet)                                                                                                                             | 0-2                              | 0-2                        | 0-2                                      | 0-2                                               | 0-2                  | 6 NYCRR Part 375<br>Unrestricted Use | 6 NYCR Part 375<br>Restricted   | 6 NYCRR Part 375<br>Commercial Use<br>Soil Cleanup<br>Objectives | 6 NYCRR Part<br>375/CP-51<br>Protection of<br>Groundwater |
| Sample Type                                                                                                                                     | Sediment                         | Sediment                   | Sediment                                 | Sediment                                          | Sediment             | Soil Cleanup<br>Objectives           | Residential Use<br>Soil Cleanup |                                                                  |                                                           |
| Sample Date                                                                                                                                     |                                  | 1                          | 1/17/19                                  |                                                   | Objectives           | 00,000,000                           | Groundwater                     |                                                                  |                                                           |
| TCL Semivolatile Organic Compour                                                                                                                | nds in micrograms                | per kilogram               |                                          |                                                   |                      |                                      |                                 |                                                                  |                                                           |
| Acenaphthene                                                                                                                                    | 8,600                            | 2,500                      | 30,000                                   | 6,600                                             | 12,000               | 20,000                               | 100,000                         | 500,000                                                          | 98,000                                                    |
| 1,2,4-Trichlorobenzene                                                                                                                          | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| Hexachlorobenzene                                                                                                                               | ND                               | ND                         | ND                                       | ND                                                | ND                   | 330                                  | 1,200                           | 6,000                                                            | 1,400                                                     |
| Bis(2-chloroethyl)ether                                                                                                                         | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| 2-Chloronaphthalene                                                                                                                             | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| 1,2-Dichlorobenzene                                                                                                                             | ND                               | ND                         | ND                                       | ND                                                | ND                   | 1,000                                | 100,000                         | 500,000                                                          | 1,000                                                     |
| 1,3-Dichlorobenzene                                                                                                                             | ND                               | ND                         | ND                                       | ND                                                | ND                   | 2,400                                | 49,000                          | 280000                                                           | 2,400<br>1,800                                            |
| 1,4-Dichlorobenzene<br>3,3'-Dichlorobenzidine                                                                                                   | ND<br>ND                         | ND<br>ND                   | ND<br>ND                                 | ND<br>ND                                          | ND<br>ND             | 1,800                                | 13,000                          | 130,000                                                          | 1,800                                                     |
| 2,4-Dinitrotoluene                                                                                                                              | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| 2,6-Dinitrotoluene                                                                                                                              | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | 1,000                                                     |
| Fluoranthene                                                                                                                                    | 74,000                           | 32,000                     | 190,000                                  | 41,000                                            | 150,000              | 100,000                              | 100,000                         | 500,000                                                          | 1,000,000                                                 |
| 4-Chlorophenyl phenyl ether                                                                                                                     | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| 4-Bromophenyl phenyl ether                                                                                                                      | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| Bis(2-chloroisopropyl)ether                                                                                                                     | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| Bis(2-chloroethoxy)methane                                                                                                                      | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| Hexachlorobutadiene                                                                                                                             | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| Hexachlorocyclopentadiene                                                                                                                       | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| Hexachloroethane                                                                                                                                | ND                               | ND<br>ND                   | ND<br>ND                                 | ND<br>ND                                          | ND<br>ND             | -                                    | -                               | -                                                                | -                                                         |
| Isophorone<br>Naphthalene                                                                                                                       | ND<br>6,600                      | 1,100 J                    | 130,000                                  | ND<br>120,000                                     | ND<br>4,200          | - 12,000                             | - 100,000                       | - 500,000                                                        | 12,000                                                    |
| Nitrobenzene                                                                                                                                    | 0,000<br>ND                      | ND                         | ND                                       | ND                                                | 4,200<br>ND          | -                                    | 15,000                          | 69,000                                                           | 17,000                                                    |
| NDPA/DPA                                                                                                                                        | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| n-Nitrosodi-n-propylamine                                                                                                                       | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| Bis(2-ethylhexyl)phthalate                                                                                                                      | 2600                             | 1,500 J                    | 140,000                                  | 84,000                                            | 8,000                | -                                    | -                               | -                                                                | 435,000                                                   |
| Butyl benzyl phthalate                                                                                                                          | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| Di-n-butylphthalate                                                                                                                             | 500 J                            | 1,500 J                    | 3,800 J                                  | 2,000 J                                           | 5,600                | -                                    | -                               | -                                                                | 8,100                                                     |
| Di-n-octylphthalate                                                                                                                             | ND                               | ND                         | 6,300 J                                  | ND                                                | ND                   | -                                    | -                               | -                                                                | 120,000                                                   |
| Diethyl phthalate                                                                                                                               | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | 27,000                                                    |
| Dimethyl phthalate                                                                                                                              | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| Benzo(a)anthracene                                                                                                                              | 35,000                           | 15,000<br>12,000           | 80,000<br>81,000                         | 21,000<br>18,000                                  | 64,000<br>68,000     | 1,000                                | 1,000                           | 5,600<br>1,000                                                   | 1,000                                                     |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene                                                                                                          | 32,000<br>43,000                 | 15,000                     | 100,000                                  | 25,000                                            | 100,000              | 1,000                                | 1,000                           | 5,600                                                            | 1,700                                                     |
| Benzo(k)fluoranthene                                                                                                                            | 11,000                           | 6,300                      | 38,000                                   | 6,800                                             | 29,000               | 800                                  | 3,900                           | 56,000                                                           | 1,700                                                     |
| Chrysene                                                                                                                                        | 31,000                           | 12,000                     | 80,000                                   | 19,000                                            | 66,000               | 1,000                                | 3,900                           | 56,000                                                           | 1,000                                                     |
| Acenaphthylene                                                                                                                                  | 1,700 J                          | 870 J                      | 4,800 J                                  | ND                                                | 2,600                | 100,000                              | 100,000                         | 500,000                                                          | 107,000                                                   |
| Anthracene                                                                                                                                      | 17,000                           | 6,200                      | 39,000                                   | 8,500                                             | 20,000               | 100,000                              | 100,000                         | 500,000                                                          | 1,000,000                                                 |
| Benzo(ghi)perylene                                                                                                                              | 19,000                           | 7,000                      | 47,000                                   | 12,000                                            | 44,000               | 100,000                              | 100,000                         | 500,000                                                          | 1,000,000                                                 |
| Fluorene                                                                                                                                        | 8,400                            | 2,700                      | 25,000                                   | 6,400                                             | 8,000                | 30,000                               | 100,000                         | 500,000                                                          | 386,000                                                   |
| Phenanthrene                                                                                                                                    | 61,000                           | 21,000                     | 160,000                                  | 40,000                                            | 91,000               | 100,000                              | 100,000                         | 500,000                                                          | 1,000,000                                                 |
| Dibenzo(a,h)anthracene                                                                                                                          | 5,200                            | 2,000                      | 13,000                                   | 2,800 J                                           | 11,000               | 330                                  | 330                             | 560                                                              | 1,000,000                                                 |
| Indeno(1,2,3-cd)pyrene                                                                                                                          | 21,000                           | 7,800                      | 51,000                                   | 12,000                                            | 48,000               | 500                                  | 500                             | 5,600                                                            | 8,200                                                     |
| Pyrene<br>Biphenyl                                                                                                                              | 62,000<br>700                    | 27,000<br>ND               | 150,000<br>4,000 J                       | 36,000<br>ND                                      | 130,000<br>620 J     | 100,000                              | 100,000                         | - 500,000                                                        | 1,000,000                                                 |
| 4-Chloroaniline                                                                                                                                 | ND                               | ND                         | 4,000 J                                  | ND                                                | ND                   | -                                    | -                               | -                                                                | 220                                                       |
| 2-Nitroaniline                                                                                                                                  | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                |                                                           |
| 3-Nitroaniline                                                                                                                                  | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                |                                                           |
| 4-Nitroaniline                                                                                                                                  | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| Dibenzofuran                                                                                                                                    | 5,300                            | 1,500 J                    | 14,000                                   | 3,600 J                                           | 5,000                | 7,000                                | 59,000                          | 350,000                                                          | -                                                         |
| 2-Methylnaphthalene                                                                                                                             | 2,300 J                          | 530 J                      | 41,000                                   | 48,000                                            | 1,600 J              | -                                    | -                               | -                                                                | 36,400                                                    |
| 1,2,4,5-Tetrachlorobenzene                                                                                                                      | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| Acetophenone                                                                                                                                    | ND                               | ND                         | ND                                       | ND                                                | 420 J                | -                                    | -                               | -                                                                | -                                                         |
| 2,4,6-Trichlorophenol                                                                                                                           | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| p-Chloro-m-cresol<br>2-Chlorophenol                                                                                                             | ND<br>ND                         | ND<br>ND                   | ND<br>ND                                 | ND<br>ND                                          | ND<br>ND             | -                                    | -                               | -                                                                |                                                           |
| 2,4-Dichlorophenol                                                                                                                              | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                |                                                           |
| 2,4-Dimethylphenol                                                                                                                              | ND                               | ND                         | 420,000                                  | 420,000                                           | ND                   | -                                    | -                               | -                                                                |                                                           |
| 2-Nitrophenol                                                                                                                                   | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                |                                                           |
| 4-Nitrophenol                                                                                                                                   | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| 2,4-Dinitrophenol                                                                                                                               | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                |                                                           |
|                                                                                                                                                 | ND                               | ND                         | ND                                       | ND                                                | ND                   | -                                    | -                               | -                                                                | -                                                         |
| 4,6-Dinitro-o-cresol                                                                                                                            | ND                               |                            |                                          | ND                                                | ND                   | 800                                  | 6,700                           | 6,700                                                            | 800                                                       |
| 4,6-Dinitro-o-cresol<br>Pentachlorophenol                                                                                                       | ND                               | ND                         | 4,900 J                                  |                                                   |                      |                                      |                                 |                                                                  |                                                           |
| 4,6-Dinitro-o-cresol<br>Pentachlorophenol<br>Phenol                                                                                             | ND<br>ND                         | ND                         | 1,700 J                                  | ND                                                | ND                   | 330                                  | 100,000                         | 500,000                                                          | 330                                                       |
| 4,6-Dinitro-o-cresol<br>Pentachlorophenol<br>Phenol<br>2-Methylphenol                                                                           | ND<br>ND<br>ND                   | ND<br>ND                   | 1,700 J<br>25,000                        | ND<br>19,000                                      | ND                   | 330                                  | 100,000                         | 500,000                                                          | -                                                         |
| 4,6-Dinitro-o-cresol<br>Pentachlorophenol<br>Phenol<br>2-Methylphenol<br>3-Methylphenol/4-Methylphenol                                          | ND<br>ND<br>ND<br>ND             | ND<br>ND<br>ND             | 1,700 J<br>25,000<br>110,000             | ND<br>19,000<br>86,000                            | ND<br>ND             | 330<br>330                           | 100,000<br>100,000              |                                                                  | •                                                         |
| 4.6-Dinitro-o-cresol<br>Pentachlorophenol<br>Phenol<br>2-Methylphenol<br>3-Methylphenol/4-Methylphenol<br>2.4.5-Trichlorophenol                 | ND<br>ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 1,700 J<br>25,000<br>110,000<br>ND       | ND           19,000           86,000           ND | ND<br>ND<br>ND       | 330<br>330<br>-                      | 100,000<br>100,000<br>-         | 500,000<br>500,000<br>-                                          | -                                                         |
| 4.6-Dinitro-o-cresol<br>Pentachlorophenol<br>Phenol<br>2-Methylphenol<br>3-Methylphenol/4-Methylphenol<br>2,4,5-Trichlorophenol<br>Benzoic Acid | ND<br>ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 1,700 J<br>25,000<br>110,000<br>ND<br>ND | ND<br>19,000<br>86,000<br>ND<br>ND                | ND<br>ND<br>ND<br>ND | 330<br>330<br>-<br>-                 | 100,000<br>100,000<br>-<br>-    | 500,000<br>500,000<br>-<br>-                                     | •                                                         |
| 4.6-Dinitro-o-cresol<br>Pentachlorophenol<br>Phenol<br>2-Methylphenol<br>3-Methylphenol/4-Methylphenol<br>2,4,5-Trichlorophenol                 | ND<br>ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 1,700 J<br>25,000<br>110,000<br>ND       | ND           19,000           86,000           ND | ND<br>ND<br>ND       | 330<br>330<br>-                      | 100,000<br>100,000<br>-         | 500,000<br>500,000<br>-                                          |                                                           |

