

PREFERRED ENVIRONMENTAL SERVICES

323 Merrick Avenue - North Merrick, New York 11566

Tel: (516) 546-1100 Fax: (516) 213-8156

April 23, 2018

Mr. Ira Wechsler Prestone Printing Co., Inc.

Re: Limited Soil Vapor Intrusion & Soil Sampling Summary Report

Prestone Printing Co., Inc.

4750 30th Street, Long Island City, New York

Dear Mr. Wechsler:

This report summarize the findings of the Limited Soil Vapor Intrusion (SVI) and Soil Sampling Study conducted by Preferred Environmental Services (Preferred) on April 2 & 3, 2018, at the commercial property located at 4750 30th Street, Long Island City, New York (Subject Property) (**Figures 1 -3**). This Study was performed in order to evaluate Sub-Slab Soil Vapor and indoor air quality at the Subject Property. The SVI portion of the investigatory work was conducted in accordance with the requirements set forth in the October 2006 New York State Department of Health (NYSDOH) *Guidance for Evaluating Soil Vapor Intrusion in the State of New York*.

Site Description and Background

The Subject Property is currently improved with a one-story commercial building (offices and warehouse). The current occupant is a printing press, Prestone Printing Co., Inc. (Prestone). The building had previously been occupied by the Milton Paper Company, and prior to that was occupied a chemical warehouse and shellac company (Philip A. Hunt Chemical Corporation).

A Phase I Environmental Site Assessment (ESA) was completed by Whitestone Associates Inc. (Whitestone) in August 2005, which identified several Recognized Environmental Concerns (RECs). One such REC was the presence of an out-of-service (OOS) empty 3,000-gallon fuel oil Underground Storage Tank (UST) in the southern portion of the Subject Property. An additional REC was the identified presence of a former drycleaner situated adjacent to the Subject Property to the north. Based upon the results of this Phase I ESA, a Limited Phase II ESA was completed by Whitestone in September 2005 (Attachment A), which included the installation of six (6) soil borings (Figure 4); two (2) adjacent to the OOS UST, and four (4) in a storage room which was identified in a prior Phase I ESA.

The issue of former UST is being addressed by PAL Environmental Services. Preferred was engaged to perform a Limited SVI Study to assess subsurface soil vapor conditions relative to the REC posed by the former drycleaners' situated adjacent and to the north of the Subject Property, detailed below.

Soil Vapor Intrusion (SVI) Study - April 2 & 3, 2018

Preferred conducted a limited SVI Study on April 2 and 3, 2018. The SVI Study included the collection of one (1) sub-slab soil vapor sample (SSV-1), one (1) indoor air sample (IA-1) and one (1) proximate soil sample (SB-1 at 1.5-2 feet bgs). Sample locations are depicted on **Figure 4**.

The sub-slab soil vapor sample was collected from a temporary soil vapor probe. In order to install the temporary vapor probe, Preferred cored through the concrete slab utilizing an electric powered rotary hammer drill to create a small diameter borehole, within which the vapor probe was installed. The temporary vapor probe was constructed of 3/8th-inch diameter food-grade polyethylene tubing installed two (2) -inches below

the concrete slab. The area surrounding the tubing at the point where it entered the concrete slab was sealed with hydrated bentonite to create an air-tight seal.

SSV-1 and IA-1 were collected from within the northern portion of the building which is utilized as a storage warehouse and process area for the printing press. A separate core apparatus was used to install a boring via a manually operated stainless steel hand auger for the collection of a soil sample. Soil boring (SB-1) was also installed within the northwestern portion of the building within the aforementioned warehouse and process area.

Prior to sampling, an NYSDOH Indoor Air Sampling Questionnaire and Inventory form (see Attachment B) was completed by Preferred's sampling personnel. It should be noted that no chemicals were observed to be stored on-site, however, it is known that cleaning solvents are used on most printing presses.

The SVI Sampling was conducted in accordance with the requirements set forth in the October 2006 NYSDOH Guidance for Evaluating Soil Vapor Intrusion. The annular space within the sub-slab vapor implant tubing was purged a minimum of one to three volumes of soil gas using a personal sampling pump. During purging and sampling, the flow rate did not exceed 0.2 liters per minute. A pre-set regulator and dedicated summa canister was used to procure each sub-slab or soil vapor sample. The regulator was set to collect the indoor sub-slab sample over a 24-hour period and ensured a flow rate less than 0.2 liters per minute. Sufficient volume was collected to achieve the detection limits required to evaluate the data relative to the October 2006 NYSDOH Guidance for Evaluating Soil Vapor Intrusion.

In addition, a helium tracer gas was introduced into the annular space between the SSV tubing and a sealed enclosure (in the form of a 5-gallon plastic bucket, sealed with hydrated bentonite) to confirm the seal between the SSV tubing and the slab floor. A helium detector was utilized to screen for the presence of helium in the sample tubing during collection. No helium was reported as detected. After collection, the SSV sample location was field screened with a Photoionization Detector (PID) to provide real time data; this information was recorded in the Soil Vapor Sample Log Sheet (see **Attachment B**).

Upon completion of the sample collection, the summa canisters were transported under strict chain-of-custody to an NYSDOH-ELAP certified laboratory (York Analytical Laboratories) for Volatile Organic Compound (VOC) analysis by EPA Method TO-15 low level methodology.

The Indoor Air (IA) Sample was also collected utilizing a pre-set air flow regulator and dedicated summa canister under appropriate vacuum. The canister associated with the sample was set at a height of 3 to 5 feet above relative grade surface elevation as to obtain a sample within the representative breathing zone. The IA sample was collected from a location proximate to the sub-slab soil vapor sample (see attached **Figure 4**). The regulator for the IA sample was set to collect the sample over a 24-hour period and calibrated to ensure a flow rate less than 0.2 liters per minute. As with the sub-slab vapor sample, sufficient volume was collected to achieve the detection limits required to evaluate the data relative to the October 2006 NYSDOH Guidance for Evaluating Soil Vapor Intrusion.

During sampling activities a sample log sheet was completed for each sample summarizing the following:

- a. sample identification,
- b. date and time of sample collection,
- c. sampling depth/height,
- d. identity of samplers,
- e. sampling methods and devices,
- f. purge volumes,
- g. volume of soil vapor extracted,
- h. if canisters used, the vacuum before and after samples collected,
- I. apparent moisture content (dry, moist, saturated, etc.) of the sampling zone, and
- j. chain of custody protocols and records used to track samples from sampling point to analysis.

The SSV and IA samples were both submitted for laboratory analysis for VOCs by EPA Method TO-15 low level methodology. The summa canisters were transported under strict chain-of-custody to an NYSDOH-ELAP certified laboratory (York Analytical Laboratories). Laboratory data summary sheets are included as **Attachment C**.

Soil Vapor Intrusion Sample Analytical Testing Results

Although there are no standards or guidance values to evaluate the reported concentrations of VOCs in sub-slab vapor or outdoor air samples, the NYSDOH has established Indoor Air Guidance Values for three (3) non-aromatic compounds, tetrachloroethylene (PCE) at 30 ug/m³, trichloroethylene (TCE) at 2 ug/m³, and methylene chloride at 60 ug/m³. Additionally, a total of seven (7) related VOCs (vinyl chloride (Matrix C), carbon tertachloride, trichloroethylene, 1,1-dichloroethene, and cis-1,2-Dichloroethene (Matrix A); and methylene chloride, 1,1,1 Trichloroethane (TCA) and Tetrachloroethylene (PCE) (Matrix B) have guidance values associated with the NYSDOH Soil Vapor/Indoor Air Decision Matrices, as established in the supplemental NYSDOH correspondence dated June 25, 2007 and updated May 2017.

These matrices were developed by the NYSDOH to allow for decision-making relative to actions required to be undertaken with respect to intrusion from sub-slab soil vapors into the interior of buildings. In addition to these select Air Guidance Values, the results of the laboratory analysis were also compared to NYSDOH recommended immediate action levels established in a correspondence dated August and September 2015. Finally, the analytical results were also compared to the Summary of Indoor and Outdoor Levels of VOCs from Fuel Oil Heated Homes in New York State 1997 to 2003 (unpublished NYSDOH, Bureau of Toxic Substances Assessment) as shown on **Table 1** relative to aromatic (petroleum-related) compounds (benzene, toluene, ethylbenzene and xylenes (BTEX).

As indicated in **Table 1**, several petroleum-related VOCs (e.g., 2-Butanone, 1,24-Trimethylbenzene, m/p-Xylene, etc.) were detected in the sub-slab soil vapor and indoor air samples. In addition to the petroleum-related VOCs, other chlorinated-solvent VOCs (e.g., cis-1,2-Dichloroethylene (DCE), PCE, TCE) were detected at elevated concentrations in the soil vapor sample (SSV-1) and/or the indoor air sample (IA-1). Generally, with respect to the potential for vapor intrusion, the NYSDOH considers the most significant VOCs to be these chlorinated solvent compounds (Carbon Tetrachloride, PCE and TCE).

1,2,4-Trimethylbenzene was detected at elevated concentrations (550 ug/m3 and 1,300 ug/m3) in both subsoil vapor and indoor air samples, respectively. In addition, acetone was also detected at elevated concentrations (between 220 ug/m3 and 390 ug/m3) in both samples. Other compounds were present such as chloroform and cyclohexane but no specific standards or guidance values are available relative to same. The use of these chemicals during normal business operation is likely the source of that detected in the indoor air samples.

Of most significance is that the analysis of the sub-slab soil vapor and indoor air samples reported PCE concentrations of 17,000 ug/m³ in SSV-1, and 1,700 ug/m³ in IA-1, respectively. TCE (a breakdown product of PCE) was also reported at a concentration of 98 ug/m³ in SSV-1, and 15 ug/m³ in IA-1, respectively. These two (2) compounds were present in the indoor air at concentrations in exceedance of the NYSDOH Immediate (PCE) or Guidance Value specific to indoor air (TCE). Further, it was confirmed that both of these compounds were present in the sub-slab soil vapor samples as well and reported at elevated concentrations.

Evaluation of Air Analytical Results

The concentrations of PCE and TCE, in the sub-slab soil vapor and IA samples were compared to the three (3) available NYSDOH Soil Vapor/Indoor Air Matrices A, B and C (Attachment C) included in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York. These matrices were developed by the NYSDOH to allow for decision-making relative to actions required to be undertaken with respect to vapor intrusion from sub-slab soil vapors into the interior of buildings.

Based upon the reported concentrations of PCE (17,000 ug/m³) within the SSV-1 sample, compared to the indoor air concentrations of 1,700 ug/m³ in the IA-1 sample, review of the NYSDOH Soil Vapor/Indoor Air Matrix B indicates that the NYSDOH recommends that "Mitigation", be performed Further, the concentrations of PCE (1,700 ug/m³) in indoor air is elevated above its associated NYSDOH recommended guidance value of 30 ug/m³, and immediate action level of 300 ug/m³.

Based upon the reported concentrations of TCE (98 ug/m³) within the SSV-1 sample, compared to the indoor air concentrations of 15 ug/m³ in the IA-1 sample, review of the NYSDOH Soil Vapor/Indoor Air Matrix A indicates that the NYSDOH again recommends "Mitigation" be performed. Although this concentration of TCE is above its associated NYSDOH Recommended Air Guidance Value of 2 ug/m³, it is below the NYSDOH recommended immediate action level of 20 ug/m³.

Based upon the reported concentrations of Carbon Tetrachloride (0.52 ug/m³) within the SSV-1 sample, compared to the indoor air concentrations of 0.27 ug/m³ in the IA-1 sample, review of the NYSDOH Soil Vapor/Indoor Air Matrix A indicates that the NYSDOH recommends "No Further Action." Similarly, the reported concentrations of Cis-1,2 DCE (5 ug/m³) and Methylene Chloride (25 ug/m³) within the SSV-1 sample, compared to the indoor air concentrations, the NYSDOH Matrixes also recommends "No Further Action."

It should be noted that the Subject Property currently operates as a commercial printing facility and although

active chemical use and/or storage was not observed during the conduct of this investigation, it is understood that printing-related chemicals are utilized within the premises. As the use of printing-related chemicals is common within the premises as part of site operations, detected concentrations of PCE and TCE in the indoor air within the commercial facility (IA-1) should also be compared to applicable OSHA Permissible Exposure Limits (PELs), of 200,00 parts per billion (ppb) for each compound.

Soil Boring and Soil Sample Analytical Results

One (1) soil boring (SB-1) was installed within the northwest corner of the building to assess the quality of soils underlying the concrete slab. A two-inch diameter coring drill was previously utilized to core through the concrete slab, and a manually operated stainless steel hand auger was utilized to advance the soil boring to a terminal depth of two (2) feet below grade surface (bgs), at which point refusal was encountered. Soils encountered within soil boring SB-1 consisted generally of gray to black medium-grained sand mixed with gravel. Soils within boring SB-1 were continuously logged and field screened for field evidence of environmental impacts (e.g., visual and olfactory evidence, along with screening for the presence of VOCs utilizing a PID). Groundwater was not encountered within the SB-1 borehole.

Field screening of soils within SB-1 noted very limited field evidence of environmental impacts (e.g., odors and staining, PID responses up to 10.5 Parts Per Million (PPM) Response Units (RUs)) noted starting just below the concrete slab, and extending to the terminal depth of the soil boring. One (1) soil sample (SB-1 at 1.5-2 feet bgs) was collected and submitted for laboratory analysis for VOCs by EPA Method 8260. The soil sample was transported under strict chain-of-custody to an NYSDOH-ELAP certified laboratory (York Analytical Laboratories). Laboratory data summary sheets are included as **Attachment C**.

The soil sample analytical results were compared to the New York State Department of Environmental Conservation (NYSDEC) Part 375 Soil Cleanup Objectives (SCOs), specifically the Commercial and Industrial Use SCOs, as summarized in the attached **Table 2**. Three (3) VOCs were reported above their associated laboratory Method Detection Limits (MDLs) in sample SB-1 (1.5-2 feet bgs), including 1,2,4-Trimethylbenzene at 3.6 μ g/kg, Acetone at 77 μ g/kg, and PCE at 100 μ g/kg; none of which were reported at concentrations exceeding their associated Commercial or Industrial Use SCOs.

Summary and Conclusions

A limited Soil Vapor Intrusion Study was conducted on April 2 & 3, 2018, at the Prestone Printing Company located at 4750 30th Street, Long Island City, New York. A total of one (1) sub-slab soil vapor sample was collected, along with one (1) indoor air (IA) sample and one (1) soil sample. The analytical results of the two (2) samples were compared to the October 2006 NYSDOH Guidance for Evaluating Soil Vapor Intrusion. The analytical results of the one (1) soil sample were compared to the NYSDEC Part 375 SCOs.

Upon comparison of the results of the laboratory analysis of the SSV and IA sample to the NYSDOH Soil Vapor/Indoor Air Matrices 1 and 2 it was determined that NYSDOH's recommends mitigation of these concentrations due to exceedances of the NYSDOH "Immediate Action Level", specific to indoor air due to PCE. The concentrations of TCE (15 ug/m³) in indoor air is well above its associated NYSDOH Recommended Air Guidance Value of 2 ug/m³, but below the NYSDOH recommended Immediate Action

Level of 20 ug/m³. However, the elevated concentrations of PCE dictate the need for mitigation, in this instance.

The NYSDOH defines the need for mitigation as: minimizing current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

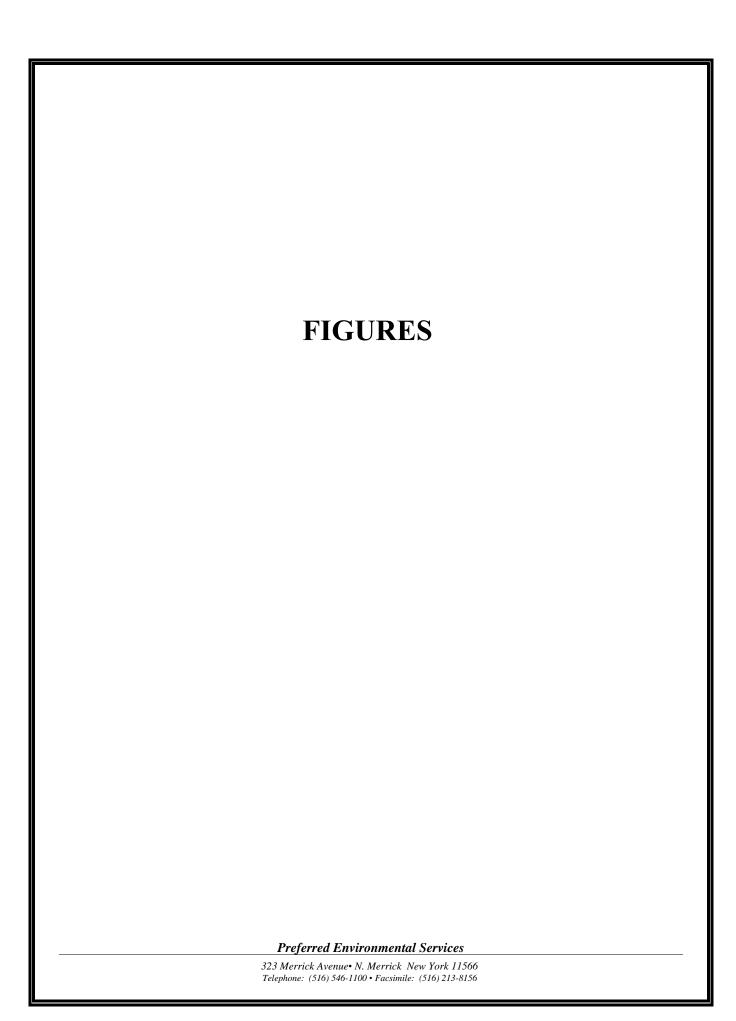
Based upon the comparison of the soil sample (SB-1 at 1.5-2 feet bgs) results to the NYSDEC Part 375 SCOs for Commercial and Industrial Use, no VOCs were reported at concentrations exceeding their applicable SCOs. Therefore, based upon this one (1) soil sample, which represents a very limited soil investigation as part of the SVI, no specific findings could be made relative to VOC-impacts in or to soil.

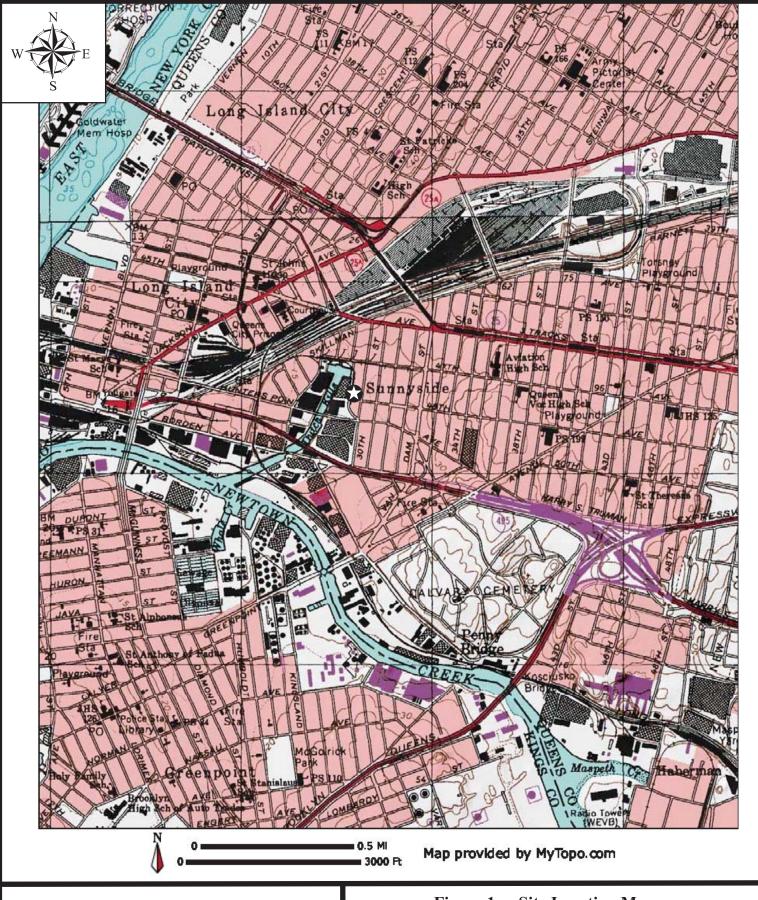
Summary and Conclusions

The conduct of a limited Soil Vapor Intrusion Study at the Subject Property confirms that soil vapor intrusion of PCE and related breakdown chemicals appears to be occurring relative to the abutting property to the north, known to be operated as a dry-cleaner. Some of the chemical identified in indoor air are likely associated with the use of working quantities of cleaning chemicals.

However, based upon the concentrations of PCE identified in both indoor air and soil vapor, the NYSDOH regulatory indicates that immediate mitigation is recommended to be performed within the area tested. Based upon the limited nature of this investigation (only one (1) sub-slab and one (1) indoor air sample collected for laboratory analysis), prior to making any remedial/mitigation decisions, Preferred recommends that additional testing be conducted.

The notification requirements for occupants and tenants should be implemented by Preston until mitigation is completed. Preferred recommends that this report be submitted to the New York State Department of Environmental Conservation (NYSDEC) for their review and assistance in obtaining relief from the vapor intrusion that is occurring that may be attributed to the off-site property to the north.


As always, please feel free to contact me with any questions or comments.


Sincerely,

PREFERRED ENVIRONMENTAL SERVICES

Jill S. Kaimson

Jill S. Haimson, NYS P.G. #000075 President Enc.

PREFERRED ENVIRONMENTAL SERVICES

323 Merrick Avenue - North Merrick, New York 11566 Tel: (516) 546-1100 Fax: (516) 213-8156

Figure 1 - Site Location Map

-Approximate Location of Subject Property

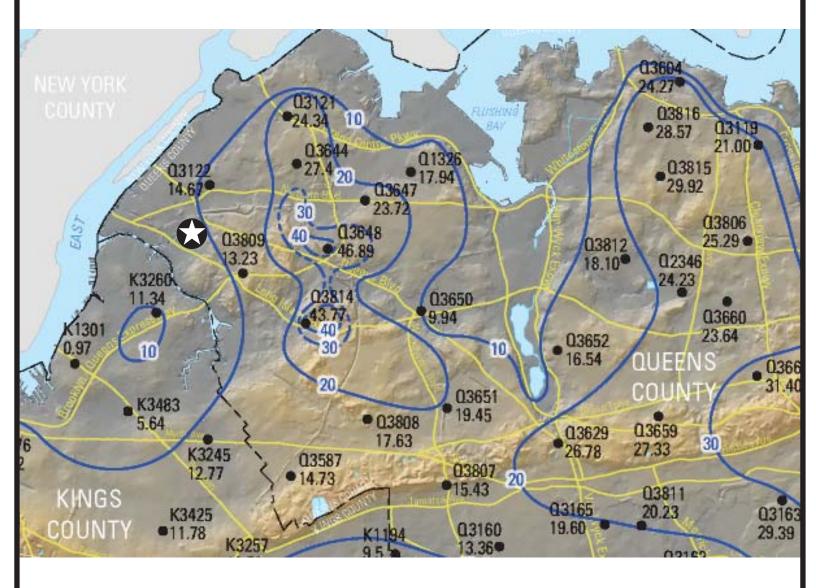
4750 30th Street Site: Long Island City, New York

Source: United States Geologic Survey Brooklyn Quadrangle

Date: April 19, 2018

- PREFERRED ENVIRONMENTAL SERVICES

323 Merrick Avenue - North Merrick, New York 11566 Tel: (516) 546-1100 Fax: (516) 213-8156



Site: 4750 30th Street Long Island City, New York

Date: April 19, 2018
Source: Google Maps

-Approximate Property Line

Source: Water-Table and Potentiometric-Surface Altitudes in the Upper Glacial, Magothy, and Lloyd Aquifers beneath Long Island, New York, March-April 2006

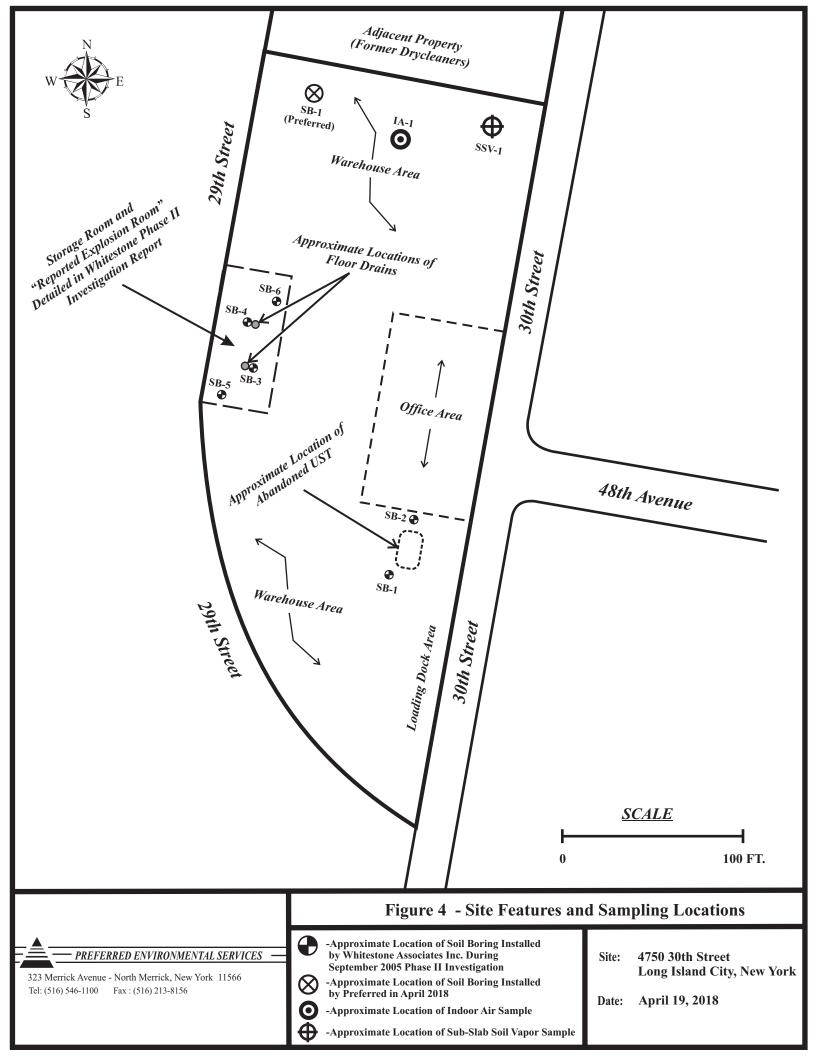
By

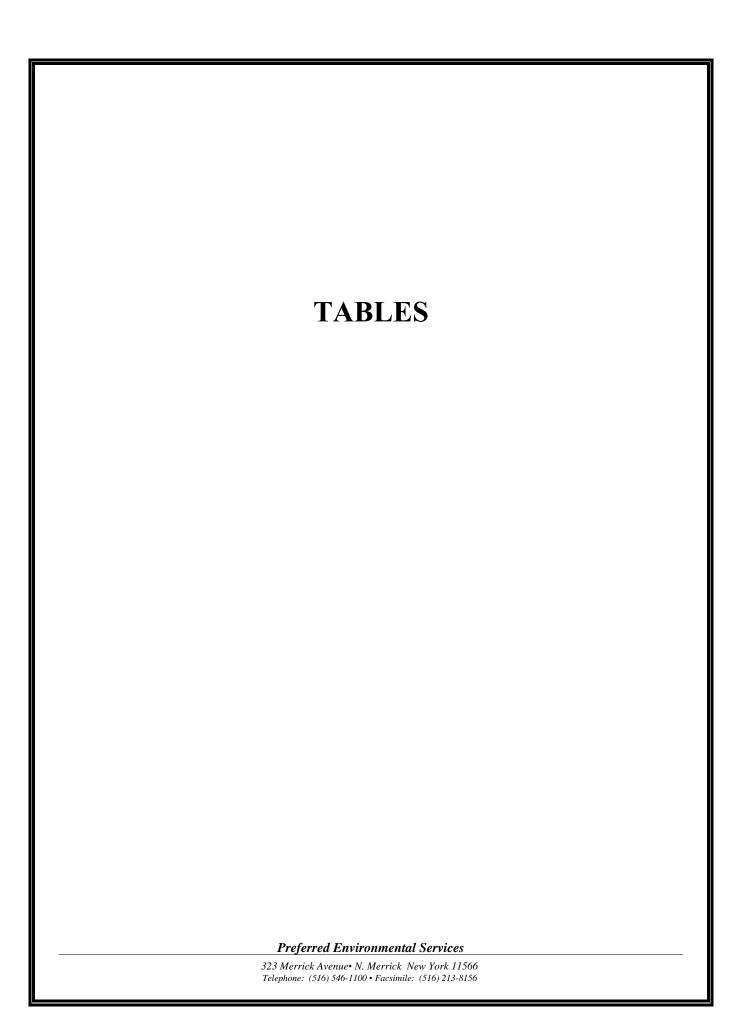
Jack Monti Jr., and Ronald Busciolano
2009

Figure 3- Groundwater Elevation

PREFERRED ENVIRONMENTAL SERVICES

323 Merrick Avenue - North Merrick, New York 11566 Tel: (516) 546-1100 Fax: (516) 213-8156




-Approximate Location of Subject Property

Site: 4750 30th Street

Long Island City, New York

Date: April 19, 2018

TABLE 1

Summary of Volatile Organic Compounds Detected During Sub-Slab and Indoor Air Sampling 4750 30th Street, Long Island City, New York April 2, 2018 - April 3, 2018

Sample Location Sample Date:		Sub-Slab Soil V 4/2/2018 - 4/3/	•	Indoor 4/2/2018 - 4		NYSDO	DH Study	NYSDOH Air Guidance Values	NYSDOH Immediate Action Level (Specific	
Sample ID:		4/2/2016 - 4/3/ SSV-1	2010	4/2/2016 - 4 IA-1		Homes in N	YS 1997 - 2003	(Specific to Indoor Air)	to Indoor Air)	
Laboratory ID:		18-D0122-0	11	18-D011	ŀ	Indoor: 25% to 75%	Outdoor: 25% to 75%	(Specific to findoor Air)	to indoor rin)	
Analyte	Units:	10-20122-0	0	10-2011	0	111001: 2370 to 7370	Outdoor: 2370 to 7370			
1.1-Dichloroethylene	ug/m3	ND	V	0.085	Ų	<0.25	<0.25	NA	NA	
1.2.4-Trimethylbenzene	ug/m3	550	IS-LO	1.300	IS-LO	0.69 - 4.3	<0.25 - 0.81	NA NA	NA NA	
1,3,5-Trimethylbenzene	ug/m3	140	13-LO	430	IS-LO	0.07 - 4.3	<0.25 - 0.34	NA NA	NA NA	
2-Butanone	ug/m3	5.6		2.4	15-LU	1.4 - 7.3	0.76 - 2.6	NA NA	NA NA	
2-Hexanone	ug/m3	ND		4.7		NA	0.76 - 2.0 NA	NA NA	NA NA	
		390		220		10 - 52	3.4 - 14	NA NA	NA NA	
Acetone	ug/m3 ug/m3	4.6		0.89	+	10 - 52	0.57 - 2.3	NA NA	NA NA	
Benzene Carbon Disulfide		1.7		0.89		1.1 - 5.9 NA	0.57 - 2.3 NA	NA NA	NA NA	
	ug/m3					, and the second		· ·	·	
Carbon tetrachloride	ug/m3	0.52		0.27		<0.25 - 0.59	<0.25 - 0.6	NA NA	NA NA	
Chloroform	ug/m3	8.1		0.65		<0.25 - 0.54	<0.25	NA NA	NA NA	
Chloromethane	ug/m3	0.40		0.66		<0.25 - 1.8	<0.25 - 1.8	NA NA	NA NA	
cis-1,2-Dichloroethylene	ug/m3	5.0		0.063		<0.25	<0.25	NA	NA	
Cyclohexane	ug/m3	3.6		7.2		<0.25 - 2.6	<0.25 - 0.43	NA	NA	
Dichlorodifluoromethane	ug/m3	2.2		1.2		<0.25 - 4.1	<0.25 - 4.2	NA	NA	
Ethyl acetate	ug/m3	ND		1.6		NA	NA	NA	NA	
Ethyl Benzene	ug/m3	15		10		0.41 - 2.8	<0.25 - 0.48	NA	NA	
Isopropanol	ug/m3	12		150	E	NA	NA	NA	NA	
Methyl Methacrylate	ug/m3	14		3.0		<0.25	<0.25	NA	NA	
Methyl tert-butyl ether (MTBE)	ug/m3	5.0		ND		<0.25 - 5.6	<0.25 - 0.86	NA	NA	
Methylene chloride	ug/m3	25		5.2		0.31 - 6.6	<0.25 - 0.73	60	NA	
n-Heptane	ug/m3	27		33		1.0 - 7.6	<0.25 - 1.0	NA	NA	
n-Hexane	ug/m3	15		8.6		0.63 - 6.0	<0.25 - 0.88	NA	NA	
o-Xylene	ug/m3	34		37		0.39 - 3.1	<0.25 - 0.56	NA	NA	
p- & m- Xylenes	ug/m3	57		40		0.50 - 4.6	<0.25 - 0.48	NA	NA	
p-Ethyltoluene	ug/m3	160	IS-LO	370	IS-LO	NA	NA	NA	NA	
Propylene	ug/m3	0.81		1.6		NA	NA	NA	NA	
Tetrachloroethylene (PCE)	ug/m3	17,000		1,700		<0.25 - 1.1	<0.25 - 0.34	30	300	
Toluene	ug/m3	59		82		3.5 - 24.8	0.60 - 2.4	NA	NA	
Trichloroethylene (TCE)	ug/m3	98		15		<0.25	< 0.25	2	20	
Trichlorofluoromethane (Freon 11)	ug/m3	1.3		0.84		1.1 - 5.4	<0.25 - 2.2	NA	NA	

Notes:

NYSDOH Study is the Summary of Indoor and Outdoor Levels of Volatile Organic Compounds From Fuel Oil Heated Home in NYS, 1997 to 2003.

