

FOCUSED SUBSURFACE SITE INVESTIGATION (FSSI)

22-01/19 QUEENS PLAZA NORTH QUEENS, NEW YORK 11101

PREPARED FOR

NEW YORK COMMUNITY BANK

FEBRUARY 2019

MECC PROJECT NO. M17702A

MERRITT ENVIRONMENTAL CONSULTING CORP.

77 Arkay Drive, Suite D, Hauppauge, NY 11788 (631) 617-6200 . WWW.MERRITTEC.COM

77 Arkay Drive, Suite D, Hauppauge, NY 11788 (631) 617-6200/Tel (631) 617-6201/Fax

FOCUSED SUBSURFACE SITE INVESTIGATION (FSSI)

22-01 TO 22-19 QUEENS PLAZA NORTH LONG ISLAND CITY, NEW YORK 11101

PREPARED FOR

NEW YORK COMMUNITY BANK

102 DUFFY AVENUE, 5TH FLOOR HICKSVILLE, NEW YORK 11801 ATTN: MR. OREANDO TRENCHFIELD APPLICATION 15-1819924-1

PREPARED BY

MERRITT ENVIRONMENTAL CONSULTING CORP. 77 ARKAY DRIVE, SUITE D HAUPPAUGE, NEW YORK 11788

FEBRUARY 26, 2019

Table of Contents

SIG	NATURE	PAGE	2
1.0	INTRO	DUCTION AND SUMMARY OF FINDINGS	3
	1.1 1.2	Background Topography and Geology	
2.0	FSSI S	COPE OF WORK COMPLETED	6
3.0	SOIL S	AMPLE COLLECTION AND LABORATORY RESULTS	7
	3.1 3.2	Soil Quality Field Screening Results Soil Sample Analysis Results TABLE 1: VOC LABORATORY RESULTS FOR SOIL SAMPLES TABLE 2: SVOC LABORATORY RESULTS FOR SOIL SAMPLES	7 .8 .9 0
4.0	GROUM	NDWATER SAMPLE COLLECTION AND LABORATORY RESULTS1	2
	4.1	Groundwater Sample Analysis Results1 TABLE 5: VOC LABORATORY RESULTS FOR GROUNDWATER SAMPLES	2
5.0	CONCL	USIONS AND RECOMMENDATIONS1	5
6.0	LIMITA	TIONS OF THE FSSI1	6

Appendices

Appendix A	Site Location Map
	Site Plan with Sampling Locations
	Available Meeker Avenue PCE Plume Delineation Map by NYSDEC
Appendix B	Soil Boring Logs
Appendix C	Laboratory Report

- Appendix D Site Photographs Appendix E: Prior Phase I Environmental Site Assessment Report

SIGNATURE PAGE

Merritt Environmental Consulting Corp. ("MECC") and the undersigned have completed this Focused Subsurface Site Investigation (the "FSSI") at 22-01 to 22-19 Queens Plaza North, Long Island City, New York (the "Site") in accordance with the scope of work defined in MECC's submitted proposal. This project conducted for environmental due diligence purposes using generally accepted industry practice.

MERRITT ENVIRONMENTAL CONSULTING CORP.

Frank Galdun Project Geologist

Charles G. Merritt President/LEED AP

1.0 INTRODUCTION AND SUMMARY OF FINDINGS

This report presents the results of the FSSI conducted by MECC at the Site, which consists of an approximately 111,000 square-foot parcel. The south section of the Site contains a partial one-story and partial two-story commercial/industrial building and the remaining section is open stockyard used by a construction equipment rental company. MECC understands that this study is intended for use as an environmental due diligence instrument.

The principal intent of this study was to establish subsurface soil and groundwater quality beneath the Site in connection with the potential of elevated concentrations of chlorinated volatile organic compounds (VOCs). The Site has been used for industrial purposes and underground petroleum fuel storage tanks (USTs) were historically present. In addition, a New York State Hazardous Waste Site (SHWS) with documented chlorinated VOC contamination in groundwater is proximal to the Site. A series of soil borings were installed and soil and groundwater samples were collected for laboratory analysis.

MECC installed ten (10) soil borings at various locations within the Site building and at the exterior stockyard. Depth to the water table at the Site is between eight feet and ten feet below ground surface (bgs). Grab soil samples and groundwater samples were collected from all borings. Laboratory analysis of groundwater samples show a low to moderate degree of adverse impact to Site groundwater quality by petroleum fuel-related VOCs in a minor number of locations. This condition was caused by leaking USTs and associated dispensers formerly located in the stockyard. MECC concludes that this impacted groundwater and leaking USTs is related to an unresolved petroleum release case under the authority of the New York State Department of Environmental observation (NYSDEC). This petroleum release incident was reported to NYSDEC in 2013 when the USTs and dispensers were removed. No free-phase product was identified on the shallow water table and contaminant concentrations reported by the laboratory do not greatly exceed regulatory limits.

Based on MECC's review of regulatory agency records pertaining to the petroleum release, it does not appear that all contaminated soil was removed from the UST/dispenser excavation in 2013, when work was apparently discontinued by the Site owner. Further, MECC's review of NYSDEC records identified no documentation of proper off-site disposal of any excavated petroleum-contaminated soil. The risk of an extended period to gain case closure with NYSDEC does exist, and they may require further investigation to determine the severity and extent of any remaining impacted and unexcavated soil. If the Site is proposed for redevelopment and excavation work is planned, this activity will serve to expedite efforts to gain case closure since any contaminated material could be addressed at that time.

Perchloroethylene (PCE, a chlorinated VOC) was detected at low concentrations in certain groundwater samples collected from across the Site. This substance was detected in a single groundwater sample at a concentration that slightly exceeds the applicable regulatory limit of 5.0 micrograms per liter (ug/l); this exceedance was reported at 6.0 ug/l in one of the samples collected from beneath the stockyard. None of the remaining groundwater samples were reported to contain PCE or any other chlorinated VOC at concentrations exceeding applicable regulatory limits. None of this laboratory data is indicative of an actionable or reportable condition in connection with the detected presence of chlorinated VOCs in groundwater at the Site. Further, none of the soil samples collected from the Site are reported by the laboratory to contain PCE or other chlorinated VOCs at concentrations that approach applicable regulatory limits.

MECC selected seven of the ten collected soil samples for laboratory analysis under various parameters to evaluate fill quality beneath the Site. A minor number of heavy metals and semi-volatile organic compounds (SVOCs) were detected in certain of these samples at concentrations that slightly exceed the most stringent soil quality limits established by the State of New York. MECC does not consider the presence of these substances as a material threat of adverse impact to the environmental integrity at the Site because they are common constituents of typical urban fill and do not represent a reportable or

actionable release of contaminants to the environment. Should the material be excavated and require off-site disposal by future redevelopment and/or building modification, additional costs for special disposal as nonhazardous urban fill will be incurred should excess material be generated.

MECC has identified no potential of a VOC vapor intrusion condition at the Site. However, the Site is located in an area that has been historically used for industrial purposes in a heavily urbanized setting. If the Site is to be redeveloped to contain new buildings, MECC strongly recommends that, at a minimum, a sub-slab soil vapor barrier, specifically designed to minimize the potential of volatile organic vapor intrusion into structures should be installed as a precautionary measure.

1.1 Background

Please note that delays in field activities were encountered due to lack of initial access into the Site building. MECC was not initially informed that much of the Site building was unoccupied; access to the interior of the vacant building section was not provided until the later portion of the field work. Further, the Site stockyard is near full of construction equipment and Site tenant representatives were not informed of the scope of MECC's field work. Delays did occur since waiting periods were incurred to allow for tenant activities to be completed at planned work areas.

The Site consists of an approximately 111,000- square-foot parcel containing a partial one-story and partial two-story industrial/commercial building at its south end. The Site occupies the entire city block bordered by 41st Avenue to the north, 23rd Street to the east, Queens Plaza North to the south and 22nd Street to the west. The footprint of the Site building is approximately 45,000 square feet; the remainder of the Site is exterior paved stockyard. One small and unoccupied steel-frame storage building is located at the northeast corner of the Site. The apparent sole Site occupant consists of a construction equipment rental operation. This tenant occupies the majority of the exterior stockyard, which contains stored heavy equipment and materials. This tenant also occupies the single-story section of the Site building. The two-story Site building section is not occupied. A small partial basement is present under the east side of the Site building; no other sub-grade levels exist. Site building construction consists of masonry exterior walls over steel frame and a flat roof. Site building heating systems appear to be fueled by natural gas.

A recently completed phase I environmental site assessment (ESA) states that five (5) 4,000-gallon diesel fuel and gasoline USTs, along with associated dispensers, were formerly present under the Site stockyard. Based on information contained in regulatory agency databases included with the ESA, it appears that soil and groundwater at the UST/dispenser area was discovered as early as 1997. NYSDEC records received by MECC show that a groundwater remediation system was proposed at the Site to address the petroleum contamination; it does not appear that the remediation system operated for an extended period. Nevertheless, all historical petroleum spill and Leaking Storage Tank (LTANK) incidents reported to regulators were formally "closed" by NYSDEC with "no further action required" determinations.

The most recently dated document pertaining to subsurface conditions at the former UST/dispenser area (obtained from NYSDEC files) describes a 2010 groundwater monitoring well sampling and laboratory analysis event. This document states that selected monitoring wells were sampled and that laboratory analysis detected no petroleum fuel-related VOCs at concentrations that exceed applicable regulatory limits. This 2010 document recommends no further action at the Site. However, it appears that this document was prepared to address a historical unresolved NYSDEC spill incident, which has been formally closed by NYSDEC.

It does not appear that the gasoline and diesel USTs/dispensers were removed until 2013, although it is possible that the UST system may have been present but inactive prior to this time. Evidence of petroleum contamination was reported to NYSDEC in 2013, and this petroleum spill incident remains unresolved (NYSDEC Spill Case No. 1301128). Records of communication between the Site owner and NYSDEC appear to show that work on contaminated soil removal was not completed. Based on the reviewed documents, it appears that petroleum-contaminated soil could remain at the former fuel dispenser area, which could not be accessed by MECC due to the large amounts of stocked equipment at the Site, although MECC's groundwater sampling and laboratory analysis does show that low-level contamination does exist. Further, it appears that petroleum-impacted soil that was excavated during UST removal work was present in a stockpile at the Site, but no record of proper off-site disposal of this material is included in NYSDEC records.

The ESA also states that physical evidence of a possible abandoned heating oil UST was observed at the Site building. It appears that the UST is likely located to be present at some location under the building floor slab near the partial basement at the east side of the Site. Due to access and time constraints, a more thorough assessment of this UST area was not conducted. However, interior soil borings installed by MECC within the Site building encountered no condition evidencing actionable impact on Site soil or groundwater by a possible heating oil release.

Numerous groundwater monitoring wells were observed in the Site stockyard and proximal to the former UST/dispenser area. Three of these flush-mount well covers were visible and were removed. MECC observed that all wells had been permanently sealed with concrete. Additional well covers are likely present but are covered by stored heavy equipment and other construction-related products. One well was observed in the sidewalk bordering the Site at 22nd Street (west side of the Site), but it was entirely destroyed. The only remaining viable groundwater monitoring well was found in the 23rd Street sidewalk adjacent to the northeast corner of the Site (labeled as "MWA" by MECC on the attached site sketch). MECC collected a groundwater sample from this well for laboratory analysis. It does not appear that this well was installed in response to the petroleum release at the Site, as it is located well away from the former UST system, at a hydraulic upgradient position. It is more likely that the well was installed to investigate a possible off-site source of contamination, and its installation was unrelated to any past Site investigations.

1.2 Topography and Geology

The Site elevation is estimated at roughly 20 feet above mean sea level (see topographic map in Appendix A). Surface topography within the Site is flat with little apparent relief. A rise in surface elevation occurs at areas east-northeast of the Site. This FSSI identified the water table aquifer at depths ranging from eight feet to ten feet bgs. Water table elevation isopleths on published maps and prior Site-specific reports reviewed by MECC show that groundwater flow direction is roughly to the west.

Naturally occurring sediment beneath the Site was found to consist of medium to fine sand with some intervening layers of silt and clay. Fill material is present under the stockyard and ranges in thickness from five feet to, in some cases, ten feet bgs. This material had varying content but primarily included sand, broken rock and crushed brick with some ash and cinder. A much thinner layer of fill material was encountered in borings installed into the Site building footprint.

2.0 FSSI SCOPE OF WORK COMPLETED

MECC retained a drilling contractor to employ a track-mounted hydraulic direct-push drill rig to install ten (10) soil borings at the Site. Mr. Frank Galdun, Project Geologist with MECC was present to direct the driller and to conduct both soil and groundwater sample collection and assessment tasks. All field work was completed on February 7, 2019 and February 8, 2019. Seven (7) soil borings were installed into the exterior stockyard and three (3) borings were placed inside the Site building. All borings were converted to temporary well points for groundwater sampling purposes. Grab soil samples were collected for laboratory analysis from above the water table from all borings.

The maximum depth of the borings was 15 feet bgs. The water table was encountered between approximately eight feet and ten feet bgs. A Site Location Map and Site Plan are provided in Appendix A of this report. Soil samples were collected for laboratory analysis from all borings. The primary area of concern investigated by this study was the potential presence of chlorinated VOCs from either off-site or on-site sources. This FSSI also included an evaluation of the former UST and dispenser area, although access to this area was limited by Site conditions and activities.

3.0 SOIL SAMPLE COLLECTION AND LABORATORY RESULTS

3.1 Soil Quality Field Screening Results

Continuous soil samples were collected for field screening at all of the borings. All soil samples were evaluated for visual or olfactory evidence of contamination. A portable photoionization detector (PID) was used to measure volatile organic vapor levels in each soil sample. Observations and lithologic descriptions for each soil boring are presented in Appendix B.

For the hydraulic direct-push borings, a five-foot plastic sleeve was inserted into each hollow drill rod and was driven into the subsurface. The sleeves are removed from the rods as they are extracted from the soil borings. Soil quality evaluation and soil sampling is conducted by cutting the sleeves longitudinally, exposing the collected soil.

MECC detected no odors or unusual staining in any of the soil samples extracted from the borings. In addition, PID responses were recorded as trace or undetect in all borings. The results of the field screening activities identified no evidence of VOC contamination in soil. However, MECC did identify physical evidence of petroleum, contamination on groundwater and in soil in contact with groundwater at Soil Boring Nos. B2 and B3. Both of these borings were placed at estimated hydraulic downgradient positions relative to the former UST and dispenser areas. A moderate petroleum sheen was observed on groundwater extracted from these borings; this water exhibited what was apparently a diesel fuel odor.

3.2 Soil Sample Analysis Results

MECC collected one grab soil sample from each of the ten borings for laboratory analysis (total ten samples). Sample identifications on the laboratory report in Appendix C show the soil boring and depth of sample collection. Generally, the soil samples were collected from depths of five feet bgs or less to evaluate near-surface soil and fill quality.

MECC submitted all soil and groundwater samples collected during this study to Veritech, a New York State Department of Health-Certified environmental laboratory (NYSDOH ELAP No. 10982). MECC placed all samples collected during this study in containers holding the appropriate preservatives. The laboratory supplied all sample containers used by MECC. All samples were shipped on ice to Veritech within one business day of collection. In addition, MECC completed all appropriate chain of custody documents prior to sample shipment.

All soil samples were analyzed under EPA Method 8260 - VOCs and Table 1 on the following page summarizes these results.

	TABLE 1: VOC LABORATORY RESULTS FOR SOIL SAMPLES Detected compounds only												
	Sample Location and Depth												
Compound	B1 5'	B2 3'-5'	B3 6'	B4 5.5'-6.5'	B5 4.5'-6.5'	B6 4'-5'	B7 7'-8'	B8 5'-6'	B9 5'	B10 2'-3'	UUSCO		
Acetone	0.018	ND	ND	0.011	ND	ND	ND	ND	0.013	ND	0.05		
Toluene	0.0013	ND	ND	0.0015	ND	ND	ND	0.0021	ND	ND	0.7		
Naphthalene	ND	ND	ND	ND	ND	0.019	ND	ND	ND	ND	12		
Xylenes	ND	ND	ND	ND	ND	ND	ND	0.0011	ND	ND	0.26		
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05		
Perchloroethylene	ND	ND	ND	0.024	ND	ND	ND	ND	ND	ND	1.3		

1. All results are expressed in milligrams per kilogram (mg/kg), which can also be expressed as parts per million (ppm).

- 2. ND Parameter non-detected, below method detection limits.
- 3. Results in bold exceed Unrestricted Use Soil Cleanup Objectives as defined in the New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation, 6 NYCRR Part 375, Environmental Remediation Programs, dated December 14, 2006. For those VOCs not listed in Unrestricted Use SCOs, the Supplemental Soil Cleanup Objectives (Residential) listed in NYSDEC Policy CP-51 / Soil Cleanup Guidance, dated October 21, 2010 was used.

No VOCs were detected at concentrations that approach Unrestricted Use SCOs in any of the soil samples. While NYSDEC has established less restrictive soil quality standards based on non-residential use, the Unrestricted Use SCOs are commonly employed as the default when conducting due diligence investigations.

In order to principally assess shallow fill quality beneath the Site, seven of the grab soil samples were selected for laboratory analysis under EPA Method 8270: Semi-Volatile Organic Compounds (SVOCs). Certain SVOCs were detected and Table 2 on the following page summarizes the laboratory report.

TAE	BLE 2: SVO		RATORY F			DIL SAMP	LES				
Sample Location and Depth											
Compound	B2 3'-5'	B4 4.5'-5.5'	B5 4.5'-5.5'	B6 4'-5'	B7 7'-8'	B8 5'-6'	B10 2'-3'	SCO			
Acenaphthene	ND	0.051	0.21	2.5	ND	ND	ND	20			
Acenaphthylene	0.061	0.053	0.089	ND	ND	0.1	ND	100			
Anthracene	0.076	0.13	0.46	6.2	0.053	0.11	ND	100			
Benzo[a]anthracene	0.45	0.53	1.4	24	0.15	0.47	0.05	1.0 1			
Benzo[a]pyrene	0.34	0.51	1.3	17	0.12	0.37	0.045	1.0 1			
Benzo[b]fluoranthene	0.5	0.069	1.7	21	0.18	0.45	0.058	1.0 1			
Benzo[g,h,i]perylene	0.17	0.32	0.74	8.5	0.085	0.24	ND	100			
Benzo[k]fluoranthene	0.2	0.23	0.66	6.3	0.054	0.16	ND	0.8 3.9			
Chrysene	0.43	0.53	1.4	22	0.14	0.46	0.048	1.0 3.9			
Dibenzo[a,h]anthracene	ND	0.087	0.22	2.6	ND	0.076	ND	0.33 0.3			
Fluoranthene	0.84	1.0	3.2	40	0.3	0.61	0.086	100			
Fluorene	ND	0.042	0.18	2.1	ND	ND	ND	30			
Indeno[1,2,3-cd]pyrene	0.17	0.29	0.69	7.6	0.076	0.2	ND	0.5 <mark>0</mark> .5			
Naphthalene	ND	0.018	0.11	ND	ND	0.04	ND	12			
Phenanthrene	0.33	0.66	2.6	36	0.25	0.43	0.072	100			
Pyrene	0.73	1.0	3.1	54	0.32	0.83	0.1	100			

1. All results are expressed in milligrams per kilogram (mg/kg), which can also be expressed as parts per million (ppm).

2. ND - Parameter non-detected, below method detection limits.

3. Results in bold exceed Unrestricted Use Soil Cleanup Objectives as defined in the New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation, 6 NYCRR Part 375, Environmental Remediation Programs, dated December 14, 2006.