#### Notes:

ND = Not detected.

ND = Not detected. J = Estimated concentration below the RL but above the MDL. Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives. Bold orange-shaded values exceed NYSDEC Restricted Residential Use Soil Cleanup Objectives. Bold pink-shaded values exceed NYSDEC Commercial Use Cleanup Objectives. Bold boxed values exceed NYSDEC Part 375/CP-51 Protection of Groundwater.



| Sample No.                                       | CB-1               | CB-2                | CB-4          | CB-4 DUPLICATE  | CB-5                  |                                      | 6 NYCR Part 375                 |                                                                  |                                                           |
|--------------------------------------------------|--------------------|---------------------|---------------|-----------------|-----------------------|--------------------------------------|---------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|
| Sample Depth (feet)                              | 0-2                | 0-2                 | 0-2           | 0-2             | 0-2                   | 6 NYCRR Part 375<br>Unrestricted Use | Restricted                      | 6 NYCRR Part 375<br>Commercial Use<br>Soil Cleanup<br>Objectives | 6 NYCRR Part<br>375/CP-51<br>Protection of<br>Groundwater |
| Sample Type                                      | Sediment           | Sediment            | Sediment      | Sediment        | Sediment              | Soil Cleanup<br>Objectives           | Residential Use<br>Soil Cleanup |                                                                  |                                                           |
| Sample Date                                      |                    | 1                   | 1/17/19       |                 |                       |                                      | Objectives                      | ,                                                                |                                                           |
| Metals in milligrams per kilogram                |                    |                     |               |                 |                       |                                      |                                 |                                                                  |                                                           |
|                                                  | 2 000              | 2 960               | 1 400         | 1 520           | 11.000                |                                      |                                 |                                                                  |                                                           |
| Aluminum, Total                                  | 3,990              | 2,860               | 1,490         | 1,520<br>9.59   | 11,000                | -                                    | -                               | -                                                                | -                                                         |
| Antimony, Total                                  | 5.94               | 3.73 J              | 9.13          |                 | 9.79                  | -                                    | -                               | -                                                                | - 16                                                      |
| Arsenic, Total<br>Barium, Total                  | 5.04<br>435        | 5.82<br>103         | 3.79<br>373   | 5.03<br>572     | 13.6<br>724           | 13<br>350                            | 16<br>400                       | 16<br>400                                                        | 820                                                       |
| Beryllium, Total                                 | 0.315 J            | 0.248 J             | 0.081 J       | 0.145 J         | 0.658                 | 7.2                                  | 72                              | 590                                                              | 47                                                        |
|                                                  | 3.90               | 0.248 J<br>1.83     | 4.31          | 7.15            | 6.31                  | 2.5                                  | 4.3                             | 9.3                                                              | 7.5                                                       |
| Cadmium, Total Calcium, Total                    | 23,300             | 5,140               | 5,620         | 21,100          | 32,700                | -                                    | 4.3                             | 9.3                                                              | -                                                         |
| Chromium, Total                                  | 45.0               | 3,140               | 3,620         | 21,100<br>554   | 52,700<br><b>73.0</b> | - 30                                 | - 180                           | - 1,500                                                          | -                                                         |
| Cobalt, Total                                    | 5.88               | 5.08                | 326           | 3.99            | 11.5                  |                                      | -                               | -                                                                | -                                                         |
| Copper, Total                                    | 5.88<br><b>136</b> | 98.4                | 3.60<br>177   | 3.99<br>168     | 299                   | 50                                   |                                 |                                                                  | 1,720                                                     |
|                                                  | 31,100             | 25,700              | 20,800        | 30,300          | 67,300                | - 50                                 | 270                             | 270                                                              | -                                                         |
| Iron, Total                                      |                    |                     | 1,280         | 984             | 685                   | 63                                   |                                 | -                                                                | 450                                                       |
| Lead, Total                                      | 359<br>7.040       | <b>197</b><br>2,360 | 4,310         | 51,400          | 7,440                 | -                                    | 400                             | 1,000                                                            | 450                                                       |
| Magnesium, Total                                 | 7,040              | 2,360               | 4,310         | 51,400<br>170.0 | 7,440                 | - 1,600                              | - 2,000                         | - 10,000                                                         | 2,000                                                     |
| Manganese, Total                                 | 316                |                     | 99.0          |                 | 1.34                  |                                      |                                 |                                                                  | 0.73                                                      |
| Mercury, Total                                   | 2.07               | 0.357               | 1.35<br>17.2  | 0.581           | 1.34<br>67.4          | 0.18                                 | 0.81                            | 2.8                                                              | 130                                                       |
| Nickel, Total                                    | 24.5               | 120<br>292          | 17.2<br>136 J | 16.3<br>142 J   | 67.4<br>736           | - 30                                 | 310                             | 310                                                              | - 130                                                     |
| Potassium, Total                                 | 362                | 0.974               | 0.993 J       | 142 J<br>2.27 J | 3.08                  |                                      |                                 |                                                                  | - 4                                                       |
| Selenium, Total                                  | 1.77 J             | 0.974<br>ND         |               |                 |                       | 3.9                                  | 180                             | 1,500                                                            | 8.3                                                       |
| Silver, Total                                    | ND                 |                     | 0.416 J       | 0.423 J         | ND<br>702             |                                      | 180                             | 1,500                                                            | - 0.3                                                     |
| Sodium, Total                                    | 220                | 188<br>ND           | 188 J<br>ND   | 219 J<br>ND     | 0.420 J               | -                                    | -                               | -                                                                |                                                           |
| Thallium, Total                                  | ND                 | 18.3                | 39.3          | 57.9            | 0.420 J<br>24.5       | -                                    | -                               | -                                                                | -                                                         |
| Vanadium, Total                                  | 23.3               | 552                 |               |                 |                       | - 109                                |                                 |                                                                  | 2,480                                                     |
| Zinc, Total                                      | 1,050              | 552                 | 1,050         | 1,550           | 1,670                 | 109                                  | 10,000                          | 10,000                                                           | 2,460                                                     |
| Pesticides in micrograms per kilogr<br>Delta-BHC |                    | ND                  | ND            | ND              | ND                    | 40                                   | 100,000                         | 500,000                                                          | 250                                                       |
|                                                  | ND                 | ND                  | ND            | ND              | ND                    | 100                                  | 1,300                           | 9,200                                                            | 100                                                       |
| Lindane                                          | ND                 |                     | ND            | ND              | ND                    | 20                                   | 480                             |                                                                  | 20                                                        |
| Alpha-BHC                                        | ND                 | ND<br>ND            | ND            | ND              | ND                    | 36                                   | 360                             | 3,400<br>3,000                                                   | 90                                                        |
| Beta-BHC                                         | ND                 |                     | ND            | ND              | ND                    | 42                                   | 2,100                           | 15,000                                                           | 380                                                       |
| Heptachlor<br>Aldrin                             | ND                 | ND<br>ND            | ND            | ND              | ND                    | 5                                    | 97                              | 680                                                              | 190                                                       |
|                                                  | ND<br>ND           | ND                  | ND            | ND              | ND                    | -                                    | -                               | -                                                                | 20                                                        |
| Heptachlor epoxide                               | ND                 | ND                  | ND            | ND              | ND                    | 14                                   | 11,000                          | 89,000                                                           | 60                                                        |
| Endrin<br>Endrin oldobudo                        | ND                 | ND                  | ND            | ND              | ND                    | -                                    | -                               | -                                                                | -                                                         |
| Endrin aldehyde                                  | ND                 | ND                  | ND            | ND              | ND                    | -                                    | -                               |                                                                  | -                                                         |
| Endrin ketone<br>Dieldrin                        | 4.03 IP            | 10.7 IP             | ND            | ND              | ND                    | 5                                    | 200                             | 1,400                                                            | 100                                                       |
| 4,4'-DDE                                         | 9.83 IP            | 9.49                | 801 IP        | 358 IP          | 34.2                  | 3.3                                  | 8,900                           | 62,000                                                           | 17,000                                                    |
| 4,4'-DDE                                         | 9.83 IF<br>ND      | 9.49<br>ND          | 193           | 217 IP          | 94.2<br>ND            | 3.3                                  | 13,000                          | 92,000                                                           | 14,000                                                    |
| 4,4'-DDT                                         | ND                 | ND                  | ND            | ND              | ND                    | 3.3                                  | 7,900                           | 47,000                                                           | 136,000                                                   |
| Endosulfan I                                     | ND                 | ND                  | ND            | ND              | ND                    | 2,400                                | 24,000                          | 200,000                                                          | 102,000                                                   |
| Endosulfan II                                    | 1.93 JIP           | 1.72 IP             | ND            | ND              | ND                    | 2,400                                | 24,000                          | 200,000                                                          | 102,000                                                   |
| Endosulfan sulfate                               | ND                 | ND                  | ND            | ND              | ND                    | 2,400                                | 24,000                          | 200,000                                                          | 1,000,000                                                 |
| Methoxychlor                                     | ND                 | ND                  | ND            | ND              | ND                    | 2,400                                | -                               | -                                                                | 900,000                                                   |
| Toxaphene                                        | ND                 | ND                  | ND            | ND              | ND                    | -                                    |                                 | -                                                                | -                                                         |
| cis-Chlordane                                    | ND                 | ND                  | ND            | ND              | ND                    | 94                                   | 4,200                           | 24,000                                                           | 2,900                                                     |
| trans-Chlordane                                  | ND                 | ND                  | ND            | ND              | ND                    | -                                    | -                               | -                                                                | -                                                         |
| Chlordane                                        | ND                 | ND                  | ND            | ND              | ND                    | -                                    | -                               | -                                                                | -                                                         |
| Polychlorinated Biphenyls in micros              |                    |                     | שא            | שא              | טאי                   | -                                    | -                               | -                                                                | _                                                         |
| Aroclor 1016                                     | ND                 | ND                  | ND            | ND              | ND                    | 100                                  | 1,000                           | 1,000                                                            | 3,200                                                     |
| Aroclor 1018                                     | ND                 | ND                  | ND            | ND              | ND                    | 100                                  | 1,000                           | 1,000                                                            | 3,200                                                     |
| Aroclor 1221<br>Aroclor 1232                     | ND                 | ND                  | ND            | ND              | ND                    | 100                                  | 1,000                           | 1,000                                                            | 3,200                                                     |
| Aroclor 1232                                     | ND                 | ND                  | ND            | ND              | ND                    | 100                                  | 1,000                           | 1,000                                                            | 3,200                                                     |
| Aroclor 1242<br>Aroclor 1248                     | ND                 | ND                  | 2,720         | 2,440           | 734                   | 100                                  | 1,000                           | 1,000                                                            | 3,200                                                     |
| Aroclor 1248<br>Aroclor 1254                     | 128                | 196                 | 2,720         | 2,440           | 949                   | 100                                  | 1,000                           | 1,000                                                            | 3,200                                                     |
| Aroclor 1254                                     | 85.5               | 259                 | 2,500         | 4,620           | 2,400                 | 100                                  | 1,000                           | 1,000                                                            | 3,200                                                     |
|                                                  | ND                 | ND                  | 2,170<br>ND   | 4,820<br>ND     | ND                    | 100                                  | 1,000                           | 1,000                                                            | 3,200                                                     |
| Aroclor 1262                                     |                    |                     |               |                 |                       |                                      |                                 |                                                                  |                                                           |