The NYSDOH Air Guidelines Values are provided in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion

in the State of New York October 2006 and supplemental VOCs added in June 25, 2007 correspondence.

The NYSDOH Immediate Action Levels are provided in the NYDOH August and September 2015 correspondence. ug/m^3 - micrograms per cubic meter

ND - Analyte not detected at concentration exceeding method detection limit

Highlighted Value incidates contaminnt detected at elevated concentration and/or exceeding its NYSDOH Air Guidance Values and Immediate Action Levels

E - Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.

IS-LO The internal std associated with this target compound did not meet acceptance criteria (area <50% CCV) at the stated dilution due to matrix effects. Sample was rerun to confirm matrix effects.

Table 2

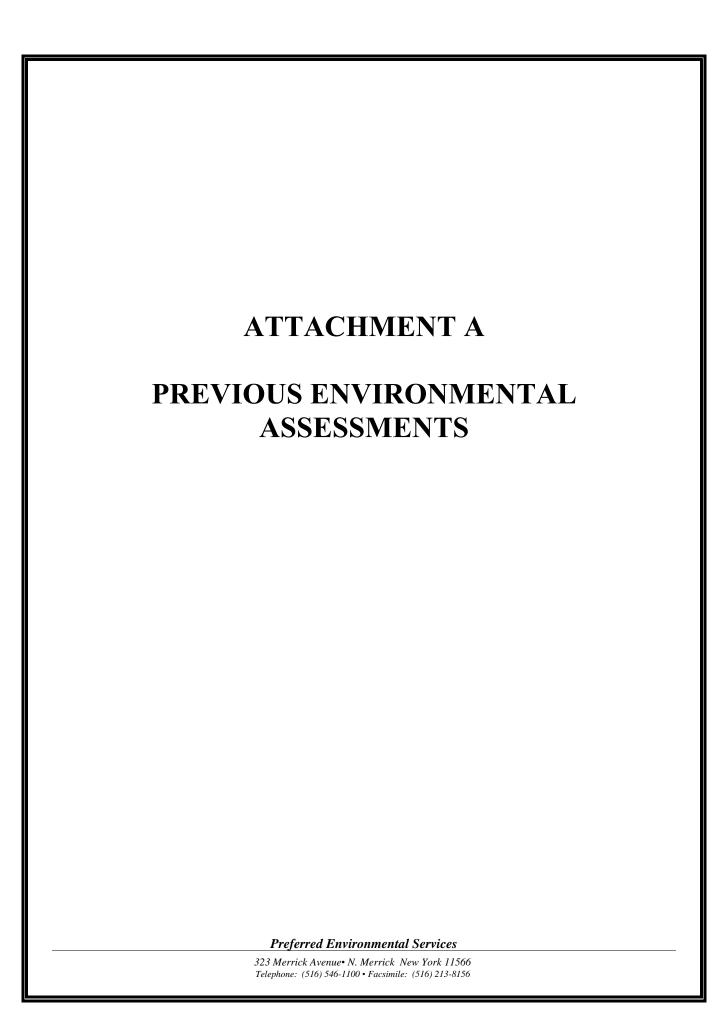
Soil Analytical Results with Comparison to NYSDEC Part 375 Soil Cleanup Objectives (SCOs) 4750 30th Street Long Island City, New York April 2, 2018

Sample ID York ID Sampling Date Client Matrix	SB-1 (1.5-2 fe 18D0049 4/2/2018 1 Soil	-01	NYSDEC Part 375 Restricted Use Soil Cleanup Objectives- Commercial	NYSDEC Part 375 Restricted Use Soil Cleanup Objectives- Industrial			
Compound	CAS Number	Result	Q	Commercial	industriai		
Volatile Organics, 8260 - Comprehensive		μg/Kg		μg/Kg	μg/Kg		
Dilution Factor		1					
1,2,4-Trimethylbenzene	95-63-6	3.6	J	190,000	380,000		
Acetone	67-64-1	77	CCV-E, SCAL-E	500,000	1,000,000		
Tetrachloroethylene (PCE)	127-18-4	100		150,000	300,000		
All other analytes		ND		~	~		

NOTES:

Any Regulatory Exceedences are color coded by Regulation

Q is the Qualifier Column with definitions as follows:


J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated CCV-E=The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% difference for average Rf or >20% Drift for quadratic fit).

SCAL-E= The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%).

~=this indicates that no regulatory limit has been established for this analyte

DISCLAIMER:

York Analytical Laboratories, Inc. is providing this information as a convenience to you. York makes no representations or warranties that these data are accurate, complete or represent the latest regulatory authority limits or analytes. York is not responsible for any errors or omissions in these specific regulations. Your use of these data constitute your understanding of these limitations and you agree to hold York harmless from any and all action that may arise from use of said information.

35 TECHNOLOGY DRIVE
WARREN, NJ 07059
908.668.7777
FAX 908.754.5936
www.whitestoneassoc.com

SUMMARY REPORT OF FINDINGS

PHASE II SITE INVESTIGATION

EXISTING MILTON PAPER COMPANY 47-50 30th STREET LONG ISLAND CITY, QUEENS COUNTY, NEW YORK

Prepared for:

PRESTONE PRINTING 45 Main Street Suite 305 Brooklyn, New York 11201

Prepared by:

WHITESTONE ASSOCIATES, INC. 35 Technology Drive Warren, New Jersey 07059

Whitestone Project #WJ05-8023 September 27, 2005

35 TECHNOLOGY DRIVE WARREN, NJ 07059 908.668.7777 FAX 908.754.5936 www.whitesloneassoc.com

September 27, 2005

via Federal Express

PRESTONE PRINTING

45 Main Street Suite 305 Brooklyn, New York 11201

Attention:

Mr. Robert Adler

Regarding:

SUMMARY REPORT OF FINDINGS

PHASE II SITE INVESTIGATION

EXISTING MILTON PAPER COMPANY

47-50 30th STREET

LONG ISLAND CITY, QUEENS COUNTY, NEW YORK

WHITESTONE PROJECT NO.: WJ05-8023

Dear Mr. Adler:

Whitestone Associates, Inc. (Whitestone) conducted field activities associated with supplemental environmental due diligence investigation activities at the above-referenced site on August 30, 2005. The limited Phase II Site Investigation (SI) was conducted to assess subsurface conditions at the subject site through the collection and analyses of soil and groundwater samples in the vicinity of an abandoned 3,000 gallon former heating oil underground storage tank (UST), floor drains in the western portion of the site building, and in former hazardous materials storage/handling areas. The discharge points of the floor drains also were evaluated during the SI. A summary of Whitestone's activities, findings, conclusions, and recommendations associated with these efforts is presented in the sections that follow.

1.0 ENVIRONMENTAL CONDITIONS

As documented in Whitestone's August 16, 2005 Summary Report of Findings - Phase I Environmental Site Assessment (ESA), the subject site consists of an approximately 54,000 square feet (footprint), single-story building. The site building covers the entire subject property and currently is occupied by Milton Paper Company.

This SI was conducted to further evaluate the recognized environmental conditions (RECs) documented during Whitestone's Phase I ESA. The RECs evaluated during this limited SI are summarized as follows:

The subject property historically has been operated as a chemical warehouse and shellac company. These operations likely included the on-site storage and/or use of hazardous or potentially hazardous

Other Office Locations:

materials. Discharges of such materials/wastes potentially may have resulted in contamination of soil and/or groundwater at the subject property.

- One 3,000 gallon former fuel oil UST remains abandoned in place under the eastern portion of the site building. No environmental sampling reportedly was conducted during UST closure activities, and releases from this former UST may have impacted subsurface conditions at the subject property.
- Two floor drains were observed in a storage room located in the western portion of the site building. A site sketch provided in the November 17, 2004 Phase I ESA prepared by Lender Consulting Service (LCS) for the subject property identifies this room as "reported explosion room". This room formerly may have been utilized for the mixing and testing of chemicals associated with former site operations conducted by Philip A. Hunt Chemical Corporation.

2.0 SCOPE OF WORK AND LIMITATIONS

The scope of this limited SI included the following tasks:

- conducting an evaluation of the discharge point(s) of floor drains utilizing water dye;
- advancing six borings with Geoprobe equipment to facilitate soil screening and select soil and groundwater sampling;
- logging and screening soils with a photoionization detector (PID) for the potential presence of volatile organic (VO) contamination;
- submitting soil samples collected from select borings for laboratory analyses for volatile organic compounds (VO) and semi-volatile organic compounds (SVO); and
- submitting groundwater samples collected from temporary wellpoints established in select borings for laboratory analyses for VO and SVO;

This SI was not intended to be an exhaustive evaluation of subsurface conditions at the subject property and was prepared for the sole use of Prestone Printing, Stadtmauer Bailkin, L.L.P., Citibank, N.A., New York City Industrial Development Agency, their successors, representatives, and assigns, and should not be relied upon by any third party without Whitestone's written consent.

3.0 FLOOR DRAIN EVALUATION

Whitestone utilized a non-toxic water dye in attempt to determine the discharge points of the floor drains observed in the western portion of the site building. The dyed water was poured through the individual drains while potential outfalls (including the stormwater management system and sanitary sewer system) were monitored for the presence of the dye. The dyed water was not observed at the monitored potential outfalls, and the discharge point(s) of the floor drains could not be determined during this evaluation.

4.0 SAMPLING METHODOLOGY

Two soil borings (SB-1 and SB-2) were advanced in the vicinity of the abandoned 3,000 gallon UST and four soil borings (SB-3 through SB-6) were advanced in the former "explosion room" at the western portion of the building. Two of the borings (SB-3 and SB-4) in this room were advanced adjacent to the floor drains.

The borings were advanced utilizing limited-access Geoprobe equipment subcontracted from Enviroprobe Services, Inc. Soil samples were collected as the borings were advanced. Samples were screened with a PID to identify the presence of VO contamination. Soil samples were collected from select borings from the intervals which exhibited the greatest potential for contamination based upon field screening and visual observations. Sampling equipment was decontaminated between successive uses. Temporary PVC wellpoints were placed in borings SB-1, SB-3 and SB-5 to facilitate the collection of groundwater samples. Soil boring logs are provided as Attachment A, and the site and boring locations are depicted on Figure 1 and Figure 2, respectively.

Six soil samples (8023-SB-1 through 8023-SB-6) were submitted to Integrated Analytical Laboratories, L.L.C. (IAL) of Randolph, New Jersey, a State-certified laboratory (NY Certification #11402), for VO and SVO analyses. Analytical results comprise Attachment B and are summarized in Table 1 (Soil and Groundwater Sampling Summary) and Table 2 (Soil Sampling and Analysis Data Summary). Three groundwater samples (8023-SB-1-GW, 8023-SB-3-GW and 8023-SB-5-GW) were collected and submitted to IAL for VO and SVO analyses. Groundwater analytical results are summarized in Table 3 (Groundwater Sampling and Analysis Data Summary).

5.0 SI RESULTS AND SAMPLING AND ANALYSIS DATA SUMMARY

5.1 Site Lithology

Six borings (SB-1 through SB-6) were completed at the subject site to maximum depths of 20.0 feet below ground surface (fbgs). The subsurface soil conditions encountered in the soil borings consisted of the following generalized strata in order of increasing depth.

Surface Materials: The borings conducted in the former "explosion room" (SB-3 through SB-6) encountered approximately six inches to eight inches of concrete then four inches to six inches of cork and then another four inches to six inches of concrete. Voids were documented below the slab in borings SB-4, SB-5 and SB-6. Borings SB-1 and SB-2 encountered approximately eight inches to 12 inches of concrete (floor slab).

Fill Materials: Fill materials were encountered beneath the surficial materials in each of the borings. The fill materials encountered generally consisted of brownish, grayish and olive colored coarse to fine sand with variable amounts of gravel, silt, clay and debris. The debris encountered in the borings consisted of processed gravel and wood. Each boring penetrated through the fill materials into natural soils at depths ranging from approximately nine fbgs to 12.0 fbgs.

Sand: Beneath the fill materials, the borings encountered natural sands that extended to boring termination depths of 20.0 fbgs. This stratum generally consisted of brownish and olive colored coarse to fine sand with variable amounts of gravel and silt.

Groundwater: Groundwater was encountered during the August 30, 2005 field investigation activities in each of the boring at depths ranging from approximately 10 fbgs to 10.5 fbgs.

A summary of boring installation and sampling data is presented in Table 1, and boring logs are presented in Attachment A.

5.2 Soil Sampling Results

Soil borings SB-1 and SB-2 were advanced in the vicinity the abandoned 3,000 gallon former heating oil UST, borings SB-3 and SB-4 were advanced in the vicinity of the floor drains in the former "explosion room" in the western portion of the site building, and borings SB-5 and SB-6 were advanced throughout the former "explosion room". The analytical results for the soil samples did not document VO constituents at concentrations exceeding laboratory method detection limits (MDLs).

Analytical results for the soil samples documented select SVO constituents at concentrations exceeding laboratory MDLs in four of the six soil samples. Select SVO constituents were also detected at concentrations exceeding New York State Department of Environmental Conservation (NYSDEC) Recommended Soil Cleanup Objectives (RSCOs) in borings SB-4 and SB-6. The SVO concentrations detected in these soil samples only slightly exceed applicable NYSDEC guidance values and are typical of concentrations found in fill material in urban areas. Analytical results comprise Attachment B and are summarized in Table 2 (Soil Sampling and Analyses Data Summary).

5.3 Groundwater Sampling Results

Groundwater samples were collected from temporary wellpoints installed in borings SB-1, SB-3 and SB-5. The VO constituent chloroform was detected at a concentration exceeding the laboratory MDL in the groundwater sample collected from boring SB-5, however, below NYSDEC's Groundwater Standard.

The groundwater samples collected from borings SB-1 through SB-3 documented select SVO constituents at concentrations exceeding laboratory MDLs. SVO constituents were also detected at concentrations exceeding NYSDEC Groundwater Standards in borings SB-1 and SB-3. Analytical results comprise Attachment B and are summarized in Table 3 (Groundwater Sampling and Analyses Data Summary).

6.0 CONCLUSIONS AND RECOMMENDATIONS

Whitestone conducted limited SI activities on August 30, 2005 to evaluate subsurface conditions at the subject property. Conclusions and recommendations pertaining to the limited SI activities are summarized as follows:

- Soil sampling and analysis revealed the presence of select SVO constituents in borings SB-4 and SB-6 at concentrations exceeding NYSDEC RSCOs. The levels encountered generally are indicative of typical concentrations occurring in fill in urban and developed areas.
- Groundwater sampling revealed the presence of select SVO constituents in the samples collected from borings SB-1 and SB-3 at concentrations exceeding NYSDEC Groundwater Standards.

- The identified soil and groundwater exceedances of NYSDEC guidelines represent a condition that typically will not warrant further action assuming subsurface soils and groundwater will not be disturbed for site redevelopment. These exceedances should be reported to the NYSDEC, and the current results suggest that the fill conditions likely can be addressed by existing engineering controls (current building slab) or, possibly, institutional controls such as a deed restriction.
- Whitestone could not determine the discharge point(s) of the two floor drains observed in the western portion of the site building. These floor drains should be cleaned and grouted/sealed if not intended for future use. If documented in the future, the discharge point(s) should be evaluated to determine the potential for impacts to subsurface conditions.

Hopefully, this information will be helpful for site planning purposes. Please do not hesitate to contact us at (908) 668-7777 with any questions regarding these matters.

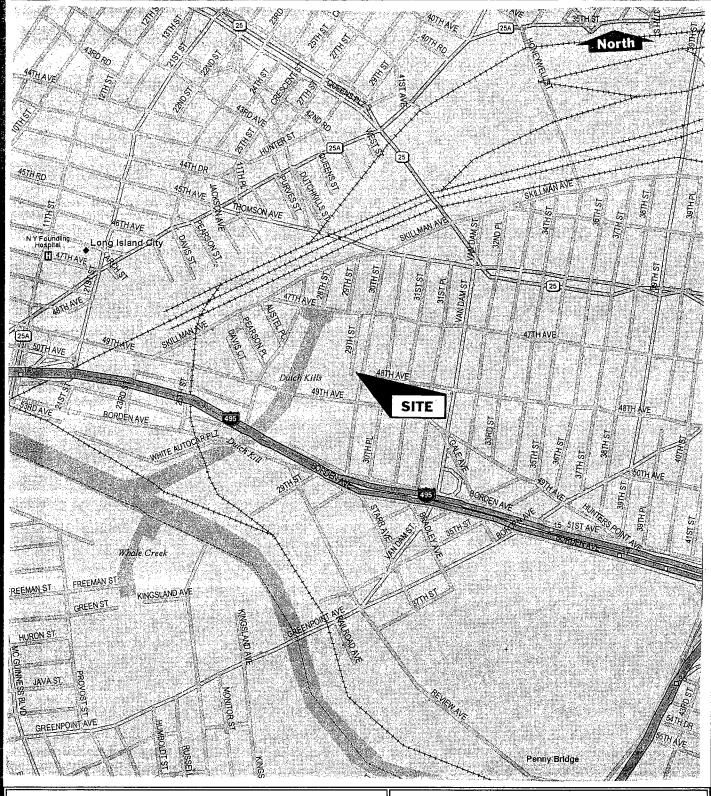
Professional Geologist

Sincerely,

WHITESTONE ASSOCIATES, INC.

Christopher Seib

Environmental Services Manager


TKU/pjp L:\WhitestoneOffice\2005\058023\8023PhIISI.wpd

Enclosures

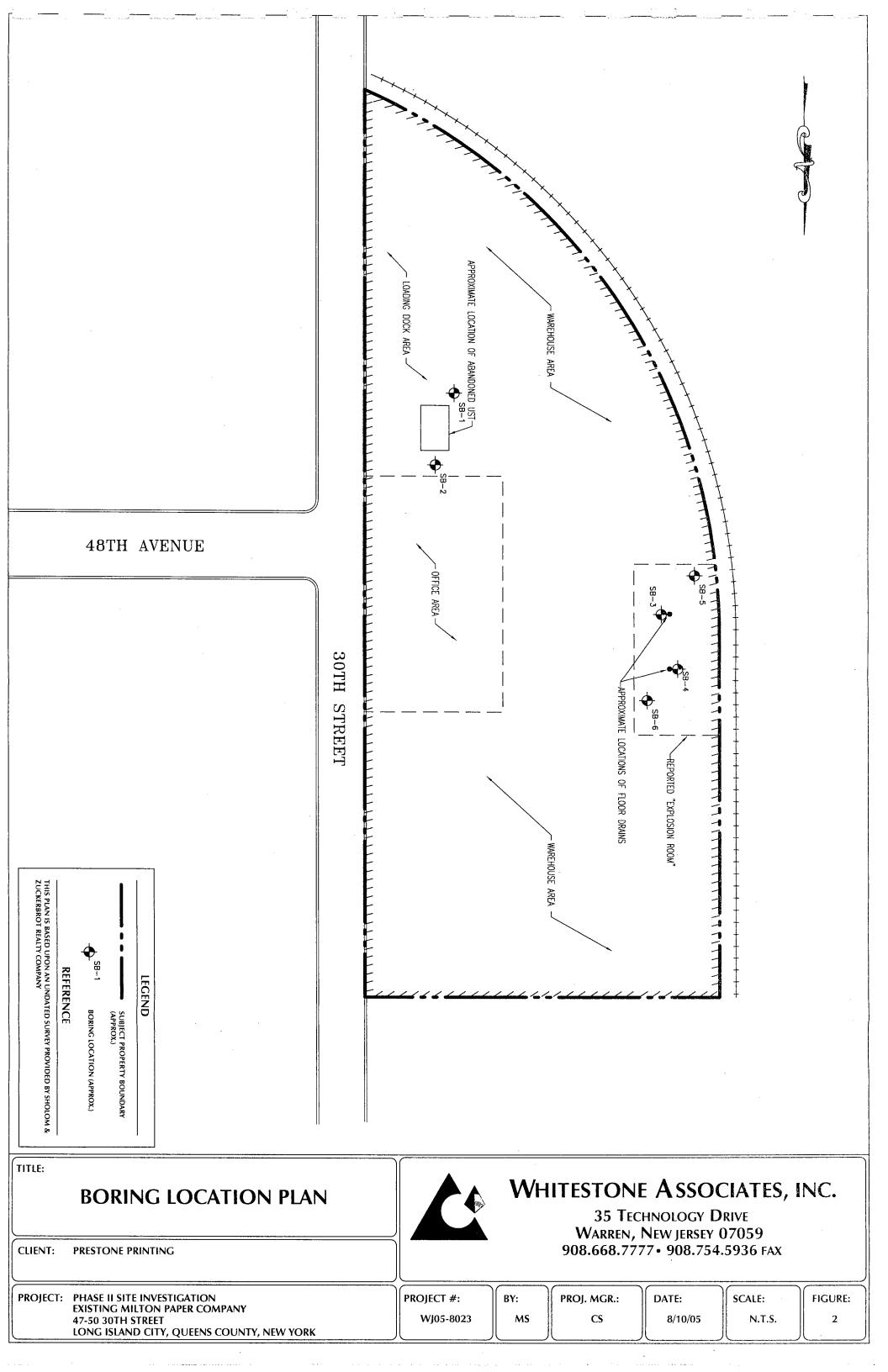

by: Steven Polivy, Esq., Stadtmauer Bailkin, L.L.P.

FIGURE 1 Site Location Map

TITLE:	Site Location Map	WHITESTONE ASSOCIATES, INC. 35 TECHNOLOGY DRIVE WARREN, NEW JERSEY 07059 908.668.7777 ◆ 908.754.5936 FAX					
CLIENT:	PRESTONE PRINTING						
PROJECT:	Phase II Site Investigation Existing Milton Paper Company 47-50 30th Street	PROJECT #:	BY:	PROJ. MGR.:	DATE:	SCALE:	FIGURE:
	Long Island City, Queens County, New York	WJ05-8023	DeLorme	CS	9/21/05	1" = 1,060'	1

FIGURE 2 Boring Location Plan

TABLE 1 Soil and Groundwater Sampling Summary

TABLE 1

SOIL AND GROUNDWATER SAMPLING SUMMARY

Existing Milton Paper Company 47-50 30th Street

Long Island City, Queens County, New York

Boring Number	Sample Depths (fbgs)	Total Depth (fbgs)	GW Depth (fbgs)	Maximum PID Reading (ppm)
SB-1	9.5 to 10.0	20.0	10.0	0.0
SB-2	10.0 to 10.5	20.0	10.5	0.0
SB-3	2.5 to 3.0	20.0	10.0	0.0
SB-4	3.5 to 4.0	20.0	10.0	0.0
SB-5	3.5 to 4.0	20.0	10.0	0.0
SB-6	2.5 to 3.0	20.0	10.0	0.0

NOTES:

PID

Photoionization Detector

GW

Groundwater

fbgs

feet below ground surface

ppm

parts per million

TABLE 2 Soil Sampling and Analysis Data Summary

TABLE 2

SOIL SAMPLING AND ANALYSIS DATA SUMMARY

Existing Milton Paper Company 47-50 30th Street

Long Island City, Queens County, New York

Sample Number	Analytical Parameters	VO Detected Above MDLs (ppm)	SVO Detected Above MDLs (ppm)
8023-SB-1	VO, SVO	ND	phenanthrene = 0.287 (50) flouranthene = 0.234 (8.1) pyrene = 0.169 (50)
8023-SB-2	VO, SVO	ND	flouranthene = 0.185 J (50) pyrene = 0.154 J (50) benzo[a]anthracene = 0.132 J (0.224)
8023-SB-3	VO, SVO	ND	ND
8023-SB-4	VO, SVO	ND .	phenanthrene = 0.634 (50) anthracene = 0.134 J (50) di-n-butylphthalate = 0.175 J (8.1) fluoranthene = 1.96 (50) pyrene = 2.01 (50) benzo[a]anthracene = 1.19 (0.224) chrysene = 1.64 (0.4) benzo[b]flouranthene = 1.21 (1.1) benzo[a]pyrene = 1.29 (0.061) indeno[1,2,3-cd]pyrene = 0.858 (3.2) dibenz[a,h]anthracene = 0.396 (0.014) benzo[g,h,i]perylene = 1.05 (50)
8023-SB-5	VO, SVO	ND	ND
8023-SB-6	VO, SVO	ND	phenanthrene = 0.674 (50) anthracene = 0.309 (50) fluoranthene = 4.01 (50) pyrene = 10.0 (50) benzo[a]anthracene = 11.3 (0.224) chrysene = 16.4 (0.4) benzo[b]flouranthene = 6.70 (1.1) benzo[k]flouranthene = 6.10 (1.1) benzo[a]pyrene = 11.7 (0.061) indeno[1,2,3-cd]pyrene = 5.12 (3.2) dibenz[a,h]anthracene = 3.57 (0.014) benzo[g,h,i]perylene = 6.41 (50)

NOTES:

VO	Volatile Organic Compounds
SVO	Semi-Volatile Organic Compounds
MDLs	Laboratory Method Detection Limits
ppm	parts per million
ND	Not Detected exceeding laboratory MDLs

() NYSDEC Recommended Soil Cleanup Objective shown in parenthesis Exceeds NYSDEC Recommended Soil Cleanup Objective

BOLD Detected at concentration below the MDL

TABLE 3 Groundwater Sampling and Analysis Data Summary

TABLE 3

GROUNDWATER SAMPLING AND ANALYSIS DATA SUMMARY

Existing Milton Paper Company 47-50 30th Street

Long Island City, Queens County, New York

Agardan diyoriyan ili o	Long 131	and City, Queens County, New Yor	I K
Sample Number	Analytical Parameters	VO Detected Above MDLs (ppb)	SVO Detected Above MDLs (ppb)
8023-SB-1-GW	VO, SVO	ND	naphthalene = 1.29 (10) 2-methylnaphthalene = 0.419 (50) acenaphthene = 8.22 (20) dibenzofuran = 2.67 (5) fluorene = 8.20 (50) phenanthrene = 12.9 (50) anthracene = 2.96 (50) carbazole = 0.960 (NS) fluoranthene = 1.77 (50) pyrene = 1.26 (50) benzo[a]anthracene = 0.265 (0.002) chrysene = 0.168 (0.002)
8023-SB-3-GW	VO, SVO	ND	naphthalene = 0.586 (10) 2-methylnaphthalene = 0.576 (50) acenaphthene = 6.04 (20) dibenzofuran = 0.281 (5) fluorene = 3.04 (50) phenanthrene = 4.20 (50) anthracene = 0.815 (50) fluoranthene = 0.540 (50) pyrene = 0.410 (50)
8023-SB-5-GW	VO, SVO	chloroform = 0.618 (7.0)	naphthalene = 1.13 (10) 2-methylnaphthalene = 0.365 (50) acenaphthene = 7.22 (20) dibenzofuran = 2.25 (5) fluorene = 7.47 (50) phenanthrene = 10.8 (50) anthracene = 2.20 (50) carbazole = 0.764 (NS) fluoranthene = 1.39 (50) pyrene = 0.985 (50) benzo[a]anthracene = 0.198 (0.002)
NOTES:			0125 (01002)

VO	Volatile Organic Compounds
SVO	Semi-Volatile Organic Compounds
ppb	parts per billion
MDLs	Laboratory Method Detection Limits
ND	Not Detected exceeding laboratory MDLs
NS	Not established Groundwater Standard for this compound
()	NYSDEC Groundwater Standard shown in parenthesis
BOLD	Exceeds NYSDEC Groundwater Standard

ATTACHMENT A Boring Logs

Boring No.: SB-1

Project	: <u>-</u> .	Existin	g Milton Paper Company	·	WAI Project No.:	WJ05-8	023			
Locatio	on:	47-50 3	10th Street; Long Island City, I	NY	Client:	Prestone	Printing			
Surface	e Elevati	ion:	Not Surveyed	Date Started:	08/30/05		er Depths /	Elevatio	ons	
Termin	ation D	epth:	20.0 feet bgs	Date Completed:	08/30/05		(feet / feet			
Drilling	g Metho	d:	Geoprobe	Logged By:	G. Graham	While Dri	illing:	10.	10.0 🏋	
Test M	est Method: Macro-Core			Contractor:	Enviroprobe Services, Inc.	At Compl	etion:	10.	0 ▽	
				Machine:	Dingo	24 Hours:		N.	4 y	
Depth (feet)	Strata		1	DESCRIPTION OF M	1ATERIALS	1	PID Readings (ppm)	Rec.	Depth (feet)	
0.0		0" - 12" 12" - 26" 26" - 36"	Concrete Brown Fine Sand Brown Fine to Coarse Sand and Coar.	se to Medium Gravel, Tr	ace Silt		0.0		0.0	
5.0		0" - 8" 8" - 29" 29" - 48"	Same As Above Brown Fine to Coarse Sand and Smal Brown Fine to Coarse Sand	Gravel			0.0	36	- 5.0 	
0.0	Y	0" - 26" 26" - 32" 32" - 48"	Same As Above, Moist Gray Fine to Coarse Sand, Some Silt, Gray to Black Fine to Coarse Sand, So	Wet ome Silt, Wet			0.0	48	- - - 10.0	
		0" - 48"	Same As Above					48	<u>-</u>	
15.0	·						0.0	48	- - - 15.0	
		0" - 48"	Same As Above				0.0		- - - -	
20.0		Soil Sampl	-1 Terminated at a Depth of 20.0 Feet Be le 8023-SB-1 Collected @ 9.5 fbgs to 10 ter Sample Collected @ 1530					48	20.0 	
									- - -	
25.0 — TES: NE	= Not Enc	ountered NA	L = Not Applicable		RECORD OF SUB	SIMPACE EVE	OF ATTOM SOS	lanulo ca r	25.0	

Boring No.: SB-2

Project	t:	Existin	g Milton Paper Company		WAI Pro	ject No.:	WJ05-8	023			
Location			30th Street; Long Island City	, NY		Client:		Prestone Printing			
	e Elevat		Not Surveyed	Date Started:	08/30/05			er Depths /	Elevati	ons	
	nation D	-	20.0 feet bgs	Date Completed:	08/30/05			(feet / feet-	·msl)		
Drilling	g Metho	d:	Geoprobe	Logged By:	G. Graham		While Dr	illing:	10	.5 Y	
Test M	ethod:		Macro-Core	Contractor:	Enviroprobe Services, Inc.		At Compl	etion:	10.5		
				Machine:	Dingo		24 Hours:		N	A ▼	
Depth (feet)	Strata			DESCRIPTION OF M	1ATERIALS			PID Readings	Rec.	Dept	
0.0	Strata	011 011		(Classificati	on)			(ppm)	(in.)	(feet	
-		0" - 8" 8" - 22" 22" - 39"	Concrete Brown Fine to Coarse Sand Brown Fine to Coarse Sand, Some	Small to Medium Gravel, T	race Silt			0.0		- 0.0 	
5.0 —		0" - 12" 12" - 31" 31" - 42"	Same As Above Brown Fine to Coarse Sand and Sm Brown Fine to Coarse Sand	nall to Medium Gravel, Trac	e Silt			0.0	39	- 5.0 	
		0" - 13" 13" - 29" 29" - 42"	Same As Above Gray Fine to Coarse Sand, Some Si Gray to Brown Fine to Coarse Sand	lt, Moist I, Some Silt, Wet				0.0	42	- - - - 10.0	
1		0" - 36"	Same As Above						42	-	
5.0		0" - 41"	Sama An Albarr					0.0	36	- - - 15.0 -	
		V -41	Same As Above					0.0		- - - -	
0.0		Boring SB-2 Soil Sample	2 Terminated at a Depth of 20.0 Feet I 8023-SB-2 Collected @ 10.0 fbgs to	Below Ground Surface 10.5 fbgs @ 1545					41	20.0 	
i.0									 - - -	- - -	
.			= Not Applicable				JRFACE EXPL		ŀ	 25.0	