Low-level impact by SVOCs typical of the content of urban fill material is evidenced in Sample Nos. B5 4'-5' and B6 4'-5' in Table 2. This condition is not considered unusual by MECC and neither of these borings were placed near the former UST/dispenser area. Further, no physical evidence of petroleum contamination was identified in any of the soil samples extracted from these borings. Accordingly, MECC believes that the elevated SVOC content in the two soil samples is representative of common urban fill.

In order to further evaluate shallow fill quality, the seven selected soil samples were also analyzed at the laboratory for Target Analyte List Heavy Metals (TAL Metals). Table 3 on the following page summarizes the laboratory report.

TAI	BLE 3: TA	L METAL	LABORA	TORY R	ESULTS	FOR SO	IL SAMPL	.ES
			Sample L	ocation an	d Depth			
Compound	B2 3'-5'	B4 4.5'-5.5'	B5 4.5'-5.5'	B6 4'-5'	B7 7'-8'	B8 5'-6'	B10 2'-3'	sco
Aluminum	7000	14000	13000	13000	9100	11000	18000	No SCO
Arsenic	2.5	2.0	16	4.6	4.9	3.6	5.7	13 16
Barium	50	90	1600	180	170	1100	42	350 400
Calcium	30000	4000	15000	83000	8900	24000	1700	No SCO
Chromium	8.5	28	48	19	22	53	30	30
Cobalt	ND	7.4	6.7	5.2	10	5.8	8.9	30
Copper	ND	30	280	97	50	270	17	50 27 0
Cyanide	ND	ND	0.53	ND	ND	2.0	ND	27 27
Iron	7400	21000	20000	14000	25000	19000	24000	No SCO
Lead	42	140	3100	250	190	910	21	63 400
Magnesium	4800	3400	3700	8100	3900	3700	3400	No SCO
Manganese	170	250	520	400	390	400	210	1600 2000
Nickel	ND	19	25	15	29	21	ND	³⁰ 310
Potassium	630	840	1100	1700	3300	2400	960	No SCO
Thallium	ND	ND	ND	ND	ND	ND	ND	No SCO
Sodium	670	ND	ND	660	ND	ND	ND	No SCO
Vanadium	12	29	33	27	32	33	34	100
Zinc	33	100	1300	130	140	500	73	109 10,00
Antimony	ND	ND	ND	ND	ND	ND	ND	No SCO
Beryllium	0.31	ND	0.51	ND	0.27	ND	ND	7.2 72
Cadmium	ND	ND	2.0	ND	ND	2.2	ND	2.5 4.3
Silver	ND	ND	0.66	ND	ND	ND	ND	2 180
Selenium	ND	ND	ND	ND	ND	ND	ND	No SCO
Mercury	ND	0.11	1.4	0.27	ND	ND	ND	0.18 0.8 1

1. All results are expressed in milligrams per kilogram (mg/kg), which can also be expressed as parts per million (ppm).

2. ND - Parameter non-detected, below method detection limits.

3. Results in bold exceed Unrestricted Use Soil Cleanup Objectives as defined in the New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation, 6 NYCRR Part 375, Environmental Remediation Programs, dated December 14, 2006. For those TAL Metals not listed in Unrestricted Use SCOs, the Supplemental Soil Cleanup Objectives (Residential) listed in NYSDEC Policy CP-51 / Soil Cleanup Guidance, dated October 21, 2010 was used.

As shown in the table, several TAL Metals were detected in the samples above the Unrestricted Use SCOs and will cause an increase in the cost for soil disposal during any future building modification. However, none of these results are considered by MECC to be uncommon in connection with the composition of typical urban fill material and do not represent an actionable or reportable condition. Significantly, no elevated TAL Metals concentrations were detected in B10 2'-3'; B10 was installed inside the Site building and the laboratory analytical data does generally confirm that little or no fill exists under the structure.

The seven selected soil samples were also analyzed for polychlorinated biphenyls (PCBs) as an additional means of evaluating fill quality. Table 4 on the following page summarizes the laboratory report.

	TABLE 4: PCB LABORATORY RESULTS FOR SOIL SAMPLES Detected compounds only										
Sample Location and Depth											
Compound	B2 3'-5'	B4 4.5'-5.5'	B5 4.5'-5.5'	B6 4'-5'	B7 7'-8'	B8 5'-6'	B10 2'-3'	SCO			
PCBs	0.039	ND	ND	ND	ND	0.029	ND	0.1			

1. All results are expressed in milligrams per kilogram (mg/kg), which can also be expressed as parts per million (ppm).

2. ND - Parameter non-detected, below method detection limits.

3. Results in bold exceed Unrestricted Use Soil Cleanup Objectives as defined in the New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation, 6 NYCRR Part 375, Environmental Remediation Programs, dated December 14, 2006

No PCBs were detected in any of the samples at concentrations that approach the Unrestricted Use SCO.

4.0 GROUNDWATER SAMPLE COLLECTION AND LABORATORY RESULTS

MECC collected one (1) groundwater sample from each of the ten (10) borings. All groundwater samples were analyzed at Veritech under EPA Method 8260: VOCs.

The hydraulic direct push samples were collected by inserting dedicated one-inch diameter slotted well screen topped with un-slotted riser to surface. The well screen at each boring was ten feet in length and extended to 15 feet bgs. Water was withdrawn from each temporary well point using dedicated, disposable flexible tubing that had been pushed through the screen. The tube was attached to a peristaltic pump and the water was withdrawn and placed into the appropriate sample containers. MECC also conducted depth to water measurements at each well before sampling activities. Low flow sampling procedures were also conducted.

The groundwater monitoring well located in the sidewalk near the northeast corner of the Site is designated by MECC as MWA. This well is constructed of one-inch PVC tubing and extends to 15.3 feet bgs. Depth to water in MWA was measured at 8.95 feet bgs. Water sampling was conducted in the same manner as that employed for groundwater sampling at the temporary well points.

4.1 Groundwater Sample Analysis Results

All four groundwater samples were analyzed for VOCs and Table 5 provides a summary of laboratory analysis.

TABLE 5: VOC LABORATORY RESULTS FOR GROUNDWATER SAMPLES Detected compounds only												
Sample Location												
Compound	MWA	B1GW	B2GW	B3GW	B4GW	B5GW	B6GW	B7GW	B8GW	B9GW	B10GW	Standard
1,3,5-Trimethylbenzene	ND	ND	1.9	1.8	ND	5						
1,2,4-Trimethylbenzene	ND	ND	ND	5.7	ND	5						
Benzene	ND	ND	2.7	ND	ND	ND	ND	ND	ND	ND	ND	0.7 1
Ethylbenzene	ND	ND	2.9	2.7	ND	5						
Isopropylbenzene	ND	ND	28	8.3	ND	5						
Xylenes	ND	ND	11	11	ND	5						
Naphthalene	ND	ND	9.3	10	ND	ND	1.3	ND	11	ND	ND	10
n-Butylbenzene	ND	ND	16	12	ND	5						
n-Propylbenzene	ND	ND	47	24	ND	5						
sec-Butylbenzene	ND	ND	5.7	32	ND	5						
Toluene	ND	ND	2.4	ND	ND	ND	ND	ND	ND	ND	ND	5
Chlorobenzene	ND	ND	1.8	ND	ND	ND	ND	ND	ND	ND	ND	5
1,4-Dichlorobenzene	ND	ND	ND	ND	4.7	ND	ND	ND	ND	ND	ND	5 <mark>3</mark>
Perchloroethylene	ND	ND	2.5	ND	6.0	ND	2.2	ND	ND	4.1	4.1	5
Total VOCs	0.0	0.0	119	107.5	10.7	0.0	3.3	0.0	11	4.1	4.1	

NOTES

1. Results expressed in micrograms per liter (ug/l), which can also be expressed as parts per billion (ppb).

2. Any result in bold exceeds New York State Department of Health Maximum Contaminant Level for drinking water, and the guidance values or standard listed in the NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values.

3. ND: Parameter non-detected, below method detection limits.

As shown, petroleum fuel-related VOCs were detected at elevated concentrations in B2GW and in B3GW. Both of these borings were placed at estimated hydraulic downgradient positions relative to the former UST and dispenser area. While exceedances of regulatory standards are shown, MECC believes that this condition represents a moderate degree of impact on groundwater quality. However, it is likely that NYSDEC will require further investigation of soil and groundwater quality at the former UST/dispenser area in connection with Spill Case No. 1301128.

Significantly, no VOCs were detected in MWA, which is the sole remaining viable off-site monitoring well previously installed by others.

Four selected groundwater samples were further analyzed at the laboratory under EPA Method 8270; Table 6 summarizes the laboratory data:

TABLE 6: SVOC LAB			R SELECTE		ATER SAMPLES	
		Sample	Location		Standard	
Substance	B2GW	B3GW	B4GW	B6GW	Stanuaru	
Acenaphthene	ND	2.5	ND	3.5	20	
Anthracene	ND	ND	ND	6.5	50	
Benzo[a]anthracene	ND	ND	ND	26	0.002	
Benzo[a]pyrene	ND	ND	ND	18	0.002 N	D
Benzo[b]fluoranthene	ND	ND	ND	21	0.002	
Benzo[g,h,i]perylene	ND	ND	ND	12	5 NS	S
Benzo[k]fluoranthene	ND	ND	ND	8.3	0.002	
Chrysene	ND	ND	ND	23	0.002	
Dibenzo[a,h]anthracene	ND	ND	ND	3.4	50 NS	S
Fluoranthene	ND	5.1	ND	36	50	
Fluorene	ND	5.1	ND	2.7	50	
Indeno[1,2,3-cd]pyrene	ND	ND	ND	9.4	0.002	
Naphthalene	4.3	12	ND	1.1	10	
Phenanthrene	ND	6.90	ND	33	50	
Pyrene	ND	4.5	ND	56	50	
TOTAL SVOCs	4.3	36.1	0.0	259.9		

NOTES

1. Results expressed in micrograms per liter (ug/l), which can also be expressed as parts per billion (ppb).

2. Any result in bold exceeds New York State Department of Health Maximum Contaminant Level for drinking water, and the guidance values or standard listed in the NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values.

3. ND: Parameter non-detected, below method detection limits.

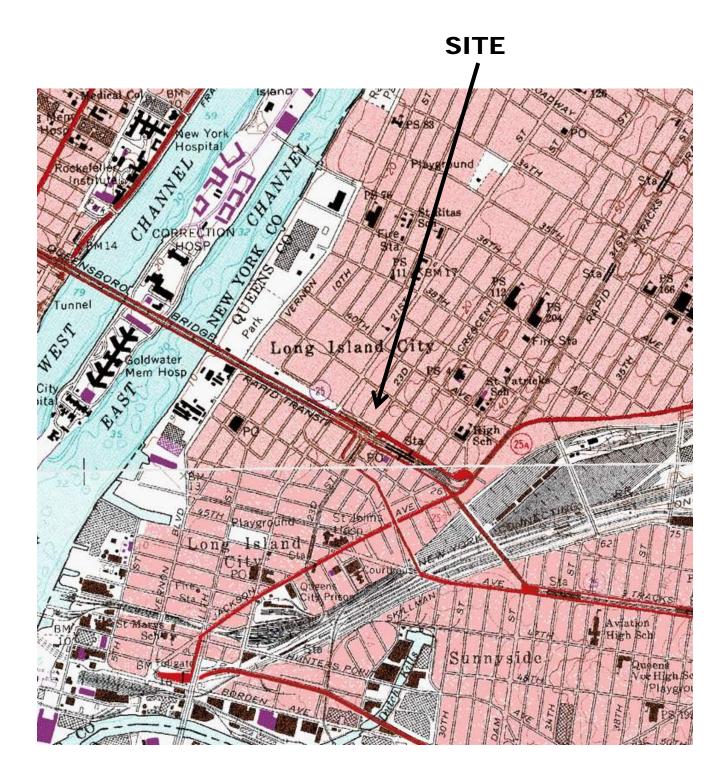
B2GW, B3GW and B4GW were all installed at estimated hydraulic downgradient positions relative to the former UST/dispenser area. Naphthalene, a constituent of diesel fuel, was detected B3GW at a slightly elevated concentration. No other SVOCs were detected at levels exceeding applicable regulatory limits in B2GW and B3GW where physical evidence of petroleum impact was identified on groundwater, and where VOC laboratory analysis confirmed a petroleum release. B6GW was collected from a boring located at an estimated hydraulic upgradient position relative to the former UST/dispenser area, and no physical evidence of petroleum contamination was identified in soil or groundwater at this boring. Several SVOCs were detected at concentrations that exceed applicable regulatory limits in B6GW. However, a substantial thickness of urban fill is present at the subsurface within B6 and the collected

groundwater sample was highly turbid. MECC therefore believes that the elevated SVOC levels in B6GW are a result of suspended solids consisting of fill constituents in the media is the cause of this condition.

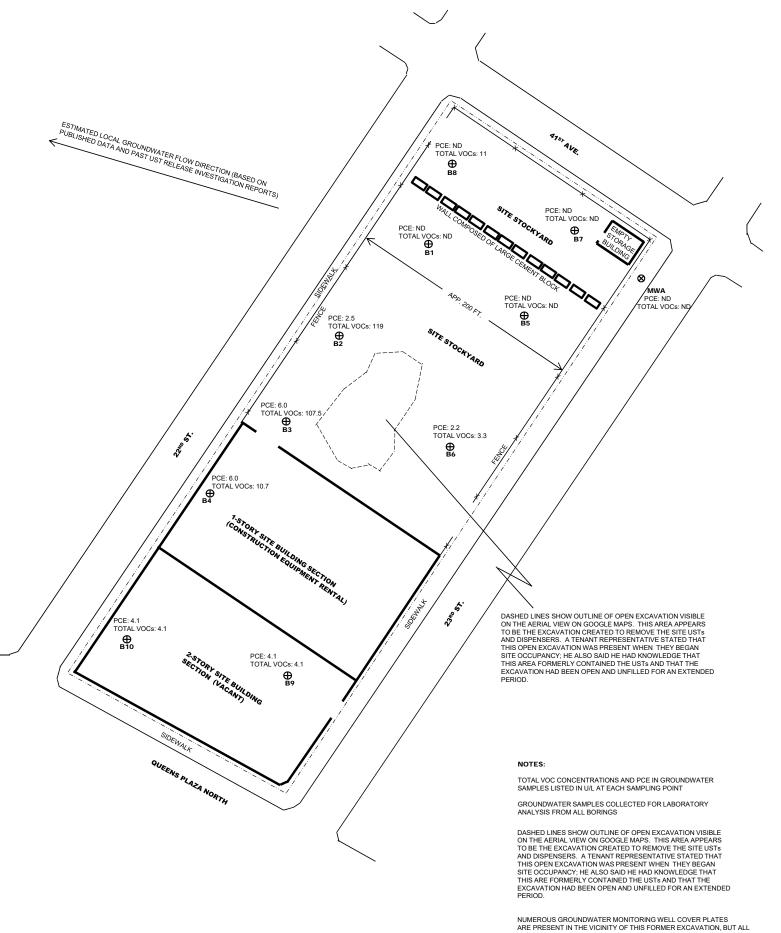
5.0 CONCLUSIONS AND RECOMMENDATIONS

The principal finding of this study is the lack of any evidence to suggest that chlorinated VOCs are present in soil or groundwater at the Site at actionable or reportable concentrations. While residual levels of PCE were detected in certain groundwater samples, MECC concludes that this condition represents general background groundwater quality and that no evidence was uncovered to suggest that the Site is the source of an actionable PCE release. MECC believes that the number and positioning of groundwater sample collection points was sufficient in establishing Site groundwater quality with in connection with the potential presence of chlorinated VOCs.

MECC has confirmed that elevated concentrations of petroleum fuel-related VOCs exist in groundwater at an estimated hydraulic downgradient position relative to the former UST/dispenser area. This data reveals evidence of the possibility of petroleum-contaminated soil that may remain in the vicinity of the former UST/dispenser area; this condition can be directly related to the unresolved petroleum spill incident reported to NYSDEC in 2013. Regulatory agency files pertinent to the Site (obtained from NYSDEC) indicate it is possible that contaminated soil excavation efforts were discontinued by a prior Site owner. No documentation exists in these files showing that petroleum-contaminated soil was removed from the Site for proper disposal. While not considered severe, the discovered petroleum contamination in groundwater shows that additional action will be required by NYSDEC to address the unresolved spill case against the Site (Spill Case No. 1301128).


Fill material is present beneath the Site and laboratory analytical data shows that this material contains slightly elevated levels of certain TAL Metals and pesticides. These reported contaminant concentrations and contaminant types are common to urban fill and were not reported by the laboratory at unusually high levels, but any future soil excavation activity will incur higher charges for special disposal should excess material be generated.

One potential abandoned heating oil UST may be present under the Site building, but laboratory analysis of soil and groundwater sample collected from soil borings installed inside the structure identified no evidence of an actionable petroleum release. This UST, if present, will need to be properly and permanently closed in accordance with applicable state regulations and guidance documents.


6.0 LIMITATIONS OF THE FSSI

MECC has completed this Focused Subsurface Site Investigation in accordance with the contract scope of work, using reasonable efforts to attempt to identify areas of potential liability associated with adverse environmental conditions at the Site. MECC has made no independent investigation of the accuracy of secondary sources and has assumed them to be accurate and complete. MECC does not warrant the accuracy or completeness of information provided by secondary sources. MECC does not warrant that the Site is suitable for any particular purpose or that the Site is clean or free of liability. This study is intended solely for environmental due diligence purposes, was not designed to meet regulatory requirements for delineation of the contamination discovered at the Site and was not a submittal for regulatory agency review.

APPENDIX A: SITE LOCATION MAP SITE PLAN

FIGURE 1: SITE LOCATION MAP Contour Interval: 10'	Site Address:
USGS 7.5" Quadrangle Map titled Central Park, NY, dated 1995	Long Island City, NY

SITE SKETCH:	21-01 TO 21-19 QUEENS PLAZA NORTH	Ň
NOT TO SCALE	LONG ISLAND CITY, NY	
	O DENOTES EXISTING AND VIABLE MONITORING WELLS	
PATTERNED LINES ENC	LOSE THE SITE	\blacksquare

ARE EITHER DESTROYED OR PERMANENTLY SEALED WITH CONCRETE.