Notes:

ND = Not detected.

J = Estimated concentration below the RL but above the MDL.

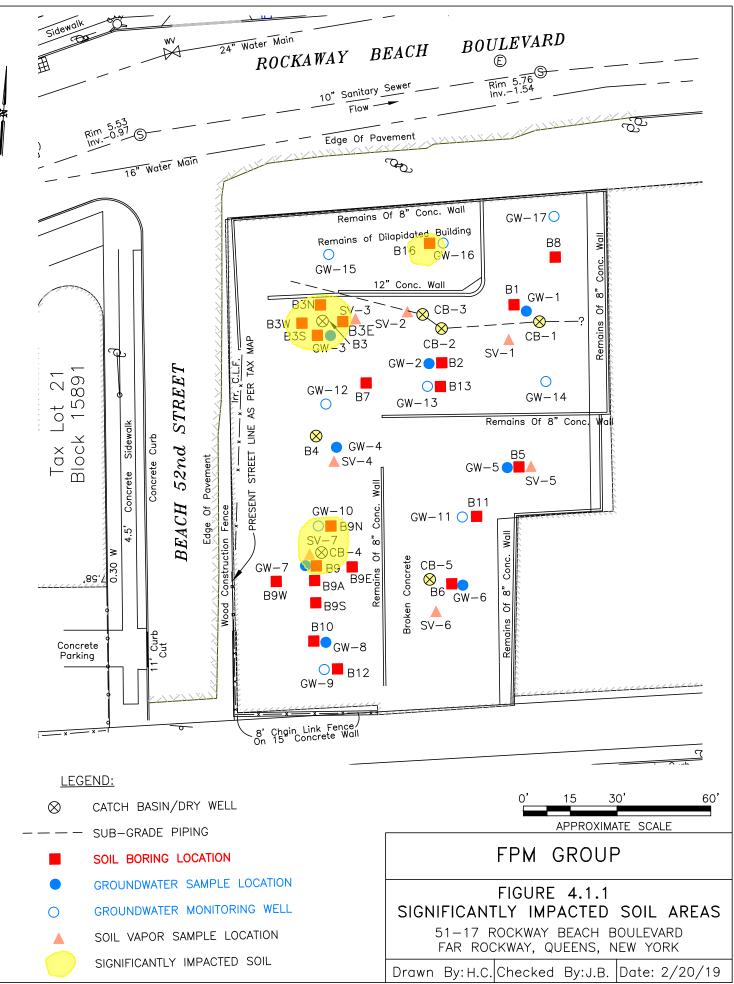
I = Lower value reported due to obvious interference.

P = The RPD between the results exceeds the method-specified criteria.

Bold yellow-shaded values exceed NYSDEC Unrestricted Use Soil Cleanup Objectives. Bold pink-shaded values exceed NYSDEC Restricted Residential Use Soil Cleanup Objectives. Bold pink-shaded values exceed NYSDEC Commercial Use Cleanup Objectives.

Bold boxed values exceed NYSDEC Part 375/CP-51 Protection of Groundwater.

- No exceedances of SCOs were noted in any of the samples from boring B11 or B13, which is consistent with the visual observations;
- At boring B12 the VOC acetone slightly exceeded its unrestricted use and protection of groundwater SCO in the 0 to 2-foot interval. No other exceedances were noted in the samples from this boring and the materials in this boring did not exhibit any visual indications of potential impacts;
- At boring B16 the petroleum-related VOCs xylenes and 1,2,4-trimethylbenzene were noted to exceed the unrestricted use SCO in the 0 to 2-foot interval. Several PAH SVOCs were also noted to exceed SCOs in this interval and copper exceeded its unrestricted use SCO in the 2 to 4-foot interval. These results are consistent with the odor and organic vapor readings in this boring; and
- The sediment in catch basin CB-4 contained several petroleum-related VOCs and TCE at levels that exceed unrestricted use, restricted residential use, commercial use and/or protection of groundwater SCOs. One VOC (acetone) in CB-2 exceeded its unrestricted use and protection of groundwater SCO. The sediment in all four catch basins contained PAH SVOCs, metals, pesticides, and PCBs at levels that exceeded SCOs, with the levels in CB-4 generally noted to be the most elevated. The exceedances in CB-1, CB-2 and CB-5 are typical of impacts associated with accumulations of urban stormwater runoff. The exceedances in CB-4 are more typical of petroleum and chlorinated solvent impacts and are consistent with the soil results in the nearby B9 and B9N borings.


The Supplemental Phase II Investigation soil data are generally consistent with the previous soil sample results from the Property. As discussed in Section 2.2.2, several petroleum-related VOCs and one chlorinated solvent (TCE) were previously detected in boring B9 (depth of 9 feet) at concentrations exceeding the NYSDEC unrestricted use SCOs. Two petroleum-related VOCs in the B9 sample from 5 feet also exceeded the restricted residential use SCOs. Similar impacts were found in nearby catch basin CB-4 and boring B9N during the Supplemental Investigation. These impacts appear to be limited to this area as none of the samples from nearby borings B9W, B9A, B9S or B9E exhibited any exceedances of SCOs for VOCs.