Boring No.: SB-3

Project	t:	Existin	g Milton Paper Company		WAI Proje	ect No.:	WJ05-80)23		
Locatio	on:	47-50 3	Oth Street; Long Island City, I	NY		Client:	Prestone	Printing		
Surface	e Elevati	on:	Not Surveyed	Date Started:	08/30/05			er Depths /	Elevati	ons
Termin	nation De	epth:	20.0 feet bgs	Date Completed:	08/30/05			(feet / feet-		
Drilling	g Metho	d:	Geoprobe	Logged By:	G. Graham		While Dri	lling:	10.	.0 ¥
Test M	lethod:		Macro-Core	Contractor:	Enviroprobe Services, Inc.		At Comple	etion:	10.	.0 ▽
		_		Machine:	Dingo	[24 Hours:		N.	A ▼
Depth (feet)	Strata			DESCRIPTION OF M (Classification				PID Readings (ppm)	Rec. (in.)	Depth (feet)
0.0	·	0" - 8" 8" - 12" 12" - 18" 18" - 36" 0" - 27" 27" - 39"	Concrete Cork Concrete Brown Fine to Coarse Sand, Trace Si Brown Fine to Coarse Sand, Some Co Brown Fine to Coarse Sand	it				0.0	36	0.0
10.0 \$\overline{\frac{1}{2}}\$		0" - 18" 18" - 47"	Same As Above Gray-Brown Fine to Coarse Sand, Son	ne Silt, Trace Small Grav	rel, Wet			0.0	39	5.0
10.0		0" - 43"	Same As Above					0.0	47	10.0
15.0		0" - 46"	Same As Above					0.0	43	15.0
1 1 1 1								0.0	44	- - - -
20.0	- 1	Soil Sampl	-3 Terminated at a Depth of 20.0 Feet Be e 8023-SB-3 Collected @ 2.5 fbgs to 3.6 ter Sample Collected @ 1605						46	20.0
25.0	= Not Enc	ountered NA	= Not Applicable		DECOR	D OF CIPS	I IDEACE EVE	LORATION 8023	anul	25.0

Boring No.: SB-4

Project	t:	Existin	g Milton Paper Company		WAI Proj	ect No.:	WJ05-8	023		
Location	on:	47-50 3	30th Street; Long Island City, I	NY		Client:		Printing		
	e Elevat		Not Surveyed	Date Started:	08/30/05			er Depths /		ons
Termin	nation D	epth:	20.0 feet bgs	Date Completed:	08/30/05			(feet / feet-	·msl)	
Drilling	g Metho	d:	Geoprobe	Logged By:	G. Graham		While Dri	lling:	10	.0 ¥
Test M	lethod:		Macro-Core	Contractor:	Enviroprobe Services, Inc.		At Compl	etion:	10	.0 ∑
				Machine:	Dingo		24 Hours:		N	A Y
Depth				DESCRIPTION OF M				PID Readings	Rec.	Depth
(feet)	Strata			(Classification				(ppm)	(in.)	(feet)
0.0		0" - 6" 6" - 12" 12" - 18" 18" - 27" 27" - 48"	Concrete Cork Concrete Void Brown Fine to Coarse Sand, Some Sn	nall to Medium Gravel				0.0		0.0
5.0		0" - 12" 12" - 31" 31" - 38"	Same As Above Brown Fine to Coarse Sand, Some Sn Brown Fine to Coarse Sand, Trace Sil	nall to Medium Gravel, Ti It	race Silt			0.0	48	5.0
10.0		0" - 18" 18" - 27"	Same As Above Brown Fine to Coarse Sand, Some Sm	nall to Medium Gravel				0.0	38	- 10.0
		0" - 8" 8" - 39"	Same As Above Gray-Brown Fine to Coarse Sand, Son	ne Silt, Trace Small Grave	el, Wet				27	-
15.0								0.0	39	- - - 15.0
11111		0" - 41"	Same As Above					0.0		- - - - -
20.0		Boring SB- Soil Sample	4 Terminated at a Depth of 20.0 Feet Be e 8023-SB-4 Collected @ 3.5 fbgs to 4.0	low Ground Surface fbgs @ 1615					_ 41	20.0
25.0				•					·	- - - - 25.0
TES: NE	= Not Enco	ountered, NA	= Not Applicable		RECOR	D OF SUBS	URFACE EXP	LORATION 8023	envlogs, wp	d 00/00/0

RECORD OF SUBSURFACE EXPLORATION

Boring No.: SB-5

(Page 1 of 1)

		g Milton Paper Company		WAI Proje		WJ05-80			
Location:		0th Street; Long Island City, I	1		Client:	Prestone	Printing		,
Surface Elevati		Not Surveyed	Date Started:	08/30/05		Wate	er Depths / 1		ons
Termination De		20.0 feet bgs	Date Completed:	08/30/05			(feet / feet-	msl)	
Drilling Metho	d:	Geoprobe	Logged By:	G. Graham		While Dri	lling:	10.	.0 A
Test Method:		Macro-Core	Contractor:	Enviroprobe Services, Inc.		At Compl	etion:	10.	.o \(\nabla \)
			Machine:	Dingo		24 Hours:		N.	A ▼
Depth (feet) Strata			DESCRIPTION OF M	1ATERIALS			PID Readings (ppm)	Rec.	Depti (feet
0.0	0" - 6" 6" - 10" 10" - 14" 14" - 31" 31" - 48"	Concrete Cork Concrete Void Brown Fine to Coarse Sand					0.0	()	- 0.0
5.0	0" - 10" 10" - 36"	Brown Fine to Coarse Sand and Smal Brown Fine to Coarse Sand	l to Medium Gravel, Trac	ce Silt			0.0	48	- - - 5.0
- - - - - - - - - - -	0" - 22" 22" - 42"	Same As Above, Moist Gray to Brown Fine to Coarse Sand, S	Some Silt, Wet				0.0	36	- - - - - - - 10.0
	0" - 39"	Same As Above						42	
15.0-	0" - 45"	Same As Above					0.0	39	- - - 15.
1							0.0		
20.0	Boring SB-	5 Terminated at a Depth of 20.0 Feet Bo	elow Ground Surface					45	20.0
		e 8023-SB-5 Collected @ 3.5 fbgs to 4.0 er Sample Collected @ 1630) tbgs @ 1625						
5.0									- - - - 25.0

RECORD OF SUBSURFACE EXPLORATION

Boring No.: SB-6

(Page 1 of 1)

			g Milton Paper Company		WAI Project No.:	WJ05-8	023		
ocatio			60th Street; Long Island Ci		Client:	Preston	e Printing	<u> </u>	
	e Elevat		Not Surveyed	Date Started:	08/30/05	Wat	er Depths /	Elevati	ons
	nation D	-	20.0 feet bgs	Date Completed:	08/30/05		(feet / feet-	-msl)	
	g Metho	od:	Geoprobe	Logged By:	G. Graham	While Dr	illing:	10	.0
rest M	lethod:		Macro-Core	Contractor:	Enviroprobe Services, Inc.	At Comp	letion:	10	.0
		·		Machine:	Dingo	24 Hours	:	N	A
Depth feet)	Strata			DESCRIPTION OF M			PID Readings	Rec.	De
0.0		0" - 6" 6" - 12" 12" - 18" 18" - 27" 27" - 38"	Concrete Cork Concrete Void Brown Fine to Coarse Sand, Tra				(ppm)	(in.)	(fe
		0" - 18"	Brown Fine to Coarse Sand and	Small to Medium Gravel, Trac	e Silt			38	- - - -
.0 —		18" - 27"	Brown Fine to Coarse Sand				0.0		- - - -
	,	0" - 27" 27" - 39"	Same As Above, Moist Brown to Gray Fine to Coarse Sa	and, Some Silt, Wet			0.0	27	
		0" - 47"	Same As Above					39	- - -
	:						0.0		- - - - -
\dashv		0" - 42"	Same As Above					47	_
1111							0.0		
0 -		Boring SB- Soil Sample	6 Terminated at a Depth of 20.0 Fee 8023-SB-6 Collected @ 2.5 fbgs t	et Below Ground Surface o 3.0 fbgs @ 1645		,		42	- 20
									- - -
) - -					•				- - -
1			= Not Applicable					ſ	- 25.

ATTACHMENT B Analytical Data Summary Sheets

INTEGRATED ANALYTICAL LABORATORIES, LLC.

SUMMARY REPORT

Client: Whitestone Associates Inc. Project: LONG ISLAND CITY Lab Case No.: E05-09123

	Lab ID:	091	23-002	091	23-005	091	23-008
	Client ID:	8023-	SB-1-GW	8023-SB-3-GW		8023-8	B-5-GW
	Matrix:	Ac	lueous	Ac	lueous	Aqueous	
	Sampled Date	8/	30/05	8/	30/05	8/30/05	
PARAMETER(Units)		Conc	Q MDL	Conc	Q MDL	Conc	Q MDL
Volatiles (µg/L-ppb)							
Chloroform		ND	0.260	ND	0.260	0.618	0.260
TOTAL VO's:		ND		ND		0.618	
Semivolatiles - BN (μg/L	-ppb)						
Naphthalene		1.29	0.110	0.586	0.110	1.13	0.110
2-Methylnaphthalene		0.419	0.140	0.576	0.140	0.365	0.140
Acenaphthene		8.22	0.170	6.04	0.170	7.22	0.170
Dibenzofuran		2.67	0.120	0.281	0.120	2.25	0.120
Fluorene		8.20	0.180	3.04	0.180	7.47	0.180
Phenanthrene		12.9	0.110	4.20	0.110	10.8	0.110
Anthracene		2.96	0.140	0.815	0.140	2.20	0.140
Carbazole		0.960	0.170	ND	0.170	0.764	0.170
Fluoranthene		1.77	0.190	0.540	0.190	1.39	0.190
Pyrene		1.26	0.140	0.410	0.140	0.985	0.140
Benzo[a]anthracene	į	0.265	0.150	ND	0.150	0.198	0.150
Chrysene		0.168	0.140	ND	0.140	ND	0.140
TOTAL BN'S:		41.1		16.5	·	34.8	

ND = Analyzed for but Not Detected at the MDL

INTEGRATED ANALYTICAL LABORATORIES, LLC.

SUMMARY REPORT

Client: Whitestone Associates Inc. **Project: LONG ISLAND CITY** Lab Case No.: E05-09123

	Lab ID:	091	23-001	09	123-003	0913	23-004	001	23-006
	Client ID:	1	3-SB-1	ſ	23-SB-2	1	3-SB-3	1	23-SB-4
	Matrix:	l	Soil		Soil	i	Soil	1	Soil
	Sampled Date		30/05	8	/30/05		30/05	i	30/05
PARAMETER(Units)		1	Q MDL		Q MDL	1	Q MDL	1	Q MDL
Volatiles (mg/Kg-ppm)									
TOTAL VO's:		ND		ND		ND		ND	
Semivolatiles - BN (mg	/Kg-ppm)								
Phenanthrene		0.287	0.260	ND	0.201	ND	0.252	0.634	0.211
Anthracene		ND	0.260		0.201	ND	0.252	0.134	J 0.211
Di-n-butylphthalate		ND	0.260	1	0.201	ND	0.252	l	J 0.211
Fluoranthene		0.234	J 0.260	1		ND	0.252	1.96	0.211
Pyrene		0.169	J 0.260	0.154		ND	0.252	2.01	0.211
Benzo[a]anthracene		ND	0.260	0.132		ND	0.252	1.19	0.211
Chrysene		ND	0.260	ND	0.201	ND	0.252	1.64	0.211
Benzo[b]fluoranthene		ND	0.260	ND	0.201	ND	0.252	1.21	0.211
Benzo[k]fluoranthene		ND	0.260	ND	0.201	ND	0.252	1.21	0.211
Benzo[a]pyrene		ND	0.260	ND	0.201	ND	0.252	1.29	0.211
Indeno[1,2,3-cd]pyrene	i	ND	0.260	ND	0.201	ND	0.252	0.858	0.211
Dibenz[a,h]anthracene		ND	0.260	ND	0.201	ND	0.252	0.396	0.211
Benzo[g,h,i]perylene		ND	0.260	ND	0.201	ND	0.252	1.05	0.211
TOTAL BN'S:		0.690	J	0.471	J	ND		13.8	J
	Lab ID:	0912	23-007	091	23-009				
	Client ID:	8023	3-SB-5	802	3-SB-6				
	Matrix:	S	Soil	1	Soil				
	Sampled Date	8/3	0/05	8/	30/05				
PARAMETER(Units)	-	Conc	Q MDL	Conc	Q MDL				
Volatiles (mg/Kg-ppm)									
TOTAL VO's:		ND		ND		ı			
Semivolatiles - BN (mg/	Kg-ppm)								
Phenanthrene		ND	0.234	0.674	0.208				
Anthracene		ND		0.309	0.208				
Fluoranthene	•	ND	0.234	4.01	0.208				
Pyrene		ND	0.234	10.0	0.208				
Benzo[a]anthracene		ND	0.234	11.3	0.208				
Chrysene		ND	0.234	16.4	0.208				
Benzo[b]fluoranthene		ND	0.234	6.70	0.208				
Benzo[k]fluoranthene		ND	0.234	6.10	0.208				
Benzo[a]pyrene		ND	0.234	11.7	0.208				
Indeno[1,2,3-cd]pyrene		ND	0.234	5.12	0.208				
Dibanala blanthuasana	I	NII)	0.004	2 57	0.000				

ND = Analyzed for but Not Detected at the MDL

Dibenz[a,h] anthracene

Benzo[g,h,i]perylene

TOTAL BN'S:

ND

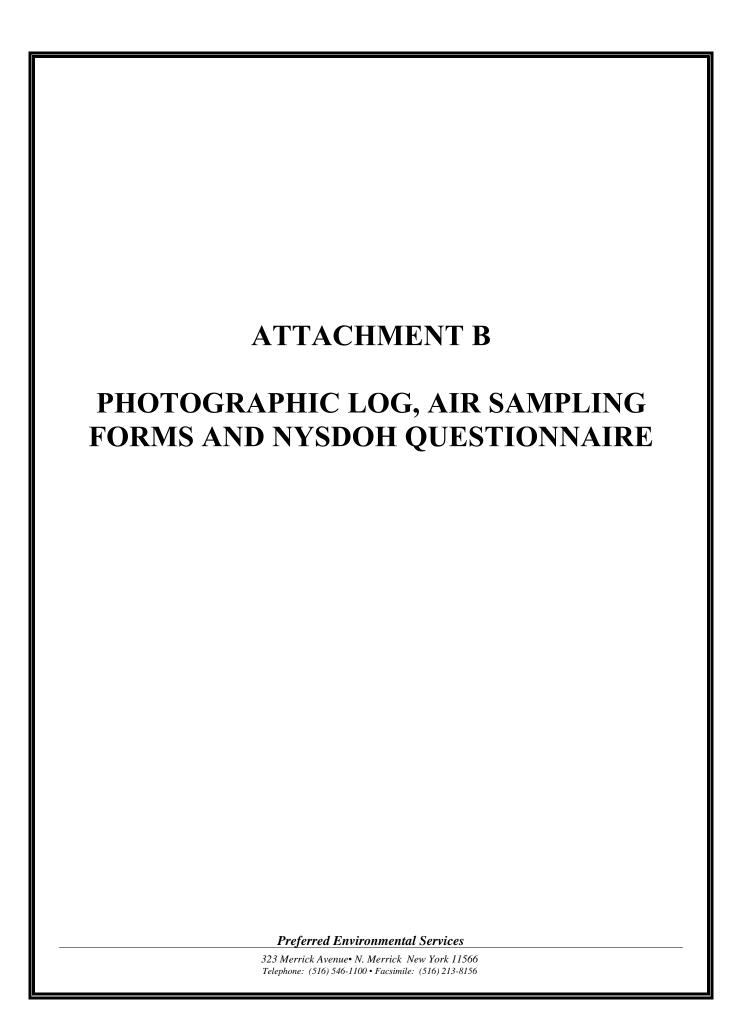
ND

ND

0.234

0.234

3.57


6.41

82.3

0.208

0.208

J = The concentration was detected at a value below the MDL

<u>Photograph No. 1</u>: Front view of the Subject Property located at 4750 30th Street, Long Island City, NY

<u>Photographs Nos. 2 & 3</u>: Views of the sampling area in the northern portion of the Subject Property which included a storage warehouse and process line machinery for the printing press operations.

Photograph Nos. 4 & 5: The sub-slab vapor point was installed through the concrete slab of the main floor utilizing an electric-powered rotary hammer drill. Tubing was installed through the newly installed vapor point, and the point where the tubing entered the concrete slab was sealed with hydrated bentonite.

<u>Photographs No. 6</u>: View of the sampling setup used for the sub-slab vapor samples. A 5gallon bucket with two (2) holes drilled into the bottom and side (shown above) was used for the sub-slab vapor (SSV) sample, with a bentonite seal around the base of the bucket to prevent infiltration of ambient air.

<u>Photographs No. 7</u>: A required helium test was performed (with a helium detector, pictured above) to ensure the integrity of the sampling procedures.

Photograph No. 8: One (1) indoor air sample was also collected, proximate to the SSV sample location within the northern portion of the building. Both the indoor air sample and the SSV sample were collected with 6-liter Summa canisters utilizing a 24-hour regulator.

Photograph Nos. 9 & 10: In addition to the air samples collected, one (1) soil sample was collected from the northwest portion of the building. The soil sample was collected from a soil boring installed utilizing a manually operated stainless steel hand auger, in a location where a two-inch diameter coring drill borehole was installed through the concrete slab prior to Preferred's Soil Vapor Intrusion Study, by others.

Sample ID	Date	Sample Time	Sampler Names	Sempling Method/Devices	forus to misca sominica)	Volume Extracted (Canister Size)	Canister initial vacuum	Centister final	Apparent moisture content (dy, moist, saturated, etc.)	CoC Protocols
550-7	4.00.18	13:18	Matt Caponi Matt Caponi	6L Summa + 24hr regulator + & &	3 Volumes	6L	-27"Ha	-1"Hg	Dry	TO-15
55U-I IA-I	4.02.18	13:19	Matt Caponi	7 7 73	O Volumes	6L	-27"Ha 7-30"Hg	-7"Hg	Dry	TO-15 10-15
			, -						<i>J</i>	
									,	
		•								

Soil Vapor Sample	e Log Sheet
Project Location and Job Number	4750 30th Street, LIC
Sample ID	55U-1
Date	4.02.18
Sample Type	IA SSV SG OA
Sample Depth/Height (ft)	2 inches below 93de
Sampler ID	Matt Capeni
Pure Start Time	12.18 4.02.18
Purge Finish time	12:15 4.03.18
Total Volume Purged	3 Volumes
Summa Canister Size	66
Summa Canister ID	23990
Regulator Time	24hr
Regulator ID	<i>y</i> 3
Laboratory	York
Notes (i.e In saturated soils, dry, sand/gravel, odors, etc.)	
PID Screening after Soil Vapor colletion	19.3 ppm
Helium Trace	γ (δ)
Hellum Detector Make and Model ID	M60-2002
Hellum detected (if yes at what concentration)	N/A
Analysis Requested	TO-18

Soil Vapor Samp	ole Log Sheet
Project Location and Job Number	4750 30th Street, LTC
Sample ID	IA-1
Date	4.07 18
Sample Type	(IA) SSV SG OA
Sample Depth/Height (ft)	4 feet above grade
Sampler ID	Matt Caponi
Pure Start Time	13:19 4.02.18
Purge Finish time	13:19 4:03.18
Total Volume Purged	N/A
Summa Canister Size	64
Summa Canister ID	28842
Regulator Time	24hr.
Regulator ID	7420
Laboratory	York
Notes (i.e In saturated soils, dry, sand/gravel, odors, etc.)	
PID Screening after Soil Vapor colletion	
Helium Trace	Y N
Helium Detector Make and Model ID	
Helium detected (if yes at what concentration)	
Analysis Requested	TO-15

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Mark	they Cappi	Date/Time Prepared 4.00.18
	,	Phone No
Purpose of Investigation_		
1. OCCUPANT:		
Interviewed: Y/N		
Last Name: Wechsle	Firs	st Name: <u>Ira</u>
Address: <u>4750</u>	30th St. La	ng Island City
County: Queens		O ,
		Phone: (347) 468-7881
Number of Occupants/pers	sons at this location _	✓100 Age of Occupants ~ 45
2. OWNER OR LANDL	ORD: (Check if same	e as occupant X
Interviewed: Y/N		
Last Name:	Firs	st Name:
County:		
Home Phone:	Office I	Phone:
3. BUILDING CHARAC	CTERISTICS	
Type of Building: (Circle	appropriate response)	
Residential Industrial	School Church	Commercial/Multi-use Other:

if the property is residentia	ii, type: (Circle appropria	ate response)
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:
If multiple units, how many	v?	
If the property is commercial	ial, type?	
Business Type(s)	imercial Printing	
Does it include residence	es (i.e., multi-use)? Y	If yes, how many?
Other characteristics:		
Number of floors 2	Build	ling age_~1940s
Is the building insulated?	N How	air tight? Tight / Average / Not Tight
4. AIRFLOW	s not	
Use air current tubes or tra	cer smoke to evaluate a	irflow patterns and qualitatively describe:
Airflow between floors		
Airflow near source		
Outdoor air infiltration		
Infiltration into air ducts		

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construct	tion: wood fr	ame concret	e stone	brick
b. Basement type:	full	crawlsp	oace slab	other MA
c. Basement floor:	concrete	e dirt	stone	other MA
d. Basement floor:	uncover	ed covered	d covered wi	th
e. Concrete floor:	unsealed	d sealed	sealed with	Epoxy
f. Foundation walls:	poured	block) stone	other
g. Foundation walls:	unsealed	d sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy (V)
i. The basement is:	finished	unfinis	hed partially fir	nished (M)
j. Sump present?	YN			
k. Water in sump?	Y / N (not appli	icable		
Basement/Lowest level depth	n below grade: <u> </u>	(feet)		
None Presery, CAC	• •	approximate si	ze (e.g., cracks, util	lity ports, drains)
6. HEATING, VENTING a Type of heating system(s) us				nary)
Hot air circulation Space Heaters Electric baseboard The primary type of fuel use	Wood s	radiation	Hot water baseboar Radiant floor Outdoor wood boil	~ 1 <i>[[[</i>]]
Natural Gas Electric Wood	Fuel Oi Propand Coal		Kerosene Solar	
Domestic hot water tank fue	led by:			. 11
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other_//X
Air conditioning:	Central Ain	Window units	Open Windows	None

Are there air	distribution ducts present?			
	supply and cold air return ductwork, and its of air return and the tightness of duct joints. It		·	_
7. OCCUPA	ANCY -/A			
Is basement/l	owest level occupied? Full-time Occa	sionally	Seldom	Almost Never
Level	General Use of Each Floor (e.g., familyroo	m, bedro	om, laundry, wo	rkshop, storage)
	r/1			
Basement	/V/X			
1 st Floor	Workshop offres			
2 nd Floor	N/A			
3 rd Floor	NA			
4 th Floor	MX			
e FACTOR	S THAT MAY INFLUENCE INDOOR AIR (NIAI ITV	,	
		ZUALITI	v 65	
	an attached garage?		1 (N)	
	garage have a separate heating unit?		Y/N (NA)	
•	oleum-powered machines or vehicles the garage (e.g., lawnmower, atv, car)		Y / N (NA) Please specify_	
d. Has the	building ever had a fire?		Y N When?	
e. Is a kero	sene or unvented gas space heater present?		Y N Where	?
f. Is there	a workshop or hobby/craft area?	И	Where & Type	?
g. Is there	smoking in the building?	Y/Y	How frequently	/?
h. Have cl	eaning products been used recently?	(√)/ N	When & Type?	
i. Have cos	smetic products been used recently?	Y/N	When & Type?	

j. Has painting/stai	ning been done in the last 6 months	s? Y/N Whe	ere & When?	
k. Is there new car	pet, drapes or other textiles?	Y/N Whe	ere & When?	
l. Have air freshene	ers been used recently?	Y N Whe	n & Type? _	
m. Is there a kitche	n exhaust fan?			ted?
n. Is there a bathro	oom exhaust fan?	N If ye	s, where vent	ted? Roof
o. Is there a clothes	dryer?	Y/W If ye	s, is it vented	l outside? Y / N
p. Has there been a	pesticide application?	Y/ N Whe	n & Type?	
Are there odors in If yes, please descr		Y/N		
(e.g., chemical manufa boiler mechanic, pestic	g occupants use solvents at work? cturing or laboratory, auto mechanic cide application, cosmetologist		, painting, fu	el oil delivery,
If yes, what types of	solvents are used? Kess Was L			
If yes, are their cloth	nes washed at work?	Y 🕦		
Do any of the building response)	g occupants regularly use or work	at a dry-cleaning	service? (Cir	cle appropriate
Yes, use dry-c	leaning regularly (weekly) leaning infrequently (monthly or less dry-cleaning service) No Unk	nown	
Is there a radon mitig Is the system active o	gation system for the building/struc r passive? Active/Passive	ture? Y 🕥 Date	of Installation	on:
9. WATER AND SEV	VAGE			
Water Supply:	Public Water Drilled Well Dr	riven Well Dug	Well C	Other:
Sewage Disposal:	Public Sewer Septic Tank Le	each Field Dry	Well C	Other:
10. RELOCATION I	NFORMATION (for oil spill reside	ential emergency)	l	
a. Provide reason	s why relocation is recommended:			
b. Residents choo	se to: remain in home relocate to	o friends/family	relocate t	to hotel/motel
c. Responsibility	for costs associated with reimburse	ment explained?	Y/N	
d. Relocation pac	kage provided and explained to res	sidents?	Y/N	

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

None Present

First Floor: Belgrand PTD readings: ~9.4ppn.

IA-I

SSU-I

To offices/other works hops

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:	MD	Mini	KJO	3000	

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition •	Chemical Ingredients	Field Instrument Reading (units)	Photo " Y/N
	See below -					
,						
		-				
			ł			

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Note: No stored chemicals were observed in the building which represented potential sources of VOCs within ambient dir.

BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

Technical Report

prepared for:

Preferred Env. Services

323 Merrick Ave North Merrick NY, 11566 **Attention: Bill Schlageter**

Report Date: 04/10/2018

Client Project ID: 4750 30 Street Long Island City

York Project (SDG) No.: 18D0049

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 04/10/2018

Client Project ID: 4750 30 Street Long Island City

York Project (SDG) No.: 18D0049

Preferred Env. Services

323 Merrick Ave North Merrick NY, 11566 Attention: Bill Schlageter

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on April 03, 2018 and listed below. The project was identified as your project: 4750 30 Street Long Island City.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
18D0049-01	SB-1 (1.5-2ft)	Soil	04/02/2018	04/03/2018

General Notes for York Project (SDG) No.: 18D0049

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Date: 04/10/2018

Benjamin Gulizia Laboratory Director

<u>Client Sample ID:</u> SB-1 (1.5-2ft) <u>York Sample ID:</u> 18D0049-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received18D00494750 30 Street Long Island CitySoilApril 2, 2018 12:25 pm04/03/2018

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
530-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:3		RDS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	3.1	6.1	1	Certifications: EPA 8260C	CTDOH,NELAC-NY10854,N 04/06/2018 07:3	0 04/06/2018 12:30	RDS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	3.1	6.1	1	Certifications: EPA 8260C Certifications:	CTDOH,NELAC-NY10854,N 04/06/2018 07:3 CTDOH,NELAC-NY10854,N	0 04/06/2018 12:30	RDS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N		RDS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N		RDS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N		RDS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N		RDS
37-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 NELAC-NY10854,NELAC-N		RDS
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 NELAC-NY10854,NELAC-N		RDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 NELAC-NY10854,NELAC-N		RDS
95-63-6	1,2,4-Trimethylbenzene	3.6	J	ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N		RDS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N		RDS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N		RDS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N		RDS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N		RDS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N		RDS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N		RDS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N		RDS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N		RDS
123-91-1	1,4-Dioxane	ND		ug/kg dry	61	250	1	EPA 8260C Certifications:	04/06/2018 07:3 NELAC-NY10854,NELAC-N		RDS
78-93-3	2-Butanone	ND		ug/kg dry	3.1	12	1	EPA 8260C Certifications:	04/06/2018 07:3 CTDOH,NELAC-NY10854,N	0 04/06/2018 12:30	RDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices

Page 4 of 11

<u>Client Sample ID:</u> SB-1 (1.5-2ft) <u>York Sample ID:</u> 18D0049-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received18D00494750 30 Street Long Island CitySoilApril 2, 2018 12:25 pm04/03/2018

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

S	ampl	le l	Prepared	l by	Method:	EPA	5035A	
---	------	------	----------	------	---------	-----	-------	--

CAS No	. Parameter	Result	Flag Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time ethod Prepared	Date/Time Analyzed	Analyst
591-78-6	2-Hexanone	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30		RDS
							Certifications: C	TDOH,NELAC-NY10854,NE	LAC-NY12058,NJ	
108-10-1	4-Methyl-2-pentanone	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30		RDS
								TDOH,NELAC-NY10854,NE		
67-64-1	Acetone	77	CCV-E ug/kg dry	6.1	12	1	EPA 8260C Certifications: C	04/06/2018 07:30 TDOH,NELAC-NY10854,NE		RDS
			, SCAL-				Certifications.	TDOII,NELAC-NT 10854,NE	ELAC-IN I 12036,INJ	
			E							
107-02-8	Acrolein	ND	ug/kg dry	6.1	12	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications: C	TDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
107-13-1	Acrylonitrile	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
	,						Certifications: C	TDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
71-43-2	Benzene	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications: C	TDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
74-97-5	Bromochloromethane	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications: N	NELAC-NY10854,NELAC-NY	12058,NJDEP,PAE	
75-27-4	Bromodichloromethane	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications: C	TDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
75-25-2	Bromoform	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications: C	TDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
74-83-9	Bromomethane	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications:	TDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
75-15-0	Carbon disulfide	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications: C	TDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
56-23-5	Carbon tetrachloride	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications: C	TDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
108-90-7	Chlorobenzene	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications: C	TDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
75-00-3	Chloroethane	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications: C	TDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
67-66-3	Chloroform	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications:	TTDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
74-87-3	Chloromethane	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications:	TTDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
156-59-2	cis-1,2-Dichloroethylene	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications: C	TDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30	04/06/2018 12:30	RDS
							Certifications:	TTDOH,NELAC-NY10854,NE	ELAC-NY12058,NJ	
110-82-7	Cyclohexane	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30		RDS
							Certifications: N	NELAC-NY10854,NELAC-NY	12058,NJDEP,PAL	
124-48-1	Dibromochloromethane	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30		RDS
							Certifications: N	IELAC-NY10854,NELAC-NY	12058,NJDEP,PAE	
74-95-3	Dibromomethane	ND	ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30		RDS
							Certifications: N	IELAC-NY10854,NELAC-NY	12058,NJDEP,PAE	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices Page 5 of 11

<u>Client Sample ID:</u> SB-1 (1.5-2ft) <u>York Sample ID:</u> 18D0049-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received18D00494750 30 Street Long Island CitySoilApril 2, 2018 12:25 pm04/03/2018

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Date/Time

Date/Time

Sample Prepared by Method	I: EPA 5035A							
CACN	D 4	D 1/	El	TT *4	Reported to	1.00	Dilution	D.C.

CAS No	. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference N	Iethod Prepared	Analyzed	Analyst
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 NELAC-NY10854,NELAC-NY12	04/06/2018 12:30 2058.NJDEP.PAE	RDS
100-41-4	Ethyl Benzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30	RDS
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30 NELAC-NY10854,NELAC-NY12	04/06/2018 12:30	RDS
98-82-8	Isopropylbenzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30	RDS
79-20-9	Methyl acetate	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 NELAC-NY10854,NELAC-NY12	04/06/2018 12:30 2058,NJDEP,PAE	RDS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30 AC-NY12058,NJ	RDS
108-87-2	Methylcyclohexane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 NELAC-NY10854,NELAC-NY12	04/06/2018 12:30 2058,NJDEP,PAE	RDS
75-09-2	Methylene chloride	ND		ug/kg dry	6.1	12	1	EPA 8260C	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30	RDS
104-51-8	n-Butylbenzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30	RDS
103-65-1	n-Propylbenzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30 AC-NY12058,NJ	RDS
95-47-6	o-Xylene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30 AC-NY12058,PA	RDS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	6.1	12	1	EPA 8260C Certifications:	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30 AC-NY12058,PA	RDS
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30 AC-NY12058,NJ	RDS
135-98-8	sec-Butylbenzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30 AC-NY12058,NJ	RDS
100-42-5	Styrene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30 AC-NY12058,NJ	RDS
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	3.1	12	1	EPA 8260C Certifications:	04/06/2018 07:30 NELAC-NY10854,NELAC-NY12	04/06/2018 12:30 2058,NJDEP,PAE	RDS
98-06-6	tert-Butylbenzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30 AC-NY12058,NJ	RDS
127-18-4	Tetrachloroethylene	100		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30 AC-NY12058,NJ	RDS
108-88-3	Toluene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30 AC-NY12058,NJ	RDS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30 AC-NY12058,NJ	RDS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications:	04/06/2018 07:30 CTDOH,NELAC-NY10854,NEL	04/06/2018 12:30 AC-NY12058,NJ	RDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Client Sample ID: SB-1 (1.5-2ft) **York Sample ID:**

Client Project ID Date Received York Project (SDG) No. Matrix Collection Date/Time 18D0049 4750 30 Street Long Island City Soil April 2, 2018 12:25 pm 04/03/2018

Volatile Organics, 8260 - Comprehensive

Trichlorofluoromethane

Sample Prepared by Method: EPA 5035A

75-69-4

Log-in Notes:

6.1

Sample Notes:

EPA 8260C

Certifications:

18D0049-01

Analyst

RDS

RDS

RDS

Date/Time Analyzed

04/06/2018 12:30

04/06/2018 07:30

CTDOH,NELAC-NY10854,NELAC-NY12058,NJ

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed
110-57-6	* trans-1,4-dichloro-2-butene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/06/2018 07:30	04/06/2018 12:30
								Certifications:	CTDOH		
79-01-6	Trichloroethylene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/06/2018 07:30	04/06/2018 12:30
								Certifications:	CTDOH,NE	ELAC-NY10854,NELA	AC-NY12058,NJ

ug/kg dry 3.1

75-01-4 Vinyl Chloride 3.1 EPA 8260C 04/06/2018 07:30 04/06/2018 12:30 RDS ND ug/kg dry Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,NJ 1330-20-7 Xylenes, Total ND ug/kg dry 9.2 18 EPA 8260C 04/06/2018 07:30 04/06/2018 12:30 RDS Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,NJ **Surrogate Recoveries** Result Acceptance Range

17060-07-0 Surrogate: 1,2-Dichloroethane-d4 90.9 % 77-125 85-120 2037-26-5 Surrogate: Toluene-d8 122 % S-08 460-00-4 76-130 Surrogate: p-Bromofluorobenzene 95.1 %

ND

Log-in Notes: Sample Notes: Total Solids

Sample Prepared by Method: % Solids Prep

CAS	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference !	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		94.3		%	0.100	1	SM 2540G		04/09/2018 09:58	04/09/2018 13:01	TAJ
								Certifications:	CTDOH			

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
18D0049-01	SB-1 (1.5-2ft)	40mL Vial with Stir Bar-Cool 4° C

Sample and Data Qualifiers Relating to This Work Order

SCAL-E	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%).
S-08	The recovery of this surrogate was outside of QC limits.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
CCV-E	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices
 Page 9 of 11

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

YORK ANALYTICAL LABORATORIES 120 RESEARCH DR.