FOR THOSE SOIL BORINGS WHERE TOTAL VOC CONTENT IN GROUNDWATER EXCEEDS INDIVIDUAL PCE CONTENT, ALL ADDITIONAL VOCS CONSIST OF PETROLEUM FUEL-RELATED SUBSTANCES

APPENDIX B: SOIL BORING LOGS

MERRITT ENVIRONMENTAL CONSULTING CORP.		Boring No. B1
77 Arkay Dr., Suite D	Project Number: 20030021	Boring location:
Hauppauge, NY 11788 631.617.3200		see site plan
Driller: PG Environmental Geologist: Frank Galdun	Location: 22-01 Queens Plaza North Long Island City, NY	
Groundwater Observations: Wet 8.85'	Geoprobe with 5-foot casing sampler Type: Track-mounted Size I.D. 2" Hammer wt. N/A Hammer Fall: N/A	Date Start : <u>2/7/19</u> Date Complete : <u>2/7/19</u> Surface Elev. : N/A Groundwater Elev.: N/A

Depth feet	Sa	ample	BIOM	s per 6 "		density moisture	PID	Field Identification of soil Remarks
	#	Туре	0-6	6-12	12-18			
0'-5'	N/A	N/A	N/A	N/A	N/A	Dry	0.0	60% recovery. Fill (sand, clay, crushed brick) No odor
						Diy	0.0	
							0.0	
							0.0	
5'-10'						_	0.0	200/ resource Dark brown fine cand and alow No. add
9-10						Wet	0.0	30% recovery. Dark brown fine sand and clay No odc
						_	0.0	
								90% recovery. Light brown fine sand ro 11'. Lighty
10'-15'						-	0.1	grey silt 11'-12'. Dark brown medium-fine sand 12'-
						Wet		15'. No odor
							0.0	
							0.0	
								End of boring 15 ft. Groundwater sampling screen se
								at 10 ft15-ft.
	-+	★		↓		_		
						_		
			-			_		
						_		
						_		
						_		
						_		
						-		
						_		
						_		
						1		
				1		1		
						1		
			1			1		
			1			1		
ground	surfac	e to	1	ft.	used	Ci	asing the	nft
A= auge								hollow stem auger HA: Hand Auger

Trace: 0-10% Little: 10-20% some: 20-10% C= coarse M=medium F=fine

MERRITT ENVIRONMENTAL CONSULTING CORP.		Boring No. B2		
77 Arkay Dr., Suite D	Project Number: 20030021	Boring location:		
Hauppauge, NY 11788 631.617.3200		see site plan		
Driller: PG Environmental Geologist: Frank Galdun	Location: 22-01 Queens Plaza North Long Island City, NY			
Groundwater Observations: Wet 8.4'	Geoprobe with 5-foot casing sampler Type: Track-mounted Size I.D. 2" Hammer wt. N/A Hammer Fall: N/A	Date Start : <u>2/7/19</u> Date Complete : <u>2/7/19</u> Surface Elev. : N/A Groundwater Elev.: N/A		

Depth feet	Sa	ample	Blow	vs per 6		density moisture	PID	Field Identification of soil Remarks
0'-5'	# N/A	Type N/A	0-6 N/A	6-12 N/A	2 12-18 N/A	Dry	0.0	35% recovery. Fill (sand, crushed rock, crushed brick) No odor
						-	0.0	
5'-10'						Wet	0.8 25.0	60% recovery. Dark brown to black fill (wood, sand, rock fragments) to 8.5'. Light brown medium sand 8.5 10'. Petroleum odor at water table
10'-15'						Wet	12.3 0.2	90% recovery. Coarse grey sand to 12'. Fine to medium brown to grey sand 12'-13.5'. Grey silt 13.5'-15'. Petroleum odor
								End of boring 15 ft. Groundwater sampling screen set at 10 ft15-ft.
ground s A= auge					used	C	asing the	lcasing toft hollow stem auger HA: Hand Auger

C= coarse M=medium F=fine

MERRITT ENVIRONMENTAL CONSULTING CORP.		Boring No. B3		
77 Arkay Dr., Suite D	Project Number: 20030021	Boring location:		
Hauppauge, NY 11788 631.617.3200		see site plan		
Driller: PG Environmental Geologist: Frank Galdun	Location: 22-01 Queens Plaza North Long Island City, NY			
Groundwater Observations: <u>Wet 8.4'</u>	Geoprobe with 5-foot casing sampler Type: Track-mounted Size I.D. 2" Hammer wt. N/A Hammer Fall: N/A	Date Start : <u>2/7/19</u> Date Complete : <u>2/7/19</u> Surface Elev. : N/A Groundwater Elev.: N/A		

Depth feet	Sa	ample	Blov	vs per 6		density moisture	PID	Field Identification of soil Remarks
0'-5'	# N/A	Type N/A	0-6 N/A	6-12 N/A	12-18 N/A	Dry	0.0	10% recovery. Loose fill (sand, asphalt, crushed
								concrete) No odor
						1	0.0	
5'-10'						Wet	0.5	80% recovery. Medium brown sand with clay/silt in shoe. Petroleum odor at water table
							22.7	
10'-15'						Wet	14.6	90% recovery. Wet black to dark brown fine sand grading to brown medium sand. Petroleum odor
						1	0.3	
						-		End of boring 15 ft. Groundwater sampling screen se at 10 ft15-ft.
						-		
						-		
		•				-		
						-		
						-		
						-		
						-		
	F					_		
ground s A= auge					used			ncasing toft hollow stem auger HA: Hand Auger

MERRITT ENVIRONMENTAL CONSULTING CORP.		Boring No. B4		
77 Arkay Dr., Suite D	Project Number: 20030021	Boring location:		
Hauppauge, NY 11788 631.617.3200		see site plan		
Driller: PG Environmental Geologist: Frank Galdun	Location: 22-01 Queens Plaza North Long Island City, NY			
Groundwater Observations: Wet 10.2'	Geoprobe with 5-foot casing sampler Type: Track-mounted Size I.D. 2" Hammer wt. N/A Hammer Fall: N/A	Date Start : <u>2/7/19</u> Date Complete : <u>2/7/19</u> Surface Elev. : N/A Groundwater Elev.: N/A		

Depth feet	Sa	ample	Blow	vs per 6		density moisture	PID	Field Identification of soil Remarks
0'-5'	# N/A	Type N/A	0-6 N/A	6-12 N/A	12-18 N/A	Dry	0.0	20% recovery. Loose fill (rock & concrete fragments, sand, crushed brick) No odor
						-	0.0	
5'-10'						Moist	0.0	60% recovery. Medium brown sand to 9'. Brown fine sand some clay/silt 9'-10'. No odor.
							0.3	
10'-15'						Wet	0.3	80% recovery. Medium brown sand to 14'. Fine brown sand trace clay/silt 14'-15'. No odor
	F						0.0	
						-		End of boring 15 ft. Groundwater sampling screen set at 10 ft15-ft.
						-		
			l v	+		-		
						-		
						-		
						-		
						-		
						-		
ground	L surfac	e to	<u> </u>	l ft.	used	C	l asing the	ftftft

MERRITT ENVIRONMENTAL CONSULTING CORP.		Boring No. B5		
77 Arkay Dr., Suite D	Project Number: 20030021	Boring location:		
Hauppauge, NY 11788 631.617.3200		see site plan		
Driller: PG Environmental Geologist: Frank Galdun	Location: 22-01 Queens Plaza North Long Island City, NY			
Groundwater Observations: Wet 8.7'	Geoprobe with 5-foot casing sampler Type: Track-mounted Size I.D. 2" Hammer wt. N/A Hammer Fall: N/A	Date Start : <u>2/7/19</u> Date Complete : <u>2/7/19</u> Surface Elev. : N/A Groundwater Elev.: N/A		

Depth feet	Sa	ample	Blow	s per 6 '	•	density moisture	PID	Field Identification of soil Remarks
0'-5'	# N/A	Type N/A	0-6 N/A	6-12 N/A	12-18 N/A	Dry	0.0	10% recovery. Loose fill (rock & concrete fragments,
							0.0	sand, crushed brick) No odor
5'-10'						Wet	0.0	20% recovery. Fine brown sand and silt. No odor.
							0.0	
10'-15'						Wet	0.1	70% recovery. Medium brown sand to 12.5'. Light grey silty clay 12.5'-13.5'. Fine brown sand some silt 13.5'-15'. No odor
	-						0.0	
						-		End of boring 15 ft. Groundwater sampling screen se at 10 ft15-ft.
						-		
					•	-		
						-		
						-		
						-		
ground s	surfac	e to	<u> </u>	ft.	used	C;	asing the	ft

MERRITT ENVIRONMENTAL CONSULTING CORP.		Boring No. B6		
77 Arkay Dr., Suite D	Project Number: 20030021	Boring location:		
Hauppauge, NY 11788 631.617.3200		see site plan		
Driller: PG Environmental Geologist: Frank Galdun	Location: 22-01 Queens Plaza North Long Island City, NY			
Groundwater Observations: Wet 8.2'	Geoprobe with 5-foot casing sampler Type: Track-mounted Size I.D. 2" Hammer wt. N/A Hammer Fall: N/A	Date Start : <u>2/7/19</u> Date Complete : <u>2/7/19</u> Surface Elev. : N/A Groundwater Elev.: N/A		

Depth feet	Sa	ample	Blow	s per 6 '		density moisture	PID	Field Identification of soil Remarks
	# N/A	Type N/A	0-6 N/A	6-12 N/A	12-18 N/A			50% recovery. Loose fill (rock & concrete fragments,
0'-5'						Dry	0.0	sand, crushed brick) No odor
							0.0	
5'-10'						Wet	0.0	70% recovery. Fine brown sand trace silt. No odor.
							0.3	
10'-15'						Wet	0.3	80% recovery. Medium brown sand some small grave to 14'. Fine brown sand trace silt 14'-15'. No odor
	-]	0.0	
						-		End of boring 15 ft. Groundwater sampling screen se at 10 ft15-ft.
						_		
						-		
						-		
						-		
						-		
						-		
ground : A= auge					used	Ca		ncasing toft hollow stem auger HA: Hand Auger

A= augerss: split spoon samplermc: macrocoreHSA: hollow stemTrace: 0-10%Little: 10-20%some: 20-10%C= coarseM=mediumF=fine

MERRITT ENVIRONMENTAL CONSULTING CORP.		Boring No. B7		
77 Arkay Dr., Suite D	Project Number: 20030021	Boring location:		
Hauppauge, NY 11788 631.617.3200		see site plan		
Driller: PG Environmental Geologist: Frank Galdun	Location: 22-01 Queens Plaza North Long Island City, NY			
Groundwater Observations: Wet 10.9'	Geoprobe with 5-foot casing sampler Type: Track-mounted Size I.D. 2" Hammer wt. N/A Hammer Fall: N/A	Date Start : <u>2/8/19</u> Date Complete : <u>2/8/19</u> Surface Elev. : N/A Groundwater Elev.: N/A		

Depth feet	Sa	ample	Blow	vs per 6		density moisture	PID	Field Identification of soil Remarks
0'-5'	# N/A	Type N/A	0-6 N/A	6-12 N/A	12-18 N/A			50% recovery. Dark brown clay trace fine sand 0'-4'.
5-5						Dry	0.0	Brown medium sand 4'-5' (all possible fill) No odor
							0.0	
5'-10'						Moist	0.0	70% recovery. Light brown to dark brown fill (grey medium sand and rock fragments). No odor.
							0.0	
10'-15'						Wet	0.1	90% recovery. Brown coarse sand to 10'-11'. Fine brown sand some silt 11'-13'. Fine brown sand some
	Ħ						0.0	clay 13'-15'. No odor
						-		End of boring 15 ft. Groundwater sampling screen se at 10 ft15-ft.
						-		
	*	*		*	*			
						-		
						-		
						-		
						4		
ground	surfac	e to		ft.	used	C	asing the	ncasing toft

Trace: 0-10% Little: 10-20% some: 20-10% C= coarse M=medium F=fine

MERRITT ENVIRONMENTAL CONSULTING CORP.		Boring No. B8
77 Arkay Dr., Suite D	Project Number: 20030021	Boring location:
Hauppauge, NY 11788 631.617.3200		see site plan
Driller: PG Environmental Geologist: Frank Galdun	Location: 22-01 Queens Plaza North Long Island City, NY	
Groundwater Observations: <u>Wet 8'</u>	Geoprobe with 5-foot casing sampler Type: Track-mounted Size I.D. 2" Hammer wt. N/A Hammer Fall: N/A	Date Start : <u>2/7/19</u> Date Complete : <u>2/7/19</u> Surface Elev. : N/A Groundwater Elev.: N/A

Depth feet	Sa	ample	Blow	s per 6 '	•	density moisture	PID	Field Identification of soil Remarks
0'-5'	# N/A	Type N/A	0-6 N/A	6-12 N/A	12-18 N/A	Dry	0.0	10% recovery. Loose fill (rock & concrete fragments, sand) No odor
							0.0	
5'-10'						Wet	0.0	50% recovery. Fill (sand, rock & concrete fragments, some crushed brick, trace glass fragments). No odor.
							0.0	
10'-15'						Wet	0.0	70% recovery. Light grey to light brown silty clay to 12 Brown medium sand grading to fine brown sand trace to some clay 12'-15'. No odor
]	0.0	
						-		End of boring 15 ft. Groundwater sampling screen se at 10 ft15-ft.
						-		
						-		
	-	•				-		
						-		
						-		
						-		
						-		
ground s	surfac	e to	1	ft.	used	C;	asing the	ncasing toft

A= augerss: split spoon samplermc: macrocoreHSA: hollow stem augerHA: HaTrace: 0-10%Little: 10-20%some: 20-10%C= coarseM=mediumF=fine

MERRITT ENVIRONMENTAL CONSULTING CORP.		Boring No. B9
77 Arkay Dr., Suite D Hauppauge, NY 11788	Project Number: 20030021	Boring location:
631.617.3200		see site plan
Driller: PG Environmental Geologist: Frank Galdun	Location: 22-01 Queens Plaza North Long Island City, NY	
Groundwater Observations: Wet 10.2'	Geoprobe with 5-foot casing sampler Type: Track-mounted	Date Start : <u>2/8/19</u> Date Complete : <u>2/8/19</u>
Wet 10.2	Size I.D. 2"	Surface Elev. : N/A
	Hammer wt. N/A	Groundwater Elev.: N/A
	Hammer Fall: N/A	

Depth feet	Sa	ample	Blow	s per 6	u	density moisture	PID	Field Identification of soil Remarks
0'-5'	# N/A	Type N/A	0-6 N/A	6-12 N/A	12-18 N/A	Dry	0.0	30% recovery. Medium brown sand No odor
						-	0.0	
5'-10'						Dry	0.0	30% recovery. Medium brown sand. No odor.
							0.0	
10'-15'						Wet	0.1	80% recovery. Medium, to fine brown sand. No odor
	-						0.0	
						-		End of boring 15 ft. Groundwater sampling screen set at 10 ft15-ft.
						-		
	•	•	•	•	+	-		
						-		
						-		
						-		
l						-		
ground s A= auge						mc: macr		ncasing toft hollow stem auger HA: Hand Auger
Trace: (C= coars	0-10%	Littl		-20%	some: 2 F=fine			

MERRITT ENVIRONMENTAL CONSULTING CORP.		Boring No. B10
77 Arkay Dr., Suite D	Project Number: 20030021	Boring location:
Hauppauge, NY 11788 631.617.3200		see site plan
Driller: PG Environmental Geologist: Frank Galdun	Location: 22-01 Queens Plaza North Long Island City, NY	
Groundwater Observations: Wet 9.2'	Geoprobe with 5-foot casing sampler Type: Track-mounted Size I.D. 2" Hammer wt. N/A Hammer Fall: N/A	Date Start : <u>2/8/19</u> Date Complete : <u>2/8/19</u> Surface Elev. : N/A Groundwater Elev.: N/A

Depth feet		ample	Blow	vs per 6		density moisture	PID	Field Identification of soil Remarks
0'-5'	# N/A	Type N/A	0-6 N/A	6-12 N/A	12-18 N/A	Dry	0.0	50% recovery. Less than 1' fill then medium brown sand trace to little silt/clay. No odor
						-	0.0	
5'-10'						Moist	0.0	70% recovery. Brown medium sand. No odor.
							0.0	
10'-15'						Wet	0.1	80% recovery. Brown medium sand grading to brown fine sand. No odor
	-						0.0	
						-		End of boring 15 ft. Groundwater sampling screen set at 10 ft15-ft.
						-		
	+	+	•			-		
						-		
						-		
						-		
						-		
ground	surfac	e to _		ft.	used	Ca	asing the	ncasing toft

APPENDIX C: LABORATORY REPORT OF ANALYSIS

Hampton-Clarke Report Of Analysis

Client: GFE LLC

Project: 22-01 Queen Plz.N.LI City

HC Project #: 9021105

Lab#	: B1 5' : AD09023-001 : Soil						tion Date: eipt Date:		
	% Solids SM2540G								
	Analyte		DF		Units	RL		Result	
	%Solids		1		percent			89	
	Volatile Organics (no search) 8260				-				
	Analyte		DF		Units	RL		Result	
	1,1,1-Trichloroethane		0.973		mg/kg	0.0022		ND	
	1,1-Dichloroethane		0.973		mg/kg	0.0022		ND	
	1,1-Dichloroethene		0.973		mg/kg	0.0022		ND	
	1,2,4-Trimethylbenzene		0.973		mg/kg	0.0011		ND	
	1,2-Dichlorobenzene		0.973		mg/kg	0.0022		ND	
	1,2-Dichloroethane		0.973		mg/kg	0.0022		ND	
	1,3,5-Trimethylbenzene		0.973		mg/kg	0.0011		ND	
	1,3-Dichlorobenzene		0.973		mg/kg	0.0022		ND	
	1,4-Dichlorobenzene		0.973		mg/kg	0.0022		ND	
	1,4-Dioxane		0.973		mg/kg	0.11		ND	
	2-Butanone		0.973		mg/kg	0.0022		ND	
	4-Isopropyltoluene		0.973		mg/kg	0.0011		ND	
	Acetone		0.973		mg/kg	0.011		0.018	
	Benzene		0.973		mg/kg	0.0011		ND	
	Carbon tetrachloride		0.973		mg/kg	0.0022		ND	
	Chlorobenzene		0.973		mg/kg	0.0022		ND	
	Chloroform		0.973		mg/kg	0.0022		ND	
	cis-1,2-Dichloroethene		0.973		mg/kg	0.0022		ND	
	Ethylbenzene		0.973		mg/kg	0.0011		ND	
	Isopropylbenzene		0.973		mg/kg	0.0011		ND	
	m&p-Xylenes		0.973		mg/kg	0.0011		ND	
	Methylene chloride		0.973		mg/kg	0.0022		ND	
	Methyl-t-butyl ether		0.973		mg/kg	0.0011		ND	
	Naphthalene		0.973		mg/kg	0.0011		ND	
	n-Butylbenzene		0.973		mg/kg	0.0011		ND	
	n-Propylbenzene		0.973		mg/kg	0.0011		ND	
	o-Xylene		0.973		mg/kg	0.0011		ND	
	sec-Butylbenzene		0.973		mg/kg	0.0011		ND	
	t-Butylbenzene		0.973		mg/kg	0.0011		ND	
	Tetrachloroethene		0.973		mg/kg	0.0022		ND	
	Toluene		0.973		mg/kg	0.0011		0.0013	
	trans-1,2-Dichloroethene		0.973		mg/kg	0.0022		ND	
	Trichloroethene		0.973		mg/kg	0.0022		ND	
	Vinyl chloride		0.973		mg/kg	0.0022		ND	
	Xylenes (Total)		0.973		mg/kg	0.0011		ND	
	Surrogate	Conc.	S	pike		Low Limit	High Limit	Recovery	Flags
	Toluene-d8	28.76		30		68	122	96	
	Dibromofluoromethane	29.99		30		63	140	100	
	Bromofluorobenzene	30.40		30		64	129	101	