Drywell B3 was previously sampled and found to contain elevated levels of SVOCs. Soil sampling performed around the drywell during the Supplemental Investigation (borings B3N, B3E, B3S and B3W) showed SVOCs and/or some chlorinated solvent and petroleum VOCs at levels exceeding the SCOs.

Catch basins CB-1, CB-2, CB-4 and CB-5 all exhibited exceedances of SCOs for PAH SVOCs, metals, pesticides and PCBs typical of urban stormwater runoff, with CB-4 also showing indications of petroleum-related VOCs and TCE. Previous sampling at drywell structures on the Property (B3, B4, and CB-3) showed similar stormwater-related impacts, with B4 also showing petroleum VOC and TCE impacts.

Collectively, the soil data indicate that soil impacted by chlorinated solvents and petroleum is present at boring B9, catch basin CB-4, and in the surrounding area. The impact appears to be greatest at the B9, B9N and CB-4 locations and decreases laterally to the east, south, and west. The approximate lateral extent of this impact is illustrated on Figure 4.1.1. The impact appears to be greatest at a depth of five feet below grade, coincident with the approximate depth of the





DWG To PDF.pc3 AM, 9:56:332/21/2019 Z:\PENINSULA ROCKAWAY\DEP\IMPACTED SOIL AREA.dwg, water table, and decreases downward. Very little impact appears to be present by 8 feet below grade and the soil at this depth generally does not exceed NYSDEC SCOs.

Soil impacted by chlorinated solvents and PAH SVOCs is also present in a limited area centered on drywell B3. This impact is present to about 4 feet below grade and is present in limited areas below this depth.

Sediment impacted by PAH SVOCs, metals, pesticides and/or PCBs typical of urban stormwater runoff is present in all of the catch basins and drywells. Petroleum-related VOCs and chlorinated solvents are also present in drywell B3 and catch basin CB-4.

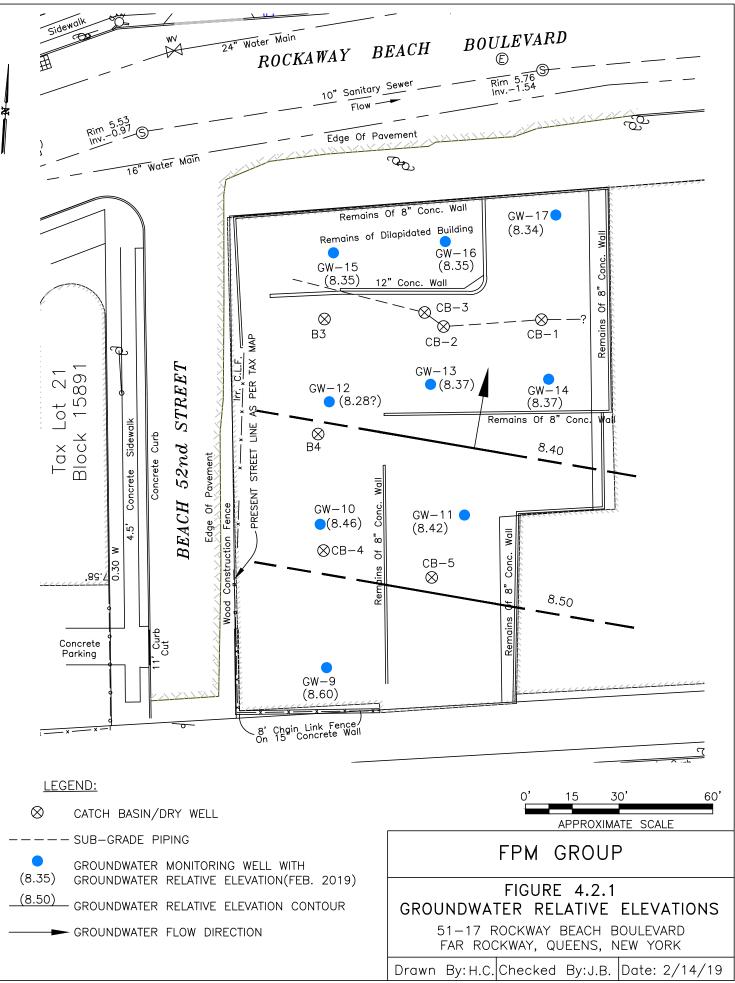
# 4.2 Groundwater Conditions

## Groundwater Flow Direction

The relative elevation of the top of the PVC casing for each well was integrated with depth-togroundwater measurements obtained on February 15, 2019 to determine the relative elevation of the water table surface at each well; the resulting data are shown on Table 4.2.1. These relative elevations were then used to calculate the Property-specific groundwater flow direction, as shown on Figure 4.2.1. The groundwater flow direction was determined to be to the north-northeast, which is consistent with groundwater quality data, as discussed below.

## Groundwater Chemical Analytical Results

Groundwater sampling was conducted at the GW-9 through GW-17 locations during the Supplemental Investigation. At each location no visible indications of potential contamination were noted, with the exception of GW-10 where a slight petroleum odor was noted. This observation is consistent with the prior groundwater observations in that the only visible indication of potential groundwater contamination had been previously noted at GW-7, which is in proximity to GW-10.


The samples were tested as discussed in Section 3.2, with the results compared to the NYSDEC Standards, as shown in Table 4.2.2. The following observations were noted:

- Petroleum-related VOCs were detected in the GW-10 sample at concentrations somewhat above the NYSDEC Standards. The GW-10 sample was collected in downgradient proximity to the source material at B9/B9N/CB-4 and a short distance downgradient of the previous GW-7 sample that contained more elevated levels of petroleum-related VOCs, as well as TCE. TCE, naphthalene (a petroleum VOC), and chloroform (a breakdown product of chlorinated VOCs) were detected at concentrations somewhat above the NYSDEC Standards at GW-13, which is further downgradient of the B9/B9N/CB-4 source area. These results indicate that the source material at B9/B9N/CB-4 is resulting in groundwater contamination at the Property;
- Chloroform was also detected somewhat above its Standard at GW-15 and GW-16, near the northern (downgradient) side of the Property. These locations are downgradient (north-northeast) of the B3 drywell area where several VOCs, including TCE and its breakdown product cis-1,2-DCE, were found in soil at levels exceeding the NYSDEC unrestricted use and/or protection of groundwater SCOs. These chloroform detections suggest that the chlorinated VOCs found in soil in the B3 drywell area are a source for the chloroform detections noted in the downgradient groundwater and that TCE is breaking down as it migrates in groundwater;



# TABLE 4.2.1 WELL TOP OF CASING AND GROUNDWATER RELATIVE ELEVATIONS 51-17 ROCKAWAY BEACH BOULEVARD FAR ROCKAWAY, NY

| Well  | Relative Elevation<br>of Top of Casing<br>(feet) | Depth to Water<br>(feet) | Groundwater Relative<br>Elevation<br>(feet) |
|-------|--------------------------------------------------|--------------------------|---------------------------------------------|
|       | FEBRU                                            | ARY 15, 2019             |                                             |
| GW-9  | 10.00                                            | 1.40                     | 8.60                                        |
| GW-10 | 10.00                                            | 1.54                     | 8.46                                        |
| GW-11 | 9.48                                             | 1.06                     | 8.42                                        |
| GW-12 | 9.85                                             | 1.57                     | 8.28                                        |
| GW-13 | 9.87                                             | 1.50                     | 8.37                                        |
| GW-14 | 10.09                                            | 1.72                     | 8.37                                        |
| GW-15 | 9.99                                             | 1.64                     | 8.35                                        |
| GW-16 | 9.89                                             | 1.54                     | 8.35                                        |
| GW-17 | 10.59                                            | 2.25                     | 8.34                                        |