STRATFORD, CT D6615 FAX (203) 357-0166

Field Chain-of-Custody Record

of

Temperature on Receipt Electronic Data Deliverables (EDD) WISDER PART 375 York Project No. 18000049 1) terrange hit York Regulatory Comparison NJDEP SRP HazSite EDD Report Type CTRCP DQA/DUE Pkg Summary w/ QA Summary Description(s) NY ASP A Package NY ASP B Package NJDEP Red. Deliv. Summary Report Simple Excel Excel Spreadsheet CT RCP Package NYSDEC EQuIS EZ-EDD (EOuIS) GIS/KEY (std) EOulS (std) **Turn-Around Time** Choose Analyses Needed from the Menu Above and Enter Below Standard(5-7 Days) X NaOH Part 360-Routine | Heterotrophs Tash Point Sieve Anal RUSH - Same Day Reactivity RUSH - Three Day RUSH - Four Day Misc. Org. Full Lists Misc. Part 360 symmetrial BTU/lb. Samples Received in LAB by RUSH - Next Day RUSH - Two Day Part 360 Buscine TOX Samples Received By TCL Oggriss TAL MesCN Full TCLP Jul App. IX NYSDEC.Sove NYCHES This document serves as your written authorization to York to proceed with the analyses requested and your NY 310-13 Air TO14A TPH DRO CT ETPH TPH 1664 AirSTARS 4750 30 Street Air TO15 SPLPorTCLP Air VPH Indiv. Metals Air TICs Methane Samples from: CT NYX NJ NOTE: York's Std. Terms & Conditions are listed on the back side of this document. YOUR Project ID Purchase Order No. PRE-18-089 HNO Complisheral City. NJDEP list Semi-Vols, Pest/PCB/Herts Metals TAGM list Dissolved TIS list LIST Below PP13 list RCRA8 TRCP list SPLPorTCLP Total Date/Time signature binds you to York's Std. Terms & Conditions. MeOH TCLP Pest TCLP Herb 8270 or 625 8082PCB 8151Herb Site Spec. Chlordane 8081Pest CTRCP App.IX list SPLPorTCLP TCLP BNA 608 Pest App. IX STARS list NJDEP list Acids Only FAGM list BN Only AH list App. IX Samples Relinquished By HC Suffolk Co. Nassau Co. NJDEP list Oxygenates TCLP list Site Spec. Ketones Invoice To: 502.2 Volatiles 8260 full TICs 109 CT RCP list clock will not begin until any questions by York are resolved. Arom. only TAGM list Halog.only MTBE E-Mail Address: Samples will NOT be logged in and the turn-around time 624 Phone No. Print Clearly and Legibly. All Information must be completed DW - drinking water Other - specify(oll, etc.) Date/Time Sampled | Sample Matrix Check those Applicable groundwater Matrix Codes WW - wastewater Air-A - ambient air Air-SV - soil vapor Field Filtered Preservation Instructions Special SPER GW. Report To: 1.5-OFFY 4.0:18 /005 Samples Collected/Authorized By (Signature) Bandadess: Atur @preferredents tomas. Phone No. Address: 399 MerriCK AUP. Address: Dicole Clerity D. Merrick DY 11566 Phone No.516-546-1100 Contact Person: Bill Solvace Per Company (HEGREO) FILL YOUR Information Sample Identification mments Page 11 of 11

Technical Report

prepared for:

Preferred Env. Services

323 Merrick Ave North Merrick NY, 11566 **Attention: Bill Schlageter**

Report Date: 04/11/2018

Client Project ID: 47-50 30th Street LIC, NY

York Project (SDG) No.: 18D0119

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 04/11/2018

Client Project ID: 47-50 30th Street LIC, NY

York Project (SDG) No.: 18D0119

Preferred Env. Services

323 Merrick Ave North Merrick NY, 11566 Attention: Bill Schlageter

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on April 04, 2018 and listed below. The project was identified as your project: 47-50 30th Street LIC, NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
18D0119-01	IA-1 (Reg#7420)	Indoor Ambient Air	04/03/2018	04/04/2018

General Notes for York Project (SDG) No.: 18D0119

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Date: 04/11/2018

Benjamin Gulizia Laboratory Director

Client Sample ID: IA-1 (Reg#7420)

York Sample ID:

18D0119-01

York Project (SDG) No. 18D0119

Client Project ID 47-50 30th Street LIC, NY Matrix Indoor Ambient Air Collection Date/Time
April 3, 2018 3:00 pm

Date Received 04/04/2018

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS No.	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference !	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.37	0.533	EPA TO-15 Certifications:		04/06/2018 09:50	04/06/2018 21:03	LDS
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.29	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.37	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.41	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.29	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.22	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
75-35-4	1,1-Dichloroethylene	0.085		ug/m³	0.053	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.40	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
95-63-6	1,2,4-Trimethylbenzene	1300	IS-LO	ug/m³	8.1	16.48	EPA TO-15 Certifications:	NELAC-NY	04/09/2018 15:39 Y12058,NJDEP-Queens	04/09/2018 15:39	LDS
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.41	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.32	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.22	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.25	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.37	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
108-67-8	1,3,5-Trimethylbenzene	430	IS-LO	ug/m³	8.1	16.48	EPA TO-15 Certifications:	NELAC-NY	04/09/2018 15:39 Y12058,NJDEP-Queens	04/09/2018 15:39	LDS
106-99-0	1,3-Butadiene	ND		ug/m³	0.35	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.32	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.25	0.533	EPA TO-15 Certifications:		04/06/2018 09:50	04/06/2018 21:03	LDS
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.32	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
123-91-1	1,4-Dioxane	ND		ug/m³	0.38	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS
78-93-3	2-Butanone	2.4		ug/m³	0.16	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 21:03	LDS

Client Sample ID: IA-1 (Reg#7420)

York Sample ID:

18D0119-01

York Project (SDG) No. 18D0119

<u>Client Project ID</u> 47-50 30th Street LIC, NY Matrix Indoor Ambient Air Collection Date/Time
April 3, 2018 3:00 pm

Date Received 04/04/2018

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

107-05-1 3-Chloropropene	CAS No.	. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
107-105-1 3-Chloropropene	591-78-6	* 2-Hexanone	4.7	ug/m³	0.44	0.533			04/06/2018 09:50	04/06/2018 21:03	LDS
100-10-1 100-10-1 100-10-10-10-10-10-10-10-10-10-10-10-10-	07-05-1	3-Chloropropene	ND	ug/m³	0.83	0.533	EPA TO-15	NELAC-NY		04/06/2018 21:03	LDS
107-13-1	08-10-1	4-Methyl-2-pentanone	ND	ug/m³	0.22	0.533			04/06/2018 09:50	04/06/2018 21:03	LDS
Part	57-64-1	Acetone	220	ug/m³	7.8	16.48		NELAC-NY		04/09/2018 15:39	LDS
100-44-7 100-44-7	07-13-1	Acrylonitrile	ND	ug/m³	0.12	0.533		NELAC-NY		04/06/2018 21:03	LDS
Part	71-43-2	Benzene	0.89	ug/m³	0.17	0.533		NELAC-NY		04/06/2018 21:03	LDS
Property Property	00-44-7	Benzyl chloride	ND	ug/m³	0.28	0.533		NELAC-NY		04/06/2018 21:03	LDS
Part	5-27-4	Bromodichloromethane	ND	ug/m³	0.36	0.533		NELAC-NY		04/06/2018 21:03	LDS
75-15-0	5-25-2	Bromoform	ND	ug/m³	0.55	0.533		NELAC-NY		04/06/2018 21:03	LDS
	4-83-9	Bromomethane	ND	ug/m³	0.21	0.533		NELAC-NY		04/06/2018 21:03	LDS
108-90-7 Chlorobenzene ND ug/m² 0.25 0.533 EPA TO-15 0.4062018 09:50 0.4062018 21	75-15-0	Carbon disulfide	0.43	ug/m³	0.17	0.533		NELAC-NY		04/06/2018 21:03	LDS
The Properties The	56-23-5	Carbon tetrachloride	0.27	ug/m³	0.084	0.533		NELAC-NY		04/06/2018 21:03	LDS
Criffications: Chloroform	08-90-7	Chlorobenzene	ND	ug/m³	0.25	0.533		NELAC-NY		04/06/2018 21:03	LDS
Certifications: NELAC-NY12058,NIDEP-Queens NELAC-NY12058,NIDEP-Queen	5-00-3	Chloroethane	ND	ug/m³	0.14	0.533		NELAC-NY		04/06/2018 21:03	LDS
Certifications: NELAC-NY12058,NJDEP-Queens ND ug/m³ 0.053 0.533 EPA TO-15 04/06/2018 09:50 04/06/2018 21 Certifications: NELAC-NY12058,NJDEP-Queens ND ug/m³ 0.24 0.533 EPA TO-15 04/06/2018 09:50 04/06/2018 21 Certifications: NELAC-NY12058,NJDEP-Queens NELAC-NY12058,NJDE	57-66-3	Chloroform	0.65	ug/m³	0.26	0.533		NELAC-NY		04/06/2018 21:03	LDS
10061-01-5 cis-1,3-Dichloropropylene ND ug/m³ 0.24 0.533 EPA TO-15 04/06/2018 09:50 04/06/2018 21 Certifications: NELAC-NY12058,NJDEP-Queens NELAC-NY12058,NJDEP-Queens	74-87-3	Chloromethane	0.66	ug/m³	0.11	0.533		NELAC-NY		04/06/2018 21:03	LDS
110-82-7 Cyclohexane 7.2 ug/m³ 0.18 0.533 EPA TO-15 04/06/2018 09:50 04/06/2018 21:20 0.18 0	56-59-2	cis-1,2-Dichloroethylene	0.063	ug/m³	0.053	0.533		NELAC-NY		04/06/2018 21:03	LDS
124-48-1 Dibromochloromethane ND ug/m³ 0.45 0.533 EPA TO-15 04/06/2018 09:50 04/06/2018 21:20 0.57-71-8 Dichlorodifluoromethane 1.2 ug/m³ 0.26 0.533 EPA TO-15 04/06/2018 09:50 04/06/2018 21:20 0.57-71-8 0.57-71-8 EPA TO-15 0.57-71-8 0.57-71-8 EPA TO-15 0.57-71-8 0.5	0061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.24	0.533		NELAC-NY		04/06/2018 21:03	LDS
Certifications: NELAC-NY12058,NJDEP-Queens NELAC-NY12058,NJDEP-Queens	10-82-7	Cyclohexane	7.2	ug/m³	0.18	0.533		NELAC-NY		04/06/2018 21:03	LDS
Certifications: NELAC-NY12058,NJDEP-Queens 141-78-6 * Ethyl acetate 1.6 ug/m³ 0.38 0.533 EPA TO-15 0.4/06/2018 09:50 0.4/06/2018 21	24-48-1	Dibromochloromethane	ND	ug/m³	0.45	0.533		NELAC-NY		04/06/2018 21:03	LDS
Enji acciae	75-71-8	Dichlorodifluoromethane	1.2	ug/m³	0.26	0.533		NELAC-NY		04/06/2018 21:03	LDS
	41-78-6	* Ethyl acetate	1.6	ug/m³	0.38	0.533			04/06/2018 09:50	04/06/2018 21:03	LDS

Client Sample ID: IA-1 (Reg#7420)

York Sample ID:

18D0119-01

York Project (SDG) No. 18D0119 <u>Client Project ID</u> 47-50 30th Street LIC, NY Matrix Indoor Ambient Air Collection Date/Time
April 3, 2018 3:00 pm

Date Received 04/04/2018

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS No.	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-41-4	Ethyl Benzene	10		ug/m³	0.23	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 712058,NJDEP-Queens	04/06/2018 21:03	LDS
87-68-3	Hexachlorobutadiene	ND		ug/m³	0.57	0.533	EPA TO-15		04/06/2018 09:50	04/06/2018 21:03	LDS
67-63-0	Isopropanol	150	Е	ug/m³	0.26	0.533	Certifications: EPA TO-15 Certifications:		712058,NJDEP-Queens 04/06/2018 09:50 712058,NJDEP-Queens	04/06/2018 21:03	LDS
80-62-6	Methyl Methacrylate	3.0		ug/m³	0.22	0.533	EPA TO-15 Certifications:		04/06/2018 09:50 712058,NJDEP-Queens	04/06/2018 21:03	LDS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.19	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 /12058,NJDEP-Queens	04/06/2018 21:03	LDS
75-09-2	Methylene chloride	5.2		ug/m³	0.37	0.533	EPA TO-15 Certifications:		04/06/2018 09:50 712058,NJDEP-Queens	04/06/2018 21:03	LDS
142-82-5	n-Heptane	33		ug/m³	0.22	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 /12058,NJDEP-Queens	04/06/2018 21:03	LDS
110-54-3	n-Hexane	8.6		ug/m³	0.19	0.533	EPA TO-15 Certifications:	NELAC-N	04/06/2018 09:50 /12058,NJDEP-Queens	04/06/2018 21:03	LDS
95-47-6	o-Xylene	37		ug/m³	0.23	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 /12058,NJDEP-Queens	04/06/2018 21:03	LDS
179601-23-1	p- & m- Xylenes	40		ug/m³	0.46	0.533	EPA TO-15 Certifications:	NELAC-N	04/06/2018 09:50 /12058,NJDEP-Queens	04/06/2018 21:03	LDS
622-96-8	* p-Ethyltoluene	370	IS-LO	ug/m³	8.1	16.48	EPA TO-15 Certifications:		04/09/2018 15:39	04/09/2018 15:39	LDS
115-07-1	* Propylene	1.6		ug/m³	0.092	0.533	EPA TO-15 Certifications:		04/06/2018 09:50	04/06/2018 21:03	LDS
100-42-5	Styrene	ND		ug/m³	0.23	0.533	EPA TO-15 Certifications:	NELAC-N	04/06/2018 09:50 /12058,NJDEP-Queens	04/06/2018 21:03	LDS
127-18-4	Tetrachloroethylene	1700		ug/m³	2.8	16.48	EPA TO-15 Certifications:	NELAC-N	04/09/2018 15:39 /12058,NJDEP-Queens	04/09/2018 15:39	LDS
109-99-9	* Tetrahydrofuran	ND		ug/m³	0.31	0.533	EPA TO-15 Certifications:		04/06/2018 09:50	04/06/2018 21:03	LDS
108-88-3	Toluene	82		ug/m³	0.20	0.533	EPA TO-15 Certifications:	NELAC-N	04/06/2018 09:50 /12058,NJDEP-Queens	04/06/2018 21:03	LDS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.21	0.533	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 /12058,NJDEP-Queens	04/06/2018 21:03	LDS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.24	0.533	EPA TO-15 Certifications:	NELAC-N	04/06/2018 09:50 /12058,NJDEP-Queens	04/06/2018 21:03	LDS
79-01-6	Trichloroethylene	15		ug/m³	0.072	0.533	EPA TO-15 Certifications:		04/06/2018 09:50 /12058,NJDEP-Queens	04/06/2018 21:03	LDS
75-69-4	Trichlorofluoromethane (Freon 11)	0.84		ug/m³	0.30	0.533	EPA TO-15 Certifications:		04/06/2018 09:50 /12058,NJDEP-Queens	04/06/2018 21:03	LDS
108-05-4	Vinyl acetate	ND		ug/m³	0.19	0.533	EPA TO-15 Certifications:		04/06/2018 09:50 /12058,NJDEP-Queens	04/06/2018 21:03	LDS
593-60-2	Vinyl bromide	ND		ug/m³	0.23	0.533	EPA TO-15 Certifications:		04/06/2018 09:50 712058,NJDEP-Queens	04/06/2018 21:03	LDS

Client Sample ID: IA-1 (Reg#7420)

York Sample ID:

18D0119-01

York Project (SDG) No.

Client Project ID

<u>Matrix</u>

Collection Date/Time

Date Received

18D0119

47-50 30th Street LIC, NY

Indoor Ambient Air

Certifications:

April 3, 2018 3:00 pm

NELAC-NY12058,NJDEP-Queens

04/04/2018

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepar	red by Method: EPA T	O15 PREP									
CAS N	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride		ND	-	ug/m³	0.034	0.533	EPA TO-15	04/06/2018 09:50	04/06/2018 21:03	LDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

QL-03	This LCS analyte recovered outside of acceptance limits. The LCS contains approximately 70 compounds, a limited number of
	which may be outside acceptance windows.

IS-LO The internal std associated with this target compound did not meet acceptance criteria (area <50% CCV) at the stated dilution due to matrix effects. Sample was rerun to confirm matrix effects.

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate.

CCV-A The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>30% Difference for average Rf). This applies to dectected analytes only.

Definitions and Other Explanations

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices
 Page 9 of 11

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Turn-Around Time Report Type/Deliverables Special Instructions 5 Liter Summa canister 🗶 NOTE: York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your York Project No. [8 pol/9] Sampling Media 6 Liter Summa canister 6 Liter Summa canister 6 Liter Summa canister Regulatory Comparison Excel Tedlar Bag 6 Liter Summa canister Date/Time Date/Time アナ NY ASP B/CLP Pkg EDD (Specify Type) NY ASP A Package Summary W QA Sun CT RCP Package Summary Report NJDEP Reduced Fedlar Bag Tedlar Bag Page Standard Excel Fedlar Bag Choose Analyses Needed from the Menu Above and Enter Below Samples Received in LAB Samples Received By Detection Limits Required Standard(5-7 Days) NYSDEC V1 Limits RUSH - Three Day RUSH - Same Day RUSH - Four Day RUSH - Next Day RUSH - Two Day Field Chain-of-Custody Record - AIR Routine Survey ≤ l ug/m² Other fentatively Identified Compounds gnature binds you to York's Std. Terms & Conditions unless superseded by written contract 1-01 YOUR Project ID Purchase Order No. Z 47-50 30 th Street PRE-18-039 Samples from: CT NYX 9hrh-81/h/t Date/Time FO15 Volatiles and Other Gas Analyses EPA TO-14A List Before Sampling (in. Hg) Afer Sampling (in. Hg) Air VPH Methane Project Specific List by TO-15 Helium OTHER Samples Relinguished By Samples Relinquished By CTDEP RCP Target List -30 12 Hg NYSDEC STARS List Invoice To: NJDEP Target List clock will not begin unfill any questions by York are resolved. NYSDEC VI list NOT be logged in and the turn-around time EPATO-15List E-Mail Address: Print Clearly and Legibly. All Information must be complete. Attention: INDOOR Ambient Air OUTDOOR Amb. Air Vapor Extraction Well/ SOIL Vapor/Sub-Slab Process Gas/Effluent **AIR Matrix** Air Matrix Codes AH Report To: 4/2/5 4/3/18 (F Date Sampled E-Mail Address: Samples Collected/Authorized By (Signature) Attention: Phone No. Address: 20 RESEARCH DR. STRATFORD, CT 06615 FAX (203) 357-0166 RATORIES, INC. Company: PRECECT ENVIOUNNINGSINIS E-Mail Address. peg#7420 Contact Person: Bill Schlage FC YOUR Information Sample Identification Name (printed) Address: 323 Merrick Ave Phone No. (516) 546-1100 MAIRE (480 (203) 325-1371 Merrick, NY Samples will Comments

Technical Report

prepared for:

Preferred Env. Services

323 Merrick Ave North Merrick NY, 11566 **Attention: Bill Schlageter**

Report Date: 04/11/2018

Client Project ID: 47-50 30th Street LIC, NY

York Project (SDG) No.: 18D0122

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 04/11/2018

Client Project ID: 47-50 30th Street LIC, NY

York Project (SDG) No.: 18D0122

Preferred Env. Services

323 Merrick Ave North Merrick NY, 11566 Attention: Bill Schlageter

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on April 04, 2018 and listed below. The project was identified as your project: 47-50 30th Street LIC, NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
18D0122-01	SSV-1 (Reg#Y3)	Soil Vapor	04/03/2018	04/04/2018

General Notes for York Project (SDG) No.: 18D0122

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Date: 04/11/2018

Benjamin Gulizia Laboratory Director

Client Sample ID: SSV-1 (Reg#Y3) York Sample ID: 18D0122-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received18D012247-50 30th Street LIC, NYSoil VaporApril 3, 2018 3:00 pm04/04/2018

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	Date/Time lethod Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.95	1.386	EPA TO-15 Certifications:	04/06/2018 09:50	04/06/2018 22:08	LDS
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.76	1.386	EPA TO-15	04/06/2018 09:50 NELAC-NY12058,NJDEP-Queo	04/06/2018 22:08	LDS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.95	1.386	EPA TO-15	04/06/2018 09:50 WELAC-NY12058,NJDEP-Quee	04/06/2018 22:08	LDS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.1	1.386	EPA TO-15	04/06/2018 09:50 NELAC-NY12058,NJDEP-Queo	04/06/2018 22:08	LDS
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.76	1.386	EPA TO-15 Certifications: N	04/06/2018 09:50 NELAC-NY12058,NJDEP-Quee	04/06/2018 22:08	LDS
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.56	1.386	EPA TO-15 Certifications: N	04/06/2018 09:50 NELAC-NY12058,NJDEP-Quee	04/06/2018 22:08	LDS
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.14	1.386	EPA TO-15 Certifications:	04/06/2018 09:50 NELAC-NY12058,NJDEP-Queo	04/06/2018 22:08	LDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	1.0	1.386	EPA TO-15	04/06/2018 09:50 NELAC-NY12058,NJDEP-Queo	04/06/2018 22:08	LDS
95-63-6	1,2,4-Trimethylbenzene	550	IS-LO	ug/m³	6.8	13.86	EPA TO-15	04/09/2018 16:40 NELAC-NY12058,NJDEP-Quee	04/09/2018 16:40	LDS
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.1	1.386	EPA TO-15 Certifications:	04/06/2018 09:50 NELAC-NY12058,NJDEP-Queo	04/06/2018 22:08	LDS
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.83	1.386	EPA TO-15 Certifications:	04/06/2018 09:50 NELAC-NY12058,NJDEP-Quee	04/06/2018 22:08	LDS
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.56	1.386	EPA TO-15 Certifications:	04/06/2018 09:50 NELAC-NY12058,NJDEP-Queo	04/06/2018 22:08	LDS
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.64	1.386	EPA TO-15 Certifications:	04/06/2018 09:50 NELAC-NY12058,NJDEP-Queo	04/06/2018 22:08	LDS
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.97	1.386	EPA TO-15 Certifications:	04/06/2018 09:50 NELAC-NY12058,NJDEP-Quee	04/06/2018 22:08	LDS
108-67-8	1,3,5-Trimethylbenzene	140		ug/m³	0.68	1.386	EPA TO-15 Certifications:	04/06/2018 09:50 NELAC-NY12058,NJDEP-Queo	04/06/2018 22:08	LDS
106-99-0	1,3-Butadiene	ND		ug/m³	0.92	1.386	EPA TO-15 Certifications:	04/06/2018 09:50 NELAC-NY12058,NJDEP-Queo	04/06/2018 22:08 ens	LDS
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.83	1.386	EPA TO-15 Certifications:	04/06/2018 09:50 NELAC-NY12058,NJDEP-Queo	04/06/2018 22:08 ens	LDS
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.64	1.386	EPA TO-15 Certifications:	04/06/2018 09:50	04/06/2018 22:08	LDS
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.83	1.386	EPA TO-15 Certifications:	04/06/2018 09:50 NELAC-NY12058,NJDEP-Queo	04/06/2018 22:08 ens	LDS
123-91-1	1,4-Dioxane	ND		ug/m³	1.0	1.386	EPA TO-15 Certifications:	04/06/2018 09:50 NELAC-NY12058,NJDEP-Queo	04/06/2018 22:08	LDS
78-93-3	2-Butanone	5.6		ug/m³	0.41	1.386	EPA TO-15 Certifications:	04/06/2018 09:50 NELAC-NY12058,NJDEP-Queo	04/06/2018 22:08	LDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices Page 4 of 11

Client Sample ID: SSV-1 (Reg#Y3) **York Sample ID:**

18D0122-01

York Project (SDG) No. 18D0122

Client Project ID 47-50 30th Street LIC, NY

Matrix Soil Vapor

Collection Date/Time April 3, 2018 3:00 pm Date Received 04/04/2018

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS No.	. Parameter	Result	Flag U	nits	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
591-78-6	* 2-Hexanone	ND	u	g/m³	1.1	1.386	EPA TO-15 Certifications:		04/06/2018 09:50	04/06/2018 22:08	LDS
107-05-1	3-Chloropropene	ND	u	g/m³	2.2	1.386	EPA TO-15	NEL 1032	04/06/2018 09:50	04/06/2018 22:08	LDS
108-10-1	4-Methyl-2-pentanone	ND	u	g/m³	0.57	1.386	Certifications: EPA TO-15 Certifications:		04/06/2018 09:50	04/06/2018 22:08	LDS
67-64-1	Acetone	390	ug	/m³	6.6	13.86	EPA TO-15 Certifications:		12058,NJDEP-Queens 04/09/2018 16:40 12058,NJDEP-Queens	04/09/2018 16:40	LDS
107-13-1	Acrylonitrile	ND	u	g/m³	0.30	1.386	EPA TO-15 Certifications:		04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
71-43-2	Benzene	4.6	ug	/m³	0.44	1.386	EPA TO-15 Certifications:		04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
100-44-7	Benzyl chloride	ND	u	g/m³	0.72	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
75-27-4	Bromodichloromethane	ND	u	g/m³	0.93	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
75-25-2	Bromoform	ND	u	g/m³	1.4	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
74-83-9	Bromomethane	ND	u	g/m³	0.54	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
75-15-0	Carbon disulfide	1.7	ug	/m³	0.43	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 T12058,NJDEP-Queens	04/06/2018 22:08	LDS
56-23-5	Carbon tetrachloride	0.52	ug	/m³	0.22	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
108-90-7	Chlorobenzene	ND	u	g/m³	0.64	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
75-00-3	Chloroethane	ND	u	g/m³	0.37	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 T12058,NJDEP-Queens	04/06/2018 22:08	LDS
67-66-3	Chloroform	8.1	ug	/m³	0.68	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
74-87-3	Chloromethane	0.40	ug	/m³	0.29	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
156-59-2	cis-1,2-Dichloroethylene	5.0	ug	/m³	0.14	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
10061-01-5	cis-1,3-Dichloropropylene	ND	u	g/m³	0.63	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 T12058,NJDEP-Queens	04/06/2018 22:08	LDS
110-82-7	Cyclohexane	3.6	ug	/m³	0.48	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
124-48-1	Dibromochloromethane	ND	u	g/m³	1.2	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
75-71-8	Dichlorodifluoromethane	2.2	ug	/m³	0.69	1.386	EPA TO-15 Certifications:	NELAC-NY	04/06/2018 09:50 12058,NJDEP-Queens	04/06/2018 22:08	LDS
141-78-6	* Ethyl acetate	ND	u	g/m³	1.0	1.386	EPA TO-15 Certifications:		04/06/2018 09:50	04/06/2018 22:08	LDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 5 of 11

Client Sample ID: SSV-1 (Reg#Y3) **York Sample ID:**

18D0122-01

York Project (SDG) No. 18D0122

Client Project ID 47-50 30th Street LIC, NY

Matrix Soil Vapor

Collection Date/Time April 3, 2018 3:00 pm Date Received 04/04/2018

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

•		TAT 4	
	ng-in	Notes:	

Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-41-4	Ethyl Benzene	15		ug/m³	0.60	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queens		
37-68-3	Hexachlorobutadiene	ND		ug/m³	1.5	1.386	EPA TO-15	NET 10 N	04/06/2018 09:50	04/06/2018 22:08	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queens		
67-63-0	Isopropanol	12		ug/m³	0.68	1.386	EPA TO-15 Certifications:	NEL AC-NY	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 22:08	LDS
30-62-6	Maded Made and de	14		ug/m³	0.57	1.386	EPA TO-15	NELITE-IV	04/06/2018 09:50	04/06/2018 22:08	LDS
0-02-0	Methyl Methacrylate	14		ug/III	0.57	1.560	Certifications:	NELAC-N	Y12058,NJDEP-Queens		LDS
1634-04-4	Methyl tert-butyl ether (MTBE)	5.0		ug/m³	0.50	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
	,						Certifications:	NELAC-NY	Y12058,NJDEP-Queens	5	
75-09-2	Methylene chloride	25		ug/m³	0.96	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queens	5	
142-82-5	n-Heptane	27		ug/m³	0.57	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queens	5	
110-54-3	n-Hexane	15		ug/m³	0.49	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queens		
95-47-6	o-Xylene	34		ug/m³	0.60	1.386	EPA TO-15	NEL LON	04/06/2018 09:50	04/06/2018 22:08	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queens		
179601-23-1	p- & m- Xylenes	57		ug/m³	1.2	1.386	EPA TO-15 Certifications:	NEL AC NO	04/06/2018 09:50 Y12058,NJDEP-Queens	04/06/2018 22:08	LDS
(22.07.9	4 74 14 1	1.00	10.1.0	/3	(9	12.07		NELAC-N			LDC
522-96-8	* p-Ethyltoluene	160	IS-LO	ug/m³	6.8	13.86	EPA TO-15 Certifications:		04/09/2018 16:40	04/09/2018 16:40	LDS
15-07-1	* Propylene	0.81		ug/m³	0.24	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
13-07-1	- Fropylene	0.01		ug/III	0.24	1.560	Certifications:		04/00/2010 07:50	04/00/2010 22:00	LDS
00-42-5	Styrene	ND		ug/m³	0.59	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
00 42 5	Stylene	ND		ug/iii	0.57	1.500	Certifications:	NELAC-N	Y12058,NJDEP-Queens		LDS
27-18-4	Tetrachloroethylene	17000		ug/m³	19	110.88	EPA TO-15		04/10/2018 17:06	04/10/2018 17:06	LDS
27 10 4	Teti acinoi octifyiche	17000		ug III	17	110.00	Certifications:	NELAC-N	Y12058,NJDEP-Queens		LDS
09-99-9	* Tetrahydrofuran	ND		ug/m³	0.82	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
	Tettanyaroraran	ND		-0	****		Certifications:				
108-88-3	Toluene	59		ug/m³	0.52	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
	Totalene	37		-0	***		Certifications:	NELAC-NY	Y12058,NJDEP-Queens		
56-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.55	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
	tiano 1,2 Biomoroemyiene	112					Certifications:	NELAC-N	Y12058,NJDEP-Queens	5	
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.63	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
	tians 1,5 Biemoropropytene	NB					Certifications:	NELAC-N	Y12058,NJDEP-Queens		
79-01-6	Trichloroethylene	98		ug/m³	0.19	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
	Tremoroccuyicae	70		-0			Certifications:	NELAC-NY	Y12058,NJDEP-Queens		
75-69-4	Trichlorofluoromethane (Freon 11)	1.3		ug/m³	0.78	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
	,						Certifications:	NELAC-NY	Y12058,NJDEP-Queens	5	
08-05-4	Vinyl acetate	ND		ug/m³	0.49	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
	•						Certifications:	NELAC-N	Y12058,NJDEP-Queens	S	
	Vinyl bromide	ND		ug/m³	0.61	1.386	EPA TO-15		04/06/2018 09:50	04/06/2018 22:08	LDS
93-60-2	J	•		-				NEV 4 C NO			
93-60-2							Certifications:	NELAC-N	Y12058,NJDEP-Queens	5	
593-60-2 75-01-4	Vinyl Chloride	ND		ug/m³	0.089	1.386	EPA TO-15	NELAC-N	712058,NJDEP-Queens 04/06/2018 09:50	04/06/2018 22:08	LDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices

Page 6 of 11

Client Sample ID: SSV-1 (Reg#Y3) York Sample ID: 18D0122-01

<u>York Project (SDG) No.</u> <u>Client Project ID</u> 18D0122 47-50 30th Street LIC, NY Matrix Soil Vapor Collection Date/Time
April 3, 2018 3:00 pm

Date Received 04/04/2018

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices Page 7 of 11

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

QL-03	This LCS analyte recovered outside of acceptance limits.	The LCS contains approximately 70 compounds, a limited number of
	which may be outside acceptance windows.	