% Sol	ids S	M254	0G

Analyte	D	F	Units	RL		Result	
· ·		•		116			
% Solids	1		percent			86	
yanide (Soil/Waste) 9012B							
Analyte	D	F	Units	RL		Result	
Cyanide	1		mg/kg	0.28		ND	
lercury (Soil/Waste) 7471B							
		_					
Analyte	D	F	Units	RL		Result	
Mercury	1		mg/kg	0.097		ND	
AH Compounds 8270							
Analyte	D	F	Units	RL		Result	
Acenaphthene	1		mg/kg	0.039		ND	
Acenaphthylene	1		mg/kg	0.039		0.061	
Anthracene	1		mg/kg	0.039		0.076	
Benzo[a]anthracene	1		mg/kg	0.039		0.45	
Benzo[a]pyrene	1		mg/kg	0.039		0.34	
Benzo[b]fluoranthene	1		mg/kg	0.039		0.50	
Benzo[g,h,i]perylene	1		mg/kg	0.039		0.17	
Benzo[k]fluoranthene	1		mg/kg	0.039		0.20	
Chrysene	1		mg/kg	0.039		0.43	
Dibenzo[a,h]anthracene	1		mg/kg	0.039		0.065	
Fluoranthene	1		mg/kg	0.039		0.84	
Fluorene	1		mg/kg	0.039		ND	
Indeno[1,2,3-cd]pyrene	1		mg/kg	0.039		0.17	
Naphthalene	1		mg/kg	0.0097		ND	
Phenanthrene	1		mg/kg	0.039		0.33	
Pyrene	1		mg/kg	0.039		0.73	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	48.64	50		58	148	97	
Phenol-d5	82.81	100		49	129	83	
Nitrobenzene-d5	40.30	50		52	129	81	
2-Fluorophenol	81.68	100		43	128	82	
2-Fluorobiphenyl 2,4,6-Tribromophenol	42.19 88.29	50 100		58 54	125 145	84 88	
CB 8082	00.29	100		54	145	00	
		_				<u> </u>	
Analyte	D	F	Units	RL		Result	
Aroclor (Total)	1		mg/kg	0.029		0.039	
Aroclor-1016	1		mg/kg	0.029		ND	
Aroclor-1221	1		mg/kg	0.029		ND	
Aroclor-1232	1		mg/kg	0.029		ND	
Arcolor-1242	1		mg/kg	0.029		ND	
Aroclor-1248	1		mg/kg	0.029		ND	
Aroclor-1254	1		mg/kg	0.029		ND	
Aroclor-1260	<u> </u>		mg/kg	0.029		0.039 ND	
Aroclor-1262	1		mg/kg	0.029			
Aroclor-1268		• •	mg/kg	0.029		ND	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
TCMX-Surrogate	106.75	100		37	141	107	
TCMX-Surrogate	107.19	100		37	141	107	
DCB-Surrogate	131.13	100		34	146	131	
DCB-Surrogate	128.45	100		34	146	128	
AL Metals 6010D							
Analyte	D	F	Units	RL		Result	
Aluminum	1		mg/kg	230		7000	
Barium	1		mg/kg	12		50	

Chromium

Cobalt

Copper

Iron

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

5.8

2.9

5.8

230

5.8

1

1

1

1

1

8.5

ND

ND

7400

42

Sample ID: B2 3'-5' Lab#: AD09023-002 Matrix: Soil

So					
	Magnesium	1	mg/kg	580	4800
	Manganese	1	mg/kg	12	170
	Nickel	1	mg/kg	5.8	ND
	Potassium	1	mg/kg	580	630
	Sodium	1	mg/kg	290	670
	Vanadium	1	mg/kg	12	12
	Zinc	1	mg/kg	12	33

TAL Metals 6020B

Analyte	DF	Units	RL	Result	
Antimony	1	mg/kg	0.93	ND	
Arsenic	1	mg/kg	0.23	2.5	
Beryllium	1	mg/kg	0.23	0.31	
Cadmium	1	mg/kg	0.47	ND	
Selenium	1	mg/kg	2.3	ND	
Silver	1	mg/kg	0.23	ND	
Thallium	1	mg/kg	0.47	ND	

Volatile Organics (no search) 8260

Analyte		DF	Units	RL		Result	
1,1,1-Trichloroethane		1.01	mg/kg	0.0023		ND	
1,1-Dichloroethane		1.01	mg/kg	0.0023		ND	
1,1-Dichloroethene		1.01	mg/kg	0.0023		ND	
1,2,4-Trimethylbenzene		1.01	mg/kg	0.0012		ND	
1,2-Dichlorobenzene		1.01	mg/kg	0.0023		ND	
1,2-Dichloroethane		1.01	mg/kg	0.0023		ND	
1,3,5-Trimethylbenzene		1.01	mg/kg	0.0012		ND	
1,3-Dichlorobenzene		1.01	mg/kg	0.0023		ND	
1,4-Dichlorobenzene		1.01	mg/kg	0.0023		ND	
1,4-Dioxane		1.01	mg/kg	0.12		ND	
2-Butanone		1.01	mg/kg	0.0023		ND	
4-Isopropyltoluene		1.01	mg/kg	0.0012		ND	
Acetone		1.01	mg/kg	0.012		ND	
Benzene		1.01	mg/kg	0.0012		ND	
Carbon tetrachloride		1.01	mg/kg	0.0023		ND	
Chlorobenzene		1.01	mg/kg	0.0023		ND	
Chloroform		1.01	mg/kg	0.0023		ND	
cis-1,2-Dichloroethene		1.01	mg/kg	0.0023		ND	
Ethylbenzene		1.01	mg/kg	0.0012		ND	
Isopropylbenzene		1.01	mg/kg	0.0012		ND	
m&p-Xylenes		1.01	mg/kg	0.0012		ND	
Methylene chloride		1.01	mg/kg	0.0023		ND	
Methyl-t-butyl ether		1.01	mg/kg	0.0012		ND	
Naphthalene		1.01	mg/kg	0.0012		ND	
n-Butylbenzene		1.01	mg/kg	0.0012		ND	
n-Propylbenzene		1.01	mg/kg	0.0012		ND	
o-Xylene		1.01	mg/kg	0.0012		ND	
sec-Butylbenzene		1.01	mg/kg	0.0012		ND	
t-Butylbenzene		1.01	mg/kg	0.0012		ND	
Tetrachloroethene		1.01	mg/kg	0.0023		ND	
Toluene		1.01	mg/kg	0.0012		ND	
trans-1,2-Dichloroethene		1.01	mg/kg	0.0023		ND	
Trichloroethene		1.01	mg/kg	0.0023		ND	
Vinyl chloride		1.01	mg/kg	0.0023		ND	
Xylenes (Total)		1.01	mg/kg	0.0012		ND	
Surrogate	Conc.	Sp	ike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	29.39		30	68	122	98	
Dibromofluoromethane	30.14		30	63	140	100	
Bromofluorobenzene	30.45		30	64	129	101	
1,2-Dichloroethane-d4	29.56		30	63	143	99	

% Solids SM2540G							
Analyte		DF	Units	RL		Result	
% Solids		1	percent			92	
/olatile Organics (no search) 8260							
Analyte		DF	Units	RL		Result	
1,1,1-Trichloroethane		0.958	mg/kg	0.0021		ND	
1,1-Dichloroethane		0.958	mg/kg	0.0021		ND	
1,1-Dichloroethene		0.958	mg/kg	0.0021		ND	
1,2,4-Trimethylbenzene		0.958	mg/kg	0.0010		ND	
1,2-Dichlorobenzene		0.958	mg/kg	0.0021		ND	
1,2-Dichloroethane		0.958	mg/kg	0.0021		ND	
1,3,5-Trimethylbenzene		0.958	mg/kg	0.0010		ND	
1,3-Dichlorobenzene		0.958	mg/kg	0.0021		ND	
1,4-Dichlorobenzene		0.958	mg/kg	0.0021		ND	
1,4-Dioxane		0.958	mg/kg	0.10		ND	
2-Butanone		0.958	mg/kg	0.0021		ND	
4-Isopropyltoluene		0.958	mg/kg	0.0010		ND	
Acetone		0.958	mg/kg	0.010		ND	
Benzene		0.958	mg/kg	0.0010		ND	
Carbon tetrachloride		0.958	mg/kg	0.0021		ND	
Chlorobenzene		0.958	mg/kg	0.0021		ND	
Chloroform		0.958	mg/kg	0.0021		ND	
cis-1,2-Dichloroethene		0.958	mg/kg	0.0021		ND	
Ethylbenzene		0.958	mg/kg	0.0010		ND	
Isopropylbenzene		0.958	mg/kg	0.0010		ND	
m&p-Xylenes		0.958	mg/kg	0.0010		ND	
Methylene chloride		0.958	mg/kg	0.0021		ND	
Methyl-t-butyl ether		0.958	mg/kg	0.0010		ND	
Naphthalene		0.958	mg/kg	0.0010		ND	
n-Butylbenzene		0.958	mg/kg	0.0010		ND	
n-Propylbenzene		0.958	mg/kg	0.0010		ND	
o-Xylene		0.958	mg/kg	0.0010		ND	
sec-Butylbenzene		0.958	mg/kg	0.0010		ND	
t-Butylbenzene		0.958	mg/kg	0.0010		ND	
Tetrachloroethene		0.958	mg/kg	0.0021		ND	
Toluene		0.958	mg/kg	0.0010		ND	
trans-1,2-Dichloroethene		0.958	mg/kg	0.0021		ND	
Trichloroethene		0.958	mg/kg	0.0021		ND	
Vinyl chloride		0.958	mg/kg	0.0021		ND	
Xylenes (Total)		0.958	mg/kg	0.0010		ND	
Surrogate	Conc.	Spike)	Low Limit	High Limit	Recovery	Flags
Toluene-d8	29.17	30		68	122	97	
Dibromofluoromethane	30.50	30		63	140	102	
Bromofluorobenzene	30.36	30		64	129	101	
1,2-Dichloroethane-d4	30.91	30		63	143	103	

% Solic	ds SM2540G							
	Analyte		DF	Units	RL		Result	
	%Solids		1	percent			90	
	de (Soil/Waste) 9012B		•	percent			50	
-	Analyte		DF	Units	RL		Result	
-	Cyanide		1	mg/kg	0.27		ND	
	ry (Soil/Waste) 7471B							
	Analyte		DF	Units	RL		Result	
-	Mercury		1	mg/kg	0.093		0.11	
PAH C	ompounds 8270							
	Analyte		DF	Units	RL		Result	
	Acenaphthene		1	mg/kg	0.037		0.051	
	Acenaphthylene		1	mg/kg	0.037		0.053	
	Anthracene		1	mg/kg	0.037		0.13	
	Benzo[a]anthracene		1	mg/kg	0.037		0.53	
-	Benzo[a]pyrene		1	mg/kg	0.037		0.51	
	Benzo[b]fluoranthene		1	mg/kg	0.037		0.69	
	Benzo[g,h,i]perylene		1	mg/kg	0.037		0.32	
_	Benzo[k]fluoranthene		1	mg/kg	0.037		0.23	
	Chrysene		1	mg/kg	0.037		0.53	
	Dibenzo[a,h]anthracene		1	mg/kg	0.037		0.087	
	Fluoranthene		1	mg/kg	0.037		1.0	
	Fluorene		1	mg/kg	0.037		0.042	
-	Indeno[1,2,3-cd]pyrene		1	mg/kg	0.037		0.29	
	Naphthalene		1	mg/kg	0.0093		0.018	
	Phenanthrene		1	mg/kg	0.037		0.66	
	Pyrene		1	mg/kg	0.037		1.0	
	Surrogate	Conc.	Spik	е	Low Limit	High Limit	Recovery	Flags
•	Terphenyl-d14	45.19	50		58	148	90	
	Phenol-d5	82.83	100		49	129	83	
	Nitrobenzene-d5	39.26	50		52	129	79	
	2-Fluorophenol	81.96	100		43	128	82	
	2-Fluorobiphenyl	41.92	50		58	125	84	
	2,4,6-Tribromophenol	84.69	100		54	145	85	
PCB 80			DF	Unite			Decut	
-	Analyte		DF	Units	RL 0.028		Result	
	Aroclor (Total)		1	mg/kg				
	Aroclor-1016		1	mg/kg	0.028		ND	
	Aroclor-1221		1	mg/kg	0.028		ND	
-	Aroclor-1232		1	mg/kg	0.028		ND	
	Aroclor-1242 Aroclor-1248			mg/kg	0.028		ND	
			1 1	mg/kg	0.028			
	Aroclor-1254			mg/kg	0.028		ND	
	Aroclor-1260		1	mg/kg	0.028		ND ND	
	Aroclor-1262			mg/kg				
	Aroclor-1268	-	1	mg/kg	0.028		ND	
	Surrogate	Conc.	Spik		Low Limit	High Limit	Recovery	Flags
	TCMX-Surrogate	119.46	100		37	141	119	
	TOLO (101.04	100		37	141	101	
	TCMX-Surrogate DCB-Surrogate	115.60	100		34	146	116	

TAL Metals 6010D

Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	220	14000
Barium	1	mg/kg	11	90
Calcium	1	mg/kg	1100	4000
Chromium	1	mg/kg	5.6	28
Cobalt	1	mg/kg	2.8	7.4
Copper	1	mg/kg	5.6	30
ron	1	mg/kg	220	21000
Lead	1	mg/kg	5.6	140

Sample ID: B4 5.5-6.5' Lab#: AD09023-004

Matrix: Soil

/030ZJ-004						
il						
Magnesium	1	mg/kg	560	3400		
Manganese	1	mg/kg	11	250		
Nickel	1	mg/kg	5.6	19		
Potassium	1	mg/kg	560	840		
Sodium	1	mg/kg	280	ND		
Vanadium	1	mg/kg	11	29		
Zinc	1	mg/kg	11	100		

TAL Metals 6020B

Analyte	DF	Units	RL	Result	
Antimony	1	mg/kg	0.89	ND	
Arsenic	1	mg/kg	0.22	2.0	
Beryllium	1	mg/kg	0.22	ND	
Cadmium	1	mg/kg	0.44	ND	
Selenium	1	mg/kg	2.2	ND	
Silver	1	mg/kg	0.22	ND	
Thallium	1	mg/kg	0.44	ND	

Analyte	DF	- Units	RL		Result	
1,1,1-Trichloroethane	1	mg/kg	0.0022		ND	
1,1-Dichloroethane	1	mg/kg	0.0022		ND	
1,1-Dichloroethene	1	mg/kg	0.0022		ND	
1,2,4-Trimethylbenzene	1	mg/kg	0.0011		ND	
1,2-Dichlorobenzene	1	mg/kg	0.0022		ND	
1,2-Dichloroethane	1	mg/kg	0.0022		ND	
1,3,5-Trimethylbenzene	1	mg/kg	0.0011		ND	
1,3-Dichlorobenzene	1	mg/kg	0.0022		ND	
1,4-Dichlorobenzene	1	mg/kg	0.0022		ND	
1,4-Dioxane	1	mg/kg	0.11		ND	
2-Butanone	1	mg/kg	0.0022		ND	
4-lsopropyltoluene	1	mg/kg	0.0011		ND	
Acetone	1	mg/kg	0.011		0.011	
Benzene	1	mg/kg	0.0011		ND	
Carbon tetrachloride	1	mg/kg	0.0022		ND	
Chlorobenzene	1	mg/kg	0.0022		ND	
Chloroform	1	mg/kg	0.0022		ND	
cis-1,2-Dichloroethene	1	mg/kg	0.0022		ND	
Ethylbenzene	1	mg/kg	0.0011		ND	
Isopropylbenzene	1	mg/kg	0.0011		ND	
m&p-Xylenes	1	mg/kg	0.0011		ND	
Methylene chloride	1	mg/kg	0.0022		ND	
Methyl-t-butyl ether	1	mg/kg	0.0011		ND	
Naphthalene	1	mg/kg	0.0011		ND	
n-Butylbenzene	1	mg/kg	0.0011		ND	
n-Propylbenzene	1	mg/kg	0.0011		ND	
o-Xylene	1	mg/kg	0.0011		ND	
sec-Butylbenzene	1	mg/kg	0.0011		ND	
t-Butylbenzene	1	mg/kg	0.0011		ND	
Tetrachloroethene	1	mg/kg	0.0022		0.024	
Toluene	1	mg/kg	0.0011		0.0015	
trans-1,2-Dichloroethene	1	mg/kg	0.0022		ND	
Trichloroethene	1	mg/kg	0.0022		ND	
Vinyl chloride	1	mg/kg	0.0022		ND	
Xylenes (Total)	1	mg/kg	0.0011		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	29.62	30	68	122	99	
Dibromofluoromethane	30.65	30	63	140	102	
Bromofluorobenzene	32.19	30	64	129	107	
1,2-Dichloroethane-d4	30.26	30	63	143	101	

% Solids SM2540G							
Analyte		DF	Units	RL		Result	
%Solids		1	percent			79	
Cyanide (Soil/Waste) 9012B			-				
Analyte		DF	Units	RL		Result	
Cyanide		1	mg/kg	0.30		0.53	
Mercury (Soil/Waste) 7471B							
Analyte		DF	Units	RL		Result	
Mercury		1	mg/kg	0.11		1.4	
PAH Compounds 8270							
Analyte		DF	Units	RL		Result	
Acenaphthene		1	mg/kg	0.042		0.21	
Acenaphthylene		1	mg/kg	0.042		0.089	
Anthracene		1	mg/kg	0.042		0.46	
Benzo[a]anthracene		1	mg/kg	0.042		1.4	
Benzo[a]pyrene		1	mg/kg	0.042		1.3	
Benzo[b]fluoranthene		1	mg/kg	0.042		1.7	
Benzo[g,h,i]perylene		1	mg/kg	0.042		0.74	
Benzo[k]fluoranthene		1	mg/kg	0.042		0.66	
Chrysene		1	mg/kg	0.042		1.4	
Dibenzo[a,h]anthracene		1	mg/kg	0.042		0.22	
Fluoranthene		1	mg/kg	0.042		3.2	
Fluorene		1	mg/kg	0.042		0.18	
Indeno[1,2,3-cd]pyrene		1	mg/kg	0.042		0.69	
Naphthalene		1	mg/kg	0.011		0.11	
Phenanthrene		1	mg/kg	0.042		2.6	
Pyrene		1	mg/kg	0.042		3.1	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	44.09	50		58	148	88	
Phenol-d5	72.93	100		49	129	73	
Nitrobenzene-d5	34.95	50		52	129	70	
2-Fluorophenol	70.53	100		43	128	71	
2-Fluorobiphenyl 2,4,6-Tribromophenol	37.03 80.59	50 100		58 54	125 145	74 81	
PCB 8082	80.59	100		54	145	61	
Analyte		DF	Units	RL		Result	
Aroclor (Total)		1	mg/kg	0.032		ND	
Aroclor-1016		1	mg/kg	0.032		ND	
Aroclor-1221		1	mg/kg	0.032		ND	
Aroclor-1232		1	mg/kg	0.032		ND	
Aroclor-1242		1	mg/kg	0.032		ND	
Aroclor-1248		1	mg/kg	0.032		ND	
Aroclor-1254		1	mg/kg	0.032		ND	
Aroclor-1260		1	mg/kg	0.032		ND	
Aroclor-1262		1	mg/kg	0.032		ND	
Aroclor-1268		1	mg/kg	0.032		ND	
Surrogate	Conc.	Spike	5.5	Low Limit	High Limit	Recovery	Flags
TCMX-Surrogate	110.39	100		37	141	110	
TCMX-Surrogate	92.90	100		37	141	93	
DCB-Surrogate	104.97	100		34	146	105	
DCB-Surrogate	84.41	100		34	146	84	

Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	250	13000
Barium	2	mg/kg	25	1600
Calcium	1	mg/kg	1300	15000
Chromium	1	mg/kg	6.3	48
Cobalt	1	mg/kg	3.2	6.7
Copper	1	mg/kg	6.3	280
Iron	1	mg/kg	250	20000
Lead	4	mg/kg	25	3100

Sample ID: B5 4.5'-5.5' Lab#: AD09023-005

Matrix: Soil

Soil					
Magnesium	1	mg/kg	630	3700	
Manganese	1	mg/kg	13	520	
Nickel	1	mg/kg	6.3	25	
Potassium	1	mg/kg	630	1100	
Sodium	1	mg/kg	320	ND	
Vanadium	2	mg/kg	25	33	
Zinc	2	mg/kg	25	1300	