## **TABLE 4.2.2 GROUNDWATER CHEMICAL ANALYTICAL RESULTS** 51-17 ROCKAWAY BEACH BOULEVARD, FAR ROCKAWAY, NEW YORK

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GW-9     | GW-10            | GW-11    | GW-12    | GW-13    | GW-14    | CW 15    | -        | GW-17    | MW-17D      | NYS Class GA                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|----------|----------|----------|----------|----------|----------|----------|-------------|------------------------------------|
| Well No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GW-9     | GW-10            | GW-II    | GW-12    |          |          | GW-15    | GW-16    | GW-17    | (duplicate) | Ambient Water<br>Quality Standards |
| Sampling Date 2/6/2019 Constraints of the constrain |          |                  |          |          |          |          |          |          |          |             |                                    |
| Volatile Organic Compounds in<br>Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       | per liter<br>ND  | ND       | ND       | ND       | ND       | ND       | ND       | 0.71 J   | 0.72 J      | 5                                  |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND       | ND               | ND       | ND       | 13       | 4.8      | 28       | 25       | 6.0      | 5.8         | 7                                  |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 1                                  |
| Dibromochloromethane<br>1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND<br>ND | ND<br>ND         | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND    | <u>50</u><br>1                     |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 0.6                                |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| Bromodichloromethane<br>trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND<br>ND | ND<br>ND         | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND    | 50<br>0.4                          |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 0.4                                |
| 1,3-Dichloropropene, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | -                                  |
| 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 50                                 |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<br>ND | ND<br>0.26 J     | ND<br>ND    | 5                                  |
| Benzene<br>Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND | 0.36 J<br>1.4 J  | ND<br>ND | ND<br>ND | ND       | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND    | 1 5                                |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       | 3.4              | ND          | 5                                  |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | -                                  |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND       | ND               | ND       | ND       | 0.20 J   | ND       | ND       | ND       | ND       | ND          | 5                                  |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND       | ND               | ND       | 0.81 J   | 0.12 J   | ND       | ND       | ND       | ND       | 0.07 J      | 2                                  |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>ND | ND<br>ND         | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND    | 5                                  |
| 1,1-Dichloroethene<br>trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND<br>ND | ND<br>ND         | ND<br>ND | ND       | ND       | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND    | <u>5</u>                           |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND       | ND               | ND       | 0.89     | 6.5      | 1.7      | 0.34 J   | 0.46 J   | ND       | ND          | 5                                  |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 3                                  |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 3                                  |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 3                                  |
| Methyl tert butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 10                                 |
| p/m-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND | 9.3<br>8.8       | ND<br>ND    | 5                                  |
| o-Xylene<br>Xylenes, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND       | <b>0.0</b><br>18 | ND          | 5                                  |
| cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND       | ND               | ND       | 2.5      | 2.8      | 1.3 J    | ND       | ND       | ND       | ND          | 5                                  |
| 1,2-Dichloroethene, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND       | ND               | ND       | 2.5      | 2.8      | 1.3 J    | ND       | ND       | ND       | ND          | -                                  |
| Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 0.04                               |
| Acrylonitrile<br>Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND | ND<br>ND         | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND    | <u>5</u><br>5                      |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3 J    | 1.7 J            | 8.2      | 2.6 J    | 3.3 J    | ND       | 2.8 J    | 4.3 J    | 3.2 J    | 2.9 J       | 50                                 |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 60                                 |
| 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 50                                 |
| Vinyl acetate<br>4-Methyl-2-pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<br>ND | ND<br>ND         | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND    | -                                  |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 50                                 |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 0.0006                             |
| 1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| 1,1,1,2-Tetrachloroethane<br>Bromobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<br>ND | ND<br>ND         | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND    | 5<br>5                             |
| n-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| sec-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| tert-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| o-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| p-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| 1,2-Dibromo-3-chloropropane<br>Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND | ND<br>ND         | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND    | 0.04<br>0.5                        |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND       | 1.3 J            | ND          | 5                                  |
| p-IsopropyItoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND       | 3.2              | ND       | ND       | 17       | 4.7      | ND       | ND       | ND       | ND          | 10                                 |
| n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND       | 1.2 J            | ND          | 5                                  |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND       | ND<br>16         | ND<br>ND | ND          | 5                                  |
| 1,3,5-Trimethylbenzene<br>1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND<br>ND | 16<br>45         | ND<br>ND    | 5                                  |
| 1,2,4-Trimetnyibenzene<br>1.4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND       | 43<br>ND         | ND          | 5                                  |
| p-Diethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND       | 1.2 J            | ND          | -                                  |
| p-Ethyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND       | 10               | ND          | -                                  |
| 1,2,4,5-Tetramethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | 0.79 J   | 0.77 J      | 5                                  |
| Ethyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | -                                  |
| trans-1,4-Dichloro-2-butene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND       | ND               | ND       | ND       | ND       | ND       | ND       | ND       | ND       | ND          | 5                                  |

Notes: ND - Not detected at the reported detection limit for the sample. J - Estimated concentration above the Method Detection Limit and below the Reporting Limit. Bold shaded values exceed the NYSDEC Class GA Ambient Water Quality Standards. - = Not established



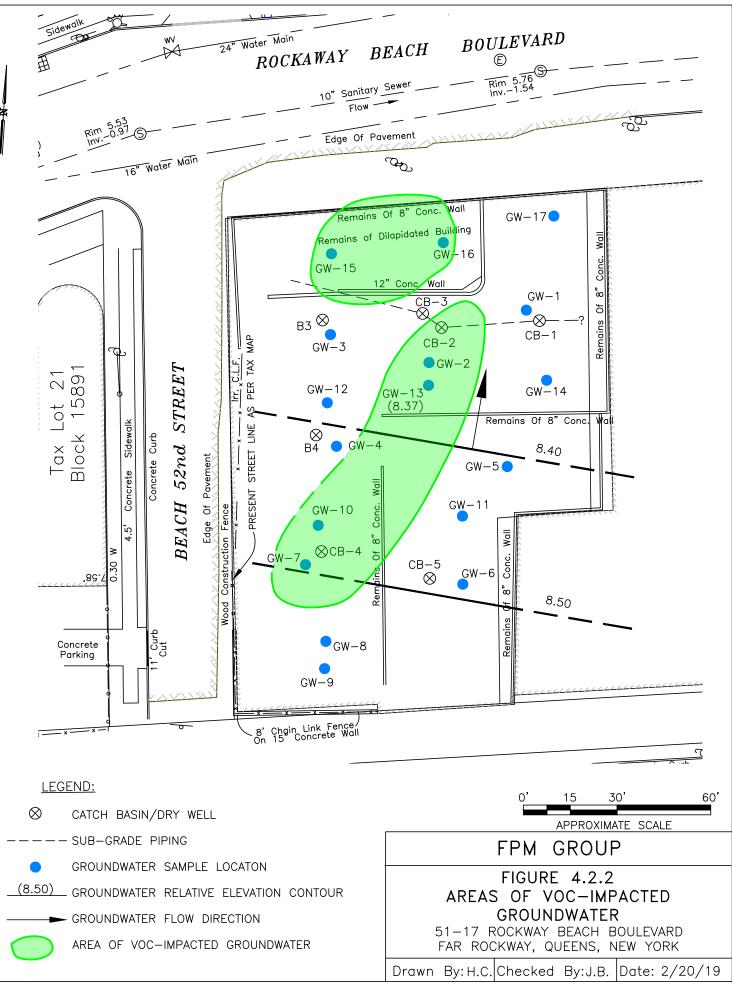
| Well No.                                                | GW-9          | GW-10       | GW-11    | GW-12        | GW-13        | GW-14      | GW-15    | GW-16      | GW-17      | MW-17D<br>(duplicate) | NYS Class GA<br>Ambient Water |
|---------------------------------------------------------|---------------|-------------|----------|--------------|--------------|------------|----------|------------|------------|-----------------------|-------------------------------|
| Sampling Date                                           |               | •           | •        |              | 2/8/         | 2019       | •        |            |            |                       | Quality Standards             |
| Semivolatile Organic Compounds                          |               | s per liter |          |              |              |            |          |            |            |                       |                               |
| 1,2,4-Trichlorobenzene                                  | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 5                             |
| Bis(2-chloroethyl)ether                                 | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 1                             |
| 1,2-Dichlorobenzene                                     | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 3                             |
| 1,3-Dichlorobenzene                                     | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 3                             |
| 1,4-Dichlorobenzene                                     | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 3                             |
| 3,3'-Dichlorobenzidine                                  | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 5                             |
| 2,4-Dinitrotoluene                                      | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 5                             |
| 2,6-Dinitrotoluene                                      | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 5                             |
| 4-Chlorophenyl phenyl ether                             | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | -                             |