IS-LO The internal std associated with this target compound did not meet acceptance criteria (area <50% CCV) at the stated dilution due to matrix effects. Sample was rerun to confirm matrix effects.

CCV-A The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>30% Difference for average Rf). This applies to dectected analytes only.

Definitions and Other Explanations

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.

LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418
www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices € 100 ClientServices € 100

Page 9 of 11

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

Turn-Around Time Report Type/Deliverables Special Instructions Regulatory Comparison Excel This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions and the analyses requested and your Sampling Media Tedlar Bag 6 Liter Summa canister 6 Liter Summa canister Tedlar Bag 6 Liter Summa canister 8/4/18 NY ASP B/CLP Pkg EDD (Specify Type) NY ASP A Package Date/Time Date/Time Summary w/ QA su Summary Report CT RCP Package NJDEP Reduced Standard Excel Tedlar Bag Fedlar Bag Samples Received in LAB by Choose Analyses Needed from the Alenu Above and Enter Belov **Detection Limits Required** Samples Received By Standard(5-7 Days)X NYSDEC VI Limits X RUSH - Three Day RUSH - Same Day RUSH - Four Day RUSH - Next Day Field Chain-of-Custody Record - AIR RUSH - Two Day NJDEP low level Routine Survey ≤ I ug/m. Other Tentatively Identified Compounds Purchase Order No. Z YOUR Project ID 47-50 30th Street PRE-18-039 Samples from: CT NY X 4/4/4-9:46 LIC, NY TO15 Volatiles and Other Gas Analyses Before Sampling (in. Hg) Afer Sampling (in. Hg) Canister Vacuum - In Ha Air VPH Methane OTHER Project Specific List by TO-15 Helium Samples Relinquished By Samples Relinquished By TDEP RCP Target List **NYSDEC STARS List** Canister Vacuum 27 in Hg Invoice To: NJDEP Target List clock will not begin until Any questions by York are resolved. NYSDEC VI list Samples will NOT be logged in and the turn-around time FPA TO-15 List E-Mail Address: Company: shone No. Print Clearly and Legibly. All Information must be complete. INDOOR Ambient Air Vapor Extraction Well/ OUTDOOR Amb. Air Process Gas/Effluent SOIL Vapor/Sub-Slab **AIR Matrix** Air Matrix Codes Report To: AI-AO-AE-Date Sampled 8/K/h-8/12/ E-Mail Address, ent @ Preferredon, con E-Mail Address. Samples Collected/Authorized By (Signature) Service Company Address: 20 RESEARCH DR. STRATFORD, CT 06615 FAX (203) 357-0166 ABORATORIES, INC. Address: SZZ Merria Ave Name (printed) Company Preferred Environmental Contact Person: B:11 Shize YOUR Information METRICK, NY 11566 Sample Identification (Reg # Y3 Phone No. (578) 540-1100 Matther (203) 325-1371 Comments 550

Soil Vapor/Indoor Air Matrix A

May 2017

Analytes Assigned:

Trichloroethene (TCE), cis-1,2-Dichloroethene (c12-DCE), 1,1-Dichloroethene (11-DCE), Carbon Tetrachloride

	INDOOR AIR	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m³)								
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 0.2	0.2 to < 1	1 and above							
< 6	No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE							
6 to < 60	4. No further action	5. MONITOR	6. MITIGATE							
60 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE							

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX A Page 1 of 2

ADDITIONAL NOTES FOR MATRIX A

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the quidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix B

May 2017

Analytes Assigned:

Tetrachloroethene (PCE), 1,1,1-Trichloroethane (111-TCA), Methylene Chloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m³)								
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 3	3 to < 10	10 and above						
< 100	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE						
100 to < 1,000	4. No further action	5. MONITOR	6. MITIGATE						
1,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE						

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX B Page 1 of 2

ADDITIONAL NOTES FOR MATRIX B

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the quidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 1 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix C

May 2017

Analytes Assigned:

Vinyl Chloride

	INDOOR AIR CONCENTRATIO	N of COMPOUND (mcg/m³)
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 0.2	0.2 and above
< 6	No further action	2. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE
6 to < 60	3. MONITOR	4. MITIGATE
60 and above	5. MITIGATE	6. MITIGATE

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX C Page 1 of 2

ADDITIONAL NOTES FOR MATRIX C

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Attachment D

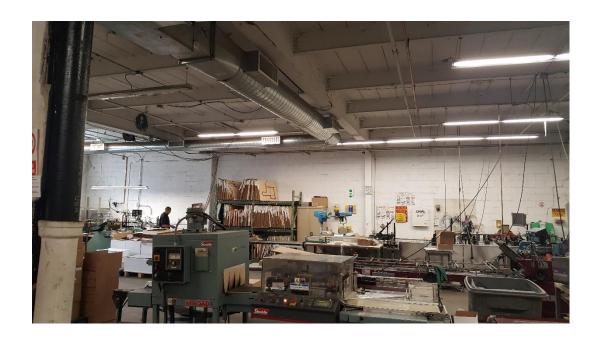
Field Notes

Vapor Intrusion Sample Log

Date:9/21/2018Investigator:Mike CottonIEC Project #:13123Weather:SunnyProject Name/Address:47-50 30th Street, Long Island CityTemp (°F):70°F

Sample ID	Sample Type (IA, SS, A)	Location (e.g., basement, etc.)	Can ID	Flow ID	PID Reading (ppm)		Start/End Press.	Sample Duration	Misc. Observation Notes
SV-1	SS	North Side of the Site on the ground floor	1724	695	10.1	7:08 - 14:45	- 30.29 / -0.14	8 hr	
SV-2	SS	Central portion of the Site on the ground floor	173	971	9.5	7:04 - 14:30	- 30.33 / -0.10	8 hr	
SV-3	SS	South Side of the Site on the ground floor	2308	973	1.6	6:58 - 14:16	- 30.81 / -0.20	8 hr	
IA-1	IA	North Side of the Site on the ground floor	2230	854	N/A	7:09 - 14:47	- 30.01 / -0.12	8 hr	
IA-2	IA	Central portion of the Site on the ground floor	329	734	N/A	7:05 - 14:31	- 29.94 / -0.09	8 hr	
IA-3	IA	South Side of the Site on the ground floor	202	856	N/A	7:13 - 14:17	- 30.16 / -0.10	8 hr	

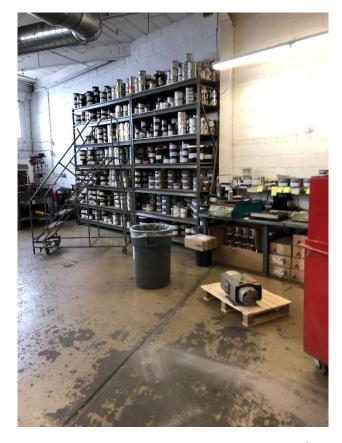
^{*}IA = Indoor Air, SV = Soil Vapor, and A = Ambient


Checklist Items:

- 1) Chemical inventory
- 2) HVAC System Active: use of heating or air conditioning system?
- 3) Floor layout sketch w/ sample locations shown
- 4) Floor Plan Sketch
- 5) Significant precipitation with 12 hour prior to (or during) the sample event?

^				Drainat #, 12	122.01	PODINC ID		
Impact Environmental Closures, Inc. 170 Keyland Court Bohemia, NY 11716 P. (631) 269-8800			ontal	Project #: 13123-01 Site/Project Name: 47-50 30th Street		BORING ID		
			ientai	Site/Project i	Name: 47-30 Sour Street	D 1/T\A/ 1		
				Site Address:	: 47-50 30th Street, Queens, NY 11235	B-1/TW-1		
				Weather: Sui	nny	Total Depth: 15' BSG		
W				Geologist: Leif Robertson		GW Encountered: ≈ 8' BSG		
Start Date: September 20, 2018				Drilling Company: Impact Environmental Closures		GW Stabilized: 8.61' BSG		
Start Time: 10:00 AM				Driller: Steven Bitteto		GPS Coordinates:		
Completion Date: September 20, 2018				Drill Rig: GeoProbe 420M		X: 40.741784		
Completion Time	e: 10:46 AM			Sampler Type	e/Length: 2.25" ID Direct Push	Y: -73.938431		
Depth (ft.)	PID/FID/OVM	Sample ID and Depth	Recovery (inches)	Soil Type	SOIL/GEOLOGIC DESCR	CRIPTION		
2			40%					
1. 4 — 1. — 5 — — 6 — — 1.	1.9		<20% N/A	0-6.5': Historic Fill Material				
7	- 8			SP	6.5'-9': Brown Find to Coarse SAND, Some Silt and	d Gravel	r	
-				SP 9'-10.5': Brown Find to Coarse SAND, Some Silt and Trace G				
11 ————————————————————————————————————				SP	10.5'-12': Dark Brown Find to Coarse SAND, Some	ne Silt		
			<25%	SP	12'-15': Dark Brown Fine to Coarse SAND, Some S	ne Silt and and Gravel		

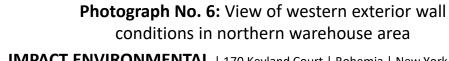
		D	422.04	DODING IS	
lane of Fredrick	ambal Class	Project #: 13		BORING ID	
Impact Environm Inc.	entai Closu	\$梵e/Project Name: 47-50 30th Street		D 0 /= 1	
170 Keyland Cour Bohemia, NY 117		Site Address: 47-50 30th Street, Queens, NY 11235		B-2/TW-2	
P. (631) 269-880	0	Weather: Sur	าทy	Total Depth: 15' BSG	
V		Geologist: Le	if Robertson	GW Encountered: ≈ 9.5' BSG	
Start Date: September 20, 2018		Drilling Company: Impact Environmental Closures		GW Stabilized: 9.66' BSG	
Start Time: 11:00 AM		Driller: Steven Bitteto		GPS Coordinates:	
Completion Date: September 20, 2018		Drill Rig: GeoProbe 420M		X: 40.741768	
Completion Time: 12:05 PM		Sampler Type	e/Length: 2.25" ID Direct Push	Y: -73.938238	
Depth (ft.) PID/FID/OVM Sample ID and Depth	Recovery (inches)	Soil Type	SOIL/GEOLOGIC DESCR	CRIPTION	
	30%				
- 4 - 0.0	40%	N/A	0-8': Historic Fill Material		
- 7	30%				
9 0.2		SP	8'-10': Dark Brown Find to Coarse SAND, Some Gr		
	50%			Groundwater Interface Observed	
- 13	75%	SP	10'-15': Brown Find to Coarse SAND, Some Silt and Gravel		



Photograph No. 1: View of northern warehouse area

Photograph No. 2: View of the northern warehouse area

Photograph No. 3: Representative view of interior drilling locations


Photograph No. 4: Representative view of interior drilling locations

Photograph No. 5: View of northern exterior wall conditions

Attachment E

Laboratory Analytical Reports

ANALYTICAL REPORT

Lab Number: L1838130

Client: Impact Environmental

170 Keyland Ct Bohemia, NY 11716

ATTN: Greg Mendez-Chicas

Phone: (631) 269-8800

Project Name: 30TH STREET LIC

Project Number: 13123
Report Date: 10/03/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838130 **Report Date:** 10/03/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1838130-01	B-1	SOIL	47-50 30TH STREET, LONG ISLAND CITY, NY	09/20/18 09:45	09/24/18
L1838130-02	B-2	SOIL	47-50 30TH STREET, LONG ISLAND CITY, NY	09/20/18 11:10	09/24/18
L1838130-03	TW-1	WATER	47-50 30TH STREET, LONG ISLAND CITY, NY	09/20/18 12:00	09/24/18
L1838130-04	TW-2	WATER	47-50 30TH STREET, LONG ISLAND CITY, NY	09/20/18 12:45	09/24/18
L1838130-05	TW-3	WATER	47-50 30TH STREET, LONG ISLAND CITY, NY	09/20/18 13:00	09/24/18

Serial_No:10031813:25

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any que	estions.
---	----------

Serial_No:10031813:25

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The analyses performed were specified by the client.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative Date: 10/03/18

Nails

ORGANICS

VOLATILES

L1838130

Project Name: 30TH STREET LIC Lab Number:

Project Number: 13123 Report Date: 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-01 Date Collected: 09/20/18 09:45

Client ID: Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 10/02/18 16:39

Analyst: NLK Percent Solids: 93%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	4.9	2.2	1
1,1-Dichloroethane	ND		ug/kg	0.98	0.14	1
Chloroform	ND		ug/kg	1.5	0.14	1
Carbon tetrachloride	ND		ug/kg	0.98	0.22	1
1,2-Dichloropropane	ND		ug/kg	0.98	0.12	1
Dibromochloromethane	ND		ug/kg	0.98	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	0.98	0.26	1
Tetrachloroethene	0.95		ug/kg	0.49	0.19	1
Chlorobenzene	ND		ug/kg	0.49	0.12	1
Trichlorofluoromethane	ND		ug/kg	3.9	0.68	1
1,2-Dichloroethane	ND		ug/kg	0.98	0.25	1
1,1,1-Trichloroethane	ND		ug/kg	0.49	0.16	1
Bromodichloromethane	ND		ug/kg	0.49	0.11	1
trans-1,3-Dichloropropene	ND		ug/kg	0.98	0.27	1
cis-1,3-Dichloropropene	ND		ug/kg	0.49	0.15	1
1,3-Dichloropropene, Total	ND		ug/kg	0.49	0.15	1
1,1-Dichloropropene	ND		ug/kg	0.49	0.16	1
Bromoform	ND		ug/kg	3.9	0.24	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.49	0.16	1
Benzene	ND		ug/kg	0.49	0.16	1
Toluene	ND		ug/kg	0.98	0.53	1
Ethylbenzene	ND		ug/kg	0.98	0.14	1
Chloromethane	ND		ug/kg	3.9	0.91	1
Bromomethane	ND		ug/kg	2.0	0.57	1
Vinyl chloride	ND		ug/kg	0.98	0.33	1
Chloroethane	ND		ug/kg	2.0	0.44	1
1,1-Dichloroethene	ND		ug/kg	0.98	0.23	1
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.13	1

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-01 Date Collected: 09/20/18 09:45

Client ID: Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough Lab	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,2-Dichlorobenzene ND Ug/kg 2.0 0.14 1 1 1 1 1 1 1 1 1	Volatile Organics by GC/MS - Westbord	ough Lab					
1,2-Dichlorobenzene ND	Trichloroethene	ND		ug/kg	0.49	0.13	1
1,3-Dichlorobenzene ND ug/kg 2.0 0.14 1 1,4-Dichlorobenzene ND ug/kg 2.0 0.17 1 Methyl ter buyl ether ND ug/kg 2.0 0.20 1 pmr-Xylane ND ug/kg 0.98 0.28 1 o-Xylene ND ug/kg 0.98 0.28 1 Xylenes, Total ND ug/kg 0.98 0.28 1 Xylenes, Total ND ug/kg 0.98 0.17 1 Lest-1,2-Dichloroethene, Total ND ug/kg 0.98 0.17 1 Dichromoethane ND ug/kg 2.0 0.23 1 Styrene ND ug/kg 9.8 0.19 1 Dichromoethane ND ug/kg 9.8 0.99 1 Acetone 22 ug/kg 9.8 4.7 1 Carbon disulfide ND ug/kg 9.8 1.2 1	1,2-Dichlorobenzene	ND			2.0	0.14	1
1.4-Dichlorobenzene ND ug/kg 2.0 0.17 1 Methyt tert bulyl ether ND ug/kg 2.0 0.20 1 p/m-Xylene ND ug/kg 0.98 0.28 1 c-Xylenes ND ug/kg 0.98 0.28 1 Xylenes, Total ND ug/kg 0.98 0.17 1 Lis-12-Dichloroethene ND ug/kg 0.98 0.13 1 1,2-Dichloroethene, Total ND ug/kg 0.98 0.13 1 Dibromomethane ND ug/kg 0.98 0.13 1 Styrene ND ug/kg 0.98 0.19 1 Dichlorodifluoromethane ND ug/kg 9.8 0.19 1 Acetone 22 ug/kg 9.8 4.7 1 Carbon disulfde ND ug/kg 9.8 2.2 1 Vilyal acetate ND ug/kg 9.8 2.1 1	1,3-Dichlorobenzene	ND			2.0	0.14	1
Methyl terib utyl ether ND ug/kg 2.0 0.20 1 p/m-Xylene ND ug/kg 2.0 0.55 1 o-Xylene ND ug/kg 0.98 0.28 1 Xylenes, Total ND ug/kg 0.98 0.17 1 1,2-Dichloroethene ND ug/kg 0.98 0.13 1 1,2-Dichloroethene, Total ND ug/kg 0.98 0.13 1 1,2-Dichloroethene, Total ND ug/kg 0.98 0.13 1 Dibromoethane ND ug/kg 0.98 0.13 1 Styrene ND ug/kg 9.8 0.29 1 Styrene ND ug/kg 9.8 0.89 1 Acetone 22 ug/kg 9.8 0.89 1 Carbon disulfide ND ug/kg 9.8 2.2 1 Viryl acetate ND ug/kg 9.8 1.2 1	1,4-Dichlorobenzene	ND			2.0	0.17	1
p/m-Xylene ND ug/kg 2.0 0.55 1 o-Xylene ND ug/kg 0.98 0.28 1 Xylenes, Total ND ug/kg 0.98 0.28 1 cis-12-Dichloroethene ND ug/kg 0.98 0.17 1 L2-Dichloroethene, Total ND ug/kg 0.98 0.13 1 Dichlorodifluoromethane ND ug/kg 0.98 0.19 1 Styrene ND ug/kg 0.98 0.19 1 Acetone 22 ug/kg 9.8 0.89 1 Acetone 22 ug/kg 9.8 4.7 1 Carbon disulfide ND ug/kg 9.8 4.4 1 2-Bulanone ND ug/kg 9.8 1.2 1 Vinyl acetate ND ug/kg 9.8 1.2 1 4-Methyl-2-pertanone ND ug/kg 2.0 0.12 1	Methyl tert butyl ether	ND			2.0	0.20	1
Xylenes, Total ND ug/kg 0.98 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.98 0.17 1 1,2-Dichloroethene, Total ND ug/kg 0.98 0.13 1 Dibromomethane ND ug/kg 0.98 0.13 1 Styrene ND ug/kg 0.98 0.19 1 Dichlorodifloromethane ND ug/kg 9.8 0.89 1 Acetone 22 ug/kg 9.8 4.7 1 Carbon disulfide ND ug/kg 9.8 4.4 1 2-Butanone ND ug/kg 9.8 2.2 1 Vinyl acetate ND ug/kg 9.8 2.1 1 4-Methyl-2-pentanone ND ug/kg 9.8 1.2 1 4-Methyl-2-pentanone ND ug/kg 9.8 1.2 1 2-Hexanone ND ug/kg 2.0 0.20 1	p/m-Xylene	ND		ug/kg	2.0	0.55	1
cis-1,2-Dichloroethene ND ug/kg 0.98 0.17 1 1,2-Dichloroethene, Total ND ug/kg 0.98 0.13 1 Dibromomethane ND ug/kg 2.0 0.23 1 Styrene ND ug/kg 9.8 0.19 1 Dichlorodffluoromethane ND ug/kg 9.8 0.89 1 Acetone 22 ug/kg 9.8 4.7 1 Carbon disulfide ND ug/kg 9.8 4.4 1 2-Butanone ND ug/kg 9.8 2.2 1 Vinyl acetate ND ug/kg 9.8 2.1 1 4-Methyl-2-pentanone ND ug/kg 9.8 1.2 1 4-Methyl-2-pentanone ND ug/kg 9.8 1.2 1 1,2-3-Tichloropropane ND ug/kg 9.8 1.2 1 2-Hexanone ND ug/kg 2.0 0.20 1 <	o-Xylene	ND		ug/kg	0.98	0.28	1
1,2-Dichloroethene, Total ND ug/kg 0.98 0.13 1 Dibromomethane ND ug/kg 2.0 0.23 1 Styrene ND ug/kg 0.98 0.19 1 Dichlorodiffuoromethane ND ug/kg 9.8 0.89 1 Acetone 22 ug/kg 9.8 4.7 1 Carbon disulfide ND ug/kg 9.8 4.4 1 Carbon disulfide ND ug/kg 9.8 4.4 1 Carbon disulfide ND ug/kg 9.8 4.2 1 Carbon disulfide ND ug/kg 9.8 4.4 1 Carbon disulfide ND ug/kg 9.8 4.2 1 Vinyl acetate ND ug/kg 9.8 2.1 1 4-Methyl-2-pentanone ND ug/kg 9.8 1.2 1 1,2-3-Trichloropropane ND ug/kg 2.0 0.12 1	Xylenes, Total	ND		ug/kg	0.98	0.28	1
Dibromomethane ND ug/kg 2.0 0.23 1 Styrene ND ug/kg 0.98 0.19 1 Dichlorodiffluoromethane ND ug/kg 9.8 0.89 1 Acetone 22 ug/kg 9.8 4.7 1 Carbon disulfide ND ug/kg 9.8 4.4 1 2-Butanone ND ug/kg 9.8 2.2 1 Vinyl acetate ND ug/kg 9.8 2.1 1 4-Methyl-2-pentanone ND ug/kg 9.8 1.2 1 2-3-Tichloropropane ND ug/kg 9.8 1.2 1 Bromochloromethane ND ug/kg 0.98 0.27 1 <td>cis-1,2-Dichloroethene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.98</td> <td>0.17</td> <td>1</td>	cis-1,2-Dichloroethene	ND		ug/kg	0.98	0.17	1
Styrene ND ug/kg 0.98 0.19 1 Dichlorodifluoromethane ND ug/kg 9.8 0.89 1 Acetone 22 ug/kg 9.8 4.7 1 Carbon disulfide ND ug/kg 9.8 4.4 1 2-Butanone ND ug/kg 9.8 2.2 1 Vinyl acetate ND ug/kg 9.8 2.1 1 4-Methyl-2-pentanone ND ug/kg 9.8 1.2 1 4-Methyl-2-pentanone ND ug/kg 2.0 0.12 1 2-Hexanone ND ug/kg 2.0 0.20 1	1,2-Dichloroethene, Total	ND		ug/kg	0.98	0.13	1
Dichlorodifluoromethane ND ug/kg 9.8 0.89 1 Acetone 22 ug/kg 9.8 4.7 1 Carbon disulfide ND ug/kg 9.8 4.4 1 2-Butanone ND ug/kg 9.8 2.2 1 Vinyl acetate ND ug/kg 9.8 2.1 1 4-Methyl-2-pentanone ND ug/kg 9.8 1.2 1 4-Methyl-2-pentanone ND ug/kg 9.8 1.2 1 1,2.3-Trichloropropane ND ug/kg 9.8 1.2 1 2-Hexanone ND ug/kg 2.0 0.12 1 Bromochloromethane ND ug/kg 2.0 0.20 1 1,2-Dibromoethane ND ug/kg 0.9 0.27 1 1,3-Dichloropropane ND ug/kg 0.0 0.16 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.0 0.14 1<	Dibromomethane	ND		ug/kg	2.0	0.23	1
Acetone 22 ug/kg 9.8 4.7 1 Carbon disulfide ND ug/kg 9.8 4.4 1 2-Butanone ND ug/kg 9.8 2.2 1 Vinyl acetate ND ug/kg 9.8 2.1 1 4-Methyl-2-pentanone ND ug/kg 9.8 1.2 1 1,2,3-Trichloropropane ND ug/kg 2.0 0.12 1 1,2,3-Trichloropropane ND ug/kg 9.8 1.2 1 1,2-Bromochloromethane ND ug/kg 2.0 0.12 1 2,2-Dichloropropane ND ug/kg 2.0 0.20 1 1,2-Dibromoethane ND ug/kg 2.0 0.20 1 1,2-Dibromoethane ND ug/kg 2.0 0.16 1 1,3-Dichloropropane ND ug/kg 2.0 0.16 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.98 0.16	Styrene	ND		ug/kg	0.98	0.19	1
Carbon disulfide ND ug/kg 9.8 4.4 1 2-Butanone ND ug/kg 9.8 2.2 1 Vinyl acetate ND ug/kg 9.8 2.1 1 4-Methyl-2-pentanone ND ug/kg 9.8 1.2 1 1,2,3-Trichloropropane ND ug/kg 2.0 0.12 1 1,2,3-Trichloropropane ND ug/kg 9.8 1.2 1 2-Hexanone ND ug/kg 9.8 1.2 1 Bromochloromethane ND ug/kg 9.8 1.2 1 2,2-Dichloropropane ND ug/kg 2.0 0.20 1 1,2-Dibromoethane ND ug/kg 0.98 0.27 1 1,3-Dichloropropane ND ug/kg 0.9 0.16 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.9 0.14 1 Bromobenzene ND ug/kg 0.9 0.14 <t< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td></td><td>ug/kg</td><td>9.8</td><td>0.89</td><td>1</td></t<>	Dichlorodifluoromethane	ND		ug/kg	9.8	0.89	1
2-Butanone ND ug/kg 9.8 2.2 1 Vinyl acetate ND ug/kg 9.8 2.1 1 4-Methyl-2-pentanone ND ug/kg 9.8 1.2 1 1,2,3-Trichloropropane ND ug/kg 2.0 0.12 1 2-Hexanone ND ug/kg 9.8 1.2 1 Bromochloromethane ND ug/kg 2.0 0.20 1 2,2-Dichloropropane ND ug/kg 2.0 0.20 1 1,2-Dibromoethane ND ug/kg 0.98 0.27 1 1,3-Dichloropropane ND ug/kg 0.98 0.27 1 1,3-Dichloropropane ND ug/kg 0.0 0.16 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.0 0.14 1 Bromobenzene ND ug/kg 0.98 0.16 1 n-Butylbenzene ND ug/kg 0.98 0.14 <	Acetone	22		ug/kg	9.8	4.7	1
Vinyl acetate ND ug/kg 9.8 2.1 1 4-Methyl-2-pentanone ND ug/kg 9.8 1.2 1 1,2,3-Trichloropropane ND ug/kg 2.0 0.12 1 2-Hexanone ND ug/kg 9.8 1.2 1 Bromochloromethane ND ug/kg 2.0 0.20 1 2,2-Dichloropropane ND ug/kg 2.0 0.20 1 1,2-Dibromoethane ND ug/kg 0.98 0.27 1 1,3-Dichloropropane ND ug/kg 2.0 0.16 1 1,3-Dichloropropane ND ug/kg 0.49 0.13 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.0 0.14 1 1,2-Dibromoenzene ND ug/kg 0.98 0.16 1 n-Butylbenzene ND ug/kg 0.98 0.14 1 tetr-Butylbenzene ND ug/kg 2.0 0.12 </td <td>Carbon disulfide</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>9.8</td> <td>4.4</td> <td>1</td>	Carbon disulfide	ND		ug/kg	9.8	4.4	1
A-Methyl-2-pentanone ND	2-Butanone	ND		ug/kg	9.8	2.2	1
1,2,3-Trichloropropane ND	Vinyl acetate	ND		ug/kg	9.8	2.1	1
ND	4-Methyl-2-pentanone	ND		ug/kg	9.8	1.2	1
Bromochloromethane ND ug/kg 2.0 0.20 1	1,2,3-Trichloropropane	ND		ug/kg	2.0	0.12	1
2,2-Dichloropropane ND ug/kg 2.0 0.20 1 1,2-Dibromoethane ND ug/kg 0.98 0.27 1 1,3-Dichloropropane ND ug/kg 2.0 0.16 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.49 0.13 1 Bromobenzene ND ug/kg 2.0 0.14 1 n-Butylbenzene ND ug/kg 0.98 0.16 1 sec-Butylbenzene ND ug/kg 0.98 0.14 1 tert-Butylbenzene ND ug/kg 2.0 0.12 1 o-Chlorotoluene ND ug/kg 2.0 0.12 1 p-Chlorotoluene ND ug/kg 2.0 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 0.98 1 Hexachlorobutadiene ND ug/kg 3.9 0.16 1 Isopropylbenzene ND ug/kg 0.98 0	2-Hexanone	ND		ug/kg	9.8	1.2	1
1,2-Dibromoethane ND ug/kg 0.98 0.27 1 1,3-Dichloropropane ND ug/kg 2.0 0.16 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.49 0.13 1 Bromobenzene ND ug/kg 2.0 0.14 1 n-Butylbenzene ND ug/kg 0.98 0.16 1 sec-Butylbenzene ND ug/kg 0.98 0.14 1 tert-Butylbenzene ND ug/kg 2.0 0.12 1 o-Chlorotoluene ND ug/kg 2.0 0.12 1 p-Chlorotoluene ND ug/kg 2.0 0.19 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 0.98 1 Hexachlorobutadiene ND ug/kg 3.9 0.16 1 Isopropylbenzene ND ug/kg 0.98 0.11 1	Bromochloromethane	ND		ug/kg	2.0	0.20	1
1,3-Dichloropropane ND ug/kg 2.0 0.16 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.49 0.13 1 Bromobenzene ND ug/kg 2.0 0.14 1 n-Butylbenzene ND ug/kg 0.98 0.16 1 sec-Butylbenzene ND ug/kg 0.98 0.14 1 tert-Butylbenzene ND ug/kg 2.0 0.12 1 o-Chlorotoluene ND ug/kg 2.0 0.19 1 p-Chlorotoluene ND ug/kg 2.0 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 0.98 1 Hexachlorobutadiene ND ug/kg 3.9 0.16 1 Isopropylbenzene ND ug/kg 0.98 0.11 1	2,2-Dichloropropane	ND		ug/kg	2.0	0.20	1
1,1,1,2-Tetrachloroethane ND ug/kg 0.49 0.13 1 Bromobenzene ND ug/kg 2.0 0.14 1 n-Butylbenzene ND ug/kg 0.98 0.16 1 sec-Butylbenzene ND ug/kg 0.98 0.14 1 tert-Butylbenzene ND ug/kg 2.0 0.12 1 o-Chlorotoluene ND ug/kg 2.0 0.19 1 p-Chlorotoluene ND ug/kg 2.0 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 0.98 1 Hexachlorobutadiene ND ug/kg 3.9 0.16 1 Isopropylbenzene ND ug/kg 0.98 0.11 1	1,2-Dibromoethane	ND		ug/kg	0.98	0.27	1
Bromobenzene ND ug/kg 2.0 0.14 1 n-Butylbenzene ND ug/kg 0.98 0.16 1 sec-Butylbenzene ND ug/kg 0.98 0.14 1 tert-Butylbenzene ND ug/kg 2.0 0.12 1 o-Chlorotoluene ND ug/kg 2.0 0.19 1 p-Chlorotoluene ND ug/kg 2.0 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 0.98 1 Hexachlorobutadiene ND ug/kg 3.9 0.16 1 Isopropylbenzene ND ug/kg 0.98 0.11 1	1,3-Dichloropropane	ND		ug/kg	2.0	0.16	1
n-Butylbenzene ND ug/kg 0.98 0.16 1 sec-Butylbenzene ND ug/kg 0.98 0.14 1 tert-Butylbenzene ND ug/kg 2.0 0.12 1 o-Chlorotoluene ND ug/kg 2.0 0.19 1 p-Chlorotoluene ND ug/kg 2.0 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 0.98 1 Hexachlorobutadiene ND ug/kg 3.9 0.16 1 Isopropylbenzene ND ug/kg 0.98 0.11 1	1,1,1,2-Tetrachloroethane	ND		ug/kg	0.49	0.13	1
sec-Butylbenzene ND ug/kg 0.98 0.14 1 tert-Butylbenzene ND ug/kg 2.0 0.12 1 o-Chlorotoluene ND ug/kg 2.0 0.19 1 p-Chlorotoluene ND ug/kg 2.0 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 0.98 1 Hexachlorobutadiene ND ug/kg 3.9 0.16 1 Isopropylbenzene ND ug/kg 0.98 0.11 1	Bromobenzene	ND		ug/kg	2.0	0.14	1
tert-Butylbenzene ND ug/kg 2.0 0.12 1 o-Chlorotoluene ND ug/kg 2.0 0.19 1 p-Chlorotoluene ND ug/kg 2.0 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 0.98 1 Hexachlorobutadiene ND ug/kg 3.9 0.16 1 Isopropylbenzene ND ug/kg 0.98 0.11 1	n-Butylbenzene	ND		ug/kg	0.98	0.16	1
o-Chlorotoluene ND ug/kg 2.0 0.19 1 p-Chlorotoluene ND ug/kg 2.0 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 0.98 1 Hexachlorobutadiene ND ug/kg 3.9 0.16 1 Isopropylbenzene ND ug/kg 0.98 0.11 1	sec-Butylbenzene	ND		ug/kg	0.98	0.14	1
p-Chlorotoluene ND ug/kg 2.0 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 0.98 1 Hexachlorobutadiene ND ug/kg 3.9 0.16 1 Isopropylbenzene ND ug/kg 0.98 0.11 1	tert-Butylbenzene	ND		ug/kg	2.0	0.12	1
1,2-Dibromo-3-chloropropane ND ug/kg 2.9 0.98 1 Hexachlorobutadiene ND ug/kg 3.9 0.16 1 Isopropylbenzene ND ug/kg 0.98 0.11 1	o-Chlorotoluene	ND		ug/kg	2.0	0.19	1
Hexachlorobutadiene ND ug/kg 3.9 0.16 1 Isopropylbenzene ND ug/kg 0.98 0.11 1	p-Chlorotoluene	ND		ug/kg	2.0	0.10	1
Isopropylbenzene ND ug/kg 0.98 0.11 1	1,2-Dibromo-3-chloropropane	ND		ug/kg	2.9	0.98	1
	Hexachlorobutadiene	ND		ug/kg	3.9	0.16	1
n-Isonronyltoluene ND ualka 0.98 0.11 1	Isopropylbenzene	ND		ug/kg	0.98	0.11	1
ug/kg 0.50 0.11 1	p-Isopropyltoluene	ND		ug/kg	0.98	0.11	1
Naphthalene ND ug/kg 3.9 0.64 1	Naphthalene	ND		ug/kg	3.9	0.64	1
Acrylonitrile ND ug/kg 3.9 1.1 1	Acrylonitrile	ND		ug/kg	3.9	1.1	1