TAL Metals 6020B

Analyte	DF	Units	RL	Result	
Antimony	1	mg/kg	1.0	ND	
Arsenic	1	mg/kg	0.25	16	
Beryllium	2	mg/kg	0.51	0.51	
Cadmium	1	mg/kg	0.51	2.0	
Selenium	1	mg/kg	2.5	ND	
Silver	1	mg/kg	0.25	0.66	
Thallium	1	mg/kg	0.51	ND	

Analyte		DF	Units	RL		Result	
1,1,1-Trichloroethane		0.988	mg/kg	0.0025		ND	
1,1-Dichloroethane		0.988	mg/kg	0.0025		ND	
1,1-Dichloroethene		0.988	mg/kg	0.0025		ND	
1,2,4-Trimethylbenzene		0.988	mg/kg	0.0013		ND	
1,2-Dichlorobenzene		0.988	mg/kg	0.0025		ND	
1,2-Dichloroethane		0.988	mg/kg	0.0025		ND	
1,3,5-Trimethylbenzene		0.988	mg/kg	0.0013		ND	
1,3-Dichlorobenzene		0.988	mg/kg	0.0025		ND	
1,4-Dichlorobenzene		0.988	mg/kg	0.0025		ND	
1,4-Dioxane		0.988	mg/kg	0.13		ND	
2-Butanone		0.988	mg/kg	0.0025		ND	
4-Isopropyltoluene		0.988	mg/kg	0.0013		ND	
Acetone		0.988	mg/kg	0.013		ND	
Benzene		0.988	mg/kg	0.0013		ND	
Carbon tetrachloride		0.988	mg/kg	0.0025		ND	
Chlorobenzene		0.988	mg/kg	0.0025		ND	
Chloroform		0.988	mg/kg	0.0025		ND	
cis-1,2-Dichloroethene		0.988	mg/kg	0.0025		ND	
Ethylbenzene		0.988	mg/kg	0.0013		ND	
Isopropylbenzene		0.988	mg/kg	0.0013		ND	
m&p-Xylenes		0.988	mg/kg	0.0013		ND	
Methylene chloride		0.988	mg/kg	0.0025		ND	
Methyl-t-butyl ether		0.988	mg/kg	0.0013		ND	
Naphthalene		0.988	mg/kg	0.0013		ND	
n-Butylbenzene		0.988	mg/kg	0.0013		ND	
n-Propylbenzene		0.988	mg/kg	0.0013		ND	
o-Xylene		0.988	mg/kg	0.0013		ND	
sec-Butylbenzene		0.988	mg/kg	0.0013		ND	
t-Butylbenzene		0.988	mg/kg	0.0013		ND	
Tetrachloroethene		0.988	mg/kg	0.0025		ND	
Toluene		0.988	mg/kg	0.0013		ND	
trans-1,2-Dichloroethene		0.988	mg/kg	0.0025		ND	
Trichloroethene		0.988	mg/kg	0.0025		ND	
Vinyl chloride		0.988	mg/kg	0.0025		ND	
Xylenes (Total)		0.988	mg/kg	0.0013		ND	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Toluene-d8	30.51	30		68	122	102	
Dibromofluoromethane	31.48	30		63	140	105	
Bromofluorobenzene	34.22	30		64	129	114	
1,2-Dichloroethane-d4	30.39	30		63	143	101	

% Sc	shile	SM	25400

Analyte		DF	Units	RL		Result	
%Solids	1]	percent			86	
yanide (Soil/Waste) 9012B							
Analyte		DF	Units	RL		Result	
Cyanide	1	1	mg/kg	0.28		ND	
Aercury (Soil/Waste) 7471B			5 5				
	r	DF	Units	RL		Result	
Analyte							
Mercury PAH Compounds 8270	1		mg/kg	0.097		0.27	
			Unito	DI		Decult	
Analyte		DF	Units	RL		Result	
Acenaphthene		30	mg/kg	1.2		2.5	
Acenaphthylene		30	mg/kg	1.2		ND	
Anthracene		30	mg/kg	1.2		6.2	
Benzo[a]anthracene		30	mg/kg	1.2		24	
Benzo[a]pyrene		30	mg/kg	1.2		17	
Benzo[b]fluoranthene		30	mg/kg	1.2		21	
Benzo[g,h,i]perylene		30	mg/kg	1.2		8.5	
Benzo[k]fluoranthene		30	mg/kg	1.2		6.3	
Chrysene		30	mg/kg	1.2		22	
Dibenzo[a,h]anthracene		30	mg/kg	1.2		2.6	
Fluoranthene		30	mg/kg	1.2		40	
Fluorene		30	mg/kg	1.2		2.1	
Indeno[1,2,3-cd]pyrene		30	mg/kg	1.2		7.6	
Naphthalene		30	mg/kg	0.29		ND	
Phenanthrene		30	mg/kg	1.2		36	
Pyrene		30	mg/kg	1.2		54	
Surrogate	Conc.	Spike	1	Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	0.00	50		58	148	0	Sb8
Phenol-d5	0.00	100		49	129	0	01-0
Nitrobenzene-d5 2-Fluorophenol	0.00 0.00	50 100		52 43	129 128	0 0	Sb8
2-Fluorobiphenyl	0.00	50		43 58	125	0	Sb8
2,4,6-Tribromophenol	0.00	100		54	145	0	000
CB 8082							
Analyte		DF	Units	RL		Result	
Aroclor (Total)	1	1	mg/kg	0.029		ND	
Aroclor-1016	1	1	mg/kg	0.029		ND	
Aroclor-1221	1	i .	mg/kg	0.029		ND	
Aroclor-1232	1	i -	mg/kg	0.029		ND	
Aroclor-1242	1	i	mg/kg	0.029		ND	
Aroclor-1248	1	i	mg/kg	0.029		ND	
Aroclor-1254	1	i	mg/kg	0.029		ND	
Aroclor-1260	1	i	mg/kg	0.029		ND	
Aroclor-1262	1	1	mg/kg	0.029		ND	
Aroclor-1268	1	i	mg/kg	0.029		ND	
Surrogate	Conc.	Spike	•	Low Limit	High Limit	Recovery	Flags
TCMX-Surrogate	102.39	100		37	141	102	•
TCMX-Surrogate	81.15	100		37	141	81	
	96.34	100		34	146	96	
DCB-Surrogate				34	146	79	
-	79.33	100					
DCB-Surrogate DCB-Surrogate	79.33	100					
DCB-Surrogate DCB-Surrogate		DF	Units	RL		Result	
DCB-Surrogate DCB-Surrogate FAL Metals 6010D Analyte]	DF					
DCB-Surrogate DCB-Surrogate		DF	Units mg/kg mg/kg	RL 230 12		Result 13000 180	
DCB-Surrogate DCB-Surrogate TAL Metals 6010D Analyte Aluminum	[1	DF 1	mg/kg	230		13000	

Chromium

Cobalt

Copper

Iron

mg/kg

mg/kg mg/kg

mg/kg

mg/kg

5.8

2.9

5.8

230

5.8

1

1

1

1

1

19 5.2

97

14000

250

Sample ID: B6 4'-5' Lab#: AD09023-006 Matrix: Soil

Soil					
Magnesium	1	mg/kg	580	8100	
Manganese	1	mg/kg	12	400	
Nickel	1	mg/kg	5.8	15	
Potassium	1	mg/kg	580	1700	
Sodium	1	mg/kg	290	660	
Vanadium	1	mg/kg	12	27	
Zinc	1	mg/kg	12	130	

TAL Metals 6020B

Analyte	DF	Units	RL	Result	
Antimony	1	mg/kg	0.93	ND	
Arsenic	1	mg/kg	0.23	4.6	
Beryllium	1	mg/kg	0.23	ND	
Cadmium	1	mg/kg	0.47	ND	
Selenium	1	mg/kg	2.3	ND	
Silver	1	mg/kg	0.23	ND	
Thallium	1	mg/kg	0.47	ND	

Analyte		DF	Units	RL		Result	
1,1,1-Trichloroethane		0.986	mg/kg	0.0023		ND	
1,1-Dichloroethane		0.986	mg/kg	0.0023		ND	
1,1-Dichloroethene		0.986	mg/kg	0.0023		ND	
1,2,4-Trimethylbenzene		0.986	mg/kg	0.0011		ND	
1,2-Dichlorobenzene		0.986	mg/kg	0.0023		ND	
1,2-Dichloroethane		0.986	mg/kg	0.0023		ND	
1,3,5-Trimethylbenzene		0.986	mg/kg	0.0011		ND	
1,3-Dichlorobenzene		0.986	mg/kg	0.0023		ND	
1,4-Dichlorobenzene		0.986	mg/kg	0.0023		ND	
1,4-Dioxane		0.986	mg/kg	0.11		ND	
2-Butanone		0.986	mg/kg	0.0023		ND	
4-lsopropyltoluene		0.986	mg/kg	0.0011		ND	
Acetone		0.986	mg/kg	0.011		ND	
Benzene		0.986	mg/kg	0.0011		ND	
Carbon tetrachloride		0.986	mg/kg	0.0023		ND	
Chlorobenzene		0.986	mg/kg	0.0023		ND	
Chloroform		0.986	mg/kg	0.0023		ND	
cis-1,2-Dichloroethene		0.986	mg/kg	0.0023		ND	
Ethylbenzene		0.986	mg/kg	0.0011		ND	
Isopropylbenzene		0.986	mg/kg	0.0011		ND	
m&p-Xylenes		0.986	mg/kg	0.0011		ND	
Methylene chloride		0.986	mg/kg	0.0023		ND	
Methyl-t-butyl ether		0.986	mg/kg	0.0011		ND	
Naphthalene		0.986	mg/kg	0.0011		0.019	
n-Butylbenzene		0.986	mg/kg	0.0011		ND	
n-Propylbenzene		0.986	mg/kg	0.0011		ND	
o-Xylene		0.986	mg/kg	0.0011		ND	
sec-Butylbenzene		0.986	mg/kg	0.0011		ND	
t-Butylbenzene		0.986	mg/kg	0.0011		ND	
Tetrachloroethene		0.986	mg/kg	0.0023		ND	
Toluene		0.986	mg/kg	0.0011		ND	
trans-1,2-Dichloroethene		0.986	mg/kg	0.0023		ND	
Trichloroethene		0.986	mg/kg	0.0023		ND	
Vinyl chloride		0.986	mg/kg	0.0023		ND	
Xylenes (Total)		0.986	mg/kg	0.0011		ND	
Surrogate	Conc.	Spike)	Low Limit	High Limit	Recovery	Flags
Toluene-d8	28.44	30		68	122	95	
Dibromofluoromethane	30.65	30		63	140	102	
Bromofluorobenzene	31.83	30		64	129	106	
1,2-Dichloroethane-d4	30.16	30		63	143	101	

- %	Sol	ids	SM	254	DC

% Solids SM2540G							
Analyte	D)F	Units	RL		Result	
%Solids	1		percent			86	
Cyanide (Soil/Waste) 9012B							
Analyte	D)F	Units	RL		Result	
Cyanide	1		mg/kg	0.28		ND	
Mercury (Soil/Waste) 7471B							
Analyte	D)F	Units	RL		Result	
Mercury	1		mg/kg	0.097		ND	
PAH Compounds 8270							
Analyte	D)F	Units	RL		Result	
Acenaphthene	1		mg/kg	0.039		ND	
Acenaphthylene	1		mg/kg	0.039		ND	
Anthracene	1		mg/kg	0.039		0.053	
Benzo[a]anthracene	1		mg/kg	0.039		0.15	
Benzo[a]pyrene	1		mg/kg	0.039		0.12	
Benzo[b]fluoranthene	1		mg/kg	0.039		0.18	
Benzo[g,h,i]perylene	1		mg/kg	0.039		0.085	
Benzo[k]fluoranthene	1		mg/kg	0.039		0.054	
Chrysene	1		mg/kg	0.039		0.14	
Dibenzo[a,h]anthracene	1		mg/kg	0.039		ND	
Fluoranthene	1		mg/kg	0.039		0.30	
Fluorene	1		mg/kg	0.039		ND	
Indeno[1,2,3-cd]pyrene	1		mg/kg	0.039		0.076	
Naphthalene	1		mg/kg	0.0097		ND	
Phenanthrene	1		mg/kg	0.039		0.25	
Pyrene	1		mg/kg	0.039		0.32	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	41.21	50		58	148	82	· · · · J ·
Phenol-d5	70.99	100		49	129	71	
Nitrobenzene-d5	33.07	50		52	129	66	
2-Fluorophenol	64.48	100		43	128	64	
2-Fluorobiphenyl	35.20	50		58	125	70	
2,4,6-Tribromophenol	73.40	100		54	145	73	
PCB 8082							
Analyte	D)F	Units	RL		Result	
Aroclor (Total)	1		mg/kg	0.029		ND	
Aroclor-1016	1		mg/kg	0.029		ND	
Aroclor-1221	1		mg/kg mg/kg	0.029		ND	
Aroclor-1232	1		mg/kg mg/kg	0.029		ND	
Aroclor-1232	1		mg/kg	0.029		ND	
Aroclor-1242 Aroclor-1248	1		mg/kg mg/kg	0.029		ND	
Aroclor-1248 Aroclor-1254	1		mg/kg mg/kg	0.029		ND	
Aroclor-1254 Aroclor-1260	1			0.029		ND	
Aroclor-1260 Aroclor-1262	1		mg/kg mg/kg	0.029		ND	
Aroclor-1262 Aroclor-1268	1		mg/kg mg/kg	0.029		ND	
			iiig/kg		Lich limit		Flore
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
TCMX-Surrogate	118.33	100		37	141	118	
TCMX-Surrogate DCB-Surrogate	97.91 105.16	100 100		37 34	141 146	98 105	
DCB-Surrogate DCB-Surrogate	84.62	100		34 34	146	85	
TAL Metals 6010D	04.02	100			070	00	
Analyte	D)F	Units	RL		Result	
Aluminum	1		mg/kg	230		9100	
Barium	1		mg/kg	12		170	

Allalyte	DF	Units	NL.	Result	
Aluminum	1	mg/kg	230	9100	
Barium	1	mg/kg	12	170	
Calcium	1	mg/kg	1200	8900	
Chromium	1	mg/kg	5.8	22	
Cobalt	1	mg/kg	2.9	10	
Copper	1	mg/kg	5.8	50	
Iron	1	mg/kg	230	25000	
Lead	1	mg/kg	5.8	190	

Sample ID: B7 7'-8' Lab#: AD09023-007 Matrix: Soil

Soil					
Magnesium	1	mg/kg	580	3900	
Manganese	1	mg/kg	12	390	
Nickel	1	mg/kg	5.8	29	
Potassium	1	mg/kg	580	3300	
Sodium	1	mg/kg	290	ND	
Vanadium	1	mg/kg	12	32	
Zinc	1	mg/kg	12	140	

TAL Metals 6020B

Analyte	DF	Units	RL	Result	
Antimony	1	mg/kg	0.93	ND	
Arsenic	1	mg/kg	0.23	4.9	
Beryllium	1	mg/kg	0.23	0.27	
Cadmium	1	mg/kg	0.47	ND	
Selenium	1	mg/kg	2.3	ND	
Silver	1	mg/kg	0.23	ND	
Thallium	1	mg/kg	0.47	ND	

Analyte		DF	Units	RL		Result	
1,1,1-Trichloroethane		0.962	mg/kg	0.0022		ND	
1,1-Dichloroethane		0.962	mg/kg	0.0022		ND	
1,1-Dichloroethene		0.962	mg/kg	0.0022		ND	
1,2,4-Trimethylbenzene		0.962	mg/kg	0.0011		ND	
1,2-Dichlorobenzene		0.962	mg/kg	0.0022		ND	
1,2-Dichloroethane		0.962	mg/kg	0.0022		ND	
1,3,5-Trimethylbenzene		0.962	mg/kg	0.0011		ND	
1,3-Dichlorobenzene		0.962	mg/kg	0.0022		ND	
1,4-Dichlorobenzene		0.962	mg/kg	0.0022		ND	
1,4-Dioxane		0.962	mg/kg	0.11		ND	
2-Butanone		0.962	mg/kg	0.0022		ND	
4-lsopropyltoluene		0.962	mg/kg	0.0011		ND	
Acetone		0.962	mg/kg	0.011		ND	
Benzene		0.962	mg/kg	0.0011		ND	
Carbon tetrachloride		0.962	mg/kg	0.0022		ND	
Chlorobenzene		0.962	mg/kg	0.0022		ND	
Chloroform		0.962	mg/kg	0.0022		ND	
cis-1,2-Dichloroethene		0.962	mg/kg	0.0022		ND	
Ethylbenzene		0.962	mg/kg	0.0011		ND	
Isopropylbenzene		0.962	mg/kg	0.0011		ND	
m&p-Xylenes		0.962	mg/kg	0.0011		ND	
Methylene chloride		0.962	mg/kg	0.0022		ND	
Methyl-t-butyl ether		0.962	mg/kg	0.0011		ND	
Naphthalene		0.962	mg/kg	0.0011		ND	
n-Butylbenzene		0.962	mg/kg	0.0011		ND	
n-Propylbenzene		0.962	mg/kg	0.0011		ND	
o-Xylene		0.962	mg/kg	0.0011		ND	
sec-Butylbenzene		0.962	mg/kg	0.0011		ND	
t-Butylbenzene		0.962	mg/kg	0.0011		ND	
Tetrachloroethene		0.962	mg/kg	0.0022		ND	
Toluene		0.962	mg/kg	0.0011		ND	
trans-1,2-Dichloroethene		0.962	mg/kg	0.0022		ND	
Trichloroethene		0.962	mg/kg	0.0022		ND	
Vinyl chloride		0.962	mg/kg	0.0022		ND	
Xylenes (Total)		0.962	mg/kg	0.0011		ND	
Surrogate	Conc.	Spike	•	Low Limit	High Limit	Recovery	Flags
Toluene-d8	28.58	30		68	122	95	
Dibromofluoromethane	31.11	30		63	140	104	
Bromofluorobenzene	30.48	30		64	129	102	
1,2-Dichloroethane-d4	30.78	30		63	143	103	

% Solids SM2540G								
Analyte			DF	Units	RL		Result	
% Solids			1	percent			87	
Cyanide (Soil/Waste	e) 9012B							
Analyte			DF	Units	RL		Result	
Cyanide			1	mg/kg	0.28		2.0	
Mercury (Soil/Waste	e) 7471B							
Analyte			DF	Units	RL		Result	
Mercury			1	mg/kg	0.096		ND	
PAH Compounds 82	70							
Analyte			DF	Units	RL		Result	
Acenaphthene			1	mg/kg	0.038		ND	
Acenaphthylene			1	mg/kg	0.038		0.10	
Anthracene			1	mg/kg	0.038		0.11	
Benzo[a]anthrace	ene		1	mg/kg	0.038		0.47	
Benzo[a]pyrene			1	mg/kg	0.038		0.37	
Benzo[b]fluorant	nene		1	mg/kg	0.038		0.45	
Benzo[g,h,i]peryl	ene		1	mg/kg	0.038		0.24	
Benzo[k]fluorant	nene		1	mg/kg	0.038		0.16	
Chrysene			1	mg/kg	0.038		0.46	
Dibenzo[a,h]anth	racene		1	mg/kg	0.038		0.076	
Fluoranthene			1	mg/kg	0.038		0.61	
Fluorene			1	mg/kg	0.038		ND	
Indeno[1,2,3-cd]p	yrene		1	mg/kg	0.038		0.20	
Naphthalene			1	mg/kg	0.0096		0.040	
Phenanthrene			1	mg/kg	0.038		0.43	
Pyrene			1	mg/kg	0.038		0.83	
Surrogate		Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Terphenyl-d14		46.15	50		58	148	92	
Phenol-d5		76.18	100		49	129	76	
Nitrobenzene-d5		37.05	50		52	129	74	
2-Fluorophenol		69.05	100		43	128	69	
2-Fluorobiphenyl		37.88	50		58	125	76	
2,4,6-Tribromophe	nol	85.64	100		54	145	86	
PCB 8082								
Analyte			DF	Units	RL		Result	
Aroclor (Total)			1	mg/kg	0.029		0.071	
Aroclor-1016			1	mg/kg	0.029		ND	
Aroclor-1221			1	mg/kg	0.029		ND	
Aroclor-1232			1	mg/kg	0.029		ND	
Aroclor-1242			1	mg/kg	0.029		ND	
Aroclor-1248			1	mg/kg	0.029		ND	
Aroclor-1254			1	mg/kg	0.029		ND	
Aroclor-1260			1	mg/kg	0.029		0.071	
Aroclor-1262			1	mg/kg	0.029		ND	
Aroclor-1268			1	mg/kg	0.029		ND	
Surrogate		Conc.	Spike		Low Limit	High Limit	Recovery	Flags
TCMX-Surrogate		111.32	100		37	141	111	
TCMX-Surrogate		105.53	100		37	141	106	
DCB-Surrogate		132.77	100		34	146	133	
DCB-Surrogate		129.75	100		34	146	130	