| 4-Bromophenyl phenyl ether                              | ND            | ND          | ND       | ND           | ND<br>ND     | ND<br>ND   | ND       | ND         | ND         | ND                    | -                             |
| Bis(2-chloroisopropyl)ether                             | ND<br>ND      | ND<br>ND    | ND<br>ND | ND<br>ND     | ND           | ND         | ND<br>ND | ND<br>ND   | ND<br>ND   | ND<br>ND              | 5                             |
| Bis(2-chloroethoxy)methane<br>Hexachlorocyclopentadiene | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 5                             |
| Isophorone                                              | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 50                            |
| Nitrobenzene                                            | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 0.4                           |
| NDPA/DPA                                                | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 50                            |
| n-Nitrosodi-n-propylamine                               | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | -                             |
| Bis(2-ethylhexyl)phthalate                              | ND            | ND          | ND       | ND           | ND           | ND         | 3.3 J    | ND         | ND         | ND                    | 5                             |
| Butyl benzyl phthalate                                  | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 50                            |
| Di-n-butylphthalate                                     | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 50                            |
| Di-n-octylphthalate                                     | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 50                            |
| Diethyl phthalate                                       | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 50                            |
| Dimethyl phthalate                                      | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 50                            |
| Biphenyl                                                | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | -                             |
| 4-Chloroaniline                                         | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 5                             |
| 2-Nitroaniline                                          | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 5                             |
| 3-Nitroaniline                                          | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 5                             |
| 4-Nitroaniline                                          | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 5                             |
| Dibenzofuran                                            | ND            | ND          | ND       | ND           | 4.4          | ND         | 1.5 J    | ND         | ND         | ND                    | -                             |
| 1,2,4,5-Tetrachlorobenzene                              | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 5                             |
| Acetophenone                                            | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | -                             |
| 2,4,6-Trichlorophenol                                   | ND            | ND<br>ND    | ND       | ND           | ND<br>ND     | ND<br>ND   | ND<br>ND | ND<br>ND   | ND         | ND                    | -                             |
| p-Chloro-m-cresol                                       | ND<br>ND      | ND          | ND<br>ND | ND<br>ND     | ND<br>ND     | ND<br>ND   | ND<br>ND | ND<br>ND   | ND<br>ND   | ND<br>ND              | -                             |
| 2-Chlorophenol<br>2,4-Dichlorophenol                    | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | - 1                           |
| 2,4-Dimethylphenol                                      | ND            | 16          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 50                            |
| 2-Nitrophenol                                           | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    |                               |
| 4-Nitrophenol                                           | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | -                             |
| 2,4-Dinitrophenol                                       | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 10                            |
| 4,6-Dinitro-o-cresol                                    | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | -                             |
| Phenol                                                  | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 1                             |
| 2-Methylphenol                                          | ND            | 1.7 J       | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | -                             |
| 3-Methylphenol/4-Methylphenol                           | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | -                             |
| 2,4,5-Trichlorophenol                                   | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | -                             |
| Benzoic Acid                                            | 12 J          | ND          | 11 J     | 20 J         | 18 J         | ND         | ND       | 44 J       | ND         | ND                    | -                             |
| Benzyl Alcohol                                          | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | -                             |
| Carbazole                                               | ND            | ND          | ND       | ND           | 5.0          | ND         | 1.3 J    | ND         | ND         | ND                    | -                             |
| Acenaphthene                                            | ND            | 0.08 J      | ND       | 0.04 J       | 4.8          | 1.5        | ND       | 1.7        | 0.10 J     | 0.11                  | 20                            |
| 2-Chloronaphthalene                                     | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 10                            |
| Fluoranthene                                            | 0.28          | 2.1         | 0.03 J   | 0.50         | 5.7          | 4.0        | 0.17     | 17         | 0.36       | 0.50                  | 50                            |
| Hexachlorobutadiene                                     | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 0.5                           |
| Naphthalene                                             | 0.09 J        | 0.9         | ND       | 0.06 J       | 11           | 0.76       | ND       | 0.70       | ND         | ND                    | 10                            |
| Benzo(a)anthracene                                      | 0.16          | 1.5         | ND       | 0.32         | 2.3          | 1.7        | 0.10     | 8.7        | 0.22       | 0.32                  | 0.002                         |
| Benzo(a)pyrene                                          | 0.18          | 1.5         | ND       | 0.38         | 2.2          | 1.5        | 0.11     | 7.8        | 0.18       | 0.31                  | ND                            |
| Benzo(b)fluoranthene                                    | 0.29          | 1.8         | ND       | 0.50         | 2.6          | 1.8        | 0.16     | 9.5        | 0.26       | 0.41                  | 0.002                         |
| Benzo(k)fluoranthene                                    | 0.08 J        | 0.57        | ND       | 0.15         | 0.82         | 0.60       | 0.05 J   | 3.2        | 0.10 J     | 0.15                  | 0.002                         |
| Chrysene                                                | 0.27          | 1.5         | ND       | 0.33         | 2.1          | 1.5        | 0.13     | 8.2        | 0.26       | 0.39                  | 0.002                         |
| Acenaphthylene                                          | ND            | 0.04 J      | ND       | 0.02 J       | 0.05 J       | 0.11       | 0.04 J   | 0.56       | ND         | 0.12                  |                               |
| Anthracene                                              | 0.05 J        | 0.34        | ND       | 0.09 J       | 2.9          | 1.5        | 0.03 J   | 4.2        | 0.13       | 0.14                  | 50                            |
| Benzo(ghi)perylene                                      | 0.23          | 1.2         | ND       | 0.39         | 1.7          | 1.2        | 0.15     | 4.4        | 0.20       | 0.24                  | •                             |
| Fluorene                                                | 0.04 J        | 0.10        | ND       | 0.05 J       | 3.9          | 1.5        | ND       | 1.8        | 0.14       | 0.14                  | 50                            |
| Phenanthrene                                            | 0.22          | 1.0         | 0.05 J   | 0.27         | 10           | 2.9        | 0.08 J   | 12         | 0.18       | 0.21                  | 50                            |
| Dibenzo(a,h)anthracene                                  | 0.06 J        | 0.28        | ND       | 0.08 J       | 0.40         | 0.25       | 0.03 J   | 1.1        | 0.06 J     | 0.06 J                | -                             |
| Indeno(1,2,3-cd)pyrene                                  | 0.16          | 0.95        | ND       | 0.31         | 1.4          | 0.99       | 0.10 J   | 4.0        | 0.16       | 0.22                  | 0.002                         |
| Pyrene                                                  | 0.3           | 2.2         | 0.03 J   | 0.48         | 4.9          | 3.6        | 0.18     | 16         | 0.47       | 0.67                  | 50                            |
| 2-Methylnaphthalene                                     | 0.06 J<br>1.9 | 0.05 J      | ND<br>ND | 0.03 J<br>ND | 2.8          | 0.36<br>ND | ND<br>ND | 0.64<br>ND | 0.15<br>ND | 0.19<br>ND            | -                             |
| Pentachlorophenol                                       | 1.9<br>ND     | ND<br>ND    | ND       | ND           | 0.37 J<br>ND | ND         | ND       | ND         | ND         | ND                    | 1                             |
| Hexachlorobenzene                                       |               |             |          |              |              |            |          |            |            |                       | 0.04                          |
| Hexachloroethane                                        | ND            | ND          | ND       | ND           | ND           | ND         | ND       | ND         | ND         | ND                    | 5                             |