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-01 Date Collected: 09/20/18 09:45

Client ID: Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
n-Propylbenzene	ND		ug/kg	0.98	0.17	1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.31	1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.26	1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19	1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33	1	
1,4-Dioxane	ND		ug/kg	98	34.	1	
p-Diethylbenzene	ND		ug/kg	2.0	0.17	1	
p-Ethyltoluene	ND		ug/kg	2.0	0.38	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0	0.19	1	
Ethyl ether	ND		ug/kg	2.0	0.33	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.9	1.4	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	108	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	93	70-130	

L1838130

10/03/18

Project Name: 30TH STREET LIC

Project Number: 13123

SAMPLE RESULTS

Lab ID: L1838130-02 Date Collected: 09/20/18 11:10

Lab Number:

Report Date:

Client ID: B-2

Date Received: 09/24/18

Field Prep: Not Specified

Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 10/02/18 17:07

Analyst: NLK 83% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/kg	3.7	1.7	1
1,1-Dichloroethane	ND		ug/kg	0.74	0.11	1
Chloroform	ND		ug/kg	1.1	0.10	1
Carbon tetrachloride	ND		ug/kg	0.74	0.17	1
1,2-Dichloropropane	ND		ug/kg	0.74	0.09	1
Dibromochloromethane	ND		ug/kg	0.74	0.10	1
1,1,2-Trichloroethane	ND		ug/kg	0.74	0.20	1
Tetrachloroethene	10		ug/kg	0.37	0.14	1
Chlorobenzene	ND		ug/kg	0.37	0.09	1
Trichlorofluoromethane	ND		ug/kg	2.9	0.51	1
1,2-Dichloroethane	ND		ug/kg	0.74	0.19	1
1,1,1-Trichloroethane	ND		ug/kg	0.37	0.12	1
Bromodichloromethane	ND		ug/kg	0.37	80.0	1
trans-1,3-Dichloropropene	ND		ug/kg	0.74	0.20	1
cis-1,3-Dichloropropene	ND		ug/kg	0.37	0.12	1
1,3-Dichloropropene, Total	ND		ug/kg	0.37	0.12	1
1,1-Dichloropropene	ND		ug/kg	0.37	0.12	1
Bromoform	ND		ug/kg	2.9	0.18	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.37	0.12	1
Benzene	ND		ug/kg	0.37	0.12	1
Toluene	ND		ug/kg	0.74	0.40	1
Ethylbenzene	ND		ug/kg	0.74	0.10	1
Chloromethane	ND		ug/kg	2.9	0.68	1
Bromomethane	ND		ug/kg	1.5	0.43	1
Vinyl chloride	ND		ug/kg	0.74	0.25	1
Chloroethane	ND		ug/kg	1.5	0.33	1
1,1-Dichloroethene	ND		ug/kg	0.74	0.18	1
trans-1,2-Dichloroethene	ND		ug/kg	1.1	0.10	1

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-02 Date Collected: 09/20/18 11:10

Client ID: B-2 Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/kg	0.37	0.10	1
1,2-Dichlorobenzene	ND		ug/kg	1.5	0.10	1
1,3-Dichlorobenzene	ND		ug/kg	1.5	0.11	1
1,4-Dichlorobenzene	ND		ug/kg	1.5	0.12	1
Methyl tert butyl ether	ND		ug/kg	1.5	0.15	1
p/m-Xylene	ND		ug/kg	1.5	0.41	1
o-Xylene	ND		ug/kg	0.74	0.21	1
Xylenes, Total	ND		ug/kg	0.74	0.21	1
cis-1,2-Dichloroethene	ND		ug/kg	0.74	0.13	1
1,2-Dichloroethene, Total	ND		ug/kg	0.74	0.10	1
Dibromomethane	ND		ug/kg	1.5	0.18	1
Styrene	ND		ug/kg	0.74	0.14	1
Dichlorodifluoromethane	ND		ug/kg	7.4	0.67	1
Acetone	ND		ug/kg	7.4	3.5	1
Carbon disulfide	ND		ug/kg	7.4	3.3	1
2-Butanone	ND		ug/kg	7.4	1.6	1
Vinyl acetate	ND		ug/kg	7.4	1.6	1
4-Methyl-2-pentanone	ND		ug/kg	7.4	0.94	1
1,2,3-Trichloropropane	ND		ug/kg	1.5	0.09	1
2-Hexanone	ND		ug/kg	7.4	0.87	1
Bromochloromethane	ND		ug/kg	1.5	0.15	1
2,2-Dichloropropane	ND		ug/kg	1.5	0.15	1
1,2-Dibromoethane	ND		ug/kg	0.74	0.20	1
1,3-Dichloropropane	ND		ug/kg	1.5	0.12	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.37	0.10	1
Bromobenzene	ND		ug/kg	1.5	0.11	1
n-Butylbenzene	ND		ug/kg	0.74	0.12	1
sec-Butylbenzene	ND		ug/kg	0.74	0.11	1
tert-Butylbenzene	ND		ug/kg	1.5	0.09	1
o-Chlorotoluene	ND		ug/kg	1.5	0.14	1
p-Chlorotoluene	ND		ug/kg	1.5	0.08	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.2	0.73	1
Hexachlorobutadiene	ND		ug/kg	2.9	0.12	1
Isopropylbenzene	ND		ug/kg	0.74	0.08	1
p-Isopropyltoluene	ND		ug/kg	0.74	0.08	1
Naphthalene	0.52	J	ug/kg	2.9	0.48	1
Acrylonitrile	ND		ug/kg	2.9	0.84	1

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-02 Date Collected: 09/20/18 11:10

Client ID: B-2 Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
n-Propylbenzene	ND		ug/kg	0.74	0.12	1
1,2,3-Trichlorobenzene	ND		ug/kg	1.5	0.24	1
1,2,4-Trichlorobenzene	ND		ug/kg	1.5	0.20	1
1,3,5-Trimethylbenzene	0.15	J	ug/kg	1.5	0.14	1
1,2,4-Trimethylbenzene	0.43	J	ug/kg	1.5	0.24	1
1,4-Dioxane	ND		ug/kg	74	26.	1
p-Diethylbenzene	0.26	J	ug/kg	1.5	0.13	1
p-Ethyltoluene	ND		ug/kg	1.5	0.28	1
1,2,4,5-Tetramethylbenzene	0.32	J	ug/kg	1.5	0.14	1
Ethyl ether	ND		ug/kg	1.5	0.25	1
trans-1,4-Dichloro-2-butene	ND		ug/kg	3.7	1.0	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	107		70-130	
Dibromofluoromethane	91		70-130	

L1838130

Project Name: Lab Number: 30TH STREET LIC

Project Number: Report Date:

13123 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-03 Date Collected: 09/20/18 12:00

Client ID: Date Received: 09/24/18 TW-1

Field Prep: Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/02/18 10:21

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	98		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-03 Date Collected: 09/20/18 12:00

Client ID: TW-1 Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	7.1		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-03 Date Collected: 09/20/18 12:00

Client ID: TW-1 Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	88		70-130	
Dibromofluoromethane	119		70-130	

L1838130

10/03/18

Project Name: 30TH STREET LIC

Project Number: 13123

SAMPLE RESULTS

Date Collected: 09/20/18 12:45

Lab ID: L1838130-04

Client ID: TW-2

Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY

Date Received: 09/24/18
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 10/02/18 09:52

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	170		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.16	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-04 Date Collected: 09/20/18 12:45

Client ID: TW-2 Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Trichloroethene	0.91		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	10		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 30TH STREET LIC **Lab Number:** L1838130

Project Number: 13123 Report Date: 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-04 Date Collected: 09/20/18 12:45

Client ID: TW-2 Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	92	70-130	
4-Bromofluorobenzene	89	70-130	
Dibromofluoromethane	120	70-130	

L1838130

10/03/18

Project Name: 30TH STREET LIC

Project Number: 13123

SAMPLE RESULTS

Date Collected: 09/20/18 13:00

Lab Number:

Report Date:

Lab ID: L1838130-05

Client ID: Date Received: 09/24/18 TW-3 Field Prep: Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/02/18 10:49

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.39	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-05 Date Collected: 09/20/18 13:00

Client ID: TW-3 Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough I Trichloroethene 1,2-Dichlorobenzene	ND ND ND	ug/l	0.50		
	ND	ug/l	0.50		
1,2-Dichlorobenzene				0.18	1
	ND	ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1
p/m-Xylene	ND	ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
Xylenes, Total	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	1
Dibromomethane	ND	ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	1
Acrylonitrile	ND	ug/l	5.0	1.5	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	49	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
Vinyl acetate	ND	ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
2,2-Dichloropropane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
1,3-Dichloropropane	ND	ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	1
Bromobenzene	ND	ug/l	2.5	0.70	1
n-Butylbenzene	ND	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ug/l	2.5	0.70	1
tert-Butylbenzene	ND	ug/l	2.5	0.70	1
o-Chlorotoluene	ND	ug/l	2.5	0.70	1
p-Chlorotoluene	ND	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Hexachlorobutadiene	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1
Naphthalene	ND	ug/l	2.5	0.70	1

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-05 Date Collected: 09/20/18 13:00

Client ID: TW-3 Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
						,	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	87	70-130	
Dibromofluoromethane	120	70-130	

Lab Number:

Project Name: 30TH STREET LIC

Project Number: 13123 Report Date: 10/03/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/02/18 08:56

Analyst: PD

Methylene chloride ND ug/l 2.5 0.70 1,1-Dichloroethane ND ug/l 2.5 0.70 Chloroform ND ug/l 2.5 0.70 Chloroform ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Chlorofluoromethane ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.16 Bromodichloromethane ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND	Parameter	Result	Qualifier Units	RL RL	MDL
1,1-Dichloroethane	Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	03-05 Batch:	WG1163258-5
Chloroform ND ug/l 2.5 0.70 Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 0.50 0.13 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 0.50 0.14 1,1-Dichloropropene	Methylene chloride	ND	ug/l	2.5	0.70
Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 trans-1,3-Dichloropropene ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.70 Bromoform	1,1-Dichloroethane	ND	ug/l	2.5	0.70
1,2-Dichloropropane ND	Chloroform	ND	ug/l	2.5	0.70
Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene, Total ND ug/l 2.5 0.70 Bromoform ND ug/l 2.5 0.70 Bromoform ND ug/l 0.50 0.17 Enhylbenzene ND <td>Carbon tetrachloride</td> <td>ND</td> <td>ug/l</td> <td>0.50</td> <td>0.13</td>	Carbon tetrachloride	ND	ug/l	0.50	0.13
1,1,2-Trichloroethane ND	1,2-Dichloropropane	ND	ug/l	1.0	0.14
Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.19 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.70 Bromoform ND ug/l 2.5 0.70 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l <t< td=""><td>Dibromochloromethane</td><td>ND</td><td>ug/l</td><td>0.50</td><td>0.15</td></t<>	Dibromochloromethane	ND	ug/l	0.50	0.15
Chlorobenzene ND ug/l 2.5 0.70 Trichloroffluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.70 Bromoform ND ug/l 2.5 0.70 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5	1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 2.5 0.70 Bromoform ND ug/l 2.5 0.70 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l <t< td=""><td>Tetrachloroethene</td><td>ND</td><td>ug/l</td><td>0.50</td><td>0.18</td></t<>	Tetrachloroethene	ND	ug/l	0.50	0.18
1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.70 Bromoform ND ug/l 2.5 0.70 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 2.5	Chlorobenzene	ND	ug/l	2.5	0.70
1,1,1-Trichloroethane	Trichlorofluoromethane	ND	ug/l	2.5	0.70
Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.70 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 2.5 0.70 I,1-Dichloroethene ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 2	1,2-Dichloroethane	ND	ug/l	0.50	0.13
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.70 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 2.5 0.70	1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.70 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Bromodichloromethane	ND	ug/l	0.50	0.19
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.70 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
1,1-Dichloropropene ND ug/l 2.5 0.70 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	1,1-Dichloropropene	ND	ug/l	2.5	0.70
Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Bromoform	ND	ug/l	2.0	0.65
Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Benzene	ND	ug/l	0.50	0.16
Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Toluene	ND	ug/l	2.5	0.70
Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Ethylbenzene	ND	ug/l	2.5	0.70
Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Chloromethane	ND	ug/l	2.5	0.70
Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Bromomethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Vinyl chloride	ND	ug/l	1.0	0.07
trans-1,2-Dichloroethene ND ug/l 2.5 0.70	Chloroethane	ND	ug/l	2.5	0.70
<u> </u>	1,1-Dichloroethene	ND	ug/l	0.50	0.17
Trichloroethene ND ug/l 0.50 0.18	trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
	Trichloroethene	ND	ug/l	0.50	0.18

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838130

Report Date: 10/03/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/02/18 08:56

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s): 03	3-05 Batch:	WG1163258-5	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
Xylenes, Total	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	
Dibromomethane	ND	ug/l	5.0	1.0	
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	
Acrylonitrile	ND	ug/l	5.0	1.5	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
Vinyl acetate	ND	ug/l	5.0	1.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
2,2-Dichloropropane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,3-Dichloropropane	ND	ug/l	2.5	0.70	
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	
Bromobenzene	ND	ug/l	2.5	0.70	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	

10/03/18

Lab Number:

Project Name: 30TH STREET LIC

Project Number: 13123 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/02/18 08:56

Analyst: PD

Parameter	Result	Qualifier U	nits	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s	s): 03-05	Batch:	WG1163258-5
o-Chlorotoluene	ND		ug/l	2.5	0.70
p-Chlorotoluene	ND		ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Hexachlorobutadiene	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
p-Isopropyltoluene	ND		ug/l	2.5	0.70
Naphthalene	ND		ug/l	2.5	0.70
n-Propylbenzene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70
1,4-Dioxane	ND		ug/l	250	61.
p-Diethylbenzene	ND		ug/l	2.0	0.70
p-Ethyltoluene	ND		ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54
Ethyl ether	ND		ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70

		A	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
				_
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	86		70-130	
Dibromofluoromethane	121		70-130	

Project Name: 30TH STREET LIC Lab Number:

Project Number: 13123 Report Date: 10/03/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/02/18 16:12

Analyst: MKS

Parameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 0	01-02 Batch:	WG1163580-5	
Methylene chloride	ND	ug/kg	5.0	2.3	
1,1-Dichloroethane	ND	ug/kg	1.0	0.14	
Chloroform	ND	ug/kg	1.5	0.14	
Carbon tetrachloride	ND	ug/kg	1.0	0.23	
1,2-Dichloropropane	ND	ug/kg	1.0	0.12	
Dibromochloromethane	ND	ug/kg	1.0	0.14	
1,1,2-Trichloroethane	ND	ug/kg	1.0	0.27	
Tetrachloroethene	ND	ug/kg	0.50	0.20	
Chlorobenzene	ND	ug/kg	0.50	0.13	
Trichlorofluoromethane	ND	ug/kg	4.0	0.70	
1,2-Dichloroethane	ND	ug/kg	1.0	0.26	
1,1,1-Trichloroethane	ND	ug/kg	0.50	0.17	
Bromodichloromethane	ND	ug/kg	0.50	0.11	
trans-1,3-Dichloropropene	ND	ug/kg	1.0	0.27	
cis-1,3-Dichloropropene	ND	ug/kg	0.50	0.16	
1,3-Dichloropropene, Total	ND	ug/kg	0.50	0.16	
1,1-Dichloropropene	ND	ug/kg	0.50	0.16	
Bromoform	ND	ug/kg	4.0	0.25	
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.50	0.17	
Benzene	ND	ug/kg	0.50	0.17	
Toluene	ND	ug/kg	1.0	0.54	
Ethylbenzene	ND	ug/kg	1.0	0.14	
Chloromethane	ND	ug/kg	4.0	0.93	
Bromomethane	ND	ug/kg	2.0	0.58	
Vinyl chloride	ND	ug/kg	1.0	0.34	
Chloroethane	ND	ug/kg	2.0	0.45	
1,1-Dichloroethene	ND	ug/kg	1.0	0.24	
trans-1,2-Dichloroethene	ND	ug/kg	1.5	0.14	
Trichloroethene	ND	ug/kg	0.50	0.14	

Project Name: 30TH STREET LIC Lab Number:

Project Number: 13123 Report Date: 10/03/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/02/18 16:12

Analyst: MKS

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG1163580-5	
1,2-Dichlorobenzene	ND	ug/kg	2.0	0.14	
1,3-Dichlorobenzene	ND	ug/kg	2.0	0.15	
1,4-Dichlorobenzene	ND	ug/kg	2.0	0.17	
Methyl tert butyl ether	ND	ug/kg	2.0	0.20	
p/m-Xylene	ND	ug/kg	2.0	0.56	
o-Xylene	ND	ug/kg	1.0	0.29	
Xylenes, Total	ND	ug/kg	1.0	0.29	
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.18	
1,2-Dichloroethene, Total	ND	ug/kg	1.0	0.14	
Dibromomethane	ND	ug/kg	2.0	0.24	
Styrene	ND	ug/kg	1.0	0.20	
Dichlorodifluoromethane	ND	ug/kg	10	0.92	
Acetone	ND	ug/kg	10	4.8	
Carbon disulfide	ND	ug/kg	10	4.6	
2-Butanone	ND	ug/kg	10	2.2	
Vinyl acetate	ND	ug/kg	10	2.2	
4-Methyl-2-pentanone	ND	ug/kg	10	1.3	
1,2,3-Trichloropropane	ND	ug/kg	2.0	0.13	
2-Hexanone	ND	ug/kg	10	1.2	
Bromochloromethane	ND	ug/kg	2.0	0.20	
2,2-Dichloropropane	ND	ug/kg	2.0	0.20	
1,2-Dibromoethane	ND	ug/kg	1.0	0.28	
1,3-Dichloropropane	ND	ug/kg	2.0	0.17	
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.50	0.13	
Bromobenzene	ND	ug/kg	2.0	0.14	
n-Butylbenzene	ND	ug/kg	1.0	0.17	
sec-Butylbenzene	ND	ug/kg	1.0	0.15	
tert-Butylbenzene	ND	ug/kg	2.0	0.12	
o-Chlorotoluene	ND	ug/kg	2.0	0.19	

Lab Number:

Project Name: 30TH STREET LIC

Project Number: Report Date: 13123 10/03/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/02/18 16:12

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - West	borough Lab	for sample	e(s): 01-02	Batch:	WG1163580-5
p-Chlorotoluene	ND		ug/kg	2.0	0.11
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0
Hexachlorobutadiene	ND		ug/kg	4.0	0.17
Isopropylbenzene	ND		ug/kg	1.0	0.11
p-Isopropyltoluene	ND		ug/kg	1.0	0.11
Naphthalene	ND		ug/kg	4.0	0.65
Acrylonitrile	ND		ug/kg	4.0	1.2
n-Propylbenzene	ND		ug/kg	1.0	0.17
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.32
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33
1,4-Dioxane	ND		ug/kg	100	35.
p-Diethylbenzene	ND		ug/kg	2.0	0.18
p-Ethyltoluene	ND		ug/kg	2.0	0.38
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0	0.19
Ethyl ether	ND		ug/kg	2.0	0.34
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0	1.4

		Acceptance	
Surrogate	%Recovery C	Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	109	70-130	
Dibromofluoromethane	93	70-130	

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838130

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	03-05 Batch: V	VG1163258-3	WG1163258-4			
Methylene chloride	99		98		70-130	1	20	
1,1-Dichloroethane	100		99		70-130	1	20	
Chloroform	110		110		70-130	0	20	
Carbon tetrachloride	120		120		63-132	0	20	
1,2-Dichloropropane	96		98		70-130	2	20	
Dibromochloromethane	100		100		63-130	0	20	
1,1,2-Trichloroethane	92		96		70-130	4	20	
Tetrachloroethene	110		110		70-130	0	20	
Chlorobenzene	98		99		75-130	1	20	
Trichlorofluoromethane	120		120		62-150	0	20	
1,2-Dichloroethane	100		100		70-130	0	20	
1,1,1-Trichloroethane	110		110		67-130	0	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	90		92		70-130	2	20	
cis-1,3-Dichloropropene	94		93		70-130	1	20	
1,1-Dichloropropene	97		97		70-130	0	20	
Bromoform	96		99		54-136	3	20	
1,1,2,2-Tetrachloroethane	84		90		67-130	7	20	
Benzene	78		77		70-130	1	20	
Toluene	95		93		70-130	2	20	
Ethylbenzene	93		94		70-130	1	20	
Chloromethane	88		88		64-130	0	20	
Bromomethane	49		34	Q	39-139	36	Q 20	

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838130

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	03-05 Batch: W0	G1163258-3 WG1163258-4		
Vinyl chloride	100		97	55-140	3	20
Chloroethane	100		97	55-138	3	20
1,1-Dichloroethene	100		100	61-145	0	20
trans-1,2-Dichloroethene	100		100	70-130	0	20
Trichloroethene	100		100	70-130	0	20
1,2-Dichlorobenzene	93		97	70-130	4	20
1,3-Dichlorobenzene	97		99	70-130	2	20
1,4-Dichlorobenzene	96		100	70-130	4	20
Methyl tert butyl ether	92		94	63-130	2	20
p/m-Xylene	100		100	70-130	0	20
o-Xylene	95		95	70-130	0	20
cis-1,2-Dichloroethene	110		110	70-130	0	20
Dibromomethane	100		100	70-130	0	20
1,2,3-Trichloropropane	82		87	64-130	6	20
Acrylonitrile	93		97	70-130	4	20
Styrene	95		100	70-130	5	20
Dichlorodifluoromethane	140		140	36-147	0	20
Acetone	84		71	58-148	17	20
Carbon disulfide	110		100	51-130	10	20
2-Butanone	77		83	63-138	8	20
Vinyl acetate	98		100	70-130	2	20
4-Methyl-2-pentanone	76		78	59-130	3	20
2-Hexanone	58		62	57-130	7	20

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838130

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	03-05 Batch:	WG1163258-3	WG1163258-4			
Bromochloromethane	120		120		70-130	0	20	
2,2-Dichloropropane	110		110		63-133	0	20	
1,2-Dibromoethane	93		95		70-130	2	20	
1,3-Dichloropropane	89		92		70-130	3	20	
1,1,1,2-Tetrachloroethane	110		100		64-130	10	20	
Bromobenzene	95		96		70-130	1	20	
n-Butylbenzene	91		93		53-136	2	20	
sec-Butylbenzene	91		94		70-130	3	20	
tert-Butylbenzene	90		94		70-130	4	20	
o-Chlorotoluene	89		91		70-130	2	20	
p-Chlorotoluene	85		88		70-130	3	20	
1,2-Dibromo-3-chloropropane	80		91		41-144	13	20	
Hexachlorobutadiene	98		100		63-130	2	20	
Isopropylbenzene	88		90		70-130	2	20	
p-Isopropyltoluene	92		96		70-130	4	20	
Naphthalene	78		84		70-130	7	20	
n-Propylbenzene	88		90		69-130	2	20	
1,2,3-Trichlorobenzene	90		93		70-130	3	20	
1,2,4-Trichlorobenzene	89		93		70-130	4	20	
1,3,5-Trimethylbenzene	90		93		64-130	3	20	
1,2,4-Trimethylbenzene	140	Q	140	Q	70-130	0	20	
1,4-Dioxane	96		96		56-162	0	20	
p-Diethylbenzene	90		94		70-130	4	20	

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838130

Parameter	LCS %Recovery	Qual	LCSD %Recove	ery Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	03-05 Batc	n: WG1163258-3	WG1163258-4				
p-Ethyltoluene	92		95		70-130	3		20	
1,2,4,5-Tetramethylbenzene	85		88		70-130	3		20	
Ethyl ether	87		89		59-134	2		20	
trans-1,4-Dichloro-2-butene	68	Q	73		70-130	7		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria
1,2-Dichloroethane-d4	103	104	70-130
Toluene-d8	96	96	70-130
4-Bromofluorobenzene	88	87	70-130
Dibromofluoromethane	112	112	70-130

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838130

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - \	Westborough Lab Associated	sample(s):	01-02 Batch:	WG1163580-3	WG1163580-4				
Methylene chloride	102		98		70-130	4		30	
1,1-Dichloroethane	104		100		70-130	4		30	
Chloroform	104		102		70-130	2		30	
Carbon tetrachloride	92		90		70-130	2		30	
1,2-Dichloropropane	107		104		70-130	3		30	
Dibromochloromethane	86		88		70-130	2		30	
1,1,2-Trichloroethane	113		112		70-130	1		30	
Tetrachloroethene	95		90		70-130	5		30	
Chlorobenzene	100		96		70-130	4		30	
Trichlorofluoromethane	137		129		70-139	6		30	
1,2-Dichloroethane	96		94		70-130	2		30	
1,1,1-Trichloroethane	96		91		70-130	5		30	
Bromodichloromethane	95		94		70-130	1		30	
trans-1,3-Dichloropropene	103		104		70-130	1		30	
cis-1,3-Dichloropropene	96		96		70-130	0		30	
1,1-Dichloropropene	104		98		70-130	6		30	
Bromoform	83		85		70-130	2		30	
1,1,2,2-Tetrachloroethane	113		113		70-130	0		30	
Benzene	115		110		70-130	4		30	
Toluene	117		112		70-130	4		30	
Ethylbenzene	117		112		70-130	4		30	
Chloromethane	72		80		52-130	11		30	
Bromomethane	135		128		57-147	5		30	

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838130

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch: W0	G1163580-3 WG1163580-4	ı		
Vinyl chloride	108		103	67-130	5		30
Chloroethane	132		126	50-151	5		30
1,1-Dichloroethene	144	Q	91	65-135	45	Q	30
trans-1,2-Dichloroethene	100		95	70-130	5		30
Trichloroethene	100		97	70-130	3		30
1,2-Dichlorobenzene	103		100	70-130	3		30
1,3-Dichlorobenzene	104		101	70-130	3		30
1,4-Dichlorobenzene	106		102	70-130	4		30
Methyl tert butyl ether	87		87	66-130	0		30
p/m-Xylene	111		107	70-130	4		30
o-Xylene	102		98	70-130	4		30
cis-1,2-Dichloroethene	100		98	70-130	2		30
Dibromomethane	97		95	70-130	2		30
Styrene	101		98	70-130	3		30
Dichlorodifluoromethane	68		62	30-146	9		30
Acetone	116		117	54-140	1		30
Carbon disulfide	98		80	59-130	20		30
2-Butanone	82		74	70-130	10		30
Vinyl acetate	64	Q	64	Q 70-130	0		30
4-Methyl-2-pentanone	96		96	70-130	0		30
1,2,3-Trichloropropane	114		115	68-130	1		30
2-Hexanone	84		86	70-130	2		30
Bromochloromethane	89		88	70-130	1		30

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838130

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westbord	ough Lab Associated	sample(s):	01-02 Batch: 1	WG1163580-3 WG116358	30-4	
2,2-Dichloropropane	96		92	70-130	4	30
1,2-Dibromoethane	103		102	70-130	1	30
1,3-Dichloropropane	112		112	69-130	0	30
1,1,1,2-Tetrachloroethane	90		89	70-130	1	30
Bromobenzene	99		95	70-130	4	30
n-Butylbenzene	132	Q	124	70-130	6	30
sec-Butylbenzene	123		115	70-130	7	30
tert-Butylbenzene	114		107	70-130	6	30
o-Chlorotoluene	122		116	70-130	5	30
p-Chlorotoluene	118		111	70-130	6	30
1,2-Dibromo-3-chloropropane	91		93	68-130	2	30
Hexachlorobutadiene	102		97	67-130	5	30
Isopropylbenzene	118		111	70-130	6	30
p-Isopropyltoluene	116		109	70-130	6	30
Naphthalene	100		101	70-130	1	30
Acrylonitrile	105		104	70-130	1	30
n-Propylbenzene	127		118	70-130	7	30
1,2,3-Trichlorobenzene	98		99	70-130	1	30
1,2,4-Trichlorobenzene	102		100	70-130	2	30
1,3,5-Trimethylbenzene	116		110	70-130	5	30
1,2,4-Trimethylbenzene	115		109	70-130	5	30
1,4-Dioxane	105		107	65-136	2	30
p-Diethylbenzene	112		105	70-130	6	30

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838130

Parameter	LCS %Recovery	Qual		LCSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-02	Batch:	WG1163580-3	WG1163580-4				
p-Ethyltoluene	114			107		70-130	6	1	30	
1,2,4,5-Tetramethylbenzene	105			101		70-130	4		30	
Ethyl ether	124			128		67-130	3		30	
trans-1,4-Dichloro-2-butene	97			99		70-130	2		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	99	100	70-130
Toluene-d8	106	105	70-130
4-Bromofluorobenzene	109	107	70-130
Dibromofluoromethane	93	93	70-130

INORGANICS & MISCELLANEOUS

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-01 Date Collected: 09/20/18 09:45

Client ID: B-1 Date Received: 09/24/18
Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	92.5		%	0.100	NA	1	-	10/02/18 10:03	121,2540G	RI

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

SAMPLE RESULTS

Lab ID: L1838130-02 Date Collected: 09/20/18 11:10

Client ID: B-2 Date Received: 09/24/18
Sample Location: 47-50 30TH STREET, LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	83.2		%	0.100	NA	1	-	10/02/18 10:03	121,2540G	RI

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

10/03/18 **Project Number:** 13123 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Ass	ociated sample(s): 01-02 QC Bat	tch ID: WG1163110-1	QC Sample:	L1839483-01	Client ID:	DUP Sample
Solids, Total	84.1	85.4	%	2		20

Project Name:

30TH STREET LIC

Project Name: 30TH STREET LIC Lab Number: L1838130

Project Number: 13123 Report Date: 10/03/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1838130-01A	Vial Large Septa unpreserved (4oz)	Α	NA		3.9	Υ	Absent		TS(7),NYTCL-8260(14)
L1838130-01X	Vial MeOH preserved split	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L1838130-01Y	Vial Water preserved split	Α	NA		3.9	Υ	Absent	02-OCT-18 00:00	NYTCL-8260(14)
L1838130-01Z	Vial Water preserved split	Α	NA		3.9	Υ	Absent	02-OCT-18 00:00	NYTCL-8260(14)
L1838130-02A	Vial Large Septa unpreserved (4oz)	Α	NA		3.9	Υ	Absent		TS(7),NYTCL-8260(14)
L1838130-02X	Vial MeOH preserved split	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L1838130-02Y	Vial Water preserved split	Α	NA		3.9	Υ	Absent	02-OCT-18 00:00	NYTCL-8260(14)
L1838130-02Z	Vial Water preserved split	Α	NA		3.9	Υ	Absent	02-OCT-18 00:00	NYTCL-8260(14)
L1838130-03X	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L1838130-03Y	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L1838130-03Z	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L1838130-04X	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L1838130-04Y	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L1838130-04Z	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L1838130-05X	Vial HCI preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L1838130-05Y	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)
L1838130-05Z	Vial HCl preserved	Α	NA		3.9	Υ	Absent		NYTCL-8260(14)

Project Name: Lab Number: 30TH STREET LIC L1838130

Project Number: Report Date: 13123 10/03/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: DU Report with 'J' Qualifiers

Project Name: 30TH STREET LIC Lab Number: L1838130
Project Number: 13123 Report Date: 10/03/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:10031813:25

Project Name: 30TH STREET LIC Lab Number: L1838130
Project Number: 13123 Report Date: 10/03/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:10031813:25

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 11

Published Date: 1/8/2018 4:15:49 PM

ID No.:17873

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4500P-B, EPA 351.1, SM500P-B, EPA 351.1, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