TAL Metals 6010D

Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	230	11000
Barium	1	mg/kg	11	1100
Calcium	1	mg/kg	1100	24000
Chromium	1	mg/kg	5.7	53
Cobalt	1	mg/kg	2.9	5.8
Copper	1	mg/kg	5.7	270
Iron	1	mg/kg	230	19000
Lead	1	mg/kg	5.7	910

Sample ID: B8 5'-6' Lab#: AD09023-008 Matrix: Soil

Soil					
Magnesium	1	mg/kg	570	3700	
Manganese	1	mg/kg	11	400	
Nickel	1	mg/kg	5.7	21	
Potassium	1	mg/kg	570	2400	
Sodium	1	mg/kg	290	ND	
Vanadium	1	mg/kg	11	33	
Zinc	1	mg/kg	11	500	

TAL Metals 6020B

Analyte	DF	Units	RL	Result	
Antimony	1	mg/kg	0.92	ND	
Arsenic	1	mg/kg	0.23	3.6	
Beryllium	2	mg/kg	0.46	ND	
Cadmium	1	mg/kg	0.46	2.2	
Selenium	1	mg/kg	2.3	ND	
Silver	1	mg/kg	0.23	ND	
Thallium	1	mg/kg	0.46	ND	

Analyte		DF	Units	RL		Result	
1,1,1-Trichloroethane		0.958	mg/kg	0.0022		ND	
1,1-Dichloroethane		0.958	mg/kg	0.0022		ND	
1,1-Dichloroethene		0.958	mg/kg	0.0022		ND	
1,2,4-Trimethylbenzene		0.958	mg/kg	0.0011		ND	
1,2-Dichlorobenzene		0.958	mg/kg	0.0022		ND	
1,2-Dichloroethane		0.958	mg/kg	0.0022		ND	
1,3,5-Trimethylbenzene		0.958	mg/kg	0.0011		ND	
1,3-Dichlorobenzene		0.958	mg/kg	0.0022		ND	
1,4-Dichlorobenzene		0.958	mg/kg	0.0022		ND	
1,4-Dioxane		0.958	mg/kg	0.11		ND	
2-Butanone		0.958	mg/kg	0.0022		ND	
4-lsopropyltoluene		0.958	mg/kg	0.0011		ND	
Acetone		0.958	mg/kg	0.011		ND	
Benzene		0.958	mg/kg	0.0011		ND	
Carbon tetrachloride		0.958	mg/kg	0.0022		ND	
Chlorobenzene		0.958	mg/kg	0.0022		ND	
Chloroform		0.958	mg/kg	0.0022		ND	
cis-1,2-Dichloroethene		0.958	mg/kg	0.0022		ND	
Ethylbenzene		0.958	mg/kg	0.0011		ND	
Isopropylbenzene		0.958	mg/kg	0.0011		ND	
m&p-Xylenes		0.958	mg/kg	0.0011		0.0011	
Methylene chloride		0.958	mg/kg	0.0022		ND	
Methyl-t-butyl ether		0.958	mg/kg	0.0011		ND	
Naphthalene		0.958	mg/kg	0.0011		ND	
n-Butylbenzene		0.958	mg/kg	0.0011		ND	
n-Propylbenzene		0.958	mg/kg	0.0011		ND	
o-Xylene		0.958	mg/kg	0.0011		ND	
sec-Butylbenzene		0.958	mg/kg	0.0011		ND	
t-Butylbenzene		0.958	mg/kg	0.0011		ND	
Tetrachloroethene		0.958	mg/kg	0.0022		ND	
Toluene		0.958	mg/kg	0.0011		0.0021	
trans-1,2-Dichloroethene		0.958	mg/kg	0.0022		ND	
Trichloroethene		0.958	mg/kg	0.0022		ND	
Vinyl chloride		0.958	mg/kg	0.0022		ND	
Xylenes (Total)		0.958	mg/kg	0.0011		0.0011	
Surrogate	Conc.	Spi	ke	Low Limit	High Limit	Recovery	Flags
Toluene-d8	30.68	3	30	68	122	102	
Dibromofluoromethane	31.08	3	30	63	140	104	
Bromofluorobenzene	33.15	3	30	64	129	110	
1,2-Dichloroethane-d4	30.07	3	30	63	143	100	

6 Solids SM2540G							
Analyte		DF	Units	RL		Result	
%Solids		1	percent			91	
olatile Organics (no search) 8260							
Analyte		DF	Units	RL		Result	
1,1,1-Trichloroethane		0.956	mg/kg	0.0021		ND	
1,1-Dichloroethane		0.956	mg/kg	0.0021		ND	
1,1-Dichloroethene		0.956	mg/kg	0.0021		ND	
1,2,4-Trimethylbenzene		0.956	mg/kg	0.0011		ND	
1,2-Dichlorobenzene		0.956	mg/kg	0.0021		ND	
1,2-Dichloroethane		0.956	mg/kg	0.0021		ND	
1,3,5-Trimethylbenzene		0.956	mg/kg	0.0011		ND	
1,3-Dichlorobenzene		0.956	mg/kg	0.0021		ND	
1,4-Dichlorobenzene		0.956	mg/kg	0.0021		ND	
1,4-Dioxane		0.956	mg/kg	0.11		ND	
2-Butanone		0.956	mg/kg	0.0021		ND	
4-Isopropyltoluene		0.956	mg/kg	0.0011		ND	
Acetone		0.956	mg/kg	0.011		0.013	
Benzene		0.956	mg/kg	0.0011		ND	
Carbon tetrachloride		0.956	mg/kg	0.0021		ND	
Chlorobenzene		0.956	mg/kg	0.0021		ND	
Chloroform		0.956	mg/kg	0.0021		ND	
cis-1,2-Dichloroethene		0.956	mg/kg	0.0021		ND	
Ethylbenzene		0.956	mg/kg	0.0011		ND	
Isopropylbenzene		0.956	mg/kg	0.0011		ND	
m&p-Xylenes		0.956	mg/kg	0.0011		ND	
Methylene chloride		0.956	mg/kg	0.0021		ND	
Methyl-t-butyl ether		0.956	mg/kg	0.0011		ND	
Naphthalene		0.956	mg/kg	0.0011		ND	
n-Butylbenzene		0.956	mg/kg	0.0011		ND	
n-Propylbenzene		0.956	mg/kg	0.0011		ND	
o-Xylene		0.956	mg/kg	0.0011		ND	
sec-Butylbenzene		0.956	mg/kg	0.0011		ND	
t-Butylbenzene		0.956	mg/kg	0.0011		ND	
Tetrachloroethene		0.956	mg/kg	0.0021		ND	
Toluene		0.956	mg/kg	0.0011		ND	
trans-1,2-Dichloroethene		0.956	mg/kg	0.0021		ND	
Trichloroethene		0.956	mg/kg	0.0021		ND	
Vinyl chloride		0.956	mg/kg	0.0021		ND	
Xylenes (Total)		0.956	mg/kg	0.0011		ND	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Toluene-d8	29.12	30		68	122	97	
Dibromofluoromethane	30.16	30		63	140	101	
Bromofluorobenzene 1.2-Dichloroethane-d4	31.09 29.85	30 30		64	129 143	104 99	

% Solids SM2540G							
Analyte		DF	Units	RL		Result	
%Solids	1	1	percent			87	
Cyanide (Soil/Waste) 9012B							
Analyte		DF	Units	RL		Result	
Cyanide	1	1	mg/kg	0.28		ND	
Mercury (Soil/Waste) 7471B							
Analyte		DF	Units	RL		Result	
Mercury	ŕ	1	mg/kg	0.096		ND	
PAH Compounds 8270							
Analyte		DF	Units	RL		Result	
Acenaphthene	1	1	mg/kg	0.038		ND	
Acenaphthylene	1	1	mg/kg	0.038		ND	
Anthracene	1	1	mg/kg	0.038		ND	
Benzo[a]anthracene	1		mg/kg	0.038		0.050	
Benzo[a]pyrene	1	1	mg/kg	0.038		0.045	
Benzo[b]fluoranthene	1	1	mg/kg	0.038		0.058	
Benzo[g,h,i]perylene	1	-	mg/kg	0.038		ND	
Benzo[k]fluoranthene	1		mg/kg	0.038		ND	
Chrysene	1		mg/kg	0.038		0.048	
Dibenzo[a,h]anthracene	1		mg/kg	0.038		ND	
Fluoranthene	1		mg/kg	0.038		0.086	
Fluorene	1		mg/kg	0.038		ND	
Indeno[1,2,3-cd]pyrene	1	-	mg/kg	0.038		ND	
Naphthalene	1		mg/kg	0.0096		ND	
Phenanthrene	1		mg/kg	0.038		0.072	
Pyrene	0		mg/kg	0.038		0.10 D	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	44.94	50		58	148	90	
Phenol-d5	76.79	100		49	129	77	
Nitrobenzene-d5 2-Fluorophenol	36.41 73.00	50 100		52 43	129	73 73	
2-Fluorobiphenyl	37.23	50		43 58	128 125	73 74	
2,4,6-Tribromophenol	84.40	100		54	125	84	
PCB 8082		100					
Analyte		DF	Units	RL		Result	
Aroclor (Total)	1	1	mg/kg	0.029		ND	
Aroclor-1016	1		mg/kg	0.029		ND	
Aroclor-1221	1		mg/kg	0.029		ND	
Aroclor-1232	ł	1	mg/kg	0.029		ND	
Aroclor-1242	1	1	mg/kg	0.029		ND	
Aroclor-1248	1	1	mg/kg	0.029		ND	
Aroclor-1254	4	1	mg/kg	0.029		ND	
Aroclor-1260	4	1	mg/kg	0.029		ND	
Aroclor-1262	1	1	mg/kg	0.029		ND	
Aroclor-1268	1	1	mg/kg	0.029		ND	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
TCMX-Surrogate	109.98	100		37	141	110	
TCMX-Surrogate	93.62	100		37	141	94	
DCB-Surrogate	99.87	100		34	146	100	

Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	230	18000
Barium	1	mg/kg	11	42
Calcium	1	mg/kg	1100	1700
Chromium	1	mg/kg	5.7	30
Cobalt	1	mg/kg	2.9	8.9
Copper	1	mg/kg	5.7	17
Iron	1	mg/kg	230	24000
Lead	1	mg/kg	5.7	21

Sample ID: B10 2'-3' Lab#: AD09023-010 Matrix: Soil

x: Soil					
Magnesium	1	mg/kg	570	3400	
Manganese	1	mg/kg	11	210	
Nickel	1	mg/kg	5.7	18	
Potassium	1	mg/kg	570	960	
Sodium	1	mg/kg	290	ND	
Vanadium	1	mg/kg	11	34	
Zinc	1	mg/kg	11	73	

TAL Metals 6020B

Analyte	DF	Units	RL	Result	
Antimony	1	mg/kg	0.92	ND	
Arsenic	1	mg/kg	0.23	5.7	
Beryllium	4	mg/kg	0.92	ND	
Cadmium	1	mg/kg	0.46	ND	
Selenium	1	mg/kg	2.3	ND	
Silver	1	mg/kg	0.23	ND	
Thallium	1	mg/kg	0.46	ND	

Analyte		DF	Units	RL		Result	
1,1,1-Trichloroethane		0.998	mg/kg	0.0023		ND	
1,1-Dichloroethane		0.998	mg/kg	0.0023		ND	
1,1-Dichloroethene		0.998	mg/kg	0.0023		ND	
1,2,4-Trimethylbenzene		0.998	mg/kg	0.0011		ND	
1,2-Dichlorobenzene		0.998	mg/kg	0.0023		ND	
1,2-Dichloroethane		0.998	mg/kg	0.0023		ND	
1,3,5-Trimethylbenzene		0.998	mg/kg	0.0011		ND	
1,3-Dichlorobenzene		0.998	mg/kg	0.0023		ND	
1,4-Dichlorobenzene		0.998	mg/kg	0.0023		ND	
1,4-Dioxane		0.998	mg/kg	0.11		ND	
2-Butanone		0.998	mg/kg	0.0023		ND	
4-lsopropyltoluene		0.998	mg/kg	0.0011		ND	
Acetone		0.998	mg/kg	0.011		ND	
Benzene		0.998	mg/kg	0.0011		ND	
Carbon tetrachloride		0.998	mg/kg	0.0023		ND	
Chlorobenzene		0.998	mg/kg	0.0023		ND	
Chloroform		0.998	mg/kg	0.0023		ND	
cis-1,2-Dichloroethene		0.998	mg/kg	0.0023		ND	
Ethylbenzene		0.998	mg/kg	0.0011		ND	
Isopropylbenzene		0.998	mg/kg	0.0011		ND	
m&p-Xylenes		0.998	mg/kg	0.0011		ND	
Methylene chloride		0.998	mg/kg	0.0023		ND	
Methyl-t-butyl ether		0.998	mg/kg	0.0011		ND	
Naphthalene		0.998	mg/kg	0.0011		ND	
n-Butylbenzene		0.998	mg/kg	0.0011		ND	
n-Propylbenzene		0.998	mg/kg	0.0011		ND	
o-Xylene		0.998	mg/kg	0.0011		ND	
sec-Butylbenzene		0.998	mg/kg	0.0011		ND	
t-Butylbenzene		0.998	mg/kg	0.0011		ND	
Tetrachloroethene		0.998	mg/kg	0.0023		ND	
Toluene		0.998	mg/kg	0.0011		ND	
trans-1,2-Dichloroethene		0.998	mg/kg	0.0023		ND	
Trichloroethene		0.998	mg/kg	0.0023		ND	
Vinyl chloride		0.998	mg/kg	0.0023		ND	
Xylenes (Total)		0.998	mg/kg	0.0011		ND	
Surrogate	Conc.	Spik	e	Low Limit	High Limit	Recovery	Flags
Toluene-d8	28.95	30		68	122	96	
Dibromofluoromethane	30.40	30		63	140	101	
Bromofluorobenzene	30.25	30		64	129	101	
1,2-Dichloroethane-d4	30.62	30		63	143	102	

Analyte	C	DF U	Inits	RL		Result	
1,1,1-Trichloroethane	1	uç	g/l	1.0		ND	
1,1-Dichloroethane	1		- g/l	1.0		ND	
1,1-Dichloroethene	1		 g/I	1.0		ND	
1,2,4-Trimethylbenzene	1		 g/I	1.0		ND	
1,2-Dichlorobenzene	1		g/l	1.0		ND	
1,2-Dichloroethane	1		- g/l	0.50		ND	
1,3,5-Trimethylbenzene	1		- g/l	1.0		ND	
1,3-Dichlorobenzene	1		- g/l	1.0		ND	
1,4-Dichlorobenzene	1		g/l	1.0		ND	
1,4-Dioxane	1		- g/l	50		ND	
2-Butanone	1		- g/l	1.0		ND	
4-lsopropyltoluene	1		- g/l	1.0		ND	
Acetone	1		g/l	5.0		ND	
Benzene	1		- g/l	0.50		ND	
Carbon tetrachloride	1	uç	g/l	1.0		ND	
Chlorobenzene	1		- g/l	1.0		ND	
Chloroform	1	uç	- g/l	1.0		ND	
cis-1,2-Dichloroethene	1	uç	g/l	1.0		ND	
Ethylbenzene	1	uç	g/l	1.0		ND	
Isopropylbenzene	1	uç	g/l	1.0		ND	
m&p-Xylenes	1	uç	g/l	1.0		ND	
Methylene chloride	1	uç	g/l	1.0		ND	
Methyl-t-butyl ether	1	uç	g/l	0.50		ND	
Naphthalene	1	uç	g/l	1.0		ND	
n-Butylbenzene	1	uç	g/l	1.0		ND	
n-Propylbenzene	1	uç	g/l	1.0		ND	
o-Xylene	1	uç	g/l	1.0		ND	
sec-Butylbenzene	1	uç	g/l	1.0		ND	
t-Butylbenzene	1	uç	g/l	1.0		ND	
Tetrachloroethene	1	ug	g/l	1.0		ND	
Toluene	1	uç	g/l	1.0		ND	
trans-1,2-Dichloroethene	1		- g/l	1.0		ND	
Trichloroethene	1	uç	g/l	1.0		ND	
Vinyl chloride	1	uç	g/l	1.0		ND	
Xylenes (Total)	1	uç	- g/l	1.0		ND	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Toluene-d8	31.07	30		79	111	104	-
Dibromofluoromethane	28.38	30		73	131	95	
Bromofluorobenzene	30.71	30		82	112	102	
1,2-Dichloroethane-d4	28.16	30		78	128	94	

Analyte	0)F	Units	RL		Result	
1,1,1-Trichloroethane	1		ug/l	1.0		ND	
1,1-Dichloroethane	1		ug/l	1.0		ND	
1,1-Dichloroethene	1		ug/l	1.0		ND	
1,2,4-Trimethylbenzene	1		ug/l	1.0		ND	
1,2-Dichlorobenzene	1		ug/l	1.0		ND	
1,2-Dichloroethane	1		ug/l	0.50		ND	
1,3,5-Trimethylbenzene	1		ug/l	1.0		ND	
1,3-Dichlorobenzene	1		ug/l	1.0		ND	
1,4-Dichlorobenzene	1		ug/l	1.0		ND	
1,4-Dioxane	1		ug/l	50		ND	
2-Butanone	1		ug/l	1.0		ND	
4-lsopropyltoluene	1		ug/l	1.0		ND	
Acetone	1		ug/l	5.0		ND	
Benzene	1		ug/l	0.50		ND	
Carbon tetrachloride	1		ug/l	1.0		ND	
Chlorobenzene	1		ug/l	1.0		ND	
Chloroform	1		ug/l	1.0		ND	
cis-1,2-Dichloroethene	1		ug/l	1.0		ND	
Ethylbenzene	1		ug/l	1.0		ND	
Isopropylbenzene	1		ug/l	1.0		ND	
m&p-Xylenes	1		ug/l	1.0		ND	
Methylene chloride	1		ug/l	1.0		ND	
Methyl-t-butyl ether	1		ug/l	0.50		ND	
Naphthalene	1		ug/l	1.0		ND	
n-Butylbenzene	1		ug/l	1.0		ND	
n-Propylbenzene	1		ug/l	1.0		ND	
o-Xylene	1		ug/l	1.0		ND	
sec-Butylbenzene	1		ug/l	1.0		ND	
t-Butylbenzene	1		ug/l	1.0		ND	
Tetrachloroethene	1		ug/l	1.0		ND	
Toluene	1		ug/l	1.0		ND	
trans-1,2-Dichloroethene	1		ug/l	1.0		ND	
Trichloroethene	1		ug/l	1.0		ND	
Vinyl chloride	1		ug/l	1.0		ND	
Xylenes (Total)	1		ug/l	1.0		ND	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Toluene-d8	31.24	30		79	111	104	
Dibromofluoromethane	31.18	30		73	131	104	
Bromofluorobenzene	29.12	30		82	112	97	
1,2-Dichloroethane-d4	29.69	30		78	128	99	