Notes: ND - Not detected at the reported detection limit for the sample. Bold shaded values exceed the NYSDEC Class GA Ambient Water Quality Standards. J - Estimated concentration above the Method Detection Limit and below the Reporting Limit. - = Not established

| Well No.                        | GW-9           | GW-10          | GW-11                | GW-12           | GW-13            | GW-14            | GW-15           | GW-16            | GW-17           | MW-17D<br>(duplicate) | NYS Class GA<br>Ambient Water |
|---------------------------------|----------------|----------------|----------------------|-----------------|------------------|------------------|-----------------|------------------|-----------------|-----------------------|-------------------------------|
| Sampling Date                   |                |                |                      |                 | 2/8/2            | 2019             |                 |                  |                 | ()                    | Quality<br>Standards          |
| Total Metals in micrograms pe   | or litor       |                |                      |                 |                  |                  |                 |                  |                 |                       | otandardo                     |
|                                 |                | 1,520          | 5.010                | 755             | 4 400            | 22.200           | 4.040           | 27,400           | 4,280           | 0.070                 | 1                             |
| Aluminum, Total                 | 316<br>1.6 J   | 1,520<br>1.1 J | 5,010<br><b>4.64</b> | 755<br>1.68 J   | 4,420<br>1.38 J  | 33,300<br>1.65 J | 4,040<br>0.84 J | 27,400<br>1.75 J | 4,280<br>1.12 J | 2,870<br>1.36 J       | - 3                           |
| Antimony, Total                 | 1.6 J<br>1.9   | 6.77           | 11.21                | 2.75            | 5.94             | 39.86            | 7.53            | 44.26            | 8.81            | 6.7                   | 25                            |
| Arsenic, Total<br>Barium, Total | 59.09          | 66.16          | 123.8                | 66.76           | 5.94<br>48.87    | 576.2            | 1311            | 44.26            | 304.3           | 59.36                 | 1,000                         |
| Beryllium, Total                | 59.09<br>ND    | 0.14 J         | 0.26 J               | ND              | 46.67<br>0.25 J  | 1.73             | 0.18 J          | 1.26             | 0.21 J          | 0.14 J                |                               |
|                                 | 0.07 J         | 0.14 J<br>0.48 | 0.26 J<br>0.23       | 0.11 J          | 0.25 J<br>0.06 J | 2.33             | 0.18 J          | 2.87             | 0.21 J          | 0.14 J<br>0.12 J      | 3<br>5                        |
| Cadmium, Total                  | 71,500         | 43,300         | 94,700               | 77,200          | 36,000           | 135,000          | 26,600          | 94,500           | 33,700          | 31,900                | 5                             |
| Calcium, Total                  | 4.76           | 9.02           | 94,700<br>25.76      | 8.08            | 16.65            | 135,000          | 9.63            | 94,500<br>81.51  | 11.75           | 7.14                  | -                             |
| Chromium, Total                 | 4.76<br>0.36 J |                |                      |                 |                  |                  | 4.33            |                  |                 |                       | 50                            |
| Cobalt, Total                   |                | 1.04           | 3.66<br>32.04        | 1.55            | 3.04<br>17.95    | 31.47<br>228.9   | 4.33            | 30.83<br>249.9   | 4.49<br>34.21   | 2.66                  | -                             |
| Copper, Total                   | 4.46           | 35.49          |                      | 6.76            |                  |                  |                 |                  |                 | 19.23                 | 200                           |
| Iron, Total                     | <b>534</b>     | 5,910          | 5,530                | 1,420           | 6,230            | 65,800           | 6,940           | 60,500<br>825.4  | 8,000           | 4,470                 | 300                           |
| Lead, Total                     | 12.28          | 63.64          | 56.06                | 21.55           | 21.07            | 709.8            | 74.38           |                  | 99.05           | 55.34                 | 25                            |
| Magnesium, Total                | 14,900<br>20.4 | 4,610<br>41.61 | 11,300<br>124.2      | 10,900<br>65.72 | 5,010<br>110     | 23,400<br>1,095  | 4,470<br>119.7  | 17,800<br>937.1  | 6,140<br>207.8  | 5,670<br>174.9        | 35,000                        |
| Manganese, Total                |                |                |                      |                 |                  |                  |                 |                  |                 |                       | 300                           |
| Mercury, Total                  | ND             | ND             | ND                   | ND              | ND               | 0.24             | ND              | 0.54             | ND              | ND                    | 0.7                           |
| Nickel, Total                   | 3.52           | 5.2            | 8.78                 | 3.66            | 7.85             | 76.53            | 10.94           | 65.17            | 10.41           | 6.64                  | 100                           |
| Potassium, Total                | 7,680          | 2,830          | 8,200                | 4,520           | 3,180            | 10,500           | 2,240           | 5,410            | 2,810           | 2,860                 | -                             |
| Selenium, Total                 | ND             | ND             | 2.3                  | ND              | 2.14 J           | 11.6             | ND              | 7.3              | ND              | ND                    | 10                            |
| Silver, Total                   | ND             | ND             | ND                   | ND              | ND               | 0.43             | ND              | 0.48             | ND              | ND                    | 50                            |
| Sodium, Total                   | 134,000        | 22,000         | 145,000              | 22,500          | 26,600           | 28,200           | 12,800          | 15,800           | 31,300          | 33,500                | 20,000                        |
| Thallium, Total                 | ND             | ND             | 0.37 J               | ND              | ND               | 1.04             | 0.18 J          | 1.14             | 0.15 J          |                       | 0.5                           |
| Vanadium, Total                 | 1.75 J         | 9.37           | 11.53                | 5.18            | 13.41            | 95.3             | 11.55           | 82.19            | 13.48           | 10.06                 | -                             |
| Zinc, Total                     | 65.39          | 211.7          | 113.6                | 38.54           | 48.19            | 758.5            | 830.1           | 2,545            | 248.4           | 67.06                 | 2,000                         |
| Dissolved Metals in microgram   |                |                |                      |                 |                  |                  |                 |                  |                 |                       |                               |
| Aluminum, Dissolved             | 46.5           | 13.5           | 75.4                 | 68.6            | 92.6             | 49.2             | 525             | 35.4             | 58.7            | 61                    | -                             |
| Antimony, Dissolved             | 1.79 J         | 1.23 J         | 1.1 J                | 0.84 J          | 2.93 J           | 1.96 J           | 0.87 J          | 0.86 J           | 1.06 J          | 0.97 J                | 3                             |
| Arsenic, Dissolved              | 1.81           | 0.66           | 3.43                 | 1.17            | 2.86             | 2.63             | 1.6             | 1.68             | 2.28            | 2.2                   | 25                            |
| Barium, Dissolved               | 46.6           | 25.72          | 11.77                | 58.56           | 6.7              | 11.06            | 140.4           | 13.61            | 8.73            | 8.62                  | 1,000                         |
| Beryllium, Dissolved            | ND             | ND             | ND                   | ND              | ND               | ND               | ND              | ND               | ND              | ND                    | 3                             |
| Cadmium, Dissolved              | ND             | 0.09 J         | ND                   | ND              | ND               | ND               | 0.06 J          | ND               | ND              | ND                    | 5                             |
| Calcium, Dissolved              | 60,100         | 29,100         | 40,100               | 73,600          | 29,100           | 31,100           | 17,700          | 21,300           | 23,700          | 24,000                | -                             |
| Chromium, Dissolved             | 1.59           | 0.28 J         | 1.7                  | 1               | 1.28             | 0.48 J           | 1.45            | 0.36 J           | 0.48 J          | 0.49 J                | 50                            |
| Cobalt, Dissolved               | 0.34 J         | 0.26 J         | 0.19 J               | 0.95            | ND               | 0.58             | 0.53            | ND               | 0.45 J          | 0.43 J                | -                             |
| Copper, Dissolved               | 5.45           | 16.62          | 19.8                 | 3.38            | 1.07             | 5.24             | 7.26            | 2.47             | 1.03            | 1.04                  | 200                           |
| Iron, Dissolved                 | 180            | 44.9 J         | 70.2                 | 232             | 74.1             | 66.9             | 807             | 25.4 J           | 81.4            | 86.2                  | 300                           |
| Lead, Dissolved                 | 3.13           | ND             | 0.63 J               | 4.6             | ND               | 0.61 J           | 8.17            | ND               | 1.26            | 1.14                  | 25                            |
| Magnesium, Dissolved            | 13,400         | 3,030          | 6,040                | 12,100          | 2,790            | 3,970            | 2,110           | 2,380            | 3,630           | 3,640                 | 35,000                        |
| Manganese, Dissolved            | 22.93          | 17.52          | 2.48                 | 63.7            | 1.73             | 51.95            | 14.11           | 20.51            | 83.55           | 82.08                 | 300                           |
| Mercury, Dissolved              | ND             | ND             | ND                   | ND              | ND               | ND               | ND              | ND               | ND              | ND                    | 0.7                           |
| Nickel, Dissolved               | 3.2            | 1.24 J         | 1.29 J               | 2.59            | 0.59 J           | 2.51             | 1.5 J           | 0.59 J           | 1.16 J          | 1.13 J                | 100                           |
| Potassium, Dissolved            | 8,000          | 2,080          | 4,660                | 11,300          | 2,280            | 2,780            | 845             | 1,050            | 1,730           | 1,780                 | -                             |
| Selenium, Dissolved             | ND             | ND             | ND                   | ND              | ND               | ND               | ND              | ND               | ND              | ND                    | 10                            |
| Silver, Dissolved               | ND             | ND             | ND                   | ND              | ND               | ND               | ND              | ND               | ND              | ND                    | 50                            |
| Sodium, Dissolved               | 142,000        | 19,300         | 100,000              | 27,000          | 25,100           | 23,100           | 12,000          | 12,600           | 28,900          | 28,900                | 20,000                        |
| Thallium, Dissolved             | ND             | ND             | ND                   | ND              | 0.15 J           | ND               | ND              | ND               | ND              | ND                    | 0.5                           |
| Vanadium, Dissolved             | ND             | ND             | 2.23 J               | 3.24 J          | 4.93 J           | 3.18 J           | 2.13 J          | 1.59 J           | 2.03 J          | 1.86 J                | -                             |
| Zinc, Dissolved                 | 34.78          | 45.56          | 5.49 J               | 12.57           | 15.05            | 4.76 J           | 98.9            | 4.61 J           | 7.68 J          | ND                    | 2,000                         |

Notes:

Notes: ND - Not detected at the reported detection limit for the sample. Bold shaded values exceed the NYSDEC Class GA Ambient Water Quality Standards. J - Estimated concentration above the Method Detection Limit and below the Reporting Limit. ug/l = micrograms per liter - = Not established


| rams per liter<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                        | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N                                                                                                                                            | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2/8/ ND                                                                                          | 2019<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND<br>ND<br>ND<br>ND<br>ND<br>0.046 J<br>ND<br>0.046 J                                                                                                                                                                                                                                                                                    | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quality<br>Standards<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND           ND           ND           ND           ND           0.075 JP           ND           0.075 J                                                                                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<br>ND<br>ND<br>ND<br>0.046 J<br>ND<br>ND                                                                                                                                                                                                                                                                                               | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND           ND           ND           ND           ND           0.075 JP           ND           0.075 J                                                                                                                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<br>ND<br>ND<br>ND<br>0.046 J<br>ND<br>ND                                                                                                                                                                                                                                                                                               | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND           ND           ND           ND           0.075 JP           ND           0.075 J           ND           ND | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<br>ND<br>ND<br>ND<br>0.046 J<br>ND<br>ND                                                                                                                                                                                                                                                                                               | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND           ND           ND           ND           0.075 JP           ND           0.075 J                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                             | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                         | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND<br>ND<br>0.046 J<br>ND<br>ND                                                                                                                                                                                                                                                                                                     | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND           ND           0.075 JP           ND           0.075 J                                                                                                                                                                                                                 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                               | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND<br>ND<br>ND<br>ND<br>ND                                                                                                           | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND<br>ND<br>0.046 J<br>ND<br>ND                                                                                                                                                                                                                                                                                                           | ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.09<br>0.09<br>0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND           ND           0.075 JP           ND           0.075 J                                                                                                                                                                                                                 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                               | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND<br>ND<br>ND<br>ND<br>ND                                                                                                           | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND<br>ND<br>0.046 J<br>ND<br>ND                                                                                                                                                                                                                                                                                                           | ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.09<br>0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.075 JP<br>ND<br>ND<br>0.075 J<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                           | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                           | ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<br>ND<br>ND<br>ND                                                                                                                 | ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.046 J<br>ND<br>ND                                                                                                                                                                                                                                                                                                                       | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND<br>ND<br>0.075 J<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                 | ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND<br>ND                                                                                                                       | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND<br>ND                                                                                                                                                                                                                                                                                                                                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND<br>ND<br>0.075 J<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND                                                                                                                                                                                                       | ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND<br>ND                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.075 J<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                   | ND<br>ND<br>ND                                                                                                                                                                                                             | ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                              | ND<br>ND                                                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.046 J                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND<br>ND<br>ND                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND<br>ND<br>ND                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND<br>ND                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                   | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | 0.006 JIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ł                                                                                                                                                                                                                                                                                 | ND       ND | ND         ND           ND         ND | NDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND | ND         ND         ND         ND           ND         ND         ND         ND         ND | ND         ND         ND         ND         ND           ND         ND         ND         ND         ND         < | NDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND< | ND         ND         ND         ND         ND         ND         ND           ND         ND         ND         ND | ND         ND< | ND         ND< |

- No exceedances of the NYSDEC Standards were noted for VOCs at any of the other sampling locations, including GW-17 at the downgradient edge of the property, GW-9 on the upgradient side of the property, or the crossgradient locations GW-11, GW-12, or GW-14. The absence of VOC groundwater impacts at these locations indicates that the VOC impacts appear to be confined to the Property and the VOC plume is narrow and welldefined;
- Exceedances of the NYSDEC Standards were noted for PAH SVOCs at all of the sampled locations, with the exception of GW-11. We note that the NYSDEC Standards for the PAH SVOCs are extremely low and PAHs tend to be adsorbed to suspended particulate materials. All of the groundwater samples were highly turbid due to suspended particulates and PAH SVOCs were detected in many of the soil samples. We conclude that the PAH SVOC detections likely resulted from sample turbidity and the detected concentrations are not representative of actual (dissolved) groundwater conditions;
- Metals (totals) were detected in all of the groundwater samples at levels above the NYSDEC Standards. However, metals results for the filtered samples, which represent the actual (dissolved) groundwater conditions unaffected by turbidity, show exceedances only for sodium (most of the groundwater samples) and iron (well GW-15 only). As discussed in Section 1.2, very little (if any) fresh groundwater is anticipated to be present in the Upper Aquifer in the Property vicinity due to the Property's location close to the Atlantic Ocean and Jamaica Bay. The detected sodium concentrations, which range from 12,000 to 142,000 micrograms per liter, are indicative of groundwater influenced by nearby salt water bodies. Iron is often found at elevated levels in Long Island groundwater, and the detection at GW-15 does not appear to present a concern, and
- No PCB or pesticide impacts were identified in any of the groundwater samples.