E CE	CHAIN OF CUSTODY	DY										LAB	NA	ME	LAB NAME: Alpha	á	_	CI838130	30
AMPAC A70 Ke	##PACT ENVIRONMENTAL 270 Keyland Court, Bohemia, New York 11716 27el) 631-269-8800 (Fax) 631-269-1599	11716	Page of	D.	4				857	(1)		REC	EIV	ED	RECEIVED DATE:			9	
	Client Information	NAME OF THE PERSON OF THE PERS			-	Project Information	nforma	tion				3	1	Ana	lytical	Analytical Information	ion	1	Matrix Codes
Company Name Impact Env	any Name Impact Environmental		Project Name	Oject Name		1.77								(၁၁)		Ľ0			L - Liquid S - Soil
Address 17	ss 170 Kevland Court		Street Ch. To	2 th	4 v	Street	١.					000	-	91075001		HOL			A-Ar OL-OI
City	State	e Zip		100	1 7	2			State	Zip		17.7500	70.00	000 == 3)(0			W - Wipe
Project Contact	ontact		P		Dun	1			2			THE PERSON	.000000	3000		Sea.			St Studge
Phone #	Mendet-Chicas		Sampler's Name	s Name								CONTRACTOR	of more and	-88///		- 50 m			SD - Solid DW- Drinking Water
E-mail	2002-002-1	6601-607-100	Sampler's Signature	s Signal	2 '	1207							dramatical	7000		DO V			Sample Type
S INEN	LAB Samula Information	Sports 1.co			location			Sample Containers	Cont	ainers		700 CA100		2000	sis	026		_	G=Camposite
SAMPLE #			Jac	npie C	sample Collection			Number of Each Preserved Bottle	ach Prese	erved Bottle				Name of the last	λjeu				B=Blank
(LAB USE ONLY)	Sample ID	IEC Project Code	Matrix Code	Sample Type	Sample Date	Time	Total # of bottles	*ABHTO DTHER*	HCF	ionerttsM A432U) (2502	CENY 2032 Sequentials Sequentials	Jedmi	oedmi	VOC 82	A 2890	TCL/			(LAB USE ONLY)
	1 B-1	13123	S	٦.	6/10	345	_		Q							92			
	2 3-2	13 123	S	1		11:10	_	X	-							9			
	3 TW-1	13 123	3	3		00:21	3	R	2			-	_	04 - 10 00 - 50		×			
	4TW-2	13123	3	S		12:45	2	2					_			×			
	5-W-3	13123	CE.	J		13:00	3	X	2				+	_		×			
	7					T	\dagger	+	+	+	1		+	+		1		+	
	. 8					T		+	+	+	1		+	\perp		+	ļ		
	6								-				\vdash						
	10								H				\vdash						
	Turnaround Time (Business Days)						Data Del	Data Deliverable Information	ormatio	1.						REF	REFERENCES		
Standard Service	Standard - 5 day Standard - 4 day	(LAB USE ONLY) TAT Approved By / Date:	NLY)		Result	Results Only (Level-1) Results plus Misc. OC (Level-2)	el-1)		CLP Categ	CLP Category A (Level-2) CLP Category B (Level-4)	7 F	* E 9 5	atch all N roprietar	A (proprie t) DCSRS y)-Same	& NY Pa as Packa as Packa	iority Pollutar t 375 parame pe A, plus TCI oe B olus RCI	*Package A (proprietary) - Priority Pollutants Metals, SVOCs, PCB/Pest and match all NJ DCSRS & NY Part 375 parameters and declection limits. **Pa (proprietary)-Same as Package A, plus TCLP Metals & Category II EPH. ** proprietary-Same as Package B olus RCRA characteristics and Full TCLP proprietary-Same as Package B olus RCRA characteristics and Full TCLP	OCs, PCB/PI ection limits ategory II E ategory II E	*Package A (proprietary) - Priority Pollutants Metals, SVOCs, PCB/Pest and Herbicides - to match all NJ DCSRS & NY Part 375 parameters and dectection limits, **Package 8 (proprietary)-Same as Package A, plus TCLP Metals & Category II EPH, ***Package C (proprietary)-Same as Package B plus RCRA characteristics and Full TCLP.
Ш	Standard - 3 day				Result	Results plus ALL QC (Level-3)	2C (Level-		ASP QC Pa	ASP QC Package (Level-4)	1-4)					NOTES	NOTES/COMMENTS:		
Rush Service	rice				L PA &C	Padrage			Other		1		-0		92		1	10.00	
	48 Hour <i>RUSH</i> 24 Hour <i>RUSH</i>				(EDD Form	Package (Level3N3) nals: Excel, pdf, EQU	pdf, EQU	15, 615, 615	EDD Format Key, SPDES, A	Package (Level3N3) EDD Format nats: Excel, pdf, EQUIS, GIS, GISKey, SPDES, Ascil, TAGM, OENJ)	M, OENJ)		K	20	Schmt		Hold *	2 *	5
	100000000000000000000000000000000000000	Sample custody must be documented by	dy must b	e docur	nented	elow, es	ch time	samples	change	pelow, each time samples change possession, with a signature, date, and time.	n, with a	signatur	e, date	, and ti	me.		1		
1 0	Relinguished by Samplery	19/21/1/		14:03	1 K	_}	X	>	Relinquished By	yed By:	Y		South Park	Pate Time	ڏ ڳ	Received By	9	Ma	Rella
Rel 3	Religipished by Mangella	39/8	135/17	2	Received By:	W.	The state of the s	1	Relinquished By	sed By:	5		Date /	t) Time:		Received By	i i i i i i i i i i i i i i i i i i i		
Ref	à	Date / Times	les les	1	Received By	=		1						COOLE	COOLER INFORMATION	MATTON			
2		ın			2			0	Cooler Tempt	npt		Ä			Om Ic	a Sample	Receipt Discr	epancy(atta	On Ice Sample Receipt Discrepancy(attach information)
																		2	FORM SS-2/NOV, 2013

ANALYTICAL REPORT

Lab Number: L1838188

Client: Impact Environmental

170 Keyland Ct Bohemia, NY 11716

ATTN: Greg Mendez-Chicas

Phone: (631) 269-8800

Project Name: 30TH STREET LIC

Project Number: 13123 Report Date: 09/28/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Number: 13123

 Lab Number:
 L1838188

 Report Date:
 09/28/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1838188-01	SV-1	SOIL_VAPOR	47-50 30TH STREET, LIC	09/21/18 14:45	09/24/18
L1838188-02	SV-2	SOIL_VAPOR	47-50 30TH STREET, LIC	09/21/18 14:30	09/24/18
L1838188-03	SV-3	SOIL_VAPOR	47-50 30TH STREET, LIC	09/21/18 14:16	09/24/18
L1838188-04	IA-1	AIR	47-50 30TH STREET, LIC	09/21/18 14:47	09/24/18
L1838188-05	IA-2	AIR	47-50 30TH STREET, LIC	09/21/18 14:31	09/24/18
L1838188-06	IA-3	AIR	47-50 30TH STREET, LIC	09/21/18 14:17	09/24/18
L1838188-07	UNUSED CAN #182	AIR	47-50 30TH STREET, LIC		09/24/18

L1838188

Lab Number:

Project Name: 30TH STREET LIC

Project Number: 13123 Report Date: 09/28/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800-	-624-9220) with a	างเ	nuestions
loase	Contact	Olicit	OCI VICCO	at ooo	02-7 02-20	, with a	ıy c	_f ucstions.

L1838188

30TH STREET LIC Project Name:

Project Number: Report Date: 09/28/18 13123

Lab Number:

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on September 19, 2018. The canister certification results are provided as an addendum.

L1838188-01: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L1838188-02, -03 results for Tetrahydrofuran should be considered estimated due to co-elution with a nontarget peak.

L1838188-06: The sample was re-analyzed on dilution in order to quantify the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

L1838188-04 and -05: The samples were re-analyzed on dilution in order to quantify the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christopher J. Anderson

Authorized Signature:

Date: 09/28/18 Title: Technical Director/Representative

AIR

Project Number: 13123 Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-01 D

SV-1

Client ID: Sample Location:

47-50 30TH STREET, LIC

Date Collected: Date Received: 09/21/18 14:45

Field Prep:

09/24/18 Not Specified

Sample Depth:

Matrix: Anaytical Method:

Analytical Date:

Soil_Vapor 48,TO-15 09/28/18 00:29

Analyst:

RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Dichlorodifluoromethane	ND	14.1		ND	69.7			70.42
Chloromethane	ND	14.1		ND	29.1			70.42
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	14.1		ND	98.6			70.42
Vinyl chloride	ND	14.1		ND	36.0			70.42
1,3-Butadiene	ND	14.1		ND	31.2			70.42
Bromomethane	ND	14.1		ND	54.8			70.42
Chloroethane	ND	14.1		ND	37.2			70.42
Ethyl Alcohol	ND	352		ND	663			70.42
Vinyl bromide	ND	14.1		ND	61.6			70.42
Acetone	ND	70.4		ND	167			70.42
Trichlorofluoromethane	ND	14.1		ND	79.2			70.42
so-Propyl Alcohol	62.0	35.2		152	86.5			70.42
1,1-Dichloroethene	ND	14.1		ND	55.9			70.42
ert-Butyl Alcohol	ND	35.2		ND	107			70.42
Methylene chloride	ND	35.2		ND	122			70.42
3-Chloropropene	ND	14.1		ND	44.1			70.42
Carbon disulfide	ND	14.1		ND	43.9			70.42
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	14.1		ND	108			70.42
trans-1,2-Dichloroethene	ND	14.1		ND	55.9			70.42
1,1-Dichloroethane	ND	14.1		ND	57.1			70.42
Methyl tert butyl ether	ND	14.1		ND	50.8			70.42
2-Butanone	ND	35.2		ND	104			70.42
sis-1,2-Dichloroethene	ND	14.1		ND	55.9			70.42

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-01 D

Client ID: SV-1

Sample Location: 47-50 30TH STREET, LIC

Date Collected: 09/21/18 14:45

Date Received: 09/24/18

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	35.2		ND	127			70.42
Chloroform	ND	14.1		ND	68.9			70.42
Tetrahydrofuran	ND	35.2		ND	104			70.42
1,2-Dichloroethane	ND	14.1		ND	57.1			70.42
n-Hexane	ND	14.1		ND	49.7			70.42
1,1,1-Trichloroethane	ND	14.1		ND	76.9			70.42
Benzene	ND	14.1		ND	45.0			70.42
Carbon tetrachloride	ND	14.1		ND	88.7			70.42
Cyclohexane	ND	14.1		ND	48.5			70.42
1,2-Dichloropropane	ND	14.1		ND	65.2			70.42
Bromodichloromethane	ND	14.1		ND	94.5			70.42
1,4-Dioxane	ND	14.1		ND	50.8			70.42
Trichloroethene	18.4	14.1		98.9	75.8			70.42
2,2,4-Trimethylpentane	ND	14.1		ND	65.9			70.42
Heptane	ND	14.1		ND	57.8			70.42
cis-1,3-Dichloropropene	ND	14.1		ND	64.0			70.42
4-Methyl-2-pentanone	ND	35.2		ND	144			70.42
trans-1,3-Dichloropropene	ND	14.1		ND	64.0			70.42
1,1,2-Trichloroethane	ND	14.1		ND	76.9			70.42
Toluene	ND	14.1		ND	53.1			70.42
2-Hexanone	ND	14.1		ND	57.8			70.42
Dibromochloromethane	ND	14.1		ND	120			70.42
1,2-Dibromoethane	ND	14.1		ND	108			70.42
Tetrachloroethene	6240	14.1		42300	95.6			70.42
Chlorobenzene	ND	14.1		ND	64.9			70.42
Ethylbenzene	ND	14.1		ND	61.2			70.42

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID:

L1838188-01 D

Client ID:

SV-1

Sample Location:

SV-1

47-50 30TH STREET, LIC

Date Collected:

09/21/18 14:45

Date Received: Field Prep:

09/24/18 Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
p/m-Xylene	ND	28.2		ND	122			70.42
Bromoform	ND	14.1		ND	146			70.42
Styrene	ND	14.1		ND	60.0			70.42
1,1,2,2-Tetrachloroethane	ND	14.1		ND	96.8			70.42
o-Xylene	ND	14.1		ND	61.2			70.42
4-Ethyltoluene	ND	14.1		ND	69.3			70.42
1,3,5-Trimethylbenzene	ND	14.1		ND	69.3			70.42
1,2,4-Trimethylbenzene	ND	14.1		ND	69.3			70.42
Benzyl chloride	ND	14.1		ND	73.0			70.42
1,3-Dichlorobenzene	ND	14.1		ND	84.8			70.42
1,4-Dichlorobenzene	ND	14.1		ND	84.8			70.42
1,2-Dichlorobenzene	ND	14.1		ND	84.8			70.42
1,2,4-Trichlorobenzene	ND	14.1		ND	105			70.42
Hexachlorobutadiene	ND	14.1		ND	150			70.42

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	103		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	107		60-140

Project Number: 13123

Lab Number: L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-02

Client ID: SV-2

Sample Location: 47-50 30TH STREET, LIC

Date Collected: 09/21/18 14:30 Date Received: 09/24/18

Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/28/18 01:08

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Dichlorodifluoromethane	0.414	0.200		2.05	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	57.6	5.00		109	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	16.9	1.00		40.1	2.38			1
Trichlorofluoromethane	0.237	0.200		1.33	1.12			1
iso-Propyl Alcohol	20.6	0.500		50.6	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	3.01	0.500		9.12	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.627	0.500		1.85	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-02

Client ID: SV-2

Sample Location: 47-50 30TH STREET, LIC

Date Collected: 09/21/18 14:30

Date Received: 09/24/18
Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	2.59	0.200		12.6	0.977			1
Tetrahydrofuran	0.823	0.500		2.43	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.347	0.200		1.22	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	0.295	0.200		1.02	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	0.216	0.200		1.45	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	1.10	0.200		4.51	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	1.70	0.200		6.41	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	14.2	0.200		96.3	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.830	0.200		3.61	0.869			1

Project Number: 13123 Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-02

Client ID: SV-2

Sample Location: 47-50 30TH STREET, LIC Date Collected: 09/24/18

09/21/18 14:30

Date Received: Field Prep:

Not Specified

Sample Depth:

ppbV ug/m3 Dilution **Factor** RL Results MDL Qualifier RL**Parameter** Results MDL Volatile Organics in Air - Mansfield Lab p/m-Xylene 10.6 2.45 0.400 1.74 1 Bromoform ND 0.200 ND 2.07 --1 --Styrene ND 0.200 ND 0.852 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 ---o-Xylene 1 1.12 0.200 4.86 0.869 4-Ethyltoluene 3.03 0.200 14.9 0.983 1 ----1,3,5-Trimethylbenzene 3.20 0.200 15.7 0.983 1 ----1,2,4-Trimethylbenzene 11.8 0.200 58.0 0.983 1 Benzyl chloride ND 0.200 ND 1.04 1 --1,3-Dichlorobenzene ND 0.200 --ND 1.20 --1 1,4-Dichlorobenzene ND 0.200 --ND 1.20 1 1,2-Dichlorobenzene ND 0.200 ND 1.20 1 ----1,2,4-Trichlorobenzene ND 0.200 ND 1.48 1 Hexachlorobutadiene ND 0.200 ND 1 2.13

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	111		60-140
Bromochloromethane	100		60-140
chlorobenzene-d5	112		60-140

Project Number: 13123

Lab Number:

L1838188

Report Date: 09/28/18

SAMPLE RESULTS

Lab ID: L1838188-03

Client ID: SV-3

Sample Location: 47-50 30TH STREET, LIC

Date Collected: 09/21/18 14:16
Date Received: 09/24/18
Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 09/28/18 01:47

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Dichlorodifluoromethane	0.408	0.200		2.02	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	58.2	5.00		110	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	64.3	1.00		153	2.38			1
Trichlorofluoromethane	0.245	0.200		1.38	1.12			1
iso-Propyl Alcohol	49.4	0.500		121	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	3.02	0.500		9.16	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.718	0.500		2.12	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Number: 13123 Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-03

Client ID: SV-3

Sample Location: 47-50 30TH STREET, LIC Date Collected:

09/21/18 14:16

Date Received: Field Prep:

09/24/18 Not Specified

Sample Depth:

nnhV

Sample Depth.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	0.785	0.500		2.32	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.266	0.200		0.937	0.705			1
1,1,1-Trichloroethane	0.212	0.200		1.16	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	0.220	0.200		0.757	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	3.94	0.200		14.2	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	1.06	0.200		4.34	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	1.31	0.200		4.94	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	5.81	0.200		39.4	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.475	0.200		2.06	0.869			1

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-03

Client ID: SV-3

Sample Location: 47-50 30TH STREET, LIC

Date Collected: 09/21/18 14:16

Date Received: 09/24/18
Field Prep: Not Specified

острю ворит.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
p/m-Xylene	1.65	0.400		7.17	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.939	0.200		4.08	0.869			1
4-Ethyltoluene	2.25	0.200		11.1	0.983			1
1,3,5-Trimethylbenzene	2.31	0.200		11.4	0.983			1
1,2,4-Trimethylbenzene	7.79	0.200		38.3	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	115		60-140
Bromochloromethane	105		60-140
chlorobenzene-d5	113		60-140

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-04

Client ID: IA-1

Sample Location: 47-50 30TH STREET, LIC

Date Collected: 09/21/18 14:47
Date Received: 09/24/18
Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 09/27/18 21:57

	Vdqq		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab							
Dichlorodifluoromethane	0.439	0.200		2.17	0.989			1
Chloromethane	0.397	0.200		0.820	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	71.2	5.00		134	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	49.6	1.00		118	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	62.1	0.500		153	1.23			1
tert-Butyl Alcohol	0.730	0.500		2.21	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	1.46	0.500		4.31	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-04

Client ID: IA-1

Sample Location: 47-50 30TH STREET, LIC

Date Collected: 09/ Date Received: 09/

09/21/18 14:47 09/24/18

Field Prep: Not Specified

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
d Lab							
ND	0.200		ND	0.809			1
3.31	0.200		11.7	0.705			1
0.299	0.200		0.955	0.639			1
0.658	0.200		2.26	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	0.934			1
5.90	0.200		24.2	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
3.54	0.200		13.3	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
ND	0.200		ND	0.921			1
0.285	0.200		1.24	0.869			1
1.42	0.400		6.17	1.74			1
ND	0.200		ND	2.07			1
0.317	0.200		1.35	0.852			1
ND	0.200		ND	1.37			1
3.15	0.200		13.7	0.869			1
19.2	0.200		94.4	0.983			1
20.8	0.200		102	0.983			1
	ND 3.31 0.299 0.658 ND	Results RL d Lab ND 0.200 3.31 0.200 0.200 0.658 0.200 ND 0.200 ND 0.200 0.200	Results RL MDL d Lab	Results RL MDL Results d Lab ND 0.200 ND 3.31 0.200 11.7 0.299 0.200 0.955 0.658 0.200 ND ND 0.200 <t< td=""><td>Results RL MDL Results RL d Lab ND 0.200 ND 0.809 3.31 0.200 11.7 0.705 0.299 0.200 0.955 0.639 0.658 0.200 0.955 0.639 ND 0.200 ND 0.924 ND 0.200 ND 0.934 5.90 0.200 ND 0.908 ND 0.200 ND 0.908 ND 0.200 ND 1.09</td><td>Results RL MDL Results RL MDL d Lab ND 0.200 ND 0.809 3.31 0.200 11.7 0.705 0.299 0.200 0.955 0.639 0.658 0.200 2.26 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND</td><td>Results RL MDL Results RL MDL Qualifier d Lab ND 0.200 ND 0.809 <</td></t<>	Results RL MDL Results RL d Lab ND 0.200 ND 0.809 3.31 0.200 11.7 0.705 0.299 0.200 0.955 0.639 0.658 0.200 0.955 0.639 ND 0.200 ND 0.924 ND 0.200 ND 0.934 5.90 0.200 ND 0.908 ND 0.200 ND 0.908 ND 0.200 ND 1.09	Results RL MDL Results RL MDL d Lab ND 0.200 ND 0.809 3.31 0.200 11.7 0.705 0.299 0.200 0.955 0.639 0.658 0.200 2.26 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND	Results RL MDL Results RL MDL Qualifier d Lab ND 0.200 ND 0.809 <

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-04

Client ID: IA-1

Sample Location: 47-50 30TH STREET, LIC

Date Collected: 09/21/18 14:47

Date Received: 09/24/18

Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2,4-Trimethylbenzene	57.1	0.200		281	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	106		60-140
Bromochloromethane	106		60-140
chlorobenzene-d5	111		60-140

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-04

Client ID: IA-1

Sample Location: 47-50 30TH STREET, LIC

Date Collected:

09/21/18 14:47

Date Received: Field Prep:

09/24/18 Not Specified

•

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 09/27/18 21:57

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.081	0.020		0.510	0.126			1
Trichloroethene	0.708	0.020		3.80	0.107			1
Tetrachloroethene	75.3	0.020		511	0.136		E	1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	106		60-140
bromochloromethane	107		60-140
chlorobenzene-d5	113		60-140

Project Name: 30TH STREET LIC Lab Number: L1838188

Project Number: 13123 Report Date: 09/28/18

SAMPLE RESULTS

Lab ID: L1838188-04 D Date Collected: 09/21/18 14:47

Client ID: IA-1 Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LIC Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 09/28/18 08:44

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mans	sfield Lab							
Tetrachloroethene	82.9	0.050		562	0.339			2.5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	100		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	105		60-140

Project Number: 13123 Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-05

Client ID: IA-2

Sample Location: 47-50 30TH STREET, LIC Date Collected: 09/21/18 14:31 Date Received: 09/24/18 Field Prep:

Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 09/27/18 22:36

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Dichlorodifluoromethane	0.390	0.200		1.93	0.989			1
Chloromethane	0.330	0.200		0.681	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	118	5.00		222	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	69.4	1.00		165	2.38			1
Trichlorofluoromethane	0.209	0.200		1.17	1.12			1
iso-Propyl Alcohol	98.0	0.500		241	1.23			1
tert-Butyl Alcohol	1.50	0.500		4.55	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.961	0.500		2.83	1.47			1
Ethyl Acetate	1.78	0.500		6.41	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 13123 Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-05

Client ID: IA-2

Sample Location: 47-50 30TH STREET, LIC Date Collected: Date Received:

09/21/18 14:31

09/24/18 Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 **Dilution Factor** RL MDL Qualifier Results Results **Parameter** RL MDL Volatile Organics in Air - Mansfield Lab 1,2-Dichloroethane ND 0.200 ND 0.809 1 n-Hexane 0.200 0.705 1 2.21 --7.79 --Benzene 0.262 0.200 0.837 0.639 1 Cyclohexane 0.935 0.200 3.22 0.688 1 ----1,2-Dichloropropane ND 0.200 ND 0.924 1 Bromodichloromethane ND 0.200 ND 1 1.34 ----1,4-Dioxane ND 0.200 ND 0.721 ----1 2,2,4-Trimethylpentane ND 0.200 ND 0.934 1 Heptane 1 7.45 0.200 --30.5 0.820 -cis-1,3-Dichloropropene ND 0.200 ND 0.908 1 ----4-Methyl-2-pentanone ND 0.500 ND 2.05 1 trans-1,3-Dichloropropene ND 0.200 ND 0.908 1 ----1,1,2-Trichloroethane ND 0.200 ND 1.09 1 Toluene 3.65 0.200 13.8 0.754 1 2-Hexanone ND 0.200 --ND 0.820 --1 Dibromochloromethane ND 0.200 ND 1.70 1 1,2-Dibromoethane ND 0.200 ND --1.54 --1 Chlorobenzene ND 0.200 ND 0.921 1 Ethylbenzene 0.260 1 0.200 --1.13 0.869 -p/m-Xylene 1.30 0.400 5.65 1.74 1 ----Bromoform ND 0.200 ND 2.07 1 Styrene 0.379 0.200 --1.61 0.852 --1 1,1,2,2-Tetrachloroethane ND 0.200 __ ND 1.37 __ 1 o-Xylene 0.200 2.94 12.8 0.869 1 4-Ethyltoluene 18.2 0.200 89.5 0.983 1 ----1,3,5-Trimethylbenzene 19.7 0.200 96.8 0.983 1

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-05

Client ID: IA-2

Sample Location: 47-50 30TH STREET, LIC

Date Collected:
Date Received:

09/21/18 14:31

Field Prep:

09/24/18 Not Specified

Sample Depth:

rield Prep: Not Specifi

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mai	nsfield Lab							
1,2,4-Trimethylbenzene	57.2	0.200		281	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	112		60-140
Bromochloromethane	101		60-140
chlorobenzene-d5	117		60-140

Project Number: 13123 Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-05

Client ID: IA-2

Sample Location: 47-50 30TH STREET, LIC Date Collected: 09/21/18 14:31 Date Received:

09/24/18

Field Prep:

Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 09/27/18 22:36

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	ansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.062	0.020		0.390	0.126			1
Trichloroethene	0.540	0.020		2.90	0.107			1
Tetrachloroethene	57.3	0.020		389	0.136		Е	1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	113		60-140
bromochloromethane	104		60-140
chlorobenzene-d5	122		60-140

L1838188

Project Name: Lab Number: 30TH STREET LIC

Project Number: 13123 Report Date:

09/28/18

SAMPLE RESULTS

L1838188-05 D Lab ID: Date Collected: 09/21/18 14:31

Client ID: IA-2 Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LIC Field Prep: Not Specified

Sample Depth:

Matrix: Air

48,TO-15-SIM Anaytical Method: Analytical Date: 09/28/18 09:21

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Man	sfield Lab							
Tetrachloroethene	65.8	0.040		446	0.271			2

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	99		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	105		60-140

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-06

Client ID: IA-3

Sample Location: 47-50 30TH STREET, LIC

Date Collected: 09/21/18 14:17
Date Received: 09/24/18
Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 09/27/18 23:53

		Vdqq			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Dichlorodifluoromethane	0.391	0.200		1.93	0.989			1
Chloromethane	0.330	0.200		0.681	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	76.8	5.00		145	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	597	1.00		1420	2.38		Е	1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	812	0.500		2000	1.23		E	1
tert-Butyl Alcohol	6.52	0.500		19.8	1.52			1
Methylene chloride	2.27	0.500		7.89	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.257	0.200		0.800	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	2.88	0.500		8.49	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-06

Client ID: IA-3

Sample Location: 47-50 30TH STREET, LIC

Date Collected: 09

09/21/18 14:17 09/24/18

Date Received: Field Prep:

Not Specified

Sample Depth:

ppbV ug/m3 Dilution

		рроч			ug/iii3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	2.30	0.200		8.11	0.705			1
Benzene	0.461	0.200		1.47	0.639			1
Cyclohexane	10.8	0.200		37.2	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	68.5	0.200		281	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	0.688	0.500		2.82	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	15.2	0.200		57.3	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.898	0.200		3.90	0.869			1
p/m-Xylene	5.09	0.400		22.1	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	0.876	0.200		3.73	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	13.0	0.200		56.5	0.869			1
4-Ethyltoluene	46.3	0.200		228	0.983			1
1,3,5-Trimethylbenzene	60.8	0.200		299	0.983			1

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-06

Client ID: IA-3

Sample Location: 4

47-50 30TH STREET, LIC

Date Collected: 09/21/18 14:17

09/24/18

Date Received: Field Prep:

Not Specified

Parameter		ppbV		ug/m3				Dilution
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	138	0.200		678	0.983		E	1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	117		60-140
Bromochloromethane	103		60-140
chlorobenzene-d5	127		60-140

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

SAMPLE RESULTS

Lab ID: L1838188-06

Client ID: IA-3

Sample Location: 47-50 30TH STREET, LIC

Date Collected:

09/21/18 14:17

Date Received: Field Prep:

09/24/18 Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 09/27/18 23:53

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.063	0.020		0.396	0.126			1
Trichloroethene	0.041	0.020		0.220	0.107			1
Tetrachloroethene	3.04	0.020		20.6	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	118		60-140
bromochloromethane	106		60-140
chlorobenzene-d5	134		60-140

L1838188

Lab Number:

Project Name: 30TH STREET LIC

Project Number: Report Date:

13123 09/28/18

SAMPLE RESULTS

Lab ID: L1838188-06 D Date Collected: 09/21/18 14:17

Client ID: IA-3 Date Received: 09/24/18

Sample Location: 47-50 30TH STREET, LIC Field Prep: Not Specified

Sample Depth:

Matrix: Air

48,TO-15 Anaytical Method: Analytical Date: 09/28/18 10:33

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansi	field Lab							
Acetone	743	5.00		1760	11.9			5
iso-Propyl Alcohol	1030	2.50		2530	6.15			5
1,2,4-Trimethylbenzene	256	1.00		1260	4.92			5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	105		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	104		60-140

Project Name: 30TH STREET LIC Lab Number: L1838188

Project Number: 13123 Report Date: 09/28/18

Method Blank Analysis Batch Quality Control

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	06 Batch	n: WG11616	78-4			
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1

Project Name: 30TH STREET LIC Lab Number: L1838188

Project Number: 13123 Report Date: 09/28/18

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	·06 Batch	: WG11616	78-4			
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Isopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1

Project Name: 30TH STREET LIC Lab Number: L1838188

Project Number: 13123 Report Date: 09/28/18

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	-06 Batch	n: WG11616	378-4			
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1

Project Name: 30TH STREET LIC Lab Number: L1838188

Project Number: 13123 Report Date: 09/28/18

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab for samp	ole(s): 01	-06 Batch	n: WG11616	78-4			
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1

Project Name: 30TH STREET LIC Lab Number: L1838188

Project Number: 13123 Report Date: 09/28/18

Method Blank Analysis Batch Quality Control

			ug/m3		Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b for samp	ole(s): 01-	06 Batc	h: WG116167	78-4			
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: 30TH STREET LIC Lab Number: L1838188

Project Number: 13123 Report Date: 09/28/18

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab f	or sample	e(s): 04-06	Batch: W	G116168	80-4		
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1

Project Name: 30TH STREET LIC Lab Number: L1838188

Project Number: 13123 Report Date: 09/28/18

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3	_	Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab for	or sample	e(s): 04-06	Batch: W	G116168	0-4		
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.020		ND	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Cyclohexane	ND	0.200		ND	0.688			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1

Project Name: 30TH STREET LIC Lab Number: L1838188

Project Number: 13123 Report Date: 09/28/18

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3	_	Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab for	or sample	e(s): 04-06	Batch: W	G116168	80-4		
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
1,2,3-Trichloropropane	ND	0.020		ND	0.121			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1

Project Name: 30TH STREET LIC Lab Number: L1838188

Project Number: 13123 Report Date: 09/28/18

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mans	sfield Lab fo	r sample	(s): 04-06	Batch: WO	3116168	0-4		
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838188

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-06	Batch: WG116167	78-3				
Chlorodifluoromethane	78		-		70-130	-		
Propylene	89		-		70-130	-		
Propane	66	Q	-		70-130	-		
Dichlorodifluoromethane	88		-		70-130	-		
Chloromethane	76		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	80		-		70-130	-		
Methanol	65	Q	-		70-130	-		
Vinyl chloride	77		-		70-130	-		
1,3-Butadiene	78		-		70-130	-		
Butane	71		-		70-130	-		
Bromomethane	83		-		70-130	-		
Chloroethane	80		-		70-130	-		
Ethyl Alcohol	73		-		70-130	-		
Dichlorofluoromethane	75		-		70-130	-		
Vinyl bromide	81		-		70-130	-		
Acrolein	67	Q	-		70-130	-		
Acetone	79		-		70-130	-		
Acetonitrile	65	Q	-		70-130	-		
Trichlorofluoromethane	97		-		70-130	-		
iso-Propyl Alcohol	76		-		70-130	-		
Acrylonitrile	74		-		70-130	-		
Pentane	67	Q	-		70-130	-		
Ethyl ether	74		-		70-130	-		

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838188

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-06	Batch: WG11616	78-3				
1,1-Dichloroethene	86		-		70-130	-		
tert-Butyl Alcohol	72		-		70-130	-		
Methylene chloride	83		-		70-130	-		
3-Chloropropene	79		-		70-130	-		
Carbon disulfide	75		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	83		-		70-130	-		
trans-1,2-Dichloroethene	86		-		70-130	-		
1,1-Dichloroethane	89		-		70-130	-		
Methyl tert butyl ether	89		-		70-130	-		
Vinyl acetate	97		-		70-130	-		
2-Butanone	98		-		70-130	-		
cis-1,2-Dichloroethene	89		-		70-130	-		
Ethyl Acetate	88		-		70-130	-		
Chloroform	105		-		70-130	-		
Tetrahydrofuran	89		-		70-130	-		
2,2-Dichloropropane	94		-		70-130	-		
1,2-Dichloroethane	101		-		70-130	-		
n-Hexane	90		-		70-130	-		
Isopropyl Ether	78		-		70-130	-		
Ethyl-Tert-Butyl-Ether	74		-		70-130	-		
1,1,1-Trichloroethane	106		-		70-130	-		
1,1-Dichloropropene	94		-		70-130	-		
Benzene	97		-		70-130	-		