PAH Compounds 8270

Analyte		DF	Units	RL		Result	
Acenaphthene	1	1	ug/l	2.0		ND	
Acenaphthylene	1	1	ug/l	2.0		ND	
Anthracene	1	1	ug/l	2.0		ND	
Benzo[a]anthracene	1	1	ug/l	2.0		ND	
Benzo[a]pyrene	1	1	ug/l	2.0		ND	
Benzo[b]fluoranthene	1	1	ug/l	2.0		ND	
Benzo[g,h,i]perylene	1	1	ug/l	2.0		ND	
Benzo[k]fluoranthene	1	1	ug/l	2.0		ND	
Chrysene	1	1	ug/l	2.0		ND	
Dibenzo[a,h]anthracene	1	1	ug/l	2.0		ND	
Fluoranthene	1	1	ug/l	2.0		ND	
Fluorene	1	1	ug/l	2.0		ND	
Indeno[1,2,3-cd]pyrene	1	1	ug/l	2.0		ND	
Naphthalene	1	1	ug/l	0.50		4.3	
Phenanthrene	1	1	ug/l	2.0		ND	
Pyrene	1	1	ug/l	2.0		ND	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	60.34	50		55	146	121	
Phenol-d5	0.00	100		27	115	0	
Nitrobenzene-d5	56.53	50		51	139	113	
2-Fluorophenol	0.00	100		29	113	0	
2-Fluorobiphenyl	48.14	50		53	129	96	
2,4,6-Tribromophenol	0.00	100		54	149	0	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,4-Trimethylbenzene	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,3,5-Trimethylbenzene	1	ug/l	1.0	1.9
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
4-Isopropyltoluene	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	2.7
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	1.8
Chloroform	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	2.9
Isopropylbenzene	1	ug/l	1.0	28
m&p-Xylenes	1	ug/l	1.0	8.3
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
Naphthalene	1	ug/l	1.0	9.3
n-Butylbenzene	1	ug/l	1.0	16
n-Propylbenzene	1	ug/l	1.0	47
o-Xylene	1	ug/l	1.0	2.5
sec-Butylbenzene	1	ug/l	1.0	5.7
t-Butylbenzene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	2.5
Toluene	1	ug/l	1.0	2.4
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	11

Sample ID:	Sample ID: B2GW Lab#: AD09023-013			Collec	2/7/2019		
Lab#:				Ree	ceipt Date:	2/11/2019	
Matrix:	Aqueous						
	Surrogate	Conc.	Spike	Low Limit	High Limit	Recoverv	
	Junoyale	Conc.	эріке	LOW LIMIT		Recovery	Flags
	Toluene-d8	31.30	30 30	79	111	104	Flags
	<u> </u>				0		Flags

30

29.89

78

128

100

1,2-Dichloroethane-d4

PAH Compounds 8270

Analyte	Γ	DF	Units	RL		Result	
Acenaphthene	1		ug/l	2.0		2.5	
Acenaphthylene	1	l	ug/l	2.0		ND	
Anthracene	1	l	ug/l	2.0		ND	
Benzo[a]anthracene	1	l	ug/l	2.0		ND	
Benzo[a]pyrene	1		ug/l	2.0		ND	
Benzo[b]fluoranthene	1	l	ug/l	2.0		ND	
Benzo[g,h,i]perylene	1	l	ug/l	2.0		ND	
Benzo[k]fluoranthene	1	l	ug/l	2.0	ND		
Chrysene	1		ug/l	2.0	ND		
Dibenzo[a,h]anthracene	1		ug/l	2.0	ND		
Fluoranthene	1		ug/l	2.0		5.1	
Fluorene	1	l	ug/l	2.0		5.1	
Indeno[1,2,3-cd]pyrene	1		ug/l	2.0		ND	
Naphthalene	1	l	ug/l	0.50		12	
Phenanthrene	1	l	ug/l	2.0		6.0	
Pyrene	1	l	ug/l	2.0		4.5	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	57.79	50		55	146	116	
Phenol-d5	1.15	100		27	115	1	
Nitrobenzene-d5	51.07	50		51	139	102	
2-Fluorophenol	0.00	100		29	113	0	
2-Fluorobiphenyl	45.91	50		53	129	92	
2,4,6-Tribromophenol	0.00	100		54	149	0	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,4-Trimethylbenzene	1	ug/l	1.0	5.7
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,3,5-Trimethylbenzene	1	ug/l	1.0	1.8
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
4-Isopropyltoluene	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	2.7
Isopropylbenzene	1	ug/l	1.0	8.3
m&p-Xylenes	1	ug/l	1.0	9.3
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
Naphthalene	1	ug/l	1.0	10
n-Butylbenzene	1	ug/l	1.0	12
n-Propylbenzene	1	ug/l	1.0	24
o-Xylene	1	ug/l	1.0	1.7
sec-Butylbenzene	1	ug/l	1.0	32
t-Butylbenzene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	11

Sample ID:	Sample ID: B3GW			Collec	ction Date:	2/7/2019	
Lab#:	Lab#: AD09023-014			Re	2/11/2019		
Matrix:	Aqueous				-		
	Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
	Toluene-d8	31.34	30	79	111	104	
	Dibromofluoromethane	28.56	30	73	131	95	

30

30

82

78

112

128

100

99

29.96

29.68

Γ

Bromofluorobenzene

1,2-Dichloroethane-d4

PAH Compounds 8270

Analyte		DF	Units	RL		Result		
Acenaphthene		1	ug/l	2.0		ND		
Acenaphthylene		1	ug/l	2.0		ND		
Anthracene		1	ug/l	2.0		ND		
Benzo[a]anthracene		1	ug/l	2.0		ND		
Benzo[a]pyrene		1	ug/l	2.0		ND		
Benzo[b]fluoranthene		1	ug/l	2.0		ND		
Benzo[g,h,i]perylene		1	ug/l	2.0		ND		
Benzo[k]fluoranthene		1	ug/l	2.0		ND		
Chrysene		1	ug/l	2.0	ND			
Dibenzo[a,h]anthracene		1	ug/l	2.0	ND			
Fluoranthene		1	ug/l	2.0		ND		
Fluorene		1	ug/l	2.0		ND		
Indeno[1,2,3-cd]pyrene		1	ug/l	2.0		ND		
Naphthalene		1	ug/l	0.50		ND		
Phenanthrene		1	ug/l	2.0		ND		
Pyrene		1	ug/l	2.0		ND		
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags	
Terphenyl-d14	54.67	50		55	146	109		
Phenol-d5	0.00	100		27	115	0		
Nitrobenzene-d5	32.68	50		51	139	65		
2-Fluorophenol	0.00	100		29	113	0		
2-Fluorobiphenyl	37.16	50		53	129	74		
2,4,6-Tribromophenol	0.00	100		54	149	0		

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,4-Trimethylbenzene	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,3,5-Trimethylbenzene	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	4.7
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
4-Isopropyltoluene	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
Naphthalene	1	ug/l	1.0	ND
n-Butylbenzene	1	ug/l	1.0	ND
n-Propylbenzene	1	ug/l	1.0	ND
o-Xylene	1	ug/l	1.0	ND
sec-Butylbenzene	1	ug/l	1.0	ND
t-Butylbenzene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	6.0
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND

 B4GW AD09023-015 Aqueous				ction Date: ceipt Date:		
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	30.31	30	79	111	101	
Dibromofluoromethane	28.71	30	73	131	96	

30

30

82

78

112

128

99

100

29.59

30.04

Γ

Bromofluorobenzene

1,2-Dichloroethane-d4

Analyte	C	DF U	Inits	RL		Result	
1,1,1-Trichloroethane	1	u	g/l	1.0		ND	
1,1-Dichloroethane	1		g/l	1.0		ND	
1,1-Dichloroethene	1		g/l	1.0		ND	
1,2,4-Trimethylbenzene	1		g/l	1.0		ND	
1,2-Dichlorobenzene	1		g/l	1.0		ND	
1,2-Dichloroethane	1		g/l	0.50		ND	
1,3,5-Trimethylbenzene	1	u	g/l	1.0		ND	
1,3-Dichlorobenzene	1	u	g/l	1.0		ND	
1,4-Dichlorobenzene	1	u	g/l	1.0		ND	
1,4-Dioxane	1	u	g/l	50		ND	
2-Butanone	1	u	g/l	1.0		ND	
4-lsopropyltoluene	1	u	g/l	1.0		ND	
Acetone	1		g/l	5.0		ND	
Benzene	1	u	g/l	0.50		ND	
Carbon tetrachloride	1	u	g/l	1.0		ND	
Chlorobenzene	1	u	g/l	1.0		ND	
Chloroform	1	u	g/l	1.0		ND	
cis-1,2-Dichloroethene	1	u	g/l	1.0		ND	
Ethylbenzene	1	u	g/l	1.0		ND	
Isopropylbenzene	1	u	g/l	1.0		ND	
m&p-Xylenes	1	u	g/l	1.0		ND	
Methylene chloride	1	u	g/l	1.0		ND	
Methyl-t-butyl ether	1	u	g/l	0.50		ND	
Naphthalene	1	u	g/l	1.0		ND	
n-Butylbenzene	1	u	g/l	1.0		ND	
n-Propylbenzene	1	u	g/l	1.0		ND	
o-Xylene	1	u	g/l	1.0		ND	
sec-Butylbenzene	1	u	g/l	1.0		ND	
t-Butylbenzene	1	u	g/l	1.0		ND	
Tetrachloroethene	1	u	g/l	1.0		ND	
Toluene	1	u	g/l	1.0		ND	
trans-1,2-Dichloroethene	1	u	g/l	1.0		ND	
Trichloroethene	1	u	g/l	1.0		ND	
Vinyl chloride	1	u	g/l	1.0		ND	
Xylenes (Total)	1	u	g/l	1.0		ND	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Toluene-d8	30.73	30		79	111	102	-
Dibromofluoromethane	31.78	30		73	131	106	
Bromofluorobenzene	29.80	30		82	112	99	
1,2-Dichloroethane-d4	31.43	30		78	128	105	

PAH Compounds 8270

Analyte		DF	Units	RL		Result	
Acenaphthene		1	ug/l	2.0		3.5	
Acenaphthylene		1	ug/l	2.0		ND	
Anthracene		1	ug/l	2.0		6.5	
Benzo[a]anthracene		1	ug/l	2.0		26	
Benzo[a]pyrene		1	ug/l	2.0		18	
Benzo[b]fluoranthene		1	ug/l	2.0		21	
Benzo[g,h,i]perylene		1	ug/l	2.0		12	
Benzo[k]fluoranthene		1	ug/l	2.0		8.3	
Chrysene		1	ug/l	2.0		23	
Dibenzo[a,h]anthracene		1	ug/l	2.0		3.4	
Fluoranthene		1	ug/l	2.0		36	
Fluorene		1	ug/l	2.0		2.7	
Indeno[1,2,3-cd]pyrene		1	ug/l	2.0		9.4	
Naphthalene		1	ug/l	0.50		1.1	
Phenanthrene		1	ug/l	2.0		33	
Pyrene		1	ug/l	2.0		56	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	56.27	50		55	146	113	
Phenol-d5	0.00	100		27	115	0	
Nitrobenzene-d5	41.55	50		51	139	83	
2-Fluorophenol	0.00	100		29	113	0	
2-Fluorobiphenyl	42.13	50		53	129	84	
2,4,6-Tribromophenol	0.00	100		54	149	0	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,4-Trimethylbenzene	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,3,5-Trimethylbenzene	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
4-Isopropyltoluene	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
Naphthalene	1	ug/l	1.0	1.3
n-Butylbenzene	1	ug/l	1.0	ND
n-Propylbenzene	1	ug/l	1.0	ND
o-Xylene	1	ug/l	1.0	ND
sec-Butylbenzene	1	ug/l	1.0	ND
t-Butylbenzene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	2.2
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND

B6GW AD09023-017 Aqueous		Collection Date: 2/7/2019 Receipt Date: 2/11/2019				
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	31.75	30	79	111	106	
Dibromofluoromethane	28.78	30	73	131	96	
Bromofluorobenzene	30.07	30	82	112	100	

30

30.41

78

128

101

Γ

1,2-Dichloroethane-d4

Analyte	0)F	Units	RL		Result	
1,1,1-Trichloroethane	1		ug/l	1.0		ND	
1,1-Dichloroethane	1		ug/l	1.0		ND	
1,1-Dichloroethene	1		ug/l	1.0		ND	
1,2,4-Trimethylbenzene	1		ug/l	1.0		ND	
1,2-Dichlorobenzene	1		ug/l	1.0		ND	
1,2-Dichloroethane	1		ug/l	0.50		ND	
1,3,5-Trimethylbenzene	1		ug/l	1.0		ND	
1,3-Dichlorobenzene	1		ug/l	1.0		ND	
1,4-Dichlorobenzene	1		ug/l	1.0		ND	
1,4-Dioxane	1		ug/l	50		ND	
2-Butanone	1		ug/l	1.0		ND	
4-lsopropyltoluene	1		ug/l	1.0		ND	
Acetone	1		ug/l	5.0		ND	
Benzene	1		ug/l	0.50		ND	
Carbon tetrachloride	1		ug/l	1.0		ND	
Chlorobenzene	1		ug/l	1.0		ND	
Chloroform	1		ug/l	1.0		ND	
cis-1,2-Dichloroethene	1		ug/l	1.0		ND	
Ethylbenzene	1		ug/l	1.0		ND	
Isopropylbenzene	1		ug/l	1.0		ND	
m&p-Xylenes	1		ug/l	1.0		ND	
Methylene chloride	1		ug/l	1.0		ND	
Methyl-t-butyl ether	1		ug/l	0.50		ND	
Naphthalene	1		ug/l	1.0		ND	
n-Butylbenzene	1		ug/l	1.0		ND	
n-Propylbenzene	1		ug/l	1.0		ND	
o-Xylene	1		ug/l	1.0		ND	
sec-Butylbenzene	1		ug/l	1.0		ND	
t-Butylbenzene	1		ug/l	1.0		ND	
Tetrachloroethene	1		ug/l	1.0		ND	
Toluene	1		ug/l	1.0		ND	
trans-1,2-Dichloroethene	1		ug/l	1.0		ND	
Trichloroethene	1		ug/l	1.0		ND	
Vinyl chloride	1		ug/l	1.0		ND	
Xylenes (Total)	1		ug/l	1.0		ND	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Toluene-d8	31.02	30		79	111	103	
Dibromofluoromethane	28.78	30		73	131	96	
Bromofluorobenzene	29.34	30		82	112	98	
1,2-Dichloroethane-d4	29.21	30		78	128	97	

Analyte	C)F	Units	RL		Result	
1,1,1-Trichloroethane	1		ug/l	1.0		ND	
1,1-Dichloroethane	1		ug/l	1.0		ND	
1,1-Dichloroethene	1		ug/l	1.0		ND	
1,2,4-Trimethylbenzene	1		ug/l	1.0		ND	
1,2-Dichlorobenzene	1		ug/l	1.0		ND	
1,2-Dichloroethane	1		ug/l	0.50		ND	
1,3,5-Trimethylbenzene	1		ug/l	1.0		ND	
1,3-Dichlorobenzene	1		ug/l	1.0		ND	
1,4-Dichlorobenzene	1		ug/l	1.0		ND	
1,4-Dioxane	1		ug/l	50		ND	
2-Butanone	1		ug/l	1.0		ND	
4-lsopropyltoluene	1		ug/l	1.0		ND	
Acetone	1		ug/l	5.0		ND	
Benzene	1		ug/l	0.50		ND	
Carbon tetrachloride	1		ug/l	1.0		ND	
Chlorobenzene	1		ug/l	1.0		ND	
Chloroform	1		ug/l	1.0		ND	
cis-1,2-Dichloroethene	1		ug/l	1.0		ND	
Ethylbenzene	1		ug/l	1.0		ND	
Isopropylbenzene	1		ug/l	1.0		ND	
m&p-Xylenes	1		ug/l	1.0		ND	
Methylene chloride	1		ug/l	1.0		ND	
Methyl-t-butyl ether	1		ug/l	0.50		ND	
Naphthalene	1		ug/l	1.0		11	
n-Butylbenzene	1		ug/l	1.0		ND	
n-Propylbenzene	1		ug/l	1.0		ND	
o-Xylene	1		ug/l	1.0		ND	
sec-Butylbenzene	1		ug/l	1.0		ND	
t-Butylbenzene	1		ug/l	1.0		ND	
Tetrachloroethene	1		ug/l	1.0		ND	
Toluene	1		ug/l	1.0		ND	
trans-1,2-Dichloroethene	1		ug/l	1.0		ND	
Trichloroethene	1		ug/l	1.0		ND	
Vinyl chloride	1		ug/l	1.0		ND	
Xylenes (Total)	1		ug/l	1.0		ND	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Toluene-d8	31.71	30		79	111	106	
Dibromofluoromethane	30.77	30		73	131	103	
Bromofluorobenzene	29.96	30		82	112	100	
1,2-Dichloroethane-d4	30.64	30		78	128	102	

Analyte	D)F	Units	RL		Result	
1,1,1-Trichloroethane	1		ug/l	1.0		ND	
1,1-Dichloroethane	1		ug/l	1.0		ND	
1,1-Dichloroethene	1		ug/l	1.0		ND	
1,2,4-Trimethylbenzene	1		ug/l	1.0		ND	
1,2-Dichlorobenzene	1		ug/l	1.0		ND	
1,2-Dichloroethane	1		ug/l	0.50		ND	
1,3,5-Trimethylbenzene	1		ug/l	1.0		ND	
1,3-Dichlorobenzene	1		ug/l	1.0		ND	
1,4-Dichlorobenzene	1		ug/l	1.0		ND	
1,4-Dioxane	1		ug/l	50		ND	
2-Butanone	1		ug/l	1.0		ND	
4-lsopropyltoluene	1		ug/l	1.0		ND	
Acetone	1		ug/l	5.0		ND	
Benzene	1		ug/l	0.50		ND	
Carbon tetrachloride	1		ug/l	1.0		ND	
Chlorobenzene	1		ug/l	1.0		ND	
Chloroform	1		ug/l	1.0		ND	
cis-1,2-Dichloroethene	1		ug/l	1.0		ND	
Ethylbenzene	1		ug/l	1.0		ND	
Isopropylbenzene	1		ug/l	1.0		ND	
m&p-Xylenes	1		ug/l	1.0		ND	
Methylene chloride	1		ug/l	1.0		ND	
Methyl-t-butyl ether	1		ug/l	0.50		ND	
Naphthalene	1		ug/l	1.0		ND	
n-Butylbenzene	1		ug/l	1.0		ND	
n-Propylbenzene	1		ug/l	1.0		ND	
o-Xylene	1		ug/l	1.0		ND	
sec-Butylbenzene	1		ug/l	1.0		ND	
t-Butylbenzene	1		ug/l	1.0		ND	
Tetrachloroethene	1		ug/l	1.0		4.1	
Toluene	1		ug/l	1.0		ND	
trans-1,2-Dichloroethene	1		ug/l	1.0		ND	
Trichloroethene	1		ug/l	1.0		ND	
Vinyl chloride	1		ug/l	1.0		ND	
Xylenes (Total)	1		ug/l	1.0		ND	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Toluene-d8	32.13	30		79	111	107	
Dibromofluoromethane	29.86	30		73	131	100	
Bromofluorobenzene	30.29	30		82	112	101	
1,2-Dichloroethane-d4	29.33	30		78	128	98	