The groundwater data from the Supplemental Investigation are consistent with the previous groundwater data from the GW-1 through GW-8 locations (these earlier samples were tested for VOCs only). Collectively, these data indicate the following:

- A plume of petroleum-related VOCs and TCE is originating from the B9/B9N/CB-4 area and migrating downgradient (north-northeast). This plume is present at the GW-7, GW-10, GW-13, and GW-2 locations, with a low level of one VOC noted at GW-1 (crossgradient) and GW-8 (upgradient). The plume does not extend further downgradient to GW-17. This plume is narrow, well-defined, and limited to the Property; and
- Chloroform, which is a breakdown product from TCE and other chlorinated solvents, is
  present at GW-15 and GW-16 at levels somewhat above its Standard. These locations
  are downgradient (north-northeast) of the B3 drywell area where several VOCs, including
  TCE and cis-1,2-DCE, were found in soil. The breakdown of TCE to chloroform in the
  groundwater a short distance downgradient of the apparent source area suggests that this
  area of groundwater impact is limited.

Figure 4.2.2 depicts the extents of the areas of VOC-impacted groundwater at the property.



# 4.3 Nature and Extent of Contamination

The observations and chemical analytical data from the Supplemental Phase II ESA Investigation were evaluated together with the previous subsurface information from the Property to assess the nature and extent of contamination, as discussed below.

# 4.3.1 Soil Conditions

- Historic fill consisting of sand containing angular gravel, slag, brick, concrete, and/or asphalt is present to an approximate depth of 3 feet beneath nearly the entire property. These materials are typical of historic fill in the greater New York metro area and this fill was likely placed to facilitate development of the property in the early 1900s.
- Soil impacted by chlorinated solvents and some petroleum VOCs and SVOCs is present in borings B3N, B3E, B3S, and B3W in the B3 drywell area. The impacts exceed the unrestricted use and protection of groundwater SCOs, with some of the SVOC detections also exceeding the restricted residential and/or commercial use SCOs. One metal (zinc) detection exceeds its unrestricted use SCO in boring B3W. The impacts were generally noted in the interval to about 4 feet below grade, with some exceedances also noted in the 4 to 6-foot interval at B3N and B3E. This impacted area appears to be a source for groundwater VOC impacts noted at GW-15 and GW-16 and for soil vapor impacts.
- Soil impacted by petroleum-related VOCs and SVOCs, PCBs, one pesticide and two metals is present in boring B9N. VOC (including TCE), SVOC and metals impacts were also noted in the nearby boring B9 and the CB-4 drywell. The impacts appear to coincide with paint/petroleum odors in the interval from 2 to 8 feet below grade in the borings. This impacted area appears to be a source for groundwater VOC impacts primarily noted at GW-7, GW-10, GW-13, and GW-2 and soil vapor impacts. No impacts were identified in the samples from the B9A, B9E, B9S, or B9W borings, which indicates that the soil impact in this area is limited.
- Some petroleum-related VOC and SVOC impacts were noted in the shallow (0 to 2-foot) interval of boring B16 and copper exceeded its unrestricted use SCO in the 2 to 4-foot interval. These results are consistent with the odor and organic vapor readings in this boring and indicate that an apparently limited amount of petroleum impact is present in the vicinity of this boring.
- Some limited impacts were noted in other borings, including boring B10 (acetone slightly above its unrestricted use and protection of groundwater SCO in the 4 to 6-foot interval and zinc above its unrestricted use SCO in the 0 to 2-foot interval) and boring B12 (acetone slightly above its unrestricted use and protection of groundwater SCO in the 0 to 2-foot interval). These impacts are not associated with visual indications of potential contamination and do not appear to be indicative of significant contamination.
- Catch basins (CB-1, CB-2, CB-3, CB-4 and CB-5) and drywells (B3, B4, and B9) all exhibited exceedances of SCOs for PAH SVOCs, metals, pesticides, and/or PCBs typical of urban stormwater runoff, with CB-4 and B4 also showing indications of petroleum-related VOCs and TCE. These catch basins and drywells may also be sources for VOC impacts to groundwater and soil vapor.



## 4.3.2 Groundwater Conditions

- Groundwater flow is to the north-northeast, consistent with the distribution of VOC contaminants in groundwater;
- A plume of petroleum-related VOCs and chlorinated solvents is present in groundwater at GW-7, GW-10, GW-13, and GW-2, with lesser impacts noted at GW-1 and GW-8. These impacts appear to originate from source materials in the B9/B9N/CB-4 area. As the plume migrates, TCE is breaking down into cis-1,2-DCE and VC. Chlorinated solvents were not found at levels exceeding NYSDEC Standards at sampling locations located crossgradient from the centerline of the plume (GW-3 to GW-6, GW-11, GW-12, or GW-14 locations), upgradient of the plume (GW-9), or downgradient of the plume (GW-17), indicating that the plume of VOC-impacted groundwater is narrow, well-defined, and limited to the Property;
- A smaller plume chloroform-impacted groundwater is present downgradient of the B3 drywell area where several VOCs, including TCE and cis-1,2-DCE, were found in soil. The breakdown of TCE to chloroform in the groundwater a short distance downgradient of the apparent source area suggests that this area of groundwater impact is limited;
- PAH SVOCs and several metals (totals) were found in nearly all of the groundwater samples. These detections likely resulted from the high turbidity in the groundwater samples are not representative of actual groundwater conditions at the Property. Results from samples that were filtered to remove turbidity generally do not show elevated levels of any metals other than sodium, which was found in most of the samples, consistent with the Property's location in proximity to the Atlantic Ocean. Iron, which is often found at elevated levels in Long Island groundwater, was found above its Standard in one well (GW-15); this detection does not present a concern; and
- Pesticides and PCBs did not exceed the NYSDEC Standards in any of the groundwater samples.

# 4.3.3 Soil Vapor Conditions

Soil vapor sampling was not performed during the Supplemental Investigation as previous soil vapor sampling data are available to characterize soil vapor conditions. As discussed in Section 2.2.4, soil vapor samples were previously collected from seven locations (SV-1 through SV-7) throughout the Property from beneath the concrete slab of the former buildings and tested in accordance with NYSDOH protocols. The results indicate the following:

- Five VOCs for which the NYSDOH provides guidance, including CT, cis-1,2- DCE, TCE,1,1-DCE, and methylene chloride, were detected in at least one of the soil vapor samples and may pose a concern for SVI. Specifically, the results for 1,1-DCE at SV-7, CT at SV-5 and SV-7, cis-1,2-DCE at SV-1 and SV-3, and methylene chloride at SV-7 could trigger a monitor or mitigate response, and the levels of TCE at SV-1, SV-2, SV-3, and SV-7 would trigger a mitigate response. All of these VOCs were detected in the source material at B9 and/or in the groundwater beneath the Property and, therefore, the soil vapor detections likely originated from this onsite source; and
- Elevated concentrations of several petroleum compounds were detected at SV-7. These detections also appear related to the impacted soil noted in nearby soil boring B9.



## 4.4 Potential Remedial Measures

As discussed in Section 2.3, it is proposed to redevelop the Property, together with other parcels, with mixed commercial and restricted residential uses. A preliminary redevelopment plan presented in Figure 2.3.1 shows that the Property is to be completely covered by a new residential building and associated covered parking and pavement. No vegetated areas are proposed, with the exception of a stormwater management planter to be located to the north of the building.

Redevelopment activities will include removal of the existing former building infrastructure (walls, pavement, drywells, etc.) from the Property. Excavation is anticipated to be conducted to 4 feet below grade to accommodate grade beams for the new slab-on-grade building. No basement or other subsurface infrastructure is proposed, other than building foundation elements. Public water will be provided to the Property and no use of the Property groundwater is contemplated.

Based on the nature and extent of contamination at the Property and the anticipated redevelopment, a Remedial Action Plan (RAP) should be prepared. The RAP should include an evaluation of potential exposures under the contemplated redevelopment scenario and potential remedial measures to address the identified contamination and potential exposures. Potential remedial measures that should be considered in the RAP include:

- Remediation of source materials;
- Groundwater monitoring to evaluate the anticipated improvement in groundwater quality following remediation of source materials;
- SVI mitigation measures if ground-level areas of the proposed new building will be occupied;
- Measures to control potential exposures to residual soil and groundwater contamination; and
- A Construction Health and Safety Plan (CHASP) to include measures to control potential exposures during construction.