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838188

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	sociated sample(s):	01-06	Batch: WG116167	78-3				
Carbon tetrachloride	112		-		70-130	-		
Cyclohexane	92		-		70-130	-		
Tertiary-Amyl Methyl Ether	81		-		70-130	-		
Dibromomethane	93		-		70-130	-		
1,2-Dichloropropane	90		-		70-130	-		
Bromodichloromethane	113		-		70-130	-		
1,4-Dioxane	102		-		70-130	-		
Trichloroethene	102		-		70-130	-		
2,2,4-Trimethylpentane	94		-		70-130	-		
Methyl Methacrylate	75		-		70-130	-		
Heptane	98		-		70-130	-		
cis-1,3-Dichloropropene	104		-		70-130	-		
4-Methyl-2-pentanone	103		-		70-130	-		
trans-1,3-Dichloropropene	94		-		70-130	-		
1,1,2-Trichloroethane	103		-		70-130	-		
Toluene	88		-		70-130	-		
1,3-Dichloropropane	91		-		70-130	-		
2-Hexanone	94		-		70-130	-		
Dibromochloromethane	106		-		70-130	-		
1,2-Dibromoethane	99		-		70-130	-		
Butyl Acetate	85		-		70-130	-		
Octane	85		-		70-130	-		
Tetrachloroethene	97		-		70-130	-		

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838188

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-06	Batch: WG116167	' 8-3				
1,1,1,2-Tetrachloroethane	95		-		70-130	-		
Chlorobenzene	100		-		70-130	-		
Ethylbenzene	95		-		70-130	-		
p/m-Xylene	94		-		70-130	-		
Bromoform	111		-		70-130	-		
Styrene	100		-		70-130	-		
1,1,2,2-Tetrachloroethane	105		-		70-130	-		
o-Xylene	97		-		70-130	-		
1,2,3-Trichloropropane	95		-		70-130	-		
Nonane (C9)	87		-		70-130	-		
Isopropylbenzene	96		-		70-130	-		
Bromobenzene	95		-		70-130	-		
o-Chlorotoluene	92		-		70-130	-		
n-Propylbenzene	93		-		70-130	-		
p-Chlorotoluene	93		-		70-130	-		
4-Ethyltoluene	103		-		70-130	-		
1,3,5-Trimethylbenzene	99		-		70-130	-		
tert-Butylbenzene	94		-		70-130	-		
1,2,4-Trimethylbenzene	102		-		70-130	-		
Decane (C10)	86		-		70-130	-		
Benzyl chloride	108		-		70-130	-		
1,3-Dichlorobenzene	106		-		70-130	-		
1,4-Dichlorobenzene	105		-		70-130	-		

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01-06	Batch: WG116167	78-3				
sec-Butylbenzene	96		-		70-130	-		
p-Isopropyltoluene	68	Q	-		70-130	-		
1,2-Dichlorobenzene	77		-		70-130	-		
n-Butylbenzene	96		-		70-130	-		
1,2-Dibromo-3-chloropropane	102		-		70-130	-		
Undecane	93		-		70-130	-		
Dodecane (C12)	96		-		70-130	-		
1,2,4-Trichlorobenzene	109		-		70-130	-		
Naphthalene	97		-		70-130	-		
1,2,3-Trichlorobenzene	104		-		70-130	-		
Hexachlorobutadiene	114		-		70-130	-		

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838188

Propylene	Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Dichlorodifluoromethane	olatile Organics in Air by SIM - Mansfie	ld Lab Associated s	sample(s): 0	4-06 Batch: WG	G1161680-3				
Chloromethane 65 Q 70-130 - 1,2-Dichloro-1,1,2,2-tetrafluoroethane 74 - 70-130 - Vinyl chloride 71 - 70-130 - 1,3-Butadiene 76 - 70-130 - Bromomethane 74 - 70-130 - Chloroethane 70 - 70-130 - Ethyl Alcohol 76 - 70-130 - Lethyl Alcohol 76 - 70-130 - Vinyl bromide 71 - 70-130 - Acetone 71 - 70-130 - Trichlorofluoromethane 87 - 70-130 - iso-Propyl Alcohol 69 Q - 70-130 - Acrylonitrile 69 Q - 70-130 - 4ter-Butyl Alcohol* 62 Q - 70-130 - 4ter-Butyl Alcohol* 62 Q - </td <td>Propylene</td> <td>79</td> <td></td> <td>-</td> <td></td> <td>70-130</td> <td>-</td> <td></td> <td>25</td>	Propylene	79		-		70-130	-		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane 74 - 70-130 - Vinyl chloride 71 - 70-130 - 1,3-Butadiene 76 - 70-130 - Bromomethane 74 - 70-130 - Chloroethane 70 - 70-130 - Ethyl Alcohol 76 - 70-130 - Vinyl bromide 71 - 70-130 - Vinyl bromide 71 - 70-130 - Acetone 71 - 70-130 - Trichloroffluoromethane 87 - 70-130 - Iso-Propyl Alcohol 69 Q - 70-130 - Acrylonitrile 69 Q - 70-130 - 4ten-Buyl Alcohol* 62 Q - 70-130 - 4ten-Buyl Alcohol* 62 Q - 70-130 - Methylene chloride 79	Dichlorodifluoromethane	78		-		70-130	-		25
Vinyl chloride 71 - 70-130 - 1,3-Butadiene 76 - 70-130 - Bromomethane 74 - 70-130 - Chloroethane 70 - 70-130 - Ethyl Alcohol 76 - 70-130 - Vinyl bromide 71 - 70-130 - Acetone 71 - 70-130 - Trichloroffluoromethane 87 - 70-130 - iso-Propyl Alcohol 69 Q - 70-130 - Actylonitrile 69 Q - 70-130 - 1,1-Dichloroethene 79 - 70-130 - tert-Butyl Alcohol¹ 62 Q - 70-130 - Methylene chloride 79 - 70-130 - 3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130	Chloromethane	65	Q	-		70-130	-		25
1,3-Butadiene 76 70-130 - Bromomethane 74 - 70-130 - Chloroethane 70 - 70-130 - Ethyl Alcohol 76 - 70-130 - Vinyl bromide 71 - 70-130 - Acetone 71 - 70-130 - Trichlorofluoromethane 87 - 70-130 - iso-Propyl Alcohol 69 Q - 70-130 - Acrylonitrile 69 Q - 70-130 - 1,1-Dichloroethene 79 - 70-130 - tert-Butyl Alcohol¹ 62 Q - 70-130 - Methylene chloride 79 - 70-130 - 3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 76 - 70-130	1,2-Dichloro-1,1,2,2-tetrafluoroethane	74		-		70-130	-		25
Bromomethane 74 - 70-130 - Chloroethane 70 - 70-130 - Ethyl Alcohol 76 - 70-130 - Vinyl bromide 71 - 70-130 - Acetone 71 - 70-130 - Trichlorofluoromethane 87 - 70-130 - Iso-Propyl Alcohol 69 Q - 70-130 - Acrylonitrile 69 Q - 70-130 - 1,1-Dichloroethene 79 - 70-130 - Methylene chloride 79 - 70-130 - 3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 76 - 70-130 - 1,1-Dichloroethane 76 - 70-130 - 1,1-Dichloroethane 76 - 70-130	Vinyl chloride	71		-		70-130	-		25
Chloroethane 70 - 70-130 - Ethyl Alcohol 76 - 70-130 - Vinyl bromide 71 - 70-130 - Acetone 71 - 70-130 - Trichlorofluoromethane 87 - 70-130 - Iso-Propyl Alcohol 69 Q - 70-130 - Acrylonitrile 69 Q - 70-130 - 1,1-Dichloroethene 79 - 70-130 - 1etr-Butyl Alcohol¹ 62 Q - 70-130 - Methylene chloride 79 - 70-130 - 3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130 - 1,1,2-Trifluoroethane 76 - 70-130 - 1,1-Dichloroethane 76 - 70-130 - 1,1-Dichloroethane 76 - 70	1,3-Butadiene	76		-		70-130	-		25
Ethyl Alcohol 76 - 70-130 - Vinyl bromide 71 - 70-130 - Acetone 71 - 70-130 - Trichlorofluoromethane 87 - 70-130 - iso-Propyl Alcohol 69 Q - 70-130 - Acrylonitrile 69 Q - 70-130 - 1,1-Dichloroethene 79 - 70-130 - tert-Butyl Alcohol¹ 62 Q - 70-130 - Methylene chloride 79 - 70-130 - 3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 77 - 70-130 - 1,1-Dichloroethane 76 - 70-130 - 1,1-Dichloroethane 76 - 70-130 - 1,1-Dichloroethane 80 <th< td=""><td>Bromomethane</td><td>74</td><td></td><td>-</td><td></td><td>70-130</td><td>-</td><td></td><td>25</td></th<>	Bromomethane	74		-		70-130	-		25
Vinyl bromide 71 - 70-130 - Acetone 71 - 70-130 - Trichlorofluoromethane 87 - 70-130 - iso-Propyl Alcohol 69 Q - 70-130 - Acrylonitrile 69 Q - 70-130 - 1,1-Dichloroethene 79 - 70-130 - Methylene chloride 79 - 70-130 - 3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 77 - 70-130 - 1,1-Dichloroethane 80 - 70-130 - - 1,1-Dichloroethane 80 - 70-130 - -	Chloroethane	70		-		70-130	-		25
Acetone 71 - 70-130 - Trichlorofluoromethane 87 - 70-130 - iso-Propyl Alcohol 69 Q - 70-130 - Acrylonitrile 69 Q - 70-130 - 1,1-Dichloroethene 79 - 70-130 - tert-Butyl Alcohol¹ 62 Q - 70-130 - 3-Chloropropene 76 - 70-130 - 3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 77 - 70-130 - trans-1,2-Dichloroethene 76 - 70-130 - 1,1-Dichloroethane 76 - 70-130 -	Ethyl Alcohol	76		-		70-130	-		25
Trichlorofluoromethane 87 - 70-130 - iso-Propyl Alcohol 69 Q - 70-130 - Acrylonitrile 69 Q - 70-130 - 1,1-Dichloroethene 79 - 70-130 - tert-Butyl Alcohol¹ 62 Q - 70-130 - Methylene chloride 79 - 70-130 - 3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 77 - 70-130 - trans-1,2-Dichloroethane 76 - 70-130 - 1,1-Dichloroethane 80 - 70-130 -	Vinyl bromide	71		-		70-130	-		25
iso-Propyl Alcohol 69 Q - 70-130 - Acrylonitrile 69 Q - 70-130 - 1,1-Dichloroethene 79 - 70-130 - tert-Butyl Alcohol¹ 62 Q - 70-130 - Methylene chloride 79 - - 70-130 - 3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 77 - 70-130 - trans-1,2-Dichloroethene 76 - 70-130 - 1,1-Dichloroethane 80 - 70-130 -	Acetone	71		-		70-130	-		25
Acrylonitrile 69 Q - 70-130 - 1,1-Dichloroethene 79 - 70-130 - tert-Butyl Alcohol¹ 62 Q - 70-130 - Methylene chloride 79 - 70-130 - 3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 77 - 70-130 - trans-1,2-Dichloroethane 76 - 70-130 - 1,1-Dichloroethane 80 - 70-130 -	Trichlorofluoromethane	87		-		70-130	-		25
1,1-Dichloroethene 79 - 70-130 - tert-Butyl Alcohol¹ 62 Q - 70-130 - Methylene chloride 79 - 70-130 - 3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 77 - 70-130 - trans-1,2-Dichloroethene 76 - 70-130 - 1,1-Dichloroethane 80 - 70-130 -	iso-Propyl Alcohol	69	Q	-		70-130	-		25
tert-Butyl Alcohol¹ 62 Q - 70-130 - Methylene chloride 79 - 70-130 - 3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 77 - 70-130 - trans-1,2-Dichloroethane 76 - 70-130 - 1,1-Dichloroethane 80 - 70-130 -	Acrylonitrile	69	Q	-		70-130	-		25
Methylene chloride 79 - 70-130 - 3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 77 - 70-130 - trans-1,2-Dichloroethane 76 - 70-130 - 1,1-Dichloroethane 80 - 70-130 -	1,1-Dichloroethene	79		-		70-130	-		25
3-Chloropropene 76 - 70-130 - Carbon disulfide 70 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 77 - 70-130 - trans-1,2-Dichloroethane 76 - 70-130 - 1,1-Dichloroethane 80 - 70-130 -	tert-Butyl Alcohol ¹	62	Q	-		70-130	-		25
Carbon disulfide 70 - 70-130 - 1,1,2-Trichloro-1,2,2-Trifluoroethane 77 - 70-130 - trans-1,2-Dichloroethane 76 - 70-130 - 1,1-Dichloroethane 80 - 70-130 -	Methylene chloride	79		-		70-130	-		25
1,1,2-Trichloro-1,2,2-Trifluoroethane 77 - 70-130 - trans-1,2-Dichloroethane 76 - 70-130 - 1,1-Dichloroethane 80 - 70-130 -	3-Chloropropene	76		-		70-130	-		25
trans-1,2-Dichloroethene 76 - 70-130 - 1,1-Dichloroethane 80 - 70-130 -	Carbon disulfide	70		-		70-130	-		25
1,1-Dichloroethane 80 - 70-130 -	1,1,2-Trichloro-1,2,2-Trifluoroethane	77		-		70-130	-		25
	trans-1,2-Dichloroethene	76		-		70-130	-		25
Methyl tert butyl ether 79 - 70-130 -	1,1-Dichloroethane	80		-		70-130	-		25
, , ,	Methyl tert butyl ether	79		-		70-130	-		25

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838188

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air by SIM - Mansfield La	ab Associated	sample(s): 0	04-06 Batch: WG	1161680-3				
Vinyl acetate	90		-		70-130	-		25
2-Butanone	86		-		70-130	-		25
cis-1,2-Dichloroethene	78		-		70-130	-		25
Ethyl Acetate	79		-		70-130	-		25
Chloroform	95		-		70-130	-		25
Tetrahydrofuran	81		-		70-130	-		25
1,2-Dichloroethane	86		-		70-130	-		25
n-Hexane	85		-		70-130	-		25
1,1,1-Trichloroethane	95		-		70-130	-		25
Benzene	89		-		70-130	-		25
Carbon tetrachloride	104		-		70-130	-		25
Cyclohexane	83		-		70-130	-		25
Dibromomethane ¹	81		-		70-130	-		25
1,2-Dichloropropane	82		-		70-130	-		25
Bromodichloromethane	102		-		70-130	-		25
1,4-Dioxane	94		-		70-130	-		25
Trichloroethene	92		-		70-130	-		25
2,2,4-Trimethylpentane	88		-		70-130	-		25
cis-1,3-Dichloropropene	83		-		70-130	-		25
4-Methyl-2-pentanone	97		-		70-130	-		25
trans-1,3-Dichloropropene	94		-		70-130	-		25
1,1,2-Trichloroethane	96		-		70-130	-		25
Toluene	81		-		70-130	-		25

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838188

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics in Air by SIM - Mansfield La	ab Associated s	ample(s): 0	4-06 Batch: WC	9 1161680-3				
2-Hexanone	93		-		70-130	-	25	
Dibromochloromethane	103		-		70-130	-	25	
1,2-Dibromoethane	93		-		70-130	-	25	
Tetrachloroethene	90		-		70-130	-	25	
1,1,1,2-Tetrachloroethane	85		-		70-130	-	25	
Chlorobenzene	92		-		70-130	-	25	
Ethylbenzene	85		-		70-130	-	25	
p/m-Xylene	87		-		70-130	-	25	
Bromoform	103		-		70-130	-	25	
Styrene	91		-		70-130	-	25	
1,1,2,2-Tetrachloroethane	99		-		70-130	-	25	
o-Xylene	87		-		70-130	-	25	
1,2,3-Trichloropropane ¹	91		-		70-130	-	25	
Isopropylbenzene	88		-		70-130	-	25	
Bromobenzene ¹	88		-		70-130	-	25	
4-Ethyltoluene	98		-		70-130	-	25	
1,3,5-Trimethylbenzene	93		-		70-130	-	25	
1,2,4-Trimethylbenzene	97		-		70-130	-	25	
Benzyl chloride	109		-		70-130	-	25	
1,3-Dichlorobenzene	104		-		70-130	-	25	
1,4-Dichlorobenzene	101		-		70-130	-	25	
sec-Butylbenzene	91		-		70-130	-	25	
p-Isopropyltoluene	77		-		70-130	-	25	

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number:

L1838188

Report Date:

09/28/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lal	o Associated sa	ample(s): (04-06 Batch: WG	31161680-3	3				
1,2-Dichlorobenzene	89		-		70-130	-		25	
n-Butylbenzene	93		-		70-130	-		25	
1,2,4-Trichlorobenzene	111		-		70-130	-		25	
Naphthalene	99		-		70-130	-		25	
1,2,3-Trichlorobenzene	105		-		70-130	-		25	
Hexachlorobutadiene	113		-		70-130	-		25	

L1838188

Lab Duplicate Analysis Batch Quality Control

Project Name: 30TH STREET LIC

Project Number: 13123

Report Date: 09/28/18

Lab Number:

RPD Native Sample Duplicate Sample Units RPD Qual Limits **Parameter** Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-06 QC Batch ID: WG1161678-5 QC Sample: L1838188-05 Client ID: IA-2 Dichlorodifluoromethane 0.390 0.402 ppbV 3 25 25 Chloromethane 0.330 0.332 ppbV 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND ND NC 25 ppbV 1.3-Butadiene NC 25 ND ND ppbV Bromomethane ND ND NC 25 Vdqq Chloroethane ND ND ppbV NC 25 Ethyl Alcohol 5 118 124 ppbV 25 Vinyl bromide ND ND NC 25 ppbV 2 25 Acetone 69.4 70.7 ppbV Trichlorofluoromethane 25 0.209 0.200 ppbV 4 iso-Propyl Alcohol 98.0 100 Vdqq 2 25 4 25 tert-Butyl Alcohol 1.50 1.56 ppbV Methylene chloride ND ND NC 25 ppbV 3-Chloropropene ND NC 25 ND ppbV Carbon disulfide NC 25 ND ND ppbV 1,1,2-Trichloro-1,2,2-Trifluoroethane ND ND ppbV NC 25 ND NC 25 trans-1.2-Dichloroethene ND ppbV NC 25 1.1-Dichloroethane ND ND Vdqq Methyl tert butyl ether ND NC 25 ND ppbV 0.974 1 25 2-Butanone 0.961 ppbV Ethyl Acetate 1.78 1.81 Vdqq 2 25

Lab Duplicate Analysis Batch Quality Control

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: L1838188

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-06	QC Batch ID: WG1161678-5	QC Sample:	L1838188-	05 Client ID: IA-2
Chloroform	ND	ND	ppbV	NC	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	2.21	2.24	ppbV	1	25
Benzene	0.262	0.260	ppbV	1	25
Cyclohexane	0.935	0.953	ppbV	2	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
Heptane	7.45	7.53	ppbV	1	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	3.65	3.72	ppbV	2	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	0.260	0.263	ppbV	1	25

Lab Duplicate Analysis Batch Quality Control

Project Name: 30TH STREET LIC

Project Number: 13123

Lab Number: լ

L1838188

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics in Air - Mansfield Lab Associ	ated sample(s): 01-06 (QC Batch ID: WG1161678-	5 QC Sam	ple: L1838188-	05 Client ID: IA-2
p/m-Xylene	1.30	1.30	ppbV	0	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	0.379	0.383	ppbV	1	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	2.94	2.99	ppbV	2	25
4-Ethyltoluene	18.2	18.6	ppbV	2	25
1,3,5-Trimethylbenzene	19.7	19.7	ppbV	0	25
1,2,4-Trimethylbenzene	57.2	56.7	ppbV	1	25
Benzyl chloride	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
Volatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 0	4-06 QC Batch ID: WG1	161680-5 (QC Sample: L18	338188-05 Client ID: IA-2
Vinyl chloride	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Carbon tetrachloride	0.062	0.060	ppbV	3	25
Trichloroethene	0.540	0.556	ppbV	3	25
Tetrachloroethene	57.3E	56.9E	ppbV	1	25

Lab Duplicate Analysis
Batch Quality Control

Lab Number: L1838188

09/28/18 **Project Number:** 13123 Report Date:

Parameter Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 04-06	QC Batch ID: WG11	61680-5	QC Sample: L1	838188-05	Client ID: IA-	2
Tetrachloroethene	65.8	66.5	ppbV	1		25	

Project Name:

30TH STREET LIC

Lab Number: L1838188

Report Date: 09/28/18

_

30TH STREET LIC

Project Name:

Project Number: 13123

Canister and Flow Controller Information

				_				Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Pressure (in. Hg)	on Receipt (in. Hg)	Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1838188-01	SV-1	0695	Flow 4	09/19/18	274780		-	-	-	Pass	17.8	15.6	13
L1838188-01	SV-1	1724	2.7L Can	09/19/18	274780	L1836011-01	Pass	-29.0	-0.24	-	-	-	-
L1838188-02	SV-2	0971	Flow 3	09/19/18	274780		-	-	-	Pass	17.5	17.4	1
L1838188-02	SV-2	173	2.7L Can	09/19/18	274780	L1835794-01	Pass	-28.9	-0.14	-	-	-	-
L1838188-03	SV-3	0973	Flow 4	09/19/18	274780		-	-	-	Pass	18.0	19.1	6
L1838188-03	SV-3	2308	2.7L Can	09/19/18	274780	L1835794-01	Pass	-29.0	-0.20	-	-	-	-
L1838188-04	IA-1	0854	Flow 4	09/19/18	274780		-	-	-	Pass	22.7	19.8	14
L1838188-04	IA-1	2230	2.7L Can	09/19/18	274780	L1835794-01	Pass	-29.1	-0.29	-	-	-	-
L1838188-05	IA-2	0743	Flow 3	09/19/18	274780		-	-	-	Pass	17.9	19.2	7
L1838188-05	IA-2	329	2.7L Can	09/19/18	274780	L1836011-01	Pass	-28.9	-0.10	-	-	-	
L1838188-06	IA-3	0856	Flow 4	09/19/18	274780		-	-	-	Pass	17.4	17.6	1
L1838188-06	IA-3	202	2.7L Can	09/19/18	274780	L1835794-01	Pass	-29.1	-0.37	-	-	-	
L1838188-07	UNUSED CAN #182	0865	SV200	09/19/18	274780		-	-	-	Pass	19.1	19.1	0
L1838188-07	UNUSED CAN #182	182	2.7L Can	09/19/18	274780	L1835794-01	Pass	-29.1	-29.1	-	-	-	-

L1835794

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/28/18

Air Canister Certification Results

Lab ID: L1835794-01 Date Collected: 09/10/18 16:00

Client ID: CAN 1721 SHELF 1 Date Received: 09/11/18

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 09/12/18 23:58

Analyst: MB

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
b							
ND	0.200		ND	0.707			1
ND	0.500		ND	0.861			1
ND	0.500		ND	0.902			1
ND	0.200		ND	0.989			1
ND	0.200		ND	0.413			1
ND	0.200		ND	1.40			1
ND	0.200		ND	0.511			1
ND	0.200		ND	0.442			1
ND	0.200		ND	0.475			1
ND	0.200		ND	0.777			1
ND	0.200		ND	0.528			1
ND	5.00		ND	9.42			1
ND	0.200		ND	0.842			1
ND	0.200		ND	0.874			1
ND	0.500		ND	1.15			1
ND	1.00		ND	2.38			1
ND	0.200		ND	1.12			1
ND	0.500		ND	1.23			1
ND	0.500		ND	1.09			1
ND	0.200		ND	0.590			1
ND	0.200		ND	0.793			1
ND	0.500		ND	1.52			1
ND	0.500		ND	1.74			1
ND	0.200		ND	0.626			1
	b ND ND ND ND ND ND ND ND ND N	Results RL b ND 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.500 ND 0.500	Results RL MDL b ND 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.500 ND 0.500	Results RL MDL Results b ND 0.200 ND ND 0.500 ND ND 0.500 ND ND 0.200 ND ND 0.500 ND ND 0.500	Results RL MDL Results RL b ND 0.200 ND 0.707 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528 ND 0.200 ND 0.528 ND 0.200 ND 0.842 ND 0.200 ND 0.842 ND 0.500 ND 1.15	Results RL MDL Results RL MDL b ND 0.200 ND 0.707 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.413 ND 0.200 ND 0.411 ND 0.200 ND 0.442 ND 0.200 ND 0.528 ND 0.200 ND 0.528 ND 0.200 ND 0.842	Results RL MDL Results RL MDL Qualifier b ND 0.200 ND 0.7077 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528 ND 0.200 ND 0.842 ND 0.200 ND 0.874 ND

L1835794

Not Specified

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 09/28/18

Air Canister Certification Results

Lab ID: L1835794-01

Date Collected: 09/10/18 16:00 Client ID: **CAN 1721 SHELF 1** Date Received: 09/11/18

Sample Location: Field Prep:

Запре Верш.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1

L1835794

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 09/28/18

Air Canister Certification Results

Lab ID: L1835794-01

Date Collected: 09/10/18 16:00 Client ID: **CAN 1721 SHELF 1** Date Received: 09/11/18

Sample Location: Field Prep: Not Specified

Запре Берп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	_ab							
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 09/28/18

Air Canister Certification Results

Lab ID: L1835794-01

Client ID: **CAN 1721 SHELF 1**

Sample Location:

Date Collected:

Lab Number:

09/10/18 16:00

Date Received:

09/11/18

L1835794

Field Prep: Not Specified

Sample Depth:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab							
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

09/10/18 16:00

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1835794

Project Number: CANISTER QC BAT **Report Date:** 09/28/18

Air Canister Certification Results

Lab ID: L1835794-01

Date Collected: Client ID: **CAN 1721 SHELF 1** Date Received:

09/11/18 Sample Location: Not Specified

Field Prep:

Sample Depth:

ppbV ug/m3 Dilution Factor RL MDL Qualifier RLResults **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	92		60-140

L1835794

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/28/18

Air Canister Certification Results

Lab ID: L1835794-01 Date Collected: 09/10/18 16:00

Client ID: CAN 1721 SHELF 1 Date Received: 09/11/18
Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 09/12/18 23:58

Analyst: MB

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air by SIM	l - Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acetone	ND	1.00		ND	2.38			1
Frichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
rans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
,2-Dichloropropane	ND	0.020		ND	0.092			1

L1835794

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 09/28/18

Air Canister Certification Results

Lab ID: L1835794-01

Date Collected: 09/10/18 16:00 Client ID: **CAN 1721 SHELF 1** Date Received: 09/11/18

Sample Location: Field Prep: Not Specified

Запріє Беріп.	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mans	sfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number:

Project Number: CANISTER QC BAT Report Date: 09/28/18

Air Canister Certification Results

Lab ID: L1835794-01

Client ID: CAN 1721 SHELF 1

Sample Location:

Date Collected:

09/10/18 16:00

Date Received:

09/11/18

L1835794

Field Prep: Not Specified

• •		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Nansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	89		60-140

L1836011

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/28/18

Air Canister Certification Results

Lab ID: L1836011-01 Date Collected: 09/11/18 16:00

Client ID: CAN 497 SHELF 3 Date Received: 09/12/18
Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 09/12/18 22:54

Analyst: MB

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
√inyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
/inyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Frichlorofluoromethane	ND	0.200		ND	1.12			1
sopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Fertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1

L1836011

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/28/18

Air Canister Certification Results

Lab ID: L1836011-01
Client ID: CAN 497 SHELF 3

Sample Location:

Date Collected: 09/11/18 16:00 Date Received: 09/12/18

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1

L1836011

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/28/18

Air Canister Certification Results

Lab ID: L1836011-01
Client ID: CAN 497 SHELF 3

Sample Location:

Date Collected: 09/11/18 16:00 Date Received: 09/12/18

Field Prep: Not Specified

Запріє Беріп.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Lab Number: L1836011

Report Date: 09/28/18

Air Canister Certification Results

Lab ID: L1836011-01 Client ID: CAN 497 SHELF 3

Sample Location:

Date Collected:

09/11/18 16:00

Date Received:

09/12/18

Field Prep:

Not Specified

Sample Depth:

Dilution
Factor
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1836011

Project Number: CANISTER QC BAT Report Date: 09/28/18

Air Canister Certification Results

Lab ID: L1836011-01 Date Collected: 09/11/18 16:00

Client ID: CAN 497 SHELF 3 Date Received: 09/12/18

Sample Location: Field Prep: Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	91		60-140

L1836011

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/28/18

Air Canister Certification Results

Lab ID: L1836011-01 Date Collected: 09/11/18 16:00

Client ID: CAN 497 SHELF 3 Date Received: 09/12/18
Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 09/12/18 22:54

Analyst: MB

-		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	F4
Volatile Organics in Air by SIM -	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1836011

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/28/18

Air Canister Certification Results

Lab ID: L1836011-01
Client ID: CAN 497 SHELF 3

Sample Location:

Date Collected: 09/11/18 16:00
Date Received: 09/12/18

Field Prep: Not Specified

Sample Depth:		ppbV		ug/m3			Dilutio	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 09/28/18

Air Canister Certification Results

Lab ID: L1836011-01

Client ID: CAN 497 SHELF 3

Sample Location:

Date Collected:

09/11/18 16:00

Date Received:

Lab Number:

09/12/18

L1836011

Field Prep:

Not Specified

		ppbV			ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM	- Mansfield Lab								
p-Isopropyltoluene	ND	0.200		ND	1.10			1	
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1	
n-Butylbenzene	ND	0.200		ND	1.10			1	
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1	
Naphthalene	ND	0.050		ND	0.262			1	
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1	
Hexachlorobutadiene	ND	0.050		ND	0.533			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria		
1,4-difluorobenzene	90		60-140		
bromochloromethane	91		60-140		
chlorobenzene-d5	87		60-140		

Project Name: 30TH STREET LIC Lab Number: L1838188

Project Number: 13123 Report Date: 09/28/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

N/A Absent

Container Information				Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L1838188-01A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30)
	L1838188-02A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30)
	L1838188-03A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-LL(30)
	L1838188-04A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-SIM(30)
	L1838188-05A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-SIM(30)
	L1838188-06A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		TO15-SIM(30)
	L1838188-07A	Canister - 2.7 Liter	N/A	NA			Υ	Absent		CLEAN-FEE()

Project Name: Lab Number: 30TH STREET LIC L1838188

Project Number: Report Date: 13123 09/28/18

GLOSSARY

Acronyms

EPA

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name: 30TH STREET LIC Lab Number: L1838188

Project Number: 13123 Report Date: 09/28/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: 30TH STREET LIC Lab Number: L1838188

Project Number: 13123 Report Date: 09/28/18

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4 SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Vin.														Se	erial_	_No:09281816	6:24
ALPHA	AIR A		YSIS		PAGE \	_of_1	Date	Rec'd in I	Lab:	9/2	5/18		A	LPHA	Job	#: U838	3188
320 Forbes Blvd, I	Mansfield, MA 02048	Projec	ct Informa				Rep	ort Infor	mation	- Data	Delive	ables	В	illing	Infor	mation	
TEL: 508-822-9300 FAX: 508-822-3288			Project Name: 30th Street LIC					□ FAX						Same a	as Clie	ent info PO#:	
lient Informati		Project	Location: 4	1-50 304	n stree	+, LTC	- DA	DEx Criteria C	hecker								
lient: Impuct	Environmental	Project	# 13123					(Default ba		gulatory C	riteria Indic	ated)				Ha I	
Address: 170 Keyland Court		Project	Project Manager: Creg Mendez chicas					Other Formats: D EMAIL (standard pdf report)						Regulatory Requirements/Report Lim			
			ALPHA Quote #:					☐ Additional Deliverables:						State/Fed Program Res / Co			
Phone: 631-269-8800 Fax:		Turn-	Turn-Around Time					ort to: (if differ	ent than Proj	ect Manage	1.				+		
These samples ha other Project S	chice: OI mposteru, conne ave been previously analyzed by Alph Specific Requirements/Cor C Target Compound List:	Date Donments:		RUSH (cort)	Time:	approved)								Al Co Solid	VALY	SIS	
		II Co	lumn	s Be	low I	Must	Ве	Fille	d O	ut			SIM	Fixed Gases	d Mercape	//-	
ALPHA Lab ID Lab Use Only)	Sample ID	End Date	COI e Start Time	LLECTIO	N Initial Vacuum	Final	Sample Matrix*	Sampler Initials		I D Can	I D - Flor	70.75	APH SIM	Sumbo	//	Sample Com	mente (i e. Di
188.01	SV-1	9/21	7:08	-		9-0.14		ML	-	THE RESERVE OF THE PERSON NAMED IN	6695				1	y dampie dom	mems (i.e. Fr
.02	SU-Z	9/21	7:04	2:30		1		ML			0971						
.03	SK-3	5/21	10000	2:16				ML			097		П				
.04	I 4-1	9/21						ML	2 7	2230	OKSY	*	\Box	Ħ			
,05	IA-2		7:05						The second second	5 6	0734	Technology and the	Ħ				
.06	IA-3	9/21		2:17		100		ML	27	205	C856	×				2 10 11	
		A = Ambia	nt Air (Indoor	Outlood			142										
*SAMPLE	MATRIX CODES S	V = Soil Vap Other = Please	por/Landfill G	ias/SVE	Date	/Ties-			ontainer	Туре					Ш	Please print clear completely. Samp logged in and turn	ples can not be paround time
	Have Sep-15)	2 1	www.	· ~ ~	9/24/	e/Time 18 2:08 18 2:08		Recei	ved By:	11	22	7/24/	ate/Tin	14' 0	3	clock will not start guities are resolve submitted are sub Terms and Conditi See reverse side.	ed. All samples ject to Alpha's