Analyte	C)F	Units	RL		Result	
1,1,1-Trichloroethane	1		ug/l	1.0		ND	
1,1-Dichloroethane	1		ug/l	1.0		ND	
1,1-Dichloroethene	1		ug/l	1.0		ND	
1,2,4-Trimethylbenzene	1		ug/l	1.0		ND	
1,2-Dichlorobenzene	1		ug/l	1.0		ND	
1,2-Dichloroethane	1		ug/l	0.50		ND	
1,3,5-Trimethylbenzene	1		ug/l	1.0		ND	
1,3-Dichlorobenzene	1		ug/l	1.0		ND	
1,4-Dichlorobenzene	1		ug/l	1.0		ND	
1,4-Dioxane	1		ug/l	50		ND	
2-Butanone	1		ug/l	1.0		ND	
4-lsopropyltoluene	1		ug/l	1.0		ND	
Acetone	1		ug/l	5.0		ND	
Benzene	1		ug/l	0.50		ND	
Carbon tetrachloride	1		ug/l	1.0		ND	
Chlorobenzene	1		ug/l	1.0		ND	
Chloroform	1		ug/l	1.0		ND	
cis-1,2-Dichloroethene	1		ug/l	1.0		ND	
Ethylbenzene	1		ug/l	1.0		ND	
Isopropylbenzene	1		ug/l	1.0		ND	
m&p-Xylenes	1		ug/l	1.0		ND	
Methylene chloride	1		ug/l	1.0		ND	
Methyl-t-butyl ether	1		ug/l	0.50		ND	
Naphthalene	1		ug/l	1.0		ND	
n-Butylbenzene	1		ug/l	1.0		ND	
n-Propylbenzene	1		ug/l	1.0		ND	
o-Xylene	1		ug/l	1.0		ND	
sec-Butylbenzene	1		ug/l	1.0		ND	
t-Butylbenzene	1		ug/l	1.0		ND	
Tetrachloroethene	1		ug/l	1.0		4.1	
Toluene	1		ug/l	1.0		ND	
trans-1,2-Dichloroethene	1		ug/l	1.0		ND	
Trichloroethene	1		ug/l	1.0		ND	
Vinyl chloride	1		ug/l	1.0		ND	
Xylenes (Total)	1		ug/l	1.0		ND	
Surrogate	Conc.	Spike		Low Limit	High Limit	Recovery	Flags
Toluene-d8	31.97	30		79	111	107	
Dibromofluoromethane	29.23	30		73	131	97	
Bromofluorobenzene	29.74	30		82	112	99	
1,2-Dichloroethane-d4	29.89	30		78	128	100	

		Internal use: sampling plan (check box) HC[] or client []	Internal use: sau			
t	or client [] FSP#	of \$5/sample will be assessed for sto	A fee			
al work may bè delayed.	mpleted your analytica	Please note NUMBERED items. If not completed your analytical work may be delaye	Please no		<u>nal Notes</u>	Additional Notes
5.	above/right)	NJ LSRP Project (also check boxes above/right)	NJ LSRF		11) Sampler (print name): ++++++++++++++++++++++++++++++++++++	11) Samp
Cooler Temperature		Project-Specific Reporting Limits		Date: 7 0 19	A A A A A A A A A A A A A A A A A A A	
		able:	Check if applicable:	~		
ecify):	Other (specify):	SPLP (BN, BNA, Metals)	SPLP (BN, E			
	NJDEP SRS	VOC (8260C SIM or 8011)	VOC (82)			
WQS	NJDEP GWQS	BN or BNA (8270D SIM)	BN or BN			A
For NJ LSRP projects, indicate which standards need to be met:	For NJ LSRP project need to be met:	te if low-level methods required to meet	Indicate if low-lev	7 10 10 U 177	Democratic Acception	10) Relin
HAZARDS	ial Requirements, I	Comments, Notes, Special Requirements, HAZARDS		ad hv: Date Time		
						010
		a -			595	100
					1 1 9-5 95	000
		در				00/
		V			04.0 m/2/ 1 10.4 C 40	5
		5			2 43 11 22 12 20	No.
		5 1) 55 4.5-5.5 11 1 1 12	8
		A 1				700
		زري				007
					1 22 h 1 1 1230	
					R2 3/2 11 11	000
		2-	-		812-100 - 5 18	80
		- N		Co	4) Customer Sample ID Matrix Date	Lab Sample #
9) Comments	HCI H2SC HNO	None MeOl En Co		Print () Print	- 5) 6) Sample	-
	04 3	l ore				CPOLOCH
	ottles	# of Bottles		101 202 ST 151 5	OT - Other (please spec	
		8)		P-1COAL	WW - Waste Water	Batch #
				AP CAN T	SI - Sludge	+
				Type T PIL	Mat	ONLY
						USE
	ontingent <===	<pre>r lists) <=== Check If Contingent <===</pre>	is & parameter lists)	7) Analysis (specify methods &		FOR LAB
					- LEANA	
se Check with Lab.	* Expedited TAT Not Always Available. Please Check with Lab	* Expedited TAT Not /		20) Quote/PO # (If Applicable):	Report to:	1d) Send Report to:
other: PDT					nvoice to:	1c) Send Invoice to:
[] Region 2 or 5	NY ASP CatA	- \			Cell/Fax/Ph: 1/raw kg 40 Cp lon Line, Net	1b) Email/Cell/Fax/Ph:
[] NYDEC	NJ Full / NY ASP CatB	4			-HANNING N.	
[] 4-File [] EZ	[]PA []Other			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	" STATICATION OC "	Address:
EQuIS:	[] NI [] NI]	3 Business Days (50%)* [× 0 ×			1a) Customer:
EnviroData	Reduced:			2a) Project 72.01 (VUCEN) CLAZA	Customer Information	
Excel Reg. NJ / NY / PA	Results + QC (Waste)	<u> </u>	-		NELAC/NJ #07071 PA #68-00463 NY #11408 CT #PH-06/1 KY #	
NJ Hazsite	Summarv		*	A Wolf Bl-Onlock, Disauralitagou,	Ph (Service Center): 856-780-6057 Fax: 856-780-6056	
Electronic Data Deliv.	-Report Type	Turnaround	Enterprise		Service Center: 137-D Gaither Drive, Mount Laurel, New Jersey 08054	Service
ease Circle)	3) Reporting Requirements (Please Circle)	3) Reporting			1/5 Route 46 West and 2 madison Road, Fainteria, New Servery Street ph: 800.426-99921973-244-9770 Fax: 973-244-9787 973-439-1458	175 Rot
OT	Page	9021105	USTODY	CHAIN OF CUST	Hampton-Clarke, Inc. (WBE/UBE/SBE)	Har
		Project # (Lab Use Only)				

Date:	Date: $D_{ate:}$ $D_{$
Image: Composite Composite Composite Grab (G) Composite Composite Composite <	A) Customer Sample ID Matrix Date 4) Customer Sample ID Matrix Date MUDA GUANC Guantic BORGUN GUANC Guantic BORGUN Guantic Guantic BORGUN
ne Composite Composite Grab (G)	All Customer Sample ID Matrix Muth A Si 6) Sample Date 4) Customer Sample ID Matrix Muth A Date Time 32.4 Junit 1.1 217114 1.1 200 Composite (C 32.4 Junit 1.1 217114 1.1 200 1.1 200 32.4 Junit 1.1 217114 1.1 200 1.1 200 32.4 Junit 1.1 200 1.1 200 <t< td=""></t<>
Date: 2 2 1/9 Composite Composi	A) Customer Sample ID Matrix Date Time (A) Customer Sample ID Matrix Date (C) Customer Sample ID Matrix Date (C) Customer Sample ID Customer
me Composite Composite Grab (G) Grab (G) Grab	4) Customer Sample ID Majrix Date Time (C) - Unter (please specify under tern y, cumments) (C) - Unter (please specify under tern y, cum
ne Composite ne Composite Composite Grab (G) Grab (G) Grab (G) </td <td>4) Customer Sample ID Matrix SI Guid SI Guid</td>	4) Customer Sample ID Matrix SI Guid SI Guid
ne Composite Composite Grab (G) Comments None Comments <t< td=""><td>4) Customer Sample ID Matrix Date Time MLUA GUA GUA GIALON Comments CALCULA GUA GUA GUA GUA GUA GUA GUA GUA GUA GU</td></t<>	4) Customer Sample ID Matrix Date Time MLUA GUA GUA GIALON Comments CALCULA GUA GUA GUA GUA GUA GUA GUA GUA GUA GU
Image: Composite Composite Composite Grab (G) Composite Grab (G) </td <td>4) Customer Sample ID Matrix SALGA ALCAS</td>	4) Customer Sample ID Matrix SALGA ALCAS
Oregination Composite Composite Grab (G) Grab (G) Grab (G) Grab (G) Composite	4) Customer Sample ID Matrix Date Time MUD A GUI 13364
Composite Composite	4) Customer Sample ID Matrix Date Time (A) Customer Sample ID Matrix Date Time (A) Customer Sample ID Matrix Date Time (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
0 0 <td>4) Customer Sample ID MUA (S) (G) (S) (G) (</td>	4) Customer Sample ID MUA (S) (G) (S) (G) (
8 6 1 8 7 6 8 7 6 8 7 6 8 7 6 8 7 6 8 7 6 7 6 7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
None None NNN NNN NNN <td< td=""><td>4) Customer Sample ID M.U.A S.J. G. Sample S.J. G. Sample Time S.J. G. Sample Time Composite (C Grab (G) S.J. G. Sample Time Composite (C Grab (G) S.J. G. Sample Time Composite (C Grab (G) S.J. G. Sample Time Composite (C Grab (G) S.J. G. Sample Time Composite (C S.J. G. Sample C.J. Sample C</td></td<>	4) Customer Sample ID M.U.A S.J. G. Sample S.J. G. Sample Time S.J. G. Sample Time Composite (C Grab (G) S.J. G. Sample Time Composite (C Grab (G) S.J. G. Sample Time Composite (C Grab (G) S.J. G. Sample Time Composite (C Grab (G) S.J. G. Sample Time Composite (C S.J. G. Sample C.J. Sample C
Composite Grab (G)	4) Customer Sample ID M.C.) A M.C.) A
Composite Grab (G)	4) Customer Sample ID M.U.A. SJUA SJUA SUS SGUA
Image: Composite	4) Customer Sample ID MLUA SJUSS SGU SGU SGU A) Customer Sample ID Matrix Date Time Composite (C Grab (G) Composite (C Grab (G) Composite (C Grab (G) Composite (C Grab (G) Composite (C Composite (C C Composite (C C Composite (C C C C C C C C C C C C C C
Composite Grab (G) Grab (G) Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Composite Grab (G) Composite Composite Grab (G) Composite Composite Composite Grab (G) Composite Composite Grab (G) Composite Com	4) Customer Sample ID Multi A Customer Sample ID Matrix Date Time Composite (C Composite (G) Composite (G) Composite (C Composite (C) Composite (C)
Composite Grab (G) Grab (G) Composite Grab (G) Composite Composite Grab (G) Composite Composite Grab (G) Composite	4) Customer Sample ID Matrix Date Time Composite (C SALGAA A A A A A A A A A A A A A A A A A
Image: Second state of the second s	4) Customer Sample ID Matrix Date Time Composite (C 3/6) Sample Composite (C 3/6) Sample (C
Composite Grab (G) Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Composite Grab (G) Composite Composit	4) Customer Sample ID Matrix Date Time Composite (C 3/6) Sample Composite (C 3/6) Sample (C
Composite Grab (G)	4) Customer Sample ID Matrix Date Time Composite (G) - Other (please specify under lient 3, continents) (G) (G) (G) (A) Customer Sample ID Matrix Date Time (G) (Mu) A (Ju) 2/7/19 (G) (G) (G) Composite (
Composite Grab (G) Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Composite Grab (G) Composite Co	4) Customer Sample ID Matrix Date Time Composite G (C) - Cuter (please specily under lient 3, Continents) (C) - Cuter (please specily under lient 3, Continet 3, Continet 3, Continet 3, Continet 3,
Composite Grab (G) Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Grab (G) Composite Composite Grab (G) Composite Composite Grab (G) Composite Comp	4) Customer Sample ID Matrix Date Time Composite G Control (C) Con
Composite Grab (G) Grab (G) Composite Grab (C) Composite Grab (G) Composite Grab (G) Composite C	4) Customer Sample ID Matrix Date Time Composite 4) Customer Sample ID Matrix Date Time Composite
a Composite Grab (G) Composite Grab (G) Composite Red None MeOH En Core NaOH HCI H2SO4 HNO3 Other:	4) Customer Sample ID Matrix Date Time Composite 4) Customer Sample ID Matrix Date Time Composite
nposite b (G) C (G	5) 6) Sample pp (0)
	CI - Oner (biease specily under lient s, comments) (C
	OI - Other (please specify under item 9, Comments) O
C)	
PA	,
Type	DW - Drinking Water S - Soil A - Air
	Matrix Codes
If Contingent ===>	USE ===> Check If Contingent ===>
7) Analysis (specify methods & parameter lists)	Analysis
* Expedited TAT Not Always Available. Please Check with Lab.	TITCOL.
2d) Quote/PO # (If Applicable): Other: Other:	The Contraction
2c) Project Location (City/State):	15) Email/Cell/Fax/Ph: An A Control (ACAC 2c) Project Location (City/State):
1 2b) Project N	KHASATHA NSO7034 26) Project Mgr. J
onc I SLAND CITY, NY	SA Noroms Ave
RIA VOLTH 2 Business Days (75%)* Reduced:	2a) Project: 22-01
Project information 1 Business Day (100%)* Resulta + CC (Waste) Excel Reg. NJ / NY / PA	Customer Information Project in
When Available: Summary	#11408 CT #PH-0671
A Women-O	
Hampton-Clarke	Clarke
Project # (Lab Use Only)	Hampton-Clarke, Inc. (WBE/DBE/SBE)

7	r client [] FSP#	pling plan (che	Internal use: sampling plan (che							
activated for any analysis.	ge should sample not be	A fee of \$5/sample will be	A fee of							
seted your analytical work may be delayed.	teted your analytica	Ų	Please not						IOLES	Additional Notes
	s,ahove/right) J	- GD	High Cont			Date.	2.0	AND	name):	11) Sampler
Color Tomorphics		Project-Specific Reporting Limits	Project-S		1 jento	Date:		J	V	11/0
			Check if applicable:							
	NJDEP SPLP	PLP (BN, BNA, Metals)	SPLP (BN							
RS	NJDEP SRS	VOC (8260C SIM or 8011)	VOC (826)							-
MOS	NIDED GWOS	current groundwater standards (SPLP for soil):	current groundwat	K7-L1 6	4	$\left(\right)$			Y	
For NJ LSRP projects, indicate which standards	For NJ LSRP proje	I methods required to meet	Indicate If low-leve		L Pare	- DY			Isned by	10) Kelingwished
HAZARDS	cial Requirements.	Comments Notes Special Requirements, HAZARDS		Time	Date	bw.	Association			
							-			
,										
		7								
			5°				-			
							<		7	
	<u>م</u>						-and	MA (MA)	15004	170
1	۲ ۲					+	4		- -	Lab Sample #
5 9) Comments	HN)		Data Tima			
ier:	1 504 03	OH Core				npos b (G)	6) Sample	5)		
	# of Bottles	# Of			• 				Ē	ADD00023
	8)					(C)	9, Comments)	spec		
						Ð	;	Water SL - Sludge	GW - Ground Water	Batch #
							A - Air		DW - Drinking Water	←
			-1			Sample		Matrix Codes		ONLY
	<=== Check If Contingent <===	<=== Check If				$int == > \frac{1}{N}$	Check If Contingent ===>	===>		USE
		· lists)	7) Analysis (specify methods & parameter lists)	pecify method) Analysis (s	15				FOR LAB
	Expedited TAT NOT Always Available. Flease Uneck with Law	* Expedited IAI No								
Other:	2	Other:			Applicable):	2d) Quote/PO # (If Applicable):		1222	A	1d) Send Report to:
[] Region 2 or 5	NY ASP CatA	8 Business Days (Stand.)				l			r r	1c) Send Invoice to:
[] NYDEC	NJ Full / NY ASP CatB	5 Business Days (25%)			n (City/State):	2c) Project Location (City/State):	4	cationationline ne	tran	1b) Email/Cell/Fax/Ph:
	[] PA [] Other	4 Business Days (35%)*		ALVM	HH D	2b) Project Mgr:		ATTA DI	いてまれい	
EQUIS	[] U [] NY	/		21740	ANS GUA	100		oroms the	Nox 83	Address:
EnviroData	Reduced:		INDRIH	AZY LAZA	OIQUEENS	2a) Project 22.01		•	SFFF	1a) Customer:
Excel Reg. NJ / NY / PA	Results + QC (Waste)	1 Business Day (100%)*	/	Project Information	Project In	•		Customer Information	Custon	
NJ Hazsite	Summary	When Available:		oved	DE HSCA Appro	-0671 KY #90124	3 NY #11408 CT #PH	NELAC/NJ #07071 PA #68-00463 NY #11408 CT #PH-0671 KY #90124 DE HSCA Approved	NELAC	
Electronic Data Deliv.	Type	Turnaround	ss Enterprise	A Women-Owned, Disadvantaged, Small Business Enterprise	ned, Disadvantag	A Women-Ow	-6056	Ph (Service Center): 856-780-6057 Fax: 856-780-6056	1 (Service Center): 85	P
	3) Reporting Requirements (Flease Circle)	3) Keportii	Ĩ		Clarke	Hampton-Cl	ersev 08054	Service Center: 137-D Gaither Drive. Mount Laurel. New Jersev 08054	4z6-999z 973-244-97	Service C
		CONTROL					ersey 07004	175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004	e 46 West and 2 Madis	175 Rout
			VICTORY			7	E/SBE)	Hampton-Clarke, Inc. (WBE/DBE/SBE)	pton-Clarke,	Ham
		Denight # /I shilled								

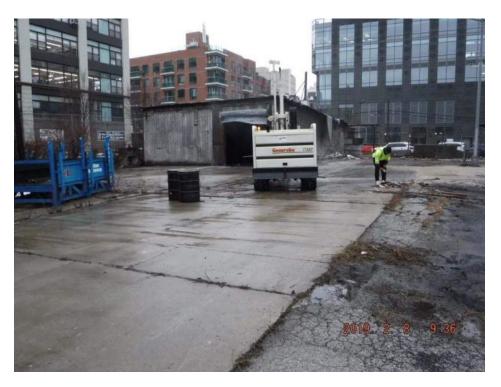
APPENDIX D: SITE PHOTOGRAPHS

Photograph 1: View of the Site stockyard looking south from across the intersection of 22nd Street and 41st Avenue. The Site building is visible at far right-background.

Photograph 2: Site building looking north from across the intersection of Queens Plaza North and 23rd Street.

Photograph 3: General view of a portion of the Site stockyard looking north.

Photograph 4: Installation of B3 looking south.


Photograph 5: Typical soil encountered in the borings installed in the stockyard. B1 soils shown.

Photograph 6: Soil encountered n B4, which was installed inside the Site building.

Photograph 7: Interior o the vacant ground floor of the two-story Site building. Installation of B9 shown.

Photograph 8: Open and empty stockyard area at the north side of the Site looking east towards the vacant storage building.